
Research Article

Received 4 August 2012 Published online 28 February 2013 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/mma.2752
MOS subject classification: 41A20; 30J99; 65E99

On sparse representation of analytic signal in
Hardy space

Shuang Li*† and Tao Qian
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This paper is concerned with the sparse representation of analytic signal in Hardy space H2.D/, where D is the open unit
disk in the complex plane. In recent years, adaptive Fourier decomposition has attracted considerable attention in the
area of signal analysis in H2.D/. As a continuation of adaptive Fourier decomposition-related studies, this paper proves
rapid decay properties of singular values of the dictionary. The rapid decay properties lay a foundation for applications of
compressed sensing based on this dictionary. Through Hardy space decomposition, this program contributes to sparse
representations of signals in the most commonly used function spaces, namely, the spaces of square integrable func-
tions in various contexts. Numerical examples are given in which both compressed sensing and `1-minimization are used.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Sparse representation of signals has long been of interest. Our study originates from a series of recent results on analytic signal decom-
position and adaptive rational approximation by Qian et al. where the concept of adaptive Fourier decomposition (AFD) was introduced
[1–4]. By maximal projection principle [1], AFD yields an approximation using only a few elements chosen adaptively from the set of
shifted Cauchy kernels

D D
(

ea : ea.z/ D
p

1 � jaj2

1 � az
, a 2 D

)
. (1)

The parameters fang of fean g do not necessarily satisfy the hyperbolic nonseparability condition

1X
kD1

.1 � jak j/ D 1

which plays a fundamental role in the study of the Takenaka–Malmquist basis fBng1
nD1 of H2.D/,

Bn.z/ D Bfa1,:::,ang.z/ , 1

2�

p
1 � janj2

1 � Nanz

n�1Y
kD1

z � ak

1 � Nakz
.

The AFD is motivated by matching pursuit (MP), which is a greedy algorithm that selects the dictionary atoms sequentially. A typical
MP is a substitution of the following representation problem

min kxk0 subject to s D Dx. (2)

The problem is NP-hard which means non-deterministic polynomial-time hard in general [5–7] because it requires combinatorial search
through all the combinations of columns from the dictionary D. Thus, it is necessary to rely on good but not optimal approximations
with computational algorithms. Basis pursuit (BP) is another substitution to achieve this goal. Instead of (2), BP suggests solving an
`1-minimization problem

min kxk1 subject to s D Dx. (3)
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This problem is convex and it can be recast as a linear program [8]. BP is a method for a more global optimization. Empirical evidence
suggests that BP is more powerful than MP [8], and the stability of BP has been proved in the presence of noise for sparse enough
representations [9]. In some cases, the solution of (3) coincides with that of (2) [10]. However, BP has a drawback that the optimization
procedure (3) often suffers from heavy computational complexity. The reason for this may be the numerical features ofD is not revealed
thoroughly. In this work, we utilize SVD to analyze the intrinsic structure of the dictionary matrix D (defined in Section 2). The SVD is
an important factorization scheme because of its unique ability to split up data space into orthogonal signal and noise subspaces [11].
Given a matrix D, we can derive a decomposition as

D D U†V� (4)

where U and V are unitary matrices and † is a diagonal matrix diag.�1, �2, : : : , �r/ with �1 � �2 � � � � � �r � 0, r D
minfrank.U/, rank.V/g. Consequently, the linear system s D Dx is rewritten as

U�s D †V�x. (5)

The transformed signal U�s can be well approximated by discarding a large number of small entries that correspond to the small
singular values in † provided that the singular values of D decay fast. That is, U�s can be approximated by

U�s �
� bU�scK

0

�
(6)

where bU�scK is a vector of the first K entries of U�s. And

bU�scK D diag.�1, : : : , �K /bV�cK x, (7)

where bV�cK stands for the first K rows of V�. Therefore, instead of (3), we solve

min kxk1 subject to bU�scK D diag.�1, : : : , �K /bV�cK x D AK x (8)

to obtain a sparse representation of s with a small error. The suitable value of K depends on the decay rate of singular values. In this
paper, we give a sharp estimation of singular values distribution. K can be selected not quite large, and hence, the computational
complexity is reduced to a large extent. To our knowledge, this is the first time such estimation is given.

