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In terms of forward and backward shift invariant subspaces, we characterize functions in
Hardy spaces, or, analytic signals in the terminology of signal analysis, through multiplica-
tions between analytic and conjugate analytic signals. As applications, we give some nec-
essary and sufficient conditions for solutions of the Bedrosian equation HðfgÞ ¼ f ðHgÞwhen
f or g is a bandlimited signal. We also solve the band preserving problem by means of the
shift invariant subspace method, which establishes some necessary and sufficient condi-
tions on the functions f that make fg have bandwidth within that of the function g.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

There are two mathematical analysis problems that have long been interested in physical practice and signal processing.
The first is: under what conditions on f and g does the equality HðfgÞ ¼ fHg hold, where H is the Hilbert transformation
defined by
HðgÞðxÞ :¼ 1
p

lim
e!0þ

Z
jt�xj>e

gðtÞ
x� t

dt: ð1:1Þ
The second is phrased as a band preserving problem: assume that g 2 L2ðRÞ is bandlimited, and has its band ½A;B�, viz.,
supp bg # ½A;B�. Then, under what conditions on f does the relation supp bfg # ½A;B� hold? Here the notation bg stands for the
Fourier transform of g, defined by
bgðxÞ ¼ Z 1

�1
gðxÞe�ixxdx; ð1:2Þ
and supp bg is the support of bg . The first problem amounts to generalize the classical results of Bedrosian given in [1]: For
f ; g 2 L2ðRÞ, if supp bf # ½�A;A� and supp bg # R n ½�A;A� for a positive number A; or, alternatively, if supp bf # ½0;1Þ and
supp bg # ½0;1Þ, then HðfgÞ ¼ fHg. The recent interest on the Bedrosian equation was motivated by the study of mono-
components that, by the definition, are analytic signals with non-negative phase derivatives, the latter being defined as
instantaneous frequencies [2–4]. Some interesting and useful results for the Bedrosian equation are established in [5–11].
About the second problem, if g 2 L2ðRÞ has its band ½A;B�, by the Paley–Wiener theorem, it is known that fg 2 L2ðRÞ has
the same band as that of g if and only if f is a quotient of two entire functions of the exponential type. A number of authors
Province.
2/A3.
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devoted to such construction of bandlimited signals (the band preserving problem) and then apply the results to the phase
retrieval problem by the methodology in representing an entire function by Hardamard’s formula in an infinite product
[12–14]. However, almost all the existing constructive results of the band preserving problem are focused on L2ðRÞ functions.
Moreover, we do not know whether f can be totally described by the zero information of the Laplace transform of g.

In the paper, we will solve them by the method of shift invariant subspaces. An interesting thing will be found that the
solutions of both problems are related to the conditions on analytic signals f and on conjugate analytic signals g such that
their products fg are again analytic signals or conjugate analytic signals. In Section 2, we will characterize those conditions
on f and g in terms of the forward and backward shift invariant subspaces. In Section 3, we will first make some summaries
and self-appraisal to the existing results for the Bedrosian identity HðfgÞ ¼ fHg. As applications, we will give a new charac-
terization by using forward and backward shift invariant subspaces for the solutions of the Bedrosian equation HðfgÞ ¼ fHg
when f or g is a bandlimited signal. Furthermore, we will establish necessary and sufficient conditions in terms of the same
invariant subspaces on functions f that make the band of fg to be within that of g. It is shown that such functions f form the
linear space spanned by rational functions whose zeros are those of the Laplace transform of g. The backward shift and
forward shift approach to the problems is a new idea that has advantage over the Hardamard’s formula method for its
explicitness and computability.

2. Analytic signals as products of analytic and conjugate analytic signals

It is well-known that the Hilbert transform Hg given in (1.1) is well-defined for g 2 LpðRÞ;1 6 p <1 and Hg 2 LpðRÞ for
g 2 LpðRÞ;1 < p <1. But for g 2 L1ðRÞ;Hg given in 1.1) may not exist. In order to also discuss Bedrosian identity HðfgÞ ¼ fHg
for g 2 L1ðRÞ, an immediate problem we encounter is to find an appropriate definition of the Hilbert transform on L1ðRÞ.
Without loss of generality, for g 2 L1ðRÞ, the Hilbert transformation is modified as [15]
ðeHgÞðxÞ ¼ xþ i
p

lim
�!0þ

Z
jx�tj>�

gðtÞ
ðx� tÞðt þ iÞ dt: ð2:3Þ
If g 2 LpðRÞ;1 6 p <1, the modified Hilbert transform eHg given in (2.3) is essentially the same as the classical Hilbert trans-
form given in (1.1) as eHg ¼ Hg þ Ag , where Ag is a constant of the form
Ag ¼
Z 1

�1

gðtÞ
t þ i

dt:
The Fourier transform given in (1.2) is well-defined for functions in LpðRÞ for 1 6 p � 2. But for p > 2, it can be shown that
there are functions in LpðRÞ such that the Fourier transform given in (1.2) is not a well-defined function [16]. In order to gen-
eralize the study of band preserving problem from L2ðRÞ spaces to LpðRÞ spaces, 1 6 p 61, the tempered distribution should
be introduced. The tempered distribution as Fourier transformation is defined through
hbT ;ui ¼ hT; bui; u 2 S the Schwartz class: ð2:4Þ
The Fourier transform given in the distributional sense coincides with the traditional definition of Fourier transformation
given in (1.2) for 1 6 p � 2. The support of a distribution T is defined as the complement of the largest open set on which
T vanishes, where T is said to vanish on U if hT;/i ¼ 0 for any test function / whose support is contained in U.

