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Abstract

We propose a practical algorithm of best rational approximation of
a given order to a function in the Hardy H2 space on the unit circle or
on the real line. The type approximation is proved to be equivalent with
Blaschke form approximation. The algorithm is called Cyclic AFD as it
adaptively selects one parameter during each cycle based on the Maximal
Selection Principle used in adaptive Fourier decomposition (AFD).
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1 Introduction

For a function f in the Hardy space H2(D), where D stands for the open unit
disc, the problem of finding a rational function p/q of order less than or equal to
n with the least distance to the function f has a long history. The same question
is asked for the Hardy space on a half of the complex plane. The existence of
such optimal approximation has been proved by using various methods ([17],
[1]). There are also recent proofs based on Blaschke form approximation ([15],
[12]). A practical algorithm for finding a solution, however, has been an open
problem. Some proofs themselves, such as those based on weak convergence or
by contradiction, do not directly imply an algorithm. The existing ones, in-
cluding [2], [10], are based on the second derivative test, parameterized by the
coefficients of the polynomial q in the denominator. Each of the existing algo-
rithms does converge to critical points. So far there have not been algorithms
that convergence to the global minimum point. Starting from different initial
status does lead to different local minima. To find a global minimal point is then
reduced to find appropriate initial status to start with ([2]). Among all possible
initial status finding the optimal ones to start with itself is an NP hard problem
([9]). Yet, one has to show that for each global minimum there is at least one
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initial status corresponding to it under the performed algorithm. This, in the
Cyclic AFD Algorithm case, however, is straightforward, based on existence of
a solution, because it directly uses the poles as parameters.

There could be two ways to get around from the embarrassing of converging
to a local critical point. One is to find a method to effectively examine whether
a local critical point is a global minimum point, and, if not, subsequently find
the other critical points. Great computational complexity is encountered with
initial status selection and calculation of second order partial derivatives. In
particular, one has to have a practical algorithm to obtain all the possible criti-
cal points for comparison. The other way to get around is to find easy sufficient
conditions for Hardy space functions to possess only one critical point. It is
regarded as uniqueness condition of best rational approximation. If there ex-
ists only one critical point, then the critical point has to be the unique global
minimum point. Note that critical points include all local minima and maxima
and saddle points as well as those at which there are no derivatives. The suffi-
cient condition for uniqueness of critical point would be too strong in practice.
Among others Baratchart et al have been devoting to the uniqueness problem.
Below we will give an account on their studies in this direction.

The first approach is made in [7] in which they deal with the Hardy space
functions of Markov type, that is the Cauchy transform of a positive measure
on a segment supported within some absolute bounds. The work [4] develops
certain techniques connecting a local minimum with classical interpolation the-
ory that is used to prove asymptotic uniqueness of a certain type on L2 rational
approximation. The criterion developed in [4] is further refined to show that
the asymptotic uniqueness holds for Markov functions whose defining measure
satisfies precisely the Szegö condition ([6], [5]). Further development along this
line is given in [8] in which Markov functions defined by the Cauchy trans-
formation are generalized to Cauchy transforms of complex measures that are
absolutely continuous with respect to the equilibrium distributions on a real
segment [a, b] ⊂ (−1, 1) with the density function being Dini-smooth and non-
vanishing. Another type of the uniqueness conditions is given in [1]. It requires
the logarithm derivative of the approximated function being bounded inside
the unit disc, and non-vanishing. Unfortunately, it is only available for n = 1.
The result of [3] concerns uniqueness of the critical point when approximating
a function at its own order.

The present work proposes a new algorithm for best rational approximation
via Blaschke forms. On one hand, it converges to a coordinate-minimum point
(see below) which is local. A global minimum point can be selected from all
those based on comparison. On this aspect it does no better than the exist-
ing algorithms. It, however, has practical advantages. First, the parameters
in the objective function are directly related to the poles of the approximat-
ing rational functions. Once an optimal collection of the poles is known, the
corresponding best rational approximating function is obtained as orthogonal
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projection onto the related orthonormal rational system (or, in an alternative
terminology, the Takenaka-Malmquist system). Having poles as parameters of
the objective function simplifies the theory and algorithm. The second advan-
tage is that the objective function is explicit, being a sum of n terms of which
each is a product of the polynomial (1− x2 − y2) and square of the module of
an analytic function, being recursively obtained (12). The objective function
is symmetric as well as smooth in the n parameters. The third advantage is
that there is no computation of gradients involved: the algorithm is based on
recursive formulas and cyclic one-parameter improvement. The improvement
is based on Maximal Selection Principle ([13], [14]). The Maximal Selection at
the moment is based on comparison of function values that is elementary ([12],
[16]). The whole computation does not require a high speed computer. We note
that uniqueness conditions on critical point can be applied with our algorithm
although our formulation does not involve differentiation.
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2 Preparations

The Hardy space H2(D) consists of the holomorphic functions

f(z) =
∞∑

k=0

ckzk, |z| < 1,
∞∑

k=0

|ck|2 < ∞. (1)

Below we will sometimes abbreviate H2(D) as H2. There are two other equiv-
alent definitions, namely

H2 = {f : D → C | analytic and ‖f‖2 = sup
0≤r<1

∫ 2π

0

|f(reit)|2dt < ∞} (2)

