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Abstract Boundary value problems on a manifold with smooth boundary are closely
related to the edge calculus where the boundary plays the role of an edge. The problem
of expressing parametrices of Shapiro–Lopatinskij elliptic boundary value problems
for differential operators gives rise to pseudo-differential operators with the trans-
mission property at the boundary. However, there are interesting pseudo-differential
operators without the transmission property, for instance, the Dirichlet-to-Neumann
operator. In this case the symbols become edge-degenerate under a suitable quanti-
sation, cf. Chang et al. (J Pseudo-Differ Oper Appl 5(2014):69–155, 2014). If the
boundary itself has singularities, e.g., conical points or edges, then the symbols are
corner-degenerate. In the present paper we study elements of the corresponding corner
pseudo-differential calculus.
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1 Introduction

Elliptic operators on a smooth manifold with boundary are determined by a principal
symbolic hierarchy σ = (σ0, σ1) where σ0 = σ0(A) is the homogeneous principal
symbol of the given elliptic operator A and σ1 = σ1(A) the twisted homogeneous
boundary symbol which is responsible for the boundary conditions. For instance, if
A = � =∑n

j=1 ∂2/∂2x j is the Laplacian in the half-space R
n+ = {x = (x ′, xn) : x ′ =

(x1, . . . , xn−1) ∈ R
n−1, xn > 0}, then we have σ0(A)(ξ) = −|ξ |2, considered for

ξ �= 0, and

σ1(A)(ξ ′) = −|ξ ′|2 + ∂2/∂2xn : Hs(R+)→ Hs−2(R+) (1.1)

for ξ ′ �= 0. Here ξ and ξ ′ are the covariables belonging to x and x ′, respectively;
clearly, if A has variable coefficients, then we have σ0(A) = σ0(A)(x, ξ) and σ1(A) =
σ1(A)(x ′, ξ ′). In (1.1) we assume an arbitrary s > 3/2. Then (1.1) is a family of
Fredholmoperators, even surjective in this case, and there aremany choices of operator
families

σ1(T )(ξ ′) : Hs(R+)→ C

which fill up (1.1) to a column matrix of isomorphisms

σ(A)(ξ ′) :=
(

σ1(A)

σ1(T )

)

(ξ ′) : Hs(R+)→
Hs−2(R+)

⊕
C

.

For instance, for T we can take Tk, defined by Tku := (∂/∂xn )
ku|xn=0, correspond-

ing to Dirichlet (for k = 0) or Neumann (for k = 1) conditions. There is also the
famous category of mixed elliptic problems where the boundary is subdivided into
submanifolds with smooth boundary, e.g.,
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R
n−1 = R

n−1
− ∪ R

n−1
+ (1.2)

for R
n−1
− := {x ′ = (x ′′, xn−1) ∈ R

n−1 : xn−1 ≤ 0}, x ′′ = (x1, . . . , xn−2), and R
n−1
+

determined by xn−1 ≥ 0. Then R
n−2 = R

n−1
− ∩ R

n−1
+ is the common boundary. In

mixed boundary value problems we assume boundary conditions with a jump across
R
n−2, for instance, Dirichlet conditions on the minus and Neumann conditions on the

plus side.
Reducing the Neumann problem to the boundary bymeans of the Dirichlet problem

gives rise to a classical elliptic first order pseudo-differential operator on the Neumann
side of the boundarywhich has not the transmission property atRn−2, see, for instance,
[4]. A rigorous pseudo-differential calculus of boundary value problems in this case
requires the edge calculus which treats the interface on the boundary as an edge.
However, if the edge itself has singularities, thenwe have a case of corner singularities,
and this is just the situation of the present paper. For instance, instead of (1.2) we can
consider a decomposition

R
n−1 = M− ∪ M+ for M+ := R

n−3
x1,...,xn−3 × I�, M− := R

n−1\intM+, (1.3)

where I� is a cone in the (xn−2, xn−1)-plane, for (t, r) := (xn−2, xn−1) defined by

I := {(t, r) ∈ R
2 : t = 1, 0 ≤ r ≤ 1} and I� := {(t, tr) : t ∈ R+, 0 ≤ r ≤ 1}.

(1.4)
In this case M+ is a domain with boundary R

n−3 × ∂ I� and edge Rn−3. The cone
I� is regarded as a corner with two axial variables t ∈ R+ and 0 ≤ r ≤ 1, see
also notation below in Sect. 2. The interval I is treated as a manifold with conical
singularities r = 0 and r = 1. The task to establish an algebra of pseudo-differential
operators with ellipticity and parametrices is voluminous. Therefore in this article we
develop some typical elements of the general calculus. Examples and special cases
will be investigated in a forthcoming paper. More ideas and motivation may also be
found in [11].

This article is organised as follows. The material in Sects. 1 and 2 consists of neces-
sary preparations of the iterative process of establishing pseudo-differential structures
on higher singular configurations. In Sect. 2.1 we define a category of manifolds with
second order singularities which contains, in particular, domains with non-smooth
boundary, e.g., wedges as sketched before. In Sect. 2.2 we establish necessary tools
on weighted Sobolev spaces with double weights, based on the Mellin transform and
with a control at conical exits to infinity of the underlying configuration. Section 2.3
treats subspaces with iterated asymptotics, and we introduce Green symbols which
play a role as specific operator-valued symbols in the corner pseudo-differential cal-
culus. Section 3 is devoted to one of the crucial ingedients of the corner calculus,
namely, operator-valued Mellin symbols with a control of asymptotics in corner axis
direction, combined with asymptotics close to the conical singularities on the base I
of the model cone of the wedge. In Sect. 4.1 we pass to the non-smoothing elements
of the corner calculus, first to corner-degenerate differential operators and their prin-
cipal symbolic hierarchies associated with the stratification of the underlying corner
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configuration. After that we consider corner-degenerate pseudo-differential symbols
and construct various quantisations in form of operator-valued symbols with twisted
homogeneity, referring to the spaces on the infinite stretched cone I∧ from Sects. 2.2
and 2.3. Themain new results of Sect. 4.1 are Proposition 4.7 and Theorem 4.8. Owing
to the ideas of the iterative program they appear as natural generalisations of the first
order edge calculus. In Sect. 4.2 we establish other essential structures of the corner
pseudo-differential calculus, in particular, Theorems 4.9 and 4.12.

After the experiencewith pseudo-differential operators onmanifoldswith conical or
edge singularities, see [16,20], or the monographs [21,22], the program of expressing
parametrices to elliptic differential operators with some typical degenerate behaviour
in stretched coordinates, creates a number of additional types of operators referring
to the singularities or strata of the underlying configuration. Those are, for instance,
Green, trace, and potential operators as they already appear in the solution process
of classical elliptic boundary value problems, see, Boutet der Monvel [1], or Rempel
and Schulze [14]. Another important class are Mellin operators. Specific operators of
that kind have been discovered by Eskin [7] in connection with a pseudo-differential
algebra generated by truncated operators on the half-axis. Mellin operators in more
general form have been established in cone theories, cf. [16,23], and boundary value
problems without the transmission property at the boundary, cf. [15,25], and later on
in edge theories, see [20,22].

Another specific point are weighted cone and edge spaces and subspaces with
asymptotics where the above-mentioned operators act in a natural way. In the edge
situation the exponents in r p, p ∈ C, for the distance variable r to the singularity may
be variable, and this requires adequate singular functions of such edge asymptotics
and new elements of the Green and Mellin calculus. Variable asymptotics in that
sense have been studied in general form in [21]. Since then this concept is integrated
in the subsequent development under the key-words variable discrete and continuous
asymptotics, see, in particular, [26,28], and the references there.

All these aspects formulate in advance the structure of parametrices and regularity
properties of solutions to elliptic equations on a singular manifold, also on manifolds
with higher edges and corners. Because of the extent of such a programherewe confine
ourselves to a part of the new structures that participate in parametrices and regularitiy
for boundary value problems on corner manifolds.

2 Weighted Spaces on Manifolds with Boundary and Edge

2.1 Singular Manifolds

Let M be a stratified space, in our case a disjoint union

M = s0(M) ∪ s1(M) ∪ s2(M)

of strata s j (M) ⊂ M, j = 0, 1, 2, which are embedded smooth manifolds,

dim s0(M) = 2+ d, dim s1(M) = 1+ d, dim s2(M) = d
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for some d ∈ N\{0}. Here M\s2(M) is a smooth manifold with boundary
∂(M\s2(M)) = s1(M), s0(M) = int (M\s2(M)), and s2(M) =: Z is an edge of
M. We assume that Z has a neighbourhood V in M with the structure of a locally
trivial I�-bundle over Z . Here I := {r ∈ R+ : 0 ≤ r ≤ 1} is the unit interval and

I� := (R+ × I )/({0} × I })

the infinite straight cone with base I . The assumed length of the interval is unessential;
we could take an interval {c0 ≤ r ≤ c1} for any c0 < c1 as well. We often consider
the stretched cones

I∧ := R+ × I, I∧ := R+ × I

with the splitting of variables (t, r) and the stretched wedges I∧ × R
d , I∧ × R

d in
the variables (t, r, z).

Incidentally the stratification of M will be indicated by the sequence of strata

s(M) := (s0(M), s1(M), s2(M)). (2.1)

An example is the wedge M = I� × R
d . In this case we have s0(M) = int I∧ ×

R
d , s1(M) = ∂ I∧ × R

d , and s2(M) = R
d . The boundary ∂ I∧ has two components

∂0 I∧, ∂1 I∧ (2.2)

that are copies of R+, associated with ∂ I = {0, 1}.
With the above-mentioned V we can also associate an I∧-bundle over Z , i.e., a

locally trivial bundlewith fibre I∧.This contains corresponding I∧- and I -subbundles.
The transitions of fibres of the I∧-bundle are defined as homeomorphismsR+× I →
R+× I that are restrictions of diffeomorphismsR× I → R× I (as smooth manifolds
with boundary) to R+ × I.

In the case M = I�×R
d the I∧-bundle is trivial, namely, I∧×R

d , and it contains
the trivial subbundles I∧ × R

d and I × R
d . The space M := I∧ × R

d plays the role
of the stretched manifold associated with M. It is obtained from M by attaching the
I -bundle I × R

d to M\Z .

For general M we obtain the stretched manifold M by invariantly attaching the
above-mentioned I -bundle V over Z to M\Z .

For purposes below we call a trivialisation of V over a coordinate neighbourhood
D ⊂ Z a singular chart

χ : V |D → I� × R
d .

This is considered together with a chart χ0 : D→ R
d on Z such that χ0 ◦ π = π ◦ χ

with π being the respective bundle projection. The restriction of χ to V |D\Z gives
rise to a map

χst : V |D\Z → R+ × I × R
q (2.3)

and to a local splitting of variables (t, r, z) ∈ R+ × I × R
q .
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Remark 2.1 Our space M will also be interpreted as a manifold with boundary ∂M :=
∂(M\Z)∪ Z where ∂M is a manifold with edge Z . The program of the analysis here
is to perform a calculus of boundary value problems for pseudo-differential operators
that do not necessarily have the transmission property at ∂(M\Z). This requires a
suitable corner pseudo-differential approach. According to (2.1) the operators A in
this calculus have a principal symbolic hierarchy

σ(A) := (σ0(A), σ1(A), σ2(A)). (2.4)

This will be developed below.

The space M with the stratification (2.1) belongs to the category M2 of mani-
folds with second order singularities, in the terminology of [24]. WhileM0 indicates
smoothness, M1 is the category of manifolds with conical singularities or edge. The
elements B ∈M1 have a stratification

s(B) = (s0(B), s1(B))

with Y := s1(B) ∈ M0 being the conical singularity or edge of B and s0(B) :=
B\s1(B) ∈M0 the main stratum. It is assumed that Y has a neighbourhood W ⊂ B
with the structure of a locally trivial X�-bundle over Y for some X ∈ M0. Let
π : W → Y be the bundle projection. Trivialisations

χ : W |G → X� × R
q ,

q := dim Y, belonging to charts χ0 : G → R
q on Y (where χ0 ◦ π = π ◦ χ ) will be

referred to as singular charts on B. The restriction of χ to W |G\Y gives rise to a map

χst : W |G\Y → R+ × X × R
d (2.5)

and to a local splitting of variables (r, x, y) ∈ R+ × X × R
d .

Similarly as before the X�-bundle over Y can be considered together with an
R+× X bundle over Y. This contains an X -bundleW ′ over Y as a subbundle. It can be
invariantly attached to B\Y, and we then obtain the stretched manifold B associated
with B. Then B is a manifold with smooth boundary ∂B = W ′. An example is the
case B := X� ×R

q which can be identified with W. Moreover, B = R+ × X ×R
q ,

and W ′ = X × R
q .

2.2 Weighted Corner Spaces

Let us now establish some tools on weighted corner Sobolev spaces. Consider the
Mellin transform

Mu(w) :=
∫ ∞

0
rw−1u(r)dr,



Boundary Value Problems 1163

first for u ∈ C∞0 (R+), with the inverse (M−1g)(r) = ∫
�β

r−wg(w)d-w, d-w :=
(2π i)−1dw. Here

�β := {w ∈ C : Rew = β}

for some real β. Incidentally, in order to indicate the variable r and its covariable
w ∈ C in the Mellin transform we also write Mr→w rather than M . Extending the
Mellin transform to, say, rγ L2(R+), γ ∈ R, then we take β = 1/2− γ. In this case
M induces an isomorphism

Mγ : rγ L2(R+)→ L2(�1/2−γ ),

and Mγ is called the weighted Mellin transform with weight γ. The weighted Mellin
Sobolev spaceHs,γ1(R+) of smoothness s and weight γ1 is defined as the completion
of C∞0 (R+) with respect to the norm

‖u‖Hs,γ1 (R+) =
{∫

�1/2−γ1

〈w〉2s |(Mr→wu)(w)|2d-w
}1/2

,

s, γ1 ∈ R.
Similar spaces will play a role with respect to a second half-axis variable t and its

Mellin covariable v ∈ C, and a weight γ2. We define the space

Hs,γ2(R+ × R
n)

for some n ∈ N as the completion of C∞0 (R+ × R
n) with respect to the norm

‖u‖Hs,γ2 (R+×Rn) =
{∫

Rn

∫

�(1+n)/2−γ2

〈v, ξ 〉2s |(Mt→vFx→ξu)(v, ξ)|2d-vd- ξ
}1/2

(2.6)
with Fx→ξ being the Fourier transform in Rn � x . Then for any closed C∞ manifold
X we have the space Hs,γ2(R+ × X) with the norm

‖u‖Hs,γ2 (R+×X) =
⎧
⎨

⎩

N∑

j=1
‖ϕ j u ◦ (idR+ × χ j )

−1‖2Hs,γ2 (R+×Rn)

⎫
⎬

⎭

1/2

.

Here χ j : Uj → R
n, j = 1, . . . , N , are charts for an open covering of X by

coordinate neighbourhoods {U1, . . . ,UN }, and {ϕ1, . . . , ϕN } is a subordinate partition
of unity.

If a Fréchet space E is a left module over an algebra A then we set [a]E :=
closure of {ae : e ∈ E} in E . Moreover, if E0, E1 are Fréchet spaces, embedded in
a Hausdorff topologial vector space, we define the non-direct sum E0 + E1 in the
Fréchet topology from the identification E0 + E1 ∼= E0 ⊕ E1/� for � := {(e,−e) :
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e ∈ E0 ∩ E1}. In particular, the non-direct sum of Hilbert spaces is again a Hilbert
space as the orthogonal complement of � in the direct sum.

We define

Ks,γ (R+) := {
ωu + (1− ω)v : u ∈ Hs,γ (R+), v ∈ Hs(R+)

}
, (2.7)

s, γ ∈ R, where ω is a cut-off function on the r half-axis, i.e., ω ∈ C∞(R+) real-
valued, ω = 1 close to r = 0, ω = 0 for r off some neighbourhood of r = 0. The
choice of ω is not essential for (2.7). However, we fix ω and endow the space with the
Hilbert space structure of the non-direct sum

Ks,γ (R+) = [ω]Hs,γ (R+)+ [1− ω]Hs(R+).

Moreover, let
Ks,γ ;e(R+) := 〈r〉−eKs,γ (R+) (2.8)

for any s, γ, e ∈ R. For s = γ = e = 0 we have natural identifications

K0,0;0(R+) = K0,0(R+) = H0,0(R+) = L2(R+). (2.9)

The K0,0;0(R+)-scalar product induces non-degenerate sesquilinear pairings

Ks,γ ;e(R+)×K−s,−γ ;−e(R+)→ C and Hs,γ (R+)×H−s,−γ (R+)→ C (2.10)

for every s, γ, e ∈ R.

Note that the dilation operator ιδ : u(r) �→ u(δr), δ ∈ R+, acts both on
Hs,γ (R+), Hs(R+), andKs,γ (R+) orKs,γ ;e(R+).Moreover, ∂ j

r = (∂/∂r) j induces
continuous operators

∂
j
r : Hs,γ (R+)→ Hs− j,γ− j (R+), Hs(R+)→Hs− j (R+),

Ks,γ (R+)→ Ks− j,γ− j (R+)

where

∂
j
r = δ j ιδ ∂

j
r ι−1δ , δ ∈ R+.

