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In this paper, for a general metric density ρ, we build a differential inequality to
study the hyperbolically partial derivative of ρ-harmonic quasiconformal map-
pings and generalize a result given by Knez̆ević and Mateljević. As one applica-
tion, we obtain the hyperbolically (1/K , K )-biLipschitz continuity of such class
of mappings. As another application, we generalize the classical Koebe Theorem
to this class of mappings and use this result to study its quasihyperbolically
biLipschitz continuity.
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1. Introduction

Let � and �′ be two simply connected regions of hyperbolic type in the complex plane C.
For a topology mapping f of� onto�′, we write L f = | fz |+ | fz̄ |, l f = | fz |− | fz̄ |, where
fz = 1

2 ( fx − i fy) and fz̄ = 1
2 ( fx + i fy). Denote by λ�(z)|dz| the hyperbolic metric

on � with gaussian curvature −4. We call ||∂ f || = (λ�′ ◦ f /λ�)| fz | and ||∂̄ f || =
(λ�′ ◦ f /λ�)| fz̄ | the hyperbolically partial derivatives of f . Particularly, if f is a conformal
mapping of � onto �′ then ||∂ f || = 1.

Definition 1.1 [1] A topology mapping f of � onto �′ is said to be K -quasiconformal
(abbreviated by K -QC) if it satisfies

(1) f is ACL in �;
(2) L f ≤ Kl f , a.e. in �, where K ≥ 1.

Definition 1.2 Let ρ ∈ C∞(�′) be a positive metric density on�′. A C2 sense-preserving
homeomorphism f of� onto�′ is said to be ρ-harmonic if it satisfies the Euler–Lagrange
equation

∗Corresponding author. Email: chxtt@hqu.edu.cn
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876 X. Chen and T. Qian

fzz̄ + 2(log ρ)w( f ) fz fz̄ = 0, (1.1)

where w = f (z).

Particularly, if ρ(w)|dw| is a hyperbolic metric or a positive constant on�′ then we say
that f is hyperbolically harmonic or Euclidean harmonic, respectively. If ρ(w) = 1/|w|
in a domain which does not contain zero, then we call it a log-harmonic mapping. If f is
ρ-harmonic, then ρ2( f ) fz fz̄dz2 is a holomorphic quadratic differential on�. For a survey
of harmonic mappings, see [2–4].

Definition 1.3 If a ρ-harmonic mapping f is also K -quasiconformal, then it is called a
ρ-harmonic K -quasiconformal mapping.

Lewy [5] showed that the Jacobian determinant of a harmonic homeomorphism between
planar domains never vanishes, hence it is a diffeomorphism. Schoen andYau [6] generalized
this result to a harmonic homeomorphism between closed Riemann surfaces of negative
curvature. Recently, Martin further proved that a ρ-harmonic quasiconformal mapping is
also a diffeomorphism (see Theorem 3 at [7]).

The hyperbolic distance dh(z1, z2) between two points z1 and z2 in � is defined by
inf
γ

∫
γ
λ�(z)|dz|, where γ runs through all rectifiable curves in� which connect z1 and z2.

A mapping f of � onto �′ is said to be hyperbolically L1-Lipschitz (L1 > 0) if

dh( f (z1), f (z2)) ≤ L1dh(z1, z2), z1, z2 ∈ �.
If there also exists a constant L2 > 0 such that

L2dh(z1, z2) ≤ dh( f (z1), f (z2)), z1, z2 ∈ �,
then f is said to be hyperbolically (L2, L1)-biLipschitz. L1 and L2 are called the upper
Lipschitz constant and lower Lipschitz constant, correspondingly.

Martio [8] is the first who considered the Euclidean Lipschitz and biLipschitz char-
acter of Euclidean harmonic quasiconformal mappings. Under different conditions of the
ranges of Euclidean harmonic quasiconformal mappings, recent papers [9–15] studied their
Euclidean Lipschitz and biLipschitz character. The study of the Lipschitz (biLipschitz)
continuity for certain classes of quasiconformal mappings including the class of ρ-harmonic
quasiconformal mappings also arouses interest.

Kalaj and Mateljević [16] obtained

Theorem A Let f be a C2 quasiconformal diffeomorphism from the C1,α Jordan domain
� onto the C2,α Jordan domain �′. If there exists a constant M such that

|� f | ≤ M| fz fz̄ |, z ∈ �,
then f has bounded partial derivatives. In particular, it is a Euclidean Lipschitz mapping.

Theorem A implies that if ρ satisfies |(ρ(w))w| ≤ Mρ(w), then a ρ-harmonic mapping
f has a bounded partial derivative and the Euclidean Lipschitz character.

Recently, Kalaj and Pavlović [17] showed
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Complex Variables and Elliptic Equations 877

Theorem B Let K ≥ 1 be arbitrary and let g ∈ C(D) and ||g||∞ := supz∈D |g(z)|.
Then there exit constants N (K ) and M(K ) with limK→1 M(K ) = 1 such that: If w is a
K -quasiconformal self-mapping of the unit disk D satisfying the partial differential equation

� f = g, g ∈ C(D), f (0) = 0,

then for z1, z2 ∈ D, it follows

(
1

M(K )
− 7||g||∞

6

)
|z1 − z2| ≤ |w(z1)− w(z2)| ≤ (M(K )+ N (K )||g||∞)|z1 − z2|.

Theorem B implies that if a ρ-harmonic quasiconformal mapping f of D onto itself
satisfies that the quantity |(log ρ)w ◦ f fz fz̄ | is bounded and w(0) = 0, then f is Euclidean
biLipschitz.

