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A Tighter Uncertainty Principle For Linear

Canonical Transform in Terms of Phase

Derivative
Pei Dang*, Guan-Tie Deng, Tao Qian

Abstract

This study devotes to uncertainty principles under the linear canonical transform (LCT) of a complex

signal. A lower-bound for the uncertainty product of a signal in the two LCT domains is proposed that

is sharper than those in the existing literature. We also deduce the conditions that give rise to the equal

relation of the new uncertainty principle. The uncertainty principle for the fractional Fourier transform is a

particular case of the general result for LCT. Examples, including simulations, are provided to show that

the new uncertainty principle is truly sharper than the latest one in the literature, and illustrate when the

new and old lower bounds are the same and when different.
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I. INTRODUCTION

Uncertainty principle is important in signal analysis ([1], [2], [3], [4], [7], [8], [9], [10], [11], [12], [13],

[15]). The classical Heisenberg’s uncertainty principle provides a lower-bound on the product of spreads of

a signal energy in the time and Fourier frequency domains as specified by the inequality

σ2t,sσ
2
ω,s ≥

1

4
, (1.1)

where σt,s and σω,s are defined in Definition 2.1. The inequality (1.1) is the most general version of

uncertainty principle but not the best. For a specific signal s(t) = ρ(t)eiϕ(t), a stronger result is available

([2], [3]):

σ2t,sσ
2
ω,s ≥

1

4
+ Cov2s, (1.2)

where

Covs =

∫ ∞
−∞

tϕ′(t)|s(t)|2dt− 〈t〉s〈ω〉s

is the covariance of the signal s, 〈t〉s and 〈ω〉s are defined in Definition 2.1. Due to [8], the Covariance can

also be given by

Covs =

∫ ∞
−∞

(t− 〈t〉s)(ϕ′(t)− 〈ω〉s)ρ2(t)dt.

The recent paper [8] improves the result (1.2) through proving a larger lower-bound:

σ2t,sσ
2
ω,s ≥

1

4
+ COV2

s, (1.3)

where COVs is the absolute covariance of the signal s(t) = ρ(t)eiϕ(t), defined by

COVs =

∫ ∞
−∞
|(t− 〈t〉s)(ϕ′(t)− 〈ω〉s)|ρ2(t)dt. (1.4)

Owing to the basic integral inequality∫ ∞
−∞
|f(t)|dt ≥ |

∫ ∞
−∞

f(t)dt|

for any integrable function f(t), the uncertainty principle given by (1.3) is stronger than that given by (1.2).

In this communication concrete examples (see Example 3.7) are provided to show that for certain classes

of signals the right-hand-side of (1.3) is strictly larger than that of (1.2). If a signal gives rise to the equal

relation of (1.2), then it also gives rise to the equal relation of (1.3). We also provide numerical examples

for this case (Example 3.8).
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The linear Canonical transform (LCT) is a generalized form of the classical Fourier Transform (FT), the

Fractional Fourier transform (FrFT), as well as Fresnel transform (FRT) ([14], [22]). Recently, there is an

ample amount of literature devoting to studies on various uncertainty principles for FrFT ([18], [23]) and

LCT ([16], [17], [19], [20], [21], [22], [24], [25]). Uncertainty principles for LCT or FrFT always concern the

products of the spreads of signals in the two LCT or the two FrFT domains. LCT and FrFT are generalized

forms of the classical Fourier transform. When M = (a, b, c, d) in (2.5) or α in (2.6) are assigned to some

special values, uncertainty principles in the two LCT or FrFT domains will reduce to uncertainty principles

in the time and Fourier frequency domains. [18] gives a lower-bound about the product of the spreads of a

real signal in the two FrFT domains, that is different from what is for complex-valued signals given in [23].

However, both [18] and [23] can be reduced to the uncertainty principle (1.1). Although the lower-bounds

given in [16] and [21] are not as the same as that for the complex signals case given in [24], all those

correspond to the uncertainty principle (1.1). [22] and [25], with different conditions and proofs, provide a

lower-bound for uncertainty principle for LCT corresponding to the sharper uncertainty principle (1.2).

Some concerns have been devoted to proofs of uncertainty principles such as (1.2) that involve phase and

amplitude derivatives. The same concerns are also expressed to uncertainty principles for LCT and FrFT that

involve such derivatives. The concerns are related to the effort to establish a fundamental theory of signal

analysis on Lebesgue square integrable functions, but not smooth functions. In fact, s(t) = ρ(t)eiϕ(t) ∈

L2(IR) can not guarantee the differentiability property of s(t), ϕ(t) and ρ(t). To solve this problem, [6],

[7] and [8] work with different types of derivatives, viz., Hardy-Sobolev derivative, derivatives as non-

tangential boundary limits and Fourier transform derivative, etc., through Hardy decomposition and Fourier

transformation. We showed that under certain conditions the various types of derivatives can be unified. In

this study, we will use Fourier transform derivatives.

The main result of this paper is a new uncertainty principle for LCT corresponding to the uncertainty

principle (1.3). It is not only a truly stronger uncertainty inequality for LCT but also under the weakest

possible conditions on the signals that satisfy the new uncertainty principle. Indeed, the conditions are based

on Lebesgue measure and integral theory and signals of finite energy. The necessary and sufficient conditions

for a signal to satisfy the equal relation in the uncertainty principle are specified. Concrete examples of signals

with simulations are given to illustrate all the possible relations of the new and old lower bounds of the

LCT uncertainty principle.
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II. PRELIMINARY

A. Review of the LCT

The LCT of a signal s(t) with parameter M = (a, b, c, d) is defined by [14]

SM (u) = L(a,b,c,d)(s(t))(u) =


√

1
i2πbe

i d
2b
u2 ∫∞
−∞ s(t)e

i a
2b
t2e−i

1

b
utdt, if b 6= 0,

√
dei

cd

2
u2

s(du), if b = 0,

(2.5)

where a, b, c, d ∈ IR and ad− bc = 1.

When (a, b, c, d) = (cosα, sinα,− sinα, cosα), the LCT reduces to the Fractional Fourier transform, that

is,

L(cosα, sinα, − sinα, cosα)(s(t))(u) = e−i
α

2 Sα(u),

where Sα(u), the FrFT of the signal s(t), is defined by

Sα(u) =

∫ ∞
−∞

s(t)Kα(t, u)dt, (2.6)

where

Kα(t, u) =



√
1−i cotα

2π ei
t2+u2

2
cotα−iut cscα, if α is not a multiple of π,

δ(t− u), if α is a multiple of 2π,

δ(t+ u), if α+ π is a multiple of 2π.

