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Abstract In this paper, starting from a function analytic in a neighborhood of the unit disk and based on

Bessel functions, we construct a family of generalized multivariate sinc functions, which are radial and named

radial Bessel-sinc (RBS) functions being time-frequency atoms with nonlinear phase. We obtain a recursive

formula for the RBS functions in Rd with d being odd. Based on the RBS function, a corresponding sampling

theorem for a class of non-bandlimited signals is established. We investigate a class of radial functions and prove

that each of these functions can be extended to become a monogenic function between two parallel planes, where

the monogencity is taken to be of the Clifford analysis sense.
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1 Introduction

Sinc function sinc(t) = sin t
t , t ∈ R, introduced by Woodward [14], is fundamental in digital signal pro-

cessing and information theory due to the Shannon sampling theorem for reconstructing a bandlimited

signal [5,8]. The Fourier transform of sinc is the characteristic function of [−1, 1], which is well-known as

an ideal low-pass filter leading to the multi-resolution analysis of Haar and Shannon wavelets [7, 15, 16].

Shannon sampling holds only for bandlimited signals and as such ones naturally ask whether it is

possible, and if yes, how to construct “sinc functions” for reconstructing non-bandlimited signals by their

samples? This problem of one dimensional case has been completely solved by [2, 3]. In this paper, we

focus on the higher dimensional case. Incidentally, our theory has the following three features.

(I) It presents a case where a Shannon-type sampling holds for non-bandlimited signals. Moreover, the

classical Shannon sampling is imbedded in our theory, more details about which can be seen in Example 1

of Section 2.

(II) The common method to construct a sinc function is tensor product [9, 10]. However, the sinc

function in this paper is constructed through time-frequency atoms with nonlinear phases, namely, it

is radial.
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(III) Our theory is closely related to analytical signal theory. The notions of the instantaneous ampli-

tude (IA), instantaneous phase (IP) and instantaneous frequency (IF) are used in many applications to

measure and detect local details of a signal. A commonly acceptable approach to define them is through

Hilbert transform, which leads to the theory of analytical signal. An important fact about IA and IP is

as follows. When an IP is taken from the boundary value of a function analytic in a neighborhood of the

closed unit disk, the corresponding IA is in the even-shift-invariant space generated by the integer-shifts

of a generalized sinc function and the even-integer-shifts of the Hilbert transform of the generalized sinc

function [1]. The fact inspires us to investigate the corresponding result in the multivariate case. The

present paper is, to our best of knowledge, the first touch of higher dimensional analytic signals related

to sinc functions. Our theory offers a potential in applications such as designing filters.

Our main idea is sketched as follows. We divide Rd into a cascade collection of the annulus {Sn : n∈Z+}
defined by

Sn := B(0,n+1) \B(0,n) (1.1)

with B(0,0) = ∅ and B(0, σ) being the ball in R
d centered at 0 with radius σ. We define even functions

such that they are piecewise constants in {Sn : n ∈ Z+}. These constants correspond to the coefficients

of power series expansion of a function analytic in a neighborhood of unit circle. Now the generalized

sinc function is defined to be the Fourier transform of the piecewise constant function mentioned above,

where the Fourier transform of any f ∈ L2(Rd) is defined by

f̂(ξ) = (2π)−
d
2

∫
Rd

f(t)e−i〈ξ,t〉dt, ξ ∈ R
d

with

〈ξ, t〉 =
d∑

j=1

ξjtj ,

for ξ = (ξ1, . . . , ξd), t = (t1, . . . , td) ∈ Rd. We will see in Section 3 that the generalized sinc functions are

closely related to Bessel function. For better understanding the generalized sinc function, we need more

details about the Bessel function. Recall that the Bessel function Jα(z), α ∈ C, is defined to be

Jα(z) =

∞∑
k=0

(−1)k(z/2)α+2k

k!Γ(k + α+ 1)
, z ∈ C (1.2)

with Γ being the Gamma function on C. It is well known that Jα(z) satisfies Bessel’s differential equation

z2
d2y

dz2
+ z

dy

dz
+ (z2 − α2)y = 0.

For a complex number α with Re(α) > −1/2, it holds that

Jα(z) =
(z/2)α

Γ(1/2)Γ(α+ 1/2)

∫ π

0

cos(z cos θ) sin2α θdθ.

In particular,

Jn+ 1
2
(z) =

√
2

π
(−1)nzn+

1
2Dn

z (sinc(z)) (1.3)

with the operator D defined by

Dt =
1

t

d

dt
.

Readers are referred to [13, 3.1.8, 3.1.1 and 3.3.1] for more materials on a Bessel function.

We need more notations for convenient narration. If f ∈ L2(Rd) and supp f̂ ⊂ B(0, σ), then f is

called a bandlimited function with bandwidth σ. Denote the set of positive integers by N and the one of

nonnegative integers by Z+. Let Nm = {1, 2, . . . ,m} and Zd be the d-dimensional integer lattice. The



Chen Q H et al. Sci China Math September 2013 Vol. 56 No. 9 1917

unit sphere in Rd is denoted by Sd−1 = {x ∈ Rd : |x| = 1}, where | · | = 〈·, ·〉1/2. A function f(t), t ∈ Rd,

is said to be radial if there exists a univariate function F (r), r ∈ [0,∞), such that f(t) = F (|t|) for any
t ∈ R

d.

The structure of this paper is organized as follows. Two approaches are given in Section 2 to construct

generalized sinc functions in univariate case, one is Fourier transform approach, the other is boundary-

value approach of analytic function. Section 3 aims at constructing radial-Bessel-sinc functions and

addressing their properties. Since they are dimensionally dependent, we establish a recursive formula in

odd dimensional case. In Section 4, generalized sinc functions are applied to the linear time-invariant

system and sampling for multivariate non-bandlimited signals. A Clifford monogenic extension result for

generalized sinc functions is established in Section 5.

2 Two approaches to construct univariate sinc functions

Definition 2.1. Let R(Δ) be the set of functions analytic in some neighborhood of the closed unit

disk Δ, real-valued on the real axis and normalized such that any G ∈ R(Δ) satisfies G(1) = 1 and

G′(1) �= 0, where Δ is the open unit disk.

