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Abstract
In this paper boundary value problems for periodic analytic functions are discussed.
We first introduce definitions of principal part and order at ±∞i for periodic analytic
functions through detailed analysis. Then Riemann boundary value problems for
periodic analytic functions with finite order at ±∞i are formulated. Based on those,
by using the exponential conformal mapping, Riemann boundary value problems for
periodic sectionally holomorphic functions with periodic closed and periodic
quasi-closed contours as their jump curves are solved. The method that we use here
has computational advantages compared with the tangent mapping one used in
solving the classical problems. Several types of Hilbert boundary value problems on
the real axis and the circumferences for periodic analytic functions are also solved.
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1 Introduction
The theory of boundary value problems for analytic functions is an important branch of
complex analysis. It has ample applications due to the fact that many practical problems in
mechanics, physics, and engineering may be converted to boundary value problems or sin-
gular integral equations [–]. Boundary value problems for analytic functions have been
systematically investigated in the related literature (see, for instance, [–]). In the mono-
graph [] Lu first introduced the so-called periodic Riemann boundary value problems
(PR problems) and periodic Hilbert boundary value problems (PH problems) motivated
from the periodic problems in plane elasticity. More general formulations of such prob-
lems are for automorphic functions which were first studied by Gakhov and Chibrikova
[, ]. From the practical point of view, the periodic boundary value problems are consid-
erably important. In particular, by using the solutions and methods for PR problems and
PH problems one can effectively solve a number of periodic problems in plane elasticity
[–].

In [], Lu mainly discussed PR problems with periodic closed contour as the jump curve
and PH problems on the real axis for bounded solutions. He transferred periodic boundary
value problems to standard Riemann boundary problems and Hilbert boundary problems
by the tangent conformal mapping. The theme of unbounded solutions at the infinity has
not been well addressed, although some results were predicted []. The predicted results,
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however, are not accurate, for there is no detailed and rigorous analysis for the behavior
of the solutions at the infinity.

In the present paper, we will discuss in depth three different types of problems: (i) the
Riemann boundary value problem for periodic sectionally holomorphic functions with
periodic closed contour or quasi-closed contour as jump curves; (ii) the Hilbert bound-
ary value problem on the real axis for the periodic holomorphic function in the upper
half-plane; and (iii) the Hilbert boundary value problem on periodic circumferences for
periodic holomorphic functions in the disks, being the interior regions of a set of peri-
odic circumferences. In the next section, we shall introduce definitions of the principal
part and order at the infinity for periodic holomorphic functions by using the exponential
conformal mapping. Then Riemann boundary value problems for periodic holomorphic
functions with finite orders at ±∞i are presented in Section . We transfer the PR prob-
lem to a standard Riemann boundary value problem by the exponential conformal map-
ping, and the solution formula and a set of conditions for the solvability are obtained. In
Section , the periodic Hilbert boundary value problem on the real axis and on periodic
circumferences are discussed, respectively, in two ways. The first is the so-called reflex
extension and the second is the so-called regular factor method.

Periodic Riemann boundary value problems and periodic Hilbert boundary value prob-
lems have applications to global asymptotic analysis for orthogonal polynomials on the
real axis. To keep the present paper within a reasonable bound the application aspect will
be postponed to a forthcoming paper.

2 Order of periodic analytic functions at the infinity
Assume

L =
+∞∑

k=–∞
Lk (.)

is a set of smooth closed contours, non-intersecting to each other, with the same shape and
size, arranged horizontally with period aπ (a > ) and oriented counter-clockwise (see
Figure ), which is called a periodic closed contour. The interior region of Lk is denoted by
S+

k and the exterior of L by S–. We may assume O ∈ S+
 and ±aπ/ ∈ S–, which is always

possible through a translation of the axes if necessary.

Figure 1 Periodic closed contour, its interior and exterior regions.
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A set S is called the periodic set with the period aπ (a > ), if z ± aπ ∈ S for any
z ∈ S . So, S–, S+, and L are all periodic sets with the period aπ , where

S+ =
+∞⋃

k=–∞
S+

k . (.)

The PR problem is formulated as follows (see []): Find a periodic sectionally holomor-
phic function �(z) with L as the jump curve such that

�+(t) = G(t)�–(t) + g(t), t ∈ L, (.)

where G and g are given on L with the period aπ , that is,

G(t + aπ ) = G(t), g(t + aπ ) = g(t), (.)

satisfying the normal type condition

G(t) �= , t ∈ L, (.)

and the Hölder conditions

G ∈ H(L), g ∈ H(L). (.)

In general, infinity ∞ should not be an isolated singular point of the solution of the PR
problem (if any). In relation to this, its principal part and order at infinity ∞ are not well
defined in the classical sense. Let C be the complex plane, and, for z ∈ C , x = Re z, and
y = Im z. For any h ∈R, we call the sets

N(+∞i, h) = {z : y = Im z > h}, N(–∞i, h) = {z : y = Im z < h} (.)

neighborhoods of +∞i and –∞i, respectively. The exponential conformal mapping

w = e
iz
a , z ∈ C, (.)

maps, respectively, the upper strip region and the lower strip region

N+
h =

{
z : Im z > h, –




aπ ≤ Re z ≤ 


aπ

}
,

N–
h =

{
z : Im z < h, –




aπ ≤ Re z ≤ 


aπ

} (.)

into the interior and exterior of the circle {w : |w| = e–h/a}, maps the infinity accumulation
point z = +∞i of N+

h and the infinity accumulation point z = –∞i of N–
h to w =  and

w = ∞, and maps the straight lines Re z = –aπ/ and Re z = aπ/ into the upper and lower
bank of the cut (–∞, ).
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Let �+(z) be a holomorphic function with the period aπ on the neighborhood of +∞i,
denoted by �+ ∈A+

aπ . Then

�+
∗ (w) = �+(z) = �+

(
–

ai


ln w
)

,  < |w| < e– h
a , (.)

is well defined and analytic by the Painlevé theorem, where the logarithm function ln w is
the principal branch in the complex plane cutting along (–∞, ], i.e.,

ln w = ln |w| + i arg(w)
(
–π ≤ arg(w) < π

)
, w �= , (.)

which is the inverse mapping of the restriction of the exponential mapping (.) on the
strip region S = {z : Im z > , –π ≤ Re z < π}. Thus, �+∗ has a Laurent expansion, then we
know easily that there is also the unique expansion in the series form for �+ [, ], that
is,

�+(z) =
+∞∑

–∞
aje

ijz
a (Im z > h), (.)

where

aj =


π

∫

ϒ

�+(z)e– ijz
a dz,

ϒ :=
{

z : z = x + ir, –
aπ


≤ x ≤ aπ


, r is an arbitrary constant greater than h

}
(.)

or ϒ :=
{

z : z = x + ih, –
aπ


≤ x ≤ aπ



}
, while �+ is continuous to it.

