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Abstract. In this article, we consider a class of Dirichlet problems with Lp

boundary data for polyharmonic functions in the upper-half space. By in-
troducing a sequence of new kernel functions for the upper-half space, called

higher order Poisson kernels, integral representation solutions of the problems

are provided.

1. Introduction

In recent years, there has been a great deal of studies on integral representations
of polyanalytic, metaanalytic, polyharmonic and metaharmonic functions in various
types of planar or higher dimensional domains [2–13, 15–21, 24, 25]. The aim is to
find integral representation solutions of some BVPs (boundary value problems) of
certain partial differential equations with various types of boundary data, including
the Hölder continuous, continuous, Lp, Hardy, Besov, Sobolev types, and so on. The
BVP types include Dirichlet, Neumann, Schwarz, Robin and some mixed problems
in regular domains (in the unit disc: [2, 3, 5, 9–11]; and in the upper-half plane:
[4,6,8,12,15]) and in irregular domains (C1 domians [7] and Lipschitz domains: [6,
21,24]), as well as in Riemann manifolds [19,20]. Among other things, polyharmonic
Dirichlet problems (for short, PHD problems) arouse considerable interest.

The objective of this article is to solve the PHD problems with Lp data in the
upper-half space, Rn+1

+

(1.1)

{
∆mu = 0 in Rn+1

+

∆ju = fj on ∂Rn+1
+ = Rn,

where n ≥ 2 is a natural number, Rn+1
+ = Rn × R+ = {x = (x, y) : x ∈ Rn, y ∈

R, y > 0}, x = (x1, . . . , xn), ∆ ≡ ∆n+1 :=
∑n

k=1
∂2

∂x2
k

+ ∂2

∂y2 , fj ∈ Lp(Rn), m ∈ N,
0 ≤ j < m, and p ≥ 1. By introducing a sequence of new kernel functions, we
will give integral representation solutions of the PHD problems (1.1). The kernel
functions can be regarded as higher order Poisson kernels for the upper-half space
(see next section). To the authors’ knowledge, this result for integral representations
of the solutions of the BVPs with Lp boundary data for polyharmonic equations
is completely new. The existing results on such PHD problems ( [2–6, 8–10, 15–
18, 21, 24, 25] and references therein) only deal with the existence and uniqueness
under suitable assumptions (for example, boundedness of non-tangential maximal
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boundary data) as well as estimates of the solutions, but do not present a complete
and coherent integral representation theory.

2. Higher order Poisson kernels

Definition 2.1. Let D be a simply connected (bounded or unbounded) domain
in Rn+1 with smooth boundary ∂D and k ∈ N ∪ {∞}, Ck(D) denotes the set of
the functions that have continuous partial derivatives of order k in D. If f is a
continuous function defined on D × ∂D satisfying f(·, v) ∈ Ck(D) for any fixed
v ∈ ∂D and f(x, ·) ∈ C(∂D) for any fixed x ∈ D, then f is said to be Ck × C on
D × ∂D and written as f ∈ (Ck × C)(D × ∂D).

Definition 2.2. A sequence of real-valued functions of two variables {Gm(·, ·)}∞m=1

defined on Rn+1
+ × Rn is called a sequence of higher order Poisson kernels, and,

precisely, Gm(·, ·) is the mth order Poisson kernel, if they satisfy the following
conditions.
1. For all m ∈ N, Gm ∈ (C∞×C)(Rn+1

+ ×Rn), the non-tangential boundary value

lim
x→(u,0)

x∈Rn+1
+ , u∈Rn

Gm(x, v) = Gm((u, 0), v)

exists for all u ∈ Rn and u 6= v ∈ Rn; Gm(·, u) can be continuously extended to
Rn+1

+ \ {(u, 0)} for any fixed u ∈ Rn;
2. G1(en+1, v) = 2

ωn

1

(|v|2+1)
n+1

2
. where ωn is the surface area of the unit ball in

Rn+1 and equals to 2π
n+1

2

Γ( n+1
2 )

, en+1 = (0, . . . , 0, 1) ∈ Rn+1
+ , and for m ∈ N,

|Gm(x, v)| ≤ M
y

(1 + |v|2)n
2

for any (x, v) ∈ Dc × {v ∈ Rn : |v| > T}, where Dc is any compact subset of Rn+1
+ ,

T is a sufficiently large positive real number and M denotes some positive constant
depending only on Dc and T.
3. ∆G1(x, v) = 0 and ∆Gm(x, v) = Gm−1(x, v) for m > 1.
4. limx→(u,0), x∈Rn+1

+ , u∈Rn

∫
Rn G1(x, v)γ(v)dv = γ(u), a.e., for any γ ∈ Lp(Rn),

p ≥ 1;
5. limx→(u,0), x∈Rn+1

+ , u∈Rn

∫
Rn Gm(x, v)γ(v)dv = 0 for any γ ∈ Lp(Rn), p ≥ 1,

m ≥ 2,
where all limits are non-tangential [22].