For any G ∈ R(Δ), define a complex-valued function g by

g(z) = G(eiz), z ∈ C, (2.1)

then introduce functions uG and vG on R via the boundary value on R of g(z) by

g(t) = uG(t) + ivG(t), t ∈ R. (2.2)

The fact that G being analytic in some neighborhood of Δ leads to a power series expansion

G(z) =
∑
k∈Z+

gkz
k (2.3)

with gk real for k ∈ Z+. It is easy to check that there exists constants c (> 0) and λ ∈ (0, 1) such that

for any k ∈ Z+, it holds

|gk| � cλk,

namely, the sequence {gk : k ∈ Z+} decays exponentially. Now uG and vG can be also expressed by

vG(t) =
∑
k∈N

gk sin(kt), uG(t) =
∑
k∈Z+

gk cos(kt), t ∈ R,

which implies that both uG and vG are 2π-periodic and in C∞(R). Direct observation on (2.2) gives us

1 = G(1) = g(2πn) = uG(2πn) + ivG(2πn), ∀n ∈ Z. (2.4)

Hence,

vG(2πn) = 0, uG(2πn) = 1, (2.5)

of which the last relation equals

∞∑
k=0

gk = 1. (2.6)

Next, we introduce the first approach to construct generalized sinc function.
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Definition 2.2. For any G ∈ R(Δ), we define the generalized sinc function sincG : R → R and cosinc

function cosincG : R → R by

sincG(t) =
vG(t)

t
, t ∈ R (2.7)

and

cosincG(t) =
1− uG(t)

t
, t ∈ R. (2.8)

By (2.5), it is easy to check that sincG and cosincG both belong to L2(R). Functions sinca and cosinca
constructed in [2] correspond to G = Ba, the Blaschke product defined by

Ba(z) =
z − a

1− az
, a ∈ Δ.

For better understanding sincG and cosincG, we explain more about vG and uG. For any G ∈ R(Δ),

define F ∈ H2(Δ) by

F (z) =
G(z)− 1

z − 1
, z ∈ Δ, (2.9)

which can be expressed as the power series

F (z) =
∑
k∈Z+

ckz
k, z ∈ C. (2.10)

It is easy to see that

vG(t) =
∑
k∈N

(ck−1 − ck) sin(kt) (2.11)

and

uG(t) = 1− c0 +
∑
k∈N

(ck−1 − ck) cos(kt). (2.12)

Direct calculation gives us

cn = 1− (g0 + · · ·+ gn) =

∞∑
j=n+1

gj

implying cn satisfies the same exponential decay estimate as gn, i.e.,

|ck| � cλn (2.13)

for some positive constants c and λ ∈ (0, 1).

Next, we introduce the second approach to construct generalized sinc function.

Definition 2.3. A symmetric cascade filter (SCF) Hc is a piecewise constant function on R defined by

H1,c(t) = cn, t ∈ (−n− 1,−n] ∪ [n, n+ 1) (2.14)

with the sequence c := {cn : n ∈ Z+}. Here we use the indices pair to show that the filter is dependent

on the dimension 1 as well as on the vector c. Radial cascade filter associated with general dimension d

will be seen in (3.1).

Note that H1,c in (2.14) can be rewritten by

H1,c =
∑
n∈Z

cnχ(· − n), (2.15)

where the components of the bi-infinite sequence c := {cn : n ∈ Z} are extended by cn = c−n−1, n ∈ Z+,

and χ is the characteristic function of the interval [0, 1).

Corresponding to the filter H1,c is the impulse response function φF defined by

φF :=

√
π

2
F−1H1,c. (2.16)
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An explicit form of φF can be given by

φF (t) = sinc

(
t

2

)
Re{F (eit)e

1
2 it}, t ∈ R. (2.17)

A direct computation confirms that

φF = sincG, (2.18)

which will be proved in Appendix.

Example 1.1. Let G = z, i.e., F = 1. This case leads to sincG = sinc.

Example 1.2. Let G be the Blaschke product of order n, i.e.,

G(z) = Ba(z) =

n∏
j=1

z − aj
1− ajz

with a := (a1, a2, . . . , an) ∈ (−1, 1)n. Then by (2.17) and (2.18), we can check that

sincG(t) =
sin θa(t)

t
,

where θa is called a nonlinear phase and decided by the boundary value of Blaschke product by

eiθa(t) = Ba(e
it), t ∈ R.

Correspondingly, eiθa(·) is a time-frequency atom with nonlinear phase θa.

We remark that, from the above discussion, there are two equivalent ways to construct a generalize

sinc function in one dimensional case. One is the boundary value approach of analytic functions in a

neighborhood of the closed unit disk given by (2.7), and the other is the Fourier transform approach

given by (2.17).

3 Radial Bessel-sinc functions

Let the vector c = (cn : n ∈ Z+) ∈ l2(Z+) be defined by (2.10). Extend c to be a symmetric bi-infinite

vector c := (cn : n ∈ Z) by cn = c−n−1, n ∈ Z+. We say that a radial cascade filter (RCF) Hd,c is a

piecewise constant function if

Hd,c(t) = cn, t ∈ Sn (3.1)

with Sn defined in (1.1). The filter Hd,c in (3.1) can be rewritten as

Hd,c(t) =
∑
n∈Z

cnχ(|t| − n) = H1,c(|t|), t ∈ R
d, (3.2)

where χ is the characteristic function of the interval [0, 1).

Definition 3.1. The Radial Bessel-sinc function sincd,c in Rd associated with the vector c is defined

to be

sincd,c(ξ) =

(
π

2

) d
2

F−1(Hd,c)(ξ). (3.3)

For (3.3), we need to investigate the Fourier transform of Hd,c.

Lemma 3.2. The Fourier transform of Hd,c, d � 1, is

sincd,c(ξ) =

(
π

2

) d
2

|ξ|−d
∑
k∈Z+

ck

∫ (k+1)|ξ|

k|ξ|
r

d
2 J d−2

2
(r)dr, ξ ∈ R

d. (3.4)
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Proof. Using the computing technique of the Fourier transform of a radial function, we have

sincd,c(ξ) = (2π)−
d
2

(
π

2

) d
2
∫
Rd

H1,c(|t|)ei〈ξ,t〉dt

= 2−d

∫ ∞

0

H1,c(r)r
d−1dr

∫
Sd−1

e
ir|ξ|〈 ξ

|ξ| ,t
′〉
dt′, ξ ∈ R

d.