If the expansion in (.) is

�+(z) =
+∞∑

j=m

a–je– ijz
a with a–m �= , z ∈ N+

h , (.)

then we say that �+ has the pole of order m at z = +∞i, or simply, order m, denoted as
eOrd[�+](+∞i) = m, which is just equivalent to that its associated function �+∗ has the
pole of order m at w =  denoted as Ord[�+∗ ]() = m. We agree that the pole of order m is
just the zero point of order –m. Thus, we has

eOrd
[
�+]

(+∞i) = m ⇐⇒ Ord
[
�+

∗
]
() = m. (.)

If �–(z) is a holomorphic function with the period aπ on the neighborhood of –∞i,
denoted by �– ∈A–

aπ , similarly, it also has the unique expansion in the series form

�–(z) =
+∞∑

–∞
bje

ijz
a (Im z < h), (.)
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where

bj =


π

∫

ϒ

�–(z)e– ijz
a dz,

ϒ :=
{

z : z = x + ir, –
aπ


≤ x ≤ aπ


, r is an arbitrary constant smaller than h

}

or ϒ :=
{

z : z = x + ih, –
aπ


≤ x ≤ aπ



}
, while �– is continuous to it.

(.)

In particular, if

�–(z) =
+∞∑

j=m

bje
ijz
a with bm �= , z ∈ N–

h , (.)

we say that �– has the pole of order m at z = –∞i, denoted as eOrd[�–](–∞i) = m, which
is just equivalent to that its associated function

[
�–

∗
]
(w) = �–(z) = �–

(
–

ai


ln w
)

, |w| > e– h
a , (.)

where the mapping (.) has the pole of order m at w = ∞, denoted as Ord[�–∗ ](∞) = m,
i.e.,

eOrd
[
�–]

(–∞i) = m ⇐⇒ Ord
[
�–

∗
]
(∞) = m. (.)

3 Periodic Riemann boundary value problems
In the section, we give the formulation and transformation of periodic Riemann boundary
value problems. Then both the expression of the solution and the condition of solvability
are obtained in closed form.

3.1 Formulation of the problem
In PR problem (.), if � is required to have at most order n at +∞i and order m at most
at –∞i, then the problem is denoted by PRm,n.

PRm,n problem: Find a periodic sectionally holomorphic function �(z) with L as the jump
curve such that

⎧
⎪⎨

⎪⎩

�+(t) = G(t)�–(t) + g(t), t ∈ L,
eOrd[�](+∞i) ≤ n,
eOrd[�](–∞i) ≤ m,

(.)

where G and g are defined on L satisfying (.), (.), and (.). L is the periodic closed
contour given in the last section. In addition, L can also be the periodic quasi-closed con-
tour given below.

A set of smooth open arcs Lj = âjaj+ (j = ,±,±, . . .) is called a periodic quasi-closed
contours, if the Lj have the same shape and size, arranged horizontally with period aπ

(a > ), aj = (j – 
 )aπ and the tangents of Lj at their ends are parallel. For concreteness,

we assume that the position of the origin O cannot be below the curve L. Such L divides
the complex plane C into two parts, the upper one denoted by S+ and the lower one by S–
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Figure 2 A periodic quasi-closed contour.

(see Figure ). The particular case Lj = [(j – 
 )aπ , (j + 

 )aπ ] is worth paying attention to,
for in that case L reduces to the real axis.

3.2 Transformation of the problem
Let L be a periodic closed contour or a periodic quasi-closed contour. The following dis-
cussions and even all the results for the two cases are essentially the same. For example,
under the mapping (.), the image of L on the w-plane, denoted by �, is a smooth closed
contour surrounding w. � divides the w-plane into the interior region �+ and the exte-
rior region �– (see Figure  and Figure ), which are, respectively, the images of the strip
regions

S+
 =

{
z : z ∈ S+, –




aπ ≤ Re(z) ≤ 


aπ

}
,

S–
 =

{
z : z ∈ S–, –




aπ ≤ Re(z) ≤ 


aπ

}
.

(.)

In the sequel, for simplicity, we will take

w =

{
, when  ∈ �+ (Figure ),
, when  /∈ �+ (Figure ).

(.)

Remark . When L is a periodic quasi-closed contour, it is possible that  /∈ �+. For
example, L can be the real axis. Of course, we may always take  ∈ �+ by a translation
transform.

As before, we easily see that, if �(z) is a periodic sectionally holomorphic function with
L being the jump curve, then, under the mapping (.) or (.), its associated function,

�∗(w) = �

(
–

ai


ln w
)

, w ∈ C\�, (.)

is a sectionally holomorphic function, where � is the jump curve and

�±
∗ (τ ) = �±(t) with τ = e

it
a ∈ � (t ∈ L). (.)

Therefore, �∗ is the solution of the following boundary value problem.
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Figure 3 The case 1 ∈ �+.

Figure 4 The case 1 /∈ �+.

R∗
m,n problem: Find a sectionally meromorphic function �∗(w) having possible pole point

at w = , with � as the jump curve, such that

⎧
⎪⎨

⎪⎩

�+∗ (τ ) = G∗(τ )�–∗ (τ ) + g∗(τ ), τ ∈ �,
Ord[�∗]() ≤ n,
Ord[�∗](∞) ≤ m,

(.)

where

G∗(τ ) = G
(

–
ai


ln τ

)
, g∗(τ ) = g

(
–

ai


ln τ

)
, τ ∈ �, (.)

with the mapping (.). Obviously,

G∗(τ ) �= , τ ∈ �. (.)

It is easy to prove that

G∗ ∈ H(�), g∗ ∈ H(�). (.)

Conversely, if �∗ is the solution of R∗
m,n problem (.), then

�(z) = �∗
(
e

iz
a

)
, z ∈ C\L, (.)

is the solution of PRm,n problem (.). In fact, it is obvious that the above � is a periodic
sectionally holomorphic function whose jump curve is L such that (.), (.), and (.)
hold. It is easy to verify that � given by (.) is the solution of PRm,n problem (.).
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We summarize the above discussion as follows.

Lemma . Under the relationship (.) or (.), PRm,n problem (.) is equivalent to R∗
m,n

problem (.).

Let

��(w) = wn�∗(w), w ∈ C\�, (.)

G�(τ ) = G∗(τ ) and g�(τ ) = τ ng∗(τ ), τ ∈ �. (.)

Then we transfer the R∗
m,n problem to the following Riemann boundary value problem.

Rm+n problem: Find a sectionally holomorphic function ��(w), with � as the jump curve,
such that

{
�+

� (τ ) = G�(τ )�–
� (τ ) + g�(τ ), τ ∈ �,

Ord[��](∞) ≤ m + n.
(.)

This is a classical Riemann boundary value problem [, ].

Lemma . Under the relationships (.) and (.), R∗
m,n problem (.) is equivalent to

Rm+n problem (.). More specifically, if �∗ is the solution of R∗
m,n problem (.), then �� is

the solution of Rm+n problem (.). Conversely, if �� is the solution of Rm+n problem (.),
then �∗ is the solution of R∗

m,n problem (.).

3.3 Solution of problem
We call

κ = IndL G(t) =


π

[
arg G(t)

]
L

(.)

the index of G or the index of PRm,n problem (.). Obviously, it is just the index of G∗ = G�

or R∗
m,n problem (.) and Rm+n problem (.), i.e.,

κ = Ind� G∗(τ ) =


π

[
arg G∗(τ )

]
�

≡ 
π

[
arg G�(τ )

]
�

= Ind� G�(τ ). (.)

