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In this paper, we introduce a sparse recovery strategy for analytic signals in Hardy space18

H2(D), where D denotes the unit disk of the complex plane. The representation strategy19

is based on the optimization technique. We investigate the asymptotic singular values20

distribution of the dictionary matrix and give an estimation of the number of rows of21

the random matrix. To the best of our knowledge, this is the first time that such result is22

given. This result demonstrates that the dictionary of the normalized Szegö kernels (or23

reproducing kernels) is perfect for decompositions of analytic signals. A numerical exam-24

ple is presented exhibiting the theory. As applications, we still work on time-frequency25

analysis and propose a new type of non-negative time-frequency distribution associated26

with mono-components in the periodic case.27

Keywords: Hardy space; singular value; analytic signal; sparse representation; time-28

frequency distribution.29
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1. Introduction31

One of the problems of approximation theory is to approximate functions with
elements from a large candidate set called a dictionary. Let H be a Hilbert space.
Using terminology introduced by Mallat and Zhang,15 a dictionary is defined as
a family of parameterized vectors D = {gγ}γ∈Γ in H such that ‖gγ‖ = 1 and
span(gγ) = H, the g′γs are usually called atoms. For the discrete-time situation, the
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approximation problem can be written as

s = Dx (1.1)

where s is the discrete signal, matrix D represents the dictionary with atoms as
columns and x is the vector of coefficients. In general, D has more columns than
rows because of its redundancy. A natural question is: can we find the best M -term
approximation in a redundant dictionary for a given signal? That is an optimization
problem

min ‖s − Dx‖l2 subject to ‖x‖l0 ≤ M, (1.2)

where ‖x‖l0 is the number of nonzero coefficients of x. Unfortunately, finding1

an optimal M -term approximation in dictionaries is computationally intractable2

because it is NP-hard.8,14 Until now, three main strategies have been mainly inves-3

tigated, they are matching pursuit, basis pursuit and compressed sensing.4

Matching pursuit (MP) introduced by Mallat and Zhang computes signal
approximations from a redundant dictionary by iteratively selecting one vector at a
time. If the dictionary is orthogonal, the method works perfectly. If the dictionary
is not orthogonal, the situation is less clear.5 The MP algorithm often yields locally
optimal solutions depending on initial values. In contrast, basis pursuit (BP) per-
form a more global search. It finds signal representations by solving the following
problem

min ‖x‖l1 subject to s = Dx. (1.3)

Given s and D , we find x with minimal l1 norm. Basis pursuit is an optimization
principle, not an algorithm. Empirical evidence suggests that BP is more powerful
than MP.5 And the stability of BP has been proven in the presence of noise for
sufficiently sparse representation.10 BP is closely connected with convex program-
ming. The interior-point method and the homotopy method can be applied to BP
in nearly linear time.5 Compressed Sensing (CS) is a new concept in sparse repre-
sentation. The ideas have their origins in certain abstract results by Kashin6 but
were brought into the forefront by the work of Candes, Romberg and Tao3,2,4,16,12

and Donoho.9,11 Basically, CS relies on random projection and BP. Suppose we
have

y = Φx, (1.4)

where x is a finite vector, Φ is observation matrix and y is the vector of available
measurements. Then the BP solution x∗ of

min ‖x‖l1 subject to y = Φx (1.5)

recovers x exactly provided that x is sufficiently sparse and the matrix obeys the5

Restricted Isometry Property (RIP).3,4,20,13 However the RIP of a fixed matrix6

is very hard to check, thus in practice we use random matrices instead. A Gaus-7

sian matrix Φ ∈ Rm×N whose entries Φi,j are independent and follow a normal8
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distribution with expectation 0 and variance 1/m is often adopted. To know more1

about the detailed technique, please see related paper in references.3,2,4,9,112

This paper originates from a series of recent results on analytic signal decompo-
sition by Qian et al. where the concept of Adaptive Fourier Decomposition (AFD)
was introduced.19,7 AFD is a variation of MP, and it yields an approximation using
a few elements chosen adaptively from the set of normalized reproducing kernels