Recalling the formula∫
Sd−1

eir〈ω,t
′〉dt′ = (2π)

d
2 r−

d
2+1J d−2

2
(r), ω ∈ Sd−1, r ∈ (0,∞), (3.5)

being independent of ω ∈ Sd−1, we obtain

sincd,c(ξ) =

(
π

2

) d
2

|ξ|− d
2+1

∫ ∞

0

r
d
2 H1,c(r)J d−2

2
(r|ξ|)dr, ξ ∈ R

d.

Noting the definition of H1,c, recalling the decaying rate of c and using Lebesgue dominated convergence

theorem, we get

sincd,c(ξ) =

(
π

2

) d
2

|ξ|− d
2+1

∫ ∞

0

r
d
2

∑
k∈Z

ckχ(r − k)J d−2
2
(r|ξ|)dr

=

(
π

2

) d
2

|ξ|− d
2+1

∑
k∈Z+

ck

∫ k+1

k

r
d
2 J d−2

2
(r|ξ|)dr

=

(
π

2

) d
2

|ξ|−d
∑
k∈Z+

ck

∫ (k+1)|ξ|

k|ξ|
r

d
2 J d−2

2
(r)dr.

It is easy to see from Lemma 3.2 that sincd,c is of dimensional dependence. In particular, when d

is odd, due to the explicit representation (1.3) of Bessel function Jm+ 1
2
, we can handle the right-sided

integral in (3.4) in the rest of this section. We first set d = 2m+ 3, m ∈ Z+, and define the function

γm(t) := t−2m−3
∑
k∈Z+

ck

∫ (k+1)t

kt

r
2m+3

2 Jm+ 1
2
(r)dr, t ∈ R. (3.6)

Consequently,

sinc2m+3,c(ξ) =

(
π

2

) 2m+3
2

γm(|ξ|), ξ ∈ R
2m+3. (3.7)

Lemma 3.3. The function γm,m � 0, defined in (3.6) satisfies

γm+1(t) = Qm(t) + (2m+ 3)t−2γm(t), t ∈ R, (3.8)

where

Qm(t) :=

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ckr
2m+3Dm

r (sinc(r))|(k+1)t
r=kt , t ∈ R, (3.9)

with the operator D mentioned in (1.3).

Proof. It follows from (1.3) that

γm(t) = t−2m−3
∑
k∈Z+

ck

∫ (k+1)t

kt

r
2m+3

2

√
2

π
(−1)mrm+ 1

2Dm
r (sinc(r))dr,

which can be simplified as

γm(t) =

√
2

π
(−1)mt−2m−3

∑
k∈Z+

ck

∫ (k+1)t

kt

r2m+2Dm
r (sinc(r))dr. (3.10)
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Now direct computation gives us

γm+1(t) =

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck

∫ (k+1)t

kt

r2m+4Dm+1
r (sinc(r))dr

=

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck

∫ (k+1)t

kt

r2m+3d[Dm
r (sinc(r))]

=

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ckr
2m+3Dm

r (sinc(r))|(k+1)t
r=kt

− (2m+ 3)

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck

∫ (k+1)t

kt

r2m+2Dm
r (sinc(r))dr.

Recalling the definition Qm in (3.9) and noting (3.10), we conclude the proof.

Below we investigate the function Qm.

Lemma 3.4. The function Qm defined in (3.9) satisfies

Qm(t) = (−1)m
√

2

π
t−2Dm

t

(
v′′G(t)
t

)
, t ∈ R, (3.11)

where vG is defined in (2.2).

Proof. We prove this lemma by induction method on m. Firstly, we show that

Q0(t) =

√
2

π
t−2 v

′′
G(t)

t
, t ∈ R.

To this end, setting m = 0 in (3.9), we have

Q0(t) = −
√

2

π
t−5

∑
k∈Z+

ckr
3sinc(r)|(k+1)t

r=kt

= −
√

2

π
t−3

∑
k∈Z+

ck[(k + 1)2 sin(k + 1)t− k2 sin(kt)]

= −
√

2

π
t−3

∑
k∈N

(ck−1 − ck)k
2 sin(kt).

Combining this with the identity (2.11), that is,

vG(t) =
∑
k∈N

(ck−1 − ck) sin(kt),

we conclude (3.11) for m = 0.

Secondly, we need to show that Qm satisfies the differential equation

Qm+1(t) = −t−1 d

dt
Qm(t)− 2t−2Qm(t), t ∈ R. (3.12)

Direct calculation leads to an equality chain

Qm(t) =

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ckr
2m+3Dm

r (sinc(r))|(k+1)t
r=kt

=

√
2

π
(−1)m+1t−2

∑
k∈Z+

ck(k + 1)2m+3Dm
r (sinc(r))|r=(k+1)t
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−
√

2

π
(−1)m+1t−2

∑
k∈Z+

ckk
2m+3Dm

r (sinc(r))|r=kt,

which implies that

Qm(t) =

√
2

π
(−1)m+1t−2

∑
k∈N

(ck−1 − ck)k
2m+3Dm

r (sinc(r))|r=kt. (3.13)

Differentiating on both sides of (3.13) gives us

d

dt
Qm(t) = −2

√
2

π
(−1)m+1t−3

∑
k∈N

(ck−1 − ck)k
2m+3Dm

r (sinc(r))|r=kt

+

√
2

π
(−1)m+1t−2

∑
k∈N

(ck−1 − ck)k
2m+3 d

dt
{Dm

r (sinc(r))|r=kt}.

Invoking the above equality chain, we have

d

dt
Qm(t) = −2t−1Qm(t) +

√
2

π
(−1)m+1t−2

∑
k∈N

(ck−1 − ck)k
2m+3{rDm+1

r (sinc(r))|r=kt}dr
dt

= −2t−1Qm(t) +

√
2

π
(−1)m+1t−1

∑
k∈N

(ck−1 − ck)k
2m+5{Dm+1

r (sinc(r))|r=kt}

= −2t−1Qm(t)− tQm+1(t),

from which, we get (3.12).

Now we continue with the induction. Assuming that (3.11) is true for m, we proceed to show that it

also true for m+ 1. Applying the formula (3.12), we have

Qm+1(t) = −t−1 d

dt

{
(−1)m

√
2

π
t−2Dm

t

(
v′′G(t)
t

)}
− 2t−2Qm(t)

= 2t−2(−1)m
√

2

π
t−2Dm

t

(
v′′G(t)
t

)
+ (−1)m+1

√
2

π
t−3 d

dt

{
Dm

t

(
v′′G(t)
t

)}
− 2t−2Qm(t).

