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Abstract By edge algebra we understand a pseudo-differential calculus on a man-
ifold with edge. The operators have a two-component principal symbolic hierarchy
which determines operators up to lower order terms. Those belong to a filtration of
the corresponding operator spaces. We give a new characterisation of this structure,
based on an alternative representation of edge amplitude functions only containing
holomorphic edge-degenerate Mellin symbols.
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1 Introduction

The calculus of operators on a manifold with edge has been introduced in [27], includ-
ing its principal symbolic hierarchy and trace and potential operators. Those determine
ellipticity and parametrices within the calculus. The approach has been inspired by
pseudo-differential boundary value problems in the sense of Vishik and Eskin [34,35],
Eskin [7, Subsection15], Boutet de Monvel [1], and also by Kondratyev [16], Rabi-
novich [19], on operators on manifolds with conical singularities. The subsequent
development lead to deeper insight and numerous generalisations, see, for instance,
Rempel and Schulze [20], the monograph [26], moreover, Dorschfeldt [5], Schrohe
and Schulze [31], Gil et al. [10], Schulze [25], Coriasco and Schulze [4], Chang et
al. [2,3], Rungrottheera [21,22]. The edge calculus is motivated by many interesting
applications, see the monographs of Kapanadze and Schulze [15], Harutyunyan and
Schulze [11], the article Flad and Harutyunyan [8], or Chang et al. [3].

We study edge symbols in terms of holomorphic Mellin symbols, cf. [10], and
characterise the filtration of edge operator spaces with respect to orders in a new way.
Our approach is motived by expected analogous structures for higher corner pseudo-
differential operators where Mellin representations on singular cones up to exits to
infinity seem to be most natural. The present paper is organised as follows.

InSect. 2wefirst recall somenotation onweighteddistribution spaces in termsof the
Mellin transform. Concerning basics we refer to Jeanquartier [14] or [23]. Compared
with Mellin quantisations in [24] the main new aspect is that the present definition of
operator-valued edge amplitude functions in Definition 2.2 (iii) refers to holomorphic
families (2.16) but not on theMellin quantisation of edge-degenerate operator families
(2.6) as is done earlier in studying the edge calculus, cf., for instance, [24]. This has
many consequences for managing edge operators, though we do not discuss here all
technical changes connected with this modification. The cut-off functions ω, ω′ in
this description (2.15) are fixed. Possible changes only contribute operators far from
the edge, see Remark 2.3.

Section 3 gives a brief description of spaces of edge operators Lμ(M, g) on a
manifold M with edge Y and weight data g = (γ, γ − μ,�). The meaning is com-
pletely analogous to other expositions on the edge calculus, however, as announced
before, based on the Mellin version of local edge amplitude functions. We formulate
the principal symbolic structure σ = (σ0, σ1), consisting of the homogeneous princi-
pal edge-degenerate interior symbol σ0 and the (twisted homogeneous) edge symbol
σ1. The latter relies on the representation from the article [9]. Concerning the nature
of σ1 on the open stretched model cone (r, x) ∈ X∧ of local wedges we will return
to more details in [18]. The remarkable aspect is that the Mellin representation of σ1
for r → ∞ concerns Fourier based Sobolev spaces, not Mellin ones, which is just the
reason for the present new description of the order filtration of the edge calculus.

In Sect. 4 we establish this filtration, based on the indicated shape of edge amplitude
functions. Similarly as in boundary value problems which are known to be a special
case of the edge calculus, the aspect of twisted homogeneity make the local symbolic
information spread out to the infinite stretched cone X∧. In elliptic operators this effect
is responsible for the nature of elliptic edge conditions, eitherwith Shapiro-Lopatinskij
ellipticity, or ellipticity with global projection conditions, cf. [24] or [28]. The main
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results of Sect. 4 are Theorems 4.1 and 4.2. This allows us to state the filtration of
the spaces of edge operators. In Theorem 4.7 we see that the space L−∞(M, g) of
edge operators of order −∞ admits different equivalent characterisations, namely,
(4.21) and (4.22). In Sect. 5 we recall some necessary material on the cone algebra,
in particular, Kegel spaces with and without asymptotics.

2 Edge symbols

Let M be a manifold with edge Y. In particular, Y is a smooth manifold of dimension
q > 0 such that M\Y is smooth as well, and M is locally near Y described by a
Cartesian product

X� × �, X� :=
(
R+ × X

)
/({0} × X), (2.1)

for an open set � ⊆ R
q , corresponding to a chart on Y and a smooth manifold

X (closed in our case).
The main ingredient of edge symbols in our calculus are operator functions of the
form

h(r, y, w, η) = h̃(r, y, w, rη) (2.2)

for
h̃(r, y, w, η̃) ∈ C∞ (

R+ × �, Mμ

O
(
X; R

q
η̃

))
, (2.3)

with μ ∈ R being the order. The meaning of Mμ

O(·) in (2.3) is as follows. Let
Lμ
cl(X; R

l
λ) be the space of classical parameter-dependent pseudo-differential opera-

tors over X of orderμ in its natural Fréchet topology. LetA(U, E) for a Fréchet space
E and U ⊆ C open denote the space of all holomorphic E-valued functions in U.

Then Mμ

O(X; R
l
λ) is the space of all

h(w, λ) ∈ A
(
C, Lμ

cl

(
X; R

l
λ

))

such that

h|	β×Rl ∈ Lμ
cl

(
X;	β × R

l
)

for every β ∈ R, uniformly in compact β-intervals, where

	β := {w ∈ C : Rew = β} . (2.4)

Here, as soon as we talk about uniformity with respect to β in compact intervals
we understand boundedness in Lμ

cl(X; R × R
l) when 	β is identified with R via

	β � w = β+iρ → ρ ∈ R.This has the consequence thatwe can replace “uniformly”
by “smooth dependence” in β with values in Lμ

cl(X;	β × R
l). More details may be

found in Seiler [32].
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We systematically employ pseudo-differential operators with operator-valued sym-
bols. Those can be of the form (2.2), or, more generally,

f (r, y, w, η) ∈ C∞ (
R+ × �, Lμ

cl

(
X;	β × R

q)) , (2.5)

based on the weighted Mellin transform

Mγ u(w) =
∫ ∞

0
rwu(r)

dr

r

∣∣∣
	 1

2−γ

with γ ∈ R being a given weight. We then write

Opγ

M ( f )(y, η)u(r) =
∫

R

∫ ∞

0

( r

r ′
)−(1/2−γ+iρ)

f (r, y, 1/2−γ +iρ, η) u(r ′)dr
′

r ′ d̄ρ,

d̄ρ = (2π)−1dρ, for functions u(r ′) ∈ C∞
0 (R+,C∞(X)). Later on the action is

extended to more general distributions in R+.

Operator families (2.3) appear in the following Mellin quantisation results, cf. [24,
Theorem 3.2.7], or [10, Theorem 2.3]. Let

p(r, y, ρ, η) := p̃(r, y, rρ, rη), p̃(r, y, ρ̃, η̃) ∈ C∞ (
R+ × �, Lμ

cl

(
X; R

1+q
ρ̃,η̃

))
.

(2.6)
Then there is an h(r, y, w, η) like (2.2), (2.3) such that

Opr (p)(y, η) = Opγ

M (h)(y, η) mod C∞ (
�, L−∞ (

X∧; R
q
η

))
(2.7)

for every γ ∈ R. Conversely, for any h we find a p with the indicated properties
such that (2.7) holds, and the resulting operator functions p̃ and h̃ are unique modulo
C∞(R+ × �, L−∞(X; R

1+q
ρ̃,η̃

)) and C∞(R+ × �, M−∞
O (X; R

q
η̃
)), respectively.