D =

{
da : da(z) =

√
1 − |a|2
1 − az

, a ∈ D

}
, (1.6)

where D = {z ∈ C : |z| < 1}. One of the motivations of AFD research is finding3

time-frequency distributions of signals. In Refs. 17 and 18, Qian has given full study4

of decomposing Hardy signal into Mono-components and time-frequency analysis.5

As continuation of AFD related studies, this paper analyzes the singular values6

of the dictionary matrix. We derive the asymptotic distribution of singular values in7

the sense that the number of atoms goes to infinity and study the CS based recovery.8

Then we use CS technique to derive a sparse representation of Hardy signal. As9

applications, we also discuss time-frequency distribution for analytic signal.10

The paper is organized as follows. Preliminaries and notations are given in Sec. 2.11

The main results are proved in Sec. 3. A numerical example is presented in Sec. 4.12

Applications to time-frequency distribution are given in Sec. 5.13

2. Preliminaries and Notations14

Let D = {z ∈ C : |z| < 1}. Hardy space H2(D) is defined as{
f ∈ Hol(D) : sup

0≤r<1

∫ 2π

0

|f(reit)|2dt

2π
< ∞

}
, (2.1)

where Hol(D) denotes the space of holomorphic (or analytic) functions on the unit
disk D. Or equivalently

{f ∈ L2(0, 2π) : f̂(n) = 0, n < 0}, (2.2)

where f̂(n) denotes the n-th Fourier coefficient. H2(D) is a Hilbert space with inner
product

〈f, g〉 =
1
2π

∫ 2π

0

f(eit)ḡ(eit)dt. (2.3)

Moreover, H2(D) is equipped with a family of reproducing kernels

K =
{

ka : ka(z) =
1

1 − az
, a ∈ D

}
, (2.4)

which gives f(a) = 〈f, ka〉. Note that da in (1.6) satisfies

da =
ka

‖ka‖ =
ka√〈ka, ka〉

= ka

√
1 − |a|2. (2.5)

In this letter, D plays a fundamental role because it forms a dictionary of H2(D).15
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Lemma 2.1. The set D is a dictionary of H2(D).1

Proof. It is obvious that ‖da‖2 = 1, da ∈ H2(D) and spanD ⊆ H2(D), we only2

need to show spanD = H2(D). For any f ∈ H2(D), 〈f, da〉 =
√

1 − |a|2f(a).3

Therefore, 〈f, da〉 = 0 implies f(a) = 0, which yields spanD⊥ = {0}. So we have4

spanD = H2(D).5

In discrete-time system, we envision a decomposition of a signal s ∈ H2(D) as

s = Dx, (2.6)

where s is an M -dimensional discrete signal, D is an M × N dictionary matrix
and x is a vector of coefficients. The signal s and columns {di}N

i=1 are derived
by sampling equally-spaced from s and respective da from D . For simplicity, we
normalize each di, i.e. di = di/‖di‖2. The parameters a1, . . . , aN of N columns are
selected as follows. Let −→r and

−→
θ be N1-dimensional and N2-dimensional vectors

respectively, i.e.

−→r =
(

0
1

N1

2
N1

· · · N1 − 1
N1

)
(2.7)

−→
θ = (1 e

2πi
N2 e

2π2i
N2 · · · e

2π(N2−1)i
N2 ). (2.8)

Denote N -dimensional vector −→a as the tensor product of −→r and
−→
θ , i.e. −→a = −→r ⊗−→

θ ,6

N = N1N2, let ai = −→a (i + 1), i = 0, . . . , N − 1.7

Lemma 2.2. SVD (Singular Value Decomposition). Let A denote an arbitrary
matrix and {si} be the singular values of A. Then A can be represented in the form

A = UDV H , (2.9)

where U and V are unitary and matrix D has si in the (i, i) position.8

Proof. For proof, please refer to Ref. 1.9

A way to approximate the signal s is to project s onto the space spanned by the
singular vectors corresponding to the largest several singular values of D. Suppose
that SVD of D gives D = UΣV H , where U and V are unitary matrices, {σi}M

i=1 is
the set of singular values with σ1 ≥ · · · ≥ σM ≥ 0, and Σ = diag(σ1, . . . , σM ). Then
we have UHs = ΣV Hx. Thus the transformed signal UHs is an approximately
sparse signal provided that the singular values in Σ decay rapidly. In this case,
compressed sensing theory states that UHs can be recovered with overwhelming
probability by solving

min ‖z‖1 y = Φ(UHs) = Φz, (2.10)
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where Φ is an α × M random matrix satisfying E‖Φx‖2 = ‖x‖2 and P(|‖Φx‖2 −
‖x‖2| ≥ ε‖x‖2) ≤ 2e−αc(ε),2,4 and