Rm+n problem (.) is an ordinary Riemann boundary value problem. From [, ], we
know that, when m + n + κ ≥ –, the general solution of Rm+n problem (.) is

��(w) = X�(w)
[

�(w) + Pm+n+κ (w)

]
, w ∈ C\�, (.)

where Pr is an arbitrary polynomial of degree not greater than r (Pr ≡  if r < ), denoted
as Pr ∈ �r . The canonical function

X�(w) =

⎧
⎨

⎩
e��(w), w ∈ �+,

(w – w)–κe��(w), w ∈ �–,
(.)
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where w is given by (.),

��(w) =


π i

∫

�

log[(τ – w)–κG�(τ )]
τ – w

dτ – C

=


π i

∫

�

log[(τ – w)–κG∗(τ )]
τ – w

dτ – C, (.)

with an arbitrary complex constant C and an arbitrary branch of the logarithm, and


�(w) =


π i

∫

�

g�(τ )
X+

� (τ )(τ – w)
dτ =


π i

∫

�

τ ng∗(τ )
X+

� (τ )(τ – w)
dτ , w ∈ C\�. (.)

When m + n + κ < –, Rm+n problem (.) has the unique solution

��(w) = X�(w)
�(w), w ∈ C\�, (.)

if and only if the following –(m + n + κ + ) conditions hold:

∫

�

g�(τ )
X+

� (τ )
τ j dτ = , j = , , . . . , –(m + n + κ) – , (.)

i.e.,

∫

�

g∗(τ )
X+

� (τ )
τ j dτ = , j = n, n + , . . . , –m – κ – . (.)

Remark . 
� in (.) may be rewritten as


�(w) =
wn

π i

∫

�

g∗(τ )
X+

� (τ )(τ – w)
dτ +


π i

∫

�

g∗(τ )
X+

� (τ )
τ n – wn

τ – w
dτ

=

{
wn��(w)+ ��

n– (w), n ≥ ,
wn[��(w)– ��

–n– (w)], n < ,
(.)

where

��(w) =


π i

∫

�

g∗(τ )
X+

� (τ )(τ – w)
dτ , w ∈ C\�, (.)

��
n– (w) =

n–∑

j=

[


π i

∫

�

g∗(τ )
X+

� (τ )
τ n––j dτ

]
wj (n ≥ ) (.)

is a polynomial of degree not greater than (n – ),

��
–n– (w) =

–n–∑

j=

[


π i

∫

�

g∗(τ )
X+

� (τ )τ j+ dτ

]
wj (n < ) (.)

is a polynomial of degree not greater than (–n – ), which is just the Taylor expansion of
order (–n – ) of �� at w = .



Dang et al. Boundary Value Problems  (2015) 2015:143 Page 10 of 28

Returning to the z-plane, by using Lemma . and Lemma ., we can easily obtain the
solutions of PRm,n problem (.), which are divided into three cases.

Case . m + n + κ > –. By (.), (.), and (.), the general solution is

�(z) = �∗
(
e

iz
a

)
= e– niz

a ��

(
e

iz
a

)
, z ∈ C\L, (.)

i.e.,

�(z) = X(z)
[

(z) + e– niz

a Pm+n+κ

(
e

iz
a
)]

(Pr ∈ �r)

= X(z)
[

(z) + e– niz

a Tm+n+κ (z)
]
, z ∈ C\L, (.)

where

X(z) = X�

(
e

iz
a

)
=

⎧
⎨

⎩
e�(z), z ∈ S+,

(e iz
a – w)–κe�(z), z ∈ S–,

(.)

in which

�(z) = ��

(
e

iz
a

) (
�� is given in (.)

)
, (.)


(z) = e– niz
a 
�

(
e

iz
a

) (

� is given in (.)

)
, (.)

Tm+n+κ (z) =
m+n+κ∑

j=

cj

[
cos

jz
a

+ i sin
jz
a

]
, (.)

is a trigonometric polynomial of degree not greater than (m+n+κ) with arbitrary complex
constants cj, which shows that the general solution of PRm,n problem (.) has the degree
of freedom (m + n + κ + ) [–].

More specifically, � and 
 are as follows by further calculations:

�(z) =


aπ

∫

L

log
[(

e
it
a – w

)–κG(t)
] e it

a

e it
a – e iz

a
dt – C

(
by (.) and (.)

)

=


aπ

∫

L

log
[(

e
it
a – w

)–κG(t)
][ e it

a + e iz
a

e it
a – e iz

a
+ 

]
dt – C

=


aπ i

∫

L

log
[(

e
it
a – w

)–κG(t)
]

cot
t – z

a
dt, (.)

where we let

C =


aπ

∫

L

log
[(

e
it
a – w

)–κG(t)
]

dt, (.)


(z) =
e– niz

a

aπ

∫

L

[e nit
a g(t)]e it

a

X+(t)(e it
a – e iz

a )
dt

(
by (.) and (.)

)

=
e– niz

a

aπ

∫

L

g(t)
e– nit

a X+(t)
e it

a + e iz
a

e it
a – e iz

a
dt +

e– niz
a

aπ

∫

L

g(t)
e– nit

a X+(t)
dt

≡ e– niz
a

aπ i

∫

L

g(t)
e– nit

a X+(t)
cot

t – z
a

dt + e– niz
a C∗ (

C∗ is a constant
)
. (.)
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Case . m + n + κ = –. By (.), (.) and (.), PRm,n problem (.) has the unique
solution

�(z) = X(z)
(z), z ∈ C\L. (.)

Case . m + n + κ < –. By (.), (.), (.), (.), and (.), PRm,n problem (.)
has the unique solution (.) if and only if the following –(m + n + κ + ) conditions are
satisfied:

∫

L

g(t)
X+(t)

e
(n+j)it

a dt = , j = , . . . , –(m + n + κ + ), (.)

or
∫

L

g(t)

e– (n+)it
a X+(t)

Pm+n+κ

(
e

it
a

)
dt =  for any Pm+n+κ ∈ �m+n+κ . (.)

In this case, we also say the solution has the degree of freedom (κ + m + n + ) (it is a
negative integer!).

Based on the above discussion, we have the following.

Theorem . When m + n + κ ≥ , the general solution of PRm,n is

�(z) = e– niz
a X(z)

[


aπ i

∫

L

g(t)
e– nit

a X+(t)
cot

t – z
a

dt + Pm+n+κ

(
e

iz
a
)]

, z ∈ C\L, (.)

where Pr is an arbitrary polynomial of degree not greater than r. When m + n + κ = –, it
has the unique solution

�(z) = e– niz
a X(z)


aπ i

∫

L

g(t)
e– nit

a X+(t)

[
i + cot

t – z
a

]
dt, z ∈ C\L. (.)

When m + n + κ < –, it has the unique solution (.) if and only if (.) holds.

By recalling Remark ., we also have


(z) =

⎧
⎨

⎩
�(z) + e– inz

a �n– (z), n ≥ ,

�(z)– �–n– (z), n < ,
z ∈ C\L, (.)

where

�(z) = ��

(
e

iz
a

) (
�� is given in (.)