Much of the recent interest on `1-minimization has come in the emerging field of compressed sensing (CS) [12]. The idea of CS orig-
inated in Kashin’s paper [13, 14] and was brought into the forefront by Candes, Romberg, and Tao [15–17] and Donoho[18]. This is a
setting in which one wishes to recover a signal from a small number of compressive measurements. Suppose ˆ is a suitable random
matrix, then with very high probability, the sparse vector x can be obtained from a small number of measurements by solving

min kxk1 subject to y D ˆx. (9)

The CS is proved to be robust in the sense that it can also deal with approximately sparse signals [12]. Moreover, this technique can be
extended to signals that not sparse in an orthonormal basis but rather in a redundant dictionary [19, 20]. Given a dictionary matrix D
and a signal s, one can derive x in solving

min kxk1 subject to y D ˆDx (10)

with high probability. The restricted isometry constants have been analyzed in [19]. We can enhance the recovery effect by increasing
the number of rows of ˆ. In our work, both BP and CS are utilized to illustrate that the dictionary D (1) does give a sparse representation
of analytic signals in H2.D/.

The paper is organized as follows. Preliminaries and notations are given in Section 2. The main results are proved in Section 3, and
numerical examples are presented in Section 4.

2. Preliminaries and notations

Let D D fz 2 C : jzj < 1g, and let Hol.D/ be the space of analytic functions on D.
For 1 � p < 1,

Hp.D/ D
(

f 2 Hol.D/ : kf kp
Hp D sup

0�r<1

Z 2�

0
jf .reix/jpdx=2� < 1

)

or equivalently

Hp.D/ D ff 2 Lp.0, 2�/ :bf .k/ D 0, k < 0g

wherebf .k/ denotes the k-th Fourier coefficient of f . The definitions indicate that an analytic signal in Hp.D/ can be uniquely determined
by its boundary value. Hence, when we refer to an analytic signal, we regard it as a one-dimensional signal defined on Œ0, 2��, rather
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than a holomorphic function on the disk D. H2.D/ is a complete subspace of L2.0, 2�/, which is the closure of the set formed by finite
linear combinations of feintg1

nD0, and it inherits the inner product

hf , gi D 1

2�

Z 2�

0
f .eit/Ng.eit/dt, 8f , g 2 H2.D/.

Moreover, H2.D/ is equipped with reproducing kernels

K D
�

ka : ka.z/ D 1

1 � Naz
, a 2 D

�
, (11)

which gives

f .a/ D hf , kai, 8f 2 H2.D/. (12)

In fact, Equation (12) can be derived by the Cauchy integral formula, that is,

hf , kai D 1

2�

Z 2�

0
f .eit/

1

1 � Naeit
dt

D 1

2� i

Z
@D

f .�/
1

� � a
d�

D f .a/.

Each ea 2 D (1) is the normalized reproducing kernel ka 2 K . That means

ea D ka

kkak D kaphka , kai D ka

q
1 � jaj2.

We next prove that D is a dictionary of Hardy space H2.D/. A dictionary [21] is defined as a family of parameterized vectors
G D fg� g�2� in a Hilbert space H such that kg� k D 1 and spanG D H. Each g� 2 G is usually called an atom.

Lemma 2.1
The set D (1) is a dictionary of H2.D/.

Proof
It is obvious that with ea 2 H2.D/, keak2 D 1, and spanD � H2.D/, we need only to show spanD D H2.D/. For any f 2 H2.D/,
hf , eai Dp

1 � jaj2f .a/. Therefore, hf , eai D 0 implies f .a/ D 0, which yields spanD? D f0g. So, we obtain that spanD D H2.D/. �

Here, we state the following three lemmas that will be used in Section 3 .

Lemma 2.2
For any fixed point a 2 D, he�a , e�ai D he��a , eai D hea , e��ai where j�j D j� j D 1.

Proof

he�a, e�ai D 1 � jaj2

1 � ��jaj2
D he��a, eai D hea, e��ai.

�

Lemma 2.3
For any n 2 N , n � 0, r < 1, Z 2�

0

.1 � r2/e�in�

1 � r2ei�

d�

2�
D r2n.1 � r2/.