For s ∈ N we have an equivalence of norms

‖u‖Ks,γ (R+) ∼
{‖u‖2K0,γ (R+)

+ ‖∂sr u‖2K0,γ−s (R+)

}1/2
. (2.11)

More generally, if X is a closed C∞ manifold we define

Ks,γ (X∧) := [ω]Hs,γ (X∧)+ [1− ω]Hs
cone(X

∧). (2.12)

Here Hs
cone(X

∧) is the set of all u ∈ Hs
loc(R × X)|R+×X such that for any chart

χ : U → R
n on X and β : R+ × U → R

1+n defined by β(r, x) = (r, rχ(x)) we
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have (1−ω)ϕu ◦ β−1 ∈ Hs(R1+n), for any ϕ ∈ C∞0 (U ) and a cut-off function ω on
the r half-axis. There is an anologue of the relation (2.11) for the spaces (2.12), cf.
[27, Proposition 1.2].

For a function in (r, x) ∈ X∧ we set

(1 κδ)u(r, x) := δ(n+1)/2u(δr, x), δ ∈ R+. (2.13)

This is a group action on the space Ks,γ (X∧) in the following sense. A Hilbert space
H is said to be endowed with a group action κ = {κδ}δ∈R+, if κδ : H → H is an
isomorphism for every δ, moreover, κδκν = κδν, δ, ν ∈ R+, and if δ → κδh defines
an element of C(R+, H) for every h ∈ H.

Now if H is a Hilbert space with group action, then

Ws(Rq , H), (2.14)

s ∈ R, is defined as the completion of C∞0 (Rq , H) with respect to the norm

‖u‖Ws (Rq ,H) =
{∫

〈η〉2s‖κ−1〈η〉 û(η)‖2Hd-η
}1/2

,

for d-η := (2π)−qdη and the Fourier transform û(η) = Fy→ηu(η) in Rq .

Clearly the spaces (2.14) depend on the choice of κ. If necessary we write

Ws(Rq , H)κ

rather than (2.14).
It can be easily verified thatWs(Rq , H)κ ⊂ S ′(Rq , H).Analogously as in notation

for standard Sobolev spaces for any open set � ⊆ R
q we have the spaces

Ws
comp(�, H)κ and Ws

loc(�, H)κ

where Ws
comp(�, H)κ consists of all elements of Ws(Rq , H)κ which have compact

support in �, while Ws
loc(�, H)κ is the space of those u ∈ D′(�, H) such that

ϕu ∈Ws(Rq , H)κ for every ϕ ∈ C∞0 (�).

Recall from [21] that a motivation of the definition of (2.14) is the anisotropic
reformulation of standard Sobolev spaces Hs(Rm × R

q) over a Cartesian product
R
m × R

q � (x, y) as

Hs(Rm×R
q) =Ws(Rq , Hs(Rm))κ for (κδu)(x) = δm/2u(δx), δ ∈ R+. (2.15)

More generally we have the following iterative property.

Proposition 2.2 [21] Let H be a Hilbert space with group action κ = {κδ}δ∈R+ . Then
alsoWs(Rq , H)κ is a Hilbert space with group action χ = {χδ}δ∈R+ for (χδu)(y) :=
δq/2κδu(δy) where κδ acts on the values of u in H, and for every p ∈ N we have

Ws(Rp,Ws(Rq , H)κ)χ =Ws(Rp+q , H)κ .
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Remark 2.3 Let Rq
+ be the half-space in R

q � y = (y1, . . . , yq), defined by yq > 0.
Analogously we defineR

q
+, R

q
− andR

q
− by yq ≥ 0, yq < 0, and yq ≤ 0, respectively.

Setting

Ws(R
q
+, H) :=Ws(Rq , H)|

R
q
+ , Ws

0(R
q
−, H)) := {u ∈Ws(Rq , H)) : supp u ⊆ R

q
−}

we have a natural identification

Ws(R
q
+, H) =Ws(Rq , H)/Ws

0(R
q
−, H),

and bothWs(R
q
+, H) andWs

0(R
q
−, H) are Hilbert spaces with group action, induced

byχ={χδ}δ∈R+ of Proposition 2.2. The group actionWs
0(R

q
−, H) is simply the restric-

tion of χ to the subspace of elements supported by R
q
−, while that on Ws(R

q
+, H) is

the corresponding quotient map.

Remark 2.4 It is necessary to formulate more results on abstract wedge spaces
Ws(Rq , H) for Hilbert spaces H with group action κ in general. In our applica-
tions we have in mind more specific spaces, such as weighted cone Sobolev spaces
H := Ks,γ (X∧), etc. Also Fréchet subspaces with group action will be of interest.
The following invariance property under diffeomorphisms is valid for the concrete
spaces of our applications, cf. [22, Theorem 3.1.29]. Let �, �̃ ⊆ R

q be open sets and
χ : �→ �̃ a diffeomorphism. Then the pull back χ∗ induces isomorphisms

χ∗ :Ws
comp(�̃, H)→Ws

comp(�, H), Ws
loc(�̃, H)→Ws

loc(�, H)

for every s ∈ R.

Let us consider the space (2.14) for q = 1. SinceWs(R, H) ⊂ S ′(R, H) it makes
sense to form Ws(R+, H) := Ws(R, H)|R+ . Moreover, let Ws

0(R−, H) := {u ∈
Ws(R, H) : supp u ⊆ R−}. The latter space is closed in Ws(R, H), and we have a
canonical identification

Ws(R+, H) =Ws(R, H)/Ws
0(R−, H). (2.16)

Notation with calligraphic letters such as Hs,γ1(R+), Ks,γ1(R+), Ws(Rq , H),

etc., indicate a situation where the underlying manifold such asR+ orRq affects prop-
erties ‘up to the non-compacts ends’ of the configuration, e.g., up to r → 0, r →∞,

or |y| → ∞. However, if such aspects are not in the focus of considerations we prefer
notation similar to standard Sobolev spaces.

An example are the following spaces on the interval I, regarded as a compact
manifold with conical singularities r = 0 and r = 1, namely,

Hs,γ1,0,γ1,1(I ) := [ω0]Hs,γ1,0(R+)+ ϑ∗[ω1]Hs,γ1,1(R+) for s, γ1,0, γ1,1 ∈ R,

(2.17)
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defined by

ϑ :1R− := {r ∈ R : −∞ < r ≤ 1} → R+, ϑ(r) = −r + 1, (2.18)

and cut-off functions ω0, ω1 on the half-axis such that ω0(r)+ω1(−r +1) = 1 for all
r ∈ I. For convenience from now on we assume that the weights at the end points of I
are equal, i.e., γ1,0 = γ1,1. The generalisation to different γ1,0, γ1,1 is straightforward.

Definition 2.5 Let B be a manifold with edge Y (not necessarily compact). Then
Hs,γ1
[loc)(B) for s, γ1 ∈ R is defined as the set of all u ∈ Hs

loc(B\Y ) such that for any
singular chart

χ : W |G → X� × R
q

belonging to a chart χ0 : G → R
q on Y and

χst := χ |W |G\Y : W |G\Y → X∧ × R
q

we have

(χ−1st )∗σu ∈Ws(Rq ,Ks,γ1(X∧))1 κ

for any σ ∈ C∞(B) of the form σ = χ∗stσ0 for some cut-off function σ0 on the
half-axis.

Let us now recall a few notions on operator-valued symbols with twisted symbolic
estimates that we also need later on in connection with edge amplitude functions of
second singularity order.

Given Hilbert spaces H and H̃ with group action κ and κ̃, respectively, by Sμ(U ×
R
q; H, H̃) for μ ∈ R and open U ⊆ R

p we denote the set of all a(y, η) ∈ C∞(U ×
R
q ,L(H, H̃)) such that

‖κ̃−1〈η〉 {Dα
y D

β
η a(y, η)}κ〈η〉‖L(H,H̃) ≤ c〈η〉μ−|β| (2.19)

for all (y, η) ∈ K×R
q , K � U, α ∈ N

p, β ∈ N
q , for constants c = c(K , α, β) > 0.

Moreover, let
S(ν)(U × (Rq\{0}); H, H̃), (2.20)

ν ∈ R, be the space of all a(ν)(y, η) ∈ C∞(U × (Rq\{0}),L(H, H̃)) such that

a(ν)(y, δη) = δνκ̃δa(ν)(y, η)κ−1δ

for all δ ∈ R+. Then Sμ
cl(U × R

q; H, H̃) ⊂ Sμ(U × R
q; H, H̃), the set of classical

elements a(y, η), is defined by the condition

a(y, η)−
N∑

j=0
χ(η)a(μ− j)(y, η) ∈ Sμ−(N+1)(U × R

q ; H, H̃)
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for suitable a(μ− j)(y, η) ∈ S(μ− j)(U × (Rq\{0}); H, H̃), j ∈ N, for every N ∈ N.

Here χ is an excision function (i.e., an element of C∞(R
q
η) which is equal to 0 for

|η| < ε0 and equal to 1 for |η| > ε1, for some 0 < ε0 < ε1). Clearly the spaces
Sμ(U × R

q ; H, H̃) depend on the choice of κ, κ̃. Also the notion of homogeneous
components in classical symbols can depend on the group actions.

Remark 2.6 Let a(y, η) ∈ C∞(U × R
q ,L(H, H̃)) and a(y, δη) = δμκ̃δa(y, η)κ−1δ

for all δ ≥ 1 and |η| ≥ C for someC > 0.Thenwehavea(y, η) ∈ Sμ
cl(U×Rq; H, H̃).

For any a(y, y′, η) ∈ Sμ(�×�× R
q ; H, H̃), � ⊆ R

q open, we set

Op(a)u(y) :=
∫∫

ei(y−y′)ηa(y, y′, η)u(y′)dy′d-η,

for u ∈ C∞0 (�, H). There are many types of continuity results for operators Op(a).

For instance, we have continuity of

Op(a) : C∞0 (�, H)→ C∞(�, H̃), Ws
comp(�, H)→Ws−μ

loc (�, H̃), s ∈ R,

(2.21)
or, when a = a(η) has constant coefficients,

A := Op(a) :Ws(Rq , H)→Ws−μ(Rq , H̃), s ∈ R. (2.22)

Concerning more subtle cases, see, e.g., [21,30]. If a consideration is valid both for
classical and general symbols we write subscripts “(cl)”.

Let us assume � = R
q and a(η) ∈ Sμ

(cl)(R
q
η; H, H̃). Then a simple computation

shows that

‖A‖L(Ws (Rq ,H),Ws−μ(Rq ,H̃)) = supη∈Rq 〈η〉−μ‖a(η)‖L(H,H̃). (2.23)

Let ψR(θ) be in C∞0 (R
q
θ ), and ψR(θ) ≡ 1 for |θ | ≤ R/2, ψR(θ) ≡ 0 for |θ | ≥

R/2. Setting a0(y, y′, η) := ψR(y − y′)a(η) the operator AR := Op(a0) is properly
supported. In addition

AR :Ws(Rq , H)→Ws−μ(Rq , H̃) (2.24)

is continuous for every s ∈ R. In fact, let us set

k(a0)(θ) =
∫

eiθηψR(θ)a(η)d-η.

Then k(a0)(y − y′) is the distributional kernel of AR, and we can write

AR = A + CR

for A = Op(a) and

CRu(y) :=
∫∫

ei(y−y′)η(ψR(y − y′)− 1)a(η)u(y′)dy′d-η.
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We can write CR = Op(cR) for cR(η) = ∫
e−iθηk(cR)(θ)dθ where k(cR)(θ) =∫

eiθη(ψR(θ) − 1)a(η)dη. We have cR(η) ∈ S(R
q
η,L(H, H̃)) = S−∞(Rq; H, H̃).

Since Op(cR) :Ws(Rq , H)→W−∞(Rq , H̃) is continuous for every s, and because
of the continuity of (2.22) we also obtain the continuity of (2.24).

Note that for aR(η) := ∫
e−iθηk(a0)(θ)dθ ∈ Sμ

(cl)(R
q; H, H̃) we have AR =

Op(aR), and also this gives us the continuity of (2.24).

Lemma 2.7 We have

aR(η)→ a(η) for R →∞

in Sμ
(cl)(R

q; H, H̃), and hence

Op(aR)→ Op(a) for R →∞

in L(Ws(Rq , H),Ws−μ(Rq , H̃)).

This result is known in the context of kernel cut-off operators, cf. [22, Remark 1.1.51].

Proposition 2.8 Let a ∈ Sμ(Rq; H, H̃), and assume that

a(η) : H → H̃ for all η ∈ R
q

defines isomorphisms, and a−1 ∈ S−μ(Rq; H, H̃). Then for every s ∈ R

(i)

Op(a) :Ws(Rq , H)→Ws−μ(Rq , H̃)

is an isomorphism;
(ii) there is an R1 > 0 such that for all R ≥ R1 both

Op(aR) :Ws(Rq , H)→Ws−μ(Rq , H̃) (2.25)

and
Op(aR) :Ws

comp(R
q , H)→Ws−μ

comp(R
q , H̃) (2.26)

are isomorphisms.

Proof (i) follows from Op−1(a) = Op(a−1).
(ii) is a consequence of (i) together with the convergence Op(aR) → Op(a) in the

space L(Ws(Rq , H),Ws−μ(Rq , H̃)) for R → ∞. In fact, for sufficiently large
R the operator (2.25) is an isomorphism, since isomorphisms form an open set
in L(Ws(Rq , H),Ws−μ(Rq , H̃)), but Op(aR) is properly supported for every
R > 0 and hence defines a map (2.26) which is obviously bijective when R is
sufficiently large. ��
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For H = H̃ = C and trivial group actions, i.e., κδ = κ̃δ = idC for all δ ∈ R+ we
recover the scalar symbol spaces Sμ

(cl)(U × R
q).

Let Sμ

O be defined as the set of all h ∈ A(C) := the space of entire functions in
the complex variable w, such that h|�β ∈ Sμ

(cl)(�β) for every β ∈ R, uniformly in
compact β-intervals.

For any h(r, w) ∈ C∞(R+, Sμ

O) we set

opβ
M (h) = rβopM (T−βh)r−β (2.27)

for (T−βh)(r, w) := h(r, w−β), β ∈ R,where opM ( f )u = M−1
r→w f (r, w)(Mr→w).

Consider an edge-degenerate symbol p(r, ρ) ∈ Sμ
cl(R+ × R), i.e., p(r, ρ) =

p̃(r, rρ) for a p̃(r, ρ̃) ∈ Sμ
cl(R+,r × Rρ̃ ). Then a quantisation result, cf. [22, The-

orem 3.2.7], tells us that there is an h(r, w) ∈ C∞(R+, Sμ

O) such that

opβ
M (h) = Opr (p),

modulo an operator with kernel in C∞(R+ ×R+), for every β ∈ R. We then call h a
Mellin quantisation of p.

Theorem 2.9 [17,22, Theorem 3.1.27, Remark 3.1.28] There exists an operator A ∈
Lμ
cl(R+) which induces an isomorphism

A : Ks,γ (R+)→ Ks−μ,β(R+)

for every s ∈ R and prescribed γ, β ∈ R where

ιδAι−1δ ∈ C∞(R+,δ,L(Ks,γ (R+),Ks−μ,β(R+)))

for every s ∈ R.

Operators A as in Theorem 2.9 can be found in the form A = gβ−γ+μA1 for an
operator A1 in the cone algebra on the infinite half-axis, which shifts weights at zero
from γ to γ − μ, or directly as in [22, Definition 2.4.1],

A = rβ−γ ωopγ

M (h)ω′ + g(r)β−γ+μr−μ(1− ω)Opr (p)(1− ω′′)+ M + G. (2.28)

Here ω′′ ≺ ω ≺ ω′ are cut-off functions (ϕ ≺ ϕ′ means ϕ′ ≡ 1 on suppϕ), and g ∈
C∞(R+) is a function with the properties g(r) = r for 0 < r < ε0, g(r) = 1 for r >

ε1 for some 0 < ε0 < ε1 where ε1 is so small that g(r)β−γ+μr−μω(r) = rβ−γ ω(r)
and g(r)β−γ+μr−μ(1−ω) = r−μ(1−ω) for large r. TheMellin symbol h = h(r, w)

belongs to C∞(R+, Sμ

O), the symbol p is degenerate in the sense p(r, ρ) = p̃(r, rρ)

for a p̃(r, ρ̃) ∈ Sμ
cl(R+,r × Rρ̃ ), and we assume that h is a Mellin quantisation of p.

Moreover, M is a smoothing Mellin and G a Green operator in the cone calculus with
discrete asymptotics, cf. the terminology of [22].
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For any strictly positive function τ �→ [τ ] in C∞(R) with [τ ] = |τ | for |τ | ≥ C
for some C > 0 we form a function

bμ(τ) := [τ ]μι[τ ]Aι−1[τ ] (2.29)

which belongs to C∞(Rτ ,L(Ks,γ (R+);Ks−μ,β(R+))). By virtue of twisted homo-
geneity

bμ(δτ) = [δτ ]μι[δτ ]Aι−1[δτ ] = δμιδb
μ(τ)ι−1δ

for δ ≥ 1, |τ | ≥ C, it follows that

bμ(τ) ∈ Sμ
cl(R;Ks,γ (R+);Ks−μ,β(R+)), (2.30)

cf. Remark 2.6. We will consider below also the double symbol

bμ(t, t ′, τ ) := ι[t]bμ(τ)ι−1[t ′] ∈ Sμ
cl(R× R× R;Ks,γ (R+),Ks−μ,β(R+)). (2.31)

We will employ a Mellin generalisation of the spaces (2.14) for a Hilbert space H
with group action κ, namely,

Hs,γ (R+, H) = Hs,γ (R+, H)κ , (2.32)

γ ∈ R, defined as the completion of C∞0 (R+, H) with respect to the norm

‖u‖Hs,γ (R+,H) =
⎧
⎨

⎩

∫

� b+1
2 −γ

〈v〉2s‖κ−1〈v〉 (Mt→vu)(v)(η)‖2Hd-v
⎫
⎬

⎭

1/2

, (2.33)

for some b = b(H) ∈ N which is given together with H. For instance, if H :=
Ks,γ1(X∧) for some smooth closed manifold X of dimension n we set b := n + 1. In
our application we will have H := Ks,γ1(R+) with the group action κ :=1κ, i.e., the
integration in (2.33) is over �1−γ .