By the induction hypothesis, we obtain

Qm+1(t) = (−1)m+1

√
2

π
t−3 d

dt

{
Dm

t

(
v′′G(t)
t

)}

= (−1)m+1

√
2

π
t−2Dt

{
Dm

t

(
v′′G(t)
t

)}

= (−1)m+1

√
2

π
t−2

{
Dm+1

t

(
v′′G(t)
t

)}
.

The proof is completed.

Now, (3.7) and the following recursive formulas A and B lead to our main result in this section.

Recursive formula A: Functions {γj(t) : j ∈ Z+} can be recursively calculated by

γm+1(t) = (2m+ 3)t−2γm(t) + (−1)m
√

2

π
t−2Dm

t

(
[vG(t)]

′′

t

)
, t ∈ R, (3.14)

with the initial function

γ0(t) = −
√

2

π
Dt

(
vG(t)

t

)

and vG defined in (2.2).
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Recursive formula B: Construct {gj : j ∈ Z+} by

gm+1(t) = −Dtgm(t), t ∈ R (3.15)

with the initial function

g0(t) =

√
2

π
t−3

∑
k∈Z+

ck

∫ (k+1)t

kt

r sin rdr. (3.16)

Theorem 3.5. The radial Bessel-sinc function sincd,c satisfies the following identity for odd d = 3,

5, 7, . . . ,

sincd,c(ξ) =

(
π

2

) d
2

γ d−3
2
(|ξ|), ξ ∈ R

d, (3.17)

where γm is determined by the recursive formulas A and B.

Proof. The recursive relation (3.14) can be concluded from Lemmas 3.3 and 3.4. As such, we just need

to prove the explicit expression of γ0. To this end, it follows from (3.10) that

γ0(t) =

√
2

π
t−3

∑
k∈Z+

ck

∫ (k+1)t

kt

r sin rdr =

√
2

π
t−3

∑
k∈Z+

ck

∫ (k+1)t

kt

rd(− cos r)

=

√
2

π
t−2

∑
k∈Z+

ck(k cos(kt)− (k + 1) cos(k + 1)t) +

√
2

π
t−3

∑
k∈Z+

ck

∫ (k+1)t

kt

cos rdr

=

√
2

π
t−2

∑
k∈N

(ck − ck−1)k cos(kt) +

√
2

π
t−3

∑
k∈N

(ck−1 − ck) sin(kt)

=

√
2

π
[−t−2v′G(t) + t−3vG(t)],

where we used the formula (2.11) twice in the last equality. Now we get

γ0(t) = −
√

2

π
t−1 v

′
G(t)t− vG(t)

t2
= −

√
2

π
Dt(sincG(t))

to complete the proof.

We know from Theorem 3.5 that the recursive formula (3.14) is crucial for constructing a radial sinc

function. For convenient discussion, we need a further investigation into (3.14) and as such we present an

alternative expression of (3.14), precisely, we offer a differential-operator-based characterization of (3.14).

Proposition 3.6. For m ∈ Z+, it holds that gm = γm, which implies that (3.14) is equivalent to (3.15).

Proof. We prove this proposition by induction method on m. It follows from (3.14) and (3.16) that

g0 = γ0. Now we just need to show that if gm = γm, then gm+1 = γm+1. Recursive formula A leads to

the sequence of functions γm defined by (3.10), that is,

γm(t) =

√
2

π
(−1)mt−2m−3

∑
k∈Z+

ck

∫ (k+1)t

kt

r2m+2Dm
r (sinc(r))dr.

Now it suffices to show that

d

dt
γm(t) = −(2m+ 3)t−1γm(t) + (−1)m+1

√
2

π
t−1Dm

t

(
[vG(t)]

′′

t

)
, t ∈ R. (3.18)

Differentiating on both sides of (3.10) gives us that

d

dt
γm(t) =

d

dt

(√
2

π
(−1)mt−2m−3

∑
k∈Z+

ck

∫ (k+1)t

kt

r2m+2Dm
r (sinc(r))dr

)
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= −(2m+ 3)
1

t
γm(t) +

√
2

π
(−1)mt−1

∑
k∈Z+

ck(k + 1)2m+3Dm
r (sinc(r))|r=(k+1)t

−
√

2

π
(−1)mt−1

∑
k∈Z+

ckk
2m+3Dm

r (sinc(r))|r=kt

= −(2m+ 3)
1

t
γm(t) +

√
2

π
(−1)mt−1

∑
k∈N

(ck−1 − ck)k
2m+3Dm

r (sinc(r))|r=kt.

Now by comparing (3.13) and (3.11), we obtain (3.18). The proof is completed.

As a consequence of Proposition 3.6, we have the following corollary.

Corollary 3.7. Suppose that the two sequences {γm : m ∈ Z+} and {gm : m ∈ Z+} of functions are

defined by (3.14) and (3.15), respectively. Then we have

γm(t) = gm(t) =

√
2

π
(−1)m+1Dm+1

t (sincG(t)), t ∈ R, (3.19)

where vG is defined by (2.2).

Proof. By comparing recursive formula A with formula B, the required result follows immediately.

Finally, we offer an estimation for decaying rate of the generalized sinc function.

Proposition 3.8. The following inequality holds

|sincd,c(ξ)| � const

|ξ| d+1
2

, ξ ∈ R
d, |ξ| � 1, (3.20)

where const is some constant independent of ξ.

Proof. Recalling (3.17), it suffices to show that

|γm(t)| � const

|t|m+2
, t ∈ R, |t| � 1,

where const is some constant independent of t. By using (3.19), we need to prove

|Dm
t (sincG(t))| � const

|t|m+1
, t ∈ R, |t| � 1.

This inequality can be verified by adopting induction method on m, by using the formula

Dm
t =

1

tm

m−1∑
k=0

b
(m)
k

(
− 1

t

)k
dm−k

dtm−k

with some constants b
(m)
k , k = 0, . . . ,m− 1, independent of t, and by noting that both of sincG and vG

are infinitely differential and their derivatives are bounded.

4 Applications in LTI system and sampling

Let T be the transform function of a continuous linear time-invariant (LTI) system. When the input

signal is fin, then the output signal fout is the convolution of T and fin, namely,

fout(t) =

∫
Rd

fin(t− x)T (x)dx, t ∈ R
d.

