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We study the adaptive decomposition of functions in the complex Hardy spaces
H2 by higher order Szegö kernels. The purpose is to treat signals that are
essentially of high frequencies. We show that each kernel function (basic
function) we use is either a mono-component (as an analytic signal, its
instantaneous frequency is positive everywhere), or a sum of two orthogonal
mono-components. The proposed decomposition thus belongs to the category of
adaptive mono-component decomposition.

Keywords: Hardy space; Szegö kernel; mono-component; adaptive
decomposition; dictionary; matching pursuit

AMS Subject Classifications: 30C40; 30H10; 41A20; 46E20

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disc in the complex plane, and let f be a holomorphic
function on D. We say f ∈ H2(D) if

‖ f ‖ := sup
0≤r<1

(
1

2π

∫ 2π

0
| f (reiθ )|2dθ

)1/2

< ∞.

H2(D) is a Hilbert space with the inner product being defined by

〈 f, g〉 := 1

2π

∫ 2π

0
f (eit )g(eit )dt,

where f (eit ) := limr→1− f (reit ) in the L2-norm sense, as well as in the pointwise
convergence sense for almost all t ∈ [0, 2π). A function f ∈ H2(D) if and only if it
has the expansion

f (z) =
∞∑

k=0

ck zk

∗Corresponding author. Email: wjxpyh@gmail.com

© 2014 Taylor & Francis
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734 J. Wang and T. Qian

in the disc, with {ck} ∈ l2, namely,
∑∞

k=0 |ck |2 < ∞. In the case, the coefficients ck’s
coincide with those of the Taylor series expansion of f , viz.,

ck = 〈 f, zk〉 = f (k)(0)

k! .

A function f ∈ L2(∂D), no matter being real- or complex-valued, is said to be a mono-
component, if its Hardy space projection, f + i H f, where H is the Hilbert transformation
on the circle, has a non-negative phase derivative. In other words, this means, writing
f (t) + i(H f )(t) = ρ(t)eiθ(t), with ρ(t) ≥ 0, where ρ and θ are called, respectively,
“amplitude” and “phase” of f + i H f, we have θ ′(t) ≥ 0 for all t ∈ [0, 2π) ([1]). A function
f is a mono-component can also be briefly phrased as its analytic phase derivative is non-
negative. Note that a classical derivative of the phase of f + i H f may not exist. For a class
of functions, however, this concept can be defined through boundary limits of the same
quantity of the corresponding Hardy space projection inside the disc ([2,3]). For functions
defined on the real line there is a parallel mono-component function theory. We recall here
the definitions of Hilbert transformations in the two contexts. For s ∈ L2(∂D),

Hs(t) := 1

2π
p.v.

∫ π

−π

cot

(
t − μ

2

)
s(μ)dμ,

and for s ∈ L2(R),

Hs(t) := 1

π
p.v.

∫ ∞

−∞
s(μ)

t − μ
dμ.

The definition of mono-component is consistent with the physical requirement that a
mono-component should possess a non-negative instantaneous frequency function. A large
pool of mono-components has been found, including Möbius transforms (Fourier atoms),
Blaschke products of finite and infinite many zeros, and starlike and p-starlike functions
([1,3–8]). Since there exist functions in H2(D) that are not mono-components, one naturally
seeks for mono-component decompositions. Fourier series is a particular example. One
way to identify intrinsic mono-components of a signal is through fast mono-component
decomposition.

In [9,10] the authors proposed an adaptive mono-component decomposition method,
called adaptive Fourier decomposition or AFD. The iterative method produces, as a matter
of fact, a Takenaka–Malmquist system (or TM system or rational orthogonal system)
expansion. A basic function in a TM system is of the form

Bn(z) = B{a1,...,an}(z) =
√

1 − |an|2
z − an

n∏
k=1

z − ak

1 − ak z
, (1)

where a1 = 0, a2, . . . , an ∈ D are complex numbers in the unit disc. Note that if all ak’s
are zero, then Bn(z) = zn−1, and the system reduces to half of the Fourier system. A basic
function in a TM system (a1 = 0) is a mono-component. The characteristic properties of
AFD are: (i) the parameters are successively selected according to a maximal selection
principle that guarantees the maximal gain in energy at every step; (ii) it is different from
matching pursuit for the parameters are not selected based on the remainder but on the
reduced remainder generated through an application of the so-called generalized backward
shift, and a parameter can be selected repeatedly; and, (iii) the resulted TM system may not
be a basis. These properties distinguish AFD from the traditional studies of TM systems,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ac
au

 L
ib

ra
ry

] 
at

 0
0:

50
 2

4 
A

ug
us

t 2
01

7 



Complex Variables and Elliptic Equations 735

as well as from matching pursuit. AFD has found applications in control theory ([11,12]),
as well as theoretical impacts to approximation theory and operator theory. In AFD, the
maximal selection principle is performed as

|〈 f, B{a1,...,an}〉| = sup
b∈D

|〈 f, B{a1,...,an−1,b}〉|.

