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Recently, efforts have been made to use generalized sinc functions to perfectly10
reconstruct various kinds of non-bandlimited signals. As a consequence, perfect
reconstruction sampling formulas have been established using such generalized
sinc functions. This paper studies the error of the reconstructed non-bandlimited
signal when an adaptive truncation scheme is employed. Further, when there are
noises present in the samples, estimation on the expectation and variance of the15
error pertinent to the reconstructed signal is also given. Finally discussed are the
reproducing properties and the Sobolev smoothness of functions in the space of
non-bandlimited signals that admits such a sampling formula.

AQ1
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1. Introduction

We begin by establishing some notations used in the paper. Let N be the set of natural
numbers, Z be the set of integers and Z+ := {0} ∪ N. For a positive integer n ∈ N, we use
the index set Zn := {0, 1, . . . , n −1}. Furthermore, we denote by R the set of real numbers,
and by C the set of complex numbers. Let X be a subset of R, and for q ∈ N, we say a
function f is in Lq(X) if and only if

‖ f ‖q,X :=
(∫

X
| f (t)|q dt

)1/q

< ∞,

and f is said to be in L∞(X) if

‖ f ‖∞,X := ess sup{| f (t)| : t ∈ X} < ∞.

Similarly, let Z be a subset of Z, a sequence y := (yk : k ∈ Z) is said to be in lq(Z) if and
only if

‖ y‖q,Z :=
(∑

k∈Z

|yk |q
)1/q

< ∞,
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and y is in l∞(Z) if

‖ y‖∞,Z := sup{|yk | : k ∈ Z} < ∞.

In digital signal processing, the classic sinc function is fundamentally significant due to
the Whittaker–Kotelnikov–Shannon (WKS) sampling theorem [1–3]. Recall that the classic
sinc function is defined at t ∈ R by the equation:

sinc(t) := sin t

t
.

The WKS sampling theorem enables to reconstruct a bandlimited signal from shifts of
sinc functions weighted by the uniformly spaced samples of that signal. It is natural to ask
whether similar sampling theorem exists for non-bandlimited signals. To that end, recently
efforts have been made to extend the classic sinc to generalized sinc functions, for example,
in [4–6]. One kind of generalized sinc functions given in [4], denoted by sincF , is defined5
as the inverse Fourier transform of a so-called symmetric cascade filter, denoted by H . The
symmetric cascade filter H is a piecewise constant function whose value at ξ ∈ R is given
by

H(ξ) :=
∑

n∈Z+
bnχIn (ξ), (1.1)

where the sequence b = (bn : n ∈ Z+) is in l2(Z+), χI is the indicator function of the set I ,10
and the interval In , n ∈ Z+, is the union of two symmetric intervals given by the equation:

In := (−(n + 1),−n] ∪ [n, (n + 1)).

Thus, the generalized sinc function sincF is defined by the equation:

sincF :=
√

π

2
F−1 H, (1.2)

where for any signal f ∈ L2(R) and ξ ∈ R

(F f )(ξ) = f̂ (ξ) := 1√
2π

∫
R

f (t)e−iξ t dt.

Of course, we have that H ∈ L2(R) because b ∈ l2(Z+), and hence sincF ∈ L2(R)

since the Fourier operator is closed in L2(R).15
With the generalized function sincF , a perfect reconstruction sampling theorem was

established in [4] for the purpose of reconstructing non-bandlimited signals. This kind
of reconstruction sampling theorem may be very useful to study signals with polynomial
decaying Fourier spectra that arise in evolution equations and control theories [7,8]

AQ2

.
One of our goals in this paper is to study the error of the reconstructed non-bandlimited20

signal when an adaptive truncation scheme is employed. This will be done in Section 3. We
further analyse the expectation and variance of the error of the reconstructed signal when
there are noises present in the samples in Section 4. Finally, we discuss the reproducing
properties and Sobolev smoothness of functions in the space of non-bandlimited signals
that admits such a sampling formula. We begin with a discussion of the construction and25
known properties of the function sincF in Section 2.
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2. Properties of the generalized sinc functions

Surprisingly, the function sincF has many properties that are similar to the classic sinc, such
as cardinal, orthogonal properties, and it behaves also similarly to the classic sinc. In the
special case, the function sincF reduces to the classic sinc. Let us first review the approach
to obtain an explicit form of sincF .5

The symmetric cascade filter H can be associated with an analytic function F on the
open unit disk:

� := {ζ ∈ C : |ζ | < 1}.
The value of F at z ∈ � is well defined by

F(z) :=
∑

n∈Z+
bnzn, (2.1)

as b ∈ l2(Z+). Recall that the Hardy space H 2(�) consists of all functions f analytic in
�, with norm given by

‖ f ‖2
H2(�)

= sup
r∈(0,1)

1

2π

∫
[−π,π]

| f (reit )|2 dt.