There is also an equivalent representation of the output signal in the frequency domain

f̂out(ξ) = (2π)−
d
2 f̂in(ξ)T̂ (ξ), ξ ∈ R

d.
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If, in particular, in univariate case, we choose T̂ to be the indicator function χ(−1,1), then the response

function is just the usual sinc function up to a multiplicative constant. In higher dimensional cases,

one adopts the tensor product approach, that is, T̂ is the indicator function of the cube (−1, 1)d and

T (t) =
∏d

k=1
sin tk
tk

(see [10]). To apply RBS functions to LTI system, we propose the following filtering

process: for input signal fin, the output signal fout keeps the frequency information of fin with different

scales in the different frequency bands, i.e., in the annulau Sn = B(0,n+1) \B(0,n), namely,

f̂out(ξ) = c0f̂in(ξ), ξ ∈ S0 = B(0,1),

f̂out(ξ) = c1f̂in(ξ), ξ ∈ S1,

...

f̂out(ξ) = cnf̂in(ξ), ξ ∈ Sn, n = 1, 2, . . . ,

...

where c = {cj : j ∈ Z+} is the vector defined in (2.10). Corresponding to this LTI system, we know

from (3.3) that the transform function in frequency domain is the cascade radial filter Hd,c and the

impulse response is just the radial Bessel sinc function sincd,c.

In order to introduce a sampling space in L2(Rd), we need to recall the classical Whittaker-Kotelnikov-

Shannon sampling theorem by the tensor product approach, which states that any bandlimited signal f

with suppf̂ ⊂ [−σ, σ]d can be reconstructed from its sampling sequence {f(nπ
σ ) : n ∈ Zd}, that is,

f(t) =
∑
n∈Zd

f

(
n
π

σ

) d∏
j=1

sin(σtj − njπ)

σtj − njπ
, t ∈ R

d. (4.1)

Any bandlimited signal f with suppf̂ ⊂ [−σ, σ]d corresponds to a multivariate integrable complex valued

function in the d-dimensional cube of width 2π
σ , i.e.,

Mf,σ(t) =

(√
2π

2σ

)d ∑
n∈Zd

f

(
n
π

σ

)
e−iπσ 〈n,t〉, t ∈ R

d. (4.2)

Taking Fourier transform to both sides of (4.1), we can define the space of bandlimited signals in frequency

domain to be

Bσ = {f ∈ L2(Rd) : f̂(ξ) = Mf,σ(ξ)χ(−σ,σ)d(ξ), ξ ∈ R
d}.

In order to derive a sampling space of non-bandlimited signals, motivated by (4.2), we define function

Gf,c,σ by

Gf,c,σ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0Mf,σ(t), t ∈ B(0,σ),

c1Mf,σ(t), t ∈ B(0,2σ)\B(0,σ),
...

cnMf,σ(t), t ∈ B(0,(n+1)σ)\B(0,nσ), n = 1, 2, . . . ,
...

(4.3)

Now, we define the space of non-bandlimited signals by

Bc,σ = {f ∈ L2(Rd) : f̂(ξ) = Gf,c,σ(ξ), ξ ∈ R
d}. (4.4)

Theorem 4.1. A signal f ∈ Bc,σ if and only if

f(t) =
∑
k∈Zd

f

(
π

σ
k

)
sincd,c(σt− kπ), t ∈ R

d. (4.5)
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Proof. We first prove the necessity. By the definition of the space Bc,σ, we know that for any f ∈ Bc,σ,

it has the following representation in the frequency domain

f̂(ξ) = Gf,c,σ(ξ) =

∞∑
n=1

Mf,σ(ξ)cn−1χB(0,nσ)\B(0,(n−1)σ)(ξ)

=

(√
2π

2σ

)d ∑
k∈Zd

f

(
k
π

σ

)
e−iπσ 〈k,ξ〉

∞∑
n=1

cn−1χB(0,nσ)\B(0,(n−1)σ)(ξ).

Applying the inverse Fourier transform to both sides of the above equation leads to

f(t) =

(
1

2σ

)d ∑
k∈Zd

f

(
k
π

σ

) ∞∑
n=1

cn−1

∫
B(0,nσ)\B(0,(n−1)σ)

e−iπσ 〈k,ξ〉ei〈t,ξ〉dξ

=

(
1

2σ

)d ∑
k∈Zd

f

(
k
π

σ

) ∞∑
n=1

cn−1

∫
B(0,nσ)\B(0,(n−1)σ)

ei〈t−
π
σ k,ξ〉dξ

= 2−d
∑
k∈Zd

f

(
k
π

σ

) ∞∑
n=1

cn−1

∫
B(0,n)/B(0,n−1)

ei〈σt−πk,ξ〉dξ

= 2−d
∑
k∈Zd

f

(
k
π

σ

)∫
Rd

Hd,c(ξ)e
i〈σt−πk,ξ〉dξ

=
∑
k∈Zd

f

(
k
π

σ

)
sincd,c(σt − πk).

Reversing the process above, we can prove the sufficiency.

The Shannon type sampling formula (4.5) involves with infinite sums. From the practical point of view,

we need to use finite sums to approximate the original signal f . The approximating error is measured in

terms of the energy norm of L2(Rd) by an adaptive truncated sum. That is, we use

Sn(t) =
∑

|t−π
σ k|�n

f

(
π

σ
k

)
sincd,c(σt − kπ), t ∈ R

d (4.6)

to approximate f .

Theorem 4.2. Suppose that f ∈ Bc,σ and c satisfies (2.13). Then

‖f − Sn‖∞ = O(n−1/2). (4.7)

Proof. Using the Cauchy-Schwartz inequality, we get

|f(t)− Sn(t)| =
∣∣∣∣

∑
|t−π

σ k|>n

f

(
π

σ
k

)
sincd,c(σt− kπ)

∣∣∣∣

�
( ∑

|t−π
σ k|>n

f2

(
π

σ
k

)) 1
2
( ∑

|t−π
σ k|>n

sinc2d,c(σt− kπ)

) 1
2

�
( ∑

k∈Zd

f2

(
π

σ
k

)) 1
2
( ∑

|t−π
σ k|>n

sinc2d,c(σt− kπ)

) 1
2

with t ∈ [0, πσ )
d. That the system {sincd,c(· − k π

σ ) : k ∈ Zd} is stable (a frame) in Bc,σ leads to

∑
k∈Zd

f2

(
π

σ
k

)
� const‖f‖2L2(Rd)
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and correspondingly

|f(t)− Sn(t)| � const

( ∑
|t−π

σ k|>n

sinc2d,c(σt − kπ)

) 1
2

.