)

=


aπ

∫

L

g(t)e it
a

X+(t)(e it
a – e iz

a )
dt

(
by (.)

)

=


aπ

∫

L

g(t)
X+(t)

e it
a + e iz

a

e it
a – e iz

a
dt +


aπ

∫

L

g(t)
X+(t)

dt

≡ 
aπ i

∫

L

g(t)
X+(t)

cot
t – z

a
dt + C′ (

C′ is a constant
)
, (.)
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�n– (z) = ��
n–

(
e

iz
a

) (
��

n– is given in (.)
)

=
n–∑

j=

[


aπ

∫

L

g(t)
X+(t)

e
(n–j)it

a dt
][

cos
jz
a

+ i sin
jz
a

]

=
n–∑

j=

{


aπ

∫

L

g(t)
X+(t)

[
cos

(n – j)t
a

+ i sin
(n – j)t

a

]
dt

}

×
[

cos
jz
a

+ i sin
jz
a

]
(.)

is a trigonometric polynomial of degree not greater than (n – ) (it vanishes while n = ),

�–n– (z) =��
–n–

(
e

iz
a

) (
P�

n– is given in (.)
)

=
–n–∑

j=

[


aπ

∫

L

g(t)
X+(t)

e– jit
a dt

][
cos

jz
a

+ i sin
jz
a

]

=
–n–∑

j=

{


aπ

∫

L

g(t)
X+(t)

[
cos

jt
a

– i sin
jt
a

]
dt

}[
cos

jz
a

+ i sin
jz
a

]
(.)

is a trigonometric polynomial of degree not greater than (–n – ), which is just the Taylor
expansion of order (–n – ) of �(z) at z = –∞i.

Remark . Case  may be divided into two subcases: () when κ + m > – and n ≥ , the
polynomial �n– may be omitted and merged to Tm+n+κ ; () when κ + m ≤ – and n > ,
the polynomial �n– must be divided into two parts, in which the polynomial of degree
not greater than (m + n + κ) may be merged into Tm+n+κ and the other part is still kept
back. In addition, the constant C′ in (.) may be omitted by merging it to Tm+n+κ .

We restate Theorem . as follows.

Theorem . The general solution of PRm,n problem (.) always has the degree of freedom
(m + n + κ + ). In detail, there are six cases.

() When κ + m ≥  and n ≥ , the general solution of PRm,n problem (.) is

�(z) = X(z)

{


aπ i

∫

L

g(t)
X+(t)

cot
t – z

a
dt

+
m+n+κ∑

j=

cj

[
cos

(j – n)z
a

+ i sin
(j – n)z

a

]}
, (.)

where the cj are arbitrary complex constants.
() When n –  > κ + m + n ≥ , the general solution of PRm,n problem (.) is

�(z) = X(z)

{


aπ i

∫

L

g(t)
X+(t)

cot
t – z

a
dt

+
m+n+κ∑

j=

cj

[
cos

(j – n)z
a

+ i sin
(j – n)z

a

]
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+
n–∑

j=m+n+κ+


aπ

∫

L

g(t)
X+(t)

[
cos

(n – j)t
a

+ i sin
(n – j)t

a
dt

]

×
[

cos
jz
a

+ i sin
jz
a

]}
, (.)

where the cj are arbitrary complex constants.
() When κ + m + n ≥  and n < , the general solution of PRm,n problem (.) is

�(z) = X(z)

{


aπ i

∫

L

g(t)
X+(t)

cot
t – z

a
dt +

m+n+κ∑

j=

cj

[
cos

(j – n)z
a

+ i sin
(j – n)z

a

]

–
–n–∑

j=


aπ

∫

L

g(t)
X+(t)

[
cos

jt
a

– i sin
jt
a

]
dt

[
cos

jz
a

+ i sin
jz
a

]}
, (.)

where the cj are arbitrary complex constants.
() When κ + m + n = – and n ≥ , the unique solution of PRm,n problem (.) is

�(z) = X(z)

{


aπ i

∫

L

g(t)
X+(t)

cot
t – z

a
dt +


aπ

∫

L

g(t)
X+(t)

dt

+
n–∑

j=


aπ

∫

L

g(t)
X+(t)

[
cos

(n – j)t
a

+ i sin
(n – j)t

a
dt

]

×
[

cos
jz
a

+ i sin
jz
a

]}
, (.)

where
∑ ≡ , while n = .

() When κ + m + n = – and n < , the unique solution of PRm,n problem (.) is

�(z) = X(z)

{


aπ i

∫

L

g(t)
X+(t)

cot
t – z

a
dt +


aπ

∫

L

g(t)
X+(t)

dt

–
–n–∑

j=


aπ

∫

L

g(t)
X+(t)

[
cos

jt
a

– i sin
jt
a

]
dt

[
cos

jz
a

+ i sin
jz
a

]}
. (.)

() When κ + m + n < –, the unique solution of PRm,n problem (.) is

�(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(z){ 
aπ i

∫
L

g(t)
X+(t) cot t–z

a dt + 
aπ

∫
L

g(t)
X+(t) dt

+
∑n–

j=


aπ

∫
L

g(t)
X+(t) [cos (n–j)t

a + i sin (n–j)t
a dt]

× [cos jz
a + i sin jz

a ]}, n ≥ ,
X(z){ 

aπ i
∫

L
g(t)

X+(t) cot t–z
a dt + 

aπ

∫
L

g(t)
X+(t) dt

–
∑–n–

j=


aπ

∫
L

g(t)
X+(t) [cos jt

a – i sin jt
a ] dt

× [cos jz
a + i sin jz

a ]}, n < ,

(.)
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if and only if the –(κ + m + n + ) conditions

∫

L

g(t)
X+(t)

[
cos

jt
a

+ i sin
jt
a

]
dt = , j = n + , . . . , –(m + κ + ) (.)

are satisfied.

3.4 Relative discussions
Let

X(z) =

⎧
⎨

⎩
e�(z), z ∈ S+,

[ tan z
a ]–κe�(z), z ∈ S–,

(.)

where

�(z) =


aπ i

∫

L

log

[
tan–κ t

a
G(t)

]
cot

t – z
a

dt. (.)

Then it is easy to see, from (.),

�(z) – �(z) =


aπ i

∫

L

log

[
e it

a – w

tan t
a

]–κ

cot
t – z

a
dt

=

⎧
⎨

⎩
log[ e

iz
a –

tan z
a

]–κ , z ∈ S+,
, z ∈ S–.

(.)

Thus,

X(z) = i–κ
[
 + e

iz
a

]–κX(z), z ∈ C\L, (.)

X±(t) = i–κ
[
 + e

it
a

]–κX±
 (t), t ∈ L. (.)