We note that the Poisson kernel for the upper-half space Rn+1
+ is [22]

(2.1) Py(x) =
Γ(n+1

2 )

π
n+1

2

y

(|x|2 + y2)
n+1

2

where x ∈ Rn, y > 0, and |x| =
√

x2
1 + · · ·+ x2

n.
Set

D1(x, v) = Py(x− v) = cn
y

(|x− v|2 + y2)
n+1

2

,(2.2)

where x = (x, y) ∈ Rn+1
+ , in which x ∈ Rn and y > 0; v ∈ Rn, and

(2.3) cn =
2

ωn
=

Γ(n+1
2 )

π
n+1

2

.



Lp POLYHARMONIC DIRICHLET PROBLEMS 3

Lemma 2.3. Let x = (x, y) ∈ Rn+1
+ , x ∈ Rn and y > 0, then for any s ∈ R,

(2.4) ∆ (y|x|s) = s(s + n + 1)y|x|s−2

and

(2.5) ∆ (y|x|s log |x|) = s(s + n + 1)y|x|s−2 log |x|+ (2s + n + 1)y|x|s−2,

where ∆ =
∑n

k=1
∂2

∂x2
k

+ ∂2

∂y2 and |x| =
√

x2
1 + · · ·+ x2

n + y2.

Proof. For 1 ≤ k ≤ n, we have

∂

∂xk
(y|x|s) = syxk|x|s−2,

∂

∂xk
(y|x|s log |x|) = yxk|x|s−2(s log |x|+ 1);

and
∂2

∂x2
k

(y|x|s) =
∂

∂xk

(
syxk|x|s−2

)
(2.6)

= sy|x|s−2 + s(s− 2)yx2
k|x|s−4,

∂2

∂x2
k

(y|x|s log |x|) =
∂

∂xk

(
yxk|x|s−2(s log |x|+ 1)

)
(2.7)

= y|x|s−2(s log |x|+ 1) + yx2
k|x|s−4[s(s− 2) log |x|+ 2s− 2].

On the other hand,

∂

∂y
(y|x|s) = |x|s+sy2|x|s−2,

∂

∂y
(y|x|s log |x|) = |x|s log |x|+y2|x|s−2(s log |x|+1);

and
∂2

∂y2
(y|x|s) =

∂

∂y

(|x|s + sy2|x|s−2
)

(2.8)

= 3sy|x|s−2 + s(s− 2)y3|x|s−4,

∂2

∂y2
(y|x|s log |x|) =

∂

∂y

[|x|s log |x|+ y2|x|s−2(s log |x|+ 1)
]

(2.9)

= 3y|x|s−2(s log |x|+ 1) + y3|x|s−4[s(s− 2) log |x|+ 2s− 2].

Therefore, from (2.6)-(2.9), by direct calculations,

∆ (y|x|s) =

[
n∑

k=1

∂2

∂x2
k

+
∂2

∂y2

]
(y|x|s)

= s(s + n + 1)y|x|s−2

and

∆ (y|x|s log |x|) =

[
n∑

k=1

∂2

∂x2
k

+
∂2

∂y2

]
(y|x|s log |x|)

= s(s + n + 1)y|x|s−2 log |x|+ (2s + n + 1)y|x|s−2. ¤
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Denote

(2.10) αs = s(s + n + 1)

for any s ∈ R. Thus, when s 6= 0, we can rewrite (2.4) and (2.5) as follows:

(2.11) ∆
(

1
αs

y|x|s
)

= y|x|s−2

and

(2.12) ∆
(

1
αs

y|x|s log |x|
)

= y|x|s−2 log |x|+
(

1
s

+
1

s + n + 1

)
y|x|s−2.

Moreover, we also have

(2.13) ∆
(

1
n + 1

y log |x|
)

= y|x|−2.

Lemma 2.4. Let x = (x, y) ∈ Rn+1
+ , x ∈ Rn and y > 0, and v ∈ Rn. For m ∈ N

and m ≥ 2, define

Dm(x, v) =
cn

β1β2 · · ·βm−1
y

(|x− v|2 + y2
)m−1−n+1

2(2.14)

if n is even, and

Dm(x, v) =





cn

β1β2···βm−1
y

(|x− v|2 + y2
)m−1−n+1

2 , m ≤ n+1
2 ,

cn

(n+1)β1β2···β n+1
2 −1

α2α4···α2m−n−3
y

(|x− v|2 + y2
)m−1−n+1

2

×
[
log

√
|x−v|2+y2

1+|v|2 −∑m−n+3
2

t=1

(
1
t + 1

t+n+1

)]
, m ≥ n+3

2

(2.15)

if n is odd, where βk = α2k−n−1, k = 1, 2, . . . , m− 1, αs is given by (2.10) and cn

is given by (2.3). Then

(2.16) ∆D1(x, v) = 0 and ∆Dm(x, v) = Dm−1(x, v), m ≥ 2,

where D1 is given by (2.2).