The obtained adaptive orthogonal decomposition is of the form

f =
∞∑

n=1

〈 f, B{a1,...,an}〉B{a1,...,an}. (2)

The result was extended to the upper half-plane. They proved that the convergence rate is
1/2 under certain conditions.

Although AFD can effectively extract characteristic properties of a signal in relation
to instantaneous frequencies, it has a drawback point: Applying AFD to a signal of high
frequencies means thatAFD forces to extract at the first few steps the maximal energy in low
frequencies. This is not natural. In practice, there are many signals being of high frequencies
by nature, it would be the best if we could faithfully extract at the first steps the components
of large energy potions no matter how big or small the corresponding frequencies are.

To treat signals of a great variety of frequency levels, appealing to matching pursuits
or greedy algorithms (see [13]), we propose an alternative approach for adaptive mono-
component decomposition of functions in the Hardy spaces H2 for both the unit disc and
the upper half-plane, using the higher order complex Szegö kernels (i.e. the higher order
partial derivatives of Szegö kernels). Our scheme is simple and easy to implement, since all
the kernel functions (basic functions) are rational, and the coefficients in the expansion admit
analytic expressions in terms of the higher order partial derivatives of the residues which
can be easily handled. Unlike (2), the proposed method does not result in an orthogonal
decomposition, as our algorithm is essentially the pure greedy algorithm (for other types
of greedy algorithm one can see [14]). It works well for most of the functions (signals),
especially for oscillatory signals or those signals of high frequency, because the parameters
of the kernel functions can match well with the frequency and amplitude of the original
signal. As to the convergence rate, which is assumed to be optimal, waits for further study.

2. The case for the unit disc

It was pointed out in [15] that the TM system (1) is the outcome of the Gram–Schmidt
orthogonalization process applying to {En}∞n=1, where

En(z) = E{a1,...,an}(z) =
{ 1

(1−an z)mn if an �= 0,

zmn−1 if an = 0,

in which mn is the cardinality of the set {i : ai = an, i ≤ n}. We note that a suitable
substitute for En is (we still adopt the same notation)

En(z) = E{a1,...,an}(z) = zmn−1

(1 − anz)mn
,
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736 J. Wang and T. Qian

since for any k ∈ N and a �= 0 there holds the following clear relation

span

{
1

(1 − az)l+1
: 0 ≤ l ≤ k

}
= span

{
zl

(1 − az)l+1
: 0 ≤ l ≤ k

}
.

This observation leads us to consider the following dictionary

D =
{

ek,a = ϕk,a

‖ϕk,a‖ : k ∈ N, a = a0 + ia1 ∈ D

}
,

where

ϕk,a(z) = ∂k

∂ak
0

(
1

1 − az

)
= k!zk

(1 − az)k+1

is called the Szegö kernel function of order k for the unit disc, with the parameter a ∈ D.
This terminology comes from the fact that for any f ∈ H2(D) we have by Cauchy’s integral
formula

〈 f, ϕk,a〉 = f (k)(a). (3)

Obviously, {zn}∞n=0 = {ek,0}∞k=0 ⊂ D ⊂ H2(D), and any finite subset of D is linearly
independent. Now, let us first show that

Proposition 2.1

‖ϕk,a‖2 = (k!)2

(1 − |a|2)2k+1

k∑
l=0

(
k

l

)2

|a|2l .