Substituting (3.20) into above inequality leads to

|f(t)− Sn(t)| � const

( ∑
|t−π

σ k|>n

1

|σt− kπ|d+1

) 1
2

.

Note that

{
k :

∣∣∣∣t− π

σ
k

∣∣∣∣ > n

}
⊆

d⋃
j=1

{
(k1, k2, . . . , kd) :

∣∣∣∣tj − π

σ
kj

∣∣∣∣ � n√
d
, k� ∈ Z, � �= j

}

with k = (k1, k2, . . . , kd) and t = (t1, t2, . . . , td). Consequently,

∑
|t−π

σ k|>n

1

|σt− kπ|d+1
�

∑
|t−π

σ k|>n

1

(
∑d

j=1 |σtj − kjπ|)d+1

� d
∑

(k1,...,kd−1)∈Zd−1

∑
|σtd−πkd|� nσ√

d

1

(
∑d

j=1 |σtj − kjπ|)d+1
,

where the estimation � is guaranteed by the equivalence of norms in Rd. Using the similar techniques

in [4, 6], we can first estimate that

∑
|σtd−πkd|> nσ√

d

1

(
∑d

j=1 |σtj − kjπ|)d+1

� const
1

(
∑d−1

j=1 |σtj − kjπ|+ nσ
π
√
d
)d

+ const
1

(
∑d−1

j=1 |σtj − kjπ|+ nσ
π
√
d
)d+1

. (4.8)

Furthermore, by the same estimation method in (4.8), we have

∑
(k1,...,kd−1)∈Zd−1

1

(
∑d−1

j=1 |σtj − kjπ|+ nσ
π
√
d
)d

� const

∫ +∞

−∞
. . .

∫ +∞

−∞

dx1 . . . dxd−1

(
∑d−1

j=1 |σtj − xjπ|+ nσ
π
√
d
)d

� const
1

n
. (4.9)

Similarly,

∑
(k1,...,kd−1)∈Zd−1

1

(
∑d−1

j=1 |σtj − kjπ|+ nσ
π
√
d
)d+1

� const
1

n2
. (4.10)

It follows from (4.9) and (4.10) that ‖f − Sn‖∞ = O(n−1/2).

We remark that, compared with the sampling class defined by the usually approach

Sc,σ =

{
f : f(t) =

∑
k∈Zd

rksincd,c(σt− kπ), t ∈ R
d, rk ∈ l2(Zd)

}
,

the sampling class Bc,σ defined in (4.4) may look unnatural for the function Gf,c,σ and Mf,σ defined

in (4.3) are both dependent of f . In fact, when d = 1, the two function classes Bc,σ and Sc,σ coincide.

This is because that the corresponding sinc function sinc1,c(π(·)) is of cardinality. It is easy to show that

the two classes coincide if and only the involved sinc function has cardinality. Recall that a function φ

is of cardinality if φ(0) = 1 and φ(k) = 0 for 0 �= k ∈ Zd. The cardinality of sinc1,c(π(·)) is proved as
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follows. We first note that A = G′(1) =
∑

k∈Z+
ck �= 0. Then (2.11) implies that sinc1,c(kπ) = 0 for

0 �= k ∈ Z. For k = 0, we have

1

Asinc1,c(0) =
1

A lim
t→0

∑
k∈N

(ck−1 − ck)
sin(kt)

t
=

1

A
∑
k∈N

k(ck−1 − ck)

=
1

A
∑
k∈Z+

(k + 1)ck −
∑
k∈N

kck =
1

A
∑
k∈Z+

ck = 1.

Therefore, we have that Bc,σ = Sc,σ in the one dimensional case (see [11]).

For d > 1, it is easily seen that the corresponding sinc function sincd,c(π(·)) does not have the cardi-

nality. Therefore, the two classes Bc,σ and Sc,σ are not identical.

5 A Paley-Wiener type extension theorem for a class of radial functions

We proved in [2] that, in the case of d = 1, all functions in Bc,σ (= Sc,σ) can be extended to be analytic

in a strip symmetric about the real line. In higher dimensional case, we shall investigate the monogenic

extension of the following functions related to Hd,c(ξ) in (3.2).

Definition 5.1. Let Sn := B(0,n+1) \ B(0,n). Suppose that R(r) is defined in [0,∞) and 1-periodic,

and a sequence c = {cn} decays exponentially, i.e., (2.13) holds. Define

E =

{
f ∈ L2(Rd) : f̂(ξ) = R(|ξ|)Hd,c(ξ) = R(|ξ|)

∞∑
k=0

ckχSk
(ξ), ξ ∈ R

d

}
. (5.1)

It is not difficult to check that E = Bc,σ = Sc,σ when d = 1, but when d > 1, E �= Bc,σ �= Sc,σ.

Next, we show that any f ∈ E can be extended to be monogenic between two parallel planes, where

the monogencity is in the sense of Clifford analysis. This result can be regarded as the counterpart

of [9] concerning Paley-Wiener theorem in the Clifford analysis setting. For basic knowledge of Clifford

analysis, we refer the reader to [9].

Theorem 5.2. Suppose that f ∈ E. Then f can be monogenically extended to the region between two

planes given by {
x = y + x

∣∣∣∣ logλ

σ
< y < − logλ

σ

}
,

where λ is given in (2.13). Moreover the extended function in the region above can be estimated by

|f(y + x)| � Cc,σ

1− e−σ|y|+log λ
,

where Cc,σ is a constant depending on σ and c.