Then

e– niz
a X(z) = i–κe– niz

a
[
 + e

iz
a

]–κX(z)
[

i + tan
z
a

]–m–n–κ[
i + tan

z
a

]m+n+κ

= (–)–κ [i]–m–ne– niz
a

[
 + e

iz
a

]m+nX(z)
(

i + tan
z
a

)m+n+κ

= (–)–m–n–κ [i]m+n[ + e
iz
a

]m[
 + e– iz

a
]nX(z)

(
i + tan

z
a

)m+n+κ

= ϒ(z)m+n+κ (z), (.)

where

ϒ(z) = (–)–κ [i]–m–n[ + e
iz
a

]m[
 + e– iz

a
]nX(z), (.)

(z) = i + tan
z
a

. (.)
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Then

e– niz
a X(z)

(
e

iz
a

)j = ϒ(z)
(

i – tan
z
a

)j(
i + tan

z
a

)m+n+κ–j

. (.)

So,

e– niz
a X(z)Pm+n+κ

(
iz
a

)
= ϒ(z)P∗

m+n+κ

(
tan

z
a

) (
P∗

r ∈ �r
)
. (.)

Noting

e
iz
a (z) =

i
cos z

a
, e

it
a – e

iz
a =

i
(t)(z)

[
tan

z
a

– tan
t
a

]
, (.)

which result in

e it
a

e it
a – e iz

a
=


i

�(z)
�(t)


[tan t

a – tan z
a ] cos t

a
, (.)

we have

X(z)
(z)

=
e– niz

a X(z)
aπ

∫

L

g(t)e it
a

e –nit
a X+(t)(e it

a – e iz
a )

dt
(
by the first equality of (.)

)

=
ϒ(z)
aπ i

∫

L

m+n+κ+(z)
m+n+κ+(t)

g(t)
ϒ+(t)[tan t

a – tan z
a ] cos t

a
dt

(
by (.)

)

=
ϒ(z)
aπ i

∫

L

m+n+κ+(z)
m+n+κ+(t)

g(t)
ϒ+(t)

[
cot

t – z
a

+ tan
t
a

]
dt. (.)

We will discuss three cases.
Case . When m + n + κ ≥ , we get

X(z)
(z) = ϒ(z)
[

P�
m+n+κ

(
tan

z
a

)
+ 
(z)

] (
P�

r ∈ �r
)

= ϒ(z)
[

P�
m+n+κ

(
tan

z
a

)
+


aπ i

∫

L

g(t)
ϒ+(t)

cot
t – z

a
dt

] (
P�

r ∈ �r
)
, (.)

where


(z) =


aπ i

∫

L

g(t)
ϒ+(t)

cot
t – z

a
dt +


aπ

∫

L

g(t)
ϒ+(t)

tan
t
a

dt. (.)

Case . When m + n + κ = –, we get

X(z)
(z) =
ϒ(z)
aπ i

∫

L

g(t)
ϒ+(t)

[
cot

t – z
a

+ tan
t
a

]
dt = ϒ(z)
(z). (.)
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Case . When m + n + κ < –, we get

X(z)
(z) =
ϒ(z)
aπ i

∫

L

–(m+n+κ+)(t)
–(m+n+κ+)(z)

g(t)
ϒ+(t)

[
cot

t – z
a

+ tan
t
a

]
dt

(
by (.)

)

= ϒ(z)
[

(z) +


aπ i–(m+n+κ+)(z)

�(z)
]

, (.)

where

�(z) =
∫

L

[
–(m+n+κ+)(t) – –(m+n+κ+)(z)

] g(t)
ϒ+(t)

[
cot

t – z
a

+ tan
t
a

]
dt

=
∫

L

g(t)
ϒ+(t) cos t

a

–(m+n+κ+)∑

j=

j
(

tan
t
a

)
–(m+n+κ+)–j

(
tan

z
a

)
dt

=
–(m+n+κ+)∑

j=

[∫

L

g(t)
ϒ+(t) cos t

a

(
i + tan

t
a

)j

dt
]
–(m+n+κ+)–j

(
tan

z
a

)
. (.)

We note that

∫

L

g(t)
e –nit

a X+(t)
e

it
a P–(m+n+κ)–

(
e

it
a

)
dt (Pr ∈ �r)

=
∫

L

g(t)
ϒ(t)


m+n+κ+(t)

P–(m+n+κ)–
(
e

it
a

)[
e

it
a (t)

]
dt

=
∫

L

g(t)
ϒ(t) cos t

a


m+n+κ+(t)

P�

–(m+n+κ)–

( i – tan t
a

i + tan t
a

)
dt

(
P�

r ∈ �r
)

=
∫

L

g(t)
ϒ(t) cos t

a
P¶

–(m+n+κ)–

(
tan

t
a

)
dt

(
P¶

r ∈ �r
)
. (.)

To the contrary, we easily see that

∫

L

g(t)
ϒ(t) cos t

a
P¶

–(m+n+κ)–

(
tan

t
a

)
dt

(
P¶

r ∈ �r
)

=
∫

L

g(t)
ϒ(t)

[
e

it
a (t)

]
P�

–(m+n+κ)–

(
e it

a – 
i[e it

a + ]

)
dt

(
P�

r ∈ �r
)

=
∫

L

g(t)
ϒ(t)

[
e

it
a (t)

][
 + e

it
a

]m+n+κ+P–(m+n+κ+)
(
e

it
a

)
dt

(
P∗

r ∈ �∗
r
)

=
∫

L

g(t)e it
a

X+(t)
P–(m+n+κ+)

(
e

it
a

)
dt (Pr ∈ �r). (.)

So, from (.) and (.), we know that (.) is equivalent to

∫

L

g(t)
ϒ(t) cos t

a

(
tan

t
a

)j

dt = , j = , , . . . , –(m + n + κ + ). (.)

Also, by (.) and (.), we have (.) when one of (.) and (.) is satisfied.
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Noting that, from (.),

ϒ(z) = C� cosm+n z
a

e
(m–n)iz

a , (.)

where

C� = (–)–κ (–i)m+n (.)

is a constant, we may restate Theorem . in another form.

Theorem . When m + n + κ ≥ , the general solution of PRm,n is

�(z) = cosm+n z
a

e
(m–n)iz

a

×
[

P�
m+n+κ

(
tan

z
a

)
+


aπ i

∫

L

g(t)

cosm+n t
a e

(m–n)it
a X+

 (t)
cot

t – z
a

dt
]

, (.)

where P�
r is an arbitrary polynomial of degree not greater than r. When m + n + κ = –, it

has the unique solution

�(z) =
cosm+n z

a e
(m–n)iz

a

aπ i

∫

L

g(t)

cosm+n t
a e

(m–n)it
a X(t)

[
cot

t – z
a

+ tan
t
a

]
dt. (.)

When m + n + κ < –, it has the unique solution (.) if and only if

∫

L

g(t)

cosm+n t
a e

(m–n)it
a X+

 (t)

[
tan

t
a

]j

dt = , j = , , . . . , –(m + n + κ + ), (.)

hold.

Now, we immediately see that Theorem . generalizes some previous results. The
method used here is more straightforward than that used to obtain the previous results.

Example . When m = n ≥  and L is the periodic closed contour, the result of [] is
easily reobtained from Theorem . and (.). In particular, when m = n =  we reobtain
the results of [, ]. These researchers just used the tangent conformal mapping

w = tan
z
a

, z ∈ C\L. (.)