Proof. By straightforward calculations, it immediately follows from (2.11)-(2.13).
¤

In what follows, we need to introduce ultraspherical polynomials [1,23], P
(λ)
l and

Q
(λ)
l , which can be respectively defined by the generating functions

(2.17) (1− 2rξ + r2)−λ =
∞∑

l=0

P
(λ)
l (ξ)rl

and

(2.18) (1− 2rξ + r2)−λ log(1− 2rξ + r2) =
∞∑

l=0

Q
(λ)
l (ξ)rl,



Lp POLYHARMONIC DIRICHLET PROBLEMS 5

where λ 6= 0, 0 ≤ |r| < 1 and |ξ| ≤ 1. P
(λ)
l and Q

(λ)
l have the following explicit

expressions:

P
(λ)
l (ξ) =

1
l!

{
dl

drl

[
(1− 2rξ + r2)−λ

]}

r=0

(2.19)

=
[ l
2 ]∑

j=0

(−1)j Γ(l − j + λ)
Γ(λ)j!(l − 2j)!

(2ξ)l−2j

and

Q
(λ)
l (ξ) =− d

dλ

[
P

(λ)
l (ξ)

]
(2.20)

=
[ l
2 ]∑

j=0

l−j−1∑

k=0

(−1)j+1 Γ(l − j + λ)
(λ + k)Γ(λ)j!(l − 2j)!

(2ξ)l−2j ,

where [ l
2 ] denotes the integer part of l

2 . If necessary, for some special values of λ,
say λ = λ0, the above expressions may be extended and interpreted as limits for
λ → λ0 (for example, λ0 is a non-positive integer). Some other properties of the
ultraspherical polynomials can be also found in [1, 23].

For sufficiently large |v| ≥ |x| and any real numbers λ 6= 0 and s > 0,

(|x− v|2 + y2)−λ = (|v|2 − 2x · v + |x|2)−λ(2.21)

= |v|−2λ

[
1− 2

|x|
|v|

(
x

|x| ·
v

|v|
)

+
|x|2
|v|2

]−λ

= |v|−2λ
∞∑

l=0

P
(λ)
l (x · vSn/|x|)

( |x|
|v|

)l

=
∞∑

l=0

|x|lP (λ)
l (x · vSn/|x|)|v|−(l+2λ)

and

1
|v|s =


 1√

1 + |v|2
1√

1− 1
1+|v|2




s

(2.22)

=
1

(1 + |v|2) s
2

∞∑
µ=0

(
µ + s

2 − 1
µ

)
1

(1 + |v|2)µ

=
∞∑

µ=0

(
µ + s

2 − 1
µ

)
1

(1 + |v|2)µ+ s
2
,

where v = |v|vSn . Therefore

(|x− v|2 + y2)−λ =
[−2λ]∑

l=0

|x|lP (λ)
l (x · vSn/|x|)|v|−(l+2λ)(2.23)

+
∞∑

l=[−2λ]+1

|x|lP (λ)
l (x · vSn/|x|)
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×
∞∑

µ=0

(
µ + l

2 + λ− 1
µ

)
1

(1 + |v|2)µ+ l
2+λ

.

Similarly, we have

(|x− v|2 + y2)−λ log
|x− v|2 + y2

1 + |v|2(2.24)

=(|v|2 − 2x · v + |x|2)−λ log
|v|2 − 2x · v + |x|2

1 + |v|2

=|v|−2λ

[
1− 2

|x|
|v|

(
x

|x| ·
v

|v|
)

+
|x|2
|v|2

]−λ {
log

[
1− 2

|x|
|v|

(
x

|x| ·
v

|v|
)

+
|x|2
|v|2

]

− log
[
1 +

1
|v|2

]}

=|v|−2λ
∞∑

l=0

Q
(λ)
l (x · vSn/|x|)

( |x|
|v|

)l

− |v|−2λ
∞∑

l=0

P
(λ)
l (x · vSn/|x|)

( |x|
|v|

)l

×
∞∑

k=1

(−1)k 1
k

1
|v|2k

=
∞∑

l=0

|x|lQ(λ)
l (x · vSn/|x|)|v|−(l+2λ)

−
∞∑

l=2

[ l
2 ]∑

s=1

(−1)s 1
s
|x|l−2sP

(λ)
l−2s(x · vSn/|x|)|v|−(l+2λ).