Proof

‖ϕk,a‖2 = (k!)2

2π

∫ 2π

0

dθ(
1 + |a|2 − 2|a| cos θ

)k+1

= 2(k!)2

π

∫ ∞

0

(1 + u2)k(
(1 + |a|)2u2 + (1 − |a|)2

)k+1
du

= 2(k!)2

π

∫ ∞

0

(
(1 + |a|)2 + (1 − |a|)2t2

)k
(1 − |a|2)2k+1(1 + t2)k+1

dt,

here we have made the substitutions of variables by setting u = tan θ
2 and t = 1−|a|

1+|a|u. And

∫ ∞

0

(
(1 + |a|)2 + (1 − |a|)2t2

)k
(1 + t2)k+1

dt

=
∫ ∞

0

(
(1 + t2)|a|2 + 2(1 − t2)|a| + (1 + t2)

)k
(1 + t2)k+1

dt

=
k∑

p=0

k−p∑
q=0

∫ ∞

0

(k
p

)(k−p
q

)
2q |a|2p+q(1 − t2)q

(1 + t2)q+1
dt

=
k∑

p=0

[ k−p
2 ]∑

q=0

22q
(

k

p

)(
k − p

2q

)∫ ∞

0

(1 − t2)2q |a|2(p+q)

(1 + t2)2q+1
dt
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Complex Variables and Elliptic Equations 737

=
k∑

p=0

[ k−p
2 ]∑

q=0

22q−1
(

k

p

)(
k − p

2q

)
�(q + 1

2 )�( 1
2 )

�(q + 1)
|a|2(p+q)

=
k∑

l=0

l∑
p=max(0,2l−k)

22l−2p−1
(

k

p

)(
k − p

2l − 2p

)
�(l − p + 1

2 )�( 1
2 )

�(l − p + 1)
|a|2l

=
k∑

l=0

l∑
p=2l−k

22l−2p−1
(

k

p

)(
k − p

2l − 2p

)
�(l − p + 1

2 )�( 1
2 )

�(l − p + 1)
|a|2l

= π

2

k∑
l=0

k−l∑
p=0

k!
p!(2l + p − k)!((k − l − p)!)2

|a|2l

= π

2

k∑
l=0

(
k

l

)2

|a|2l ,

where [x] is the largest integer not greater than x , and we adopt the convention that
(k

p

) = 0
for p < 0. �

The above proposition leads to the following estimate, which is more precise than the
usual estimate (see [16]).

Corollary 2.1 If f ∈ H2(D), then

(1 − |a|2)k+ 1
2 | f (k)(a)| ≤ √

(2k)!‖ f ‖, ∀a ∈ D. (4)

Proof This follows from the Cauchy–Schwarz inequality

| f (k)(a)| = |〈 f, ϕk,a〉| ≤ ‖ f ‖‖ϕk,a‖,

and the fact that

k∑
l=0

(
k

l

)2

|a|2l ≤
k∑

l=0

(
k

l

)2

=
(

2k

k

)
.

�

Next, we shall show that all the elements in D are mono-components, except for e0,a .
Before this, we prove a criterion for mono-components which will be convenient for the
future study.

Theorem 2.1 Suppose f ∈ H2(D)
⋂

C1(D) is the holomorphic extension of some
analytic signal, with the expression

f (z) = f (reit ) = ρ(r, t)eiθ(r,t).
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738 J. Wang and T. Qian

If for every t ∈ [0, 2π), ∂ρ(r,t)
∂r > 0 in {r : 1 − δt < r < 1} (which implies that | f (z)|

increases as r ascends up to 1), then f is a mono-component, i.e.

θ ′(t) =
d

(
lim

r→1− θ(r, t)

)
dt

≥ 0, ∀t ∈ [0, 2π).

Proof The theorem follows from the relation

θ ′(t) = lim
r→1−

∂θ(r, t)

∂t

= lim
r→1− Re

(
eit f ′(z)

f (z)

)

= lim
r→1− Re

(
∂ log f (z)

∂r

)

= lim
r→1−

∂ log | f (z)|
∂r

= lim
r→1−

(
1

ρ(r, t)

∂ρ(r, t)

∂r

)
.

�

Corollary 2.2 If k > 0, then ek,a is a mono-component.

Proof Firstly, the boundary limit of ek,a is an analytic signal, since Im(ek,a(0)) = 0.
Secondly, we note that zk

(1−az)k+1 = z
(1−az)2 ( z

1−az )
k−1. Write z = reit , then computation

yields
∂

∂r

( |z|
|1 − az|2

)
= 1 − |a|2|z|2

|1 − az|4 > 0,

and
∂

∂r

( |z|2
|1 − az|2

)
= |z|(2 − az − za)

|1 − az|4 > 0.

So, |ek,a(reit )| = Ck,a
∣∣ z
(1−az)2

∣∣∣∣ z
1−az

∣∣k−1 is an increasing function of r for every t ∈
[0, 2π). �

Notice that if k = 0, ek,a is not a mono-component. Fortunately, 1
1−az = 1 + az

1−az , and
both 1 and z

1−az are mono-components, with the orthogonal relation 〈1, az
1−az 〉 = 0.