Remark 2.10 The map ιδ : u(t) �→ u(δt), δ ∈ R+ fixed, induces an isomorphism

ιδ : Hs,γ (R+, H)→ Hs,γ (R+, H)

for every s, γ ∈ R.

In fact, the replacement of t by δt under the Mellin transform in the expression

(2.33) generates a factor δv. For v ∈ � b+1
2 −γ

this contributes a factor δ
b+1
2 −γ+iτ

which yields an equivalent norm for every fixed δ ∈ R+.

The operator

S
γ− b

2
: C∞0 (R+,t , H)→ C∞0 (Rt , H), u(t) �→ e−( b+12 −γ )tu(e−t) (2.34)
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extends to an isomorphism

S
γ− b

2
: Hs,γ (R+, H)→Ws(R, H) (2.35)

for every s ∈ R.

Let Hs,γ (R+, H)[c,d] for 0 < c < d be the set of all u ∈ Hs,γ (R+, H) supported
by [c, d]. Moreover, let Ws(R, H)[c′,d ′] for reals c′ < d ′ be the space of all u′ ∈
Ws(R, H) supported by [c′, d ′]. The transformation (2.35) induces an isomorphism

S
γ− b

2
: Hs,γ (R+, H)[c,d] →Ws(R, H)[c′,d ′] (2.36)

for c = e−c′ , d = e−d ′ . In fact, the spaceC∞0 ((c′, d ′), H) is dense inWs(R, H)[c′,d ′],
similarly as a corresponding property in the case H = C for the trivial group
action. Since (2.34) also induces an isomorphism Sγ−b/2 : C∞0 ((c, d), H) →
C∞0 ((c′, d ′), H) the space C∞0 ((c, d), H) is dense in Hs,γ (R+, H)[c,d]. Moreover,
as a consequence of the invariance of Ws

comp(R, H)-distributions under diffeomor-
phisms of R, cf. Remark 2.4 above, and since the multiplication by the exponential
factor occurring in S

γ− b
2
transforms that space isomorphically to itself, it follows that

Hs,γ (R+, H)[c,d] =Ws(R, H)[c,d] for every 0 < c < d. This gives us the relation

ϕHs,γ (R+, H) = ϕWs(R, H) (2.37)

for every ϕ ∈ C∞0 (R+).

Let t �→ [t] be a strictly positive smooth function on R � t such that [t] = 1 for
|t | ≤ 1 and [t] = |t | for large |t | ≥ c1 for some c1 > 1. Define the spaces

Ws
cone(R,Ks,γ1(R+))1κ :=

{
u(t, [t]r) : u(t, r̃) ∈Ws(R,Ks,γ1(R+))1κ

}
. (2.38)

Then v(t, r) = u(t, r̃)|r̃=[t]r ∈Ws
cone(R,Ks,γ1(R+))1κ is equivalent to

‖v(t, r)‖Ws
cone(R,Ks,γ1 (R+,r ))1κ

= ‖v(t, [t]−1r̃)‖Ws (Rt ,Ks,γ1 (R+,r̃ ))1κ
<∞. (2.39)

In applications below the spaces (2.38) will occur only in combination with a factor
1 − σ for a cut-off function σ on the t half-axis, and the choice of σ is unessential,
cf. Lemma 2.16 below. Therefore, it is not necessary here to discuss the influence of
the specific function t �→ [t] in (2.38) (there is, in fact, no influence). However, in
connection with group actions on cone-spaces the difference between t and [t] can
be inconvenient. Therefore, on the half-axis R+,t we define cone-spaces in modified
form, compared with (2.38), namely, by

Ws
cone(R+,Ks,γ1(R+))1κ :=

{
u(t, tr) : u(t, r̃) ∈Ws(R+,Ks,γ1(R+))1κ

}
. (2.40)

In order to avoid confusion we recall that

Ws(R+,Ks,γ1(R+))1κ =Ws(R,Ks,γ1(R+))1κ |R+ .
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The following observation is motivated by Proposition 2.2.

Proposition 2.11 (i) Themap ([2]κδv)(t, r) := δv(δt, [tδ]−1δ[t]r), δ ∈ R+, induces
a group action

[2]κδ :Ws
cone(R,Ks,γ1(R+))1κ →Ws

cone(R,Ks,γ1(R+))1κ

for every s ∈ R.

(ii) The map (2κδv)(t, r) := δv(δt, r), δ ∈ R+, induces a group action

2κδ :Ws
cone(R+,Ks,γ1(R+))1κ →Ws

cone(R+,Ks,γ1(R+))1κ

for every s ∈ R.

Proof (i) According to (2.39) the property v(t, r) ∈ Ws
cone(R,Ks,γ1(R+)) means

that v(t, [t]−1r̃) ∈Ws(R,Ks,γ1(R+,r̃ )). Then, by virtue of Proposition 2.2

(χδv)(t, [t]−1r̃) := δ1/2 1κδv(δt, [δt]−1r̃) = δv(δt, [δt]−1δr̃)

belongs toWs(R,Ks,γ1(R+,r̃ ))1κ . Thus, if we replace r̃ again by [t]r, we see that
([2]κδv)(t, r) = δv(δt, [tδ]−1δ[t]r) belongs toWs

cone(R,Ks,γ1(R+)).

(ii) The property v(t, r) ∈ Ws
cone(R+,Ks,γ1(R+)) means that v(t, t−1r̃) ∈

Ws(R+,Ks,γ1(R+,r̃ )). Similarly as in Proposition 2.2 we form

(χδv)(t, t−1r̃) := δ1/2 1κδv(δt, (δt)−1r̃) = δv(δt, (δt)−1δr̃)

which belongs toWs(R+,Ks,γ1(R+,r̃ ))1κ . Thus, replacing r̃ by tr, it follows that
(2κδv)(t, r) = δv(δt, (tδ)−1δtr) = δv(δt, r) belongs toWs

cone(R+,Ks,γ1(R+)).

��
Observe that for s = γ1 = 0 we have

W0
cone(R,K0,0(R+))1κ := [t]−1/2L2(R× R+). (2.41)

In fact, since the group 1κ is unitary in K0,0(R+) = L2(R+) we have

W0(R,K0,0(R+))1κ = L2(R× R+).

Thus, v(t, [t]r) ∈W0
cone(R,K0,0(R+))1κ means that the function v(t, r̃) in the nota-

tion of (2.38) belongs to L2(Rt × R+,r̃ ). This is equivalent to

v(t, [t]r) ∈ [t]−1/2L2(Rt × R+,r ),

i.e.,
∫∫

|[t]1/2v(t, [t]r)|2drdt=
∫∫

|[t]1/2v(t, r̃)|2[t]−1dr̃dt=‖v(t, r̃)‖2L2(Rt×R+,r̃ )
.
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Remark 2.12 The spaces Ws(Rq , H)κ have been widely studied in connection with
operators on amanifoldwith edge, first in [20], and then in numerous papers andmono-
graphs, see, in particular, [6,21]. For corner singularities of order ≥ 2 the involved
spaces H may depend on the edge variable y. This effect plays a role also in [27].
There is no functional analytic investigation for such a situation in general. Even for
the spaces (2.38) the influence of the edge variable t is nontrivial. However, there
are specific operator-valued symbols, also studied in [17], cf. the consideration after
Theorem 2.9, which can be applied to such spaces, cf. the proof of Proposition 2.14
below.

Consider the space

K∞,∞;∞(R+) :=
⋂

s,γ,e∈R
Ks,γ ;e(R+),

cf. the formula (2.8), which is dense in Ks,γ (R+) for every s, γ . The operator ι :
u(t, r) �→ u(t, [t]r) induces an isomorphism

ι : C∞0 (R,K∞,∞;∞(R+))→ C∞0 (R,K∞,∞;∞(R+)).

Remark 2.13 The spaceC∞0 (R,K∞,∞;∞(R+)) is dense both inWs(R,Ks,γ (R+))1κ
and Ws

cone(R,Ks,γ (R+))1κ for every s, γ ∈ R.

Proposition 2.14 We have

Ws
cone(R,Ks,γ1(R+))1κ ⊂Ws

loc(R,Ks,γ1(R+))1κ , (2.42)

and for every ϕ ∈ C∞(R)

ϕWs
cone(R,Ks,γ1(R+))1κ = ϕWs(R,Ks,γ1(R+))1κ . (2.43)

Moreover, the spaceWs
cone(R,Ks,γ1(R+))1κ is independent of the choice of the func-

tion t → [t], s ∈ R.

Proof For abbreviation in this proof we drop subcripts 1κ . Let us set (ι[t]u)(t, r) :=
u(t, [t]r). Then, by definition, we have isomorphisms

ι[t] :Ws(R,Ks,γ1(R+))→Ws
cone(R,Ks,γ1(R+))

and

ι[t] :W0(R,K0,0(R+))→W0
cone(R,K0,0(R+)) = [t]−1/2L2(R× R+).

Next we employ a consequence of Theorem 2.9, namely, the existence of a symbol
(2.29), now for μ = s denoted by

b(τ ) ∈ Sscl(Rτ ;Ks,γ1(R+),K0,0(R+)),
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taking values in a modification of the cone algebra on the infinite half-axis R+, inter-
preted as a manifold with conical singularity at r = 0 and conical exit for r → ∞,

such that

b(τ ) : Ks,γ1(R+)→ K0,0(R+)

is a family of isomorphisms, b−1(τ ) ∈ S−scl (Rτ ;K0,0(R+),Ks,γ1(R+)), and

B := Opt (b) :Ws(R,Ks,γ1(R+))→W0(R,K0,0(R+))

is an isomorphism. Then also

ι[t]Bι−1[t] :Ws
cone(R,Ks,γ1(R+))→ [t]−1/2L2(R× R+) = [t]−1/2W0(R,K0,0(R+))

is an isomorphism. The inverse is of the form

ι[t]B−1ι−1[t] = ι[t]Opt (b−1)ι−1[t] = Opt (l).

for a double symbol l(t, t ′, τ ) ∈ S−scl (Rt ×Rt ′ ×Rτ ;K0,0(R+),Ks,γ1(R+)). Clearly
in this computation we interpret the t-variable on the right of Opt (·) as t ′.The operator

Opt (l) :W0
comp(R,K0,0(R+))→Ws

loc(R,Ks,γ1(R+))

is known to be continuous by a general result of the pseudo-differential calculus with
operator-valued symbols and twisted symbolic estimates, cf. the second relation of
(2.21). Then also

Opt (l) : [t]−1/2W0
comp(R,K0,0(R+))→Ws

loc(R,Ks,γ1(R+))

is continuous, since [t]−1/2W0
comp(R,K0,0(R+)) ⊆ W0

comp(R,K0,0(R+)). But we

know that Opt (l) extends to [t]−1/2W0(R,K0,0(R+)) = W0
cone(R,K0,0(R+)), and

still maps to Ws
loc(R,Ks,γ1(R+)). Since the image is equal to Ws

cone(R,Ks,γ1(R+))

the relation (2.42) is proved. The property (2.43) is a refinement. For

Ws
cone,comp(R,Ks,γ1(R+)) := {u(t, r) ∈Ws

cone(R,Ks,γ1(R+)) : u(t, r) = 0

for t /∈ K for some K � R+} (2.44)

it suffices to show

Ws
cone,comp(R,Ks,γ1(R+)) =Ws

comp(R,Ks,γ1(R+)). (2.45)

Because of W0
cone(R,K0,0(R+)) = [t]−1/2L2(R × R+) and W0(R,K0,0(R+)) =

L2(R× R+) the relation (2.45) is true for s = 0, γ1 = 0. Moreover, we have

Ws
cone,comp(R,Ks,γ1(R+)) = ι[t]Ws

comp(R,Ks,γ1(R+)).
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In fact, u ∈ Ws
comp(R,Ks,γ1(R+)) implies ι[t]u ∈ Ws

cone,comp(R,Ks,γ1(R+)). Con-

versely, v ∈ Ws
cone,comp(R,Ks,γ1(R+)) gives rise to ι−1[t] v ∈ Ws

comp(R,Ks,γ1(R+)).

Wenow apply elements of the proof of Proposition 2.8 (ii).We form the symbol bR and
obtain the properly supported operator Op(bR) which gives rise to an isomorphism

Op(bR) :Ws
comp(R,Ks,γ1(R+))→W0

comp(R,K0,0(R+)).

Also ι[t]Op(bR)ι−1[t] induces an isomorphism

ι[t]Op(bR)ι−1[t] :Ws
cone,comp(R,Ks,γ1(R+))→W0

cone,comp(R,K0,0(R+)), (2.46)

sinceWs
cone,comp(R,Ks,γ1(R+)) = ι[t]Ws

comp(R,Ks,γ1(R+)). Moreover, the operator

ι[t]Op(bR)ι−1[t] is properly supported and defines an isomorphism

ι[t]Op(bR)ι−1[t] :Ws
comp(R,Ks,γ1(R+))→W0

comp(R,K0,0(R+)). (2.47)

Because of (2.45) for s = γ1 = 0 the spaces in the preimages of (2.46) and (2.47)
coincide, and hence we obtain the relation (2.45) in general. We immediately obtain
the relation (2.43) and also the independence of the cone-spaces of the choice of the
function t → [t]. ��
Recall that

Ws(R+,Ks,γ1(R+))1κ :=Ws(R,Ks,γ1(R+))1κ |R+ . (2.48)

Moreover, let

Ws
cone(R+,Ks,γ1(R+))1κ :=Ws

cone(R,Ks,γ1(R+))1κ |R+ . (2.49)

Definition 2.15 For γ1, γ2 ∈ R we define

(i)

Ks,γ2,γ1(R+ × R+) := [σ ]Hs,γ2(R+,Ks,γ1(R+))1κ

+[1− σ ]Ws
cone(R+,Ks,γ1(R+))1κ (2.50)

for a cut-off function σ on the t half-axis, cf. (2.32) for γ = γ2, H =
Ks,γ1(R+), κ = 1κ, and formula (2.49);

(ii) for the interval I := {0 ≤ r ≤ 1} we set

Ks,γ2,γ1(I∧) := [ω0]Ks,γ2,γ1(R+ × R+)+ ϑ∗[ω1]Ks,γ2,γ1(R+ × R+), (2.51)

for cut-off functionsω0, ω1 on the r half-axis such that {ω0, ϑ
∗ω1} form a partition

of unity on I, cf. notation (2.18).

Lemma 2.16 The spaces in (2.50) are independent of the choice of σ. Those in (2.51)
are independent of the involved partition of unity {ω0, ϑ

∗ω1} on I.
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Proof In the proof we drop again subscripts 1κ.

(i) Let σ 1 and σ 2 be two cut-off functions on the t half-axis. Then

σ 1Hs,γ2(R+,Ks,γ1(R+))+ (1− σ 1)Ws
cone(R+,Ks,γ1(R+))

= σ 2Hs,γ2(R+,Ks,γ1(R+))+ (1− σ 2)Ws
cone(R+,Ks,γ1(R+))

+ (σ 1 − σ 2)Hs,γ2(R+,Ks,γ1(R+))+ (σ 2 − σ 1)Ws
cone(R+,Ks,γ1(R+)).

Similarly as before the interpretation of the latter relations is that we talk about the
spaces consisting of the sets of sums of elements in the involved spaces, e.g.,

σ 2u1 + (1− σ 2)u2 + (σ 1 − σ 2)u3 + (σ 2 − σ 1)u4

for arbitrary u1, u3 ∈ Hs,γ2(R+,Ks,γ1(R+)) and u2, u4 ∈ Ws
cone(R+,Ks,γ1(R+)).

From (2.37), i.e.,

ϕHs,γ2(R+,Ks,γ1(R+)) = ϕWs(R+,Ks,γ1(R+))

and

ϕWs(R+,Ks,γ1(R+)) = ϕWs
cone(R+,Ks,γ1(R+))

for every ϕ ∈ C∞0 (R+) we obtain

ϕHs,γ2(R+,Ks,γ1(R+)) = ϕWs
cone(R+,Ks,γ1(R+))

for every ϕ ∈ C∞0 (R+). This shows that Ks,γ2,γ1(R+ × R+) is independent of the
choice of σ.