Example . When L is the real axis, we generalize the result of [], in which the authors
only discussed the case of m = n ≥ .

4 Periodic Hilbert boundary value problems
In this section, we discuss the periodic Hilbert boundary value problems (PH problems).
We expect to obtain concrete expressions for their solutions as well as the conditions of
solvability. Two kinds of PH problems are to solved in detail, which are, respectively, the
PH problem on the circumferences and the PH problem on the real axis. The two kinds
of PH problems are also of special importance in practice.
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4.1 PH problem on the real axis
Let Z+ and Z– represent, respectively, the upper and lower half-plane. Denote the real
axis by X . We consider the following Hilbert boundary problem.

PHn problem: Find a periodic holomorphic function �(z) in the upper half-plane Z+

and continuous on Z+ (Z+ ∪X ), with period aπ , such that
{

Re{[a(t) + ib(t)]�+(t)} = c(t), t ∈X ,
eOrd[�](+∞i) ≤ n,

(.)

where the input functions a(t), b(t), c(t) are periodic real-valued functions with period aπ

on the X -axis and a, b, c ∈ H(X ), and

∣∣a(t) + b(t)
∣∣ = , t ∈X (normalized condition). (.)

In [], Lu discussed the PH problem. He transferred PH to an ordinary Hilbert bound-
ary value problem in the upper half w-plane by using the tangent type conformal mapping
(.), which seems to be a bit complicated. So we prefer to transform directly a PH

problem into a PRn,n problem by using the reflection method based on the principle of the
so-called symmetric extension []. For the sake of convenience, it is necessary to recall
here some basic processes of the reflection method [, ].

For a function �(z) in Z+, we define a function in Z– by

�(z) = �(z), (.)

which is called the accompanying function of �. Then

(
E[�]

)
(z) =

{
�(z), when z ∈Z+,
�(z), when z ∈Z–,

(.)

is called symmetric extension or symmetric function of �.
Similarly, if the original function �(z) is defined in Z–, then its accompanying function

�(z) determined by (.) is defined in Z+. Then

(
E[�]

)
(z) =

{
�(z), when z ∈Z+,
�(z), when z ∈Z–.

(.)

Moreover, we have

�(z) = �(z), z ∈Z+ (
z ∈Z–)

. (.)

If � is defined on Z+ ∪Z–, say,

�(z) =

{
�

+(z), z ∈Z+,
�

–(z), z ∈Z–,
(.)

then

�†(z) =

{
�

–(z), z ∈Z+,
�

+(z), z ∈Z–,
(.)
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is called the reflective function of �. Obviously, by (.)

�(z) = (�†)†(z). (.)

In particular, if

�†(z) = �(z), (.)

then we say that � is a self-reflection function. Obviously, by (.),

(
R[�]

)
(z) =

�(z) + �†(z)


(.)

is a self-reflection function, which is called the self-reflection function of �. For the sake
of convenience, we call the above steps from � to R[E[�]] the self-reflex action of �.

Example .

(
eiz)

† = e–iz,
(
e–iz)

† = eiz, (cot z)† = cot z. (.)

Now it is easy to see that, if � is a periodic holomorphic function in the upper half-plane
Z+ and continuous on Z+, with period aπ , then �(z) is a periodic holomorphic function
in the lower half-plane Z– and continuous on Z– (Z– ∪X ), with period aπ , and

�+(t) = (�)–(t), t ∈X , (.)

eOrd[�](+∞i) = eOrd[�†](–∞i). (.)

In brief, if � is the solution of PHn problem (.), then, noting that all input functions a,
b, c are real-valued, both its symmetric extension E[�] given by (.) and its reflection
function (E[�])† given by (.) are the solution of the following PRn,n problem:

{
∇+(t) = – a(t)–ib(t)

a(t)+ib(t) ∇–(t) + c(t)
a(t)+ib(t) , t ∈X ,

eOrd[∇](+∞i) = eOrd[∇](–∞i) = n.
(.)

So is the self-reflection function R[E[�]] given by (.). Thus, we have the following
lemma, that is, the symmetric extension principle.

Lemma . The general solution of PHn problem (.) should be

�(z) =
(
R[∇]

)
(z) =

∇(z) + ∇†(z)


=
∇(z) + ∇(z)


, z ∈Z+, (.)

where ∇ is the solution of the PRn,n problem (.).

Let

κ =

π

[
arg

[
a(t) – ib(t)

]] aπ


– aπ


=: �, (.)

which is an even number.
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When n + � ≥ , from (.) and (.), the general solution of the PRn,n problem (.)
is

∇(z) = e– niz
a X(z)

[


aπ i

∫ aπ


– aπ


e nit
a c(t)

X+(t)[a(t) + ib(t)]
cot

t – z
a

dt + P(n+�)
(
e

iz
a
)]

,

z ∈ C\X , (.)

where

P(�+n)(z) =
(n+�)∑

j=

cjzj (.)

with (n + κ + ) free constants cj,

X(z) =

⎧
⎨

⎩
e�(z), z ∈Z+,

e –κiz
a e�(z), z ∈Z–,

(.)

where

�(z) =


aπ

∫ aπ


– aπ


�(t) cot
t – z

a
dt, z ∈ C\X , (.)

where

�(t) = –
κt
a

+ arg
[
a(t) – ib(t)

]
+

π


(.)

is a real-valued function.
Noting (.), we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�†(z) = �(z), X†(z) = e κiz
a X(z), z ∈ C\X ,

�+(t) = –i�(t) + �+(t),
�+(t) = i�(t) + 

aπ

∫ +aπ

–aπ
�(τ ) cot τ–t

a dτ , t ∈X ,
X+(t) = –e κit

a [a(t) + ib(t)]X+(t),
X+(t) = –e– κit

a [a(t) – ib(t)]X+(t), t ∈X ,

(.)

and

[
P(n+�)

(
e

iz
a
)]

† =
(�+n)∑

j=

cje
–jiz

a . (.)

From (.), (.), (.), and Theorem ., we get the solution of PHn problem (.)

�(z) = X(z)
[

e– niz
a

aπ i

∫ aπ


– aπ


c(t)
e– nit

a X+(t)[a(t) + ib(t)]
cot

t – z
a

dt + T(n+�)(z)

+
e

(n+κ)iz
a

aπ i

∫ aπ


– aπ


c(t)

e
(n+κ)it

a X+(t)[a(t) + ib(t)]
cot

t – z
a

dt
]

, z ∈Z+, (.)
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where

T(n+�)(z) = a +
(n+�)∑

j=

z
[

aj cos
jz
a

+ ibj sin
jz
a

]
(.)

is a trigonometric polynomial of degree not greater than (n +�) with (n +�) +  arbitrary
real coefficients aj and bj, denoted by T(n+�) ∈ HT

(n+�).
When n + � ≤ –, from Theorem ., the unique solution of PRn,n problem (.) is

(z) =
e– niz

a X(z)
aπ i

∫ aπ


– aπ


c(t)
e– nit

a [a(t) + ib(t)]X+(t)

[
i + cot

t – z
a

]
dt, z ∈ C\X , (.)