When (a, b, c, d) = (0, 1,−1, 0), the LCT reduces to the classical Fourier transform (FT), that is,

L(0,1,−1,0)(s(t))(ω) = e−i
π

4 ŝ(ω),

where ŝ(ω) is the Fourier transform of s(t).

The Fourier transform of s ∈ L1(IR) is defined by

ŝ(ω) ,
1√
2π

∫ ∞
−∞

e−itωs(t)dt. (2.7)

If ŝ is also in L1(IR), then the inversion Fourier transform formula holds, that is

s(t) = (ŝ)∨(t) ,
1√
2π

∫ ∞
−∞

eitω ŝ(ω)dω, a.e. (2.8)

It is standard knowledge that through a density argument the restricted Plancherel Theorem

‖ŝ‖22 = ‖s‖22, s ∈ L1(IR) ∩ L2(IR)
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may be extended to L2(IR). Below, when we use the formulas (2.7) and (2.8) for L2(IR) functions, we keep

in mind that the convergence of the integrals is in the L2-sense. Throughout the paper we assume that s is

of unit energy.

When (a, b, c, d) = (1, 0, 0, 1), the LCT reduces to the signal s itself, that is,

L(1,0,0,1)(s(x))(t) = s(t).

B. Properties of signal moments in the LCT domain and other related knowledge

Definition 2.1: Let s(t) be a square-integral signal, then we can define

(i) 〈ω〉s ,
∫∞
−∞ ω|ŝ(ω)|

2dω,

(ii) 〈t〉s ,
∫∞
−∞ t|s(t)|

2dt,

(iii) 〈u〉α,s ,
∫∞
−∞ u|Sα(u)|

2du,

(iv) 〈u〉M,s ,
∫∞
−∞ u|SM (u)|2du,

(v) 〈t2〉s ,
∫∞
−∞ t

2|s(t)|2dt,

(vi) σ2t,s ,
∫∞
−∞(t− 〈t〉s)2|s(t)|2dt,

(vii) σ2ω,s ,
∫∞
−∞(ω − 〈ω〉s)2|ŝ(ω)|2dω,

(viii) σ2α,s ,
∫∞
−∞(u− 〈u〉α,s)2|Sα(u)|2du,

(ix) σ2M,u,s ,
∫∞
−∞(u− 〈u〉M,s)

2|SM (u)|2du,

provided that the right-hand sides of the above formulas are well defined integrals, where ŝ(ω), Sα(u) and

SM (u) are, respectively, the Fourier transform, the fractional Fourier transform and the linear canonical

transform of s(t).

Because the classical derivatives for signals of finite energy may not exist ([5], [7]), we adopt the Fourier

transform derivatives as follows (also see [8]):
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Definition 2.2: Assume s(t) = ρ(t)eiϕ(t) ∈ L2(R) and ωŝ(ω) ∈ L2(R). We can define the Fourier

transform derivative for s(t), ρ(t) and ϕ(t) as

(Ds)(t) = [iωŝ(ω)]∨(t) =
1√
2π

∫ ∞
−∞

[iωŝ(ω)]eitωdω,

(Dρ)(t) =

{
ρ(t)Re (Ds)(t)

s(t) , if s(t) 6= 0,

0, if s(t) = 0,

and

(Dϕ)(t) =

{
Im (Ds)(t)

s(t) , if s(t) 6= 0,

0, if s(t) = 0.

Suppose that we have an amplitude-phase representation of the signal s, given by

s(t) = ρ(t)eiϕ(t).

suppose that both functions ρ(t) and ϕ(t) have the classical derivatives ρ′(t) and ϕ′(t). By taking the

derivative with respect to t on both sides of the above equation, and then dividing by s(t), if it is non-zero,

we obtain

ρ′(t) = ρ(t)Re{s
′(t)

s(t)
}, ϕ′(t) = Im{s

′(t)

s(t)
}.

These formulas have the same forms as those given in the definition. In view of this, when we deal with

general signals in Sobolev spaces, since the classical derivatives may not exist, a reasonable replacement of

the classical derivative s′ is the Fourier type derivative. In general, the Sobolev space condition implies the

existence of an L2-convergence sense derivative. The assumption of the zero value of the new derivatives

at the points s(t) = 0 is conventional that makes the proofs going. A detailed analysis and comprehensive

development of relations of several types of derivatives with applications in signal analysis are given in [7],

[5] and [6].

Notice that in Lebesgue theory if two functions are equal except points in a null set, then the two functions

are considered to be the same. Secondly, if ρ′(t), ϕ′(t) and s′(t) all exist in the classical derivative sense

and as Lebesgue measurable functions, and s′(t) is in L2(IR), then (Ds)(t) = s′(t), (Dρ)(t) = ρ′(t) and

(Dϕ)(t) = ϕ′(t) almost everywhere. With a little abuse of the notation we have

Definition 2.3: Let s(t) = ρ(t)eiϕ(t), ωŝ(ω) ∈ L2(IR). The covariance for s(t) is defined by

Covs , 〈t(Dϕ)(t)〉 − 〈t〉s〈ω〉s =
∫ ∞
−∞

t(Dϕ)(t)|s(t)|2dt− 〈t〉s〈ω〉s,
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and the absolute covariance is given by

COVs ,
∫ ∞
−∞
|(t− 〈t〉s)((Dϕ)(t)− 〈ω〉s)|s(t)|2dt.

Lemma 2.4: [8] Let s(t) = ρ(t)eiϕ(t) and ωŝ(ω) ∈ L2(IR). Then

〈ω〉s =
∫ ∞
−∞

(Dϕ)(t)|s(t)|2dt, (2.9)

and

σ2ω,s =

∫ ∞
−∞

(Dρ)2(t)dt+

∫ ∞
−∞

[(Dϕ)(t)− 〈ω〉s]2|s(t)|2dt. (2.10)

Lemma 2.5: [8], [26] Assume that 1 ≤ p1 ≤ 2, 1 ≤ p2 ≤ 2, s(t) ∈ Lp1(R), h(ω) = iωŝ(ω) ∈ Lp2(R).