Proof. Consider a possible Clifford vector x = y + x = y + x1e1 + · · · + xded that makes both of the

following two integrals well defined,

f+(x) = (2π)−
d
2

∫
Rd

ei〈ξ,x〉e−y|ξ|χ+(ξ)f̂(ξ)dξ,

f−(x) = (2π)−
d
2

∫
Rd

ei〈ξ,x〉ey|ξ|χ−(ξ)f̂(ξ)dξ,

where

χ±(ξ) =
1

2

(
1± i

ξ

|ξ|
)

are the Fourier multipliers corresponding to the Cauchy kernels in, respectively, the upper and the lower

spaces [12]. Recalling the partition of the integral domain Rd =
⋃∞

n=0 Sn, we have

f+(x) = (2π)−
d
2

∞∑
n=0

∫
Sn

ei〈ξ,x〉e−y|ξ|χ+(ξ))cnR(|ξ|)dξ
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= (2π)−
d
2

∞∑
n=0

∫ 1

0

∫
Sd−1

ei〈σ(n+r)ω,x〉e−yσ(r+n)χ+(ω)cnR(σ(r + n))(σr)d−1drdω

= (2π)−
d
2

∫ 1

0

∫
Sd−1

ei〈σrω,x〉e−σyrχ+(ω)R(σr)(σr)d−1

[ ∞∑
n=0

ei〈σnω,x〉e−σyncn

]
drdω. (5.2)

Using the estimate (2.13), when

y >
logλ

σ
,

the infinite series in (5.2) is dominated by a geometric series, and the exchange of the infinite summation

with the integration can be justified. Thus, we obtain a convergent integral. Replacing the infinite series

with the dominating geometric series, we obtain the desired estimate of the integral, i.e.,

|f+(x)| � Cc,σ

1− e−σy+log λ
.

Similar to [2], we can exchange the differentiation with the integration and verify the monogenicity of

f+ based on the monogenicity of ei〈ξ,x〉e−y|ξ|χ+(ξ). The same properties for f− with y < − log λ
σ can be

proved similarly.

Now we investigate the properties of the function f ∈ E.

Lemma 5.3. Any function f ∈ E takes the form

f(t) = |t|−d
∑
k∈Z+

ck

∫ (k+1)|t|

k|t|
r

d
2 R

(
r

|t|
)
J d−2

2
(r)dr, t ∈ R

d. (5.3)

Proof. Using the computing technique of the Fourier transform of radial functions, we have

f(t) = (2π)−
d
2

∫
Rd

∑
k=0

ckχSk
(ξ)R(|ξ|)ei〈t,ξ〉dξ

= (2π)−
d
2

∫ ∞

0

H1,c(r)r
d−1R(r)dr

∫
Sd−1

eir|t|〈
t
|t| ,t

′〉dt′, ξ ∈ R
d.

Recalling the formula∫
Sd−1

eir〈ω,t
′〉dt′ = (2π)

d
2 r−

d
2+1J d−2

2
(r), ω ∈ Sd−1, r ∈ (0,∞), (5.4)

being independent of ω ∈ Sd−1, we obtain that

f(t) = |t|− d
2+1

∫ ∞

0

r
d
2 H1,c(r)R(r)J d−2

2
(r|t|)dr, t ∈ R

d.

Noting the definition of H1,c, recalling the decaying rate of c and using Lebesgue dominated convergence

theorem, we get

f(t) = |t|− d
2+1

∫ ∞

0

r
d
2

∑
k∈Z

ckχ(r − k)R(r)J d−2
2
(r|t|)dr

= |t|− d
2+1

∑
k∈Z+

ck

∫ k+1

k

r
d
2 R(r)J d−2

2
(r|t|)dr

= |t|−d
∑
k∈Z+

ck

∫ (k+1)|t|

k|t|
r

d
2 R

(
r

|t|
)
J d−2

2
(r)dr.

We shall see from Theorem 5.7 that any f ∈ E can be radially expressed as gm defined by

gm(t) = t−2m−3
∑
k∈Z+

ck

∫ (k+1)t

kt

r
2m+3

2 R

(
r

t

)
Jm+ 1

2
(r)dr. (5.5)
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Therefore, to prove Theorem 5.7, we need to investigate gm. Using the identity

Jm+ 1
2
(z) =

√
2

π
(−1)mzm+ 1

2Dm
z (sinc(z))

and the Fourier expansion of

R(r) =
∑
j∈Z

Rje
−i2πjr,

we get

gm(t) = t−2m−3
∑
k∈Z+

ck

∫ (k+1)t

kt

r
2m+3

2 R

(
r

t

)
Jm+ 1

2
(r)dr

= t−2m−3
∑
k∈Z+

ck

∫ (k+1)t

kt

r
2m+3

2

∑
j∈Z

Rje
−i2πj r

t

√
2

π
(−1)mrm+ 1

2Dm
r (sinc(r))dr,

which can be simplified as

gm(t) =

√
2

π
(−1)mt−2m−3

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r2m+2e−i2πj r
t Dm

r (sinc(r))dr. (5.6)

Then

gm+1(t) =

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r2m+4e−i2πj r
t Dm+1

r (sinc(r))dr

=

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r2m+3e−i2πj r
t d[Dm

r (sinc(r))]

=

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rjr
2m+3e−i2πj r

t Dm
r (sinc(r))|(k+1)t

r=kt

−
√

2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

Dm
r (sinc(r))d[r2m+3e−i2πj r

t ]

=

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rjr
2m+3e−i2πj r

t Dm
r (sinc(r))|(k+1)t

r=kt

− (2m+ 3)

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

Dm
r (sinc(r))r2m+2e−i2πj r

t dr

+

√
2

π
i2π(−1)m+1t−2m−6

∑
k∈Z+

ck
∑
j∈Z

jRj

∫ (k+1)t

kt

Dm
r (sinc(r))r2m+3e−i2πj r

t dr.

For simplicity, we denote it by

gm+1(t) = J1 + (2m+ 3)t−2gm(t) + J2, (5.7)

where

J1 =

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rjr
2m+3e−i2πj r

t Dm
r (sinc(r))|(k+1)t

r=kt

and

J2 =

√
2

π
i2π(−1)m+1t−2m−6

∑
k∈Z+

ck
∑
j∈Z

jRj

∫ (k+1)t

kt

Dm
r (sinc(r))r2m+3e−i2πj r

t dr.

We first investigate J1 as follows.
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Lemma 5.4.

J1 =

(∑
j∈Z

Rj

)
(−1)m

√
2

π
t−2Dm

t

(
v′′G(t)
t

)
. (5.8)

Proof.

J1 =

√
2

π
(−1)m+1t−2m−5

∑
k∈Z+

ck
∑
j∈Z

Rjr
2m+3e−i2πj r

t Dm
r (sinc(r))|(k+1)t

r=kt

=
∑
j∈Z

Rj

√
2

π
(−1)m+1t−2

∑
k∈Z+

ck(k + 1)2m+3Dm
r (sinc(r))|r=(k+1)t

−
∑
j∈Z

Rj

√
2

π
(−1)m+1t−2

∑
k∈Z+

ckk
2m+3Dm

r (sinc(r))|r=kt.