Remark 2.1 For purposes below we formulate a simple consequence of the latter
Mellin quantisation theorem. For

p(r, y, ρ, η) := p̃(r, y, rρ, rη), p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × �, Lμ− j
cl (X; R

1+q
ρ̃,η̃

))

for any fixed j ∈ N, we find an

h(r, y, w, η) = h̃(r, y, w, rη) for h̃(r, y, w, η̃) ∈ C∞(R+ × �, Mμ− j
O (X; Rη̃))

such that

Opr (r
j p)(y, η) = Opγ

M (r j h)(y, η) mod C∞(�, L−∞(X∧; R
q
η)).

Conversely, for h we find a p with the indicated properties.
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Recall that there is well-known kernel cut-off operator based on the Mellin trans-
form

VM (ψ) : C∞ (
R+ × �, Lμ

cl

(
X;	β × R

q)) → C∞ (
R+ × �, Mμ

Ow

(
X; R

q))

for a cut-off function ψ ∈ C∞
0 (R+), ψ ≡ 1 in a neighbourhood of r = 1, such that

VM (ψ) f |	β = f mod C∞ (
R+ × �, Lμ

cl

(
X;	β × R

q)) .

This shows that the space of symbols (2.3) is “nearly” as rich as (2.5). The choice
of γ ∈ R is arbitrary. For normalising weights we often replace γ by γ − n/2 for
n = dim X. In the edge algebra we interpret

r−μOpγ−n/2
M (h)(y, η)

for h as in (2.3) as an operator-valued symbol, i.e., an element of

Sμ
(
� × R

q; H, H̃
)

(2.8)

for suitable Hilbert spaces of weighted distributions on X∧ := R+ × X. In concrete
cases we set

H = Ks,γ (X∧), H̃ = Ks−μ,γ−μ(X∧), (2.9)

cf. the definition of Kegel spaces Ks,γ (X∧) in (2.10) below. Symbol spaces (2.8)
make sense for general (separable) Hilbert spaces H, H̃ with group action. Here a
Hilbert space H is said to be endowed with a group action κ = {κδ}δ∈R+ if κ is a
one-parameter group of isomorphisms κδ : H → H, such that κδκδ′ = κδδ′ for every
δ, δ′ ∈ R+, where u → κδu defines an element of C(R+,δ, H) for every u ∈ H.

More generally, we also admit Fréchet spaces

E = lim←−
j∈N

E j ,

written as a projective limit of Hilbert spaces with continuous embeddings E j+1 ↪→
E0 for all j. Then E is said to be endowed with a group action κ if it is a group action
on E0 and κ|E j is a group action on E j for every j ∈ N.

Now if H and H̃ are Hilbert spaces with group action κ and κ̃, respectively, then
(2.8) is the set of all

a(y, η) ∈ C∞ (
� × R

q ,L
(
H, H̃

))

such that
∥∥∥κ̃−1

〈η〉
{
Dα

y D
β
η a(y, η)

}
κ〈η〉

∥∥∥L(H,H̃)
≤ c〈η〉μ−|β|
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for all (y, η) ∈ K × R
q , K � �, and multi-indices α, β ∈ N

q , for constants
c = c(α, β, K ) > 0.

Let S(μ)(� × (Rq\{0}); H, H̃) be the space of all a(μ)(y, η) ∈ C∞(� ×
(Rq\{0}),L(H, H̃)) such that

a(μ)(y, δη) = δμκ̃δa(μ)(y, η)κ−1
δ

for all δ ∈ R+. Moreover Sμ
cl(�×R

q; H, H̃) denotes the set of all a(y, η) ∈ Sμ(�×
R
q; H, H̃) such that there are elements a(μ− j) ∈ S(μ− j)(� × (Rq\{0}); H, H̃), j ∈

N, where

a(y, η) −
N∑
j=0

χ(η)a(μ− j)(y, η) ∈ Sμ−(N+1)
(
� × R

q ; H, H̃
)

for every N ∈ N; here χ(η) is any excision function in R
q .

TheKegel spacesKs,γ (X∧) over X∧ for a closed smoothmanifold X and γ ∈ R are
defined as follows. For any cut-off functionω(r) on the r half-axis (i.e.,ω ∈ C∞

0 (R+)

is real-valued and ω ≡ 1 close to r = 0 ) we set

Ks,γ (X∧) :=
{
ωu + (1 − ω)v : u ∈ Hs,γ (X∧), v ∈ Hs

cone(X
∧)

}
. (2.10)

HereHs,γ (X∧) is the completion of C∞
0 (R+,C∞(X)) with respect to the norm

‖u‖Hs,γ (X∧) :=
{ ∫

	 n+1
2 −γ

∥∥Rs(Imw)(Mu)(w)
∥∥2
L2(X∧)

d̄w
} 1

2
, (2.11)

d̄w := (2π i)−1dw, for any parameter-dependent elliptic element Rs(λ) ∈
Ls
cl(X; Rλ) that induces a family of isomorphisms

Rs(λ) : Ht (X) → Ht−s(X)

between standard Soblev spaces, for every t ∈ R. It is well-known that such smooth-
ness reducing families exist and that (2.11) is independent of the choice of Rs, up to
equivalence of norms.

Moreover, Hs
cone(X

∧) is the space of all v ∈ Hs
loc(R × X)|R+×X such that for any

coordinate neighbourhood U ⊂ X and a diffeomorphism ϑ : U → V to an open
subset V of Sn = {x̃ ∈ R

n+1 : |x̃ | = 1} we have (1 − ω)ϕ ◦ χ−1 ∈ Hs(Rn+1)

for every ϕ ∈ C∞
0 (U ), a cut-off function ω, and χ : R+ × U → R

n+1 defined by
χ(r, x) := rϑ(x).

Now

Sμ
(
� × R

q ;Ks,γ (
X∧)

,Ks−μ,γ−μ
(
X∧))

refers to the group action
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(κδu)(r, x) = δ(n+1)/2u(δr, x), δ ∈ R+, (2.12)

on the space Ks,γ (X∧) for every s, γ ∈ R. For any strictly positive smooth function
r → [r ] on R+ such that [r ] = r for r > C for some C > 0 we set

Ks,γ ;e(X∧) := [r ]−eKs,γ (X∧), K∞,γ ;∞(X∧) :=
⋂
s,e∈R

Ks,γ ;e(X∧), (2.13)

for every s, γ, e ∈ R, also endowed with (2.12). Concerning subspaces with asymp-
totics in the following definition, see Sect. 5 below. More material on such spaces is
developed in [17].

Definition 2.2 (i) The space of Green symbols Rμ
G(� × R

q , g) for μ ∈ R, g =
(γ, γ − μ,�),� = (ϑ, 0], is defined as the space of all

g(y, η) ∈
⋂
s,e∈R

Sμ
cl

(
� × R

q;Ks,γ ;e (
X∧)

,K∞,γ−μ;∞
P

(
X∧))

,

such that

g∗(y, η) ∈
⋂

s,e∈R
Sμ
cl

(
� × R

q ;Ks,−γ+μ;e (
X∧)

,K∞,−γ ;∞
Q

(
X∧))

,

for some g-dependent asymptotic types P and Q, where the pointwise formal
adjoint refers to the K0,0(X∧)-scalar product.

(ii) The space of smoothing Mellin plus Green symbolsRμ
M+G(� × R

q , g) for g =
(γ, γ − μ,�) and � = (−(k + 1), 0], k ∈ N, is defined as the space of all
m(y, η) + g(y, η) for g(y, η) ∈ Rμ

G(� × R
q , g) and smoothing Mellin symbols

m(y, η) of the form

m(y, η) := r−μωη

k∑
j=0

r j
∑
|α|≤ j

Op
γ jα−n/2
M

(
f jα

)
(y)ηαω′

η (2.14)

for arbitrary f jα ∈ C∞(�, M−∞
R jα

(X)), cf. (5.2), with Mellin asymptotic types
R jα, weights γ jα ∈ R, satisfying

γ − j ≤ γ jα ≤ γ, �CR jα ∩ 	 n+1
2 −γ jα

= ∅,

and cut-off functions ω,ω′ on the r half-axis where ωη(r) := ω(r [η]). In the
case� := (−∞, 0]we define the correspondingRM+G-space as the intersection
of those for k ∈ N.