Let Lp
TðRÞ :¼ ff 2 LpðRÞjTf 2 LpðRÞg for 1 6 p 61, where T is the Hilbert transform interpreted as
Tf ¼
Hf ; 1 6 p <1;eHf ; p ¼ 1:

(
ð2:5Þ
Obviously, when 1 < p <1, the space Lp
TðRÞ coincides with LpðRÞ. For p ¼ 1 and p ¼ 1, the spaces Lp

TðRÞ are respectively
proper subspaces of LpðRÞ. For any function f ðxÞ 2 Lp

TðRÞ, we have the Hardy space decomposition
f ðxÞ ¼ 1
2

fþðxÞ þ f�ðxÞ
� �

¼ 1
2

f þ iTfð Þ þ f � iTfð Þ½ �: ð2:6Þ
The signals fþ :¼ f þ iTf and f� :¼ f � iTf are respectively called the analytic signal and the conjugate analytic signal associated
with f. Let
HpðRÞ :¼ f : f ¼ uþ iTðuÞ for certain function u 2 Lp
TðRÞ

� �

be the set of all analytic signals, and
HpðRÞ :¼ f : f ¼ u� iHðuÞ for certain function u 2 Lp
TðRÞ

� �

the set of all conjugate analytic signals. It is shown that the space HpðRÞ is identical to the Banach subspace of LpðRÞ of the
functions of non-negative spectrum [17], that is, HpðRÞ ¼ FHpðRþÞ :¼ ff 2 LpðRÞjsupp bf # ½0;1Þg, where Rþ :¼ ½0;1Þ and the
support of bf is defined in the distributional sense. Alternately, the equivalent operation of (2.6) in the frequency domain is
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bf ðxÞ ¼ uðxÞbf ðxÞ þ uð�xÞbf ðxÞ;

where uðxÞ is the step function given by
uðxÞ ¼
1; x P 0;

0; x < 0:

�

Moreover, there is a one-to-one correspondence between analytic signals in HpðRÞ and functions in the Hardy space HpðCþÞ
[18], where HpðCþÞ is the class of all holomorphic functions FðzÞ on the upper half plane Cþ :¼ fzjz ¼ xþ iy; y > 0g satisfying
kFkHpðCþÞ :¼
sup
y>0

R þ1
�1 jFðxþ iyÞjp dx

� �1=p
<1; for 1 6 p <1;

sup
z2Cþ
jFðzÞj <1; for p ¼ 1:

8><>:

For functions f 2 HpðRÞ, we have [17]:

Lemma 2.1. Let 1 6 p 61. Then f 2 HpðRÞ if and only if one of the following conditions holds:

(1) Tðf Þ ¼ �if .
(2) f 2 FHpðRþÞ.
(3) f is the non-tangential boundary value of a function FðzÞ 2 HpðCþÞ, where, for z 2 Cþ, FðzÞ can be represented by
FðzÞ ¼
1

2pi

R1
�1

f ðtÞ
t�z dt; 1 6 p <1;

1
2pi

R1
�1

zþi
ðt�zÞðtþiÞ f ðtÞdt; p ¼ 1:

(

In what follows, let 1 6 p; q; r 61 such that r�1 ¼ p�1 þ q�1. By the H}older inequality, it is easy to verify that the product
of two analytic signals is an analytic signal and the product of two conjugate analytic signals is a conjugate analytic signal, as
stated below.

Lemma 2.2. If f 2 HpðRÞ and g 2 HqðRÞ are two nonzero analytic signals, then fg 2 HrðRÞ. If f 2 HpðRÞ and g 2 HqðRÞ are nonzero
conjugate analytic signals, then fg 2 HrðRÞ.

Naturally, we would encounter the question in what circumstance the product of an analytic signal and a conjugate ana-
lytic signal is still analytic or conjugate analytic. The study of this problem is on its own interest, as well as of significant
applications. Its solutions are related to characterizations of the solutions of the Bedrosian equation and of the band preserv-
ing problem. It is related to the well-known Nevanlinna decomposition theorem for F 2 HpðCþÞ [19]. Any function
FðzÞ 2 HpðCþÞ can be decomposed as FðzÞ ¼ OFðzÞIFðzÞ; z 2 Cþ, where OFðzÞ, the outer factor of F, is of the form
OFðzÞ ¼ exp
i
p

Z 1

�1

1þ tz
z� t

ln jFðtÞj
1þ t2 dt

� �
; ð2:7Þ
and IFðzÞ is the inner factor of F, that is, IFðzÞ 2 H1ðCþÞ and jIFðxÞj ¼ 1 for almost all x 2 R. Factorizing IFðzÞ canonically, we get
IFðzÞ ¼ eiðazþbÞBFðzÞSFðzÞ for z 2 Cþ, where a is a non-negative constant, b is a real constant, BFðzÞ is a Blaschke product and
SFðzÞ is a singular inner function. Let E be the set of all different zeros of FðzÞ on the upper half plane and mðkÞ the multiplicity
of k at FðkÞ ¼ 0. Then the Blaschke product BF is of the form
BFðzÞ ¼ BE;mðzÞ ¼
Y
k2E

jk2 þ 1j
k2 þ 1

� z� k

z� k

 !mðkÞ

; ð2:8Þ
where the pair ðE;mÞ satisfies the Blaschke condition
X
k2E

mðkÞImðkÞ
1þ jkj2

<1:
In (2.8) we are with the convention that jk2 þ 1j=ðk2 þ 1Þ takes value 1 when k ¼ i. The singular inner function SFðzÞ is of the
form
SFðzÞ :¼ exp
i
p