Example 8.1 gives a class of ρ-harmonic quasiconformal mappings with unbounded
quantities |(ρ(w))w|/ρ(w) and |(log ρ)w ◦ f fz fz̄ | such that their partial derivatives are not
bounded, while Example 8.2 shows there indeed exist some ρ-harmonic quasiconformal
mappings with unbounded quantities |(ρ(w))w|/ρ(w) and |(log ρ)w ◦ f fz fz̄ | satisfying that
their partial derivatives are bounded. However, two classes of ρ-harmonic quasiconformal
mappings given in Example 8.1 and 8.2 both have bounded hyperbolically partial deriva-
tives and the hyperbolically Lipschitz character. So the study of the Euclidean Lipschitz
character of a ρ-harmonic quasiconformal mappings may be very different from the study
of a hyperbolically Lipschitz character. In this paper, we aim to study the hyperbolically
biLipschitz continuity of ρ-harmonic K -quasiconformal mappings and give their explicit
biLipschitz constants.

Wan [18] showed that a hyperbolically harmonic K -quasiconformal mapping of the unit
disk onto itself is hyperbolically (1/K , K )-biLipschitz. Without loss of generality, this result
can be generalized to a hyperbolically quasiconformal mappings with a simply connected
domain and a simply connected range. Hence, a hyperbolically harmonic quasiconformal
mapping is always hyperbolically (1/K , K )-biLipschitz.

Knez̆ević and Mateljević [19] showed a Euclidean harmonic K -quasiconformal map-
pings of the unit disk or the upper half-plane onto itself is hyperbolically (1/K , K )-
biLipschitz. For a metric ρ(w)|dw| other than the hyperbolic metric, the composite
mapping ϕ ◦ f of a ρ-harmonic mapping f and a conformal mapping ϕ rarely preserves its
ρ-harmonicity. Hence, in general, we cannot fix the range of a ρ-harmonic quasiconformal
mapping to be the unit disk or the upper half-plane when studying its hyperbolically partial
derivatives and its hyperbolically (Euclidean) Lipschitz (biLipschitz) character. Chen and
Fang [20] generalized the result given by Knez̆ević and Mateljević to the case of convex
ranges.

Theorem C If f is a Euclidean harmonic K -quasiconformal mapping of the unit disk
D onto a convex domain � then the following inequality

K + 1

2K
≤ ||∂ f || ≤ K + 1

2
. (1.2)

holds for every z ∈ D. Moreover, it is hyperbolically (1/K , K )-biLipschitz.
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878 X. Chen and T. Qian

For Euclidean harmonic quasiconformal mappings with convex ranges, the lower bound
(K +1)/(2K ) and the upper bound (K +1)/2 of the inequality (1.2), and the hyperbolically
biLipschitz coefficients (1/K , K ) are all sharp (see [20]). In general, for Euclidean harmonic
quasiconformal mappings with non-convex ranges, the inequality (1.2) does not hold (see
Example 8.4).

A region � in the unit disk D is called strongly hyperbolically convex if it has the
following property: For any w1, w2, w3 ∈ �, with w1 
= w2, the arc ŵ1w2 in D of the
circle C(w1, w2, 1/w3) is also contained in�.[21] Lately, Chen and Fang [22] showed that
a 1/(1 − |z|2)-harmonic quasiconformal mapping with a strongly hyperbolically convex
range in the unit disk is also hyperbolically (1/K , K )-biLipschitz. We note that a strongly
hyperbolically convex domain is not necessary to be Euclidean convex (See Example 8.5).

Above examples show that the hyperbolically biLipschitz continuity of a ρ-harmonic
quasiconformal mapping may be closely related to the geometric characterization of its
range. Various differential inequalities of hyperbolic metrics are used to characterize domain
geometric property (see for example [23]). We naturally pose the following

Question For a general C∞ metric density ρ on �, how to give a proper differential
inequality of the hyperbolic metric density λ� on � to determine a ρ-harmonic quasicon-
formal mapping to be hyperbolically biLipschitz?

In order to answer this question, for two metric densities λ� and ρ defined on a given
domain �, we construct the following differential inequality

|(log λ�)ww − 2(log λ�)w(log ρ)w − (log ρ)ww + 2(log ρ)2w| + |(log ρ)ww̄|
(λ�)2

≤ 1. (1.3)

Several explicit examples satisfying the above differential inequality are given in
Section 6. For some special metric densities ρ, the above inequality can be simplified
to some extent. For example, when choosing ρ to be λ� we have that the left side of (1.3) is
just the modulus of the Gaussian curvature of λ� and then the equality at (1.3) holds for any
simply connected domain�. If ρ is a positive constant, then the inequality (1.3) reduces to
the inequality (6.1) which holds for all convex domains by Lemma C. If ρ = 1/|w| then
the inequality (1.3) holds for an angular domain with the origin as its vertex. There also
exist nondegenerate examples satisfying (1.3), for instance, if ρ = 1/(1 − |w|2) then the
inequality (1.3) holds for strongly hyperbolically convex domains in D.

On the basis of the differential inequality (1.3), we give our main result as follows.

Theorem 1.1 Let � be a simply connected domain of hyperbolic type in the complex
plane C and f a ρ-harmonic K -quasiconformal mapping of the unit disk D onto �. If ρ
and the hyperbolic metric density λ� of � satisfy the inequality (1.3) then the inequality

||∂ f || ≤ K + 1

2
(1.4)

holds for every z ∈ D. If f also satisfies λ� ◦ f | fz | → +∞ as |z| → 1−, then

||∂ f || ≥ K + 1

2K
. (1.5)
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Complex Variables and Elliptic Equations 879

As an application of Theorem 1.1, we obtain the hyperbolically (1/K , K )-bi- Lipschitz
continuity for ρ-harmonic K -quasiconformal mappings under proper conditions.