= {f : D → C | analytic and Mαf ∈ L2(∂D)}, (3)

where Mαf(eit) is the non-tangential maximal function of f with respect to
the cone at eit being orthogonal to the circle with any but fixed opening angle
α < π. Facilitated with the norm given in (2) the Hardy space is a Hilbert
space. Functions in H2(D) have non-tangential boundary limits that constitute
the space H2,+(∂D), being a proper and closed subspace of L2(∂D), where the
latter is a Hilbert space under the inner product

〈f, g〉 =
1
2π

∫ 2π

0

f(eit)g(eit)dt. (4)
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The mapping sending f ∈ H2(D) to its boundary limit in H2,+(∂D) is an
isometric isomorphism. One similarly defines the Hardy space outside the closed
unit disc, H2(D

c
), corresponding to the functions

f(z) =
−1∑

k=−∞
ckzk, |z| < 1,

−1∑

k=−∞
|ck|2 < ∞. (5)

The space H2(D
c
) has alternative definitions analogous with (2) and (3). Func-

tions in H2(D
c
) also have non-tangential boundary limits that constitute the

space H2,−(∂D), being a proper and closed subspace of L2(∂D). The mapping
from f ∈ H2(D

c
) to its boundary limit in H2,−(∂D) is again an isometric iso-

morphism. Functions in H2(D
c
) satisfy the condition limz→∞ f(z) = 0, that,

in terms of the boundary limit, is equivalent with the condition
∫ 2π

0

f(eit)dt = 0.

The two spaces H2,+(∂D) and H2,−(∂D) are orthogonal complements to each
other in the boundary Hilbert space L2(∂D).

Now we recall the classical definition of best n-rational approximation. Let p
and q be polynomials and the zeros of q are all outside the closed unit disc. We
say that p/q is non-degenerate if p and q are coprime to each other, meaning
that p and q have no common divisors, or zeros. The order of a non-degenerate
rational function p/q is defined to be max{deg(p),deg(q)}. An n-rational ap-
proximation to f ∈ H2(D) is an approximation by a non-degenerate rational
function of order less or equal to n. We will also use the expressions “exact
or precise order n” for the cases where the order of the approximating rational
function is exactly equal to n. A best n-rational approximation is an n-rational
approximation p1/q1 that satisfies

‖f − p1/q1‖ ≤ ‖f − p/q‖ (6)

for all non-degenerate rational functions p/q of order less than or equal to n.

Before defining n-Blaschke form we first introduce n-dimensional linear space
spanned by Szegö kernels and their derivatives. Let a1, ..., an be a set of n points
in the open unit disc where repeating is allowed. There are two separate cases.
One is that none of the ak’s are zero. In the case a rational function p/q, where p
and q are polynomials, is said to be in L(a1, ..., an) if p/q is a linear combination
of the functions in the n-linearly independent set

1
1− b1z

, ...,
1

(1− b1z)l1
, ...,

1
1− bmz

, ...,
1

(1− amz)lm
, (7)

where b1, ..., bm,m ≤ n, are all the distinguished ones among a1, ..., an, lk is the
total repeating time of bk in a1, ..., an, or the multiple of bk in (a1, ..., an), 1 ≤
k ≤ m, l1 + · · · + lm = n. The second case is that one of the ak’s is zero. In
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the case we say that there are poles at infinity. Without loss of generality,
we assume that b1 = 0, repeating altogether l1 times (with the multiple l1 in
the n-sequence). In the case p/q is said to be in L(a1, ..., an) if it is a linear
combination of some functions in

1, ..., zl1−1,
1

1− b2z
, ...,

1
(1− b2z)l2

, ...,
1

1− bmz
, ...,

1
(1− amz)lm

, (8)

where l1 + · · · + lm = n. In both cases the definitions L(a1, ..., an) is irrelevant
with the ordering of a1, ..., an. We note that both of the two sequences (7) and
(8) have poles outside the closed unit disc D. We say that p/q is precisely in
L(a1, ..., an) if its linear expansion in L(a1, ..., an) has non-zero coefficients with
all the highest order terms in the respective list (7) or (8).

Given an n-tuple (a1, ..., an), the position multiple of ak, denoted by l(ak), is
defined to be the repeating time of ak in the k-tuple (a1, ..., ak). In other words,
it is the number of all the occurrences of ak in the procession from a1 to ak.
Below when we say that an n-tuple (a1, ..., an) is in D we mean that all the
ak, k = 1, ..., n, are in D.

An n-tuple (a1, ..., an) in D corresponds to the following four objects.

1. One of the two sets of the partial fractions given in (7) and (8), depending
on whether there is an ak being zero.

2. The sequence of the functions eak
(z) in H2(D), k = 1, ..., n, where

eak
(z) =

√
1− |ak|2
1− akz

.

For a ∈ D, ea is an L2-normalized Szegö kernel at a.

3. The sequence of the functions Eak
(z) in H2(D), k = 1, ..., n, where

Eak
(z) =

1
(1− akz)l(ak)

,

if ak 6= 0, and l(ak) is the position multiple of ak; or

Eak
(z) = zl(ak)−1,

if ak = 0. Note that for l(ak) > 1, Eak
is essentially the l(ak)-th derivative of the

Szegö kernel eak
. When all the entries ak have multiple 1, the system {Eak

}n
k=1

coincides with the system {eak
}.

4. The n-tuple of the corresponding n-orthonormal rational function system,
or the n- Takenaka-Malmquist system (or the n-TM system in brief), Bk, k =
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1, ..., n, where

Bk(z) = Ba1,...,ak
(z) =

√
1− |ak|2
1− akz

k−1∏

j=1

z − aj

1− ajz
.