(iii) The space of edge symbols Rμ(� × R
q , g) is defined as the set of all operator

functions a(y, η) of the form

a(y, η) = r−μωOpγ−n/2
M (h)(y, η)ω′ + (m + g)(y, η) (2.15)
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for arbitrary cut-off functions ω,ω′ on the r half-axis, for an

h(r, y, w, η) = h̃(r, y, w, rη), h̃(r, y, w, η̃) ∈ C∞ (
R+ × �, Mμ

O
(
X; R

q
η̃

))
,

(2.16)
and (m + g)(y, η) ∈ Rμ

M+G(� × R
q , g) for g = (γ, γ − μ,�),� = (−(k +

1), 0], k ∈ N ∪ {∞}.
Remark 2.3 Changing the cut-off functions ω, ω′ in (2.15) leaves remainders of the
form ϕOpr (pint)(y, η)ϕ′ for ϕ, ϕ′ ∈ C∞

0 (R+), and pint(r, y, ρ, η) ∈ C∞(R+ ×
�, Lμ

cl(X; R
1+q
ρ,η )). Such terms could be added in the definition of a(y, η); however,

by a suitable choice of ω,ω′ they can be integrated in the Mellin action. So without
loss of generality we employ a(y, η) in the form (2.15).

Theorem 2.4 [18, Theorem 4.6] We have

Rμ
(
� × R

q , g
) ⊂ Sμ

(
� × R

q;Ks,γ (
X∧)

,Ks−μ,γ−μ
(
X∧))

for every s ∈ R.

Theorem 2.4 refers to Definition 2.2 (iii). In [9] it has been proved that edge
amplitude functions in the traditional form based on Mellin-edge quantisations are
contained inRμ(� × R

q , g) in the sense of the present definition. In [18] we gave an
independent proof of the fact that this inclusion is surjective.

3 The edge algebra

We now turn to edge operators of order μ − j, j ∈ N, associated with weight data
g = (γ, γ − μ,�). The properties of the corresponding filtration are the main issue
of this section. By definition our manifold M with edge Y contains a neighbourhood
W ⊃ Y with the structure of a locally trivial X� bundle over Y. That means we have
a system of singular charts

χ : V → X� × � (3.1)

for neighbourhoods V ⊂ M of points y on the edge, where

χ |V \Y : V \Y → X∧ × � (3.2)

are diffeomorphisms. If Ṽ is another neighbourhood of points ỹ and

χ : Ṽ → X� × �̃

the corresponding singular charts, then for V ∩ Ṽ we have restrictions

χ |V∩Ṽ : V ∩ Ṽ → X� × D, χ̃ |V∩Ṽ : V ∩ Ṽ → X� × D̃
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for open subsets D ⊆ �, D̃ ⊆ �̃, such that the transition maps

X� × D → X� × D̃

are bundle isomorphisms between the corresponding (trivial) X�-bundles over D and
D̃, respectively. Those are fibrewise, i.e., over every y ∈ �, quotient maps

(
R+ × X

)
/({0} × X) →

(
R+ × X

)
/({0} × X)

for diffeomorphisms
C : R+ × X → R+ × X, (3.3)

where R+ × X is regarded as a manifold with smooth boundary. The following local
constructions refer to a fixed chart G → R

q on Y, q = dim Y > 0.
For a Hilbert space H with group action κ we have the abstract edge space

Ws(Rq , H), s ∈ R, (3.4)

defined as the completion of S(Rq , H) with respect to the norm

{ ∫
〈η〉2s

∥∥∥κ−1
〈η〉 û(η)

∥∥∥
2

H
d̄η

}1/2
, (3.5)

with û(η) being the Fourier transform in R
q . We get an equivalent norm when we

replace 〈η〉 by [η], where η → [η] is any strictly positive function such that |η| = [η]
for |η| ≥ const.
In the case of a Fréchet space E with group action κ we can form the spaces
Ws(Rq , E j ) and then set

Ws (
R
q , E

) = lim←−
j∈N

Ws
(
R
q , E j

)
. (3.6)

Recall that for W∞(Rq , ·) := ⋂
s∈RWs(Rq , ·) we can forget about the group action

κ in the definition, i.e., κ may be replaced by id, i.e., κδ = idE for all δ ∈ R+.

We employ these constructions to so-called (local) weighted edge spaces

Ws (
R
q ,Ks,γ (

X∧))
(3.7)

of smoothness s ∈ R and subspaces

Ws (
R
q ,Ks,γ

P

(
X∧))

(3.8)

with (here constant discrete) asymptotics of type P, cf. notation in Sect. 5. In other
words, we apply (3.4) and (3.6) to H = Ks,γ (X∧) and E = Ks,γ

P (X∧), respectively.
Weighted edge spaces (3.7) and subspaces (3.8) with asymptotics have been studied
in [23], see also [24]. The abstract version (3.4) has been introduced in [29]. More
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functional analytic properties have been studied in [12]. We now formulate global
spaces

Hs,γ (M) and Hs,γ
P (M) (3.9)

on a (compact) manifold M with edge Y. The first space of (3.9) is defined as the set
of all u ∈ Hs

loc(M\Y ) such that for any singular chart χ : V → X� × R
q and the

induced χ |V \Y : V \Y → X∧ × R
q we have

u|V \Y = f ◦ χ−1|V \Y

for some f ∈ Ws(Rq ,Ks,γ (X∧)). Similarly, the second space of (3.9) is the set of
all u ∈ Hs

loc(M\Y ) such that

u|V \Y = f ◦ χ−1|V \Y

for some f ∈ Ws(Rq ,Ks,γ
P (X∧)). Concerning invariance of this definition under

transition maps we impose a mild extra condition on the chosen atlas close to the
edge, cf. [24]. A similar definition applies when M is a non-compact manifold with
edge. In that case instead of (3.9) we write

Hs,γ
loc (M) and Hs,γ

P,loc(M), (3.10)

respectively, and we have also the corresponding spaces with subscript “comp”. An
operator C : C∞

0 (M\Y ) → C∞(M\Y ) is smoothing in the edge algebra, i.e., C ∈
L−∞(M, g) for g = (γ, γ − μ,�), if (say for compact M) the operators C,C∗
extend to continuous maps

C : Hs,γ (M) → H∞,γ−μ

P (M), C∗ : Hs,−γ+μ(M) → H∞,−γ

Q (M) (3.11)

for every s ∈ R, for asymptotic types P, Q, depending on C.

On a compact manifold M with edge Y we choose a system of singular charts χ j :
Vj → X�×R

q , j = 1, . . . , N , of the kind (3.1), where G j := Vj ∩Y form an open
covering {G1, . . . ,GN } of Y. Let {ϕ1, . . . , ϕN } be a subordinate partition of unity, and
let {ϕ′

1, . . . , ϕ
′
N } be a system of functions in C∞

0 (G j ), ϕ j ≺ ϕ′
j for all j. Moreover,

fix cut-off functions ω,ω′, ω′′ on M, i.e., continuous functions on M that are smooth
on M\Y and ≡ 1 close to Y, and supported by a small neighbourhood of Y, where
ω′′ ≺ ω ≺ ω′.

Definition 3.1 Let M be a compact manifold with edge Y.
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(i) The space Lμ(M, g) of edge operators on M for μ ∈ R, g = (γ, γ − μ,�), is
the set of all A ∈ Lμ

cl(M\Y ) of the form

A =
⎧⎨
⎩

N∑
j=1

A j +(1 − ω)Aint
(
1 − ω′′) + C : Aint ∈ Lμ

cl(M\Y ), C ∈ L−∞(M, g),

A j = ωϕ j

(
int χ−1

j

)
∗ Opy(a j )ϕ

′
jω

′, a j (y, η) ∈ Rμ
(
R
q × R

q , g
)
⎫
⎬
⎭ ,

(3.12)

where int χ j := χ j |Vj\Y .