Theorem 1.2 Let f be a ρ-harmonic K -quasiconformal mapping of the unit disk onto a
simply connected domain �. If the pair of metric densities ρ and λ� defined on � satisfies
the inequality (1.3), then f is hyperbolically K -Lipschitz. If f also satisfies that λ�| fz |
tends to +∞ as |z| tends to 1−, then f is hyperbolically (1/K , K )-biLipschitz.

The classical Koebe 1/4-theorem (see Theorem D in Section 5) was generalized to
Euclidean harmonic mappings by Clunie and Sheil-Small [24]. Mateljević [25] built its
analogue for the class of Euclidean harmonic quasiregular mappings by modulus technique.
Chen and Fang [20] generalized the Koebe theorem to the class of Euclidean harmonic
K -quasiconformal mappings with convex ranges. As another application of Theorem 1.1,
we give a generalization of the Koebe theorem to ρ-harmonic K -quasiconformal mappings
(see Theorem 5.1).

The quasihyperbolically Lipschitz (biLipschitz) continuity of Euclidean harmonic (qua-
siconformal) mappings was also studied in [26,27]. As an application of Theorem 5.1, we
show that if the pair of metric densities ρ and λ� defined on� satisfies the inequality (1.3)
and λ�| fz | tends to +∞ as |z| tends to 1− then f is quasihyperbolically (1/(2K ), 4K )-
biLipschitz (see Corollary 5.1).

This writing of this paper is organized as follows: Section 2 contains preliminary lemmas
we need in the following sections. In Section 3, we give the proof of Theorem 1.1. In Section
4, the proof of Theorem 1.2 is given. In Section 5, we first study the generalization of Koebe
1/4 theorem to certain ρ-harmonic K -quasiconformal mappings and then use the result to
get the quasihyperbolically biLipschitz continuity of certain ρ-harmonic K -quasiconformal
mappings. In Section 6, we give some special density pairs of λ� and ρ satisfying the
inequality (1.3). In Section 7, we show that if a ρ-harmonic diffeomorphism satisfies the
inequality (1.3) then the lower bound of its hyperbolically partial derivative is 1/2 and this
estimate is optimal (see Theorem 7.1). By constructing a hyperbolically harmonic mapping
we show that there does not exist an upper bound for the hyperbolically partial derivative
of ρ-harmonic mappings. In Section 8, five auxiliary examples are given.

2. Preliminary lemmas

In order to study the hyperbolically partial derivatives for ρ-harmonic quasiconformal
mappings, we need the following lemmas. The well-known Ahlfors-Schwarz lemma [28]
says

Lemma A If ρ > 0 is a C2 function on the unit disk D and its gaussian curvature Kρ
satisfies Kρ ≤ −4 then ρ ≤ λD, where λD is the hyperbolic metric density of D with
gaussian curvature −4.

Mateljević [29] gave an inequality of opposite type of the Ahlfors-Schwarz lemma

Lemma B If ρ > 0 is a C2 metric density on D for which the gaussian curvature satisfies
Kρ ≥ −4 and if ρ(z) tends to +∞ when |z| tends to 1−, then λD ≤ ρ.
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880 X. Chen and T. Qian

It is known that a Euclidean harmonic mapping f defined on a simply connected domain
can be represented by two analytic functions h and g with f = h+ḡ. Hence, such a mapping
always belongs to C∞. It is natural to ask whether a ρ-harmonic mapping also possesses
the same property. In fact, we have

Lemma 2.1 Let f ∈ Cn+2(�) be a ρ-harmonic mapping of � onto �′, where n is a
nonnegative integer. If ρ is a Cn+2(�′) function on �′ then � f belongs to Cn+1(�).

Proof After differentiating � f in z, we obtain the following relation from the definition
of ρ-harmonic mappings,

− fzz̄z = 2(log ρ)ww ◦ f f 2
z fz̄ + 2(log ρ)ww̄ ◦ f fz fz̄ f̄z

+ 2(log ρ)w ◦ f fzz fz̄ + 2(log ρ)w ◦ f fz fzz̄ . (2.1)

Similarly, by differentiating � f in z̄ we can also get the following equality

− fzz̄z̄ = 2(log ρ)ww ◦ f fz f 2
z̄ + 2(log ρ)ww̄ ◦ f fz fz̄ f̄ z̄

+ 2(log ρ)w ◦ f fzz̄ fz̄ + 2(log ρ)w ◦ f fz fz̄z̄ . (2.2)

Hence by the assumption that f and ρ are in C2(�) and C2(�′), respectively, we get that
� f belongs to C1(�). Relations (2.1) and (2.2) imply that if f and ρ belong to Cn+2(�)

and Cn+2(�′) then � f ∈ Cn+1(�) by induction. �

Let g = z|z|5 then�g is in C1 but gz̄z̄z̄ is not continuous at 0. This example shows that
� f ∈ Cn+1(�) does not imply that f ∈ Cn+3(�), where n is a nonnegative integer.