Thus, a given function f ∈ H2(D) can be associated to the mono-component decom-
position

f =
n∑

l=0

〈Rl f, ekl ,al 〉ekl ,al + Rn+1 f = Sn f + Rn+1 f, (5)

where Sn f := ∑n
l=0〈Rl f, ekl ,al 〉ekl ,al , Rn f is inductively defined by R0 f := f , Rn+1 f :=

Rn f − 〈Rn f, ekn ,an 〉ekn ,an , and we have by (3) that

〈Rl f, ekl ,al 〉 = Rl f (kl )(al)

‖ϕkl ,al ‖
for each l ∈ N. (6)
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Complex Variables and Elliptic Equations 739

If we are given a real-valued signal f̃ ∈ L2(∂D), then the mono-component decompo-
sition of f̃ can be obtained through the relation ([10])

f̃ (eit ) = 2Re
(

f +(eit )
)

− c0,

where

f +(z) = 1

2π

∫ 2π

0

f̃ (eit )

1 − ze−i t
dt ∈ H2(D), c0 = 1

2π

∫ 2π

0
f̃ (eit )dt.

Although collectively (5) is not an orthogonal decomposition, there still holds ([13])

‖ f ‖2 =
n∑

l=0

|〈Rl f, ekl ,al 〉|2 + ‖Rn+1 f ‖2.

Usually in pure greedy algorithm, to get a locally optimal projection of each iterated
residue onto the atoms in D, at each step ekl ,al should be sorted to fulfil the condition

|〈Rl f, ekl ,al 〉| ≥ α sup
g∈D

|〈Rl f, g〉|, (7)

where the optimality factor α is situated between 0 and 1. The main contribution of this
section is to prove that α can attain 1, which is in fact a corollary of the following theorem.

Theorem 2.2 Suppose f ∈ H2(D), then

lim
k→∞ |〈 f, ek,a〉| = 0 (8)

holds uniformly with respect to a ∈ D. Write a = |a|ξ , then

lim
|a|→1− |〈 f, ek,a〉| = 0 (9)

holds uniformly with respect to (k, ξ) ∈ N × ∂D.

Proof Let

T f,N (z) =
N∑

l=0

f (l)(0)

l! zl ,

in which N is large enough such that ‖ f − T f,N ‖ < ε. Therefore, if k > N , we will get

|〈 f, ek,a〉| ≤ |〈 f − T f,N , ek,a〉| + |〈T f,N , ek,a〉|
= |〈 f − T f,N , ek,a〉|
≤ ‖ f − T f,N ‖
< ε,

that proves (8). To show that (9) is uniform, in view of (8), it suffices to verify the truth for
any fixed k. Now, for each k ∈ N, we have

|〈 f, ek,a〉| ≤ |〈 f − T f,N , ek,a〉| + |〈T f,N , ek,a〉| ≤ ‖ f − T f,N ‖ + |T (k)
f,N (a)|

‖ϕk,a‖ .
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740 J. Wang and T. Qian

(9) then follows by observing that T (k)
f,N is a bounded function, and ‖ϕk,a‖ → ∞ as

|a| → 1−.
The proof of the theorem is complete. �

Let the adaptive mono-component decomposition (5) subject to the selection criterion
(7) with α = 1, we have

Theorem 2.3
‖Sn f − f ‖ = ‖Rn+1 f ‖ → 0 (n → ∞), (10)

and for any k ∈ N and any compact subset � of D, the pointwise convergence∣∣∣(Sn f )(k)(z) − f (k)(z)
∣∣∣ =

∣∣∣(Rn+1 f )(k)(z)
∣∣∣ → 0 (n → ∞) (11)

uniformly holds with respect to z ∈ �.

Proof (10) is a consequence of [13, Theorem 1] and the fact that spanD = span{zn}∞n=0 =
H2(D). In addition, from (4) we know that∣∣∣(Rn+1 f )(k)(z)

∣∣∣ ≤
√

(2k)!‖Rn+1 f ‖
(1 − |z|2)k+ 1

2

,

which, together with (10), gives (11). �

Example Let f (z) = z5

(2−z)4 , then f ∈ H2(D) and ‖ f ‖2 ≈ 0.112026. The adaptive
mono-component decomposition of f by the higher order Szegö kernels is given by

f (z) = c0ek0,a0(z) + c1ek1,a1(z) + c2ek2,a2(z) + R3 f (z), z ∈ D, (12)

where the parameters and coefficients are listed in Table 1. So, ‖R3 f ‖2 = ‖ f ‖2 − |c0|2 −
|c1|2 − |c2|2 ≈ 2.13 × 10−4.