Each Bk is called a modified Blaschke product. We note that the system {Bl}k
l=1

is the result of the Gram-Schmidt orthogonalization process used to the system
{Eal

}k
l=1 ([14], [15]).

Note that the normalized Szegö kernel ea plays an important role in the
theory due to the reproducing the relation

〈f, ea〉 =
√

1− |a|2f(a),

proven through a direct application of Cauchy’s formula.

For any n-tuple of complex numbers (c1, ..., cn) with cn 6= 0 the function

n∑

k=1

ckBk

is called a non-degenerate Blaschke form of order n. Without the assumption
c 6= 0 it is called an n-Blaschke form.

For any function f in H2, due to the orthonormal property of {B}n
k=0, the

Blaschke form
n∑

k=1

〈f,Ba1,...,ak
〉Ba1,...,ak

is the orthogonal projection of f onto L(a1, ..., an). The corresponding square-
distance from f to the linear span by the partial fractions is given by

A(f ; a1, ..., an) = ‖f‖2 −
n∑

k=1

|〈f,Bk〉|2. (9)

A(f ; ...) is the objective function in question that is smooth in n variables
a1, ..., an. The objective function is, in fact, symmetric in the n variables: For
any permutation P of the n variables the value of A(f ; ...) is invariant, ie.

A(f ; a1, ..., an) = A(f ;Pa1, ..., Pan).

This is due to the fact that the n-dimensional linear spaces L(a1, ..., an) and
L(Pa1, ..., Pan) are identical. As the orthogonal projections of f onto the two
spaces,

∑n
k=1〈f,Ba1,...,ak

〉Ba1,...,ak
and

∑n
k=1〈f,BPa1,...,Pak

〉BPa1,...,Pak
have

to be identical, too.
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An n-Blaschke approximation is an approximation by a Blaschke form of
order n or a non-degenerate approximation of order m,m ≤ n. We say that
(b1, ..., bm) gives rise to a best n-Blaschke approximation to f ∈ H2(D) if

‖f −
m∑

k=1

〈f,Bb1,...,bk
〉Bb1,...,bk

‖ ≤ ‖f −
l∑

k=1

〈f,Ba1,...,ak
〉Ba1,...,ak

‖ (10)

for all possible choices of l ≤ n and l-tuples (a1, ..., al) in D.

Note that on the both sides of the above inequality the Blaschke forms can
be degenerate. The definition amounts to say that a best n-Blaschke approxima-
tion is an approximation by an n-Blaschke form (degenerate or non-degenerate),
that is one of the best approximations among all n Blaschke approximations (de-
generate or non-degenerate). It is proved in [15] and [12] that such minimizer
exists and is attainable at an m-tuple (b1, ..., bm) in D,m ≤ n. The analogous
result for a half plane, is proved in [12] by a Poisson integral argument.

Proposition 1 Let (a1, ..., an) be an n-tuple in D. Then i) if none of the ak’s are
zero, then a non-degenerate rational function f = p/q is precisely in L(a1, ..., an)
if and only if f =

∑n
k=1〈f,Bk〉Bk is non-degenerate n, and if and only if p/q is

a non-degenerate rational function with order n, where q is of the degree n and
q is of a degree less than or equal to n − 1; and, ii) if one of the ak’s is zero,
say, a1 = 0 with the multiple l1 in the n-tuple, then a non-degenerate rational
function f = p/q is precisely in L(a1, ..., an) if and only if f =

∑n
k=1〈f,Bk〉Bk

is non-degenerate, and if and only if p/q is a non-degenerate rational function
with order n− 1, where q is of the degree n− l1 and q is of the degree n− 1.

Proof The assertions can be proved through the partial fraction expansions of
p/q in, respectively, (7) and (8) for the two separate cases.

So, if there are no poles are at infinity then the orders of a non-degenerate
rational function p/q as Blaschke form and as rational function are consistent.
In the opposite case the order as rational function is one degree less. In the case
to obtain an n-best rational approximation one may need to consider both the
n- and n + 1-best Blaschke approximations. Given the above mentioned partial
fractions formulation in terms of poles the n-Blaschke approximation seems to
be more natural.

Notwithstanding the order difference between best n-Blaschke and best n-
rational functions, the “order lemma” still holds in the best n-Blaschle form
approximation as proved in ([15], [12]):

An n-best Blaschke form approximation to a function that is not itself a
Blaschke form of degree less than n is, in fact, of degree precisely n.
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One can similarly define best n-rational and best n-Blaschke approximations
to functions in the Hardy space outside the closed unit disc, H2(D

c
). Note that

a non-degenerate Blaschke form of order n, or a non-degenerate n-Blaschke,
outside the unit disc is a linear combination

n∑

k=1

ckB̃k,

where ck, k = 1, ..., n, are complex numbers, cn 6= 0,

B̃k(z) = B̃a1,...,ak
(z) =

√
|ak|2 − 1
akz − 1

k−1∏

j=1

z − aj

ajz − 1
,

where aj , j = 1, ..., k, are complex numbers outside the closed unit disc. With-
out the assumption cn 6= 0 the above linear combination of B̃k is called an n-
Blaschke product outside the unit disc.

It may be easily shown that all the Blaschke forms of order n outside the
disc are identical with all the rational functions of order n with poles inside the
disc. This can also be seen through the roles of the Kelvin inversion defined by

Kf(z) =
1
z
f(

1
z
).