(ii) Let us first recall some tools on the spaces

Ws(Rq ,Ks,γ (X∧)), (2.52)

for s, γ ∈ R, and a smooth compact manifold X, n = dim X, cf. (2.12). These spaces
belong to the edge pseudo-differential calculus for an edge of dimension q. Despite
of the anisotropic description of (2.52) we have the relation

Hs
comp(X

∧ × R
q) ⊂Ws(Rq ,Ks,γ (X∧)) ⊂ Hs

loc(X
∧ × R

q)

for every s, γ ∈ R, cf. [22, Proposition 3.1.21]. This property relies on the estimate

c1‖u‖Hs (R1+n+q ) ≤ ‖u‖Ws (Rq ,Ks,γ ((Sn)∧)) ≤ c2‖u‖Hs (R1+n+q ) (2.53)

for all u ∈ C∞0 (Rq ,C∞0 (R1+n)R) for every R > 0, for constants ci = ci (R) > 0, i =
1, 2, with Sn being the unit sphere in R

1+n . Here C∞0 (R1+n)R means the subspace
of all u ∈ C∞0 (R1+n\{0}) supported by {x̃ ∈ R

1+n : |x̃ | ≥ R}. We apply this to the
spacesWs(R,Ks,γ1(R+))which are a special case of (2.52) for q = 1 and X∧ = R+,
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i.e., n = 0, and t now plays the role of the edge variable y. From (2.38) and (2.49),
(2.48) we see that the elements u(t, r) ofWs

cone(R+,Ks,γ1(R+)) are characterised by
the property u(t, [t]−1r) ∈Ws(R+,Ks,γ1(R+)).As a consequence of (2.53) we have
the relations

(1− σ)Ws(R+,Ks,γ1(R+,r̃ ))|r̃>R = (1− σ)Hs(R× R+,r̃ )|r̃>R (2.54)

and

(1− σ)Ws
cone(R+,Ks,γ1(R+,r ))|tr>R = (1− σ)Ws(R+,Ks,γ1(R+,tr ))|tr>R

= (1− σ)Hs(R× R+,tr )|tr>R . (2.55)

Now if we have two cut-off functions ω1
0 and ω2

0, then the spaces

ωi
0(1− σ)Ws

cone(R+,Ks,γ1(R+,r ))|tr>R

for i = 1, 2 differ from each other by

ϕ0(1− σ)Ws
cone(R+,Ks,γ1(R+,r ))|tr>R

for a ϕ0 ∈ C∞0 (R+,r ). Translated into the variables (t, r̃) the change of the spaces is
caused by the change from ω1

0(r̃/t) to ω2
0(r̃/t). By virtue of (2.54) we are far from

t = 0, and ϕ0(r̃/t)(1 − σ(t)) cuts out standard Sobolev spaces Hs(R × R+,r̃ ) in a
region ofR2

t,r̃ which is conical for large t. So the nature of the spaces close to r = 0 on
the interval I is not changed under changing the cut-offs in r. Close to r = 1 we have
a similar effect, but since the involved cut-off functions ωi

0 and ϑ∗ωi
1 form a partition

of unity both for i = 1 and i = 2, the change of the spaces near r = 0 caused by
replacing ω1

0 by ω2
0 is compensated with the opposite sign by the change from ω1

1 to
ω2
1 near r = 1. That means the space (1− σ)Ks,γ2,γ1(I∧) remains unchanged under

changing the partition of unity on I.
It remains to show that σKs,γ2,γ1(I∧) is independent of the chosen partition of

unity on I. Although there is an additional weight γ2 the arguments are a little easier.
We apply the isomorphism

Sγ2− 1
2
: Hs,γ2(R+,Ks,γ1(R+))→Ws(R+,Ks,γ1(R+)),

cf. (2.34), for H = Ks,γ1(R+) and b = 1. Then ω1
0Hs,γ2(R+,Ks,γ1(R+)) is trans-

formed to ω1
0Ws(R,Ks,γ1(R+)). This space differs from ω2

0Ws(R,Ks,γ1(R+)) by
ϕ0Ws(R,Ks,γ1(R+)) = ϕ0Hs(R × R+). In a similar manner we can argue for the
change from ω1

1 to ω2
1, and the change over I is with the opposite sign, when we

change the partitions of unity {ωi
0, ϑ

∗ωi
0} from i = 1 to i = 2. At the same time we

see that the spaces σKs,γ2,γ1(I∧) remain unchanged. ��
Proposition 2.17 The space Ks,γ2,γ1(I∧) is a Hilbert space with group action 2κ =
{2κδ}δ∈R+ ,

(2κδu)(t) := δu(δt), δ ∈ R+. (2.56)
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Proof From Definition 2.15 we see that Ks,γ2,γ1(I∧) is a sum of two spaces, namely,

[ω0]
{[σ ]Hs,γ2(R+,Ks,γ1(R+))+ [1− σ ]Ws

cone(R+,Ks,γ1(R+))
}

(2.57)

and an analogous space referring to r = 1. They are of the same structure; so we
consider (2.57). The change from t to δt acts in the cut-off function σ and in the
remaining (t, r)-variables.Because ofLemma2.16 the changeofσ preserves functions
within the space (2.57). Therefore, we may focus on the other (t, r). Here it suffices
to apply Remark 2.10 and Proposition 2.11. ��
Remark 2.18 Let ϕ ∈ C∞0 (int I ) and σ a cut-off function on the t half-axis.

(i) Let us identify the interval I with a closed interval I1 on the unit circle S1 via
a fixed diffeomorphism ι : I → I1 ⊂ S1\{2π}; in the following notation we
suppress ι again. For every s, γ2, γ1 ∈ R we have a continuous embedding

σϕKs,γ2,γ1(I∧) ↪→ Hs,γ2((S1)∧).

(ii) There are continuous embeddings

σKs′,γ ′2,γ ′1(I∧) ↪→ σKs,γ2,γ1(I∧)

for s′ ≥ s, γ ′2 ≥ γ2, γ
′
1 ≥ γ1 that are compact for s′ > s, γ ′2 > γ2, γ

′
1 > γ1.

(iii) The space

Ks,γ2,γ1;e(I∧) := 〈t〉−eKs,γ2,γ1(I∧), e ∈ R,

is a Hilbert space with group action 2κ, and we have continuous embeddings

Ks′,γ ′2,γ ′1;e′(I∧) ↪→ Ks,γ2,γ1;e(I∧)

for s′ ≥ s, γ ′2 ≥ γ2, γ
′
1 ≥ γ1, e′ ≥ e, that are compact for s′ > s, γ ′2 > γ2, γ

′
1 >

γ1, e′ > e.

Proposition 2.17 allows us to form edge spaces

Ws(Rd ,Ks,γ2,γ1(I∧))2κ (2.58)

based on the corner spaces in Definition 2.15 (ii). Those play a role as local models
of weighted corner spaces. Moreover, let M be a compact manifold with second order
corner Z = σ2(M), cf. Sect. 2.1. Then

Hs,γ2,γ1(M) (2.59)

is defined as the subspace of all u ∈ Hs,γ1
[loc)(M\Z) such that for any singular chart

χ : V |D → I� × R
d associated with a chart D → R

d on Z and χst := χ |V |D\Z :
V |D\Z → R+ × I × R

d we have (χ−1st )∗σu ∈ Ws(Rd ,Ks,γ2,γ1(I∧))2κ . Here σ is
any element of C∞(M) of the form χ∗stσ0 for some cut-off function on the t-half-axis.
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2.3 Iterated Asymptotics and Corner Green Operators

Asymptotics of distributions u ∈ Ks,γ (R+) as r → 0 will be expressed in terms of
singular functions of the form

ω(r)r−p logk r

for p ∈ C, k ∈ N, and some cut-off function ω on the half-axis. A sequence

P := {(p j ,m j )} j∈J ⊂ C× N, (2.60)

J ⊆ N, is called a (discrete) asymptotic type if πCP := {p j } j∈J is either finite or
Re p j → −∞ as j → ∞. We say that P is associated with the weight data (γ,�)

for a weight γ ∈ R and a weight interval � := (ϑ, 0], −∞ ≤ ϑ < 0, if

πCP ⊂ {1/2− γ + ϑ < Rew < 1/2− γ }.

In future, for convenience, we assume that P satisfies the shadow condition, i.e.,
p ∈ πCP implies p− l ∈ πCP for all l ∈ N such that 1/2− γ + ϑ < Re p− l. If P
is associated with (γ,�) and � finite, then

Eγ

P (R+) :=
⎧
⎨

⎩
u = ω(r)

∑

j∈J

m j∑

k=0
c jkr

−p j logk r : c jk ∈ C, 0 ≤ k ≤ m j , j ∈ J

⎫
⎬

⎭

(2.61)
for a fixed cut-off function ω is a finite-dimensional subspace of K∞,γ (R+). The
coefficients c jk are uniquely determined by u. We set

Ks,γ
P (R+) := Eγ

P (R+)+Ks,γ
� (R+) (2.62)

for
Ks,γ

� (R+) := lim←−
ε>0

Ks,γ−ϑ−ε(R+). (2.63)

The space (2.63) is Fréchet, and also (2.62) as a direct sum of Fréchet spaces. In
the case of infinite � we define Ks,γ

P (R+) := lim←−n∈N{E
γ

Pn
(R+) + Ks,γ

�n
(R+)} for

�n := (−(n+1), 0] and Pn := {(p,m) ∈ P : 1/2−γ −(n+1) < Re p < 1/2−γ }.
Since asymptotics only refer to r → 0 it makes sense also to form

Hs,γ
P (R+) := ωKs,γ

P (R+)+ (1− ω)Hs,γ (R+).

Analogously as (2.17) we define

Hs,γ
P (I ) := [ω0]Hs,γ

P (R+)+ ϑ∗[ω1]Hs,γ
P (R+) for s, γ ∈ R, (2.64)

for asymptotic types
P associated with (γ,�). (2.65)
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Recall that
ϑ :1R− → R+ for 1

R− = {r ∈ R : −∞ < r ≤ 1}, (2.66)

is defined by ϑ(r) = −r + 1, cf. (2.18), and ω0, ω1 are cut-off functions on the
half-axis such that ω0(r)+ ω1(−r + 1) = 1 on the interval I. Moreover, let

Hs,γ2,γ1
P (I∧) := [ω0]Hs,γ2(R+,Ks,γ1

P (R+))1κ + ϑ∗[ω1]Hs,γ2(R+,Ks,γ1
P (R+))1κ .

(2.67)
In addition for finite � = (λ, 0], we set

Hs,γ2,γ1
�,P (I∧) := [σ ] lim←−

ε>0

Hs,γ2−λ−ε,γ1
P (I∧)+ [1− σ ]Hs,γ2,γ1

P (I∧) (2.68)

for some cut off function σ on the t half-axis. Recall that we could admit different
weights at the end points of I and different asymptotic types P. This generalisation
is simple and left to the reader.

In order to define functions with iterated asymptotics for r → 0 and t → 0 we also
consider singular functions in t-direction

σ(t)t−q logl t

for q ∈ C, l ∈ N, and some cut-off function σ on the t half-axis. Let

Q := {(qi , ni )}i∈I ⊂ C× N, (2.69)

I ⊆ N, be a (discrete) asymptotic type with respect to t, associated with the weight
data (β,�) for a weight β ∈ R and � := (λ, 0], −∞ ≤ λ < 0, i.e.,

πCQ ⊂ {1/2− β + λ < Re v < 1/2− β}.

From now on, for convenience, we set I = {0, 1, . . . , N } for some N ∈ N ∪ {∞}.
If Q is associated with γ2 and finite �, i.e., finite N , and P as in (2.64) we set

Fγ2,γ1
Q,P (I∧) :=

{

f = σ(t)
N∑

i=0

ni∑

l=0
cil t

−qi logl t : cil ∈ H∞,γ1
P (I ), 0 ≤ l ≤ mi , i ∈ I

}

(2.70)
for some fixed cut-off function σ in t. Similarly as in (2.61) the coefficients cil are
uniquely determind by f.

Moreover, let

Hs,γ2,γ1
Q,P (I∧) := Fγ2,γ1

Q,P (I∧)+ [1− σ ]Hs,γ2,γ1
P (I∧), (2.71)

cf. notation (2.67).
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Definition 2.19 We set

(i)

Ws
cone(R+,Ks,γ1

P (R+,r ))1κ :=
{
v(t, tr) : v(t, r̃) ∈Ws(R+,Ks,γ1

P (R+,r̃ ))1κ
}
,

(1κδu)(r̃) = δ1/2u(δr̃), and

Ws,γ1
cone,P (I∧) :=[ω0]Ws

cone(R+,Ks,γ1
P (R+))1κ+ϑ∗[ω1]Ws

cone(R+,Ks,γ1
P (R+))1κ ;

(ii)
Ks,γ2,γ1

Q,P (I∧) := [σ ]Hs,γ2,γ1
Q,P (I∧)+ [1− σ ]Ws,γ1

cone,P (I∧); (2.72)

(iii) Ks,γ2,γ1;e
Q,P (I∧) := [σ ]Ks,γ2,γ1

Q,P (I∧)+ [1− σ ]〈t〉−eWs,γ1
cone,P (I∧), e ∈ R.

A Fréchet space, written as a projective limit of Hilbert spaces E = lim←− j∈N E j with

continuous embeddings E j+1 ↪→ E j for all j, is said to be endowed with a group
action κ = {κδ}δ∈R+ if κ is a group action in E0, cf. Sect. 2.2, and κ|E j a group action
in E j for every j.

Proposition 2.20 The spaces in Definition 2.19 are Fréchet in a natural way, and
the group actions of Propositions 2.11(ii) and 2.17 restrict to group actions in those
spaces.

Proof Let us first consider the spaces in Definition 2.19 (i) for P associated with the
weight data (γ1,�), � finite. The case of � = (−∞, 0] can be easily reduced to
finite � by passing to a projective limit. This step is left to the reader. It is known that
we can write

Ks,γ1
P (R+) = Ks,γ1

� (R+)+K∞,γ1
P (R+)

as a non-direct sum of Fréchet spaces, where Ks,γ1
� (R+) is Fréchet as a projective

limit (2.63) of Hilbert spaces Ks,γ1−ϑ−εl (R+), for any 0 < εl , l ∈ N, tending to 0
as l → ∞. We can choose εl in such a way that 1/2 + ϑ + εl < 1/2 and πCP ∩
�1/2−γ1+ϑ+εl = ∅ for all l ∈ N. Then

El := Ks,γ1−ϑ−εl (R+)+ Eγ1
Pl

(R+)

for Pl := {(p,m) ∈ P : 1/2 − γ1 + ϑ + εl < Re p} is a Hilbert space with group
action 1κ. Thus

Ks,γ1
P (R+) = lim←−

l∈N
El (2.73)

is a Fréchet space with group action. This gives us

Ws(R+,t ,Ks,γ1
P (R+)) = lim←−

l∈N
Ws(Rt , E

l)|R+,t .
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Setting

Ws
cone(R+,t , E

l) := {v(t, tr) : v(t, r̃) ∈Ws(R+,t , E
l
r̃ )}

forWs(R+,t , El
r̃ ) :=Ws(Rt , El

r̃ )|R+,t , with El
r̃ being the space of functions in El in

the variable r̃ , it follows that

Ws
cone(R+,t ,Ks,γ1

P (R+,r )) = lim←−
l∈N

Ws
cone(R+,t , E

l).

Nowwecanproceed in a similarmanner as in the proof ofProposition2.11 (ii). From
Proposition 2.2 we obtain a group action {χδ}δ∈R+ inWs(Rt , El

r̃ )1κ which induces a
group action inWs(R+,t , El

r̃ )1κ , cf. Remark 2.3; herewe use for themoment subscript
1κ which is involved in χ.

The property v(t, r) ∈Ws
cone(R+,Ks,γ1

P (R+))1κ means that

v(t, t−1r̃) ∈Ws(R+, El
r̃ )1κ

for every l ∈ N. Similarly as in Proposition 2.2 we form

(χδv)(t, t−1r̃) := δ1/2 1κδv(δt, (δt)−1r̃) = δv(δt, (δt)−1δr̃)

which belongs to Ws(R+, El
r̃ )1κ . Thus, replacing r̃ by tr, we see that (2κδv)(t, r) =

δv(δt, (tδ)−1δtr) = δv(δt, r) belongs to Ws
cone(R+, El)1κ . Since this is true for

every l we obtain (2κδv)(t, r) ∈ Ws
cone(R+,Ks,γ1

P (R+,r ))1κ . It is now evident that
2κ = {2κδ}δ∈R+ is also a group action on the Fréchet space Ws,γ1

cone,P (I∧).

We now turn to (ii). Let us set E := Ks,γ1
P (R+), endowed with the group action 1κ,

and

Hs,γ2
� (R+, E) := [σ ] lim←−

ε>0

Hs,γ2−λ−ε(R+, E)+ [1− σ ]Hs,γ2(R+, E),

cf. the notation (2.32) for the Fréchet space E rather than H and formula (2.68). Then
we have

Ks,γ2,γ1
Q,P (I∧) = Fγ2,γ1

Q,P (I∧)+Ks,γ2,γ1
�,P (I∧)

for

Ks,γ2,γ1
�,P (I∧) = [σ ]{[ω0]Hs,γ2

� (R+, E)+ ϑ∗[ω1]Hs,γ2
� (R+, E)}

+ [1− σ ]{[ω0]Ws
cone(R+, E)+ ϑ∗[ω1]Ws

cone(R+, E)}
= [ω0]{[σ ]Hs,γ2

� (R+, E)+ [1− σ ]Ws
cone(R+, E)}

+ ϑ∗[ω1]{[σ ]Hs,γ2
� (R+, E)+ [1− σ ]Ws

cone(R+, E)}. (2.74)
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The action of 2κ on the space (2.74) can be verified in a similarmanner as in Proposition
2.17. It remains to look at the effect of the group action on Fγ2,γ1

Q,P (I∧). But here it is

clear that we do not leave the space up to a remainder in Ks,γ2,γ1
�,P (I∧). ��

It follows that there are edge spaces modelled on Ks,γ2,γ1
Q,P (I∧), namely, analogously

as (2.58),
Ws(Rd ,Ks,γ2,γ1

Q,P (I∧))2κ (2.75)

for any pair of asymptotic types Q and P, associated with the weight data (γ2,�) and
(γ1,�), respectively. Moreover, for an open set � ⊆ R

d we have comp/loc-spaces,

Ws
comp(�,Ks,γ2,γ1

Q,P (I∧))2κ , Ws
loc(�,Ks,γ2,γ1

Q,P (I∧))2κ .