Definition 2.5. Let f be a continuous function defined in Rn that can be expanded
as

(2.25) f(ζ) =
m∑

k=−∞
ck(ζ)|ζ|k

for sufficiently large |ζ|, where integer m ≥ −n and coefficient functions ck(ζ) are
continuous in Rn. Denote

(2.26) S.P.[f ](ζ) =
m∑

k=0

ck(ζ)|ζ|k +
n−1∑

k=1

[ k−1
2 ]∑

µ=0

(
k
2 − 1

µ

)
c2µ−k(ζ)

1

(1 + |ζ|2) k
2

and

(2.27) I.P.[f ](ζ) =
∞∑

k=n

[ k−1
2 ]∑

µ=0

(
k
2 − 1

µ

)
c2µ−k(ζ)

1

(1 + |ζ|2) k
2

for sufficiently large |ζ|. If I.P.[f ] is Lp integrable in the complement of a sufficiently
large ball centered at the origin in Rn for p > 1, then S.P.[f ] is called the singular
part of f and I.P.[f ] is called the integrable part of f at infinity in the Lp sense,
p > 1.

We immediately have
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Proposition 2.6. Let f be defined as in Definition 2.5, then for sufficiently large
|ζ|,

(2.28) f(ζ) = S.P.[f ](ζ) + I.P.[f ](ζ).

Proof. Due to (2.25) and (2.22), for sufficiently large |ζ|,

f(ζ) =
m∑

s=0

cs(ζ)|ζ|s +
∞∑

s=1

c−s(ζ)
1
|ζ|s(2.29)

=
m∑

s=0

cs(ζ)|ζ|s +
∞∑

s=1

c−s(ζ)

[ ∞∑
µ=0

(
µ + s

2 − 1
µ

)
1

(1 + |ζ|2)µ+ s
2

]

=
m∑

s=0

cs(ζ)|ζ|s +
∞∑

k=1

[ k−1
2 ]∑

µ=0

(
k
2 − 1

µ

)
c2µ−k(ζ)

1

(1 + |ζ|2) k
2

=S.P.[f ](ζ) + I.P.[f ](ζ). ¤

Theorem 2.7. Let

(2.30) Gm(x, v) = Dm(x, v)− S.P.[Dm](x, v),

where

S.P.[Dm](x, v) =
cn

β1β2 · · ·βm−1
y
[ 2m−n−3∑

l=0

|x|lP ( n+3
2 −m)

l (x · vSn/|x|)|v|2m−n−3−l

(2.31)

+
2m−4∑

k=2m−n−2

[ k
2 ]∑

µ=0

(
k
2 −m + n+1

2
µ

)
|x|k−2µP

( n+3
2 −m)

k−2µ (x · vSn/|x|)

× 1

(1 + |v|2) k
2−m+ n+3

2

]

for any m and even n, or any odd n with m ≤ n+1
2 ; and

S.P.[Dm](x, v) =
cn

(n + 1)β1β2 · · ·βn+1
2 −1α2α4 · · ·α2m−n−3

y

(2.32)

×
{[ 2m−n−3∑

l=0

|x|lQ( n+3
2 −m)

l (x · vSn/|x|)|v|2m−n−3−l

+
2m−4∑

k=2m−n−2

[ k
2 ]∑

µ=0

(
k
2 −m + n+1

2
µ

)
|x|k−2µQ

( n+3
2 −m)

k−2µ (x · vSn/|x|)

× 1

(1 + |v|2) k
2−m+ n+3

2

]
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− 1
2

[ 2m−n−3∑

l=2

[ l
2 ]∑

s=1

(−1)s 1
s
|x|l−2sP

( n+3
2 −m)

l−2s (x · vSn/|x|)|v|2m−n−3−l

+
2m−4∑

k=2m−n−2

[ k
2 ]∑

µ=0

[ k
2−µ]∑
s=1

(−1)s 1
s

(
k
2 −m + n+1

2
µ

)
|x|k−2µ−2s

× P
( n+3

2 −m)

k−2µ−2s (x · vSn/|x|) 1

(1 + |v|2) k
2−m+ n+3

2

]

−
m−n+3

2∑
t=1

(
1
t

+
1

t + n + 1

) [ 2m−n−3∑

l=0

|x|lP ( n+3
2 −m)

l (x · vSn/|x|)

× |v|2m−n−3−l +
2m−4∑

k=2m−n−2

[ k
2 ]∑

µ=0

(
k
2 −m + n+1

2
µ

)
|x|k−2µ

× P
( n+3

2 −m)

k−2µ (x · vSn/|x|) 1

(1 + |v|2) k
2−m+ n+3

2

]}

for any odd n with m ≥ n+3
2 , where αs, βs are given as in Lemma 2.4, cn is given

by (2.3), and the generalized ultraspherical polynomials P ( n+3
2 −m), Q( n+3

2 −m) are
defined by (2.17) and (2.18). Then {Gm(x, v) }∞m=1 is a sequence of higher order
Poisson kernels defined in Definition 2.2.