Simple computations show that the Kelvin inversion maps the functions in
H2(D) to those in H2(D

c
), and vice versa. It maps Blaschke forms inside

the disc to Blaschke forms outside the disc of the same degrees, and vice versa.
On rational functions, we have the following

Proposition 2 (i) The Kelvin inversion maps the rational functions p/q in
H2(D) of order n − 1 with p being of degree n − 1, corresponding to the
non-degenerate Blaschke forms of order n with zero parameters ak, to ratio-
nal functions of order n in H2(D

c
); and maps the rational functions p/q in

H2(D) of order n with q being of degree n and p being of degree less than n
with poles outside the closed unit disc, corresponding to the non-degenerate
Blaschke forms of order n without zero parameters ak, to rational functions of
order n in H2(D

c
). (ii) Conversely, the Kelvin inversion maps rational functions

of order n in H2(D
c
) to one of the two types of rational functions in H2(D) of,

respectively, the order n− 1 or n.

The uniform order-correspondence between Blaschke forms and rational func-
tions is based on the fact that a rational function of degree n with poles inside
the disc must satisfy degree of p1 < degree of q1 = n. The Blaschke form for-
mat outside the unit disc does not have two cases regarding some ak being zero
or not. In spite of the advantage of the outside unit disc setting, we choose
to work inside the unit disc for the consistency with our previous work. Some
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researchers, however, including Baratchart et al, do work outside the unit disc.

The proposed algorithm works for functions in the Hardy spaces. It also gives
rise to rational approximation of fixed order to functions in L2. For f ∈ L2(∂D),
we have the Hardy space decomposition f = f+ + f−, where f+ ∈ H2(D), and
f− ∈ H2(D

c
). f± may be obtained by the corresponding Cauchy integrals, or

may be obtained by the Fourier series expansion of f restricted to the summation
non-negative indices and the negative indices, respectively. If f is real-valued,
we have

f = 2Ref+ − c0.

Then the best n-rational approximation gives a corresponding approximation
result for f.

We note that the approach given below for H2(D) may be adapted to treat
the same problem, with necessary changes in accordance with the context, in
the Hardy spaces of other domains, including D

c
,C+,C−, where the last two

notations are for the upper- and lower-half complex planes.

Definition 1 Assume that f ∈ H2 and f is not an m-Blaschke form for any
m < n. Then a1, ..., an is said to be being a coordinate-minimum point of
A(f ; z1, ..., zn) if for any permutation P whenever fixing n−1 points (z1, ..., zn−1) =
(Pa1, ..., Pan−1) and performing the Maximal Selection Principle to |〈fn, ezn

〉|
for the remaining complex variable zn, then the missing point Pan is one of the
optimal choices for zn.

As already mentioned, the proposed algorithm converges to a coordinate-
minimum, which is usually a local minimum, but not necessarily to be a global
minimum of the objective function. Practically, starting from a large collec-
tion of n-tuples with sufficient density, the algorithm results in a collection of
coordinate-minimum points, and a global minimum can be obtained through
the comparison between the coordinate-minimum points.

Write the objective function (9) as A(f ; z1, ..., zn), where zk = xk + iyk, k =
1, ..., n, are complex variables. A(f ; z1, ..., zn) is a smooth function of 2n real
variables. Then {a1, ..., an} is a critical, or equivalently , a stationary point
because of smoothness of the objective function A(f ; · · · ), if and only if

∂kA(f ; a1, ..., an) = 0, ∂k =
∂

∂zk
=

1
2
(

∂

∂xk
+ i

∂

∂yk
), k = 1, ..., n.

Because A(f ; a1, a2, ..., an) is real-valued, the above relations are equivalent with

∂k

∂xk
A(f ; a1, a2, ..., an) = 0,

∂k

∂yk
A(f ; a1, a2, ..., an) = 0.

In[15] and [12] we show that for any f ∈ H2 and any fixed n one can find m
numbers, a1, ..., am, in D, m ≤ n, repeating is allowed, such that at this m-tuple
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(9) reaches a global minimum out of all possible choices of l-tuples in D, l ≤ n,
where repeating is allowed. When m < n, f itself is am m-Blaschke form; and
otherwise m = n.

In [15] the inner products 〈f,Bk〉 are written in the alternative way 〈fk, eak
〉,

where the Hardy space function, the k-th reduced remainder fk, which is differ-
ent from the standard remainder (see (15)) , is given by the recursive formula

fk(z) =
fk−1(z)− 〈fk−1, eak−1〉eak−1(z)

z−ak−1
1−ak−1z

, f1 = f, (11)

which we call the generalized backward shift of fk−1 through ak−1. When ak−1 =
0, this reduces to the classical backward shift. With the replacement of f by
fk, the objective function has an alternative form

A(f ; a1, ..., an) = ‖f‖2 −
n∑

k=1

(1− |ak|2)|fk(ak)|2. (12)

Remark By using mathematical induction we can show that in H2 the func-
tions fk’s are continuously dependent on the parameters a1, ..., ak−1.

The expression (12) was first used in [14] and [13], in which adaptive Fourier
decomposition (AFD) and unwending AFD are proposed. The AFD algorithm
depends on a Maximal Selection Principle: For any f ∈ H2, b = arg max{|〈f, ea〉| :
a ∈ D} is attainable inside D (see [14] or [13]). To proceed AFD starting from
a given signal f ∈ H2, each time when having selected a1, ..., ak−1 an adap-
tive selection of ak is an application of Maximal Selection Principle to fk. It
is a consecutive selection process of the parameters a1, ..., an. To solve the best
n-Blaschke approximation problem, or, equivalently, the best n-rational approx-
imation problem, one is reduced to select all the parameters a1, ..., an inside D
at one time to give rise to the global minimum value of (12). As mentioned, the
work [15] and [12] show that such simultaneous selections exist.