Z 1

�1

1þ zt
t � z

dlðtÞ
� �

;

where lðtÞ is a real, bounded, increasing function with derivative l0ðtÞ ¼ 0 almost everywhere on R. A fundamental property
of Hardy space functions is that they have non-tangential boundary limits almost everywhere. Hence, for almost all x 2 R,
the corresponding decomposition of nonzero function f 2 HpðRÞ is
f ðxÞ ¼ lim
y!0þ

Fðxþ iyÞ ¼ Of ðxÞIf ðxÞ ¼ eiðaxþbÞOf ðxÞBf ðxÞSf ðxÞ: ð2:9Þ
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Note that, apart from the self-explanatory notation FðxÞ as non-tangential boundary value of FðzÞ, we also denote the non-
tangential boundary value function of F 2 HpðCþÞ by @F, and, for a function f 2 HpðRÞ, denote the corresponding function in
HpðCþÞ by @�1f .

Theorem 2.3. Let f 2 HpðRÞ and g 2 HqðRÞ be non-zero functions. Then the following statements are equivalent:

ð1Þ fg 2 HrðRÞ.
ð2Þ f 2 HpðRÞ

T
IgHpðRÞ, where Ig is the inner function of g.

ð3Þ
O

f

O
f

If ¼
u1
u2

and g 2 u1HqðRÞ, where u1 ¼ B1S1 and u2 ¼ B2S2 are two co-prime inner functions, that is, B1ðzÞ and B2ðzÞ have

no common zeros, the singular measures l1 and l2 of S1 and S2 have no common minorant.
Proof. We first assume (1) holds, that is, we have nonzero functions f 2 HpðRÞ; g 2 HqðRÞ and fg 2 HrðRÞ. Then
@�1ðfgÞðzÞ 2 HrðCþÞ and the outer function of @�1ðfgÞðzÞ is represented by
O@�1ðfgÞðzÞ ¼ exp
i
p

Z þ1

�1

1þ zt
ðz� tÞð1þ t2Þ

ln jf ðtÞgðtÞjdt
� �

:

By ln jfgj ¼ ln jgj þ ln jf j, we have O@�1ðfgÞ ¼ O@�1gO
@�1 f . Hence, OðfgÞ ¼ OgOf . By the factorization theorem, we therefore obtain
OgIgOf If ¼ fg ¼ OðfgÞIðfgÞ ¼ OgOf Ifg ¼ gIgOf Ifg : ð2:10Þ
From equation (2.10) and the assumptions g and f are nonzero functions, we have
f ¼ IgOf Ifg 2 IgHpðRÞ:
Hence, f 2 HpðRÞ
T

IgHpðRÞ, proving that (1) implies (2). The relation (2.10) also shows
Of

Of

If ¼
Ig

Ifg
; ð2:11Þ
that further implies
Ig

Of

Of

If ¼ Ifg 2 H1ðRÞ: ð2:12Þ
The relation (2.11) shows that
O

f

O
f

If is the quotient of two inner functions If and Ifg . Eliminating the greatest common divisor of
the two inner functions If and Ifg , there exist two co-prime inner functions u1 ¼ B1S1 and u2 ¼ B2S2 such that
Of

Of

If ¼
u1

u2
: ð2:13Þ
From the fact that
Ig
u2

u1
¼ Ig

Of

Of

If 2 H1ðRÞ;
we obtain that Ig must have a non-trivial divisor u1. Hence, we have g ¼ OgIg 2 u1HqðRÞ and
O

f

O
f

If ¼
u1
u2

, where u1 and u2 are
two co-prime inner functions. This shows that (1) implies (3).

Now we show that (2) implies (1). If f 2 HpðRÞ
T

IgHpðRÞ, then f 2 HpðRÞ and f ¼ Igh for some h 2 HpðRÞ. Since g 2 HqðRÞ,
we have g ¼ OgIg 2 HqðRÞ and Og 2 HqðRÞ. Thus fg ¼ IghOgIg ¼ hOg . By the H}older inequality, it follows that fg 2 HrðRÞ.

Now we show that (3) implies (1). If g 2 u1HqðRÞ and
O

f

O
f

If ¼
u1
u2

, then there exists h 2 HqðRÞ such that g ¼ u1h 2 HqðRÞ and

u1 ¼ u2
O

f

O
f

If . Since f 2 HpðRÞ, we have f ¼ f ¼ Of If . Therefore
fg ¼ u1hf ¼ hu2

Of

Of

If Of If ¼ hu2Of :
By the H}older inequality, we conclude that fg 2 HrðRÞ. The proof is complete. h

The equivalence relation between ð1Þ and ð2Þ was first proved in [11]. Here we cite the proof again for the self-containing
purpose, as well as for the convenience of proving their equivalence with ð3Þ. Symmetrically, or as a corollary of Theorem 2.3,
we have an analogous result for the conjugate analytic case.
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Corollary 2.4. Let f 2 HpðRÞ and g 2 HqðRÞ be non-zero functions. Then the following statements are equivalent:

(1) fg 2 HrðRÞ.
(2) g 2 HqðRÞ \ If HqðRÞ, where If is the inner function of f .

(3) Og

Og
Ig ¼ u1

u2
and f 2 u1HpðRÞ,where u1 ¼ B1S1 and u2 ¼ B2S2 are two co-prime inner functions.