if and only if the –(n + � + ) conditions

∫ aπ


– aπ


c(t)
[a(t) + ib(t)]X+(t)

e
ijt
a dt = , j = n + , . . . , –(n + � + ), (.)

are fulfilled.
Now we find the solution of PHn problem (.) by the self-reflex action. From (.), we

get

†(z) =
e

(n+κ)iz
a X(z)
aπ i

∫ aπ


– aπ


c(t)

e
(n+κ)it

a [a(t) + ib(t)]X+(t)

[
cot

t – z
a

– i
]

dt

=
e

(n+κ)iz
a X(z)
aπ i

∫ aπ


– aπ


c(t)e nit
a

e
(n+κ)it

a [a(t) + ib(t)]X+(t)

[
cot

t – z
a

– i
]

dt

=
e

(n+κ)iz
a X+(z)
aπ

∫ aπ


– aπ


c(t)e
(n+)it

a

[a(t) + ib(t)]X+(t)
e

–(n+κ)it
a

e iz
a – e it

a
dt

= δ(z) – δ(z), z ∈ C\X , (.)

where

δ(z) =
e

(n+κ)iz
a X(z)
aπ

∫ aπ


– aπ


c(t)e
(n+)it

a

[a(t) + ib(t)]X+(t)
e

–(n+κ)iz
a

e iz
a – e it

a
dt

=
e– niz

a X(z)
aπ

∫ aπ


– aπ


c(t)
e –nit

a [a(t) + ib(t)]X+(t)
e– it

a

e iz
a – e it

a
dt

=
e– niz

a X(z)
aπ i

∫ aπ


– aπ


c(t)
e –nit

a [a(t) + ib(t)]X+(t)

[
cot

t – z
a

– i
]

dt (.)

and

δ(z) =
e

(n+κ)iz
a

aπ

∫ aπ


– aπ


c(t)e
(n+)it

a

[a(t) + ib(t)]X+(t)
e– (n+κ)iz

a – e
–(n+κ)it

a

e iz
a – e it

a
dt

=


aπ

–n–κ–∑

j=

[∫ aπ


– aπ


c(t)e
(n+)it

a

[a(t) + ib(t)]X+(t)
e

jit
a dt

]
e

(–j)iz
a

= 
(
by (.)

)
. (.)
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Thus, by Lemma ., the unique solution of PHn problem (.) is

�(z) =
e– niz

a X(z)
aπ i

∫ aπ


– aπ


c(t)
e– nit

a [a(t) + ib(t)]X+(t)
cot

t – z
a

dt, z ∈Z+. (.)

Let

W (t) =


|X+(t)| . (.)

Then, from (.) and (.), we have

[
a(t) + ib(t)

]
X+(t) =

∣∣X+(t)
∣∣ei�(t)+i arg[a(t)+ib(t)] = ie– κit

a
∣∣X+(t)

∣∣. (.)

Thus, (.) becomes

∫ aπ


– aπ


W (t)c(t)e
(j+�)it

a dt = , j = n + , . . . , –(n + � + ), (.)

which is equivalent to the real form

⎧
⎨

⎩

∫ aπ


– aπ


W (t)c(t) cos jt
a dt = , j = , . . . , –(n + � + ),

∫ aπ


– aπ


W (t)c(t) sin jt
a dt = , j = , . . . , –(n + � + ).

(.)

Theorem . When n + � ≥  the general solution of PRn,n problem (.) is (.); when
n + � ≤ –, PRn,n problem (.) has the unique solution (.) if and only if the conditions
in (.) are fulfilled. In one word, the solution of PRn,n problem (.) possesses the real
degree (n + � + ).

Example . When n = , we reobtain the results in []. Hereby, we directly apply the re-
flection method based on the principle of the so-called symmetric extension, which seems
simpler than that used in [].

4.2 PH problem on the circumferences
We use the regularization method to solve the PH problem on the circumferences. In fact,
both the reflection method and the regularization method are effective for both the PH
problem on the real axis and the PH problem on the circumference.

Let Lj = {z, |z – jaπ | = r} be the circumferences and S+
j = Dj = {z, |z – jaπ | < r}, where

r ≤ aπ/. The notations L and S+ are given by (.) and (.). In particular, we denote D

by D.
We consider the following Hilbert boundary problem.
PH problem: Find a periodic holomorphic function �(z) in S+ and continuous on S+,

with the period aπ , such that

Re
{[

a(t) + ib(t)
]
�+(t)

}
= c(t), t ∈ L, (.)
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where the input functions a(t), b(t), c(t) are periodic real-valued functions with period aπ

on L and a, b, c ∈ H(L),

∣∣a(t) + b(t)
∣∣ = , t ∈ L (normalized condition). (.)

Lemma . (Localization principle []) If � is a solution of PH problem (.), then its
restriction on D, � = �|D , is the solution of the following localization problem. Conversely,
if � is the solution of the following localization problem, then its periodic extension will be
a solution of PH problem (.):

Localization problem: Find an analytic function � in D and continuous on D (D ∪ ∂D)
such that

Re
{[

a(t) + ib(t)
]
�+(t)

}
= c(t), t ∈ ∂D. (.)

The simplest PH problem is Schwarz problem, i.e., a(t) + ib(t) = . We have the following
classical result for its localization problem.

Lemma . [] Schwarz problem

{
Re{�+(t)} = c(t), t ∈ ∂D,
Im{�()} = ,

(.)

has the unique solution

�(z) =


π i

∫

∂D
c(τ )

τ + z
τ – z

dτ

τ
, z ∈D, (.)

which is denoted simply by �(z) = S[c](z).

Let

κ =


π

{
arg

[
a(t) – ib(t)

]}
∂D . (.)

If R(t) is a positive function defined on ∂D such that

X+(t) = iR(t)
[
a(t) – ib(t)

]
, t ∈ ∂D, (.)

is the positive boundary value of certain function X, analytic in D \ {} with the zero of
order κ at the origin and X(z) �=  when z ∈ D \ {} and X+(t) �=  when t ∈ ∂D, then we
call, respectively, R and X the regularized factor and the canonical function of PH problem
(.). There exist surely such a regularized factor and a canonical function of PH problem
(.). For example, taking

X(z) = izκ exp
{

iS[�](z)
}

, z ∈D \ {}, (.)

where

�(t) = arg
{

t–κ
[
a(t) – ib(t)

]}
, t ∈ ∂D. (.)
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Then, by the Plemelj formula, we have

{
R(t) = X+(t)

i[a(t)–ib(t)] = rκ exp{ 
π

∫
∂D �(τ ) τ+t

τ–t
dτ
τ

}, t ∈ ∂D,
R(reiθ ) = rκ exp{– 

π

∫ π

–π
�(reiζ ) cot ζ–θ

 dζ }, –π ≤ θ ≤ π .
(.)

So, R and X are just a regularized factor and a canonical function of PH problem (.).

Remark . The integral in the second equality of (.) is understood as the principal
value integral with Hilbert kernel and at θ = ±π as

∫ π

–π

f (ζ ) cot
ζ


dζ = lim

δ→+

∫ π–δ

–π+δ

f (ζ ) cot
ζ


dζ , (.)

when f is Hölder-continuous function with period π (see []).