3 The Algorithm

For n = 1, 2, 3, optimal selections of n-tuples of parameters to minimize the
objective function given by (9) or (12) can be done by comparing the values of
the objective function on a collection of n-tuples with sufficient density ([12]).
When n gets large, this comparison function value method cannot be applied
because of the exponential increasing of the cardinal number of a dense enough
set of n-tuples. The proposed Cyclic AFD Algorithm is based on the AFD al-
gorithm that cyclically improves elements of an n-tuple. The process is based
on the formulation and techniques developed in [14], [13], [12] and [15].
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In the AFD algorithm we repeat the following procedure: Along with choos-
ing a1, ..., ak−1 in D, we produce the reduced remainders f2, ..., fk. Then to
fk we apply the Maximal Selection Principle to find an ak that giving rise to
max{|〈fk, ea〉| : a ∈ D}. The Cyclic AFD Algorithm repeats such procedure
for k = n : Whenever a1, ..., an−1 are fixed from previous steps we inductively
obtain the reduced remainders f2, ..., fn, and then use the Maximal Selection
Principle to select an optimal an.

Denote by LMP a local minimum points, by CMP a coordinate-minimum
point, and CP a critical point of the objective function. Denote by LM, CM
and C the sets, of, respectively, all LMPs, CMPs and Cs. Then we have the
following inclusion relations.

Proposition 3

LM ⊂ CM ⊂ C. (13)

Proof The first inclusion is obvious. Now show the second. Since the objective
function is symmetric with respect to permutations, the assertion of coordinate-
minimum implies

∂zA(f ; z, a2, ..., an)|z=a1 = 0, ∂z =
1
2
(

∂

∂x
+ i

∂

∂y
).

We therefore have

∂A(f ; ·, a2, ..., an)
∂x1

|z=a1 = 0,
∂A(f ; ·, a2, ..., an)

∂y1
|z=a1 = 0.

Thus (a1, ..., an) is a stationary point of A(f ; z1, ..., zn). The proof is complete.

Corollary 4 If the objective function has only one CP, then there is only one
CMP that gives rise to the global minimum of the objective function.

Theorem 5 Suppose that f is not an m-Blaschke form for any m < n. Let
s0 = {b(0)

1 , ..., b
(0)
n } be any n-tuple of parameters inside D. Fix some n − 1 pa-

rameters of s0 and make an optimal selection of the single remaining parameter
according to the Maximum Selection Principle. Denote the obtained new n-tuple
of parameters by s1. We repeat this process and make cyclic optimal selections
over the n parameters. We thus obtain a sequence of n-tuples s0, s1, ..., sl, ...,
with decreasing objective function values dl that tend to a limit d ≥ 0, where,
in the notation and formulation of (12),

dl = A(f ; b(l)
1 , ..., b(l)

n ) = ‖f‖2 −
n∑

k=1

(1− |b(l)
k |2)|f (l)

k (b(l)
k )|2. (14)

Then, (i) If s, as an n-tuple, is a limit of a subsequence of {sl}∞l=0, then s is in
D; (ii) s is a CMP of A(f ; · · · ); (iii) If the correspondence between a CMP and
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the corresponding value of A(f ; · · · ) is one to one, then the sequence {sl}∞l=0

itself converges to the CMP, being dependent of the initial n-tuple s0; (iv) If
A(f ; ...) has only one CMP, then {sl}∞l=0 converges to a limit s in D at which
A(f ; · · · ) attains its global minimum value.

Proof (i) The proof uses a Poisson kernel argument. We have noted that for
any n-tuple {b1, ..., bn} in D, although the system {Bb1,...,bk

}n
k=1 is relevant to

the ordering of the bk’s in the n-tuple, the projection
n∑

k=1

〈f,Bb1,...,bk
〉Bb1,...,bk

is irrelevant to it. Now we show that if an n-tuple s is the limit of some subse-
quence of s0, s1, ..., sl, ..., then s is in D. We show this by introducing a contra-
diction. If d = 0, then the existence result of [15] or [12] shows that the function
f itself is the solution of the best n-rational approximation. In particular, f is
a rational function with n poles of which all are in D. Next we assume d > 0.

Suppose that there exists a sequence of n-tuples {b(l)
1 , ..., b

(l)
n } such that the cor-

responding objective function values decreasingly tend to d > 0 as l →∞, while
for at least one index k0 there exists a subsequence {b(lj)

k0
}∞j=1 converging to a

boundary point. We divide the indices k = 1, ..., n into two groups, denoted
by the letters B and I, respectively, where if {b(l)

k }∞l=1 contains a subsequence
converging to a boundary point of D, then k ∈ B, and otherwise k ∈ I. Note
that k0 ∈ B 6= ∅. Due to the observation made at the beginning of the proof,
we may alter the ordering of {b(l)