The hyperbolic metric of a given planar domain plays an important role in characterizing
its corresponding geometric properties. Harmelin [23] proved

Lemma C Let � be a hyperbolic domain in the complex plane C and λ�(z)|dz| its
hyperbolic metric. Then the following three statements are equivalent:

(i) � is a convex domain;
(ii) ∣∣∣∣ ∂∂z

log λ�(z)

∣∣∣∣ ≤ λ�(z), z ∈ �; (2.3)

(iii)

λ�(z)

∣∣∣∣ ∂2

∂z2
λ−1
�

∣∣∣∣ +
∣∣∣∣ ∂∂z

log λ�(z)

∣∣∣∣
2

≤ λ�(z)
2, z ∈ �. (2.4)

Moreover, by direct verification we have∣∣∣∣ ∂2

∂z2
log λ�(z)

∣∣∣∣ ≤ λ�(z)

∣∣∣∣ ∂2

∂z2
λ−1
�

∣∣∣∣ +
∣∣∣∣ ∂∂z

log λ�(z)

∣∣∣∣
2

, z ∈ �. (2.5)

A conformal map f of D into D is said to be strongly hyperbolically convex if f (D) is
a strongly hyperbolically convex domain. Curz and Mejía [21] showed that if it contains the
origin then it is Euclidean convex, and if it is symmetric about the origin, then it is strongly
hyperbolically convex if and only if it is spherically convex. Moreover,
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Complex Variables and Elliptic Equations 881

Lemma D If g is strongly hyperbolically convex, then for every ζ ∈ D

1

2
(1 − |ζ |2)2|Sg| + 1

4

∣∣∣∣
[

2ζ̄ − (1 − |ζ |2)g′′

g′

]
− 2ḡg′(1 − |ζ |2)

1 − |g|2
∣∣∣∣
2

+ (1 − |ζ |2)2|g′|2
(1 − |g|2)2 ≤ 1.

Using Lemma D, Chen and Fang [22] showed

Lemma E Let � be a strongly hyperbolically convex domain in the unit disk D and
λ�(w)|dw| its hyperbolic metric of Gaussian curvature −4. If ρ�(w) = 1/(1 − |w|2) then

|(log λ�)ww − 2(log λ�)w(log ρ�)w − [(log ρ�)ww − 2(log ρ�)2w]| + |(log ρ�)ww̄|
(λ�)2

≤ 1.

In order to study the generalization of the Koebe theorem to ρ-harmonic quasiconformal
mappings. We also need the following Lemma F given by Harmelin [23] (See also [30]).

Lemma F Let � be a simply connected domain of hyperbolic type in the complex plane
C. Then the following inequality holds for every z in �:

1

4
≤ λ�(z)δ�(z) ≤ 1, (2.6)

and the equality of the upper bound holds if and only if� is a disk with centre z, the equality
of the lower bound holds if and only if � is a slit plane.

Moreover, if � is a convex domain of C then for every z in � it follows

1

2
≤ λ�(z)δ�(z) ≤ 1, (2.7)

and the equality of the lower bound holds if and only if � is a half-plane.

3. Proof of Theorem 1.1

Proof Let f be a ρ-harmonic K -quasiconformal mapping of D onto� and k = (K −1)/
(K +1). Suppose that σ(z) = (1− k)λ�( f (z))| fz |, z ∈ D, where λ�(w)|dw| is the hyper-
bolic metric of�. By the fact that a ρ-harmonic quasiconformal mapping is diffeomorphism
[7], we have that σ(z) > 0. Then it follows

(� log σ)(z) = 4[(log λ� ◦ f )zz̄(z)+ (log | fz |)zz̄]. (3.1)

By the chain rule,[1] we get

4(log λ� ◦ f )zz̄(z) = 4

{
((log λ�)ww̄ ◦ f )(| fz |2 + | fz̄ |2)

+ 2�[((log λ�)ww ◦ f ) fz fz̄] + 2�[(log λ�)w ◦ f fzz̄]
}
. (3.2)

From the assumption that f is ρ-harmonic, it follows

fzz̄ + 2(log ρ)w ◦ f fz fz̄ = 0. (3.3)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ac
au

 L
ib

ra
ry

] 
at

 1
6:

39
 1

9 
A

ug
us

t 2
01

5 



882 X. Chen and T. Qian

Thus, using (3.2) and (3.3) we obtain

4(log λ� ◦ f )zz̄(z) = 4
{
((log λ�)ww̄ ◦ f )(| fz |2 + | fz̄ |2)

+ 2�[((log λ�)ww ◦ f − 2(log λ�)w ◦ f (log ρ)w ◦ f ) fz fz̄]
}
.

(3.4)

By differentiating (3.3) in z we have

fzz̄z = − 2(log ρ)ww ◦ f f 2
z fz̄ − 2(log ρ)ww̄ ◦ f fz fz̄ f̄z

− 2(log ρ)w ◦ f fzz fz̄ − 2(log ρ)w ◦ f fz fzz̄ .

Hence by Lemma 2.1 we get that fzz̄z = fzzz̄ . Thus, it follows that

fzzz̄ fz − fzz fzz̄

= −2(log ρ)ww ◦ f fz̄ f 3
z − 2(log ρ)ww̄ ◦ f | fz̄ |2 f 2

z + 4[(log ρ)w ◦ f ]2 fz̄ f 3
z .