For a given nonzero function g 2 HqðRÞ, we associate it with the spaces
Xp
g :¼ ff : f 2 HpðRÞ and fg 2 HrðRÞg; ð2:14Þ
and
Yp
g :¼ ff : f 2 HpðRÞ and fg 2 HrðRÞg: ð2:15Þ
We note that the induced spaces by g, Xp
g and Yp

g , consist of Hardy space functions and hence are subspaces of HpðRÞ. By

Corollary 2.4, we learn that if Og

Og
Ig is not a quotient of two co-prime inner functions (for example, if OgðzÞ is an outer function

with essential singularities in the lower half plane), then Xp
g is an empty set. If Og

Og
Ig is the quotient of two co-prime inner func-

tions u1 and u2, then Xp
g is u1HpðRÞ. The space u1HpðRÞ, usually referred as a forward shift invariant subspace, is invariant

under the semigroup fSa : a > 0g of forward shift operators
ðSahÞðtÞ ¼ eiathðtÞ; h 2 HpðRÞ:
By Theorem 2.3, the space Yp
g is HpðRÞ \ IgHpðRÞ, where Ig is the inner function of g. When g 2 HqðRÞ is an outer function, that

is, Ig ¼ eib; b 2 R being trivial, the space Yp
g is an empty set for 1 6 p <1. When g 2 HqðRÞ is not an outer function, that is, Ig is

not a constant, then the space Yp
g is not empty, and is an invariant subspace of HpðRÞ under the semigroup fS�a : a > 0g of

backward shift operators
ðS�ahÞðtÞ ¼ e�iathðtÞ; h 2 HpðRÞ:
For p�1 þ p0�1 ¼ 1, the backward shift operator S�a is the adjoint of the forward shift operator Sa under the conjugate pairing
between HpðRÞ and Hp0 ðRÞ,
hSaf ; gi ¼ hf ; S�agi; f 2 HpðRÞ; g 2 Hp0 ðRÞ:
The study of forward and backward shift invariant subspaces has a long history, some useful and interesting results can be
found in [20–24]. Both forward shift invariant and backward shift invariant subspaces are expressible in terms of inner func-
tions. The most classical characterization of forward shift invariant subspaces is referred to Beurling–Lax Theorem [20].
When the related inner function is just a Blaschke product, the corresponding backward shift invariant subspace can be
explicitly characterized (also see [22]).

Lemma 2.5. Let 1 6 p 61, and Bg be the Blaschke product given in (2.8). Then HpðRÞ
T

BgHpðRÞ is the closure in LpðRÞ of the sets
of all rational functions of which each has its poles as a subset of those of Bg with multiplicities not exceeding those of the
corresponding poles of Bg.

By imposing the restriction that bg be compactly supported, that is, g belongs to bandlimited Hardy space FHq½A;B�,
FHq½A;B� :¼ fg 2 LqðRÞ : supp bg # ½A;B�g;
we will first give a characterization for the forward shift invariant subspace Xp
g described in Corollary 2.4 induced by

g 2 FHq½A;B� for 0 6 A < B.

Corollary 2.6. Let g 2 FHq½A;B� be a nonzero function. If B 2 supp bg and 0 6 A < B. Then the forward invariant subspace Xp
g is

eiBxHpðRÞ.
Proof. Let hðxÞ :¼ eiBxgðxÞ. Then bhðxÞ ¼ bgðB�xÞ. Since g 2 FHq½A;B� is a nonzero function with B 2 supp bg , we have
h 2 FHq½0;B� A� � HqðRÞ with 0 2 supp bh. By the factorization theorem, we have Oh ¼ Og and
OgðxÞ
OgðxÞ

IgðxÞ ¼
OgðxÞ
gðxÞ

¼ eiBxOgðxÞ
eiBxgðxÞ

¼ eiBxOgðxÞ
OhðxÞIhðxÞ

¼ eiBx

Ih
: ð2:16Þ
Since 0 2 supp bh, we obtain that eiBx and Ih are two co-prime inner functions. Hence, u1ðxÞ ¼ eiBx and Xp
g ¼ eiBxHpðRÞ. h

Let g 2 FHq½A;B� be a nonzero function, where 0 6 A < B. By the Paley–Wiener–Schwarz theorem [25], we learn that
g 2 FHq½A;B� if and only if g is the non-tangential boundary limit of an entire function GðzÞ of exponential type (not exceeding
B) that belongs to HqðCþÞ, with the representation
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GðzÞ ¼ 1
2pi

Z 1

�1
gðxÞ e

iBðz�xÞ � eiAðz�xÞ

z� x
dx: ð2:17Þ
The following lemma is to show that the singular inner factor of g 2 FHq½A;B� is a constant in such case.

Lemma 2.7. Let gðxÞ 2 FHq½A;B� be a nonzero function, where 0 6 A < B. Then the inner function of g is eiðaxþbÞBgðxÞ, where
0 6 a 6 B; b is a real constant, BgðxÞ is the boundary Blaschke product formed by the zeros of GðzÞ :¼ ð@�1gÞðzÞ defined by (2.17) in
the upper half plane and jBgðxÞj ¼ 1 on the whole R.
Proof. The following proof is an adaptation of [19, Chapter II, Theorem 6.3]. Since the nonzero function g 2 FHq½A;B� � HpðRÞ
for 0 6 A < B, GðzÞ :¼ ð@�1gÞ 2 HqðCþÞ is an entire function of exponential type and GðzÞ ¼ eiðazþbÞOGðzÞBGðzÞSGðzÞ for z 2 Cþ,
where 0 6 a 6 B; b is a real constant, OGðzÞ is the outer function of GðzÞ; BGðzÞ is the Blaschke product of GðzÞ and SGðzÞ is
the singular inner function of GðzÞ. In what follows, we will show that BGðzÞ is holomorphic across R and SGðzÞ � 1.