α ≥ C log
(

M

‖UHs‖0

)
‖UHs‖0. (2.11)

Then using Basis Pursuit method,5 we get a sparse representation x of (2.6) with
overwhelming probability by solving

min ‖x‖1 AUHs = AΣV Hx. (2.12)

Notice that the random matrix AUH also satisfies E‖AUHx‖2 = ‖x‖2 and
P(|‖AUHx‖2 − ‖x‖2| ≥ ε‖x‖2) ≤ 2e−αc(ε) since U is unitary. Consequently, we
can solve

min ‖x‖1 As = AUΣV Hx = ADx (2.13)

instead of (2.12) to derive a sparse representation x if the singular values decay fast.1

Hence, we have to analyze the singular values of D, which are the square roots of2

the eigenvalues of DHD. Two facts should be mentioned here. One is that the more3

columns D has, the sparser representation follows. The other is the solutions of (2.6)4

are strongly related with the positions of parameters a0, . . . , aN−1. Intuitively, we5

should select {ak}N−1
k=0 in some equally-spaced manner to reflect the information of6

the whole unit circle. Besides, the singular values distribution should be analyzed7

in the sense of N tending to infinity.8

Riemann sum of the integral shows that the entries of DHD satisfy

lim
M→∞

(DHD)ij = lim
M→∞

〈dj , di〉E = 〈daj , dai〉H2 , (2.14)

where 〈·, ·〉E stands for Euclidean inner product and 〈·, ·〉H2 means Hardy space
inner product. Indeed, we have

lim
M→∞

2π

M − 1

M∑
k=1

daj (k)dai(k) =
∫ 2π

0

daj (e
it)dai(e

it)dt. (2.15)

So, 〈dj , di〉E/(‖dj‖ · ‖di‖) = 〈dj , di〉E → 〈daj , dai〉H2 as M goes to infinity.9

Let H be a Hermitian matrix with entries Hij = 〈daj , dai〉H2 . The eigenvalues10

of H can be used to estimate the eigenvalues of DHD. This can be proven as11

follow. Denoting ∆ = DHD − H, by (2.14) we assert ∆ij → 0 as M → ∞. Thus12

for any ε > 0, we have |∆ij | < ε/N given that M is reasonably large. Let Di =13

{z : |z − ∆ii| ≤ Σj �=i|∆ij |}, 1 ≤ i ≤ N. Then Gersgorin Disk theorem1 shows,
14

λk(∆) ∈ ⋃N
i=1 Di where λk(∆) is the eigenvalues of ∆, 1 ≤ k ≤ N. It is clear15

that Di ⊆ Ei = {z : |z| ≤ Σj |∆ij |}. However Ei represents a disk with center16

0 and radius ri = Σj |∆ij | < Σjε/N = ε. Therefore, λk(∆) < ε, 1 ≤ k ≤ N.17

On the other hand, Weyl’s inequalities1 say that λk(DHD) ≤ λk(H) + λ1(∆) and18

λk(DHD) ≥ λk(H) + λN (∆), where λN ≤ λN−1 ≤ · · · ≤ λ1. Thus we finally derive19

that λk(H) − ε ≤ λk(DHD) ≤ λk(H) + ε if the number of sampling points M is20

reasonably large. In summary, the eigenvalues of DHD can be estimated by the21

1350031-5



Page Proof

May 18, 2013 11:14 WSPC/S0219-6913 181-IJWMIP 1350031

T. Qian, S. Li & W. X. Mai

eigenvalues of H . It is well-known that the spectrum of a Hermitian matrix is real1

and the eigenvectors associated with distinct eigenvalues are orthogonal. Moreover,2

there exists an orthonormal basis consisting entirely of normalized eigenvectors. In3

the next section, we analyze the asymptotic eigenvalues of H by constructing the4

associated asymptotic eigenvectors. The following simple lemma is needed.5

Lemma 2.3. For any fixed a ∈ D, 〈dγa, dµa〉 = 〈dµγa, da〉 = 〈da, dγµa〉 where6

|µ| = |γ| = 1.7

Proof.