Hence, we obtain

4(log | fz |)zz̄ = 4� fzzz̄ fz − fzz fzz̄

f 2
z

= −4�{2(log ρ)ww̄ ◦ f | fz̄ |2 + 2(log ρ)ww ◦ f fz fz̄

− 4[(log ρ)w ◦ f ]2 fz fz̄}. (3.5)

Combining (3.1) with (3.4) and (3.5), we get

(� log σ)(z) = 4((log λ�)ww̄ ◦ f )(| fz |2 + | fz̄ |2)
− 4�{2(log ρ)ww̄ ◦ f | fz̄ |2 + [2(log ρ)ww ◦ f − 4((log ρ)w ◦ f )2

+ 4(log λ�)w ◦ f (log ρ)w ◦ f − 2(log λ�)ww ◦ f ] fz fz̄}. (3.6)

Then by (3.6) we obtain the Gaussian curvature Kσ of σ satisfies that

Kσ = −� log σ

σ 2

= − 4

(1 − k)2

{
� log λ�
4(λ�)2

◦ f
| fz |2 + | fz̄ |2

| fz |2 − 2�
[
(log ρ)ww̄
(λ�)2

◦ f
| fz̄ |2
| fz |2

+ (log ρ)ww − 2(log ρ)2w + 2(log λ�)w(log ρ)w − (log λ�)ww
λ2
�

◦ f
fz fz̄

| fz |2
]}
.

(3.7)

From the relation (3.7) and the fact that | fz̄ | ≤ | fz | we have

Kσ ≤ − 4

(1 − k)2

{
(1 + |μ|2)

− 2
|(log λ�)ww − 2(log λ�)w(log ρ)w − [(log ρ)ww− 2(log ρ)2w]| + |(log ρ)ww̄|

(λ�)2
|μ|

}
,

where |μ| = | fz̄ |/| fz |. If λ� and ρ satisfy (1.3), then we obtain

Kσ ≤ − 4

(1 − k)2
(1 + |μ|2 − 2|μ|) = −4

(1 − |μ|)2
(1 − k)2

.
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Complex Variables and Elliptic Equations 883

By the assumption that f is also K -quasiconformal, we have |μ| ≤ k, then we get

Kσ ≤ −4.

Thus, σ(z) is a ultrahyperbolic metric in the unit disk D. So by the LemmaAwe get σ ≤ λD ,
that is,

||∂ f || = λ� ◦ f

λD
| fz | ≤ K + 1

2
.

Next we will prove the second inequality of Theorem 1.1. Let η = (1 + k)λ� ◦ f | fz |.
Similarly, by (3.5) and (3.6) it follows

Kη = −� log η

η2

= − 4

(1 + k)2

{
� log λ�
4(λ�)2

◦ f
| fz |2 + | fz̄ |2

| fz |2 − 2�
[
(log ρ)ww̄
(λ�)2

◦ f
| fz̄ |2
| fz |2

+ (log ρ)ww − 2((log ρ)w)2 + 2(log λ�)w(log ρ)w − (log λ�)ww
λ2
�

◦ f
fz fz̄

| fz |2
]}
.

Hence, the above relation and the fact that | fz̄ | ≤ | fz | implies that

Kη ≥ − 4

(1 + k)2

{
(1 + |μ|2)

+ 2
|(log λ�)ww − 2(log λ�)w(log ρ)w − [(log ρ)ww − 2(log ρ)2w]| + |(log ρ)ww̄|

(λ�)2
|μ|

}
.

If λ� and ρ satisfy (1.3), then we obtain

Kη ≥ − 4

(1 + k)2
(1 + |μ|2 + 2|μ|) = −4

(1 + |μ|)2
(1 + k)2

.

Since f is K -quasiconformal we have |μ| ≤ k. Thus, we get

Kη ≥ −4.

By the assumption that λ� ◦ f | fz | → +∞ as |z| → 1−, it follows from Lemma B η ≥ λD ,
that is,

||∂ f || = λ� ◦ f

λD
| fz | ≥ K + 1

2K
.

The proof of Theorem 1.1 is complete. �

4. Proof of Theorem 1.2

Proof Let γ be the hyperbolic geodesic between z1 and z2, where z1 and z2 are two
arbitrary points in D. Then it follows∫

f (γ )
λ�(w)|dw| ≤

∫
γ

λ�( f (z))L f (z)|dz| ≤ 2K

K + 1

∫
γ

λ�( f (z))| fz(z)|
λD(z)

λD(z)|dz|,
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884 X. Chen and T. Qian

wherew = f (z). By the inequality of (1.4) and the fact that dh( f (z1), f (z2)) ≤ ∫
f (γ ) λ�(w)|dw|, we obtain from the above inequality that

dh( f (z1), f (z2)) ≤ K
∫
γ

λD(z)|dz| = K dh(z1, z2).

Hence, f is hyperbolically K -Lipschitz.
Let f (γ ) ⊂ � be the hyperbolic geodesic connected f (z1)with f (z2). By the assump-

tion that λ�| fz | tends to +∞ as |z| → 1−, we have that the inequality (1.5) also holds.
Hence, we also have

dh( f (z1), f (z2)) =
∫

f (γ )
λ�(w)|dw| ≥ 1

K

∫
γ

λD(z)|dz| ≥ 1

K
dh(z1, z2),

where w = f (z). Thus, f is hyperbolically (1/K , K )-biLipschitz. The proof of Theorem
1.2 is complete. �

5. Koebe theorem for ρ-harmonic quasiconformal mappings

In this section, we want to generalize the classical Koebe theorem to the class of ρ-harmonic
quasiconformal mappings. Let δ�(z) denote the distance from z ∈ � to the boundary of�.
The well-known Koebe theorem is as follows

Theorem D [31] If f (z) is a conformal mapping of D onto a simply connected domain
� then

1

4
(1 − |z|2)| f ′(z)| ≤ δ�( f (z)) ≤ (1 − |z|2)| f ′(z)|.