(ii) By Lμ
M+G(M, g) (Lμ

G(M, g)) we denote the set of all A ∈ Lμ(M, g) such that
Aint = 0 and a j ∈ Rμ

M+G(Rq × R
q , g) (Rμ

G(Rq × R
q , g)) for all j.

It is well-known, cf. [24], that A ∈ Lμ(M, g) induces continuous operators

A : Hs,γ (M) → Hs−μ,γ−μ(M), Hs,γ
P (M) → Hs−μ,γ−μ

Q (M) (3.13)

for all s ∈ R and asymptotic types P certain resulting Q, depending on P
and A. Continuity results (3.13) are based on local continuity of Op(a) for a ∈
Rμ

M+G(Rq × R
q , g) in weighted edge Sobolev spaces (3.7) or (3.8). The latter

follows from Theorem 2.4 also using that Rμ
M+G(Rq × R

q , g) is contained in
Sμ(Rq ×R

q;Ks,γ
P (X∧),Ks−μ,γ−μ

Q (X∧)) for asymptotic types P with some resulting
Q. Continuity results between abstract edge spaces are proved in [23] and [33], an
operator-valued analogue of Hwang’s proof [13] of the Calderón-Vaillancourt Theo-
rem.

The assumption of compact M in Definition 3.1 has been made for convenience. A
smallmodification allows us also to admit the paracompact case, using a corresponding
locally finite system of charts. Instead of the space in (3.13) we then have to take
com/loc-analogues, cf. (3.10). Recall that

Lμ
G(M, g) ⊂ Lμ

M+G(M, g) ⊂ L−∞(M\Y ).

An operator A ∈ Lμ(M, g) ⊂ Lμ
cl(M\Y ) has its standard homogeneous principal

symbol of order μ

σ0(A) ∈ C∞(T ∗(M\Y )\0). (3.14)

Moreover, since A is edge-degenerate close toY, in the splitting of variables (r, x, y) ∈
R+ × � × R

q and covariables (ρ, ξ, η) the function (3.14) takes the form

σ0(A)(r, x, y, ρ, ξ, η) = r−μσ̃0(A)(r, x, y, rρ, ξ, rη) (3.15)

for a function σ̃0(A)(r, x, y, ρ̃, ξ, η̃) that is homogeneous in (ρ̃, ξ, η̃) �= 0 of order μ

and smooth up to r = 0.
Observe that σ0(A) can be locally close to Y expressed in terms of the operator-

valued symbol a(y, η) ∈ Rμ(Rq × R
q , g), cf. Definition 3.1 (iii). From (2.7) and
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the subsequent observation in converse direction we see that the Mellin symbol h
in (2.15), (2.16) belongs to C∞(R+ × �, Lμ

cl(X; R
q
η)). As such it has a parameter-

dependent homogeneous principal symbol

p(μ)(r, x, y, ρ, ξ, η), (ρ, ξ, η) �= 0.

Thus a(y, η) itself given by (2.15), has a parameter-dependent homogeneous principal
symbol, called σ0(a), which is close to r = 0 of the form

σ0(a)(r, x, y, ρ, ξ, η) := r−μ p(μ)(r, x, y, ρ, ξ, η) = r−μ p̃(μ)(r, x, y, rρ, ξ, rη)

(3.16)
for a p̃(μ)(r, x, y, ρ̃, ξ, η̃) ∈ S(μ)(R+ × � × � × (R

1+n+q
ρ̃,ξ,η̃

\{0})), where � ⊂ R
n

corresponds to a chart on X. Later on, when we talk about lower order symbols we
also write

σ
μ
0 (a) := σ0(a) and σ

μ
0 (A) := σ0(A),

respectively. Moreover, the edge amplitude functions a(y, η) ∈ Rμ(Rq × R
q , g)

involved in Definition 3.1 have a (twisted) homogeneous principal symbol, namely,

σ1(a)(y, η) := r−μOpγ−n/2
M (h0)(y, η) + σ1(m + g)(y, η), (3.17)

η �= 0, where
h0(r, y, w, η) := h̃(0, y, w, rη), (3.18)

cf. (2.16), and σ1(m + g)(y, η) is the (twisted) homogeneous principal symbol of
(m + g)(y, η) as a classical operator-valued symbol, i.e.,

(m + g)(y, η) ∈ Sμ
cl

(
R
q × R

q;Ks,γ (
X∧)

,Ks−μ,γ−μ
(
X∧))

.

Using σ1(·)(y, η) on edge amplitude functions we obtain σ1(A)(y, η) also for the
operators A ∈ Lμ(M, g) themselves. For the definition we may refer to localised and
properly supported representatives of operators, e.g., A j as in Definition 3.1 (i) and to
recover left symbols, similarly as for standard (scalar) pseudo-differential operators.
For the resulting a(y, η) ∈ Sμ

cl(R
q × R

q ;Ks,γ (X∧),Ks−μ,γ−μ(X∧)) we then have

σ1(a)(y, η) = lim
δ→∞ δ−μκ−1

δ a(y, δη)κδ.

Summing up the local symbols which contain contributions of a partition of unity on
Y we obtain the invariantly defined principal edge symbol σ1(A)(y, η), namely,

σ1(A)(y, η) :=
N∑
j=1

ϕ j (y)σ1(a j )(y, η), (3.19)

see (3.12).



Order filtrations of the edge algebra 291

4 The filtration of edge operator spaces

Order filtrations in the edge calculus are well-known and useful for dealing with lower
order terms as soon as principal symbols vanish. We realise here the filtration by using
an alternative representation of the edge calculus, cf. [9], based on amplitude functions
as in Definition 2.2 (ii). At the same time we deepen the insight of the exit symbolic
properties of operator-valued Mellin symbols on the infinite cone for r → ∞. We
also look at smoothing Mellin plus Green symbols; however, those are standard. In
fact, when we define

Rμ− j
M+G

(
� × R

q , g
)

for g = (γ, γ − μ, (−(k + 1), 0]), (4.1)

for j ∈ N\{0},we simply ask the homogeneous components of (m+g)(y, η) of order
l to be vanishing for all 0 ≤ l ≤ j − 1. More precisely, we have

Rμ
M+G

(
� × R

q , g
) ⊂ Sμ

cl

(
� × R

q ;Ks,γ (
X∧)

,K∞,γ−μ
(
X∧))

,

s ∈ R, and any (m + g)(y, η) has a sequence of homogeneous components

σ
μ− j
1 (m + g)(y, η) := (m + g)(μ− j)(y, η), (4.2)

where

(m + g)(μ− j)(y, η) ∈ S(μ− j) (
� × (

R
q\{0}) ;Ks,γ (

X∧)
,K∞,γ−μ

(
X∧))

, j ∈ N,

cf. the generalities on classical operator-valued symbols in Sect. 2, where by notation
σ

μ
1 (m + g) := σ1(m + g). Then the operator family (m + g)(y, η) belongs to (4.1) if

σ
μ−l
1 (m + g) vanishes for all 0 ≤ l ≤ j − 1. As is well-known, we have

Rμ− j
M+G

(
� × R

q , g
) = Rμ− j

G

(
� × R

q , g
)

when j > k where k is involved in the weight interval contained in g. The weight
data g are independent of j. For general a(y, η) ∈ Rμ(� × R

q , g) the dominating
term is the non-smoothing summand

r−μωOpγ−n/2
M (h)(y, η)ω′. (4.3)

For a simple model situation in [18] we illustrated the (unexpected) problem of under-
standing the homogeneous principal symbol of order μ of (4.3) for r → ∞ in the
frame of the exit pseudo-differential calculus on X∧, for η �= 0.