Since, by hypothesis, b ∈ l2(Z+), we have that F ∈ H2(�). Consequently, its extension
to the boundary ∂� of � is in L2(∂�).

Thus, from Equations (1.2), (1.1) and (2.1) an explicit form of sincF (t), t ∈ R can be10
found as:

sincF (t) = sinc

(
t

2

)
Re
{

F(eit )e
1
2 it
}

, a.e. (2.2)

where Re(z) is the real part of a complex number z.
We observe that if b ∈ l1(Z+), then H ∈ L1(R) and F is continuous on the boundary

of �, which in turn implies sincF is continuous and bounded.15
A very interesting fact, as discovered in the paper [9]

AQ3

, is that when F is imposed with a
stronger condition of having analyticity in a neighbourhood of the closed unit disc �, the
function sincF can be generated through a function, denoted by G, that is also analytic in a
neighbourhood of the closed unit disc, real on the real axis and normalized so that G(1) = 1
and G ′(1) 	= 0. The function G is linked to F by the equation:20

F(z) := G(z) − 1

z − 1
. (2.3)

A real-valued function, φG , whose value at t ∈ R is then defined through the imaginary part
of the values of G on the unit circle by the equation:

φG(t) := Im(G(eit ))

t
. (2.4)

Applying Equation (2.2) to compute sincF by using Equations (2.3) and (2.4) yields for25
all t ∈ R,

sincF (t) = φG(t). (2.5)

Two important examples can be demonstrated for this construction. When G = z, i.e.
F = 1, we have sincF = φG = sinc. For the second example, let G be the Blaschke product
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of order n ∈ N with parameters a := (a j : j ∈ Zn) ∈ (−1, 1)n , that is,

G(z) = Ba(z) :=
∏
j∈Zn

z − a j

1 − a j z
.

Then, sincF (t) = φG(t) = sin θa(t)
t , where θa is determined by the boundary value of the

Blaschke product at t ∈ R by eiθa(t) = Ba(eit ).

We, next, list some properties of the function sincF .

Proposition 2.1 Let the generalized function sincF be defined by Equation (2.2). Then

(1) sincF (nπ) = F(1)δn,0, where δn,0 = 1 if n = 0 and δn,0 = 0 if n ∈ Z \ {0}.5
(2) sincF is bounded, infinitely differentiable.

(3) |sincF (t)| ≤ 4‖b‖l1(Z+)

2+|t | , for t ∈ R, and sincF ∈ L2(R).
(4) The set {sincF (· − nπ) : n ∈ Z} is an orthogonal set, that is

〈sincF , sincF (· − nπ)〉 = π‖b‖2
l2(Z+)

δn,0,

where 〈·, ·〉 is the usual inner product on the Hilbert space L2(R).

Proof The first two statements directly follow from Equation (2.2). The third statement
follows from Equation (2.2) and noticing sinc(t) ≤ 2

1+|t | for any t ∈ R. The fourth statement10
is a special case of Corollary 3.2 of [4]

AQ4

. For the convenience of readers, we provide a direct
proof here. By Parseval’s theorem and Equation (1.2) we have∫

R

sincF (t)sincF (t − nπ) dt = π

2

∫
R

H2(x)einπx dx = π

2

∫
R

∑
k∈Z+

b2
kχIk (x)einπx dx

= π

2

∑
k∈Z+

b2
k

∫
Ik

einπx dx = π

⎛⎝∑
k∈Z+

b2
k

⎞⎠ δn,0,

where, in the last equality we have used the orthogonality of the set {e−inπξ : n ∈ Z} on Ik ,15
k ∈ Z+. The interchange of the integral operator and the infinite sum is guaranteed by the
convergence of the series. �

3. Sampling truncation error analysis

In [4], a Shannon-type sampling theorem is given concerning functions in the shift-invariant
space

VF :=
{∑

n∈Z

cnsincF (· − nπ) : F(1) = 1, c = (cn : n ∈ Z) ∈ l2(Z)

}
of sincF . The Shannon-type sampling theorem is the direct result of the properties in the
previous proposition. We record it here.20

Theorem 3.1 A signal f ∈ VF if and only if

f =
∑
n∈Z

f (nπ)sincF (· − nπ). (3.1)