If the zeros of BGðzÞ had an accumulation point z0 on R, then the zeros of GðzÞ would have an accumulation point z0 on R

such that Gðz0Þ ¼ 0. This is impossible since GðzÞ is non-trivial and holomorphic across R. Consequently, BGðzÞ is holomorphic
across R and jBGðxÞj ¼ 1 on R.

Below, we will show that SGðzÞ � 1. Let l be the measure determining SG. If l had a point charge at x, then every

derivative GðnÞðzÞ of GðzÞ satisfies limy!0þGðnÞðxþ iyÞ ¼ 0. This is impossible since GðzÞ is analytic across R and GðzÞ is a
nonzero function. Thus lðfxgÞ ¼ 0 for all x 2 R. Next suppose that lðKÞ > 0 for some compact subset K of R. Since l is
singular, for l-almost all x, we have limy!0þ jSGðxþ iyÞj ¼ 0, and hence limy!0þjGðxþ iyÞj ¼ 0 (Theorem 6.2, [19]). Therefore,
the holomorphic function GðzÞ has zero values on infinitely many points of K. The compactness of K implies that G has to be a
zero function, being contradictory with the assumption that GðzÞ is nonzero. Therefore lðKÞ ¼ 0. Hence, suppl ¼ ; and
SGðzÞ � 1. This completes the proof. h

Denote by E the set of all different zeros of GðzÞ :¼ ð@�1gÞðzÞ in the upper half plane and denote by mðkÞ the multiplicity of
the zero k of GðzÞ. With Lemma 2.5, we have a characterization for the backward shift invariant subspace Yp

g when g is a band-
limited signal.

Corollary 2.8. Suppose that gðxÞ is a nonzero function in FHq½A;B�;0 6 A < B.Then the backward shift invariant subspace Yp
g

induced by g as given in (2.15) is identical with
HpðRÞ
\

eiaxBgHpðRÞ ¼ FHp½0; a�aeiaxRE;m;
where 0 6 a 6 B and Bg is the Blaschke product formed by the points in E and the corresponding multiplicity function mðkÞ, and
RE;m is the closed subspace
RE;m ¼ spanp 1

ðx� kÞj
; k 2 E; j ¼ 1; . . . ;mðkÞ

( )

of the LpðRÞspace.
Proof. By Lemma 2.7, we get that Yp
g ¼ HpðRÞ

T
eiaxBgðxÞHpðRÞ, where 0 6 a 6 B;Bg is the Blaschke product formed by the

zeros together with their multiplicities of GðzÞ :¼ ð@�1gÞðzÞ in the upper half plane.
Suppose that f ðxÞ 2 HpðRÞ

T
eiaxBgðxÞHpðRÞ. Then f ðxÞ 2 HpðRÞ and f ðxÞ 2 eiaxBgðxÞHpðRÞ. Since suppbf # ½0;1Þ, we havebf ðxÞ ¼ bf ðxÞv½0;a� þ bf ðxÞv½a;1� ¼cf 1ðxÞ þcf 2ðxÞ, where v½a;b� is the characteristic function of ½a; b�. By the inverse Fourier

transform in the distributional sense, f can be written as f ¼ f 1 þ f 2, where f 1 2 FHp½0; a� and f 2 2 FHp½a;1Þ. Hence, we have

f 1ðxÞe�iax 2 HpðRÞ and f 2ðxÞe�iax 2 HpðRÞ. We note that
f 1ðxÞe�iax 2 HpðRÞ ¼ BgðxÞBgðxÞHpðRÞ � BgðxÞHpðRÞ;
and f ðxÞe�iax 2 BgðxÞHpðRÞ. Therefore, f 2ðxÞe�iax ¼ f ðxÞe�iax � f 1ðxÞe�iax 2 BgðxÞHpðRÞ. Being combined with f 2ðxÞe�iax 2 HpðRÞ, it

yields that f 2ðxÞe�iax 2 HpðRÞ
T

BgðxÞHpðRÞ. By Lemma 2.5, it shows that f 2ðxÞ 2 eiaxRE;m.
Conversely, if f ðxÞ 2 FHp½0; a�aeiaxRE;m, then f ðxÞ ¼ f 1ðxÞ þ f 2ðxÞ, where f 1ðxÞ 2 FHp½0; a� and f 2ðxÞ 2 eiaxRE;m. By Lemma

2.5, we obtain that f 2ðxÞ 2 eiax HpðRÞ
T

BgðxÞHpðRÞ
h i

� HpðRÞ
T

eiaxBgðxÞHpðRÞ. Since f 1ðxÞ 2 FHp½0; a�, we obtain that

f 1ðxÞe�iaxB�1
g ðxÞ 2 HpðRÞ. Hence, f 1ðxÞ 2 HpðRÞ

T
eiaxBgðxÞHpðRÞ and so f ðxÞ 2 HpðRÞ

T
eiaxBgðxÞHpðRÞ. The proof is

completed. h
Remark. In Corollary 2.8, if the point 0 2 supp bg , then a ¼ 0.
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3. Solutions of the Bedrosian equation