Let

g(t) =

∫ t

a
(Ds)(u)du+ s(a),

where a is a Lebesgue point of s. Then s(t) is identical almost everywhere with the absolutely continuous

function g(t), and

(Ds)(t) = g′(t) for almost all t ∈ IR. (2.11)

Lemma 2.6: Let s(t) = ρ(t)eiϕ(t), ωŝ(ω) and ts(t) ∈ L2(IR). Then

〈u〉M,s = a〈t〉s + b

∫ ∞
−∞

(Dϕ)(t)|s(t)|2dt (2.12)

and

σ2M,u,s = a2σ2t,s + 2abCovs + b2σ2ω,s. (2.13)

Proof of Lemma 2.6 The proof of Lemma 2.6 is given in Appendix A.

Under weaker assumptions, Lemma 2.6 proves the same equality relations as those proved in Lemma

1 and Lemma 2 of [22]. In [22] differentiability of the phase and amplitude functions together with their

respective and relevant integrability are implicitly assumed, while in our setting only the Sobolev space

condition, being equivalent to the square- integrability of the signal itself and a weaker type derivative, is

assumed.
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III. UNCERTAINTY PRINCIPLE FOR LCT

A. Uncertainty Principle for LCT

The reference [8] derives a strong form of uncertainty principle in the time and Fourier frequency domains

as cited below that plays an important role in the proof of the uncertainty principle in the LCT domains in

this study.

Lemma 3.1: Assume s(t) = ρ(t)eiϕ(t), ts(t) and ωŝ(ω) ∈ L2(IR). Then

σ2t,sσ
2
ω,s ≥

1

4
+ COV2

s. (3.14)

Under the extra assumptions that s(t) = ρ(t)eiϕ(t) has the classical derivatives s′(t), ϕ′(t), ρ′(t), where

ϕ′(t) is continuous and ρ is almost everywhere non-zero, the equality holds if and only if s(t) has one of

the following four forms

s(t) = e−
1

ζ
(t−〈t〉s)2+γ1ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ2],

s(t) = e−
1

ζ
(t−〈t〉s)2+γ1ei[−

1

2ε
(t−〈t〉s)2+〈ω〉st+γ3],

s(t) =

e
− 1

ζ
(t−〈t〉s)2+γ1ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ4] if t ≥ 〈t〉s,

e−
1

ζ
(t−〈t〉s)2+γ1ei[−

1

2ε
(t−〈t〉s)2+〈ω〉st+γ5] if t < 〈t〉s,

or

s(t) =

e
− 1

ζ
(t−〈t〉s)2+γ1ei[−

1

2ε
(t−〈t〉s)2+〈ω〉st+γ6] if t ≥ 〈t〉s,

e−
1

ζ
(t−〈t〉s)2+γ1ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ7] if t < 〈t〉s,

for some γ1, γ2, γ3, γ4, γ5, γ6, γ7, ζ, ε ∈ IR, ζ, ε > 0, and e2γ1
√

ζπ
2 = 1.

Note that the proof of the Lemma 3.1 is referred to [8]. The proof itself shows the physical reason why the

above four cases of signals can make the equality in (3.14) hold. We will show (see Example 3.8), in fact,

the first two classes of signals can make the equality in (1.2) hold, therefore, the equality in (3.14) holds,

too. The last two classes of signals can really make the strict inequality hold (see Example 3.7), that is,

COV2
s > Cov2s.

Theorem 3.2: Let s(t) = ρ(t)eiϕ(t), ωŝ(ω) and ts(t) ∈ L2(IR). M1 = [a1, b1, c1, d1] and M2 =

[a2, b2, c2, d2]. Then

σ2M1,u,sσ
2
M2,u,s ≥ (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s)

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2. (3.15)
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Under the extra assumptions that s(t) = ρ(t)eiϕ(t) has the classical derivatives s′(t), ϕ′(t), ρ′(t), where ϕ′(t)

is continuous and ρ is almost everywhere non-zero, the equality holds if and only if s(t) has one of the

following four forms

s(t) = e−
1

ζ
(t−〈t〉s)2+γ1ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ2], (3.16)

s(t) = e−
1

ζ
(t−〈t〉s)2+γ1ei[−

1

2ε
(t−〈t〉s)2+〈ω〉st+γ3], (3.17)

s(t) =

e
− 1

ζ
(t−〈t〉s)2+γ1ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ4] if t ≥ 〈t〉s,

e−
1

ζ
(t−〈t〉s)2+γ1ei[−

1

2ε
(t−〈t〉s)2+〈ω〉st+γ5] if t < 〈t〉s,

(3.18)

or

s(t) =

e
− 1

ζ
(t−〈t〉s)2+γ1ei[−

1

2ε
(t−〈t〉s)2+〈ω〉st+γ6] if t ≥ 〈t〉s,

e−
1

ζ
(t−〈t〉s)2+γ1ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ7] if t < 〈t〉s,

(3.19)

for some γ1, γ2, γ3, γ4, γ5, γ6, γ7, ζ, ε ∈ IR, ζ, ε > 0, and e2γ1
√

ζπ
2 = 1.

Proof of Theorem 3.2 Thanks to the equal relations given by Lemma 2.6, we have

σ2M1,u,s = a21σ
2
t,s + 2a1b1Covs + b21σ

2
ω,s,

and

σ2M2,u,s = a22σ
2
t,s + 2a2b2Covs + b22σ

2
ω,s.