〈dγa, dµa〉 =
1 − |a|2

1 − γµ|a|2 = 〈dµγa, da〉 = 〈da, dγµa〉.

3. Asymptotic Eigenvalues8

Theorem 3.1. Denote N -dimensional column vectors as

vn =
1√
N

(1 e−2πin/N · · · e−2πi(N−1)n/N )T , n ≥ 0. (3.1)

Let H be an N × N Hermitian matrix with entries

Hml =
α

1 − βei(l−m)2π/N
, (3.2)

where α and β are real constants and β < 1. Then we have

lim
N→∞

1
N

〈Hvn, vn〉E = αβn. (3.3)

Proof. Let B be an upper triangular matrix with Bml = Hml for l ≥ m. Then
H = B + BH − (α/(1 − β))IN where IN is the N × N identity matrix. We set
δ = 2π/N,

δk = kδ, bk =
α

1 − βeiδk
, k = 0, 1, . . . , N − 1. (3.4)

Denote τ = e−iδ. One derives that

〈Bvn, vn〉E = vH
n Bvn

=
1
N

(Nb0 + (N − 1)b1τ
n + (N − 1)b2τ

2n + · · · + bN−1τ
(N−1)n)

=
1
N

N−1∑
m=0

m∑
k=0

bkτnk. (3.5)

Riemann sum of the integral gives

lim
N→∞

1
N

N−1∑
k=0

bkτnk = lim
N→∞

1
N

N−1∑
k=0

α

1 − βeiδk
e−inδk

=
1
2π

∫ 2π

0

α

1 − βeit
e−intdt

1350031-6
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=
α

2π

∫ 2π

0

∞∑
k=0

βkei(k−n)tdt

= αβn. (3.6)

Denoting Sm =
∑m

k=0 bkτnk, one can derive from (3.6) that

lim
N→∞

1
N

SN−1 = αβn. (3.7)

On the other hand, by Stolzs theorem, (3.5) gives

1
N

〈Bvn, vn〉E =
1

N2
(S0 + S1 + · · · + SN−1)

=
1

N2

N−1∑
m=0

Sm → 1
2
αβn (3.8)

as N → ∞. Then we conclude that

1
N

〈Hvn, vn〉E =
1
N

(
vH

n Bvn + vH
n BHvn − β

1 − γ
‖xn‖2

)
=

1
N

(
vH

n Bvn + vH
n Bvn − β

1 − γ

)
→ 1

2
αβn +

1
2
αβn = αβn (3.9)

as N → ∞, which completes the proof.1

Remark 3.1. Notice that

〈da1 , da2〉H2 =

√
1 − |a1|2

√
1 − |a2|2

1 − ā1a2
.

If parameters {ak}N−1
k=0 are distributed on the circle of radius r as follows

ak = r exp
(

2πik

N

)
, (3.10)

where r < 1, then we can obtain a Hermitian matrix H with entries

Hml = 〈dal−1 , dam−1〉H2 . (3.11)

By Lemma (2.3),

Hml = 〈dal−1 , dam−1〉H2 = 〈da0 , dal−m
〉H2 =

1 − r2

1 − r2ei(l−m)δ
, (3.12)

where δ = 2π/N. It is clear that Trace(H) = N. Theorem 1 actually states that

〈Hvn, vn〉 ≈ Trace(H) × (1 − r2)rn, n ≥ 0, (3.13)
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Fig. 1. N = 50, r = 0.8. Numerical eigenvalues of (3.11) are perfectly estimated by (3.13) even
though N is not very large.

when N is sufficiently large. On the other hand, it is easy to verify

N−1∑
n=0

(1 − r2)rn = 1 − rN ≈ 1. (3.14)

Hence, {vn}n≥0 are the asymptotic eigenvectors associated with the asymptotic1

eigenvalues N(1 − r2)rn as N tends to infinity. The eigenvalues of H in (3.11)2

decay as a geometry series. See Fig. 1.3

Theorem 3.2. Let H be a Hermitian matrix with entries Hij = 〈daj−1 , dai−1〉H2 ,

i, j ∈ {1, 2, . . . , N}. Let λ1 ≥ λ2 ≥ · · · ≥ λN be eigenvalues of H. Then we have

lim
N1→∞
N2→∞

λk

N1N2
=

1
2k − 1

− 1
2k + 1

. (3.15)

Proof. H is a blocked matrix:

H =


BH

1 B1 BH
1 B2 ... BH

1 BN1

BH
2 B1 BH

2 B2 ... BH
2 BN1

...
...