LetRμ− j (�×R
q , g), j ∈ N, for g as in (4.1), be the space of all operator families

of the form

r−μωOpγ−n/2
M

(
r j h

)
(y, η)ω′ + (m + g)(y, η)
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for

h(r, y, w, η) = h̃(r, y, w, rη), h̃(r, y, w, η̃) ∈ C∞(R+×�, Mμ− j
O (X; R

q
η̃
)), (4.4)

and (m + g)(y, η) ∈ Rμ− j
M+G(� × R

q , g). Similarly as in Remark 2.3 we could add a

term ϕOpr (pint)(y, η)ϕ′ for pint(r, y, ρ, η) ∈ C∞(R+ × �, Lμ− j
cl (X; R

1+q
ρ,η )) which

is contributed when we change ω, ω′.

Theorem 4.1 Let a(y, η) ∈ Rμ(� × R
q , g) for g = (γ, γ − μ, (−(k + 1), 0]), and

assume σi (a) = 0, i = 0, 1. Then a(y, η) is of the form

a(y, η) = r−μ+1ωOpγ−n/2
M (h1)(y, η)ω′ + (m1 + g1)(y, η)

for

h1(r, y, w, η) = h̃1(r, y, w, rη), h̃1(r, y, w, η̃) ∈ C∞ (
R+ × �, Mμ−1

O
(
X; R

q
η̃

))

and (m1 + g1)(y, η) ∈ Rμ−1
M+G(� × R

q , g).

Proof For convenience we consider the case of y-independent symbols. The mod-
ifications for the general case are evident. Let us first note that a(η) is a family of
operators taking values in the space Lμ(X�, g) for every fixed η ∈ R

q , cf. Definition
5.3 (iii) below. Moreover, we have

σ1(a)(η) ∈ Lμ(X�, g)exit (4.5)

for every fixed η ∈ R
q\{0}, cf. Definition 5.3 (iv) below. In fact, (m + g)(η) in (2.15)

for fixed η ∈ R
q belongs to LM+G(X�, g) which is obvious. It remains to observe

r−μωOpγ−n/2
M (h)(η)ω′ ∈ Lμ(X�, g), (4.6)

cf. the expression (5.9) below. In fact, we have

h(r, w, η) = h̃(r, w, rη) (4.7)

for h̃(r, w, η̃) ∈ C∞(R+, Mμ

Ow
(X; R

q
η̃
)). Thus, for fixed η the function (4.7) belongs

to C∞(R+, Mμ

Ow
(X)) and hence (4.6) just corresponds to the first summand on the

right of (5.9). Setting p = 0, we see that (4.6) holds. In order to show (4.5) we first
note that σ1(m + g)(η) ∈ LM+G(X�, g). Moreover, the technique of the proof of [18,
Lemma53] shows that for any fixed η �= 0 the operator r−μOpγ−n/2

M (h0)(η) is of the
form (5.11). From [6, Subsection 3.5], see also [18, Theorem 56], we have continuous
operators

a(η) : Ks,γ (X∧) → Ks−μ,γ−μ(X∧), s ∈ R.
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A consequence of σ0(a) = 0 is that

h̃(r, w, η̃) ∈ C∞ (
R+, Mμ−1

O
(
X; R

q
η̃

))
. (4.8)

This implies

h̃(0, w, η̃) ∈ Mμ−1
O

(
X; R

q
η̃

)
,

cf. [18, Remark 39]. We have (3.17) for h0(r, w, η) = h̃(0, w, r η̃), and we write

a(η) = ωr−μOpγ−n/2
M (h − h0)(η)ω′ + ωr−μOpγ−n/2

M (h0)(η)ω′

+ m0(η) + g0(η) + mμ−1(η) + gμ−1(η) (4.9)

for

m0(η) := r−μωη

k∑
j=0

r j
∑
|α|= j

Op
γ jα−n/2
M ( f jα)ηαω′

η, g0(η) := ωχ(η)σ1(g)(η)ω′,

cf. Definition 2.2 (ii), and

mμ−1(η) := (m−m0)(η), gμ−1(η) := (g− g0)(η) ∈ Rμ−1
M+G(�×R

q , g), (4.10)

cf. notation (4.1) for j = 1. Taylor’s formula in the first r -variable in h̃(r, w, rη) =
h(r, w, η) yields

ωOpγ−n/2
M (h − h0)(η)ω′ = ωrOpγ−n/2

M (h−1)(η)ω′ (4.11)

for some

h−1(r, w, η) = h̃−1(r, w, rη), h̃−1(r, w, η̃) ∈ C∞ (
R+, Mμ−1

O
(
X; R

q
η̃

))
.

(4.12)
Thus (4.11) belongs toRμ−1(� × R

q , g). It remains to verify that

ωOpγ−n/2
M (h0)(η)ω′ + m0(η) + g0(η) ∈ Rμ−1

M+G(� × R
q , g).

In fact, because of (4.10), (4.11) we have

σ1(a)(η) = σ1

(
ωOpM (h0)ω

′ + m0 + g0
)
(η)

= Opγ−n/2
M (h0)(η) + σ1(m0)(η) + σ1(g0)(η)

= 0. (4.13)
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By virtue of σ1(a)(η) ∈ Lμ(X�, g)exit for every fixed η �= 0, cf. Definition 5.3
(iv) below, we can recover the sequence of conormal symbols in a unique way, cf.
[23, Subsection 1.3.1, Theorem 4]. Relation (4.13) shows that all conormal symbols
vanish. This is the case, in particular, for the leading component, and it follows that

σ
μ
M

(
Opγ−n/2

M (h0)(η) + σ1(m0)(η)
)
(w) = h̃(0, w, 0) + f00(w) = 0,

cf. notation in (3.18), (2.14), and formula (5.12) for j = 0. It follows that

σ1

(
ωOpγ−n/2

M (h0)ω
′ + m0

)
(η) = 0

and hence

ω
(
Opγ−n/2

M (h0)(η) − Opγ−n/2
M

(
h̃ (0, w, 0)

) )
ω′ ∈ Rμ−1 (

� × R
q , g

)
.

Thus ωOpγ−n/2
M (h0)(η)ω′ + m0(η) ∈ Rμ−1

M+G(� × R
q , g), and hence σ1(g0)(η) = 0

which entails g0(η) ∈ Rμ−1
G (� × R

q , g). ��
Everya(y, η) ∈ Rμ− j (�×R

q , g) for g = (γ, γ−μ, (−(k+1), 0]), j ∈ N, j ≥ 1,
has again a pair of principal symbols, now of order μ − j, namely,

(
σ

μ− j
0 (a), σ

μ− j
1 (a)

)
=: σμ− j (a).

For a(y, η) ∈ Rμ− j (� × R
q , g) for any fixed j ∈ N\{0}, we define σ

μ− j
0 (a) in a

similar manner as in Sect. 3 for j = 0. In this case we employ Remark 2.1 which gives
us the parameter-dependent homogeneous principal symbol p̃(μ− j)(r, x, y, ρ̃, ξ, η̃) ∈
S(μ− j)(R+ ×� ×�× (R

1+n+q
ρ̃,ξ,η̃

\{0})) with p̃ being related with h̃ in (4.4) via Mellin
quantisation. Then, similarly as (3.16) we set

σ
μ− j
0 (a)(r, x, y, ρ, ξ, η) := r−μ+ j p̃(μ− j)(r, x, y, rρ, ξ, rη). (4.14)

Moreover, a(y, η) ∈ Rμ− j (� × R
q , g) has a principal edge symbol

σ
μ− j
1 (a)(y, η) := r−μ+ jOpγ−n/2

M (h0)(y, η) + σ
μ− j
1 (m + g)(y, η), (4.15)

for h0(r, y, w, η) := h̃(0, y, w, rη) and σ
μ− j
1 (m + g)(y, η) given by (4.2).