If we use the adaptive Fourier decomposition (2), then

f (z) =
6∑

l=1

〈 f, B{a1,...,al }〉B{a1,...,al }(z) + R6 f (z) =
6∑

l=1

cl B{a1,...,al }(z) + R6 f (z).

The associated parameters and coefficients are shown inTable 2. By computation,‖R6 f ‖2 =
‖ f ‖2 −∑6

l=1 |cl |2 ≈ 0.004640.

Table 1. Parameters and coefficients for higher order Szegö kernels.

i Parameter ki Parameter ai Coefficient ci Energy |ci |2

0 5 0.3882 − 3.028 × 10−6i 0.333881 − 8.390 × 10−6i 0.111476
1 3 0.3687 − 0.4120i −2.664 × 10−3 − 0.013160i 1.803 × 10−4

2 7 0.5111 + 0.04472i 0.009354 + 0.008321i 1.567 × 10−4
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Complex Variables and Elliptic Equations 741

Table 2. Parameters and coefficients for TM system.

i Parameter ai Coefficient ci Energy |ci |2

1 0 0 0
2 0.9397 + 1.927 × 10−6i 0.210993 + 3.26454 × 10−6i 0.044518
3 0.8158 + 0.3376i 0.166207 + 0.064296i 0.031759
4 0.8582 − 0.3233i −0.091105 + 0.098243i 0.017952
5 0.9027 + 0.03013i −0.098430 − 0.004388i 0.009708
6 0.7291 − 0.5073i 0.047801 + 0.034118i 0.003449
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Figure 1. By higher order Szegö kernels.

If we choose the Fourier system for decomposition, then

f (z) = z5

16
+ z6

8
+ 5z7

32
+ 5z8

32
+ 35z9

256
+ 7z10

64
+ R11 f (z),

with the energy of the remainder term being ‖R11 f ‖2 ≈ 0.112026−0.099014 = 0.013012.
The approximation of f on the boundary ∂D by these methods is shown in Figures 1–3,

where the horizontal axis and vertical axis correspond, respectively, to the real part and
imaginary part of the boundary limit of the objective function. The composing-transient-
time-frequency distribution (CTTFD) (cf. [17]) based on the density of instantaneous fre-
quency (cf. [18,19]) for decomposition (12) is displayed in Figure 4. Comparing these three
methods, we could see clearly that the first method outperforms others for f .
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Figure 2. By adaptive Fourier decomposition.
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Figure 3. By Fourier system.
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Figure 4. CTTFD for decomposition (12).

3. The case for the upper half-plane

Denote the upper half-plane {z ∈ C : Im z > 0} by C
+. Let f be holomorphic on C

+, we
say f ∈ H2(C+) if

‖ f ‖ := sup
y>0

(
1

2π

∫ ∞

−∞
| f (x + iy)|2dx

)1/2

< ∞.

H2(C+) is endowed with the inner product

〈 f, g〉 := 1

2π

∫ ∞

−∞
f (x)g(x)dx,

where f (x) := limy→0+ f (x + iy) for almost every x ∈ R.
H2(D) is isometrically isomorphic to H2(C+) under the map

(T f )(z) =
√

2

z + i
f

(
i − z

i + z

)
, f ∈ H2(D).

However, the image of a higher order Szegö kernel function in H2(D) under this map is no
longer a higher order Szegö kernel function in H2(C+), except for the Szegö kernel function
of order 0. The main purpose of this section is to investigate for H2(C+) the analogue of
what we have done in the unit disc.

The dictionary consists of the higher order Szegö kernels for this case is

D =
{

ek,a = ϕk,a

‖ϕk,a‖ : k ∈ N, a = a0 + ia1 ∈ C
+
}

,
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744 J. Wang and T. Qian

where

ϕk,a(z) = ∂k

∂ak
0

(
1

z − a

)
= k!

(z − a)k+1
,

and

‖ϕk,a‖2 = (k!)2

2π

∫ ∞

−∞
dx(

(x − a0)2 + a2
1

)k+1
= (2k)!

(2a1)2k+1
.

For any f ∈ H2(C+), there holds

〈 f, ek,a〉 = i(2a1)
k+ 1

2 f (k)(a)√
(2k)! .

Consequently,

(2a1)
k+ 1

2 | f (k)(a)| ≤ √
(2k)!‖ f ‖, ∀a ∈ C

+.

