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In this paper, for real para-vector-valued signals, we obtain stronger uncertainty
principles in terms of covariance and absolute covariance based on Fourier trans-
form in both directional and the spatial cases. We provide certain conditions that
give rise to the equal relation between the two uncertainty principles. Examples
are presented to verify the results.

Keywords: uncertainty principle in higher dimensions; Fourier transform;
covariance

AMS Subject Classifications: 46F10; 30G35

1. Introduction

Uncertainty principle in time–frequency planes plays an important role in signal processing
[1–11] and in physics [12–21]. The classical form of uncertainty principle states that for a
given signal of unit energy f (t) with Fourier transform

f̂ (ω) := 1√
2π

∫ ∞

−∞
f (t)e−iωt dt,

the product of spreads of the signal in the time domain and the frequency domain is bounded
by a lower bound

σ 2
t σ 2

ω ≥ 1

4
,

where σ 2
t and σ 2

ω are the duration and bandwidth of a signal f (t), defined, respectively, by

σ 2
t :=

∫ ∞

−∞
(t − 〈t〉)2| f (t)|2dt

and

σ 2
ω :=

∫ ∞

−∞
(ω − 〈ω〉)2| f̂ (ω)|2dω,
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Complex Variables and Elliptic Equations 1697

respectively. Here,

〈t〉 :=
∫ ∞

−∞
t | f (t)|2dt

is the mean time and

〈ω〉 :=
∫ ∞

−∞
ω| f̂ (ω)|2dω

is the mean frequency.
If f (t) is expressed in the polar form f (t) = | f (t)|eiθ(t) = ρ(t)eiθ(t), then a stronger

version of uncertainty principle [13] is

σtσω ≥
∣∣∣∣−1

2
+ iCovtω

∣∣∣∣ = 1

2

√
1 + 4Cov2

tω, (1.1)

where Covtω is the covariance of the signal defined by

Covtω :=
∫ ∞

−∞
(t − 〈t〉)(θ ′(t) − 〈ω〉)ρ2(t)dt.

The covariance is a measurement of the relation between instantaneous frequency, θ ′(t),
and time t .

Recently, in [22], Dang et al. strengthen the result of (1.1), they obtained

σtσω ≥
∣∣∣∣−1

2
+ iCOVtω

∣∣∣∣ = 1

2

√
1 + 4COV2

tω, (1.2)

where COVtω is the absolute covariance of a signal defined by

COVtω :=
∫ ∞

−∞
|(t − 〈t〉)(θ ′(t) − 〈ω〉)|ρ2(t)dt.

Due to the trivial inequality
∫∞
−∞(t − 〈t〉)(θ ′(t) − 〈ω〉)ρ2(t)dt ≤ ∫∞

−∞ |(t − 〈t〉)(θ ′(t) −
〈ω〉)|ρ2(t)dt , (1.2) is stronger than (1.1).

Without loss of generality, we let 〈t〉 = 0 and 〈ω〉 = 0. The essence of uncertainty
principle will not be affected.

For the importance of uncertainty principle, there are many efforts to extend it to
various types of functions and integral transformations. Recently, researchers discussed
the uncertainty relations for fractional Fourier transform [6,10,23] and linear canonical
transform.[9,20,24,25] A stronger uncertainty principle in LCT involving the phase deriva-
tive of the signal was discussed in [26].

While in higher dimensional spaces, how to describe the uncertainty principle? In
Clifford algebra, Hitzer et al. [27–30] investigated a directional uncertainty principle for
the Clifford–Fourier transform, which describes how the variances (in arbitrary but fixed
directions) of a multi-vector-valued function and its Clifford–Fourier transform are related.
Using the scalar-valued phase derivative of hypercomplex signals,[31] two uncertainty
principles, of which one is for scalar-valued hypercomplex signals and the other is for axial
form hypercomplex signals, for Fourier transforms were studied in [32]. In [33], we prove
the classical uncertainty principles without covariance using the LCT of hypercomplex
signal. To our knowledge, a work on the investigation of the stronger uncertainty relations
with covariance of hypercomplex signal is not carried out yet.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ac
au

 L
ib

ra
ry

] 
at

 0
0:

26
 2

4 
A

ug
us

t 2
01

7 



1698 Y. Yang et al.

In the present work, we study the real para-vector-valued signals. Using the polar form
of it, the stronger uncertainty principles with covariance and absolute covariance for the real
para-vector-valued signal are established. These uncertainty principles prescribe a larger
bound on the product of the effective widths of real para-vector-valued signals in the time
and frequency domains. Examples are given to verify the results.