Applicable Analysis 5

GAPA
769135

Initial
CE:AK QA:SP

1-2-2013

Equation (3.1) necessarily implies that the sampling sequence ( f (nπ) : n ∈ Z) ∈ l2(Z)

by the orthogonality of the set {sincF (· − nπ) : n ∈ Z}. The above equation of course is
true in L2(R) norm. However, if b ∈ l1(Z+), Equation (3.1) holds true pointwise, because
by Cauchy–Schwartz inequality, the series on the right side of Equation (3.1) converges
uniformly, hence the limiting function f is continuous.5

We remark that, as pointed out in [4], a function f ∈ VF can be characterized by its
spectrum. Specifically, a function f ∈ VF if and only if

F f (ξ) =
√

π

2

(∑
n∈Z

f (nπ)e−inπξ

)
H(ξ). (3.2)

Equation (3.2) holds true in L2(R) if b ∈ l2(R), and a.e. pointwise if f ∈ L1(R) and the
sample sequence ( f (nπ) : n ∈ Z) ∈ l1(Z).10

The following property is true for functions in the space VF that is similar to Parseval’s
identity.

Proposition 3.2 If f ∈ VF then

‖ f ‖2
L2(R)

= π‖b‖2
l2(Z+)

∑
n∈Z

f 2(nπ) (3.3)

Proof This is a direct result of Equation (3.1) and Proposition 2.1 (4). �15

The recovering formula in (3.1) involves an infinite sum. In practice, we need to truncate
the series to approximate f . Here, we prefer an adaptively truncated sum and offer a
pointwise estimation of the error.

For fixed n ∈ N and t ∈ R, define the index set

Jn(t) := { j : j ∈ Z, |t − jπ | ≤ nπ}
and the partial sum given at t ∈ R by

Sn(t) :=
∑

j∈Jn(t)

f ( jπ)sincF (t − jπ). (3.4)20

The adaptive truncation strategy allows that for any t ∈ R and n ∈ N, there are ap-
proximately 2n functions sincF shifted by a distance of jπ , j ∈ Jn(t), on both sides of
t . The following theorem states that the truncated error estimate is O(n−1/2). We recall a
Calculus fact that will be used a couple of times later. For a positive and decreasing sequence25
a := (an : n ∈ Z+), if 1

an+1
− 1

an
= c, where c is a positive constant, then

∑
n∈Z+

1

a2
n

≤ 1

a2
0

+ 1

c

∫
[a0,∞)

1

x2
dx . (3.5)

Theorem 3.3 Let f ∈ VF and b ∈ l1(Z+). Then we have

sup
t∈R

| f (t) − Sn(t)| ≤ ‖b‖�1(Z+)

‖b‖�2(Z+)

‖ f ‖L2(R)

√
8

π3

(
1

n2
+ 1

n

)
. (3.6)

30
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Proof We first note that by Equation (2.2), for t ∈ R,

|sincF (t)| ≤ ‖b‖l1(Z+)

∣∣∣∣sinc
t

2

∣∣∣∣ ≤

⎧⎪⎨⎪⎩
‖b‖l1(Z+) if |t | ≤ 2,

‖b‖l1(Z+)

|t/2| if |t | ≥ 2.

(3.7)

By Cauchy–Schwartz inequality and Equation (3.7), we have

| f (t) − Sn(t)|2 =
∣∣∣∣∣∣
∑

j∈Z\Jn(t)

f ( jπ)sincF (t − jπ)

∣∣∣∣∣∣
2

≤
⎛⎝ ∑

j∈Z\Jn(t)

f 2( jπ)

⎞⎠⎛⎝ ∑
j∈Z\Jn(t)

sinc2
F (t − jπ)

⎞⎠5

≤ 4‖b‖2
�1(Z+)

⎛⎝ ∑
j∈Z\Jn(t)

f 2( jπ)

⎞⎠⎛⎝ ∑
j∈Z\Jn(t)

1

(t − jπ)2

⎞⎠ . (3.8)

We next estimate for t ∈ R the value of

Rn(t) :=
∑

j∈Z\Jn(t)

1

(t − jπ)2
. (3.9)

It is easy to see that Rn is periodic with period π . For t ∈ [0, π), using Equation (3.5) we10
have

Rn(t) ≤ 2

(
1

n2π2
+ 1

π

∫
[nπ,∞)

1

x2
dx

)
= 2

π2

(
1

n2
+ 1

n

)
. (3.10)