Theorem 4.2 For j ∈ N\{0} the space Rμ−( j+1)(� × R
q , g) for g = (γ, γ −

μ, (−(k + 1), 0]) is characterised as the set of all a(y, η) ∈ Rμ(� × R
q , g) such

that

σ
μ−l
0 (a) = 0, σ

μ−l
1 (a) = 0

for all l = 0, . . . , j.
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Proof The result is iterative, and we can apply analogous arguments as for Theorem
4.1. ��
Corollary 4.3 Let M be amanifold with edge Y. Then there is a filtration of Lμ(M, g)

for μ ∈ R, g = (γ, γ − μ, (−(k + 1), 0]), consisting of a sequence of subspaces
Lμ−l(M, g), l ∈ N, namely,

Lμ(M, g) ⊃ Lμ−1(M, g) ⊃ · · · ⊃ Lμ−l(M, g) ⊃ · · · ⊃ L−∞(M, g), (4.16)

where Lμ−l(M, g) ⊂ Lμ−l
cl (M\Y ) consists of operators A that are represented in an

analogousmanner as (3.12), here for Aint ∈ Lμ−l
cl (M\Y ), and a j (y, η) ∈ Rμ−l(Rq×

R
q , g) for all j. Similar filtrations hold for Lμ

M+G(M, g) and Lμ
G(M, g), respectively,

where Lμ−l
M+G(M, g) (Lμ−l

G (M, g)) consists of all A ∈ Lμ−l(M, g) such that Aint = 0

and a j ∈ Rμ−l
M+G(Rq × R

q , g) (Rμ−l
G (Rq × R

q , g)) for all j.

Note that
Lμ−l
M+G(M, g) = Lμ−l

G (M, g) (4.17)

for l > k, where k ∈ N is determined by the finite weight interval in g.

Proposition 4.4 We have

Lμ−l(M, g)
⋂

L−∞(M\Y ) = Lμ−l
M+G(M, g).

Proof Operators A ∈ Lμ−l(M, g) are locally close to the edge in the splitting of
variables (r, x, y) ∈ R+ × � × � for open � ⊆ R

n and � ⊆ R
q , corresponding to

charts on X and Y, respectively, of the form

r−μ+lOpγ−n/2
M Opx,y(h)

cf. notation (5.1) below, for (local) Mellin symbols

h(r, x, y, w, ξ, η) = h̃(r, x, y, w, ξ, rη)

for

h̃ (r, x, y, w, ξ, η̃) ∈ Sμ−l
O

(
R+ × � × � × R

n
ξ × R

q
η̃

)
,

where Sμ−l
O (R+ × � × � × R

n
ξ × R

q
η̃
) is the space of all

h̃ (r, x, y, w, ξ, η̃) ∈ A
(
Cw, Sμ−l

cl

(
R+ × � × � × R

n
ξ × R

q
η̃

))

such that

h̃(r, x, y, β + iρ, ξ, η̃) ∈ Sμ−l
cl

(
R+ × � × � × Rρ × R

n
ξ × R

q
η̃

)
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for all β ∈ R, uniformly in compact β-intervals. If the respective operator belongs
to L−∞(M\Y ) then the operator Aint is smoothing (Aint can be identified with A
regarded as an operator C∞

0 (M\Y ) → C∞(M\Y )), and

h

(
r, x, y,

n + 1

2
− γ + iρ, ξ, η

)
∈ S−∞ (

R+ × � × � × 	 n+1
2 −γ × R

n
ξ × R

q
η

)
.

Thatmeans, the homogeneous components h(μ−l− j)(r, x, y,
n+1
2 −γ +iρ, ξ, η)vanish

for r > 0 and all j. The symbol h̃(r, x, y, n+1
2 − γ + iρ, ξ, η̃) (no matter what the

order is) can be reproduced as an asymptotic sum

∞∑
j=0

χ(ρ, ξ, η̃)h̃(μ−l− j)

(
r, x, y,

n + 1

2
− γ + iρ, ξ, η̃

)

with χ being an excision function in (ρ, ξ, η̃), up to an element in S−∞(R+ × � ×
� × 	 n+1

2 −γ × R
n
ξ × R

q
η̃
). This gives us an

f̃

(
r, x, y,

n + 1

2
− γ + iρ, ξ, η̃

)
∈ Sμ−l

cl

(
R+ × � × � × Rρ × R

n
ξ × R

q
η̃

)

which is smooth up to r = 0. Applying a kernel cut-off operator to f̃ with respect to
w ∈ 	 n+1

2 −γ we recover h̃ ∈ Sμ−l
O (R+ × � × � × R

n
ξ × R

q
η̃
) modulo an element of

S−∞ (
R+ × � × � × Rρ × R

n
ξ × R

q
η̃

)
.

In the present case we have

h̃(μ−l− j)

(
r, x, y,

n + 1

2
− γ + iρ, ξ, η̃

)
= 0

for all j ∈ N. Thus h̃ itself belongs to S−∞
O (R+ ×� ×�×R

n
ξ ×R

q
η̃
). Now it suffices

to note that

ωr−μ+ jOpyOp
γ−n/2
M Opx (h)ω′

is an element of Lμ−l
M+G(M, g), more precisely, the operator coming from the local

Mellin symbols h for an open covering of X by coordinate neighbourhoods and a
sum, using a subordinate partition of unity. ��
Remark 4.5 As a byproduct of the proof we obtain

h(r, y, w, η) = h̃(r, y, w, rη)
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for an h̃(r, y, w, η̃) ∈ C∞(R+ × �, Mμ−l
O (X, R

q
η̃
)) such that

h̃ (r, y, w, η̃) |
R+×�

∈ C∞ (
R+ × �, M−∞

O
(
X, R

q
η̃

))

automatically belongs to C∞(R+ × �, M−∞
O (X, R

q
η̃
)).

In order to see that edge operator spaces of lower order coincide with the more
common definition in terms of vanishing homogeneous principal terms we formulate
the pair

σμ−l(A) :=
(
σ

μ−l
0 (A), σ

μ−l
1 (A)

)

of principal symbols of operators A ∈ Lμ−l(M, g).Wedefineσ
μ−l
0 (A) as the standard

homogeneous principal symbol of A as an element of Lμ−l
cl (M\Y ). Locally close to

Y we can write

σ
μ−l
0 (A)(r, x, y, ρ, ξ, η) = r−μ+l σ̃

μ−l
0 (A)(r, x, y, rρ, ξ, rη) (4.18)

for a function σ̃
μ−l
0 (A)(r, x, y, ρ̃, ξ, η̃) homogeneous in (ρ̃, ξ, η̃) �= 0 of order μ −

l and smooth up to r = 0. As before for l = 0 the symbols occurring in (4.18)
when restricted to a neighbourhood close to Y, agree with the symbols involved in
(4.14). Clearly σ

μ−l
0 vanishes on Lμ−l

M+G(M, g) since Lμ−l
M+G(M, g) ⊂ L−∞(M\Y ).

Analogously as (3.19) for A ∈ Lμ−l(M, g) we define

σ
μ−l
1 (A)(y, η) :=

N∑
j=1

ϕ j (y)σ
μ−l
1 (a j )(y, η),

using (4.15) for the local edge amplitude functions a j ∈ Rμ−l(� × R
q , g), j =

1, . . . , N . As a conclusion we recover the filtration property of the edge algebra.

Corollary 4.6 Let A ∈ Lμ(M, g) and assume that

σ
μ−l
0 (A) = 0, σ

μ−l
1 (A) = 0 for all l = 0, . . . , j. (4.19)

Then we have A ∈ Lμ−( j+1)(M, g).