1 , ..., b
(l)
n }, if necessary, and may assume that

the indices in I are all smaller than those in B. By a diagonal process we can
choose a subsequence lj →∞ such that for k ∈ B the sequences {b(lj)

k } converge
to boundary points, and for k ∈ I, converge to interior points. Without loss of
generality we may assume that the original sequence {l}∞l=1 has such property.
That is, as l → ∞, the sequence {b(l)

k }∞l=1 converges to bk ∈ ∂D if k ∈ B, and
converges to bk ∈ D if k ∈ I. For each l adopt the notation for the non-zero
standard remainders

f̃ (l)
m = f −

m−1∑

k=1

〈f (l)
j , e

b
(l)
j
〉B

b
(l)
1 ,...,b

(l)
j

, m = 1, ..., n. (15)

There holds

f̃ (l)
m (z) = f (l)

m (z)
m−1∏

j=1

z − b
(l)
j

1− b
(l)

j z
, (16)

where f
(l)
m is associated with (b(l)

1 , ..., b
(l)
m−1), recursively defined though the gen-

eralized backward shift operator (11). We also use the notation

R
(l)
I = f −

∑

j∈I
〈f (l)

j , e
b
(l)
j
〉B

b
(l)
1 ,...,b

(l)
j

.

12



There follows

‖R(l)
I ‖2 = ‖f‖2 −

∑

j∈I
|〈f (l)

j , e
b
(l)
j
〉|2 ≥ ‖f̃ (l)

k ‖2 = ‖f (l)
k ‖2, k ∈ B. (17)

We have, owing the properties of the Poisson kernel Pr and the inequality (17),
for any given ε > 0,

‖R(l)
I ‖ ≥ ‖R(l)

I −
∑

k∈B
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

‖

≥ ‖Pr ∗ (R(l)
I −

∑

k∈B
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

)‖

≥ ‖Pr ∗R
(l)
I ‖ −

∑

k∈B
‖f (l)

k ‖‖Pr ∗B
b
(l)
1 ,...,b

(l)
k

‖

≥ ‖Pr ∗R
(l)
I ‖ −

∑

k∈B
‖R(l)

I ‖‖Pr ∗B
b
(l)
1 ,...,b

(l)
k

‖

≥ (1− ε

2
)‖R(l)

I ‖ − ‖R(l)
I ‖

∑

k∈B
‖Pr ∗B

b
(l)
1 ,...,b

(l)
k

‖,

if r is sufficiently close to 1. Let r be such fixed.
Now, since B

b
(l)
1 ,...,b

(l)
k

∈ H∞(D), we have (Corollary 3.2, p58, [11])

Pr ∗B
b
(l)
1 ,...,b

(l)
k

(eit) = B
b
(l)
1 ,...,b

(l)
k

(reit),

and thus

‖Pr ∗B
b
(l)
1 ,...,b

(l)
k

‖2 = ‖B
b
(l)
1 ,...,b

(l)
k

(rei(·))‖2

≤ 1
2π

∫ 2π

0

1− |b(l)
k |2

|1− b
(l)

k reit|2
dt

=
1− |b(l)

k |2
1− r2|b(l)

k |2
.

For the fixed r, since liml→∞ |b(l)
k | = 1, k ∈ B, we can choose l large enough so

that
‖Pr ∗B

b
(l)
1 ,...,b

(l)
k

‖ ≤ ε

2n

hold for all k ∈ B. Therefore, for such l,

‖R(l)
I ‖ ≥ ‖R(l)

I −
∑

k∈B
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

‖ ≥ (1− ε)‖R(l)
I ‖.

This shows that

lim
l→∞

‖
∑

k∈B
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

‖ = 0. (18)
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Since the modified Blaschke products are orthogonal to each other, for any
subset B′ ⊂ B the above limit also holds. As consequence of (18),

lim
l→∞

‖f̃ (l)
n ‖2 = lim

l→∞
‖f −

∑

k∈I
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

‖2

= lim
l→∞

(
‖f‖2 −

∑

k∈I
|〈f (l)

k , e
b
(l)
k

〉|2
)

= ‖f‖2 −
∑

k∈I
|〈f,Bb1,...,bk

〉|2 (19)

= d > 0.

This last relation (19), however, shows that the selections of b
(l)
k ’s and their

corresponding limits for k ∈ B all have no contribution and the coordinate-
minimum value d can be attained at an m-tuple inside the unit disc, where
m < n.

Let m0 be the first index of B, and B′ = B \ {m0}. For a large l, we have

dl+1 = ‖f −
n∑

k=1

〈f (l+1)
k , e

b
(l+1)
k

〉B
b
(l+1)
1 ,...,b

(l+1)
k

‖2

≤ min
b∈D

‖f −
∑

k∈I
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

− 〈f (l)
m0

, eb〉Ba
(l)
1 ,...,a

(l)
m0−1,b

−

−
∑

k∈B′
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

‖2

= ‖f −
∑

k∈I
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

‖2 −max
b∈D

|〈f (l)
m0

, eb〉|2 − ‖
∑

k∈B′
〈f (l)

k , e
b
(l)
k

〉B
b
(l)
1 ,...,b

(l)
k

‖2

≤ d + ε− α,

where fm0 is recursively defined through the generalized backward shift operator
depending on the parameters bj , j ∈ I, and we note that since fm0 is a non-zero
function in the Hardy space,

α = max
b∈D

|〈fm0 , eb〉|2 > 0,

where the error term ε is collected from the limit (19), the limit (18) for B′, and
from the estimate

max
b∈D

|〈f (l)
m0

, eb〉|2 = max
b∈D

|〈(f (l)
m0
− fm0), eb〉+ 〈fm0 , eb〉|2

≥ max
b∈D

(|〈fm0 , eb〉| − ‖f (l)
m0
− fm0‖)2

≥ α− ε′,

where ε′ is small depending on l the parameters bk, b
(l)
k , k ∈ I, that are all inside