By invoking the sharper uncertainty principle of the classical setting given in Lemma 3.1, viz., the

inequality

σ2t,sσ
2
ω,s ≥

1

4
+ COV2

s, (3.20)

we have

σ2M1,u,sσ
2
M2,u,s

= (a21σ
2
t,s + 2a1b1Covs + b21σ

2
ω,s)(a

2
2σ

2
t,s + 2a2b2Covs + b22σ

2
ω,s)

= a21a
2
2σ

4
t,s + 2a21a2b2σ

2
t,sCovs + a21b

2
2σ

2
t,sσ

2
ω,s + 2a22a1b1σ

2
t,sCovs + 4a1b1a2b2Cov

2
s

+2b22a1b1σ
2
ω,sCovs + b21a

2
2σ

2
ω,sσ

2
t,s + 2b21a2b2σ

2
ω,sCovs + b21b

2
2σ

4
ω,s

= [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2 + (a1b2 − a2b1)2(σ2t,sσ2ω,s − Cov2s)

≥ [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2 + (a1b2 − a2b1)2(
1

4
+ COV2

s − Cov2s), (3.21)
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TABLE III.1

COMPARISONS BETWEEN THE LOWER-BOUNDS OF UNCERTAINTY PRINCIPLE IN LCT DOMAINS

Uncertainty Product Type of signals Lower-bound of Uncertainty Product References

σ2
M1,u,sσ

2
M2,u,s real signals 1

4
(a1b2 − a2b1)

2 + [a1a2σ
2
t,s +

b1b2
4σ2
t,s

]2 [16], [21], [24]

σ2
M1,u,sσ

2
M2,u,s complex signals 1

4
(a1b2 − a2b1)

2 [20], [24]

1
4
(a1b2 − a2b1)

2

σ2
M1,u,sσ

2
M2,u,s complex signals

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2
[22], [25]

( 1
4
+COV2

s − Cov2
s)(a1b2 − a2b1)

2

σ2
M1,u,sσ

2
M2,u,s complex signals

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2
Present Study

as desired. We note that the equality in (3.21) holds if and only if the equality in (3.20) holds.

We provide the Table III.1 in order to compare the existing and proposed results.

Remark 3.3: One of the purposes of the series of studies in signal analysis given in [7], [5] and [8],

etc., is to establish a theoretical foundation of signal analysis/processing for signals of finite energy, viz.,

of Lebesgue square integrable functions, those, in particular, are not necessary to be continuous, nor of

particular forms. The essence of using Lebesgue integration in the proof is that the integrals eliminate the

effect of the possible infinite jumps of the phase derivative induced by discontinuity of signals. Moreover, the

use of Hölder inequality in Lemma 3.1 (see [8]) justifies first taking the absolute value on the integrand and

validates the role of the larger quantity, the absolute covariance COVs, in the uncertainty product estimation.

B. Some Special Cases of Uncertainty Principle for LCT

Corollary 3.4: Let s(t) = ρ(t)eiϕ(t), ωŝ(ω) and ts(t) ∈ L2(IR), M = (a, b, c, d). Then

σ2t,sσ
2
M,u,s ≥ b2(

1

4
+ COV2

s − Cov2s) + (aσ2t,s + bCovs)
2. (3.22)

The equality in (3.22) holds if the signal under study is of one of the forms (3.16), (3.17), (3.18) and (3.19).

When M = (cosα, sinα,− sinα, cosα), we can obtain the following uncertainty relation in two FrFT

domains.

Corollary 3.5: Let s(t) = ρ(t)eiϕ(t), ωŝ(ω), ts(t) ∈ L2(IR),M1 = (cosα, sinα,− sinα, cosα),M2 =

(cosβ, sinβ, − sinβ, cosβ). Then
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σ2M1,u,sσ
2
M2,u,s = σ2α,sσ

2
β,s

≥ (cosα sinβ − cosβ sinα)2(
1

4
+ COV2

s − Cov2s)

+[cosα cosβσ2t,s + sinα sinβσ2ω,s + (cosα sinβ + cosβ sinα)Covs]
2. (3.23)

In particular,

σ2t,sσ
2
α,s ≥ sin2 α(

1

4
+ COV2

s − Cov2s) + (cosασ2t,s + sinαCovs)
2. (3.24)

The equalities in (3.23) and (3.24) hold if the signal under study is of one of the forms (3.16), (3.17),

(3.18) and (3.19).

The uncertainty principle in the LCT domains in [22] and [25] is essentially

σ2M1,u,sσ
2
M2,u,s ≥

(a1b2 − a2b1)2

4
+ [a1a2σ

2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2. (3.25)

To compare the new and the old uncertainty principles we have

Corollary 3.6: Under the assumptions of Theorem 3.2, the following are equivalent.

(i) The equal sign holds in the old uncertainty principle (3.25).

(ii) The equal signs hold simultaneously in the new uncertainty principle (3.15) and in the old uncertainty

principle (3.25).

(iii) The function (t−〈t〉s)[(Dϕ)(t)−〈ω〉s]ρ2(t) is almost everywhere non-negative or almost everywhere

non-positive.

As consequence, the lower bound of (3.15) is strictly larger than that of (3.25) if and only if the function

values of (t−〈t〉s)[(Dϕ)(t)−〈ω〉s]ρ2(t) are positive on a Lebesgue measurable set of positive measure, as

well as negative on a Lebesgue measurable set of positive measure.

Proof of Corollary 3.6 The equivalence between (i) and (ii) is obvious. The equivalence between (ii) and

(iii) is based on the condition on

|
∫ ∞
−∞

f(t)dt| =
∫ ∞
−∞
|f(t)|dt

for a Lebesgue integrable function f.
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C. Examples and Simulations

Theorem 3.2 gives a sharper lower-bound for the uncertainty product in two LCT domains. This fact is

illustrated by the following example. It shows that for the signal class (3.18) the equal sign in the uncertainty

principle inequality of Theorem 3.2 holds; and, at the same time, for this class of signals the lower bounds

in Theorem 3.2 is strictly larger than the lower bound obtained in [22].

Example 3.7: Let

s(t) =

(απ )
1

4 e−
α

2
(t−〈t〉s)2ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ4] if t ≥ 〈t〉s,

(απ )
1

4 e−
α

2
(t−〈t〉s)2ei[−

1

2ε
(t−〈t〉s)2+〈ω〉st+γ5] if t < 〈t〉s.