Proof
Because r < 1, Z 2�

0

.1 � r2/e�in�

1 � r2ei�

d�

2�
D .1 � r2/

Z 2�

0

1X
kD0

.r2ei� /ke�in� d�

2�

D .1 � r2/

1X
kD0

Z 2�

0
.r2ei� /ke�in� d�

2�

D .1 � r2/

1X
kD0

r2kık,n

D .1 � r2/r2n.
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In general, we have

Z 2�

0

q
1 � r2

1

q
1 � r2

2

1 � r1r2ei�
e�in� d�

2�
D rn

1 rn
2

q
1 � r2

1

q
1 � r2

2

provided that r1 < 1, r2 < 1. �

Lemma 2.4 (Ky Fan’s maximum principle [22])
Let A be any Hermitian operator, then for k D 1, 2, : : : , n, we have

kX
jD1

	j.A/ D max
kX

jD1

hAxj , xji

where eigenvalues 	1.A/ � 	2.A/ � � � � � 	n.A/, and the maximum is taken over all orthonormal k-tuples fx1, : : : , xkg.

We introduce some notations. Given an analytic signal s 2 H2.D/ and the dictionary D , the representation problem has the form

s D
X
a2D

xaea.

Nevertheless, all the continuous-time signals s and ea0s should be discretized because computers can only process discrete values. Let
T D ftk : 0 D t1 < t2 <, � � � , < tM D 2� , k D 1, 2, : : : , M, 
t D tkC1 � tk D 1=.M � 1/g. For any a 2 D, we sample ea on T to obtain an
M-dimensional column vector va , namely,

va D �
ea.t1/ ea.t2/ � � � ea.tM/

�T
. (13)

Denote ea as the normalized vector of va, that is, ea D va=kvak. Sample s on T , we have

s D �
s.t1/ s.t2/ � � � s.tM/

�T
. (14)

Let D 2 CM�N be the dictionary matrix of D , viz.

D D
�

ea0 ea1 � � � eaN�1

	
. (15)

Then, the representation problem in discrete-time situation can be written as

s D Dx (16)

where x is the vector of coefficients and M < N. Throughout this paper, Equation (16) is our basic model, from which two facts can be
derived. One is that the more columns D are present, the sparser representation follows . The other is the solutions of (16) are strongly
related with the positions of parameters a0, : : : , aN�1. Intuitively, we should select fakgN�1

kD0 in some manner equally spaced to reflect
the information of the whole unit circle. Besides, the singular values distribution should be analyzed in the sense of N tending to infinity.
Denote

H D D�D D

0BBBB@
ea0

ea1

...
eaN�1

1CCCCA
�

ea0 ea1 � � � eaN�1

	
. (17)

In Section 3, we will study the eigenvalues of H, which are squares of the singular values of D .

3. Main results

Let H be a Hermitian matrix with entries Hij D heaj�1 , eai�1 i; it is easy to verify

heaj�1 , eai�1 i ! heaj�1 , eai�1 i, .M ! 1/.

We use the eigenvalues of H to estimate the eigenvalues of H because the eigenvalues of a Hermitian matrix depend continuously on
its entries [22].
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Theorem 1
Suppose N points fakgN�1

kD0 are distributed equally spaced on the circle of radius r, that is, Arg.ak/ D �k D 2k�=N and jak j D r. H is a
Hermitian matrix with entries Hij D heaj�1 , eai�1 i, i, j 2 f1, 2, � � � , Ng. Let 	1 � 	2 � � � � � 	N be the eigenvalues of H. Then, we have

lim
N!1

Pl
dD1 	d

N
� 1 � r2l . (18)

Proof
By Lemma 2.2, the entries of H satisfy Hij D heaj�1 , eai�1 i D hea0 , eaj�i i D bj�i , where

bk D hea0 , eak i D 1 � r2

1 � r2ei�k
, .k D 0, 1, : : : , N � 1/,

and b�k D bk . Let B be an upper triangular matrix,

B D

0BBBBB@
b0 b1 b2 b3 b4 � � � bN�1

0 b0 b1 b2 b3 � � � bN�2

0 0 b0 b1 b2 � � � bN�3
...

...
...

...
... � � � ...

0 0 0 0 0 � � � b0

1CCCCCA .

Then, H D B C B� � IN , where IN is the N � N identity matrix. �

Consider the orthonormal functions fe�intgl�1
nD0 in L2.0, 2�/, discretize them into l vectors by equally spaced sampling, namely

xn D 1p
N

�
e�2� 0

N i e�2� n
N i e�2� 2n

N i � � � e�2� .N�1/n
N i

	T
.