Proof. By using the definition of the singular part, S.P.[·] and the relations (2.21),
(2.22) and (2.24), performing similar calculations as for getting (2.23) and (2.29), we
get (2.31) and (2.32). Note the explicit expressions (2.31) and (2.32), it immediately
follows that for any m ∈ N, Gm ∈ (C∞ × C)(Rn+1

+ × Rn), the non-tangential
boundary value

lim
x→(u,0)

x∈Rn+1
+ , u∈Rn

Gm(x, v) = Gm((u, 0), v)

exists for all u ∈ Rn and u 6= v ∈ Rn. Further more, Gm(·, u) can be continuously
extended to Rn+1

+ \ {(u, 0)} for any fixed u ∈ Rn, i.e., the property 1 in Definition
2.2 holds.

Note that

D1(x, v) = cn
y

(|x− v|2 + y2)
n+1

2

.

So by the definition of the singular part,

(2.33) S.P.[D1](x, v) ≡ 0.

Therefore

(2.34) G1(x, v) = D1(x, v) = Py(x− v).

Then G1(en+1, v) = 2
ωn

1

(|v|2+1)
n+1

2
and limx→(u,0), x∈Rn+1

+ , u∈Rn

∫
Rn G1(x, v)γ(v)dv =

γ(u), a.e., for any γ ∈ Lp(Rn), p ≥ 1. Moreover, by the definition, for sufficiently
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large |v| > |x|,

I.P.[Dm](x, v) =





Am,nyCm,n(x, v) 1
|v|n , n even and any m, or n odd and m ≤ n+1

2 ,

Bm,nyC̃m,n(x, v) 1
|v|n , n odd andm ≥ n+3

2 ,

(2.35)

where Am,n and Bm,n are positive constants depending only on m and n,

Cm,n(x, v) = |x|2m−3

{
d2m−3

dr2m−3

[
(1− 2r(x · vSn/|x|) + r2)m−n+3

2

]}

r=θ

(2.36)

and

C̃m,n(x, v) =|x|2m−3
{ d2m−3

dr2m−3

[
(1− 2r(x · vSn/|x|) + r2)m−n+3

2

(2.37)

×

1

2
log

1− 2r(x · vSn/|x|) + r2

1 + r2
−

m−n+3
2∑

t=1

(
1
t

+
1

t + n + 1

)


]}
r=ϑ

with 0 < θ, ϑ < 1. Therefore, for any compact subset Dc of Rn+1
+ and x = (x, y) ∈

Dc, by the continuity of Cm,n and C̃m,n, we have

(2.38) |Gm(x, v)| = |I.P.[Dm](x, v)| ≤ M
y

(1 + |v|2)n
2

,

where (x, v) ∈ Dc×{v ∈ Rn : |v| > T}, T is a sufficiently large positive real number
and M is a positive constant depending only on Dc and T . Thus the properties 2
and 4 in Definition 2.2 are established.

From (2.31) and (2.32), we can simply denote

S.P.[Dm](x, v) =Cmy
[ 2m−n−3∑

l=0

cm,l(x, v)|v|l(2.39)

+
2m−4∑

k=2m−n−2

cm,−k(x, v)
1

(1 + |v|2) k
2−m+ n+3

2

]
,

where Cm is a constant depending only on m,n, and the coefficient functions cm,l

and cm,−k can be explicitly expressed by the ultraspherical polynomials P ( n+3
2 −m)

and Q( n+3
2 −m). Therefore,

∆
[
S.P.[Dm](x, v)

]
=Cm

[ 2m−n−3∑

l=0

∆[ycm,l(x, v)]|v|l(2.40)

+
2m−4∑

k=2m−n−2

∆[ycm,−k(x, v)]
1

(1 + |v|2) k
2−m+ n+3

2

]
.

By Lemma 2.4, we have

(2.41) ∆Gm −Gm−1 = S.P.[Dm−1]−∆
[
S.P.[Dm]

]

for any m ≥ 2. Due to (2.38) and (2.39),

∆Gm = Gm−1
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for any m ≥ 2. By taking into account ∆G1 = 0, the property 3 in Definition 2.2
follows.

Finally, we show that the property 5 holds. Denote by ∨α(u) the cone in Rn+1
+

with vertex (u, 0) and aperture α > 0, viz.

(2.42) ∨α(u) = {(x, y) ∈ Rn+1
+ : |x− u| < αy}.