Using Equation (3.3), we obtain that the quantity

∑
j∈Z\Jn(t)

f 2( jπ) ≤
∑
n∈Z

f 2(nπ) =
‖ f ‖2

L2(R)

π‖b‖2
l2(Z+)

. (3.11)

Finally, we conclude (3.6) by combining Equations (3.8), (3.10) and (3.11). �15

4. Error analysis when noises present

Theorem 3.1 establishes that a signal in the space VF can be perfectly reconstructed by an
infinite sum of shifts of the generalized sinc functions weighted by equally spaced samples
of that signal. However, samples are often corrupted by noise in practice. In [10], Smale and
Zhou gave an error estimate in the probability sense for Shannon sampling theorem with20
noised samples. In [11],Aldroubi, Leonetti and Sun studied the error by frame reconstruction
from noised samples. In this section, we shall investigate the error of the sampling formula
(3.1) with noised samples. Specifically, we deal with the following noise model concerning
the noisy samples f̃ (nπ), n ∈ Z whose value corrupted by noise is given by

f̃ (nπ) = f (nπ) + ε(nπ), n ∈ Z, (4.1)25
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where we assume that (ε(nπ) : n ∈ Z) is a sequence of independent and identically
distributed random variables with the expectation and variance of each given by

E(ε(nπ)) = 0, Var(ε(nπ)) = σ 2, n ∈ Z. (4.2)

Thus, in practice, we recover f ∈ VF by5

f � =
∑
n∈Z

f̃ (nπ)sincF (· − nπ). (4.3)

We, next , study the expectation E( f − f �) and variance Var( f − f �).

Theorem 4.1 Let f ∈ VF be recovered by Equation (4.3) with the noised samples f̃ (nπ)

being referred to in (4.1). Then

E( f (t) − f �(t)) = 0

and

Var( f (t) − f �(t)) ≤ 2σ 2‖b‖2
l1(Z+)

(
1 + 8

π2

)
. (4.4)10

Proof We first compute the expectation E( f (t) − f �(t)).

E( f (t) − f �(t)) = E

(∑
n∈Z

ε(nπ)sincF (t − nπ)

)
=
∑
n∈Z

E(ε(nπ))sincF (t − nπ)

= 0.

Invoking the assumed independence of ε( jπ), j ∈ Z we obtain:15

Var( f (t) − f �(t)) = Var

(∑
n∈Z

ε(nπ)sincF (t − nπ)

)
=
∑
n∈Z

Var
(
ε(nπ)sincF (t − nπ)

)
= σ 2

∑
n∈Z

sinc2
F (t − nπ). (4.5)

The sequence
∑
n∈Z

sinc2
F (t − nπ) can be easily estimated. Note it is periodic with period π .

Recalling Equation (3.7), for t ∈ [0, π), we have20 ∑
n∈Z

sinc2
F (t − nπ) = sinc2

F (t) + sinc2
F (t − π) +

∑
n∈−N

sinc2
F (t − nπ)

+
∑

n∈1+N

sinc2
F (t − nπ) ≤ 2 +

∑
n∈−N

sinc2
F (t − nπ)

+
∑

n∈1+N

sinc2
F (t − nπ).
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Noting for t ∈ [0, π), n ∈ N, |t−nπ |
2 ≥ π

2 and in view of Equation (3.5), we obtain that

∑
n∈1+N

sinc2
F (t − nπ) ≤ ‖b‖2

l1(Z+)

(
4

π2
+ 2

π

∫
[ π

2 ,∞)

1

x2
dx

)
= ‖b‖2

l1(Z+)

(
8

π2

)
.

Similarly we have ∑
n∈−N

sinc2
F (t − nπ) ≤ ‖b‖2

l1(Z+)

(
8

π2

)
.

Consequently, we obtain that∑
n∈Z

sinc2
F (t − nπ) ≤ 2‖b‖2

l1(Z+)

(
1 + 8

π2

)
. (4.6)

Finally, combining Equations (4.5) and (4.6) proves Equation (4.4). �

5. The reproducing property and Sobolev smoothness

When the analytical function F is chosen to be F = 1, the space VF reduces to the space
of bandlimited signals. The space of bandlimited signals is a reproducing kernel Hilbert
space (r.k.H.s) [12]. We, next, show that the space VF has a similar property. However, the
reproducing kernel is a distribution in the space of tempered distributions. We define the
distribution for x, t ∈ R by

�(x, t) := 1

π
sincF (t − x)

∑
k∈Z

ei2kx .