For n1, n2 2 f0, 1, : : : , l � 1g, Riemann summation shows

hxn1 , xn2 iCN ! he�in1 t , e�in2tiL2 D ın1,n2 , .N ! 1/, (19)

where h�, �iCN is the dot product of complex Euclidean space and h�, �iL2 stands for L2.0, 2�/ inner product. We denote

! , e�2� 1
N i and �n , hBxn, xni D x�

n Bxn,

then

�n D 1

N

�
1 !�n � � � !�.N�1/n

�
B

0BBB@
1

!n

...
!.N�1/n

1CCCA .

Setting bn
k D bk!nk , calculation gives that �n is the N-th Cesàro mean of the sequence fSn

mgN�1
mD0, namely

�n D 1

N

�
Nbn

0 C .N � 1/bn
1 C � � � C bn

N�1

�D 1

N

N�1X
mD0

Sn
m,

where Sn
m DPm

kD0 bn
k . Again, Riemann summation gives

2�

N

N�1X
kD0

bn
k D 2�

N

N�1X
kD0

1 � r2

1 � r2ei�k
e�in�k

D 2�

N
Sn

N�1 !
Z 2�

0

.1 � r2/e�in�

1 � r2ei�
d� , .N ! 1/.

From Lemma 2.3, we conclude that Z 2�

0

.1 � r2/e�in�

1 � r2ei�

d�

2�
D .1 � r2/r2n.

Hence,

1

N
Sn

N�1 ! .1 � r2/r2n, .N ! 1/.
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It is not hard to prove

�n

N
D 1

N2

N�1X
mD0

Sn
m ! 1

2
.1 � r2/r2n, .N ! 1/. (20)

Because

1

N
hHxn , xni D 1

N

�hBxn, xni C hB�xn, xni � hxn , xni�D 1

N

�
�n C �n � 1

�
,

then

1

N

l�1X
nD0

hHxn , xni D 1

N

l�1X
nD0

�
�n C �n � 1

�!
l�1X

nD0

.1 � r2/r2n, .N ! 1/.

By Ky Fan’s maximum principle and (19), we complete the proof in the sense of taking limit,

lim
N!1

1

N

lX
dD1

	d � lim
N!1

1

N

l�1X
nD0

hHxn, xni D
l�1X

nD0

.1 � r2/r2n D 1 � r2l .

Remark 1.1
Notice that trace.H/ D N and

P1
nD0.1 � r2/r2n D 1. Theorem 1 actually states

	i

trace.H/
D 	i

N
� .1 � r2/r2.i�1/, .i D 1, 2, : : : , N/, (21)

when N is sufficiently large. We estimate that 	i � .1 � r2/r2.i�1/N. Given M, N, and r, the numerical eigenvalues of H can be derived via
a common software (e.g., MATLAB). In Figures 1 and 2, they fit perfectly even though M and N are not very large.

Remark 1.2
The equality (20) is a direct corollary of the following proposition, which can be proved easily. If aN=N ! a, then

PN
iD1 ai=N2 ! a=2.

Theorem 2
Suppose N points fakgN�1

kD0 are selected equally spaced on the interval Œ0, 1/. H is a Hermitian matrix with entries Hij D heaj�1 , eai�1 i,
i, j 2 f1, 2, : : : , Ng. Let 	1 be the largest eigenvalue of H, then we have

lim
N!1

	1

N
�
Z 1

0

Z 1

0

p
1 � s2

p
1 � r2

1 � sr
drds � 0.8158. (22)

Proof
Divide the interval Œ0, 1 � ı� into N parts with a0 D 0, a1 D 1�ı

N , � � �, aN�1 D .1�ı/.N�1/
N , where ı is a little positive number. The entries

of H satisfy

Hij D
q

1 � a2
i�1

q
1 � a2

j�1

1 � ai�1aj�1
.
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(b) N=50, M = 500, r=0.8.

Figure 1. Eigenvalues of H.
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(a) N=70, M = 300, r=0.94.
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(b) N=80, M = 200, r=0.5.

Figure 2. Eigenvalues of H.

Let x D 1p
N

�
1 1 � � � 1

�T 2 CN , kxk2 D 1, we have

� D x�Hx D 1

N

�
1 1 � � � 1

�
H

0BBB@
1
1
...
1

1CCCAD 1

N

NX
iD1

NX
jD1

Hij .