In what follows, we often use the truncated cone

(2.43) 5α,η(u) = {(x, y) ∈ Rn+1
+ : |x− u| < αy, 0 ≤ y ≤ η}.

Case 1: 2 ≤ m ≤ n+1
2 . Take a splitting,

∫

Rn

Gm(x, v)γ(v)dv =
∫

|v−u|<δ

Gm(x, v)γ(v)dv +
∫

δ≤|v−u|≤T

Gm(x, v)γ(v)dv

(2.44)

+
∫

|v−u|>T

Gm(x, v)γ(v)dv

, I + II + III,

where u is any fixed point in Rn, δ, T > 0, δ is sufficiently small while T is sufficiently
large, x ∈ 5α,η(u), 0 < η < min{δ, 1

2}, and γ ∈ Lp(Rn), p ≥ 1. By the property 1,
y−1Gm(x, v) is continuous on the compact set5α,η(u)×{v ∈ Rn : δ ≤ |v−u| ≤ T}.
Therefore,

II → 0 as x → (u, 0), x ∈ 5α,η(u).(2.45)

By the property 2, for sufficiently large T, x ∈ 5α,η(u) and |v − u| > T , we have

|Gm(x, v)| ≤ M
y

(1 + |v|2)n
2

,

where M is a constant depending only on δ and T . So

(2.46) |Gm(x, v)γ(v)| ≤ M
y

(1 + |v|2)n
2
|γ(v)|.

The RHS of the above inequality belongs to L1(Rn), because 1

(1+|v|2) n
2
∈ Lq(Rn)∩

C0(Rn) and γ ∈ Lp(Rn) for any p ≥ 1 and q > 1, where C0(Rn) is the set of all
functions defined on Rn vanishing at infinity. Since by (2.46), Gm(x, v)γ(v) → 0 as
x → (u, 0) for any x ∈ 5α,η(u) and |v−u| > T , by (2.46) and Lebesgue’s dominated
convergence theorem,

III → 0 as x → (u, 0), x ∈ 5α,η(u).(2.47)

Write that

I =
∫

|v−u|<δ

Dm(x, v)γ(v)dv −
∫

|v−u|<δ

S.P.[Dm](x, v)γ(v)dv(2.48)

, I1 − I2.

Similarly to (2.45), by taking into account y−1S.P.[Dm](x, v) ∈ C(5α,η(u) × {v ∈
Rn : |v − u| ≤ δ}),

I2 → 0 as x → (u, 0), x ∈ 5α,η(u).(2.49)
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For x ∈ 5α,η(u) and |v − u| < δ < 1
2 ,

Dm(x, v) = cm
y

(|x− v|2 + y2)
n+3

2 −m
(2.50)

≤ cm
y

[
||v − u| − |x− u||2 + y2

]n+3
2 −m

= cm
y

[
|v − u|2 + |x− u|(1− 2|v − u|) + y2

]n+3
2 −m

≤ cm
y

|v − u|(n+3)−2m
,

where cm = cn

β1β2···βm−1
. Therefore,

I1 ≤ cmy

∫

|v−u|<δ

1
|v − u|(n+3)−2m

γ(v)dv(2.51)

= cmy

∫

|v′|<δ

|v′|m−2γ(u + v′)dv′.(2.52)

So

I1 → 0 as x → (u, 0), x ∈ 5α,η(u).(2.53)

Therefore, in this case, by (2.44), (2.45), (2.47)-(2.49), (2.53),

lim
x→(u,0), x∈Rn+1

+ , u∈Rn

∫

Rn

Gm(x, v)γ(t)dv = 0

for any γ ∈ Lp(Rn), p ≥ 1.
Case 2: m ≥ n+3

2 . For sufficiently large T > 0, we can split

∫

Rn

Gm(x, v)γ(v)dv =
∫

|v−u|≤T

Gm(x, v)γ(v)dv +
∫

|v−u|>T

Gm(x, v)γ(v)dv

(2.54)

, J1 + J2,

where

J1 =
∫

|v−u|≤T

Gm(x, v)γ(v)dv(2.55)

=
∫

|v−u|≤T

Dm(x, v)γ(v)dv −
∫

|v−u|≤T

S.P.[Dm](x, v)γ(v)dv

, J11 − J12.