Similarly, we have

Proposition 3.1 For any (k, a) ∈ N × C
+, ek,a is a mono-component.

This can be easily verified in view of the following theorem.

Theorem 3.1 Suppose f ∈ H2(C+)
⋂

C1(C+), with the representation

f (z) = f (x + iy) = ρ(x, y)eiθ(x,y).

If for every x ∈ R, ∂ρ(x,y)
∂y < 0 in {y : 0 < y < δx }, then f is a mono-component, i.e.

θ ′(x) =
d

(
lim

y→0+ θ(x, y)

)
dx

≥ 0, ∀x ∈ R.

Proof

θ ′(x) = lim
y→0+

∂θ(x, y)

∂x

= lim
y→0+ Re

(−i f ′
x (x + iy)

f (x + iy)

)

= − lim
y→0+ Re

(
f ′
y(x + iy)

f (x + iy)

)

= − lim
y→0+ Re

(
∂ log f (z)

∂y

)

= − lim
y→0+

∂ log | f (z)|
∂y

= − lim
y→0+

(
1

ρ(x, y)

∂ρ(x, y)

∂y

)
.

�
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The adaptive mono-component decomposition for f ∈ H2(C+) is given by

f =
n∑

l=0

〈Rl f, ekl ,al 〉ekl ,al + Rn+1 f, (13)

subject to the condition

|〈Rl f, ekl ,al 〉| = sup
(k,a)∈N×C+

|〈Rl f, ek,a〉|, (14)

which is guaranteed by

Theorem 3.2 Suppose f ∈ H2(C+), then

lim
k→∞ |〈 f, ek,a〉| = 0 (15)

holds uniformly with respect to a ∈ C
+;

lim
a1→0+ |〈 f, ek,a〉| = lim

a1→∞ |〈 f, ek,a〉| = 0 (16)

holds uniformly with respect to (k, a0) ∈ N × R, and

lim|a0|→∞ |〈 f, ek,a〉| = 0 (17)

holds uniformly with respect to (k, a1) ∈ N × (0,∞).

Proof Since span{e0,b : b ∈ C+} = H2(C+), for any ε > 0 there exists

T f,N (z) =
N∑

l=1

cl

z − bl

such that ‖ f − T f,N ‖ < ε. Thus

|〈 f, ek,a〉| ≤ |〈 f − T f,N , ek,a〉| + |〈T f,N , ek,a〉| < ε +
N∑

l=1

|cl |
∣∣∣∣
〈

1

z − bl
, ek,a

〉∣∣∣∣ .
For each bl ∈ C

+ (1 ≤ l ≤ N ), we have∣∣∣∣
〈

1

z − bl
, ek,a

〉∣∣∣∣ =
∣∣∣∣∣ i(−1)kk!(2a1)

k+ 1
2√

(2k)!(a − bl)k+1

∣∣∣∣∣
=
√

(2k)!!
(2k − 1)!!

√
2a

k+ 1
2

1

|a − bl |k+1

≤
√

(2k)!!
(2k − 1)!!

√
2a

k+ 1
2

1

(a1 + Im bl)k+1
.

By Stirling’s formula,
(2k)!!

(2k − 1)!! ∼ √
kπ,
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746 J. Wang and T. Qian

and we note that
√

2a
k+ 1

2
1

(a1+Im bl )
k+1 takes the maximum at a1 = (2k + 1)Im bl . Hence,

∣∣∣∣
〈

1

z − bl
, ek,a

〉∣∣∣∣ ≤ C
k

1
4 (2k + 1)k+ 1

2√
Im bl(2k + 2)k+1

≤ C√
Im bl

k− 1
4 ,

that proves (15). (16) and (17) then follow from the estimate for any fixed k ∈ N:

∣∣∣∣
〈

1

z − bl
, ek,a

〉∣∣∣∣ =
√

2(2k)!!
(2k − 1)!!

a
k+ 1

2
1

|a − bl |k+1
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ck,bl a
k+ 1

2
1 if a1 is small,

Ck√
a1

if a1 is large,

Ck,bl a
k+ 1

2
1

|a0|k+1 if |a0| is large.

�

Analogous to Theorem 2.3, we have for the adaptive decomposition (13) that

Theorem 3.3

‖Rn+1 f ‖ → 0 (n → ∞), (18)

and for any k ∈ N and any t > 0,

(Rn+1 f )(k)(z) → 0 (n → ∞) (19)

uniformly holds on {z ∈ C : Im z ≥ t}.
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