Another topic of this subsection are Green symbols and Green operators of differ-
ent kind. Recall from the classical theory of elliptic boundary value problems that
there appear Green’s functions. For instance, in the case of the Dirichlet problem for
the Poisson equation in a smooth bounded domain, Green’s function (regarded as
an operator) solves the inhomogeneous equation for vanishing boundary conditions.
Pseudo-differential boundary value problems also employ such operators. In Boutet
de Monvel’s calculus for operators with the transmission property at the boundary, cf.
[1], these operators contain parts with a symbolic structure locally along the bound-
ary, with specific operator-valued symbols, in this case referring to Taylor asymptotics
{(− j, 0)} j∈N in normal direction. Also the edge pseudo-differential calculus, devel-
oped in [20] aswell as diverse corner theories, cf. [10,23,29], contains adapted variants
of Green symbols and associated operators. In the present article we intend to establish
such a concept on corner manifolds M in the sense of Sect. 2.1.

The following definition concerns symbols referring to the edge Z , cf. the notation
in Sect. 2.1. Therefore, variables and covariables will now be denoted by z and ζ,

respectively, with z varying in R
d . Then U means an open set in R

b for some b ∈
N\{0}, and we employ the notation (2.2).

Green symbols refer to formal adjoints in Ks,γ2,γ1(I∧), Ks,γ1(R+), etc., with
respect to the scalar products of spaces of smoothness and weight zero, cf. (2.10)
for the case over R+. Concerning I∧ we employ the identification

K0,0,0(I∧) = t−1/2L2(R+ × I ) = t−1/2L2(R+, L2(I )).

The operator 2κδ given by (2κδu)(t) = δu(δt), is unitary in K0,0(I∧), and 1κδ given
by (1κδu′)(t) = δ1/2u′(δt), is unitary in K0,0(R+) for every δ ∈ R+. Analogously as
(2.10) we have sesquilinear pairings

Ks,γ2,γ1;e(I∧)×K−s,−γ2,−γ1;−e(I∧)→ C (2.76)

for every s, γ2, γ1, e ∈ R.
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Definition 2.21 Let U ⊆ R
p be an open set and μ ∈ R.

(i) An I∧-Green symbol g(z, ζ ) of order μ ∈ R is a

g(z, ζ ) ∈
⋂

s,e∈R
Sμ
cl(U × R

d ;Ks,γ2,γ1;e(I∧),K∞,γ2−μ,γ1−μ;∞
P2,P1

(I∧))

such that

g∗(z, ζ ) ∈
⋂

s,e∈R
Sμ
cl(U × R

d ;Ks,−γ2+μ,−γ1+μ;e(I∧),K∞,−γ2,−γ1;∞
Q2,Q1

(I∧))

for certain g-dependent asymptotic types Pj , Q j , j = 1, 2.
(ii) An (I∧, ∂0 I∧)-Green symbol g(z, ζ ) of order μ ∈ R is a

g(z, ζ ) ∈
⋂

s,e∈R
Sμ
cl(U × R

d ;Ks,γ2,γ1;e(I∧),K∞,γ2−μ;∞
P0
2

(∂0 I∧))

such that

g∗(z, ζ ) ∈
⋂

s,e∈R
Sμ
cl(U × R

d ;Ks,−γ2+μ;e(∂0 I∧),K∞,−γ2,−γ1;∞
Q2,Q1

(I∧))

for certain g-dependent asymptotic types P0
2 , Q j , j = 1, 2.

(iii) A (∂0 I∧, ∂0 I∧)-Green symbol g(y, η) of order μ ∈ R is a

g(z, ζ ) ∈
⋂

s,e∈R
Sμ
cl(U × R

d;Ks,γ2;e(∂0 I∧),K∞,γ2−μ;∞
P0
2

(∂0 I∧))

such that

g∗(z, ζ ) ∈
⋂

s,e∈R
Sμ
cl(U × R

d ;Ks,−γ2+μ;e(∂0 I∧),K∞,−γ2;∞
Q0
2

(∂0 I∧))

for certain g-dependent asymptotic types P0
2 , Q0

2.

(iv) In a similar manner we define

(∂0 I∧, I∧)-, (I∧, ∂1 I∧)-, (∂1 I∧, ∂1 I∧)-, (∂m I∧, ∂n I∧)-,

etc., Green symbols, the latter for m, n = 0, 1, and m �= n.

There are more types of Green symbols, e.g., trace and potential symbols for the edge
Z , but we drop the details, sincewemainly focus here on I∧-Green symbols. However,
in order to give an impression on the full symbolic information, we already observe
that corner symbols in (z, ζ ) take values in continuous operators
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a(z, ζ ) :

Ks,γ2,γ1(I∧)

⊕
Ks,γ1(∂0 I∧)

⊕
Ks,γ1(∂1 I∧)

⊕
C

→

Ks−μ,γ2−μ,γ1−μ(I∧)

⊕
Ks−μ,γ1−μ(∂0 I∧)

⊕
Ks−μ,γ1−μ(∂1 I∧)

⊕
C

, (2.77)

or between corresponding subspaces with asymptotics and decay for t → ∞.

The expression (2.77) contains some simplification concerning smoothness, orders
and weights that may depend on the respective entries of the block matrix a.

In addition, in applications to mixed elliptic corner problems, similarly as [4],
in the edge case, it makes sense to admit vector-valued spaces, for instance,
Ks,γ2,γ1(I∧,Cl), Ks−μ,γ2−μ,γ1−μ(I∧,Cm), etc. However, for the generalities of the
corner pseudo-differential calculus it suffices to consider spaces of scalar functions.
In any case the shape of block matrices (2.77) shows the kind of entries which are
not yet formulated in Definition 2.21, namely, those referring to C. Of course, they
are part of the calculus as well. For instance, writing a(z, ζ ) = (a(z, ζ )kl)k,l=1,...,4,
the component a14(z, ζ ) takes values in L(Ks,γ2,γ1(I∧),C) and has the meaning
of a trace symbol with respect to the edge U � z, while a41(z, ζ ) takes values in
L(C,K∞,γ2−μ,γ1−μ;∞

P2,P1
(I∧)) and has the meaning of a potential symbol. Both refer to

I∧. Similarly we have trace and potential symbols with respect to the edge U � z,
referring to ∂ i I∧, i = 0, 1. The lower right corner a44(z, ζ ) is a matrix of classical
scalar symbols.

Let us fix notation for the symbol spaces in Definition 2.21. By

Rμ
G(U × R

d , g)(I∧,I∧) (2.78)

for
g := (g2, g1), gi := (γi , γi − μ,�i ), i = 1, 2, (2.79)

we denote the space of all Green symbols, defined by Definition 2.21 (i). Similarly we
have the operator spaces

Rμ
G(U × R

d , g)(I∧,∂0 I∧), Rμ
G(U × R

d , g2)(∂0 I∧,∂0 I∧), (2.80)

etc., with obvious meaning of notation.
The properties of Green symbol spaces in the present context are to some extent

analogous to those in the edge calculus of singularity order 1, see, for instance, [11,22],
or [4]. Therefore, we content ourselves on the case of upper left corners of the indicated
block matrices.

Theorem 2.22 Let g j (z, ζ ) ∈ Rμ− j
G (U × R

d , g)(I∧,I∧), j ∈ N be an arbitrary
sequence of Green symbols where the involved asymptotic types are independent of
j. Then there is an asymptotic sum g(z, ζ ) ∼ ∑∞

j=0 g j (z, ζ ), g(z, ζ ) ∈ Rμ
G(U ×

R
d , g)(I∧,I∧), unique modulo R−∞G (U × R

d , g)(I∧,I∧), which means that for every
N ∈ N we have
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g(z, ζ )−
N∑

j=0
g j (z, ζ ) ∈ Rμ−(N+1)

G (U × R
d , g)(I∧,I∧).

Proof The proof employs the following fact. If H is a Hilbert space with group action
and E = lim←−k∈N Ek a Fréchet space with another group action, then a sequence of

symbols in g j ∈ Sμ− j
cl (U × R

d; H, E) := lim←−k∈N Sμ− j
cl (U × R

d; H, Ek) has an
asymptotic sum. In the present case, if the involved asymptotic types are the same for
all j, the spaces Ek are independent of j. To be more precise, the involved asymptotic
types are contained in a larger fixed asymptotic type for all j . For the formal adjoints
the argument is similar. ��

We apply Green symbols in the case U := � × �, � ⊆ R
d open, denote the

variables by (z, z′) ∈ �×�, and form associated operators Op(g),

Op(g)u(z) :=
∫∫

ei(z−z′)ζ g(z, z′, ζ )u(z′)dz′d- ζ, (2.81)

first for functions u ∈ C∞0 (�,K∞,γ2,γ1(I∧)). In addition we define smoothing Green
operators C associated with the weight data (2.79) in terms of mapping properties.
Such an operator is asked to induce continuous maps

C :Ws
comp(�,Ks,γ2,γ1(I∧))→W∞

loc(�,K∞,γ2−μ,γ1−μ

P2,P1
(I∧)),

C∗ :Ws
comp(�,Ks,−γ2+μ,−γ1+μ(I∧))→W∞

loc(�,K∞,−γ2,−γ1
Q2,Q1

(I∧)),

for all s ∈ R, and corresponding C-dependent asymptotic types Pj , Q j , j = 1, 2,
where C∗ is the formal adjoint of C with respect to theW0

comp(�,K0,0,0(I∧))-scalar

product. Green operators on an open set � ⊆ R
d , of order μ ∈ R, associated with the

weight data (2.79) are defined as sums G := Op(g)+ C for a Green symbol g and a
smoothing Green operator.

For g(z, z′, ζ ) in (2.81) we find a left symbol gL(z, ζ ) ∈ Rμ
G(U × R

d , g)(I∧,I∧)

such that Op(g)− Op(gL) is a smoothing Green operator. The proof is similar to the
case of classical scalar pseudo-differential operators. Starting from (2.81) it suffices
to pass to gL(z, ζ ) ∼ ∑

α∈Nd 1/α!(∂α
z′D

α
ζ g)|z′=z(z, ζ ), where the assumptions of

Theorem2.22 for the asymptotic summation are satisfied. If aGreen operator is written
G := Op(g)+C for a g(z, ζ ) ∈ Rμ−(N+1)

G (�×R
d , g)(I∧,I∧), � ⊆ R

d open, and a
smoothing Green operator C, we set

σ1(G)(z, ζ ) := g(μ)(z, ζ ) (2.82)

where g(μ)(z, ζ ) is the homogeneous principal part of g as a classical symbol of order
μ. Incidentally, instead of g(μ)(z, ζ ) we also write σ1(g)(z, ζ ).

Proposition 2.23 Every Green operator G can be written in the form G = G0 + C
for a properly supported Green operator G0 and a smoothing Green operator
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Proof Write g(z, z′, ζ ) in (2.81) as ψ(z, z′)g(z, z′, ζ )+ (1− ψ(z, z′))g(z, z′, ζ ) for
a function ψ(z, z′) ∈ C∞(� × �) with proper support (i.e., every strip A × � and
� × B for arbitrary A, B � � intersects suppψ in a compact set) such that suppψ

contains diag(�×�) in its open interior. Then G0 = Op(ψg) is properly supported.
Applying the asymptotic expansion that turns (1−ψ)g to a left symbol we easily see
that C = Op((1− ψ)g) is a smoothing Green operator. ��
Theorem 2.24 Let G := Op(g) + C be a Green operator on � ⊆ R

d , of order μ,

associated with the weight data (2.79). Then G induces continuous operators

G :Ws
comp(�,Ks,γ2,γ1(I∧))→Ws−μ

loc (�,K∞,γ2−μ,γ1−μ

P2,P1
(I∧)),

for all s ∈ R, for asymptotic types P2, P1, independent of s. If G is properly supported
we can write loc or comp or comp on both sides.

Proof The proof is a direct consequence of the second part of formula (2.21). ��
Theorem 2.25 Let G := Op(g) + C and L := Op(l) + D be Green operators with
symbols g(z, ζ ) ∈ Rμ

G(� × R
d , g)(I∧,I∧) and l(z, ζ ) ∈ Rν

G(� × R
d , c)(I∧,I∧), for

μ, ν ∈ R, and corresponding smoothing Green operators C and D, respectively. We
realise G, L as continuous operators

G :Ws
comp(�,Ks,γ2,γ1(I∧))→Ws−μ

loc (�,Ks−μ,γ2−μ,γ1−μ(I∧)),

L :Ws−μ
comp(�,Ks−μ,γ2−μ,γ1−μ(I∧))→Ws−ν

loc (�,Ks−μ−ν,γ2−μ−ν,γ1−μ−ν(I∧)),

assuming an obvious compatibility of weights in the involved data g, c. Moreover, we
assume that B or G is properly supported, such that B or G operate both in comp and
loc-spaces. Then the composition LG is a Green operator, i.e., of the form

LG = Op( f )+ B

for some f (z, ζ ) ∈ Rμ+ν
G (�×R

d , b)(I∧,I∧) with weight data b = l ◦ g := (γi , γi −
(μ+ ν),�i )i=1,2, and a smoothing Green operator B, where

σ1(LG)(z, ζ ) = σ1(L)(z, ζ )σ1(G)(z, ζ ). (2.83)

Proof The proof follows in an analogous manner as in the scalar calculus of pseudo-
differential operators. ��

3 Mellin Operators

3.1 Mellin Operators of First Singularity Order

Pseudo-differential operators based on the Mellin transform will appear in this paper
in different variants. In this subsection we briefly recall the shape of Mellin operators
that are known from the cone and edge calculus, i.e., of singularitiy order 1. We
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also formulate Green operator-valued Mellin symbols on the interval I. Those will
contribute to the corner pseudo-differential calculus over I∧. In the simplest case we
have

opγ

M ( f )u(t) :=
∫

�1/2−γ

∫

R+
(t/t ′)−v f (v)u(t ′)dt ′/t ′d-v, d-v = (2π i)−1dv, (3.1)

for a symbol f (v) ∈ Sμ(�1/2−γ ), cf. also (2.27). In this notation τ = Im v plays the
role of the covariable. The expression (3.1) is interpreted as a Mellin oscillatory inte-
gral, first for u ∈ C∞0 (R+) and then extended to more general distribution spaces, e.g.,
Hs,γ (R+). We apply here Mellin operators in numerous variants, e.g., with symbols

f (t, t ′, v) ∈ C∞(R+ × R+, Sμ(�1/2−γ ))

with variable coefficients, or taking values in several operator classes, analogously
as those with twisted symbolic estimates, cf. the terminology in Sect. 2.3. We first
consider operators (3.1) where the symbol f extends to the complex v-plane as a
meromorphic function.

By A(G), G ⊆ C open, we denote the space of all holomorphic functions in G.

Similarly as (2.60) we consider sequences

S := {(sl , nl)}l∈L ⊂ C× N (3.2)

for an index set L ⊆ Z, and we assume that πCS := {sl}l∈L intersects every strip
{c ≤ Re v ≤ c′} in a finite set. We call S a Mellin asymptotic type. Then

M−∞
S

denotes the set of all f (v) ∈ A(Cv\πCS) that are meromorphic with poles at the
points sl of multiplicity nl + 1 and such that for any πCS-excision function χ (i.e.,
χ ∈ C∞(C), χ(v) = 0 for dist (πCS, v) < ε0, χ = 1 for dist (πCS, v) > ε1, for
some 0 < ε0 < ε1)

χ f |�β ∈ S(�β)

for every real β, uniformly in compact β-intervals.
Let us now turn to smoothing Mellin symbols of the corner calculus. First we for-

mulate such symbols for ∂ i I∧ ∼= R+, i = 0, 1. Those are well-known in the calculus
of boundary value problems without the transmission property at the boundary, here in
the framework of the edge calculus over the half spaceR+,t ×R

d
z where the boundary

R
d
z is interpreted as an edge. We fix any strictly positive function ζ → [ζ ] in C∞(Rd)

with the property [ζ ] = |ζ | for |ζ | ≥ c for some c > 0.Moreover, we choose arbitrary
cut-off functions σ, σ ′ on the t half-axis. For any function ϕ(t) we set

ϕζ (t) := ϕ(t[ζ ]).
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Now a smoothing Mellin edge symbol in (z, ζ ) ∈ U ×R
d for open U ⊆ R

b is of the
form

m(z, ζ ) := t−μσζ

k∑

j=0
t j

∑

|α|≤ j

op
γ2, jα
Mt

( f jα)(z)ζ ασ ′ζ (3.3)

for f jα(z, v) ∈ C∞(U, M−∞
S jα

),where S jα are Mellin asymptotic types and γ2, jα ∈ R

weights such that

γ2 − j ≤ γ2, jα ≤ γ2, πCS jα ∩ �1/2−γ2, jα = ∅

for all j, α. The meaning of k ∈ N in the sum (3.3) is that whenever we talk about
families of such Mellin operators we assume that

� := (−(k + 1), 0]

is the weight interval in asymptotics on the t half-axis for t → 0. Recall that we have

m(z, ζ ) ∈ Sμ
cl(U × R

d;Ks,γ2(R+),K∞,γ2−μ(R+)) (3.4)

and
m(z, ζ ) ∈ Sμ

cl(U × R
d;Ks,γ2

P2
(R+),K∞,γ2−μ

Q2
(R+)) (3.5)

for every s ∈ R and every asymptotic type P2 for some resulting Q2; clearly P2 and
Q2 refer to asymptotics for t → 0. Identifying R+ with ∂0 I∧ by

Rμ
M+G(U × R

d , g2)(∂0 I∧,∂0 I∧) for g2 = (γ2, γ2 − μ,�) (3.6)

we denote the set of all (m + g)(z, ζ ) for arbitrary m(z, ζ ) of the form (3.3) and
g(z, ζ ) ∈ Rμ

M+G(U × R
d , g2)(∂0 I∧,∂0 I∧).