Let

ϕ(z) =
i�(z)
X(z)

, z ∈D. (.)

Lemma . Under (.), the localization problem (.) is equivalent to the following
boundary value problem, i.e. the so-called Sk problem.

Sκ problem: Find an analytic function ϕ(z) in D \ {} and continuous on D such that

{
Re{ϕ+(t)} = c(t)

R(t) , t ∈ ∂D,
Ord[ϕ]() ≤ κ ,

(.)

where R is the regularized factor given in (.).
We solve Sκ problem by two steps.
Step . We consider the following homogeneous problem of (.):

{
Re{ϕ+(t)} = , t ∈ ∂D,
Ord[ϕ]() ≤ κ .

(.)

Suppose the principal part of ϕ at the origin z =  is

P.P[ϕ](z) =

{∑k
j= ajrjz–j, if k ≥ ,

, if k < ,
z �= . (.)

Introduce the following symmetric operator:

L[ϕ](z) =

⎧
⎪⎨

⎪⎩

Re(a) +
∑k

j=[ajrjz–j + ajr–jzj], if k > ,
Re(a), if k = ,
, if k < ,

z �= . (.)

Clearly

Re
{

iL[ϕ](t)
}

=  when t ∈ ∂D. (.)
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Setting

F(z) = i
[
ϕ(z) – L[ϕ](z)

]
, z ∈ D, (.)

by (.) and (.),

{
Re{F+(t)} = , if t ∈ ∂D,
Im{F(z)} = , if z = .

(.)

By Lemma ., F(z) ≡ . Thus, the general solution of the homogeneous problem (.)
is

ϕ(z) = L[ϕ](z), z ∈ D. (.)

Introduce the class of the symmetric Laurent polynomials

S�k =

{
{qk(z) =

∑k
j=–k cjr–jzj : cj = c–j for j = , , , . . . , k}, if k ≥ ,

{}, if k < .
(.)

Obviously,

L[ϕ] ∈ S�κ and
{

S�κ (t), t ∈ ∂D
} ⊂R (real set), (.)

thus, we have the following conclusion.

Proposition . The set of solution of the homogeneous problem (.) is S�κ .

Step . When κ ≥ , it is obvious that

ϕ(z) =


π i

∫

∂D

c(τ )
R(τ )

τ + z
τ – z

dτ

τ
=


π

∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

τ + z
τ – z

dτ

τ
, z ∈D, (.)

is a special solution of Sκ problem (.). When κ < , Sκ problem is obviously a Schwarz
problem (.). So, its solution must be (.) by Lemma .. On the other hand, (.)
is the solution of Sκ problem (.) if and only if it has the zero z =  of, at least, order –κ ,
which is to say that if and only if

∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

dτ

τ j = , j = , . . . , –κ , (.)

Sκ problem (.) has the unique solution (.).

Proposition . If κ ≥ , Sκ problem (.) has the special solution (.). If κ < , it has
the unique solution (.) if and only if the condition of solvability (.) is satisfied.

Now, for the localization problem (.), we easily obtain the following result by
Lemma ., Proposition ., and Proposition . (cf. see [, ]):
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Lemma . When κ ≥ , the localization problem (.) is solvable and its solution is
given by

�(z) =
X(z)
π i

[∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

τ + z
τ – z

dτ

τ
+ π iqκ (z)

]

with qκ ∈ S�κ , z ∈D. (.)

When κ < , the localization problem (.) is solvable if and only if the condition of solv-
ability (.) is satisfied, and in such a case its solution is given by (.) with qκ = .

Remark . The canonical function (.) may be rewritten as

X(z) = zκY (z) with Y (z) = exp
{
�(z)

}
, (.)

where

�(z) =


π i

∫

∂D
log

{
τ–κ

[
a(τ ) – ib(τ )

]} τ + z
τ – z

dτ

τ
+

π i


=

π

∫

∂D

�(τ )
τ – z

dτ –


π

∫

∂D

�(τ )
τ

dτ +
π i


≡ 
π

∫

∂D

�(τ )
τ – z

dτ + C�
(
C∗ a constant

)
. (.)

In [], the localization problem (.) is solved by the method of symmetric extension.
Obviously, Y is just the restricted function on D of the corresponding canonical function
used in [].

Remark . When κ < , the expression of the solution (.) may be further simplified.
It may be written as

�(z) =
Y (z)
π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]Y +(τ )

dτ

τ – z
, z ∈D. (.)

In fact,

�(z) =
X(z)
π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

τ + z
τ – z

dτ

τ

=
zκY (z)

π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

[
 +

z
τ – z

]
dτ

τ

=
Y (z)
π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]Y +(τ )

zκ+

τ κ+
dτ

τ – z
(
by (.)

)

=
zκ+Y (z)

π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]Y +(τ )

[
τ–κ– – z–κ–

τ – z
+

z–κ–

τ – z

]
dτ

=
Y (z)
π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]Y +(τ )

dτ

τ – z
(
by (.)

)
. (.)

Remark . Observe that, by (.),

W (θ ) = exp

{
–


π

∫ π


�

(
eiζ ) cot

ζ – θ


dζ

}
, –π ≤ θ ≤ π , (.)
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is the positive, π-periodic continuous function, which is called the weight function, then
(.) is equivalent to the following real conditions:

{∫ π

–π
W (θ )c(reiθ ) sin jθ dθ = , j = , , . . . , –κ – ,∫ π

–π
W (θ )c(reiθ ) cos jθ dθ = , j = , , , . . . , –κ – ,

(.)

which indicate that c(eiθ ) is orthogonal to HT
n = {Tn : Tn(θ ) =

∑n
k=(ak sin kθ + bk cos kθ )}

with the weight function W , which just shows that the real degree of freedom of the solu-
tion for the localization problem (.) is κ + .

In order to obtain the solution of PH problem (.), we only need to set up the periodic
extension of (.), which is rather simple.

Let

�(z) = �(z – jaπ ), z ∈ S+
j (j = ,±,±, . . .). (.)

Now, by Lemma . and Lemma ., Remark ., and Remark ., we finally have the
following result.

Theorem . When κ ≥ , PH problem (.) is solvable and its general solution may be
written as

�(z) =
X(z – jaπ )

π i

[∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

τ + (z – jaπ )
τ – (z – jaπ )

dτ

τ
+ qκ (z – jaπ )

]
,

z ∈Dj (j = ,±,±, . . .) with qκ ∈ S�κ . (.)

When κ < , if and only if the condition of solvability

∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

dτ

τ j = , j = , . . . , –κ , (.)

is satisfied, or, –κ –  real conditions in (.) are satisfied, PH problem (.) is solvable
and its solution is given by

�(z) =
X(z – jaπ )

π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]X+(τ )

τ + (z – jaπ )
τ – (z – jaπ )

dτ

τ
,

z ∈Dj (j = ,±,±, . . .), (.)

or

�(z) =
Y (z – jaπ )

π i

∫

∂D

c(τ )
[a(τ ) + ib(τ )]Y +(τ )

dτ

τ – (z – jaπ )
,

z ∈Dj (j = ,±,±, . . .), (.)

where Y is given by (.).
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