...
...

BH
N1

B1 BH
N1

B2 ... BH
N1

BN1

 (3.16)

1350031-8
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where each block BH
p Bq is an N2 ×N2 matrix, p, q ∈ {1, 2, . . . , N1}. The entries of

BH
p Bq satisfy

(BH
p Bq)ml =

√
1 − r2

p

√
1 − r2

q

1 − rprqei(l−m)δ
, (3.17)

where δ = 2π/N2, rp = −→r (p) and m, l ∈ {1, 2, . . . , N2}. Denote that

−→
θ n =

1√
N2

(1 e−iδn · · · e−iδ(N2−1)n)T , n ≥ 0.

By Theorem 1, we derive:
1

N2
(
−→
θ n)H(BH

p Bq)
−→
θ n =

1
N2

〈(BH
p Bq)

−→
θ n,

−→
θ n〉E → αβn (3.18)

as N2 → ∞, where

α =
√

1 − r2
p

√
1 − r2

q , β = rprq. (3.19)

Define a family of normalized functions as following

fn(r) =
rn

√
1 − r2

‖rn
√

1 − r2‖L2(0,1)

, (n ≥ 0) (3.20)

and a family of column vectors
−→
fn =

1√
N1

(fn(r1) fn(r2) · · · fn(rN1))
T . (3.21)

Let R be an N1 × N1 matrix with entries

Rpq = rn
p rn

q

√
1 − r2

p

√
1 − r2

q , (3.22)

then we obtain that

(
−→
fn)HR(

−→
fn)

N1
=

〈R(
−→
fn),

−→
fn〉

N1

=
1

N1

N1∑
p=1

N1∑
q=1

rn
p rn

q

√
1 − r2

p

√
1 − r2

q

−→
fn(p)

−→
fn(q) (3.23)

→
∫ 1

0

∫ 1

0

rnsn
√

1 − r2
√

1 − s2fn(r)fn(s)drds

=
(∫ 1

0

rn
√

1 − r2fn(r)dr

)2

=
∫ 1

0

r2n(1 − r2)dr

=
1

2n + 1
− 1

2n + 3
(3.24)

as N1 → ∞. Therefore, tensor product gives
1

N1N2
(
−→
fn ⊗−→

θ n)HH(
−→
fn ⊗−→

θ n) → 1
2n + 1

− 1
2n + 3

(3.25)

1350031-9

Admin
Highlight

Admin
Callout
AQ: Do you mean Theorem 3.1?

Li
Sticky Note
Yes, it means Theorem 3.1.



Page Proof

May 18, 2013 11:14 WSPC/S0219-6913 181-IJWMIP 1350031

T. Qian, S. Li & W. X. Mai

as N1 → ∞, N2 → ∞. Notice that

〈−→fn1 ⊗
−→
θ n1 ,

−→
fn2 ⊗

−→
θ n2〉 → δn1,n2 , (N1 → ∞, N2 → ∞), (3.26)

i.e.
−→
fn ⊗−→

θ n (n ≥ 0) are asymptotic orthogonal vectors. In other words, the vectors−→
fn ⊗−→

θ n/
√

N1N2 are asymptotic eigenvectors associated with asymptotic eigenval-
ues N1N2(1/(2n + 1) − 1/(2n + 3)) in the sense of N tending to infinity, n ≥ 0.

Hence, from (3.25) we have

lim
N1→∞,
N2→∞

λk

N1N2
=

1
2(k − 1) + 1

− 1
2(k − 1) + 3

. (3.27)

Remark 3.2. Since
∑∞

k=1(
1

2k−1 − 1
2k+1 ) = 1 and Trace(H) = N1N2 = N, Theo-

rem 2 actually shows that

λk ≈
(

1
2k − 1

− 1
2k + 1

)
Trace(H) =

2N

4k2 − 1
, (3.28)

when N is sufficiently large, k ≥ 1. Thus we estimate the singular values of H as

σk =
√

λk ≈
√

2N

4k2 − 1
. (3.29)