The study about the identity HðfgÞ ¼ fHg has a long history. In 1963, E. Bedrosian found that: If f ; g 2 L2ðRÞ satisfy (i)
supp bf # ½0;1Þ; supp bg # ½0;1Þ; or, (ii) supp bf # ½�A;A�; supp bg # R n ½�A;A� for a positive number A, then HðfgÞ ¼ fHg. This
result is known as the Bedrosian theorem and HðfgÞ ¼ fHg is called the Bedrosian identity. After that, some simple and useful
sufficient conditions for the Bedrosian identity were given in the frequency domain in [5]. In 1986, some necessary and suf-
ficient conditions for the Bedrosian identity HðfgÞ ¼ fHg were given for f ; g 2 L2ðRÞ [6]. Recently, as an advent of the EMD
(empirical mode decomposition) algorithm and the related transform in terms of the IMFs (intrinsic mode functions) as a
product of EMD for non-stationary signal processing [4], the study of the Bedrosian identity received much attention again.
Many new and interesting results in relation to the Bedrosian identity are reported in [17,8–11] and the references therein.
For example, in [8], a new necessary and sufficient condition for the Bedrosian identity is presented in the frequency domain
for f 2 L2ðRÞ; g 2 L2ðRÞ. In [17,9,11], the Bedrosian identity HðfgÞ ¼ fHðgÞ original for functions f ; g 2 L2ðRÞ is extended to
functions f 2 Lp

TðRÞ, g 2 Lq
TðRÞ and fg 2 Lr

TðRÞ, where 1 6 p; r; q 61 such that r�1 ¼ p�1 þ q�1. In relation to the shift invariant
subspaces characterizations of analytic signals given in Section 2, the necessary and sufficient conditions for the Bedrosian
identity appeared in the mentioned references are summarized and generalized as follows:

Theorem 3.1. Let f 2 Lp
TðRÞ and g 2 Lq

TðRÞ be nonzero functions, where 1 6 p; r; q 61 such that r�1 ¼ p�1 þ q�1. Then the
following assertions are equivalent:

(1) TðfgÞ ¼ fTg.
(2) Tðf�gþÞ ¼ �if�gþ and Tðfþg�Þ ¼ ifþg�.

(3) f�gþ 2 HrðRÞ and fþg� 2 HrðRÞ.
(4) f�gþ 2 FHrðRþÞ and fþg� 2 FHrðRþÞ.

(5) f� 2 HpðRÞ \ IgþHpðRþÞ and fþ 2 HpðRÞ
T

Ig�HpðRÞ if gþ and g� are nonzero functions.

(6) gþ 2 u1HqðRÞ, g� 2 u01HqðRÞ and
O

f�
O

f�

If�
¼ u1

u2
,

Ofþ
Ofþ

Ifþ ¼
u01
u02

, where fþ and f� are nonzero functions, u1 and u2 is a pair of co-

prime inner functions, u01 and u02 is also a pair of co-prime inner functions.
Remark. In Theorem 3.1, the equivalences between ð1Þ; ð2Þ; ð3Þ; ð4Þ were first given for f ; g 2 L2ðRÞ in [6]. Recently, the equi-
valences between ð1Þ; ð2Þ; ð3Þ; ð4Þ are generalized to f 2 Lp

TðRÞ; g 2 Lq
TðRÞ [17,9]. The equivalence between ð1Þ and ð5Þ is given

in [11]. The relation between ð1Þ and ð6Þ was first found in [10] for f ; g 2 L2ðRÞ. By Theorem 2.4, it is easy to verify that ð1Þ is
equivalent to ð6Þ for the general indices.

Different necessary and sufficient conditions have different merits. For instance, by ð4Þ of Theorem 3.1, it is easy to re-
produce the classical sufficient condition for the Bedrosian identity, that is, if f ; g 2 L2ðRÞ satisfy supp bf � ½�A;A�,
supp bg � R n ½�A;A� for a positive number A, then HðfgÞ ¼ fHg. Moreover, by using the Titchmarsh convolution theorem, it is
proved in [9] that if f is of low Fourier frequencies then it is necessary for g to have high Fourier frequencies to satisfy
TðfgÞ ¼ fTg for f 2 Lp

TðRÞ and g 2 Lq
TðRÞ. In this section, by ð6Þ of Theorem 3.1, we re-produce the result by an alternative

method.
Corollary 3.2. Let f 2 FHp½A;B� and g 2 Lq
TðRÞ be nonzero functions. If the endpoints A;B 2 suppbf , then TðfgÞ ¼ fTg if and only if

gþ 2 e�i minf0;AgxHqðRÞ and g� 2 ei maxf0;BgxHqðRÞ.
Proof. If f 2 FHp½A;B� with 0 6 A < B and the endpoints A; B 2 suppbf , then fþ ¼ f 2 FHp½A; B� with the point B 2 suppcfþ , and
f� � 0. By Theorem 3.1, it follows that TðfgÞ ¼ fTg if and only if fþg� 2 HrðRÞ. By Corollary 2.6, we obtain that
g� 2 Xq

fþ
¼ eiBxHqðRÞ. Hence, HðfgÞ ¼ gHg if and only if gþ 2 HqðRÞ and g� 2 eiBxHqðRÞ.

The cases that A < B � 0 and A < 0 < B can be treated in the same way. The proof is completed. h

In the Bedrosian equation the roles of f and g are not symmetric. Apart from the conditions concerning analyticity, almost
all of the results concerning bandlimited functions impose the bandlimited condition to the function f. In contrast to this, by
virtue of Corollary 2.8 and Theorem 3.1, we now give a sound characterization for the solutions of the Bedrosian equation for
g being bandlimited.