(3.26)

Then

σ2t,s =

∫ ∞
−∞

(t− 〈t〉s)2|s(t)|2dt

=

∫ ∞
−∞

(t− 〈t〉s)2|(
α

π
)

1

4 e−
α

2
(t−〈t〉s)2 |2dt

=

∫ ∞
−∞

(t− 〈t〉s)2(
α

π
)

1

2 e−α(t−〈t〉s)
2

dt

= (
α

π
)

1

2

∫ ∞
−∞

t2e−αt
2

dt

=
1

2α
,

σ2ω,s =

∫ ∞
−∞

(Dρ)2(t)dt+

∫ ∞
−∞

[(Dϕ)(t)− 〈ω〉s]2|s(t)|2dt

=

∫ ∞
−∞

(
α

π
)

1

2α2(t− 〈t〉s)2e−α(t−〈t〉s)
2

dt+

∫ ∞
〈t〉s

[
1

ε
(t− 〈t〉s) + 〈ω〉s − 〈ω〉s]2|s(t)|2dt

+

∫ 〈t〉s
−∞

[−1

ε
(t− 〈t〉s) + 〈ω〉s − 〈ω〉s]2|s(t)|2dt

=
α

2
+

1

ε2

∫ ∞
−∞

(t− 〈t〉s)2(
α

π
)

1

2 e−α(t−〈t〉s)
2

dt

=
α

2
+

1

2ε2α
=
α2ε2 + 1

2ε2α
,
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Covs

=

∫ ∞
−∞

(t− 〈t〉s)[(Dϕ)(t)− 〈ω〉s]|s(t)|2dt

=

∫ ∞
〈t〉s

(t− 〈t〉s)[
1

ε
(t− 〈t〉s) + 〈ω〉s − 〈ω〉s]|s(t)|2dt

+

∫ 〈t〉s
−∞

(t− 〈t〉s)[−
1

ε
(t− 〈t〉s) + 〈ω〉s − 〈ω〉s]|s(t)|2dt

=

∫ ∞
〈t〉s

(t− 〈t〉s)[
1

ε
(t− 〈t〉s)]|s(t)|2dt+

∫ 〈t〉s
−∞

(t− 〈t〉s)[−
1

ε
(t− 〈t〉s)]|s(t)|2dt

=
1

ε

∫ ∞
〈t〉s

(t− 〈t〉s)2(
α

π
)

1

2 e−α(t−〈t〉s)
2

dt− 1

ε

∫ 〈t〉s
−∞

(t− 〈t〉s)2(
α

π
)

1

2 e−α(t−〈t〉s)
2

dt

=
1

ε

∫ ∞
0

t2(
α

π
)

1

2 e−αt
2

dt− 1

ε

∫ 0

−∞
t2(
α

π
)

1

2 e−αt
2

dt

= 0,

COVs

=

∫ ∞
−∞
|(t− 〈t〉s)[(Dϕ)(t)− 〈ω〉s]||s(t)|2dt

=

∫ ∞
〈t〉s
|(t− 〈t〉s)[

1

ε
(t− 〈t〉s) + 〈ω〉s − 〈ω〉s]||s(t)|2dt

+

∫ 〈t〉s
−∞
|(t− 〈t〉s)[−

1

ε
(t− 〈t〉s) + 〈ω〉s − 〈ω〉s]||s(t)|2dt

=

∫ ∞
〈t〉s
|(t− 〈t〉s)[

1

ε
(t− 〈t〉s)]||s(t)|2dt+

∫ 〈t〉s
−∞
|(t− 〈t〉s)[−

1

ε
(t− 〈t〉s)]||s(t)|2dt

=
1

ε

∫ ∞
〈t〉s

(t− 〈t〉s)2(
α

π
)

1

2 e−α(t−〈t〉s)
2

dt+
1

ε

∫ 〈t〉s
−∞

(t− 〈t〉s)2(
α

π
)

1

2 e−α(t−〈t〉s)
2

dt

=
1

ε

∫ ∞
0

t2(
α

π
)

1

2 e−αt
2

dt+
1

ε

∫ 0

−∞
t2(
α

π
)

1

2 e−αt
2

dt

=
1

ε

∫ ∞
−∞

t2(
α

π
)

1

2 e−αt
2

dt

=
1

2αε
.

We therefore conclude that

σ2t,sσ
2
ω,s =

1

4
+ COV2

s >
1

4
+ Cov2s =

1

4
.
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Furthermore,

σ2M1,u,s = a21σ
2
t,s + 2a1b1Covs + b21σ

2
ω,s = a21

1

2α
+ b21

α2ε2 + 1

2ε2α
=
a21ε

2 + b21(α
2ε2 + 1)

2ε2α
, (3.27)

and

σ2M2,u,s =
a22ε

2 + b22(α
2ε2 + 1)

2ε2α
. (3.28)

It can be calculated that

σ2M1,u,sσ
2
M2,u,s = (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s)

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2. (3.29)

The formulas (3.27), (3.28) and (3.29) still hold when 〈t〉s = 0 and 〈ω〉s = 0. Under the assumption 〈t〉s = 0

and 〈ω〉s = 0 the above signal is reduced to the case that is considered in [22]. Then the lower bound of

uncertainty product in [22] is

(a1b2 − a2b1)2

4
+ [a1a2 M t2 + b1b2 M ω2 + b1b2K1 + (a1b2 + a2b1)K2]

2

=
(a1b2 − a2b1)2

4
+ (a1a2

1

2α
+ b1b2

α2ε2 + 1

2ε2α
)2

< (a1b2 − a2b1)2(
1

4
+

1

2αε
) + (a1a2

1

2α
+ b1b2

α2ε2 + 1

2ε2α
)2

= (a1b2 − a2b1)2(
1

4
+ COV2

s − Cov2s)

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2, (3.30)

where

M t2 =

∫ ∞
−∞

t2|s(t)|2dt = 1

2α
,

M ω2 +K1 =

∫ ∞
−∞

ω2|ŝ(ω)|2 = α2ε2 + 1

2ε2α
,

and

K2 =

∫ ∞
−∞

t(Dϕ)(t)|s(t)|2dt = 0.

The formula (3.30) indicates that the lower bound of uncertainty principle in Theorem 3.2 is strictly sharper

than that in [22].

The following example corresponds to the signal class (3.16) that give rise to some cases in which the

equal sign in the old uncertainty principle holds. Mathematically it implies that the equal sign in the new

uncertainty principle also holds. The numerical computation also shows so.
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Example 3.8: Let

s(t) = (
α

π
)

1

4 e−
α

2
(t−〈t〉s)2ei[

1

2ε
(t−〈t〉s)2+〈ω〉st+γ], (3.31)

where α > 0, ε, γ ∈ IR. It is a signal of the form (3.16).