Riemann summation shows

.1 � ı/2

N2

NX
iD1

NX
jD1

q
1 � a2

i

q
1 � a2

j

1 � aiaj
!
Z 1�ı

0

Z 1�ı

0

p
1 � r2

p
1 � s2

1 � rs
drds .N ! 1/.

Consequently,

�

N
! 1

.1 � ı/2

Z 1�ı

0

Z 1�ı

0

p
1 � r2

p
1 � s2

1 � rs
drds .N ! 1/.

Notice that the function

f .r, s/ D
p

1 � r2
p

1 � s2

1 � rs

is well defined in Œ0, 1/ � Œ0, 1/. In fact, f is bounded on the region, which can be proved as follows. �

Taylor’s series gives

log.1 � x/ D �x � x2

2
� x3

3
� : : : � xn

n
� : : : .�1 < x � 1/.

Rewrite
p

1 � r2
p

1 � s2 and .1 � rs/ asp
1 � r2

p
1 � s2 D exp

�
log

p
1 � r2 C log

p
1 � s2

	
,

< exp
�

log
p

1 � r C log
p

1 � s C log 2
	

,

D 2 exp

�
1

2
.log.1 � r/ C log.1 � s//

�
,

and

1 � rs D exp.log.1 � rs//.

Because

log.1 � r/ C log.1 � s/ D
1X

kD1

 
� rk

k
� sk

k

!
,
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and

1

2
.rk C sk/ �

p
rksk > rksk , r, s 2 .0, 1/,

then we have

1

2
.log.1 � r/ C log.1 � s// < �

1X
kD1

rksk

k
D log.1 � rs/, r, s 2 .0, 1/.

Therefore, p
1 � r2

p
1 � s2 < 2 exp

�
1

2
.log.1 � r/ C log.1 � s//

�
< 2 exp.log.1 � rs// D 2.1 � rs/, r, s 2 .0, 1/.

That is,

0 � f .r, s/ < 2, r, s 2 Œ0, 1/.

Obviously, f .r, s/ D 0 if r D 1, s 2 Œ0, 1/ or s D 1, r 2 Œ0, 1/. Hence, 0 � f .r, s/ < 2 on Œ0, 1� � Œ0, 1�nf.1, 1/g, which means f is Riemann
integrable on Œ0, 1� � Œ0, 1�.

Hence,

lim
ı!0

1

.1 � ı/2

Z 1�ı

0

Z 1�ı

0
f .r, s/drds D

Z 1

0

Z 1

0
f .r, s/drds.

Applying Ky Fan’s maximum principle, we conclude

lim
N!1

	1

N
� lim

N!1
hHx, xi

N
D lim

N!1
�

N
D
Z 1

0

Z 1

0
f .r, s/drds � 0.8158.

Remark 2.1
In fact, an upper bound to 	1=N can be derived. It is known that

	1 D sup
kxkD1

hHx, xi,

where x 2 CN. Then,

	1 D sup
kxkD1

NX
iD1

NX
jD1

q
1 � a2

i�1

q
1 � a2

j�1

1 � ai�1aj�1
xixj .

Let g be a simple function corresponding to the vector x,

g.t/ D p
N

N�1X
iD0

xiIŒti ,tiC1/.t/,

where t 2 Œ0, 1/ and 
t D tiC1 � ti D 1=.N � 1/. Hence,

	1

N
D 1

N
sup

kxkD1

N�1X
iD0

N�1X
jD0

q
1 � a2

i

q
1 � a2

j

1 � aiaj

Ngtip
N

gtjp
N

! sup
g

Z 1

0

Z 1

0
f .r, s/Ng.r/g.s/drds, .N ! 1/.

Cauchy inequality implies that�Z 1

0

Z 1

0
f .r, s/g.r/g.s/drds

�2

�
Z 1

0

Z 1

0
f 2.r, s/drds

Z 1

0

Z 1

0
jg.r/j2jg.s/j2drds

D
Z 1

0

Z 1

0
f 2.r, s/drds

�Z 1

0
jg.r/j2dr

�2

D
Z 1

0

Z 1

0
f 2.r, s/drds.2

3
0

4
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So, we obtain

lim
N!1

	1

N
�
�Z 1

0

Z 1

0
f 2.r, s/drds

� 1
2

� 0.8427.