D (See the Remark below (12)). For large l we have ε < α that implies dl+1 < d,

14



being a contradiction. (ii) If s is not a CMP, then fix some n − 1 entries of it
the exceptional one, bk0 , has a positive distance from what is selected, say b′k0

,
according to Maximal Selection Principle. Now examine sl in the subsequence
tending to s whose n − 1 entries are respectively close to the fixed n − 1 en-
tries and the exceptional one b

(l)
k0

is to be replaced in the next n-tuple in the

subsequence. On one side, the replacing entry b
(l+1)
k0

in the next n-tuple in the
subsequence should be close to b′k0

according to Maximal Selection principle.

On the other hand, because of convergence of the subsequence, b
(l+1)
k0

should be
close to bk0 . This is a contradiction. (iii) is obvious as, in the case, a sequence
without limit contains at least two subsequences tending to different CMPs,
contradictory to the one to one assumption. (iv) Let now A(f ; ...) have only
one CMP. The same reasoning as in (iii) concludes that starting from any ini-
tial n-tuple the sequence {sl}∞l=0 converges to the same limit s in D at which
A(f ; · · · ) attains its global minimum value. The proof is complete.

Definition 2 The algorithm described in Theorem 1 is called Cyclic AFD Al-
gorithm.

Corollary 6 If the objective function has only one critical point, then Cyclic
AFD Algorithm starting from any initial n-tuple generates a sequence of n-
tuples converging to the unique CMP n-tuple giving rise to the global minimum
of the objective function.

Algorithm Below we give a step by step description of the algorithm. It is a
process to produce a sequence of n-tuples inside D whose subsequence-limits are
CMPs. If there is only one critical point or only one CMP, then the sequence
itself converges to the unique CMP giving rise to the global minimum value of
A(f ; · · · ).

Step 1. We start from an initial n-tuple s0 = (b(0)
1 , ..., b

(0)
n ) that can be obtained,

for instance, from one of the following three methods. (i) Use AFD to create
b
(0)
1 , then b

(0)
2 ,..., and b

(0)
n ; (ii) In an equally distributing pattern pick up n points

in D; or (iii) Randomly pick up n points in D.

Step 2. Fix b
(0)
2 , ..., b

(0)
n . Under any but convenient order of the n − 1 points

renamed as (a′1, ..., a
′
n) compute

f(z)−
n−1∑

k=1

〈fk, ea′k〉Bk(z),

where f1 = f, and fk, k = 2, ..., n − 1, is the generalized backward shift of
fk−1 through a′k−1, and Bk is the modified Blaschke product corresponding to
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(a′1, ..., a
′
k). From [15] or [13] we know

f(z)−
n−1∑

k=1

〈fk, ea′k〉Bk(z) = fn(z)
n−1∏

k=1

z − a′k
1− a′kz

.

Step 3. Using Maximal Selection Principle to fn we obtain b
(1)
1 . We then form a

new n-tuple s1 = (b(1)
1 , b

(1)
2 , ..., b

(1)
n ), where (b(1)

2 , ..., b
(1)
n ) = (b(0)

2 , ..., b
(0)
n ). With

this new n-tuple we have the improvement A(f ; b(1)
1 , b

(1)
2 , ..., b

(1)
n ) ≤ A(f ; b(0)

1 , ..., b
(0)
n ).

Step 4. Keeping b
(1)
1 and b

(1)
3 , ..., b

(1)
n unchanged in there positions, we proceed to

replace b
(1)
2 by b

(2)
2 in virtue of Maximal Selection Principle to get the improve-

ment A(f ; b(2)
1 , b

(2)
2 , ..., b

(2)
n ) ≤ A(f ; b(1)

1 , ..., b
(1)
n ). We set s2 = (b(2)

1 , b
(2)
2 , ..., b

(2)
n ),

where b
(2)
1 = b

(1)
1 and (b(2)

3 , ..., b
(2)
n ) = (b(1)

3 , ..., b
(1)
n ).

We carry on this process to the time l when within a threshold none of the
continuous n replacements of the b

(l)
k can improve the value of A(f ; · · · ). Then

(b(l)
1 , ..., b

(l)
n ) is a CMP, and A(f ; b(l)

1 , ..., b
(l)
n ) is the value of a critical point that

has to be the global minimum under the one-critical-point assumption.

In practice such cyclic process of entry optimization for an n-tuple keeps
going and improves the approximation, and the sequence of the values A(f ; · · · )
has the global minimum value as its limit, and, in the mean time, the sequence
of the arguments (b(j)

1 , ..., b
(j)
n ) has a CMP limit (b1, ..., bn) in D giving rise

to the global minimum. If there are more than one critical points, then the
process leads to CMPs and therefore CPs as subsequence limits. The pro-
cess can end up with different groups of critical points, depending on the ini-
tial n-tuple s0 to start with. If the approximated function f itself is an m-
Blaschke form, m < n, then all subsequence limits s have n − m components
resting on the boundary no matter the process starting from which initial n-
tuple s0. The codes of Cyclic AFD Algorithm are available through the link
http://www.fst.umac.mo/en/staff/fsttq.html.