3.2 Mellin Operators of Second Singularity Order

Another kind of smoothing Mellin symbols is based on Green operators, referring to
the interval I with two conical end points. According to the general terminology of
the cone pseudo-differential calculus by

LG(I, g1) (3.7)

for weight data g1 := (γ1, γ1 − μ,�), with a weight interval � as in (2.64) and a
weight γ1 ∈ R, we denote the space of all G ∈ ⋂

s∈R L(Hs,γ1(I ), Hs−μ,γ1−μ(I )),
cf. the spaces (2.17), that induce continuous operators

G : Hs,γ1(I )→ Hs−μ,γ1−μ

P (I )
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and

G∗ : H−s+μ,−γ1+μ(I )→ H−s,−γ1
Q (I )

for all s ∈ R and G-dependent asymptotic types P and Q, see the notation (2.65).
If we fix P and Q we obtain a subspace LG(I, g1)P,Q ⊂ LG(I, g1) which is

Fréchet in a natural way. Now let us fix a Mellin asymptotic type T as in (3.2), and let

M−∞
T (I, g1)P,Q

be the set of all

f (v) ∈ A(C\πCT, LG(I, g1)P,Q)

such that f is meromorphic with poles at the points sl of multiplicity nl + 1 and such
that for any πCT -excision function χ we have

χ f |�β ∈ S(�β, LG(I, g1)P,Q)

for every real β, uniformly in compact β-intervals. In addition we require that the
Laurent coefficients of f (v) at the powers (v − sl)−(k+1), 0 ≤ k ≤ nl , are of finite
rank.

Set

M−∞
T (I, g1) :=

⋃

P,Q

M−∞
T (I, g1)P,Q

where the union is taken over all asymptotic types P and Q, associatedwith the weight
data involved in the definition of LG(I, g1)P,Q .

In the corner calculus of boundary value problemswe haveMellin operator families
of a similar structure as (3.3), namely,

m(z, ζ ) := t−μσζ

k∑

j=0
t j

∑

|α|≤ j

op
γ2, jα−1/2
Mt

( f jα)(z)ζ ασ ′ζ (3.8)

for f jα(z, v) ∈ C∞(U, M−∞
Tjα

(I, g1)), where Tjα are Mellin asymptotic types and
γ2, jα ∈ R weights such that

γ2 − j ≤ γ2, jα ≤ γ2, πCTjα ∩ �1−γ2, jα = ∅

for all j, α.

Proposition 3.1 The family of operators (3.8) defines elements

m(z, ζ ) ∈ Sμ
cl(U × R

d;Ks,γ2,γ1(I∧),K∞,γ2−μ,γ1−μ(I∧)) (3.9)
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and
m(z, ζ ) ∈ Sμ

cl(U × R
d;Ks,γ2,γ1

P2,P1
(I∧),K∞,γ2−μ,γ1−μ

Q2,Q1
(I∧)) (3.10)

for every s ∈ R and every pair of asymptotic types P2, P1 for some resulting Q2, Q1.

Proof Let us write (3.8) in the form

m(z, ζ ) := t−μσζ

k∑

j=0
t j

j∑

l=0

∑

j−|α|=l
op

γ2, jα−1/2
Mt

( f jα)(z)ζ ασ ′ζ .

Then, for

mμ−l(z, ζ ) := t−μσζ

k∑

j=0
t j

∑

j−|α|=l
op

γ2, jα−1/2
Mt

( f jα)(z)ζ ασ ′ζ (3.11)

we have m(z, ζ ) =∑k
l=0 mμ−l(z, ζ ) and

mμ−l(z, δζ ) = δμ−l 2κδmμ−l(z, ζ ) (2κδ)
−1

for all δ ≥ 1, |ζ | ≥ C, for some C > 0. Because of Remark 2.6 it remains to observe
that m(z, ζ ) is a smooth function with values in

L(Ks,γ2,γ1(I∧),K∞,γ2−μ,γ1−μ(I∧)) and L(Ks,γ2,γ1
P2,P1

(I∧),K∞,γ2−μ,γ1−μ

Q2,Q1
(I∧)),

respectively, for all s ∈ R. ��
Definition 3.2 By

Rμ
M+G(U × R

d , g)(I∧,I∧)

forμ ∈ R andweight data g := (g2, g1) for gi = (γi , γi−μ, (−(k+1), 0]), i = 1, 2,
we denote the set of all operator families

(m + g)(z, ζ ) (3.12)

for m(z, ζ ) as in (3.8) and g(z, ζ ) ∈ Rμ
G(U × R

d , g)(I∧,I∧).

4 Corner-Degenerate Operators

4.1 Corner Symbols and Quantisations

Let Diffμ(X) for a smooth manifold X be the space of all differential operators on
X of order μ ∈ N with smooth coefficients in local coordinates. Moreover, if B is a
manifold with edge Y, cf. the notation in Sect. 2.1, by Diffμdeg(B) we denote the space
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of all A ∈ Diffμ(s0(B)) that are locally near Y in the variables (r, x, y) ∈ R+×X×R
q

for q > 0, cf. the formula (2.5), of the form

A = r−μ
∑

j+|α|≤μ

a jα(r, y)(−r∂r) j (r Dy)
α (4.1)

for coefficients a jα ∈ C∞(R+ × R
q ,Diffμ−( j+|α|)(X)). For q = 0 the manifold B

has conical singularities. In this case, instead of (4.1) we assume

A = r−μ

μ∑

j=0
a j (r)(−r∂r) j (4.2)

for coefficients a j ∈ C∞(R+,Diffμ− j (X)). The base X of the local cone close to
the conical point s1(B) may have different connected components. Those can be
interpreted as several conical singularities of B. If we want to distinguish them we ask
the local form (4.2) close to the different conical points {c0, c1, . . . } = s0(B) with
respect to the individual base manifolds Xl that depend on the corresponding cl . In
particular, for B := I = {r ∈ R : 0 ≤ r ≤ 1} we have two different conical points
r = 0 and r = 1, and the respective cone bases are of dimension 0. In this case the
operators in

Diffμdeg(I ) (4.3)

are characterised by scalar coefficients {aij } j=0,...,μ, for i = 0 or i = 1, according to
r = 0 or r = 1.

Let M ∈M2 be a stratified space as in Sect. 2.1. Then Diff
μ
deg(M) is defined as the

space of all A ∈ Diffμ(s0(M)) belonging to Diffμdeg(M\s2(M)) that are locally near

Z = s2(M) and r = 0 in the variables (t, r, z) ∈ R+ × I × R
d , cf. (4.1), of the form

A = r−μt−μ
∑

j+|α|+l+|β|≤μ

a jαlβ(r, y, t, z)(−r∂r) j (r Dy)
α(−r t∂t)l(r t Dz)

β (4.4)

for coefficients a jαlβ ∈ C∞(R+×R
q×R+×R

d).Asimilar representation is assumed
locally near Z and r = 1, the end point of I. Instead of (4.4) for r = 0 and r = 1 we
can equivalently assume

A = t−μ
∑

k+|δ|≤μ

ckδ(t, z)(−t∂t)k(t Dz)
δ (4.5)

for coefficients ckδ(t, z) ∈ C∞(R+ × R
d ,Diffμ−(k+|δ|)

deg (I )).
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Definition 4.1 Let �1 := (−(k1 + 1), 0], k1 ∈ N.

(i) Let Rμ
edge,G(R+ ×U × R

1+d
τ̃ ,ζ̃

, g1) for U ⊆ R
b open, g1 := (γ1, γ1 − μ,�1), be

the space of all

gedge(t, z, τ̃ , ζ̃ ) ∈
⋂

s,e∈R
Sμ
cl(R+ ×U × R

1+d
τ̃ ,ζ̃
;Ks,γ1;e(R+),K∞,γ1−μ;∞

P1
(R+))

such that

g∗edge(t, z, τ̃ , ζ̃ ) ∈
⋂

s,e∈R
Sμ
cl(R+ ×U × R

1+d
τ̃ ,ζ̃
;Ks,−γ1+μ;e(R+),K∞,−γ1;∞

Q1
(R+))

for certain gedge-dependent asymptotic types P1, Q1, associated with (γ1−μ,�1)

and (−γ1,�1), respectively.
(ii) Let Rμ

edge,M+G(R+ × U × R
1+d
τ̃ ,ζ̃

, g1) for U and g1 as in (i) be the space of all

operator families

(medge + gedge)(t, z, τ̃ , ζ̃ )

for gedge(t, z, τ̃ , ζ̃ ) ∈ Rμ
edge,G(R+×U×R

1+d
τ̃ ,ζ̃

, g1) and for cut-off functionsω,ω′

on the r half-axis

medge(t, z, τ̃ , ζ̃ ) := r−μωτ̃,ζ̃

k1∑

j=0
r j

∑

|α|≤ j

op
γ1, jα
Mr

( f jα)(t, z)(τ̃ , ζ̃ )αω′
τ̃ ,ζ̃

. (4.6)

Here f jα(t, z) ∈ C∞(R+ ×U, M−∞
R jα

) for Mellin asymptotic types R jα referring
to the Cw-plane and weights γ jα ∈ R such that

γ1 − j ≤ γ1, jα ≤ γ1, πCR jα ∩ �1/2−γ1, jα = ∅.

(iii) By C∞(R+ ×U, Lμ
edge,M+G(I, g;R1+d

τ̃ ,ζ̃
)) for g = (g0, g1) we denote the space

of all operator functions of the form

b̃edge,M+G(t, z, τ̃ , ζ̃ ) := ω0(medge,0 + gedge,0)(t, z, τ̃ , ζ̃ )ω′0
+ ϑ−1∗ ω1(medge,1 + gedge,1)(t, z, τ̃ , ζ̃ )ω′1 (4.7)

for symbols (m+g)edge,i (t, z, τ̃ , ζ̃ ) ∈ Rμ
edge,M+G(R+×U×R1+d

τ̃ ,ζ̃
, g1) introduced

in (ii). Here ωi ≺ ω′i , i = 0, 1, are cut-off functions on the r half-axis such that
ω0(r)+ω1(−r+1) = 1 on the interval I , and ϑ−1∗ is the push forward belonging
to the inverse of (2.66).
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Let us now consider symbols

pi,loc(t, r, z, τ̃ , ρ, ζ̃ ) = ˜̃pi,loc(t, r, z, r τ̃ , rρ, r ζ̃ )

for ˜̃pi,loc(t, r, z, ˜̃τ, ρ̃,
˜̃
ζ ) ∈ Sμ

cl(R+ × R+ ×U × R
2+d
˜̃τ,ρ̃,

˜̃
ζ
), i = 0, 1. Via Mellin quan-

tisation in r -direction with ˜̃pi,loc(t, r, z, ˜̃τ, rρ,
˜̃
ζ ) we associate an

˜̃hi,loc(t, r, z, ˜̃τ,w,
˜̃
ζ ) ∈ Sμ

Ow
(R+ × R+ ×U × R

1+d
˜̃τ, ˜̃ζ

)

such that for hi,loc(t, r, z, τ̃ , w, ζ̃ ) := ˜̃hi,loc(t, r, z, r τ̃ , w, r ζ̃ ) we have

Opr (pi,loc)(t, z, τ̃ , ζ̃ ) = opβ
Mr

(hi,loc)(t, z, τ̃ , ζ̃ )

modulo C∞(R+ ×U, L−∞(R+;R1+d
τ̃ ,ζ̃

)), for every β ∈ R.

Let us now form

ãedge(t, z, τ̃ , ζ̃ ) := ω0r
−μ{ωτ̃,ζ̃op

γ1,0
Mr

(h0,loc)(t, z, τ̃ , ζ̃ )ω′
τ̃ ,ζ̃

+ (1− ωτ̃,ζ̃ )Opr (p0,loc)(t, z, τ̃ , ζ̃ )(1− ω′′
τ̃ ,ζ̃

)}ω′0
+ ϑ−1∗ ω1r

−μ{ωτ̃,ζ̃op
γ1,1
Mr

(h1,loc)(t, z, τ̃ , ζ̃ )ω′
τ̃ ,ζ̃

+ (1− ωτ̃,ζ̃ )Opr (p1,loc)(t, z, τ̃ , ζ̃ )(1− ω′′
τ̃ ,ζ̃

)}ω′1, (4.8)

ωτ̃,ζ̃ (r) := ω(r |τ̃ , ζ̃ |). Since the final results are independent of the choice of the
cut-off functions ω′′ ≺ ω ≺ ω′ on the r half-axis we take the same both for i = 0 and
i = 1.

Let
C∞(R+ ×U, Lμ(I, g1;R1+d

τ̃ ,ζ̃
)) (4.9)

be the set of all operator functions

p̃(t, z, τ̃ , ζ̃ ) := ãedge(t, z, τ̃ , ζ̃ )+ b̃edge,M+G(t, z, τ̃ , ζ̃ )+ c̃edge(t, z, τ̃ , ζ̃ ), (4.10)

where ãedge(t, z, τ̃ , ζ̃ ) and b̃edge,M+G(t, z, τ̃ , ζ̃ ) are given by (4.8) and (4.7), respec-
tively, while c̃edge(t, z, τ̃ , ζ̃ ) ∈ C∞(R+×U,S(R1+d

τ̃ ,ζ̃
, LG(I, g1))), cf. formula (3.7).

In an analogous manner we define

C∞(R+ ×U, Lμ(I, g1;Rd
ζ̃
))

by simply omitting everywhere the variable τ̃ and

C∞(R+ ×U, Lμ(I, g1;�β × R
d
ζ̃
))
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by replacing τ̃ in (4.9) by Im v for v ∈ �β.

Now let
C∞(R+ ×U, Mμ

Ov
(I, g1;Rd

ζ̃
)) (4.11)

be the space of all

h̃(t, z, v, ζ̃ ) ∈ A(Cv,C
∞(R+ ×U, Lμ(I, g1;Rd

ζ̃
)))

such that

h̃(t, z, β + iτ, ζ̃ ) ∈ C∞(R+ ×U, Lμ(I, g1;�β × R
d
ζ̃
))

for every β ∈ R, uniformly in compact β-intervals. We employ the following Mellin
quantisation result:

Theorem 4.2 For every

p(t, z, τ, ζ ) := p̃(t, z, tτ, tζ )

p̃(t, z, τ̃ , ζ̃ ) ∈ C∞(R+ × U, Lμ(I, g1;R1+d
τ̃ ,ζ̃

)), there exists an h̃(t, z, v, ζ̃ ) ∈
C∞(R+ ×U, Mμ

Ov
(I, g1;Rd

ζ̃
)) such that for

h(t, z, v, ζ ) = h̃(t, z, v, tζ )

we have

opβ
Mt

(h)(z, ζ ) = Opt (p)(z, ζ )

modulo C∞(U, L−∞(R+ × I, g1;Rd
ζ )), for every β ∈ R.

Theorems of that kind have been first established in connection with cone and
edge pseudo-differential algebras, cf. [22, Theorem 2.3.7]. There are many variants
and alternative proofs, see, in particular, [18] in the framework of boundary value
problems with the transmission property at the boundary, Krainer [13] in connection
with parabolic operators, or the iterative constructions for higher singularities in [9],
[3]. For purposes below we form

p0(t, z, τ, ζ ) := p̃(0, z, tτ, tζ ), h0(t, z, v, ζ ) := h̃(0, z, v, tζ ).

Then, similarly as in Theorem 4.2 we have

opβ
Mt

(h0)(z, ζ ) = Opt (p0)(z, ζ )

modulo C∞(U, L−∞(R+ × I, g1;Rd
ζ )), for every β ∈ R.
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Definition 4.3 The space
Rμ(U × R

d , g), (4.12)

for μ ∈ R and g = (g2, g1), gi = (γi , γi − μ,�i ), �i = (−(ki + 1), 0], i = 1, 2,
is defined as the set of all operator families

a(z, ζ ) := σ t−μ{σζop
γ2−1/2
Mt

(h)(z, ζ )σ ′ζ + (1− σζ )Opt (p)(z, ζ )(1− σ ′′ζ )}σ ′
+ ϕOpt (pint)(z, ζ )ϕ′ + (m + g)(z, ζ ) (4.13)

for arbitrary p, h as in Theorem4.2, (m+g)(z, ζ ) ∈ Rμ
M+G(U×Rd , g), cf. Definition

3.2, pint(t, z, τ, ζ ) ∈ C∞(R+×U, Lμ(I, g1;R1+d
τ,ζ )), cut-off functionsσ ′′ ≺ σ ≺ σ ′,

σ , σ ′ on the t half-axis, and ϕ,ϕ′ ∈ C∞0 (R+,t ).