Particularly, if f satisfies that f (0) = 0 and f ′(0) = 1 then

1

4
≤ δ�(0) ≤ 1.

Next we will give another application of Theorem 1.1 to obtain an analogue of the
Koebe theorem for ρ-harmonic quasiconformal mappings.

Theorem 5.1 Let f be a ρ-harmonic K -quasiconformal mapping of the unit disk D onto
a simply connected domain � ⊂ C. If the pair of metric densities ρ and λ� defined on �
satisfies the inequality (1.3) and λ�| fz | tends to +∞ as |z| tends to 1− then

1

4K

L f (z)

λD(z)
≤ δ�( f (z)) ≤ K

l f (z)

λD(z)
. (5.1)

Particularly, if � is also convex then

1

2K

L f (z)

λD(z)
≤ δH ( f (z)) ≤ K

l f (z)

λD(z)
. (5.2)

If � is the upper half-plane H then

1

2K

L f (z)

λD(z)
≤ δH ( f (z)) ≤ K

2

l f (z)

λD(z)
, (5.3)

and the inequality is sharp for every z ∈ D.
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Complex Variables and Elliptic Equations 885

Proof Using the K -quasiconformality of f and the inequality of (1.4), we have

λ�( f (z))

λD(z)
L f (z) ≤ 2K

K + 1

λ�( f (z))

λD(z)
| fz | ≤ K . (5.4)

By the left inequality (2.6) of Lemma F, it follows from (5.4) that

1

4K

L f (z)

λD(z)
≤ δ�( f (z)).

Using the K -quasiconformality of f and the inequality of (1.5), we have

λ�( f (z))

λD(z)
l f (z) ≥ 2

K + 1

λ�( f (z))

λD(z)
| fz | ≥ 1

K
. (5.5)

By the right inequality (2.6) of Lemma F, we obtain from (5.4) that

δ�( f (z)) ≤ K
l f (z)

λD(z)
.

Particularly, if� is also convex then from the inequality (2.7) at Lemma F we similarly
have that

1

2K

L f (z)

λD(z)
≤ δH ( f (z)) ≤ K

l f (z)

λD(z)
.

If� is the upper half-plane H then it is clear that λH (z)δH (z) = 1/2. Hence, from (1.4)
and (1.5) we get that

1

2K

L f (z)

λD(z)
≤ δH ( f (z)) ≤ K

2

l f (z)

λD(z)
.

Let F = −2z/|1 − z|2 + i(1 − |z|2)/(K |1 − z|2), z ∈ D. Then F is a Euclidean
harmonic K -quasiconformal mapping of D onto H . We have

λD(z) = 1

1 − |z|2 , L F (z) = 2

|1 − z|2 , δH (F(z)) = F(z) = 1 − |z|2
K |1 − z|2 .

Thus,
L F (z)

2KλD(z)
= 1 − |z|2

K |1 − z|2 = δH (F(z)).

Hence, the left inequality of (5.3) is sharp for every z ∈ D.
Similarly, Let G = −2z/|1 − z|2 + i(K (1 − |z|2))/(|1 − z|2), z ∈ D. Hence, G

is a Euclidean harmonic K -quasiconformal mapping of D onto H . One can easily verify
that the equality of the right inequality of (5.3) holds for the mapping G. Thus, the right
inequality of (5.3) is sharp for every z ∈ D. The proof of Theorem 5.1 is complete. �

Let η� = 1/δ�. We call η� the quasihyperbolic metric density of a domain �. The
quasihyperbolic metric was first introduced by Gehring and Palak [32]. The quasihyperbolic
metric ηD|dz| of the unit disk is 1/(1 − |z|)|dz|. As an application of the generalized
Koebe theorem of harmonic quasiconformal mappings, we next give the quasihyperbolically
biLipschitz continuity of a class of harmonic quasiconformal mappings.

Corollary 5.1 Let f be a ρ-harmonic K -quasiconformal mapping of the unit disk D
onto a simply connected domain � ⊂ C. If the pair of metric densities ρ and λ� defined
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886 X. Chen and T. Qian

on � satisfies the inequality (1.3) and λ�| fz | tends to +∞ as |z| tends to 1− then f is
quasihyperbolically (1/(2K ), 4K )-biLipschitz.

Proof By the inequality (5.1) at Theorem 5.1, we have

1

K

λD(z)

l f (z)
≤ η�( f (z)) ≤ 4K

λD(z)

L f
.

By the fact that ηD(z)/2 ≤ λD(z) ≤ ηD(z) and the above inequality, it follows

1

2K

ηD(z)

l f
≤ η�( f (z)) ≤ 4K

ηD(z)

L f
. (5.6)

Using the relation that l f |dz| ≤ |d f | ≤ L f |dz|, we get the quasihyperbolically (1/(2K ),
4K )-biLipschitz continuity of f by the same method as the proof of Theorem 1.2.

6. Several pairs of densities λ� and ρ satisfying the inequality (1.3)

In this section we will give several pairs of densities λ� and ρ satisfying the inequality (1.3)
and obtain some classes of ρ-harmonic K -quasiconformal mappings with hyperbolically
(1/K , K )-biLipschitz continuity.

Wan [18] considered the case that ρ is a hyperbolic metric density and showed that a
hyperbolically harmonic K -quasiconformal mapping of the unit disk onto itself is always
hyperbolically (1/K , K )-biLipschitz. In fact, if ρ is chosen to be the hyperbolic metric
density λ�, then for an arbitrary simply connected domain � the inequality (1.3) reduces
to be

(log λ�)ww̄ = (λ�)
2.