4 The Experiments

We present three examples. All experiments are done on a PC with Intel(R)
Core(TM) i7 CPU 860 @ 2.80GHz 2.79GHz and 4.00 GB memory under win-
dows 7(64 bit) used Matlab 7.11.1(r2010b) service pack 1.

Experiment 1 The approximation function to be approximated is a 4-Blaschke
form

f(z) =
4∑

k=1

ckBb1,,bk
(z)
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with the poles (b1, b2, b3, b4) = (0.6800 + 0.5200i, 0.3900 + 0.8100i,−0.1300 −
0.8700i, 0.5500−0.1000i) and the coefficients (c1, c2, c3, c4) = (0.1440+0.5197i,−1.6387−
0.0142i,−0.7601 − 1.1555i,−0.8188 − 0.0095i) For Cyclic AFD Algorithm the
initial 4-tuple is randomly chosen as s0 = (a(0)

1 , a
(0)
2 , a

(0)
3 , a

(0)
4 ) = (−0.6444 +

0.6790i,−0.1194 + 0.4501i,−0.6619 + 0.3502i, 0.4162 + 0.8329i).

For Cyclic AFD Algorithm the running time is 4.966592 seconds with the
result (0.3900 + 0.8100i,−1300− 0.8700i, 0.6800 + 0.5200i, 0.5500− 0.1000i)

For RARL2 Algorithm (INRIA, France) the running time is 5.685793 seconds
with the result (−0.1470− 0.8330i, 0.6572 + 0.2798i, 0.4212 + 0.9055i, 0.4329 +
0.7721i).

In the experiments the domain of the function, viz., the unit circle, is dis-
cretized by using 1024 points.
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Figure 1: Experiment Result of The First Case of Example 1
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Figure 2: Experiment Result of The First Case of Example 1

Experiment 2 The function to be approximated is a 4-Blaschke form

f(z) =
4∑

k=1

ckBb1,,bk
(z)

with the poles (b1, b2, b3, b4) = (−0.4900− 0.8000i, 0.3100 + 0.1400i,−0.9400−
0.2900i, 0.2300−0.6900i) and the coefficients (c1, c2, c3, c4) = (1.0470+0.55587i,−0.2269−
1.1203i,−0.1625 − 1.5327i, 0.6901 − 1.0979i). To perform Cyclic AFD Algo-
rithm the initial 4-tuple is randomly chosen to be s0 = (a(0)

1 , a
(0)
2 , a

(0)
3 , a

(0)
4 ) =

(0.0938 + 0.5303i, 0.4849− 0.6714i, 0.5201− 0.1500i, 0.2621− 0.7549i).

The running time of Cyclic AFD Algorithm is 8.711609 seconds with the
result (−0.9400−0.2900i,−0.4900−0.8000i, 0.2300−0.6900i, 0.3100+0.1400i).

The running time of RARL2 is 1.382164 seconds with the result (−0.9400−
0.2900i,−0.4900− 0.8000i, 0.2300− 0.6900i, 0.3100 + 0.1400i).

In Experiment 2 the function domain z = eit, t ∈ [0, 2π], is discretized by
using 2048 points.

18



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Result of RARL2

 

 
original
proposed

Figure 3: Experiment Result of The First Case of Example 2
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Figure 4: Experiment Result of The First Case of Example 2
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Experiment 3 The function to be approximated is a 4-Blaschke form

f(z) =
4∑

k=1

ckBb1,,bk
(z)

with the poles (b1, b2, b3, b4) = (−0.1800 + 0.7700i,−0.0200− 0.1800i, 0.1000 +
0.2400i, 0.1800−0.5300i) and the coefficients (c1, c2, c3, c4) = (0.1097+0.4754i, 1.1287+
1.1741i,−0.2900+0.1269i, 1.2616−0.6568i). For Cyclic AFD Algorithm the ini-
tial n-tuple is randomly chosen to be s0 = (a(0)

1 , a
(0)
2 , a

(0)
3 , a

(0)
4 ) = (−0.4424 +

0.3592i, 0.3947 + 0.7040i,−0.0196− 0.4243i,−0.1971 + 0.4299i.

For Cyclic AFD Algorithm the running time is 13.689860 seconds with the
result (−0.1100+0.7300i, 0.2200−0.4900i, 0.1100+0.3600i,−0.0300−0.2900i).

For RARL2 the running time is 25.067327 seconds with the result (−0.2659−
0.9629i,−0.1193 + 0.3195i, 0.1099− 0.5024i, 0.1864− 0.2356i).

In Experiment 3 the domain the unit circle is discretized by using 1024
points.
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Figure 5: Experiment Result of The First Case of Example 3
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Figure 6: Experiment Result of The First Case of Example 3
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Figure 7: Experiment Result of The First Case of Example 4
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Figure 8: Experiment Result of The First Case of Example 4

The experiments show that when involving a large amount discretization
points both algorithms can accurately locate the poles. In Experiment 1 and
3 Cyclic AFD Algorithm performs better than RARL2. When poles are close
to zero neither of the two algorithms can accurately locate the poles. In most
situations the results are case by case.

5 Conclusion

Cyclic AFD Algorithm is introduced to partially solve the H2-best n-rational
approximation problem, or rather H2-best n-Blaschke form approximation prob-
lem. We rigourously proved that if the critical point of the objective function
is unique, then the algorithm converges to the global minimum point. In prac-
tice the algorithm with suitable initial status leads to a global minimum point.
Comparison based on three experiments shows that the proposed algorithm
outperform to the existing RARL2 algorithm.
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