Thus the property (4.19) for all j yields A ∈ ⋂
j∈N Lμ− j (M, g). Let us write for

the moment

L−∞(symbols) :=
{
C ∈ Lμ(M, g) : σμ− j (C) = 0 for all j ∈ N

}

which coincides with
⋂

j∈N Lμ− j (M, g), and

L−∞(mapping) := {C ∈ Lμ(M, g) : C has the mapping properties (3.20)}.
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Theorem 4.7 We have

L−∞(M, g) =
⋂
j∈N

Lμ− j (M, g) (4.20)

for any μ ∈ R.

Proof We have to show

L−∞(mapping) ⊆ L−∞(symbols) (4.21)

and
L−∞(symbols) ⊆ L−∞(mapping). (4.22)

Let us start with (4.21). We consider the case of compact M; the considerations in
general only need some simple modifications. The space on the left hand side of
(4.20) has been defined by the mapping properties (3.11). Such operators C belong to
L−∞(M\Y ) and hence σ

μ− j
0 (C) vanishes for all j ∈ N. We have to show that also

σ
μ− j
1 (C) vanishes for all j ∈ N. To this end we pass to the operator ϕωCϕ′ω′ for

cut-off functions ω,ω′ on M, (i.e., ≡ 1 in a small neighbourhood of Y, ≡ 0 outside
another small neighbourhood of Y ) and factors ϕ, ϕ′ ∈ C∞

0 (G) for a coordinate
neighbourhood G on Y. We then consider the operator in local coordinates under
a chart χ |V \Y : V \Y → X∧ × R

q where V is a wedge neighbourhood such that
V

⋂
Y = G, cf. formula (3.2) for � := R

q , where χ : V → X� × R
q restricts to a

chart G → R
q . Denoting for brevity the operator ϕωCϕ′ω′ in local coordinates again

by C we have to show that the continuity of

C : Ws (
R
q ,Ks,γ (

X∧)) → W∞ (
R
q ,K∞,γ−μ

P

(
X∧))

and

C∗ : Ws (
R
q ,Ks,−γ+μ

(
X∧)) → W∞ (

R
q ,K∞,−γ

Q

(
X∧))

for all s gives rise to σ
μ− j
1 (C) = 0 for all j ∈ N. Since this holds for all s it suffices

to consider the trivial group action on Ws(Rq , ·)-spaces, i.e., κ = id, the action on
W∞(Rq , ·) is trivial anyway, cf. notation in Sect. 3.Moreover, it suffices to replace the
spacesK∞,γ−μ

P (X∧) andK∞,−γ

Q (X∧) by E1 := K∞,γ−μ
� (X∧) and E2 := K∞,γ

� (X∧)

for a weight interval � = (−δ, 0] for some sufficiently small δ > 0, cf. (5.3) and
Remark 5.2 below. The spaces E1, E2 are nuclear and Fréchet. It is then easy to
recognise that C has a kernel in

c(y, y′) ∈ C∞ (
R
q × R

q , E1⊗̂π H1
)⋂

C∞ (
R
q × R

q , H2⊗̂π E2
)

(4.23)
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for H1 = K−s,−γ (X∧), H2 = Ks,−γ+μ(X∧).Then, similarly as in scalar smoothing
operators, the integral operator

Cu(y) =
∫

c(y, y′)u(y′)dy′

can be written in the form

Cu(y) =
∫∫

ei(y−y′)ηc(y, y′)ψ(η)u(y′)e−i(y−y′)ηdy′d̄η

for a ψ ∈ C∞
0 (Rq) such that

∫
ψ(η)d̄η = 1. Thus C has a double symbol

a(y, y′, η) = c(y, y′)ψ(η)e−i(y−y′)η

which is a Schwartz function in η ∈ R
q with values in E1⊗̂π H1

⋂
H2⊗̂π E2 and

with smooth dependence on (y, y′) ∈ R
q × R

q . By construction C is also properly
supported with respect to (y, y′)-variables. We can pass to a left symbol aL(y, η) ∼∑

α∈Rq
1
α! D

α
y′∂α

y a(y, y′, η)|y=y′ . Since σ
μ− j
1 (C) only depends on the summands for

|α| ≤ j which are all Schwartz functions in η it follows that σ
μ− j
1 (C)(y, η) = 0 for

all j.
The second part of the proof consists of verifying (4.22). In other words we prove
the continuities (3.11) for any C ∈ ⋂

j∈N Lμ− j (M, g). The idea of proving (3.13)

for A ∈ Lμ− j (M, g) for all j is analogous to that for j = 0. In the present case,
for C ∈ ⋂

j∈N Lμ− j (M, g) we already know that σ
μ− j
0 (C) = 0 for all j, i.e.,

C ∈ L−∞(M\Y ). Thus we have C ∈ Lμ− j (M, g)
⋂

L−∞(M\Y ) and hence C ∈
Lμ− j
M+G(M, g). For sufficiently large j we even have C ∈ Lμ− j

G (M, g), cf. relation
(4.17). This gives us the continuity of

C : Hs,γ (M) → Hs−μ+ j,γ−μ

P (M)

for every sufficiently large j, for some asymptotic type P depending on C. Since
this holds for all j, it follows that C has the desired mapping property in (3.11). For
C∗ we can argue in an analogous manner, using that formal adjoints of operators in
the edge calculus with weight data g belong the calculus with weight data g∗ :=
(−γ + μ,−γ, (−(k + 1), 0]). This completes the proof of Theorem 4.7. ��

5 Asymptotics and operators on cones

The analysis of edge operators refers to spaces with discrete asymptotics and pseudo-
differential operators on infinite cones. Here we give some notation.

Throughout this exposition we write

Opx (a)u(x) =
∫∫

ei(x−x ′)ξa(x, x ′, ξ)u(x ′)dx ′d̄ξ (5.1)
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for pseudo-differential operators in R
n � x ( or open subsets of R

n) with double
symbols a(x, x ′, ξ) of some order, d̄ξ = (2π)−ndξ.

By a discrete Mellin asymptotic type R we understand a sequence

R = {(r j , n j
)} j∈J ⊂ C × N (5.2)

for some index set J ⊆ Z such that �CR := {r j } j∈J intersects the strip {c ≤ Rew ≤
c′} in a finite set for every c ≤ c′.

A function χ ∈ C∞(C) is called an R-excision function if χ(w) = 0 for
dist(w,�CR) < ε0, χ(w) = 1 for dist(w,�CR) > ε1, for some 0 < ε0 < ε1.

Let X be a smooth closedmanifold of dimension n, and let R be aMellin asymptotic
type.

Definition 5.1 By M−∞
R (X) we denote the space of all

f ∈ A (
C\�CR, L−∞(X)

)

which are meromorphic with poles at all r j of multiplicity n j + 1, and finite rank
Laurent coefficients at (w − r j )−(k+1), 0 ≤ k ≤ n j , and χ f |	β ∈ L−∞(X;	β) for
any R-excision function χ and every β ∈ R, uniformly in compact β-intervals.

The space M−∞
R (X) is a Fréchet space in a natural way. Set

Mμ
R (X) := Mμ

O(X) + M−∞
R (X)

in the Fréchet topology of the non-direct sum.
Let us now pass to spaces of distributions with asymptotics of type P. Considering

a discrete asymptotic type

P = {(
p j ,m j

)}
j=0,...,N ⊂ C × N,

N ∈ N ∪ {∞}, we say that P is associated with the weight data (γ,�), for a weight
interval � = (ϑ, 0], −∞ ≤ ϑ < 0, if

�CP := {p j } j=0,...,N ⊂
{
n + 1

2
− γ + ϑ < Rew <

n + 1

2
− γ

}
,

n = dim X, and N is finite for ϑ > −∞,while Re p j → −∞ as j → ∞ for N = ∞
and ϑ = −∞.