Recalling the Poisson formula in the distribution form:∑
k∈Z

e−i2kx = π
∑
k∈Z

δ(x − kπ),

where δ is the usual Dirac delta function, we immediately obtain an alternative form of �5
given by

�(x, t) =
∑
k∈Z

δ(x − kπ)sincF (t − x). (5.1)

Theorem 5.1 Let f ∈ VF then

f (t) =
∫

R

f (x)�(x, t) dx (5.2)

in the distribution sense.10

Proof Poisson’s summation formula indicates that∑
n∈Z

f (nπ)e−inπξ =
√

2

π

∑
k∈Z

F f (ξ + 2k). (5.3)

Thus Equation (3.2) is equivalent to

F f (ξ) =
∑
k∈Z

F f (ξ + 2k)H(ξ) (5.4)
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This leads to

f (t) = F−1

(∑
k∈Z

F f (· + 2k)H

)
(t)

=
∑
k∈Z

F−1 (F f (· + 2k)H) (t)

The interchange of the order of the sum and the integral operator is justified by the conver-
gence of the series. Let g ∗ h be the convolution of two functions g, h ∈ L2(R). Recalling5
Equations (1.2) and the convolution theorem for the Fourier transform, we, therefore,
conclude that

f (t) =
∑
k∈Z

1√
2π

( (
F−1(F f (· + 2k)

)
∗
(
F−1 H

) )
(t)

=
∑
k∈Z

1

π

∫
R

f (x)e−i2kx sincF (t − x) dx

= 1

π

∫
R

f (x)
∑
k∈Z

e−i2kx sincF (t − x) dx10

which is Equation (5.2). �

Next we discuss the Sobolev smoothness of a function in the space VF . We say that a
function f belongs to the Sobolev space H s(R) if∫

R

| f̂ (ξ)|2(1 + |ξ |2)s dξ < ∞. (5.5)

The Sobolev smoothness of f is defined to be ν2( f ) := sup{s : f ∈ Hs(R)}. As an15
example, the Sobolev smoothness of a function in the space of bandlimited signals is
infinity. Algorithms [13–16] or even Matlab routines [17] are given for calculating Sobolev
smoothness of a refinable function. However, those algorithms are not applicable to calculate
the Sobolev smoothness of a function in the space VF . We give a characterization in the
next theorem about the Sobolev smoothness of the functions in the space VF .20

Theorem 5.2 If f ∈ VF and for some s ∈ R,∑
n∈Z+

b2
nn2s < ∞ (5.6)

then the Sobolev smoothness of the function f satisfies ν2( f ) ≥ s.

Proof By Equations (1.1) and (3.2) we obtain that

∫
R

| f̂ (ξ)|2(1 + |ξ |2)s dξ=
∑

n∈Z+
b2

n

∫
In

(∑
k∈Z

f (kπ)e−ikπξ

)2

(1 + ξ2)s dξ.25
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Noting when ξ ∈ In , n ≤ |ξ | < n + 1 for each n ∈ Z+, which implies that 1 + ξ2 ≤ 3n2,
for n ∈ Z+. Consequently, we deduce that∫

R

| f̂ (ξ)|2(1 + |ξ |2)s dξ ≤
∑

n∈Z+
3sb2

nn2s
∫

In

(∑
k∈Z

f (kπ)e−ikπξ

)2

dξ

=
∑

n∈Z+
3sb2

nn2s
∑
k∈Z

f 2(kπ),

where in the last equality, again, we have used the orthogonality of the set {e−ikπξ : k ∈ Z}5
on In , n ∈ Z+. Now, applying Equation (3.3), we obtain that∫

R

| f̂ (ξ)|2(1 + |ξ |2)s dξ ≤ 3s

π

‖ f ‖2
L2(R)

‖b‖2
l2(Z+)

∑
n∈Z+ b2

nn2s < ∞

by the assumption (5.6). �
For example, consider the space VF associated with the analytic function F in Equation

(2.1) such that the sequence b is a geometric sequence with bn = an(1−a), n ∈ Z+, where10
a ∈ (−1, 1). The series

∑∞
n=0

n2sa2n(1 − a)2 converges for every s ∈ R. Therefore,
we have the Sobolev smoothness ν2( f ) = ∞. In particular, when a = 0, the space VF

degenerates to the space of bandlimited functions, and its Sobolev smoothness is infinity.

If b is given by bn = 1
(n+1)3 , n ∈ Z+, the series

∑∞
n=0

n2s 1

(2n + 1)6
converges if and

only if 6 − 2s > 1, that is, s < 2.5, which implies that ν2( f ) = 2.5 in this case.15
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