If U = �2 ×�2, �2 ⊆ R
d open, we write (z, z′) ∈ �2 ×�2 rather than z.

For a(z, ζ ) ∈ Rμ(�2 × R
d , g) we set

σ2(a)(z, ζ ) := t−μ
{
σ|ζ |opγ2−1/2

Mt
(h0)(z, ζ )σ ′|ζ |

+ (1− σ|ζ |)Opt (p0)(z, ζ )(1− σ ′′|ζ |)
}+ σ2(m + g)(z, ζ ), (4.14)

(z, ζ ) ∈ �2 × (Rd\{0}) for σ|ζ |(t) := σ(t |ζ |), etc., and σ2(m + g)(z, ζ ) := (m +
g)(μ)(z, ζ ), with (μ) indicating the (2κ)-twisted homogeneous principal component
of order μ of the corresponding classical symbol.

The operator families a(z, ζ ) ∈ Rμ(U ×R
d , g) contain information from the cal-

culus of pseudo-differential operators on I∧, interpreted as a (non-compact) manifold
with edge s1(I∧) = ∂0 I∧ ∪ ∂1 I∧, cf. notation (2.2). Assume for the moment that
a = a(ζ ) is independent of z; the z-dependent case is straightforward and tacitly
included below.

It is convenient for the moment to refer to a general manifold B with edge s1(B) =
Y, main stratum s0(B) = B\Y, where B is locally near s1(B) modelled on X� ×�1
for a smooth closed manifold X, n = dim X, and open �1 ⊆ R

q , corresponding to
a chart on Y, q = dim Y. A special case is B = I∧, Y = s1(I∧), s0(I∧) = R+ ×
(0, 1), where X is a single point. The well-known parameter-dependent edge calulus
(edge algebra) contains edge-degenerate pseudo-differential operators, together with
smoothing edge Mellin and Green operators. It is furnished by spaces

Lμ(B, g1;Rd
ζ ) ⊆ Lμ

cl(s0(B);Rd
ζ ) (4.15)

of ζ -dependent classical pseudo-differential operators over s0(B) = B\Y, associated
with the weight data g1 = (γ1, γ1 − μ,�1), cf. Dorschfeldt [5], or [2,3,11,12].
Notation has been changed and unified during the development of the past decade, in
order to make the calculus iterative for increasing orders of singularities. In the present
article we freely use notation and results of [27].

AW (ζ ) ∈ Lμ(B, g1;Rd
ζ ) has a parameter-dependent homogeneous principal sym-

bol of order μ

σ0(W )(x, ξ, ζ ), (4.16)



1198 D.-C. Chang et al.

determined byW (ζ ) regarded as an element of Lμ
cl(s0(B);Rd

ζ ), cf. (4.15). Here (x, ξ)

means variables and covariables in T ∗(s0(B)), and (4.16) is homogeneous in (ξ, ζ ) �=
0 of order μ. Moreover, let �1 ⊆ R

q for q := dim Y be an open set, belonging to a
chart on s1(B) = Y,with variables and covariables (y, η) on�1×Rq = T ∗(�1).Then
W (ζ ) ∈ Lμ(B, g1;Rd

ζ ) is locally near s1(B) modulo a local smoothing parameter-
dependent edge operator of the form

Opy(
1a)(ζ ) (4.17)

for an 1a(y, η, ζ ) belonging to a space of edge amplitude functions (for simplicity, left
symbols)

1Rμ(�1 × R
q+d
η,ζ , g1) (4.18)

which is of a similar structure as (4.12). More precisely, first we have an analogue of
Theorem 4.2, namely,

Theorem 4.4 For every

1p(r, y, ρ, η, ζ ) := 1p̃(r, y, rρ, rη, rζ )

1p̃(r, y, ρ̃, η̃, ζ̃ ) ∈ C∞(R+,r×�1, L
μ
cl(X;Rq+d

ρ̃,η̃,ζ̃
)), there exists an 1h̃(r, y, w, η̃, ζ̃ ) ∈

C∞(R+ ×�1, M
μ

Ow
(X;Rd

η̃,ζ̃
)) such that for

1h(r, y, w, η, ζ ) := 1h̃(r, y, w, rη, rζ )

we have

opβ
Mr

(1h)(y, η, ζ ) = Opr (
1p)(y, η, ζ )

modulo C∞(�1, L−∞(R+ × X;Rq+d
η,ζ )), for every β ∈ R.

Setting

1p0(r, y, ρ, η, ζ ) := 1p̃(0, y, rρ, rη, rζ ), 1h0(r, y, w, η, ζ ) := 1h̃(0, y, w, rη, rζ ),

we also have

opβ
Mr

(1h0)(y, η, ζ ) = Opr (
1p0)(y, η, ζ )

modulo C∞(�1, L−∞(R+ × X;Rq+d
η,ζ )), for every β ∈ R.

Other ingredients of (4.18) are spaces

1Rμ
G(�1 × R

q+d
η,ζ , g1) and 1Rμ

M+G(�1 × R
q+d
η,ζ , g1)

of Green and smoothingMellin plus Green edge symbols, respectively, cf. [22, Defini-
tions 3.3.6, 3.3.14]. They are of a similar structure as those inDefinition 3.2. The formal
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difference is that I is replaced by X, and the smoothingMellin symbols f (y, w)belong
to C∞(�1, M

−∞
S (X)) for a Mellin asymptotic type S = {(sl , nl)}l∈L, cf. formula

(3.2), where M−∞
S (X) consists of the set of all meromorphic functions with values in

L−∞(X) ∼= C∞(X×X)with poles at the points sl ofmultiplicity nl+1, andfinite rank
Laurent coefficients at (w − sl)−(k+1), 0 ≤ k ≤ nl , and χ f |�β ∈ S(�β, L−∞(X))

for every β ∈ R, uniformly in compact β-intervals.
Then (4.18) is the space of families of operators

1a(y, η, ζ ) := ωr−μ{ωη,ζop
γ1−n/2
Mr

(1h)(y, η, ζ )ω′η,ζ + (1− ωη,ζ )Opr (
1p)(y, η, ζ )

(1− ω′′η,ζ )}ω′ + ψOpr (
1pint)(y, η, ζ )ψ ′ + (1m + 1g)(y, η, ζ ) (4.19)

for arbitrary 1p, 1h as in Theorem 4.4, (1m+ 1g)(y, η, ζ ) ∈ 1Rμ
M+G(�1×R

q+d , g1),
moreover, 1pint(r, y, ρ, η, ζ ) ∈ C∞(R+ × �1, L

μ
cl(X;R1+q+d

ρ,η,ζ )), cut-off functions
ω′′ ≺ ω ≺ ω′, ω,ω′ on the r half-axis, and ψ,ψ ′ ∈ C∞0 (R+,r ).

For 1a(y, y, ζ ) ∈ 1Rμ(�1 × R
q+d
η,ζ , g1) we set

σ1(
1a)(y, η, ζ ) := r−μ

{
ω|η,ζ |opγ1−n/2

Mr
(1h0)(y, η, ζ )ω′|η,ζ |

+(1− ω|η,ζ |)Opr (1p0)(y, η, ζ )(1− ω′′|η,ζ |)
}

+σ2(
1m + 1g)(y, η, ζ ), (4.20)

(y, η, ζ ) ∈ �1 × (Rq+d\{0}) for ω|η,ζ |(r) := ω(r |η, ζ |), etc., and σ2(
1m +

1g)(y, η, ζ ) := (1m + 1g)(μ)(y, η, ζ ), with (μ) indicating the (1κ)-twisted homo-
geneous principal component of order μ of the corresponding classical symbol.

A parameter-dependent operator W (ζ ) ∈ Lμ(B, g1;Rd) then has a parameter-
dependent homogeneous principal edge symbol σ1(W ) of order μ, locally near s1(B)

determined by (4.17), and we set

σ1(W )(y, η, ζ ) = σ1(
1a)(y, η, ζ ). (4.21)

Together with (4.16) we have the principal symbolic hierarchy

σ(W ) = (σ0(W ), σ1(W )) (4.22)

of operators W in the edge calculus.

Remark 4.5 Note that the specific choice of the functions ω′′ ≺ ω ≺ ω′, ω,ω′ on
the r half-axis, and ψ,ψ ′ ∈ C∞0 (R+,r ) is not essential. Remainders under changing
these functions remain in (4.18). In particular, if we assume ω � ψ, ω′ � ψ ′ the
summand in (4.19) with the factors ψ,ψ ′ can be integrated in the one with the factors
ω,ω′, modulo a flat Green remainder (flat means trivial asymptotic types), though
1pint(r, y, ρ, η, ζ ) is not edge-degenerate. Without loss of generality we could assume
the latter contribution to be edge-degenerate, but since this term is localised off r = 0
both versions are equivalent modulo a flat Green term.
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In particular, we may assume ω � ωη, ω′ � ω′η for all η. Thus

ωωη = ωη, ω′ω′η = ω′η.

Let us now recall the following important relations. For every s ∈ R we have

Rμ(�1 × R
q+d , g) ⊂ Sμ(U × R

q+d; H, H̃) (4.23)

for the pair of spaces

H :=Ks,γ1(X∧), H̃ := Ks−μ,γ1−μ(X∧) or H :=Ks,γ1
P1

(X∧), H̃ := Ks−μ,γ1−μ

Q1
(X∧)

(4.24)
for asymptotic types P1, associated with the weight data (γ1,�1) and some resulting
Q1, associated with (γ1−μ,�1). For references below we sketch here the main argu-
ments, cf. also the constructions in [19]. Let us ignore elements (1m + 1g)(y, η, ζ ) ∈
1Rμ

M+G(�1×R
q+d
η,ζ , g1) of (4.18)which are even classical symbolswithmore specific

properties. It suffices to consider symbols a = a(y, η) since dimensions of variables
and covariables are independent, and changing notation we may drop ζ. The depen-
dence on the variable y does not cause any specific difficulty; so we drop it. Moreover,
it is convenient first to assume that 1p̃(r, ρ̃, η̃) and 1h̃(r, w, η̃) are independent of r;
the general case is treated by applying a tensor product argument, cf. details below.
Thus, taking into account Remark 4.5 and setting

1p0(r, ρ, η) := 1p̃(0, rρ, rη), 1h0(r, w, η) := 1h̃(0, w, rη) (4.25)

it remains
1a(η) := 1b(η)+ 1e(η) (4.26)

for

1b(η) := r−μωηop
γ1−n/2
Mr

(1h0)(η)ω′η, (4.27)
1e(η) := ω1 f (η)ω′ for 1 f (η) = r−μ(1− ωη)Opr (

1p0)(η)(1− ω′′η). (4.28)

Now we have 1b(η) ∈ C∞(Rq ,L(H, H̃)) for the spaces in (4.24). The spaces with
asymptotics in the second pair are written as projective limits of Hilbert spaces

lim←−
m∈N

Hm, lim←−
l∈N

H̃ l (4.29)

for Hilbert subspaces

· · · Hm+1 ↪→ Hm ↪→ · · · ↪→ H0 = Ks,γ1(X∧)

and

· · · H̃ l+1 ↪→ H̃ l ↪→ · · · ↪→ H̃0 = Ks−μ,γ1−μ(X∧)



Boundary Value Problems 1201

with group action 1κ, cf. also formula (2.73). In this case A ∈ L(H, H̃) means the
existence of a function r : N→ N such that A ∈ L(H r(l), H̃ l) for all l ∈ N, while

Sμ
(cl)(�1 × R

q; H, H̃) :=
⋃

r

⋂

l∈N
Sμ
(cl)(�1 × R

q; H r(l), H̃ l) (4.30)

where the union in (4.30) is taken over all mappings r : N → N. Remark 2.6 is
valid both for pairs of Hilbert and Fréchet spaces with group action. In our case we
can apply this to the function (4.27) which belongs to C∞(Rq ,L(H r(l), H̃ l)) for a
suitable r : N→ N. Without loss of generality we can assume r(0) = 0. Because of

1b(δη) = δμ 1κδ
1b(η)(1κδ)

−1
(4.31)

for all δ ≥ 1 and |η| ≥ const for some constant > 0 the assumptions of Remark 2.6
are satisfied, and we obtain the desired symbol property for 1b(η). In addition the map

Mμ

Ow
(X;Rq

η̃
))→ Sμ

cl(�1 × R
q ; H r(l), H̃ l), 1h̃(0, w, η̃) �→ 1b(δη)

for the indicated r is continuous.
The arguments for (4.28) are as follows. First note that

1e(η) ∈ C∞(Rq ,L(H, H̃)). (4.32)

Then, for any excision function χ(η) we write

1e(η) = c(η)+ d(η)

for c(η) := (1 − χ(η)) 1e(η), d(η) := χ(η) 1e(η). Since c(η) is of compact support
in η it follows together with (4.32) that c(η) ∈ S−∞(Rq ; H, H̃). Moreover, we have

d(η) = ωχ(η) 1 f (η)ω′. (4.33)

Since the operators of multiplication by ω and ω′ both belong to S0(Rq ; H, H) and
S0(Rq; H̃ , H̃), it remains to observe the relation

χ(η)1 f (η) = χ(η)r−μ(1− ωη)Opr (
1p0)(η)(1− ω′′η) ∈ Sμ(Rq; H, H̃) (4.34)

and the continuity of

Lμ
cl(X;Rq

ρ̃,η̃
))→ Sμ(Rq; H, H̃), 1p̃(0, ρ̃, η̃) �→ f (η). (4.35)

Remark 4.6 Let C∞[0,R](R+) be the subspace of all ϕ ∈ C∞(R+) supported by [0, R]
for some R > 0, the operator Mϕ of multiplication by ϕ ∈ C∞[0,R](R+) belongs to

S0(Rq; H, H) and S0(Rq; H̃ , H̃), and the corresponding operators
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C∞[0,R](R+)→ S0(Rq; H, H), ϕ �→Mϕ,

are continuous. Analogous relations are true with respect to H̃ .

Now for r -dependent 1p̃(r, ρ̃, η̃) and 1h̃(r, w, η̃) there is a tensor product argument.
The abstract background is that the elements of the projective tensor product E⊗̂π F
of Fréchet spaces E and F can be written as a convergent sum

∞∑

j=0
λ j e j ⊗ f j (4.36)

forλ j ∈ C,
∑∞

j=0 |λ j | <∞ and e j ∈ E, f j ∈ F, tending to 0 in the respective spaces

as j →∞. In the present case this can be applied to E := C∞[0,R](R+) (the subspace

of all ϕ ∈ C∞(R+) supported by [0, R] for some R > 0) and F = Lμ
cl(X;Rq

ρ̃,η̃
), i.e.,

1p̃(r, ρ̃, η̃) ∈ C∞[0,R](R+, Lμ
cl(X;Rq

ρ̃,η̃
)) = C∞[0,R](R+)⊗̂π L

μ
cl(X;Rq

ρ̃,η̃
)

or F = Mμ

Ow
(X;Rq

η̃
) and

1h̃(r, w, η̃) ∈ C∞[0,R](R+, Mμ

Ow
(X;Rq

η̃
)) = C∞[0,R](R+)⊗̂π M

μ

Ow
(X;Rq

η̃
).

Proposition 4.7 We have

Rμ(U × R
d , g) ⊂ Sμ(U × R

d ; H, H̃) (4.37)

for the pair of spaces

H := Ks,γ2,γ1(I∧), H̃ := Ks−μ,γ2−μ,γ1−μ(I∧)

as well as

H := Ks,γ2,γ1
P2,P1

(I∧), H̃ := Ks−μ,γ2−μ,γ1−μ

Q2,Q1
(I∧)

for every s ∈ R and asymptotic types P2, P1, for some resulting Q2, Q1.

Proof Throughout this proof we assume that the operator functions (4.13) are inde-
pendent of z. The general case is straightforward and left to the reader. By notation we
have (m + g)(ζ ) ∈ Rμ

M+G(Rd
ζ , g). By virtue Definition 2.21 (i) the Green summand

g(ζ ) is as claimed. Moreover, Proposition 3.1 tells us that also m(ζ ) is as desired,
even a classical symbol.