The above equality always holds by the definition of the Gaussian curvature of a hyperbolic
metric. In this case, Chen [33] showed that the biLipschitz constants can be improved to be
(2/(K + 1),

√
K ), and its hyperbolically Jacobian λ2

�( f )/λ2
D(| fz |2 − | fz̄ |2) satisfies that

1

K
≤ λ2

�( f )

λ2
D

(| fz |2 − | fz̄ |2) ≤ K .

Knezević and Mateljević [19] showed a Euclidean harmonic K -quasiconformal map-
ping is hyperbolically (1/K , K )-biLipschitz when its range is the unit disk or the upper
half-plane. If ρ is a positive constant, then the inequality (1.3) becomes

|(log λ�)ww| ≤ (λ�)
2. (6.1)

Using Lemma C, Chen and Fang [20] generalized the result obtained by Knezević and
Mateljević to the class of Euclidean harmonic K -quasiconformal mappings with convex
ranges and showed that the convex assumption is optimal (see Example 8.4).

If ρ = 1/|ϕ|, where ϕ is an analytic function without zeros in �, then the inequality
(1.3) can be simplified as∣∣∣∣(log λ�)ww + ϕ′

ϕ
(log λ�)w + 1

2

ϕ′′

ϕ

∣∣∣∣ ≤ λ2
�.
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Complex Variables and Elliptic Equations 887

Particularly, let� be an angular domain with the origin of the complex plane C as its vertex
and ϕ = w. Chen [34] showed that

(log λ�)ww + (log λ�)w
w

+ w̄

w
(λ�)

2 = 0.

This implies that the inequality (1.3) also holds. So, the hyperbolically Lipschitz continuity
of a log-harmonic quasiconformal mapping of the unit disk onto an angular range was built.

Curz and Mejía [21] introduced a strongly hyperbolically convex domain and character-
ized its geometric property by the Schwarzian derivative of a strongly hyperbolically convex
function. Chen and Fang [22] built a differential inequality determined by the hyperbolic
metric for a strongly hyperbolically convex domain in the unit disk (See Lemma E). Using
this inequality, we showed that a 1/(1−|z|2)-harmonic quasiconformal mapping of the unit
disk onto a strongly hyperbolically convex domain in the unit disk is also hyperbolically
(1/K , K )-biLipschitz.

7. Hyperbolically partial derivatives for ρ-harmonic diffeomorphisms

Since a hyperbolic metric is a conformal invariant, we have that the hyperbolically partial
derivative of any conformal mapping f of D onto a domain � satisfies that

||∂ f || = λ� ◦ f

λD
| f ′| = 1.

Let f (z) = x + i/a sinh(ay), where z = x + iy and a > 0. Then f is a hyperbolically
harmonic diffeomorphism of the upper half-plane H onto itself. Moreover, we have that

||∂ f || = λH ◦ f

λH
| fz | = ay(eay + 1)

2(eay − 1)
→ ∞

as y tends to infinity. This example shows that there does not exist an upper bound for the
hyperbolically partial derivative of a ρ-harmonic diffeomorphism.

However, for a hyperbolically harmonic diffeomorphism f of the unit disk onto �, it
follows that

||∂ f || = λ� ◦ f

λD
| fz | ≥ 1.

In fact, for a generalρ-harmonic diffeomorphism of the unit disk onto a simply connected
domain �, we have

Theorem 7.1 Let � be a simply connected domain of hyperbolic type in the complex
plane C. Assume that f is a ρ-harmonic diffeomorphism of the unit disk D onto� satisfying
λ� ◦ f | fz | → +∞ as |z| → 1−. If ρ and the hyperbolic metric density λ� of� satisfy the
inequality (1.3), then the inequality

||∂ f || = λ� ◦ f

λD
| fz | ≥ 1

2
.
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888 X. Chen and T. Qian

Proof Assume that f is a ρ-harmonic diffeomorphism of the unit disk D onto �. Let
� = 2λ�( f )| fz |. By direct verification, the Gaussian curvature of� can be expressed by

K� = −� log�

� 2

= −
{
� log λ�
4(λ�)2

◦ f
| fz |2 + | fz̄ |2

| fz |2 − 2�
[
(log ρ)ww̄
(λ�)2

◦ f
| fz̄ |2
| fz |2

+ (log ρ)ww − 2((log ρ)w)2 + 2(log λ�)w(log ρ)w − (log λ�)ww
λ2
�

◦ f
fz fz̄

| fz |2
]}
.

Let μ = fz̄/ fz . Then the above relation implies that

K� ≥ −
{
(1 + |μ|2)

+ 2
|(log λ�)ww − 2(log λ�)w(log ρ)w − [(log ρ)ww − 2(log ρ)2w]| + |(log ρ)ww̄|

(λ�)2
|μ|

}
.

By the assumption that λ� and ρ satisfy (1.3), then we obtain

K� ≥ −(1 + |μ|2 + 2|μ|) ≥ −4.

Since λ� ◦ f | fz | → +∞ as |z| → 1−, it follows from Lemma B

� ≥ λD,

that is,

||∂ f || = λ� ◦ f

λD
| fz | ≥ 1

2
.