Theorem 3.3. Suppose that g 2 FHq½A;B� and f 2 Lp
TðRÞ are nonzero functions, where the point 0 2 supp bg. Then the following

statements hold:

ðiÞ If 0 ¼ A < B, then TðfgÞ ¼ fTg if and only if
f� 2 spanp 1

ðx� kÞj
; k 2 E1; j ¼ 1; . . . ;mðkÞ

( )
;
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ðiiÞ If A < B ¼ 0, then TðfgÞ ¼ fTg if and only if

fþ 2 spanp 1

ðx� kÞj
; k 2 E2; j ¼ 1; . . . ;mðkÞ

( )
;

ðiiiÞ If A < 0 < B, then TðfgÞ ¼ fTg if and only if

f 2 spanp 1

ðx� kÞj
; k 2 E1 [ E2; j ¼ 1; . . . ;mðkÞ

( )
;

where E1 and E2 are respectively the sets of all different zeros of GþðzÞ :¼ ð@�1gþÞðzÞ in the upper half plane and
G�ðzÞ :¼ ð@�1g�ÞðzÞ in the lower half plane, and mðkÞ denotes the multiplicity at k.

Proof. Let g 2 FHq½A; B� be a nonzero function with 0 ¼ A < B. Then g ¼ g 2 FHq½A;B� is a nonzero function with the point
þ
0 2 suppcgþ , and g� � 0. By ð5Þ of Theorem 3.1 and Corollary 2.8, we learn that TðfgÞ ¼ fTg if and only if
f� 2 spanp 1

ðx� kÞj
; k 2 E1; j ¼ 1; . . . ;mðkÞ

( )
;

where E1 is the set of all different zeros of GþðzÞ :¼ ð@�1gþÞðzÞ in the upper half plane.
Similarly, we can treat the case that A < B ¼ 0 and A < 0 < B. The proof is finished. h
Remark. : Moreover, if g is a real function in Theorem 3.3, then gþ ¼ g�, G2ðzÞ ¼ G1ðzÞ and E2 ¼ E1 ¼ fkjk 2 E1g.
4. An application in construction of bandlimited signals

Another question arising in physical practice is: Given a bandlimited function g 2 FHq½A;B�, find all the functions f 2 LpðRÞ
such that fg 2 FHr½A;B�. For a nonzero function g 2 FH2½A;B�, by the Paley–Wiener theorem, it is easily known that
fg 2 FH2½A;B� if and only if f is a quotient of two entire functions of the exponential type. But what is quotient of two entire
functions of the exponential type? Can it be totally described by the zero information of the Laplace transform of g? In this
section, we will make use of some knowledge presented in Section 2 to answer these questions. We will characterize, in
terms of the zeros of the Laplace transform of g 2 FHq½A;B�, the functions f 2 LpðRÞ that make fg have a bandlimit within that
of g, viz., fg 2 FHr ½A;B�.

Lemma 4.1. Let g 2 FHq½A;B� and f 2 Lp
HðRÞ be nonzero functions. Then fg 2 FHr ½A;B� if and only if fþg 2 FHr ½A;B� and

f�g 2 FHr ½A;B�.

Proof. Since f 2 Lp

HðRÞ, we have
fg ¼ ð1=2Þgðfþ þ f�Þ ¼ ð1=2Þðgfþ þ gf�Þ;
where fþ 2 HpðRÞ and f� 2 HpðRÞ.
Let h1ðxÞ :¼ e�iAxgðxÞ and h2ðxÞ :¼ eiBxgðxÞ. Then h1 2 FHq½0;B� A� � HpðRÞ and h2 2 FHq½0;B� A� � HpðRÞ from the factsch1ðxÞ ¼ bgðxþ AÞ and ch2ðxÞ ¼ bgðB�xÞ. Since fþ and f� 2 HpðRÞ, by Lemmas 2.1 and 2.2, we have fþh1; f�h2 2 HrðRÞ and

supp dfþh1 � ½0;1Þ; supp df�h2 � ½0;1Þ. Hence, suppdfþg � ½A;1Þ and suppdf�g � ð�1; B� for ðdfþgÞðxÞ ¼ ðdh1gÞðx� AÞ and

ðdf�gÞðxÞ ¼ ðdh2f�ÞðB�xÞ. This gives that fg 2 FHr ½A;B� if and only if fgþ 2 FHr ½A;B� and f�g 2 FHr ½A;B�. The proof is
completed. h

Below we will give necessary and sufficient conditions for functions f that make fg have the same bandlimit as g does.

Theorem 4.2. Suppose that g 2 FHq½A;B� and f 2 Lp
HðRÞ are nonzero functions. If the endpoints A;B 2 supp bg, then fg 2 FHr ½A;B� if

and only if
f 2 spanp 1

ðx� kÞj
; k 2 E; j ¼ 1; . . . ;mðkÞ

( )
;

where E is the set of all different zeros of GðzÞ :¼ ð@�1gÞðzÞ given by (2.17) on C n R and mðkÞ denotes the order of k.
Proof. Let g1ðxÞ :¼ eiBxgðxÞ and g2ðxÞ :¼ e�iAxgðxÞ. Then we have g1 2 FHq½0;B� A� � HpðRÞ; g2 2 FHq½0;B� A� � HpðRÞ, the

point 0 2 suppcg1 and 0 2 suppcg2 . Therefore, by Lemma 4.1 and Corollary 2.8, we obtain that fþg1 2 FHr ½0;B� A� and

f�g2 2 FHr½0;B� A� if and only if fþ 2 HpðRÞ
T

Ig1
ðxÞHpðRÞ and f� 2 HpðRÞ

T
Ig2

HpðRÞ, where Ig1
ðxÞ :¼ eib1 B1ðxÞ is the inner
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function of g1ðxÞ :¼ eiBxgðxÞ, and Ig2
ðxÞ :¼ eib2 B2ðxÞ is the inner function of g2ðxÞ :¼ e�iAxgðxÞ. By (2.17), we have G2ðzÞ ¼ eiBzGð�zÞ

and G1ðzÞ ¼ eiAzGðzÞ. Thus the zeros of G1ðzÞ in the upper half plane are the conjugate of the zeros of GðzÞ in the lower half
plane. By Lemma 2.5, we obtain that
f 2 spanp 1