Then

σ2t,s =
1

2α
, σ2ω,s =

α2ε2 + 1

2ε2α
,

and

Covs =

∫ ∞
−∞

(t− 〈t〉s)[(Dϕ)(t)− 〈ω〉s]|s(t)|2dt

=

∫ ∞
−∞

(t− 〈t〉s)[
1

ε
(t− 〈t〉s) + 〈ω〉s − 〈ω〉s]|s(t)|2dt

=

∫ ∞
−∞

1

ε
(t− 〈t〉s)2|s(t)|2dt

=
1

2αε

=

∫ ∞
−∞
|(t− 〈t〉s)[(Dϕ)(t)− 〈ω〉s]||s(t)|2dt

= COVs.

We therefore conclude that

σ2t,sσ
2
ω,s =

1

4
+ COV2

s =
1

4
+ Cov2s >

1

4
,

and

σ2M1,u,sσ
2
M2,u,s = (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s)

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2

=
(a1b2 − a2b1)2

4
+ [a1a2σ

2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2. (3.32)

The formula (3.32) indicates the equalities in (3.15) and [22] both hold for the signal s(t). We can see that

in this example the integrand of Covt,ω, viz.

(t− 〈t〉s)[(Dϕ)(t)− 〈ω〉s]|s(t)|2 =
1

ε
(t− 〈t〉s)2|s(t)|2

keeps the same sign on IR, that is the reason why the new and old lower bounds coincide (See Corollary

3.6).
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Let α = ε = 1, 〈t〉s = 〈ω〉s = 0, [a1, b1, c1, d1] = [1, 0, 1, 1] and [a2, b2, c2, d2] = [1,−1, 0, 1] in this

example, we can obtain that

σ2M1,u,sσ
2
M2,u,s ≈ 0.24999999999999999320465138830953;

(a1b2 − a2b1)2(
1

4
+ COV2

s − Cov2s) + [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2 ≈ 0.25;

(a1b2 − a2b1)2 ·
1

4
+ [a1a2σ

2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2 ≈ 0.25;

σ2t,sσ
2
ω,s ≈ 0.49999999999999998640930277661906;

1

4
+ COV2

s ≈ 0.49999999999999999320465138830953;

1

4
+ Cov2s ≈ 0.49999999999999999320465138830953,

so we can conclude from the point of numerical simulation that

σ2M1,u,sσ
2
M2,u,s ≈ (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s)

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2

= (a1b2 − a2b1)2 ·
1

4

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2, ,

and

σ2t,sσ
2
ω,s ≈

1

4
+ COV2

s ≈
1

4
+ Cov2s >

1

4
.

Example 3.9: Let

s(t) = (
α

π
)

1

4 e−
α

2
t2ei(

1

2
t2−α

6
t4),

where α > 0.

Then

〈t〉s =
∫ ∞
−∞

t|s(t)|2dt =
∫ ∞
−∞

t(
α

π
)

1

2 e−αt
2

dt = 0,

〈ω〉s =
∫ ∞
−∞

(Dϕ)(t)|s(t)|2dt =
∫ ∞
−∞

(t− 2α

3
t3)(

α

π
)

1

2 e−αt
2

dt = 0,

σ2t,s =

∫ ∞
−∞

t2|s(t)|2dt =
∫ ∞
−∞

t2(
α

π
)

1

2 e−αt
2

dt =
1

2α
,
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σ2ω,s =

∫ ∞
−∞

(Dρ)2(t)dt+

∫ ∞
−∞

(Dϕ)2(t)|s(t)|2dt

=

∫ ∞
−∞

(
α

π
)

1

2α2t2e−αt
2

dt+

∫ ∞
−∞

(t− 2α

3
t3)2(

α

π
)

1

2 e−αt
2

dt

=
α

2
+ (

α

π
)

1

2

∫ ∞
−∞

(t2 − 4α

3
t4 +

4α2

9
t6)e−αt

2

dt

=
α

2
+ (

α

π
)

1

2

∫ ∞
−∞

(t2 − 2t2 +
5

3
t2)e−αt

2

dt

=
α

2
+

2

3
(
α

π
)

1

2

∫ ∞
−∞

t2e−αt
2

dt

=
α

2
+

1

3α
,

where ∫ ∞
−∞

t4e−αt
2

dt = − 1

2α
[t3e−αt

2 |∞−∞ − 3

∫ ∞
−∞

t2e−αt
2

dt] =
3

2α

∫ ∞
−∞

t2e−αt
2

dt,

and ∫ ∞
−∞

t6e−αt
2

dt = − 1

2α
[t5e−αt

2 |∞−∞ − 5

∫ ∞
−∞

t4e−αt
2

dt] =
15

4α2

∫ ∞
−∞

t2e−αt
2

dt.

Covs =

∫ ∞
−∞

t(Dϕ)(t)|s(t)|2dt

=

∫ ∞
−∞

t(t− 2α

3
t3)(

α

π
)

1

2 e−αt
2

dt

= (
α

π
)

1

2

∫ ∞
−∞

t2e−αt
2

dt− 2α

3
(
α

π
)

1

2

∫ ∞
−∞

t4e−αt
2

dt

= (
α

π
)

1

2

∫ ∞
−∞

t2e−αt
2

dt− 2α

3
(
α

π
)

1

2
3

2α

∫ ∞
−∞

t2e−αt
2

dt

= 0,
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and

COVs =

∫ ∞
−∞
|t(Dϕ)(t)||s(t)|2dt

=

∫ ∞
−∞
|t(t− 2α

3
t3)|(α

π
)

1

2 e−αt
2

dt

= 2

∫ ∞
0

t2|1− 2α

3
t2|(α

π
)

1

2 e−αt
2

dt

= 2[

∫ √ 3

2α

0
t2(1− 2α

3
t2)(

α

π
)

1

2 e−αt
2

dt+

∫ ∞
√

3

2α

t2(
2α

3
t2 − 1)(

α

π
)

1

2 e−αt
2

dt]

= 2[(
α

π
)

1

2

∫ √ 3

2α

0
t2e−αt

2

dt− 2α

3
(
α

π
)

1

2

∫ √ 3

2α

0
t4e−αt

2

dt

+
2α

3
(
α

π
)

1

2

∫ ∞
√

3

2α

t4e−αt
2

dt− (
α

π
)

1

2

∫ ∞
√

3

2α

t2e−αt
2

dt]

= 2{(α
π
)

1

2

∫ √ 3

2α

0
t2e−αt

2

dt+
1

3
(
α

π
)

1

2 [t3e−αt
2 |
√

3

2α

0 − 3

∫ √ 3

2α

0
t2e−αt

2

dt]

−1

3
(
α

π
)

1

2 [t3e−αt
2 |∞√ 3

2α

− 3

∫ ∞
√

3

2α

t2e−αt
2

dt]− (
α

π
)

1

2

∫ ∞
√

3

2α

t2e−αt
2

dt}

= 2 · 2 · 2α
3
(
α

π
)

1

2
1

2α

3

2α

√
3

2α
e−

3

2 =

√
6

α
√
π
e−

3

2 .