The proof of Theorem 7.1 is complete. �

Let f = x + e−y sin x + iy be defined on H . Then f is a Euclidean harmonic mapping
of H onto itself. Example 8.3 says that it is (K , K ′)-quasiconformal but not quasiconformal
(see [35] for the definition of (K , K ′)-quasiconformal mappings). After some calculations,
it follows that

||∂ f || = λH ◦ f

λH
| fz | = 1

2
(2 + e−y cos x) >

1

2

and

||∂ f || = λH ◦ f

λH
| fz | = 1

2
(2 + e−y cos x) → 1

2

as x = 2kπ +π and y tends to zero. Let ϕ be a conformal mapping of the unit disk D onto
H . Using the fact that ||∂( f ◦ ϕ)|| = ||∂ f || and the ρ-harmonicity of f ◦ ϕ is the same as
f ,[20] we show that the lower bound 1/2 of ||∂ f || is optimal.

8. Auxiliary examples

Example 8.1 Suppose that f = z|z|K−1, K > 1. Then f is a ρ-harmonic
K -quasiconformal mapping of the upper half-plane H onto itself, here ρ(w) = 1/|w|.
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Complex Variables and Elliptic Equations 889

Moreover,

lim|z|→∞ | fz | = lim|z|→∞
K + 1

2
|z|K−1 = +∞,

lim
z→∞ | f (z)|/|z| = lim

z→∞ |z|K−1 = ∞, ||∂ f || = (K + 1)/2,

and

|(log ρ(w))w| = |1/(2w)| → ∞, w → 0.

If K > 2, then

2|(log ρ)w ◦ f fz fz̄ | = K 2 − 1

4
|z|K−2 → ∞,

as z tends to the infinity point.

Example 8.2 Let f (z) = −2|z|2 + i(z − z̄)+ i K (z + z̄)

(z − z̄)− K (z + z̄)+ 2i
. Then f is a ρ-harmonic

K -quasiconformal mapping of the unit disk D onto itself satisfying that |(ρ)w|/ρ(w) and
|(log ρ)w ◦ f fz fz̄ | are unbounded, where ρ(w)|dw| = 2/|w + i |2|dw|. However, f has
bounded (hyperbolically) partial derivatives and then it is hyperbolically biLipschitz and
Euclidean biLipschitz.

Proof In fact we can write f = ψ ◦ AK ◦ ϕ, where

ϕ(z) = z − i

z + i
, AK (ζ ) = u + i Kv, ζ = u + iv, ψ(ξ) = i

1 + ξ

1 − ξ
.

Hence, f is a Teichmüller mapping of the unit disk onto itself. By Example 2.2 in [36], it
follows that f is ρ-harmonic with ρ(w) = 2/|w + i |2.

Set z = x + iy. We have

|ρ(w)w|/ρ(w) = 2

|w + i | , | fz | = (K + 1)[x2 + (y + 1)2]
2[K 2x2 + (y + 1)2] ,

and

2|(log ρ)w ◦ f fz fz̄ | = 4(K + 1)|z̄ − i ||(z − z̄)− K (z + z̄)+ 2i + (K + 1)(z̄ − i)|
|(z − z̄)− K (z + z̄)+ 2i)|3

Thus, when K > 1 it follows

2|(log ρ)w ◦ f fz fz̄ | = K 2 − 1

2(1 + y)
→ ∞,

as z tends to the point −i along the imaginary axis.
Similarly, we have

|(ρ(w))w|/|ρ(w)| → ∞, w → −i.

By the Schwarz-Pick Lemma [1] we obtain the equality

λD( f (z))

λD(z)
| fz | = λH (AK (ϕ(z)))

λD(z)
|(AK (ϕ(z)))z |.
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890 X. Chen and T. Qian

Thus, by Theorem C

K + 1

2K
≤ λH (AK (ϕ(z)))

λD(z)
|(AK (ϕ(z)))z | ≤ K + 1

2
.

Hence, f has a bounded hyperbolically partial derivative and then it is
(1/K , K )-hyperbolically biLipschitz.

Moreover, since

K + 1

2K 2
≤ | fz | ≤ K + 1

2
,

f also has a bounded partial derivative. Then it is Euclidean biLipschitz.

Example 8.3 [37] Let f (z) = x + e−ysinx + iy, where y > 0. Then f is (2, 1)-QC
mapping of the upper half-plane onto itself but it is not K -QC for any K ≥ 1.

Example 8.4 [20] Let � = C − [0,+∞) and λ� be its hyperbolic metric density with
the Gaussian curvature −4. Then

λ�(z)|dz| = i

2(
√

z − √
z)|√z| |dz|.

Suppose that AK = K x + iy, K > 1. Then AK is a Euclidean harmonic K -quasiconformal
mapping of � onto itself and satisfies the inequality

||∂AK || = λ� ◦ AK

λ�
|(AK )z | > K + 1

2
(8.1)

when x > 0, y > 0.
If BK = (1/K )x + iy then BK is a Euclidean harmonic K -quasiconformal mapping of

� onto itself and satisfies the inequality

||∂BK || = λ� ◦ BK

λ�
|(BK )z | <

(
K + 1

2K

)

when x > 0, y 
= 0.

Example 8.5 Let the boundary of a region � ⊂ D be the curves �1 = {z|z = 1/2 +
1/2eiθ , θ ∈ [0, π ]} and �2 = {z|z = 1/2− i/2+√

2/2eiθ , θ ∈ [π/4, 3π/4]}. Then �1 has
hyperbolic curvature 2 and �2 has hyperbolic curvature

√
2. Hence,� is a crescent-shaped

domain. Thus, � is strongly hyperbolically convex but not Euclidean convex (see page
1409 of [21]).
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[16] Kalaj D, Mateljević M. Inner estimate and quasiconformal harmonic maps between smooth

domains. J. Anal. Math. 2006;100:117–132.
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