ðx� kÞj
; k 2 E; j ¼ 1; . . . ;mðkÞ

( )
:

The proof is finished. h

Theorem 4.2 gives a characterization of the solutions f 2 LpðRÞ;1 < p <1, in terms of backward shift invariant subspaces.
It, however, does not cover the cases p ¼ 1 and p ¼ 1 due to the failure of the projectional Hardy spaces decomposition.
Below we will treat the two exceptional cases by using an alternative approach.

Theorem 4.3. Suppose that g 2 FHq½A;B� and f 2 LpðRÞ are nonzero functions, 1 6 p 61. Then fg 2 FHr ½A;B� if and only if
f 2 Ig1
HpðRÞ

\
Ig2

HpðRÞ ¼ Ig1
HpðRÞ

\
Ig1

Ig2
HpðRÞ

h i
;

where Ig1 ðxÞ :¼ eiða1xþb1ÞB1ðxÞ is the inner function of g1ðxÞ :¼ e�iAxgðxÞ and Ig2 ðxÞ :¼ eiða2xþb2ÞB2ðxÞ is the inner function of
g2ðxÞ :¼ eiBxgðxÞ.
Proof. Suppose that g 2 FHq½A;B� and fg 2 FHr½A;B�. Let g1ðxÞ :¼ e�iAxgðxÞ and h1ðxÞ :¼ f ðxÞg1ðxÞ. Then g1 2 FHq½0;B� A� and
h1 2 FHr ½0;B� A�. Hence, we have g1 ¼ Og1 Ig1 and h1 ¼ Oh1 Ih1 by the decomposition theorem. From the facts that g 2 LpðRÞ
and ln jh1j ¼ ln jfg1j ¼ ln jf j þ ln jg1j, we have Of ¼

Oh1
Og1
2 HpðRÞ. Thus
f ¼ h1

g1
¼ Oh1

Ih1

Og1
Ig1

¼ Of Ih1

Ig1

2 Ig1
HpðRÞ:
For g1 2 FHq½0;B� A� and ð@�1g1ÞðzÞ ¼ e�iAzGðzÞ, by Lemma 2.7, we have Ig1 ¼ eiða1xþb1ÞB1ðxÞ. On the other hand, letting

g2ðxÞ :¼ eiBxgðxÞ and h2ðxÞ :¼ f ðxÞg2ðxÞ, there hold g2 2 FHp½0;B� A� and h2 2 FHr ½0;B� A�. Since ln jh2j ¼ ln jh1j, it follows that
ln jg2j ¼ ln jg1j. By the decomposition theorem, we also have
f ¼ h2

g2
¼ Oh2

Ih2

Og2
Ig2

¼ Oh1
Ih2

Og1
Ig2

¼ Of Ih2

Ig2

2 Ig2
HpðRÞ:
For g2 2 FHq½0;B� A� and ð@�1g2ÞðzÞ ¼ eiBzGðzÞ, by Lemma 2.7, we have Ig2
¼ eiða2xþb2ÞB2ðxÞ. By combining with the above two

facts, we have
f 2 Ig1
HpðRÞ

\
Ig2

HpðRÞ ¼ Ig1
HpðRÞ

\
Ig1

Ig2
HpðRÞ

h i
:

Conversely, if f 2 Ig1 HpðRÞ
T

Ig2 HpðRÞ, then there exist f 1; f 2 2 HpðRÞ such that f ¼ Ig1 f 1 and f ¼ Ig2 f 2. Let g1ðxÞ :¼ e�iAxgðxÞ and

g2ðxÞ :¼ eiBxgðxÞ. Since g1; g2 2 FHq½0;B� A�, we have e�iAxgf ¼ Og1
Ig1

Ig1
f 1 ¼ Og1

f 1 2 HrðRÞ and eiBxgðxÞf ðxÞ ¼ Og2
Ig2

Ig2
f 2

¼ Og2
f 2 2 HrðRÞ. By Lemmas 2.1 and 2.2, we obtain that supp bfg # ½A;B� and fg 2 FHr½A; B�. The proof is completed. h
Corollary 4.4. Suppose 0Xg 2 FHq½A;B�. If GðzÞ :¼ ð@�1gÞðzÞ given by (2.17) has no zero points on C n R, then there exists
f 2 LpðRÞ such that fg 2 FHr ½A;B� if and only if
f 2 eiðA�aÞxHpðRÞ
\

eiðB�bÞxHpðRÞ ¼ FHp½A� a;B� b�;
where ½a; b� :¼ suppbg.
Remark. : From Corollary 4.4, we know that if the end points A;B 2 supp bg and GðzÞ :¼ ð@�1gÞðzÞ given by (2.17) has no zero
points on C n R, then there exists no nonzero function f 2 LpðRÞ;1 6 p 61, such that fg 2 FHr ½A;B�.
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