Remark 2.2
We proved that 0.8158 � 	1=N � 0.8427 when N is reasonably large. Denote 	1 as the largest eigenvalue of H, and it can be perfectly
estimated by 	1 (refer to Figures 3 and 4).

Lastly, we select the parameters fakgN
kD0 equally spaced in D as follows. Let �!r and

�!
� be N1-dimensional and N2-dimensional vectors,

respectively.

�!r ,
�

0 1
N1

2
N1

� � � N1�1
N1

	
,

�!
� ,

�
1 e

2� i
N2 e

2�2i
N2 � � � e

2�.N2�1/i
N2

	
.

All the positions of a0s can be given by the tensor product of �!r and
�!
� ,

�!a D �!r ˝ �!
� .

Notice that the original point a D .0, 0/ 2 �!a has a multiple of N2, and we will count it N2 times rather than one time for the sake of
matrix computation. Thus, �!a is a row vector of N D N1 � N2 entries, which are labeled from left to right by a0, a1, : : : , aN�1. It is clear
that �!a has N1 blocks, and all a0s in the same block are distributed equally spaced on the same circle.
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(a) N=40, M = 300.
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(b) N=50, M = 200.

Figure 3. In (a), �1 D 33.6819, �1 D 33.6865, and �1=N D 0.8420. In (b), �1 D 42.0148, �1 D 42.0288, and �1=N D 0.8403.
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(a) N=60, M = 150.

0 10 20 30 40 50 60 70 80
−10

0

10

20

30

40

50

60

70
Eigenvalues Distribution

numerical result
estimation

(b) N=80, M = 120.

Figure 4. In (a), �1 D 50.3464, �1 D 50.3790, and �1=N D 0.8391. In (b), �1 D 67.0077, �1 D 67.0829, and �1=N D 0.8385.
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Theorem 3
Suppose N points fakgN�1

kD0 are selected as previously discussed. Let H be a Hermitian matrix with entries Hij D heaj�1 , eai�1 i, i, j 2
f1, 2, : : : , Ng. Let 	1 � 	2 � � � � � 	N be eigenvalues of H, then we have

lim
N1!1
N2!1

Pl
kD1 	k

N
� 1 � 1

2l C 1
. (23)

Proof
H is a blocked matrix as follows:

H D

0BBBBBBBB@

B�
1 B1 B�

1 B2 B�
1 B3 : : : B�

1 BN1

B�
2 B1 B�

2 B2 B�
2 B3 : : : B�

2 BN1

B�
3 B1 B�

3 B2 B�
3 B3 : : : B�

3 BN1

...
...

...
...

...

B�
N1

B1 B�
N1

B2 B�
N1

B3 : : : B�
N1

BN1

1CCCCCCCCA
,

where each block B�
p Bq 2 CN2�N2 , p, q 2 f1, 2, � � � , N1g. Denote that

�!
� n , 1p

N2

�
1

�
e

2� i
N2

�n �
e

2�2i
N2

�n

� � �
�

e
2�.N2�1/i

N2

�n �T

, .n � 0/, (24)

and

rp D �!r .p/ D p � 1

N1
,

then we have

1

N2

��!
� n
	� �

B�
p Bq

	�!
� n !

Z 2�

0

q
1 � r2

p

q
1 � r2

qe�in�

1 � rprqei�

d�

2�
, .N2 ! 1/,

consequently,

Z 2�

0

q
1 � r2

p

q
1 � r2

q

1 � rprqei�
e�in� d�

2�
D rn

p rn
q

q
1 � r2

p

q
1 � r2

q.

�

We define a family of normalized function in L2.0, 2�/ as

fm.r/ D rm
p

1 � r2

krm
p

1 � r2k
, .m � 0/,

and a family of vectors as

�!
fm D 1p

N1

�
fm.r1/ fm.r2/ fm.r3/ � � � fm.rN1/

�T
. (25)

Let

R D

0BBBB@
...

...
...

... rm
p rm

q

q
1 � r2

p

q
1 � r2

q

...

...
...

...

1CCCCA
N1�N1

,

2
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0
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then we can obtain

1

N1

��!
fm

	�
R
��!

fm

	
D 1

N1

N1X
pD1

N1X
qD1

rm
p rm

q

q
1 � r2

p

q
1 � r2

q
�!
fm.p/

�!
fm.q/

!
Z 1

0

Z 1

0
rmsm

p
1 � r2

p
1 � s2fm.r/fm.s/drds

D
�Z 1

0
rm
p

1 � r2fm.r/dr

�2

D
Z 1

0
r2m.1 � r2/dr

D 1

2m C 1
� 1

2m C 3
.