Thus we conclude

σ2t,sσ
2
ω,s =

1

4
+

1

6α2
>

1

4
+

6

πe3α2
=

1

4
+ COV2

t,ω,s >
1

4
+ Cov2t,ω,s =

1

4
.

Due to the Lemma 2.6, we have

σ2M1,u,s = a21σ
2
t,s + 2a1b1Covs + b21σ

2
ω,s = a21

1

2α
+ b21(

α

2
+

1

3α
), (3.33)

and

σ2M2,u,s = a22σ
2
t,s + 2a2b2Covs + b22σ

2
ω,s = a22

1

2α
+ b22(

α

2
+

1

3α
). (3.34)

It can be calculated that

σ2M1,u,sσ
2
M2,u,s − {(a1b2 − a2b1)

2(
1

4
+ COV2

s − Cov2s) + [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2}

= (
1

6α2
− 6

πe3α2
)(a1b2 − a2b1)2 ≥ 0,

then

σ2M1,u,sσ
2
M2,u,s ≥ (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s) + [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2

> (a1b2 − a2b1)2 ·
1

4
+ [a1a2σ

2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2.
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Specially, if a1

b1
6= a2

b2
, then the product of σ2M1,u,s

and σ2M2,u,s
is strictly larger than the lower bound in the

formula (3.15), that is,

σ2M1,u,sσ
2
M2,u,s > (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s) + [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2.

Let α = 1, [a1, b1, c1, d1] = [1, 0, 1, 1] and [a2, b2, c2, d2] = [1,−1, 0, 1] in this example, we can obtain

that

σ2M1,u,sσ
2
M2,u,s ≈ 0.66666666666666664854573703549208;

(a1b2 − a2b1)2(
1

4
+ COV2

s − Cov2s) + [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2

≈ 0.5950862963935962495150219128584;

(a1b2 − a2b1)2 ·
1

4
+ [a1a2σ

2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2 ≈ 0.49999999999999999320465138830953;

σ2t,sσ
2
ω,s ≈ 0.41666666666666665534108564718255;

1

4
+ COV2

s ≈ 0.34508629639359625631037052454887;

1

4
+ Cov2s ≈ 0.25,

so we can conclude from the point of numerical simulation that

σ2M1,u,sσ
2
M2,u,s > (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s)

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2

> (a1b2 − a2b1)2 ·
1

4

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2,

and

σ2t,sσ
2
ω,s >

1

4
+ COV2

s >
1

4
+ Cov2s =

1

4
.

Example 3.10: Let

s(t) = (
1

π
)

1

4 e−
α

2
t2ei(

1

2
t2− 1

3
t6).

We have

σ2M1,u,sσ
2
M2,u,s ≈ 59.312499999999998387803541876436;

(a1b2 − a2b1)2(
1

4
+ COV2

s − Cov2s) + [a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2

≈ 15.558041563271434468147663999431;
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Fig. III.1. (i). Example 3.7 gives a signal s that satisfies σ2
t,sσ

2
ω,s = C > B = A; (ii). Example 3.8 gives a signal s that satisfies

σ2
t,sσ

2
ω,s = C = B > A; (iii). Example 3.9 gives a signal s that satisfies σ2

t,sσ
2
ω,s > C > B = A; (iv). Example 3.10 gives a

signal s that satisfies σ2
t,sσ

2
ω,s > C > B > A.

(a1b2 − a2b1)2 ·
1

4
+ [a1a2σ

2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2 ≈ 14.312499999999999617761640592411;

σ2t,sσ
2
ω,s ≈ 55.812499999999998482938422440103;

1

4
+ COV2

s ≈ 12.058041563271434563282544563098;

1

4
+ Cov2s ≈ 10.812499999999999712896521156078,

so we can conclude from the point of numerical simulation that

σ2M1,u,sσ
2
M2,u,s > (a1b2 − a2b1)2(

1

4
+ COV2

s − Cov2s)

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2

> (a1b2 − a2b1)2 ·
1

4

+[a1a2σ
2
t,s + b1b2σ

2
ω,s + (a1b2 + a2b1)Covs]

2,

and

σ2t,sσ
2
ω,s >

1

4
+ COV2

s >
1

4
+ Cov2s >

1

4
.

Examples 3.7, 3.8, 3.9 and 3.10 provide signals showing various relations between the old and new lower

bounds of the LCT uncertainty product, also give the relations between the four numbers 1
4 ,

1
4 +Cov2s,

1
4 +

COV2
s and the uncertainty product σ2t,sσ

2
ω,s in the classical case.

IV. CONCERNS ABOUT APPLICATION

It is commonly understood that a stronger inequality implies the weaker ones, giving more knowledge

on the quantity to be estimated. In the classical uncertainty principle case the largest universal lower bound
1
4 for all signals can be reached only if COVs = 0. The proposed new theorem gives full characterization

of the signals that make the equal relation hold in the uncertainty inequality, including the cases when

COVs = 0. In such a way the new uncertainty principle includes the old ones as particular cases. It thus has
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the full strength of the old uncertainty principles of various settings. In particular, whenever an application

is done by an old uncertainty principle, it can also be done by the new one, and with more information. The

philosophy of the LCT uncertainty principles is the same as that for the uncertainty principles in the classical

setting. The LCT case is subject to suitably incorporate certain constants induced by the LCT parameters.