Applying an analogue of Remark 4.5 to elements (4.13) of (4.12) we may ignore
the summands with factors ϕ, ϕ′ completely. In addition without loss of generality we
may assume σ � σζ , σ ′ � σ ′ζ for all ζ. Thus σσζ = σζ , σ ′σ ′ζ = σ ′ζ , and it remains
to look at

a(ζ ) := b(ζ )+ e(ζ ) (4.38)
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for
b(ζ ) := t−μσζop

γ2−1/2
Mt

(h)(ζ )σ ′ζ , e(ζ ) := σ f (ζ )σ ′, (4.39)

and
f (ζ ) := t−μ(1− σζ )Opt (p)(ζ )(1− σ ′′ζ ). (4.40)

We have b(η) ∈ C∞(Rd ,L(H, H̃)) for the spaces in (4.37). The spaces with asymp-
totics in the second pair are written as projective limits of Hilbert spaces analogously
as (4.29) for Hilbert subspaces · · · Hm+1 ↪→ Hm ↪→ · · · ↪→ H0 = Ks,γ2,γ1(I∧) and
· · · H̃ l+1 ↪→ H̃ l ↪→ · · · ↪→ H̃0 = Ks−μ,γ2−μ,γ1−μ(I∧)with group action 2κ, cf. also
Proposition 2.20. We have

a(ζ ) ∈ C∞(Rd ,L(H, H̃)). (4.41)

This can be concluded from b(ζ ), e(ζ ) ∈ C∞(Rd ,L(H, H̃)), cf. (4.39). The desired
symbol property of b(ζ ) follows from a tensor product argument, combined with
Remarks 2.6 and 4.6 which also holds for the spaces in (4.37). More precisely, wemay
assume h̃(t, v, ζ̃ ) ∈ C∞[0,R](R+)⊗̂π M

μ

Ov
(I, g1;Rd

ζ̃
) for a sufficiently large R > 0, i.e.,

we can write

h̃(t, v, ζ̃ ) =
∞∑

j=0
λ jϕ j (t)h̃ j (v, ζ̃ )

for λ j ∈ C,
∑∞

j=0 |λ j | < ∞, ϕ j ∈ C∞[0,R](R+) and h̃ j (v, ζ̃ ) ∈ Mμ

Ov
(I, g1;Rd

ζ̃
),

tending to 0 in the respective spaces as j →∞. This gives us

b(ζ ) =
∞∑

j=0
λ jMϕ j b j (ζ ) (4.42)

for

b j (ζ ) = t−μσζop
γ2−1/2
Mt

(h j )(ζ )σ ′ζ , h j (v, ζ ) = h̃ j (v, tζ ).

Because of
b j (δζ ) = δμ 2κδ b j (ζ )(2κδ)

−1
(4.43)

for all δ ≥ 1 and |ζ | ≥ c for some c > 0, the assumptions of Remark 2.6 are satisfied,
and we see that b j (ζ ) is a classical symbol, tending to zero as j → ∞. Thus (4.42)
converges in the claimed symbol space. In order to treat e(ζ ) we choose an excision
function χ(ζ ) in Rd and write

e(ζ ) = c(ζ )+ d(ζ ) (4.44)

for c(ζ )=σ (1−χ(ζ )) f (ζ )σ ′, d(ζ )=σχ(ζ ) f (ζ )σ ′.Since c(ζ ) ∈ C∞(Rd ,L(H, H̃))

is of compact support in ζ it follows that c(ζ ) ∈ S−∞(Rd ; H, H̃) which is contained
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in the desired symbol space. Moreover, we may assume

p̃(t, τ̃ , ζ̃ ) ∈ C∞[0,R](R+)⊗̂π L
μ(I, g1;R1+d

τ̃ ,ζ̃
)

for a sufficiently large R > 0, i.e., we can write

p̃(t, τ̃ , ζ̃ ) =
∞∑

j=0
λ jϕ j (t) p̃ j (τ̃ , ζ̃ )

for λ j ∈ C,
∑∞

j=0 |λ j | < ∞, ϕ j ∈ C∞[0,R](R+) and p̃ j (τ̃ , ζ̃ ) ∈ Lμ(I, g1;R1+d
τ̃ ,ζ̃

),

tending to 0 in the respective spaces as j →∞. This gives us

d(ζ ) =
∞∑

j=0
λ jMϕ j d j (ζ ) (4.45)

for

d j (ζ ) = σχ(ζ ) f j (ζ )σ ′,
f j (ζ ) = t−μ(1− σζ )Opt (p j )(ζ )(1− σ ′ζ ), p j (t, τ, ζ ) = p̃ j (tτ, tζ ).

A computation based on oscillatory integrals yields that

Lμ(I, g1;R1+d
τ̃ ,ζ̃

)→ Sμ(Rd; H, H̃), p̃ j (τ̃ , ζ̃ ) �→ d j (ζ ),

is continuous, and hence (4.45) converges in Sμ(Rd ; H, H̃). ��
The elements a(z, ζ ) ∈ Rμ(U×Rd , g) are particular families of parameter-dependent
edge operators

a(z, ζ ) ∈ C∞(�2, L
μ(I∧, g1;Rd)).

As such they have the symbols σ0(·) and σ1(·), smoothly depending on z ∈ �2,

namely,

σ0(a)(t, r, z, τ, ρ, ζ ),

cf. (4.16), where x is replaced by (t, r) ∈ R× (0, 1) and ξ by (τ, ρ) ∈ R
2, and

σ1(a)(t, z, τ, ζ ),

cf. the formula (4.21), with (y, η) being replaced by (t, τ ). Together with (4.14) this
gives us the principal symbolic hierarchy in Rμ(�2 × R

d , g) � a(z, ζ ), namely,

σ(a) = (σ0(a), σ1(a), σ2(a)). (4.46)
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Setting

Rμ−1(�2 × R
d , g) � a(z, ζ ) := {a ∈ Rμ(�2 × R

d , g) : σ(a) = 0}

we obtain a subspace of elements which have a triple of principal symbols of order
μ− 1, namely,

σμ−1(a) = (σ
μ−1
0 (a), σ

μ−1
1 (a), σ

μ−1
2 (a)).

Successively we obtain subspaces

Rμ−(N+1)(�2 × R
d , g) ⊂ Rμ(�2 × R

d , g), N ∈ N,

the weight data of which are independent of N . Analogously as in the edge calculus
we have the following result on asymptotic summation.

Theorem 4.8 For every sequence a j (z, ζ ) ∈ Rμ− j (�2 × R
d , g), j ∈ N, where the

weight intervals contained in g are finite and the asymptotic types of the involved
Green symbols independent of j, there is an asymptotic sum

a(z, ζ ) ∼
∞∑

j=0
a j (z, ζ ),

a(z, ζ ) ∈ Rμ(�2 ×R
d , g), unique moduloR−∞G (�2 ×R

d , g)(I∧,I∧), i.e., for every
N ∈ N we have

a(z, ζ )−
N∑

j=0
a j (z, ζ ) ∈ Rμ−(N+1)(�2 × R

d , g).

The main ideas of the proof are similar to that of a corresponding result on asymp-
totic summation of edge symbols. So we drop the proof here.

4.2 Corner Boundary Value Problems

We now study the operators of the corner calculus, locally generated by symbols
a(z, ζ ) in the sense of Definition 4.3.

Theorem 4.9 a ∈ Rν(�2 × R
d , g), b ∈ Rμ(�2 × R

d , h) for g = (g2, g1), h =
(h2, h1),

gi = (γi − ν, γi − ν − μ,�i ), hi = (γi , γi − ν,�i ), �i = (−(ki + 1), 0], ki ∈ N,

implies ab ∈ Rμ+ν(�2 × R
d , g ◦ h) for

g ◦ h = (gi ◦ hi )i=0,1, gi ◦ hi = (γi , γi − ν − μ,�i ), i = 1, 2,
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and we have

σi (ab) = σi (a)σi (b), i = 0, 1, 2.

Proof The result employs the known composition behaviour of operators in the edge
calculus, i.e., the fact that ab also contains the pointwise composition between the
values of operator-valued symbols in weighted spaces, controlled as in Proposition
4.7, namely,

a ∈ Lν(I∧, g1), b ∈ Lμ(I∧, h1)⇒ ab ∈ Lμ+ν(I∧, g1 ◦ h1).

In addition, similarly as in the composition of symbols in the edge calculus for singu-
larity order 1, cf. [8], we can refer to a quantisation only based on holomorphic symbols
as obtained for singularity order 2 in the article [27]. This gives us the composition in
the corner symbol spaces themselves. ��
Remark 4.10 Let a ∈ Rμ(�2 × R

d , g) for g = (gi )i=1,2, gi = (γi , γi − μ,�i ).

Then for the (z, ζ ) wise formal adjoint with respect to the K0,0,0(I∧)-scalar product
we have a∗ ∈ Rμ(�2 × R

d , g∗) for g∗ = (g∗i )i=1,2, g∗i = (−γi + μ,−γi ,�i ).

Let M be a stratified space as at the beginning of Sect. 2.1. We now assume that
M is compact. Recall that close to Z = s2(M) the space M is modelled on I� ×R

d .

Moreover,M\Z is a non-compactmanifold of dimension 2+d with boundary ∂(M\Z)

of dimension 1+ d for d ≥ 1. We treat M\Z as a manifold with smooth edge, since
our operators will not have the transmission property at the boundary. On M\Z we
have the well-known edge operator spaces

Lμ(M\Z , g1) for g1 = (γ1, γ1 − μ,�1)

and weighted edge spaces

Hs,γ1
[loc)(M\Z) ⊂ Hs

loc(int (M\Z)), (4.47)

locally near ∂(M\Z) modelled on

Ws(R1+d ,Ks,γ1(R+))

where R+ is the inner normal of the boundary ∂(M\Z) in M\Z . Moreover, we have
subspaces

Hs,γ1
[loc)P1(M\Z), (4.48)

locally described by

Ws(R1+d ,Ks,γ1
P1

(R+)).

Finally on M\Z locally near Z in the splitting ov variables

(t, r, z) ∈ R+ × I × R
d
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we have the spaces

Hs,γ2,γ1(R+ × I × R
d) :=Ws(Rd ,Ks,γ2,γ1(I∧)) (4.49)

and subspaces with asymptotics

Hs,γ2,γ1
P2,P1

(R+ × I × R
d) :=Ws(Rd ,Ks,γ2,γ1

P2,P1
(I∧)). (4.50)

By gluing together (4.47) and (4.49) via charts and a subordinate partition of unity we
obtain weighted spaces

Hs,γ2,γ1(M) (4.51)

over M. In a similar manner we obtain weighted spaces with asymptotics

Hs,γ2,γ1
P2,P1

(M) (4.52)

by gluing together (4.48) and (4.50), cf. formula (2.59).
By

L−∞(M, g)

for g = (g2, g1) as in Definition 4.3 we denote the space of all continuous C :
Hs,γ2,γ1(M)→ H∞,γ2−μ,γ1−μ(M), s ∈ R, that induce continuous operators

C : Hs,γ2,γ1(M)→ H∞,γ2−μ,γ1−μ

P2,P1
(M),

C∗ : Hs,−γ2+μ,−γ1+μ(M)→ H∞,−γ2,−γ1
Q2,Q1

(M),

s ∈ R, for C-dependent asymptotic types Pi and Qi , associated with the weight data
(γi − μ,�i ) and (−γi ,�i ), respectively. Here C∗ is the formal adjoint of C with
respect to the non-degenerate sesquilinear pairings

Hs,γ2,γ1(M)× H−s,−γ2,−γ1(M)→ C,

based on the H0,0,0(M)-scalar product.

Definition 4.11 The space of corner operators

Lμ(M, g)

for μ ∈ R and g = (g2, g1) is defined as the set of all A ∈ Lμ(M\Z , g1) which are
modulo L−∞(M, g) locally near Z of the formOpz(a) for some a ∈ Rμ(�2×R

d , g),

where �2 ⊆ R
d corresponds to a chart on Z .

The elements of Lμ(M, g) represent boundary value problems on M, more pre-
cisely, upper left corners of operator block matrices, analogously as (2.77).
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Theorem 4.12 An operator A ∈ Lμ(M, g) for μ ∈ R and g = (g2, g1) induces
continuous operators

A : Hs,γ2,γ1(M)→ Hs−μ,γ2−μ,γ1−μ(M),

A : Hs,γ2,γ1
P2,P1

(M)→ Hs−μ,γ2−μ,γ1−μ

Q2,Q1
(M),

for every s ∈ R and arbitrary asymptotic types Pi , associated with (γi ,�i ) and
resulting Qi , associated with (γi − μ,�i ), depending on Pi and the operator A.

Proof The results are a direct consequence of the local continuity of operators off
s2(M) as edge operators and of Proposition 4.7 combined with relation (2.21) and its
analogue for Fréchet spaces with group action. ��
The inclusions

Lμ(M, g) ⊂ Lμ
cl(s0(M)), Lμ(M, g) ⊂ Lμ(M\Z , g1) (4.53)

show that an operator A ∈ Lμ(M, g) has the (standard) homogeneous principal
symbol σ0(A) as a classical pseudo-differential operator over the smooth mani-
fold s0(M) and the (twisted) homogeneous principal symbol σ1(A) as an opera-
tor in the edge calculus over the manifold M\Z with smooth edge, in this case
with boundary s1(M) = ∂(M\Z). Locally near s1(M) in variables and covariables
(y, η) ∈ �1 × (R\{0}) for an open set �1 ⊆ R, representing a chart on s1(M), the
symbol σ1(A) is a family of continuous operators

σ1(A)(y, η) : Ks,γ1(R+)→ Ks−μ,γ1−μ(R+),

continuous for all s ∈ R and twisted homogeneous of order μ, namely,

σ1(A)(y, δη) = δμ 1κδσ1(A)(y, η)(1κδ)
−1

for all δ ∈ R+.

Moreover, locally near s2(M) = Z in variables and covariables (z, ζ ) ∈ �2 ×
(Rd\{0}) for an open set �2 ⊆ R

d , representing a chart on s2(M), the symbol σ2(A)

is a family of continuous operators

σ2(A)(z, ζ ) : Ks,γ2,γ1(I∧)→ Ks−μ,γ2−μ,γ1−μ(I∧),

continuous for all s ∈ R and twisted homogeneous of order μ, in this case,

σ2(A)(z, δζ ) = δμ 2κδσ2(A)(z, ζ )(2κδ)
−1

for all δ ∈ R+.

Theorem 4.13 Let A ∈ Lν(M, g), B ∈ Lμ(M, h) for g, h as in Theorem 4.9. Then
we have

AB ∈ Lμ+ν(M, g ◦ h), (4.54)
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and
σi (AB) = σi (A)σi (B), i = 0, 1, 2. (4.55)

Proof The composition AB is well-defined in the sense of continuous operators
between corresponding weighted corner spaces, cf. the first assertion of Theorem
4.12. By virtue of (4.53) this corresponds to compositions both of classical pseudo-
differential operators over s0(M) and edge operators over M\Z . Since the principal
symbols σi (·) for i = 0, 1 refer to (4.53), and because of the known composition
behaviour in the corresponding operator spaces, including the symbolic rules (4.55)
for i = 0, 1, it remains to show the relation (4.54) and (4.55) for i = 2.

It suffices to characterise local compositions of the kind

ϕOpz(a)ϕ0Opz(b)ϕ
′ (4.56)

for symbols a(z, ζ ) ∈ Rν(�2 × R
d , g), b(z, ζ ) ∈ Rμ(�2 × R

d , h), for functions
ϕ, ϕ0, ϕ

′ ∈ C∞0 (�2), where �2 corresponds to a chart on Z = s2(M). In order
to localise expressions after treating (4.56) once again in a compact subset of �2,

instead of (4.56) we can write ϕ̃ϕOpz(a)ϕ0Opz(b)ϕ
′ϕ̃′ for functions ϕ̃ � ϕ, ϕ̃′ � ϕ′

inC∞0 (�2).Wehaveϕ0b ∈ Rμ(�2×Rd , h), and theLeibniz product c := a#(ϕ0b) ∼∑
α∈Nd 1/α!∂α

ζ aD
α
z (ϕ0b) can be carried out inRμ+ν(�2×Rd , g◦h), cf. Theorem4.8.

By using the right behaviour of the symbol classes in Definition 4.3 under pointwise
formal adjoints we obtain that (4.56) is equal to ϕ̃Opz(c)ϕ̃

′ modulo a smoothing
operator localised in I∧ ×�2. We easily see also the symbolic rule (4.55) for i = 2.
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Differential Operators, Generalized Functions andAsymptotics, vol. 231, pp. 27–53. Birkhäuser, Basel
(2013). arXiv:1202.0387v2 [math.AP]

27. Schulze, B.-W., Wei, Y.: The Mellin-edge quantisation for corner operators. Complex Anal. Oper.
Theory 8(4), 803–841 (2014). doi:10.1007/s11785-013-0289-3

28. Schulze, B.-W., Volpato, A.: Branching asymptotics on manifolds with edge, J. Pseudo-Differ. Oper.
Appl. 1 (2010), 433–493 (2010). arXiv:1004.0332 [math.DG]

29. Schulze, B.-W., Wong, M.W.: Mellin and Green operators of the corner calculus. J. Pseudo-Differ.
Oper. Appl. 2(4), 467–507 (2011)

30. Seiler, J.: Continuity of edge and corner pseudo-differential operators. Math. Nachr. 205, 163–182
(1999)

http://www.tandfonline.com/doi/full/10.1080/17476933.2013.876416
http://arxiv.org/abs/1202.0387v2
http://dx.doi.org/10.1007/s11785-013-0289-3
http://arxiv.org/abs/1004.0332

	Corner Boundary Value Problems
	Abstract
	1 Introduction
	2 Weighted Spaces on Manifolds with Boundary and Edge
	2.1 Singular Manifolds
	2.2 Weighted Corner Spaces
	2.3 Iterated Asymptotics and Corner Green Operators

	3 Mellin Operators
	3.1 Mellin Operators of First Singularity Order
	3.2 Mellin Operators of Second Singularity Order

	4 Corner-Degenerate Operators
	4.1 Corner Symbols and Quantisations
	4.2 Corner Boundary Value Problems

	Acknowledgments
	References