A further calculation leads to

J1 =

(∑
j∈Z

Rj

)√
2

π
(−1)m+1t−2

∑
k∈N

(ck−1 − ck)k
2m+3Dm

r (sinc(r))|r=kt. (5.9)

By comparing (3.13) and (3.11) in Lemma 3.4, we conclude the proof of (5.8).

Lemma 5.5.

J2 = −1

t

d

dt
gm(t)− (2m+ 3)

1

t2
gm(t)− J1, t ∈ R. (5.10)

Proof. Differentiating to both sides of (5.6)

gm(t) =

√
2

π
(−1)mt−2m−3

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r2m+2e−i2πj r
t Dm

r (sinc(r))dr,

we have

d

dt
gm(t) = −(2m+ 3)

√
2

π
(−1)mt−2m−4

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r2m+2e−i2πj r
t Dm

r (sinc(r))dr

+

√
2

π
(−1)mt−2m−3 d

dt

( ∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r2m+2e−i2πj r
t Dm

r (sinc(r))dr

)

= −(2m+ 3)
1

t
gm(t)

+

√
2

π
(−1)mt−2m−3

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r2m+3 2πij

t2
e−i2πj r

t Dm
r (sinc(r))dr

+

√
2

π
(−1)mt−2m−3

∑
k∈Z+

(k + 1)ck
∑
j∈Z

Rjr
2m+2e−i2πj r

t Dm
r (sinc(r))|r=(k+1)t

−
√

2

π
(−1)mt−2m−3

∑
k∈Z+

kck
∑
j∈Z

Rjr
2m+2e−i2πj r

t Dm
r (sinc(r))|r=kt

= −(2m+ 3)
1

t
gm(t)− tJ2

+

√
2

π
(−1)mt−1

∑
k∈Z+

(k + 1)2m+3ck
∑
j∈Z

RjDm
r (sinc(r))|r=(k+1)t

−
√

2

π
(−1)mt−1

∑
k∈Z+

k2m+3ck
∑
j∈Z

RjDm
r (sinc(r))|r=kt
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= −(2m+ 3)
1

t
gm(t)− tJ2

+

(∑
j∈Z

Rj

)√
2

π
(−1)mt−1

∑
k∈N

k2m+3(ck−1 − ck)Dm
r (sinc(r))|r=kt.

By noting (5.9), we get
d

dt
gm(t) = −(2m+ 3)

1

t
gm(t)− tJ2 − tJ1,

from which we conclude that

J2 = −1

t

d

dt
gm(t)− (2m+ 3)

1

t2
gm(t)− J1.

Corollary 5.6. Suppose that the sequence of functions {gm : m ∈ Z+} is defined in (5.5). Then for

any m ∈ Z+, gm satisfies the following recursive equation:

gm+1(t) = −Dtgm(t), t ∈ R. (5.11)

Proof. This is a direct consequence of (5.7) and (5.10).

Theorem 5.7. Suppose that f ∈ E. Then for odd d = 3, 5, . . . , the following identity holds,

f(t) = g d−3
2
(|t|), t ∈ R

d,

where gm is determined by the recursive equation gm+1(t) = − 1
t

d
dtgm(t), t ∈ R with the initial function

g0(t) =

√
2

π
t−3

∑
k∈Z+

ck
∑
j∈Z

Rj

∫ (k+1)t

kt

r sin re−i2πj r
t dr.
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Appendix: Proof of (2.18)

Below we prove φF = sincG. It follows directly from (2.16) and (3.2) that

φF (t) =

√
π

2
F−1H1,c(t) =

√
π

2
F−1

(∑
n∈Z

cnχ(· − n)

)
(t)

=

√
π

2

∑
n∈Z

cn(F−1χ(· − n))(t)

=

√
π

2

∑
n∈Z

cne
intF−1χ(t).

Using

F−1χ(t) =
1√
2π

∫ 1

0

eiξtdξ =
1√
2π

eit − 1

it

gives us

φF (t) =

√
π

2

∑
n∈Z

cne
int 1√

2π

eit − 1

it

=
1

2

∑
n∈Z

cn
ei(n+1)t − eint

it

=
1

2

∑
n∈Z

cn
sin(n+ 1)t− sinnt

t
− i

1

2

∑
n∈Z

cn
cos(n+ 1)t− cosnt

t

:= Re + Im.

Using the symmetry, i.e., cn = c−n−1 and in particular c0 = c−1, we have

Re =
1

2

∑
n∈Z

cn
sin(n+ 1)t− sinnt

t

=
1

2

∑
n∈Z\{0}

(cn−1 − cn)
sinnt

t

=
1

2

∞∑
n=1

(cn−1 − cn)
sinnt

t
+

1

2

∞∑
n=1

(c−n−1 − c−n)
sin(−n)t

t

=
1

2

∞∑
n=1

(cn−1 − cn)
sinnt

t
+

1

2

∞∑
n=1

(cn − cn−1)
sin(−n)t

t

=
∞∑
n=1

(cn−1 − cn)
sinnt

t

and

Im =
1

2

∑
n∈Z

cn
cos(n+ 1)t− cosnt

t

=
1

2

∑
n∈Z\{0}

(cn−1 − cn)
cosnt

t
(here c0 = c−1)

=
1

2

∞∑
n=1

(cn−1 − cn)
cosnt

t
+

1

2

∞∑
n=1

(c−n−1 − c−n)
cos(−n)t

t

=
1

2

∞∑
n=1

(cn−1 − cn)
cosnt

t
+

1

2

∞∑
n=1

(cn − cn−1)
cos(−n)t

t
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= 0.

Therefore,

φF (t) =

∞∑
n=1

(cn−1 − cn)
sinnt

t
.

On the other hand, by F (z) = G(z)−1
z−1 , we get

G(z) = 1 + (z − 1)F (z) = 1 +

∞∑
n=0

cnz
n+1 −

∞∑
n=0

cnz
n

= 1− c0 +
∞∑

n=1

(cn−1 − cn)z
n.

The formula G(eit) = uG(t) + ivG(t) leads to

sincG(t) = vG(t)/t =

∞∑
n=1

(cn−1 − cn) sin(nt)/t.

Now we conclude the proof of (2.18).