The singular values of D are also estimated by (3.29) since λk(H) and λk(DHD)1

can be arbitrarily near, provided that M is sufficiently large. See Fig. 2. They fit2

very well even M, N1, N2 are not large.3
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Fig. 2. N1 = 50, N2 = 40, M = 300. Blue points stand for the largest 60 singular values of D
and circles stand for our estimation from (3.29). We have made a sharp estimation even M is not
very large.
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4. Numerical Example1

In Sec. 3, we have derived a sharp estimation of asymptotic singular values of D,

i.e. σk ≈
√

2N
4k2−1 ≈ 1

k

√
N
2 . Hence the support of the transformed vector UHs in

Sec. 2 is a set of cardinality O(
√

N). Singular values tend to zero rapidly with order
O( 1

k ). We conclude from the theory of compressed sensing that

α ≥ C
√

N log
(

M√
N

)
, (4.1)

where α is the number of rows of the Gaussian matrix and C is a universal constant.
We give an example to illustrate our recovery algorithm. Let s ∈ H2(D) be an
analytic signal such that

s =
0.0247z4 + 0.0355z3

(1 − 0.9048z)(1− 0.3679z)
. (4.2)

For the dictionary matrix D, we set M = 1000, N1 = 50 and N2 = 60. Then2

N = 3000. Let α = 110 ≈ 2
√

3000, we get an α × M Gaussian matrix A with3

entries Aij ∼ N(0, 1/110). See Figs. 3 and 4. The relative error is 0.0013 and4

runtime is 16.59s.5

0 500 1000 1500 2000
−2

0

2

0 500 1000 1500 2000
−5

0

5

Original Signal

Transformed Signal

Fig. 3. The original signal s and transformed signal UHs are plotted. Both of them are 1000-
dimensional complex vectors or equivalently 2000-dimensional real vectors. It can be observed
that UHs is a really sparse signal due to the rapid decay of singular values of D.

0 1000 2000 3000
−10

0

10

0 500 1000 1500 2000
−2

0

2
Recovered Signal

Original Signal

Real Part

Imaginary Part

Fig. 4. The optimal solution of (2.13) and the recovered signal are illustrated. The dictionary
(1.6) does give sparse representations of analytic signals.
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5. Time-Frequency Distribution1

In this section, we deal with time-frequency distribution of analytic signal using our
method. A signal s(t) = ρ(t)eiθ(t) is a complex mono-component signal, if θ

′
(t) > 0

and

H(ρ(t)eiθ(t)) = −iρ(t)eiθ(t), (5.1)

where ρ(t) > 0 and H(·)(x) =
∫ 2π

0
cot(x−t

2 )(·)dt denotes the Hilbert transform
on the circle. The Transient Time Frequency Distribution (TTFD) of a mono-
component signal s(t) = ρ(t)eiθ(t) is defined by

P (t, ξ) = ρ2(t)δM (ξ − θ′(t)), (t, ξ) ∈ R ×
[
− 1

2M
, +∞

)
,

where

δM (ξ − θ′(t)) =


M, if ξ ∈

[
θ′(t) − 1

2M
, θ′(t) +

1
2M

]
,

0, if ξ /∈
[
θ′(t) − 1

2M
, θ′(t) +

1
2M

]
,

where M is a large enough positive number to be determined in practice. When M2

goes to infinity, δM becomes the distributional Dirac function. It is a convenience3

and practical application that we make M to be a finite number. In fact, finite4

Blaschke products which are orthogonal functions under Gram-Schimitt procedure5

of the dictionary (1.6) give common examples of mono-components.6
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Fig. 5. Time-Frequency Distribution.
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If s(t) is a multi-component signal, then through our method s(t) can be decom-
posed into a sum of mono-component signals

s(t) =
∞∑

k=1

sk(t) =
∞∑

k=1

ckBk(eit) =
∞∑

k=1

ρk(t)eiθk(t) (5.2)

then the corresponding TTFD is defined as

P (t, ξ) =
∞∑

k=1

Pk(t, ξ) =
∞∑

k=1

ρ2
k(t)δM (ξ − θ′k(t)), (t, ξ) ∈ R ×

[
− 1

2M
, +∞

)
(5.3)

where Pk(t, ξ) is the TTFD of sk(t).1

Time-frequency example:

s(t) =

{
cos(10t), if t < π,

cos(30t), if t ≥ π.
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