For convenience we assume everywhere that P satisfies the shadow condition, i.e.,
(p,m) ∈ P entails (p − k,m) ∈ P for every k ∈ N with

Re p − k >
m + 1

2
− γ + ϑ.
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An example of such a P is T = {( j, 0)} j∈N, the Taylor asymptotic type. Let us set

Ks,γ
� (X∧) := lim←−

ε>0

Ks,γ−ϑ−ε(X∧). (5.3)

Let P be associated with (γ,�). For a fixed cut-off function ω and finite � we form
the space

EP (X∧) :=
⎧⎨
⎩ω(r)

N∑
j=0

r−p j

m j∑
k=0

c jk(x)log
kr : c jk ∈ C∞(X)

⎫⎬
⎭ ,

where 0 ≤ k ≤ m j , j = 0, . . . , N . We then have EP (X∧)
⋂Ks,γ

� (X∧) = {0}, and
we set

Ks,γ
P (X∧) := Ks,γ

� (X∧) + EP (X∧), (5.4)

which is a direct sum. The space Ks,γ
P (X∧) for any asymptotic type P and finite � is

a Fréchet space with group action κ, see (2.12). In fact it can be written as a projective
limit

Ks,γ
P (X∧) = lim←−

j∈N
E j (5.5)

of Hilbert spaces for E0 := Ks,γ (X∧) and continuous embeddings E j ↪→ E0 for
all j, where E0 is endowed with κ = {κδ}δ∈R+ like (2.12) which restricts to a group
action on E j for every j ∈ N.

For � = (−∞, 0] we form �k := (−(k + 1), 0], Pk := {(p,m) ∈ P : Re p >
n+1
2 − (k + 1)}. Then we have the spaces Ks,γ

Pk
(X∧) for every k ∈ N, and define

Ks,γ
P (X∧) := lim←−

k∈N
Ks,γ

Pk
(X∧). (5.6)

Similarly as (2.13) we set

Ks,γ ;e
P (X∧) := [r ]−eKs,γ

P (X∧), K∞,γ ;∞
P (X∧) :=

⋂
s,e∈R

Ks,γ ;e
P (X∧),

for every s, γ, e ∈ R; also these spaces are endowed with the group action κ.

Remark 5.2 For any asymptotic type P associated with the weight data (γ,�) there
is a δ > 0 such that for � := (−δ, 0] we have continuous embeddings

Ks,γ ;e
P (X∧) ↪→ Ks,γ ;e

� (X∧).

In fact, it suffices to set δ = dist(�CP, 	 n+1
2 −γ ).

Edge symbols take values in the cone algebra over the infinite cone X�, cf. (2.1). So
we briefly recall what we understand by the cone algebra. In cone pseudo-differential
operators on an infinite cone X� we start observing the behaviour for r → ∞, the
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conical exit to infinity. In this case the variables (r, x) ∈ R+ × X are considered
for x in a coordinate neighbourhood U on X that we identify with x ∈ R

n . Then, a
standard process via an open covering of X and a subordinate partition of unity gives
us classical operators globally on R+ × X for r → ∞, indicated by Lμ;ν

cl (·)exit for a
pair of orders (μ; ν) ∈ R × R. The local definition is as follows. Consider the space

Sμ;ν (
R
n+1
x̃ × R

n+1
ξ̃

)
⊂ C∞ (

R
n+1
x̃ × R

n+1
ξ̃

)

defined by symbolic estimates

∣∣∣Dα
x̃ D

β

ξ̃
a(x̃, ξ̃ )

∣∣∣ ≤ cαβ〈ξ̃〉μ−|β|〈x̃〉ν−|α|

for all α, β ∈ N
n+1 and (x̃, ξ̃ ) ∈ R

n+1 × R
n+1, for constants cαβ > 0. The space

Lμ;ν(Rn+1)exit is defined as the set of all operators Opx̃ (a) for arbitrary a(x̃, ξ̃ ) ∈
Sμ;ν(Rn+1

x̃ ×R
n+1
ξ̃

).The subspace of classical operators is defined in terms of symbols

in Sμ
cl(R

n+1
ξ̃

)⊗̂π Sν
cl(R

n+1
x̃ ).The corresponding spacewith classical symbols is denoted

by

Lμ;ν
cl

(
R
n+1

)
exit

. (5.7)

This notation has an extension to R+ × X for a smooth manifold X, which gives us
the spaces

Lμ;ν (R+ × X)exit or Lμ;ν
cl (R+ × X)exit .

More details can be found in [24, Subsection 1.4].

Definition 5.3 Let X be a closed smooth manifold.
(i) The space LG(X�, g) of Green operators on X� forμ ∈ R, g = (γ, γ −μ,�),

is the set of all operators

G ∈
⋂
s,e∈R

L
(
Ks,γ ;e (

X∧)
,K∞,γ−μ;∞

P

(
X∧))

such that

G∗ ∈
⋂
s,e∈R

L
(
Ks,−γ+μ;e (

X∧)
,K∞,−γ ;∞

Q

(
X∧))

for some G-dependent asymptotic types P and Q.

(ii) By LM+G(X�, g) for g = (γ, γ − μ, (−(k + 1), 0]), k ∈ N, we define the
space of all M + G for G ∈ LG(X�, g) and smoothing Mellin operators

M := r−μω

k∑
j=0

r jOp
γ j−n/2
M ( f j )ω

′ (5.8)



Order filtrations of the edge algebra 303

for cut-off functions ω, ω′, and smoothing Mellin symbols f j (w) ∈ M−∞
R j

(X) with
Mellin asymptotic types R j , and weights γ j ∈ R, satisfying the conditions

γ − j ≤ γ j ≤ γ, �CR j ∩ 	 n+1
2 −γ j

= ∅.

For g = (γ, γ − μ, (−∞, 0]) we define LM+G(X�, g) as the intersection of the
respective LM+G spaces for (γ, γ − μ, (−(k + 1), 0]) over k ∈ N.
(iii) The space Lμ(X�, g) for g = (γ, γ − μ,�), μ ∈ R, � = (−(k + 1), 0], k ∈
N ∪ {∞}, is defined as the set of all operators

A = r−μ
{
ωOpγ−n/2

M (h)ω′ + (1 − ω)Opr (p)(1 − ω′′)
} + M + C (5.9)

for cut-off functionsω′′ ≺ ω ≺ ω′, arbitrary h(r, w) ∈ C∞(R+, Mμ

O(X)) and p(r, ρ)

given by

p(r, ρ) := p̃(r, rρ), p̃(r, ρ̃) ∈ C∞ (
R+, Lμ

cl

(
X; Rρ̃

))
,

M as in (ii) and C ∈ L−∞(X�, g), i.e.,

C : Hs,γ
comp(X

�) → H∞,γ−μ

loc,P (X�), C∗ : Hs,−γ+μ
comp (X�) → H∞,−γ

loc,Q (X�)

for every s ∈ R and asymptotic types P and Q, depending on C.

(iv) The space Lμ(X�, g)exit for g = (γ, γ − μ,�), μ ∈ R,� as in (iii), is
defined as the set of all operators

A = Aψ + M + G (5.10)

for
Aψ = r−μ

{
ωOpγ−n/2

M (h)ω′ + ϕOpr (p)ϕ
′ + χ Pexitχ

′} (5.11)

where h, p are as in (iii), ω ≺ ω′ are arbitrary cut-off functions, ϕ ≺ ϕ′ ∈ C∞
0 (R+),

and χ ≺ χ ′ excision functions (i.e., 1−χ � 1−χ ′ are cut-off functions in the former
sense), where ω + ϕ + χ = 1, M + G ∈ LM+G(X�, g) and

Pexit ∈ Lμ;0
cl (R+ × X)exit .

Clearly we have

Lμ(X�, g)exit ⊂ Lμ(X�, g).

Let us finally recall the notion of conormal symbols of operators in Lμ(X�, g). By
that we understand the operator functions

σ
μ− j
M (A)(w) = 1

j !
(
∂
j
r h

)
(0, w) + f j (w), (5.12)
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j = 0, . . . , k, with k ∈ N being involved in g. For j = 0 we also write σM (A) :=
σ

μ
M (A), called the principal conormal symbol.
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