Similarly to (2.47) and (2.49), we have

J2 → 0 as x → (u, 0), x ∈ 5α,η(u)(2.56)

and

J12 → 0 as x → (u, 0), x ∈ 5α,η(u).(2.57)

Since m ≥ n+3
2 , by (2.14) and (2.15), y−1Dm(x, v) ∈ C(5α,η(u) × {v ∈ Rn :

|v − u| ≤ T}). Similarly to (2.53),

J11 → 0 as x → (u, 0), x ∈ 5α,η(u).(2.58)
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By (2.56)-(2.58), we have

lim
x→(u,0), x∈Rn+1

+ , u∈Rn

∫

Rn

Gm(x, v)γ(v)dv = 0

for any γ ∈ Lp(Rn), p ≥ 1.
We thus conclude the property 5 of Definition 2.2. The proof is complete. ¤

3. Polyharmonic Dirichlet problems in the upper-half space

In this section, we solve the PHD problem (1.1), viz.,

(3.1)

{
∆mu = 0 in Rn+1

+

∆ju = fj on ∂Rn+1
+ = Rn,

where n ≥ 2, Rn+1
+ = Rn×R+ = {x = (x, y) : x ∈ Rn, y ∈ R, y > 0}, ∆ ≡ ∆n+1 :=∑n

k=1
∂2

∂x2
k

+ ∂2

∂y2 , fj ∈ Lp(Rn), m ∈ N, 0 ≤ j < m, and p ≥ 1.
To do so, firstly as a special case extension of Theorem 2.27 in [14], we establish

Lemma 3.1. Let D be a simply connected unbounded domain in Rn+1 with smooth
unbounded boundary ∂D ⊂ Rn. If f ∈ (C1 × C)(D × ∂D) and there exist g0, g1 ∈
Lp(∂D), p ≥ 1 such that

(3.2) |f(x, v)| ≤ M0
g0(v)

(1 + |v|2)n
2

and

(3.3) | ∂

∂xj
f(x, v)| ≤ M1

g1(v)
(1 + |v|2)n

2

hold for any (x, v) ∈ Dc×{v ∈ ∂D : |v| > T} and j = 1, 2, . . . , n+1, where Dc is a
compact subset of D, T is a sufficiently large positive real number and M0,M1 are
positive constants depending only on Dc and T , then

(3.4)
∂

∂xj

(∫

∂D

f(x, v)dv

)
=

∫

∂D

∂f

∂xj
(x, v)dv

for any 1 ≤ j ≤ n + 1.

Proof. Fix X = (x1, x2, . . . , xn+1) ∈ D and j ∈ {1, 2, . . . , n+1}, take Xl = X +tlej

with liml→+∞ tl = 0, and ej = (0, . . . , 1, . . . , 0) ∈ Rn+1 whose the jth element is 1
and the other ones are zero. Denote

Dl(X, v) =
f(Xl, v)− f(X, v)

tl
(3.5)

=
∂

∂xj
f(X + θtlej , v),

where 0 < θ < 1, then by (3.3),

|Dl(X, v)| ≤ M1
g1(v)

(1 + |v|2)n
2

(3.6)
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uniformly in {v ∈ ∂D : |v| > T} whenever Xl ∈ {Y : |Y −X| ≤ R} ⊂ D for some
R > 0 and sufficiently large T > 0. Since f ∈ (C1 × C)(D × ∂D) and

(3.7) lim
l→+∞

Dl(X, v) =
∂f

∂xj
(X, v), v ∈ ∂D,

by (3.2), (3.6), the continuity of f on the compact set {Y : |Y −X| ≤ R} × {v ∈
∂D : |v| ≤ T}, and Lebesgue’s dominated convergence theorem,

lim
l→+∞

∫

∂D

Dl(X, v)dv = lim
l→+∞

[∫

|v|≤T,v∈∂D

Dl(X, v)dv +
∫

|v|>T,v∈∂D

Dl(X, v)dv

]

=
∫

|v|≤T,v∈∂D

∂f

∂xj
(X, v)dv +

∫

|v|>T,v∈∂D

∂f

∂xj
(X, v)dv

=
∫

∂D

∂f

∂xj
(X, v)dv,

i.e.,

lim
l→+∞

∫
∂D

f(Xl, v)dv − ∫
∂D

f(X, v)dv

tl
=

∫

∂D

∂f

∂xj
(X, v)dv.(3.8)

Since X and the sequence Xl are arbitrarily chosen, then

∂

∂xj

(∫

∂D

f(X, v)dv

)
=

∫

∂D

∂f

∂xj
(X, v)dv

for any 1 ≤ j ≤ n + 1 and X ∈ D. ¤

As an immediate consequence, we have

Corollary 3.2. Let D be a simply connected unbounded domain in Rn+1 with
smooth unbounded boundary ∂D ⊂ Rn. If f ∈ (C2 × C)(D × ∂D) and there exist
g0, g1, g2 ∈ Lp(∂D), p ≥ 1 such that

(3.9) |f(x, v)| ≤ M0
g0(v)

(1 + |v|2)n
2

,

(3.10) | ∂

∂xj
f(x, v)| ≤ M1

g1(v)
(1 + |v|2)n

2

and

(3.11) | ∂2

∂x2
j

f(x, v)| ≤ M2
g2(v)

(1 + |v|2)n
2

hold for any (x, v) ∈ Dc × {v ∈ ∂D : |v| > T} and j = 1, 2, . . . , n + 1, where
Dc is any compact subset of D, T is a sufficiently large positive real number and
M0,M1,M2 are positive constants depending only on Dc and T , then

(3.12) ∆
(∫

∂D

f(x, v)dv

)
=

∫

∂D

∆f(x, v)dv.