Therefore,

1

N

��!
fk ˝ �!

� k
	�

H
��!

fk ˝ �!
� k
	

! 1

2k C 1
� 1

2k C 3
, (26)

as N1 ! 1, N2 ! 1. Notice that D�!
fk1 ˝ �!

� k1 ,
�!
fk2 ˝ �!

� k2
E

! ık1,k2 , .N1 ! 1, N2 ! 1/, (27)

hence, by Ky-Fan’s maximal principle, in the sense of taking limits, we have

lim
N1!1,
N2!1

Pl
kD1 	k

N
�

l�1X
kD0

�
1

2k C 1
� 1

2k C 3

�
D 1 � 1

2l C 1
. (28)

Remark 3.1
It is clear that trace.H/ D N1N2 D N and

1X
kD0

�
1

2k C 1
� 1

2k C 3

�
D 1,

this theorem shows that

	k �
�

1

2k � 1
� 1

2k C 1

�
trace.H/ D 2N

4k2 � 1
, .k � 1/, (29)

when N is sufficiently large. Thus, we estimate the singular values as

�k D
p

	k �
r

2N

4k2 � 1
, .k � 1/. (30)

Given N1, N2, and M, we can calculate the singular values of D , which are denoted by �k . �k in (30) is a quite sharp estimation of �k
(Figure 5).
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(a) N1=40, N2 = 50, M = 400. (b) N1=40, N2 = 50, M = 400.

Figure 5. �k and �k . (a) 1 � k � 60 and (b) 61 � k � 120.
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4. Numerical examples

In this section, we give two numerical examples exhibiting sparse representations of analytic signals in H2.D/. Because complex-valued
signals are not numerically friendly in the sense of linear programming, we consider the complex signal as a real signal combining its
real part and the imaginary part. That is, from (8), we set

sr D
�

RebU�scK

ImbU�scK

�
(31)

and

Ar
K D

�
ReAK �ImAk
ImAK ReAk

�
. (32)

Then, the equation

bU�scK D diag.�1, � � � , �K /bV�cK (33)

is equivalent to

sr D Ar
K

�
Re.x/

Im.x/

�
D Ar

K y. (34)

We solve

min kyk1 subject to sr D Ar
K y. (35)

The dictionary matrix has been described in Theorem 3; we set N1 D 50, N2 D 60, and M D 1000 for D . Furthermore, Theorem 3 states

that K D O
�p

N
	

D O
�p

3000
	

� 55c. In the following examples, we deal with two cases with respect to c D 1, 2. Numerical result

shows that sparse representations can be obtained by `1-minimization even K 	 M.
The CS technique is also utilized in sparse recovery. Let ˆ 2 Rn�2M be a Gaussian random matrix satisfying ˆij 
 N �

0, 1
n

�
. We solve

min kyk1 subject to ˆ

�
Re.s/
Im.s/

�
D ˆ

�
ReD �ImD
ImD ReD

�
y (36)

to derive a sparse representation.

4.1. Example 1

s.z/ D 0.247z4 C 0.0355z3

0.3329z2 � 1.2727z C 1
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(a) Original and Recovered signals. (b) Sparse Representation y*

Figure 6. Basis pursuit recovery of Example 1.
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(b) Sparse Representation y*

Figure 7. Compressed sensing recovery of Example 1.
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Figure 8. Basis pursuit recovery of Example 2.
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Figure 9. Compressed sensing recovery of Example 2.
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We sample s to obtain a vector s of length M D 1000 as (14). Choose K D p
3000 � 55 and K D 2

p
3000 � 110, respectively. The

SVD of D gives U and V . Solving (35) and (36), we derive the optimal solution y� , which is a sparse vector. The original signal s can be
recovered by �

ReD �ImD
ImD ReD

�
y� (37)

as shown in Figures 6 and 7.

4.2. Example 2

s.z/ D ez2
. (38)

We do the same thing as in Example 1, as shown in Figures 8 and 9.
In conclusion, our dictionary does give sparse representations of analytic signals in H2.D/, so the CS technique works almost as well

as BP, and CS takes much less time.
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