An alternative mathematical formulation of the classical Heisenberg uncertainty principle is

1

4
= min{σ2t,sσ2ω,s : ‖s‖22 = 1, ts(t), ωŝ(ω) ∈ L2.},

where the minimum value 1
4 of the uncertain products σ2t,sσ

2
ω,s can be reached. For a practical signal s this

minimum value 1
4 should not be reached, and the corresponding uncertainty product is actually larger than

1
4 . Cohen’s uncertainty principle provides a better estimate which says that the uncertainty product cannot

be smaller than 1
4 +Cov2s. Since Cov2s ≥ 0, the latter is a better estimate than 1

4 . Our result shows that, due

to the relation COV2
s ≥ Cov2s, a further better estimate is 1

4 +COV2
s. Uncertainty principles are often used

to estimate the bandwidths (see [19]). For instance, if σt,s is known, then

σω,s ≥

√
1
4 +COV2

s

σt,s
≥ 1

2σt,s
,

and, even the middle term of the chain of the inequality usually cannot be reached, except it is a Gaussian

type function given in Theorem 3.2.

Alternative to Theorem 3.2, we have

1

4
+ α2 = min{σ2t,sσ2ω,s : ‖s‖22 = 1, ts(t), ωŝ(ω) ∈ L2,COVs ≥ α.}, α > 0.

The last relation shows that if we are dealing with a class of signals whose absolute variations are not

less than α, then the uncertainty product cannot be less than 1
4 + α2.

The situation for the LCT domains is similar with that for the classical case. Below we give an example to

illustrate the application aspect of the new result of uncertainty principle in the LCT domains. We will just

consider the special case, that is, Corollary 3.4 in the process of wave propagation through an aperture that

can be described by an LCT (see [19]). Immediately after crossing the aperture the field has some effective

width σ2t,s dictated by the aperture width. After propagation a distance z the transversal distribution of the

field can be described by a LCT with parameters (1, b = λz/2π, 0, 1). Therefore the relation (3.22) becomes
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σ2M,u,s ≥
(λz)2

4π2σ2t,s
(
1

4
+ COV2

s − Cov2s) + (σt,s +
λzCovs
2πσt,s

)2 (4.35)

=
(λz)2

4π2σ2t,s
(
1

4
+ COV2

s) + σ2t,s + 2
λz

2π
Covs,

implying that for short z the effective spread 2σM,u,s is slightly larger than that at the aperture plane 2σt,s and

for large propagation distances z the spread of the field is proportional to λz and reciprocally proportional

to the field spread in the aperture plane.

V. CONCLUSION

We study uncertainty principles in the LCT domain. The lower-bounds obtained in the uncertainty

principles in Theorem 3.2, Corollary 3.4 and Corollary 3.5 are sharper than the existing forms for all

the three categories, viz. the Fourier, the fractional Fourier and the LCT transforms, in the literature. It is

also shown that the lower bounds are attainable by four classes of complex chirp signals with Gaussian

envelop. Examples with simulations are given to illustrate our results. We also concern the applications of

the new lower bound of uncertainty principle in LCT domains.

APPENDIX A

PROOF OF THE LEMMA 2.6

Proof of Lemma 2.6

By Lemma 2.5, we may assume that s0(t) is an absolutely continuous function that is equal to s(t) almost
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everywhere. Then the LCT of s0(t), denoted by S0M (u), is equal to SM (u), the LCT of s(t). Now

〈u〉M,s =

∫ ∞
−∞

uSM (u)SM (u)du

=

∫ ∞
−∞

uS0M (u)S0M (u)du

=

∫ ∞
−∞

[ats0(t)− ibs′0(t)]s0(t)dt

=

∫ ∞
−∞

[ats(t)− ib(DS)(t)]s(t)dt

=

∫ ∞
−∞

at|s(t)|2dt− ib
∫ ∞
−∞

(Ds)(t)s(t)dt

= a〈t〉s − ib
∫ ∞
−∞

(Ds)(t)

s(t)
|s(t)|2dt

= a〈t〉s + b

∫ ∞
−∞

Im[
(Ds)(t)

s(t)
]|s(t)|2dt

= a〈t〉s + b

∫ ∞
−∞

(Dϕ)(t)|s(t)|2dt,

where we used the Parseval identity and the property ([14])

L(a,b,c,d)(ats0(t)− ibs′0(t))(u) = uS0M (u).
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Then,

σ2M,u,s =

∫ ∞
−∞

uSM (u)uSM (u)du− 〈u〉2M,s

=

∫ ∞
−∞

uS0M (u)uS0M (u)du− 〈u〉2M,s

=

∫ ∞
−∞

[ats0(t)− ibs′0(t)]ats0(t)− ibs′0(t)dt− 〈u〉
2
M,s

=

∫ ∞
−∞

[ats(t)− ib(Ds)(t)]ats(t)− ib(Ds)(t)dt− 〈u〉2M,s

=

∫ ∞
−∞

a2t2|s(t)|2dt+ 2ab

∫ ∞
−∞

Im[t(Ds)(t)s(t)]dt+ b2
∫ ∞
−∞
|(Ds)(t)
s(t)

|2|s(t)|2dt− 〈u〉2M,s

= a2〈t2〉s + 2ab

∫ ∞
−∞

tIm[
(Ds)(t)

s(t)
]|s(t)|2dt

+b2
∫ ∞
−∞
{Re2[ (Ds)(t)

s(t)
] + Im2[

(Ds)(t)

s(t)
]}|s(t)|2dt− 〈u〉2M,s

= a2〈t2〉s + 2ab

∫ ∞
−∞

t(Dϕ)(t)|s(t)|2dt+ b2[

∫ ∞
−∞

(Dρ)2(t)dt+

∫ ∞
−∞

(Dϕ)2(t)|s(t)|2dt]

−[a〈t〉s + b

∫ ∞
−∞

(Dϕ)(t)|s(t)|2dt]2

= a2[〈t2〉s − 〈t〉2s] + 2ab[

∫ ∞
−∞

t(Dϕ)(t)|s(t)|2dt− 〈t〉s
∫ ∞
−∞

(Dϕ)(t)|s(t)|2dt]

+b2{
∫ ∞
−∞

(Dρ)2(t)dt+

∫ ∞
−∞

(Dϕ)2(t)|s(t)|2dt− [

∫ ∞
−∞

(Dϕ)(t)|s(t)|2dt]2}

= a2σ2t,s + 2abCovs + b2{
∫ ∞
−∞

(Dρ)2(t)dt+

∫ ∞
−∞

[(Dϕ)(t)− 〈ω〉s]2|s(t)|2dt}

= a2σ2t,s + 2abCovs + b2σ2ω,s.
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