From the above corollary, we can obtain the following theorem concerning dif-
ferentiability of integrals of higher order Poisson kernels.
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Theorem 3.3. Let {Gm(x, v) }∞m=1 be the sequence of higher order Poisson kernels
as in Theorem 2.7, then for any m > 1 and γ ∈ Lp(Rn), p ≥ 1,

(3.13) ∆
(∫

Rn

Gm(x, v)γ(v)dv

)
=

∫

Rn

Gm−1(x, v)γ(v)dv.

Proof. From the property 1 in Definition 2.2, we know that Gm ∈ (C2×C)(Rn+1
+ ×

Rn). For sufficiently large T > 0,

Gm(x, v) =Dm(x, v)− S.P.[Dm](x, v) = I.P.[Dm](x, v)(3.14)

=
∞∑

k=2m−3

cm,−k(x, v)
1

(1 + |v|2) k
2−m+ n+3

2

for any (x, v) ∈ {x ∈ Rn+1
+ : |x| ≤ T

2 } × {v ∈ Rn : |v| > T}, where cm,−k can be
explicitly expressed by the ultraspherical polynomials P ( n+3

2 −m) and Q( n+3
2 −m). So

by the property 2 in Definition 2.2, i.e., (2.38) and arguments similar to (2.38), we
obtain

(3.15) |Gm(x, v)| ≤ M0
1

(1 + |v|2)n
2

,

(3.16) | ∂

∂xj
Gm(x, v)| ≤ M1

1
(1 + |v|2)n

2

and

(3.17) | ∂2

∂x2
j

Gm(x, v)| ≤ M2
1

(1 + |v|2)n
2

for any m ≥ 2 and (x, v) ∈ Dc × {v ∈ Rn : |v| > T}, where Dc is any compact
subset of Rn+1

+ , T is a sufficiently large positive real number and M0,M1,M2 are
positive constants depending only on Dc and T . Therefore, by Corollary 3.2, for
any m > 1,

∆
(∫

Rn

Gm(x, v)γ(v)dv

)
=

∫

Rn

Gm−1(x, v)γ(v)dv. ¤

Now we can give the main result for polyharmonic Dirichlet problems in the
upper-half space as follows.

Theorem 3.4. Let {Gm(x, v) }∞m=1 be the sequence of higher order Poisson kernels
on Rn+1

+ × Rn, given by (2.30), then for any m ≥ 1, the PHD problem (1.1) is
solvable and its general solution is given by

(3.18) u(x) =
m∑

j=1

∫

Rn

Gj(x, v)fj−1(v)dv + uh(x),

where uh(x) denotes the general solution of the accompanying homogeneous PHD
problem

(3.19)

{
∆nu = 0 in Rn+1

+ ,

∆ju = 0 on ∂Rn+1
+ = Rn.



Lp POLYHARMONIC DIRICHLET PROBLEMS 15

Proof. Note the inductive property 3 of higher order Poisson kernels stated as in
Definition 2.2, and let the polyharmonic operators ∆l, 1 ≤ l ≤ m − 1, act on the
two sides of (3.18); by Theorem 3.3, we have

(3.20) ∆lu(x) =
m∑

j=l+1

∫

Rn

Gj−l(x, v)fj−1(v)dv + ∆luh(x).

Thus, since ∆luh = 0 on Rn,

(3.21) ∆lu(s) = fl(s), s ∈ Rn, 0 ≤ l ≤ m− 1

follows from the property 5 of higher order Poisson kernels and the nice property
of G1, i.e.,

(3.22) lim
x→(s,0)

x∈Rn+1
+ ,s∈Rn

∫

Rn

G1(x, v)γ(v)dv = γ(s)

for any γ ∈ Lp(Rn), p ≥ 1. Similarly, letting the polyharmonic operators ∆n act
on the two sides of (3.18), we have ∆nu(x) = 0 for any x ∈ Rn+1

+ . Thus (3.18) is a
solution of the PHD problem (1.1).

Denote

(3.23) u∗(x) =
m∑

j=1

∫

Rn

Gj(x, v)fj−1(v)dv.

The above argument shows that u∗ is a special solution of the PHD problem (1.1).
Since uh is the general solution of the accompanying homogenous PHD problem
(3.19), then it is immediate from linear algebra that (3.18) is the general solution
of the PHD problem (1.1). ¤
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