The article is organized as follows. Section 2 gives a brief introduction to some general
definitions and basic properties of Clifford analysis. In Section 3, some important properties
about Fourier transforms are recalled. They are necessary to prove the uncertainty principles.
The latest results about the Heisenberg uncertainty principle with absolute covariance and
covariance are generalized for the real para-vector-valued signals in Section 4. At last, we
give some examples to verity the results in Section 5.

2. Clifford algebra

The theory of Clifford algebras is intimately connected with the theory of quadratic forms
and orthogonal transformations. They generalize the real numbers, complex numbers,
quaternions and several other hypercomplex number systems.[34,35] Clifford algebras have
important applications in a variety of fields including geometry, theoretical physics and
digital image processing. They are named after the English geometer William Kingdon
Clifford.

Most of the basic knowledge and notation in relation to Clifford algebra hereby are
referred to [36] and [37].

Let e1, . . . , em be basic elements satisfying ei e j + e j ei = −2δi j , where δi j = 1 if
i = j, and δi j = 0 otherwise, i, j = 1, 2, . . . , m. Let

Rm
1 = {

x0 + x | x0 ∈ R, x ∈ Rm} ,

where

Rm = {
x | x = x1e1 + · · · + xmem, x j ∈ R, j = 1, 2, . . . , m

}
be identical with the usual Euclidean space Rm .

An element in Rm is called a real vector and an element in Rm
1 is called a real para-vector.

The multiplication of two real para-vectors x0 + x = ∑m
j=0 x j e j and y0 + y = ∑m

j=0 y j e j

is given by

(x0 + x)(y0 + y) = (x0 y0 + x · y) + (x0 y + y0x) + (x ∧ y)

with

x · y = −
m∑

j=1

x j y j = 1

2
(x y + yx) = −〈x, y〉

x ∧ y =
∑
i< j

ei j (xi y j − x j yi ) = 1

2
(x y − yx).

There are three parts altogether, a scalar part x0 y0 + x · y, a vector part x0 y + y0x and
a bi-vector part x ∧ y, respectively. We denote the scalar part of (x0 + x)(y0 + y) by
Sc[(x0 + x)(y0 + y)].
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Complex Variables and Elliptic Equations 1699

The real (complex) Clifford algebra generated by e1, e2, . . . , em , denoted by Cl0,m , is
the associative algebra over the real (complex) field R (C). A general element in Cl0,m ,
therefore, is of the form

x =
∑

S

xSeS,

xs ∈ R (C) and eS = ei1 ei2 . . . eil , and S runs over all the ordered subsets of {1, 2, . . . , m},
namely

S = {1 ≤ i1 < i2 < · · · < il ≤ m}, 1 ≤ l ≤ m.

The conjugation of eS is defined by eS := eil . . . ei1, here e j = −e j . Especially, we have
ei e j = −ei e j . So the Clifford conjugates of a vector x and a bi-vector x ∧ y are x = −x
and x ∧ y = −x ∧ y, respectively.

The natural inner product between x and y in Cl0,m, denoted by 〈x, y〉, is the complex
number

∑
S xS yS, where x = ∑

S xSeS, xS ∈ C and y = ∑
S ySeS, yS ∈ C. The norm

associated with this inner product is

|x | = 〈x, x〉 1
2 =

(∑
S

|xS|2
) 1

2

.

For p = 1 and 2, the Clifford-valued modules L p(Rm; Cl0,m) are defined by

L p(Rm; Cl0,m) :=
{

f : Rm → Cl0,m |

‖ f ‖p
L p(Rm ;Cl0,m)

=
∫

Rm
| f (x)|pdx < ∞

}
.

For two Clifford-valued signals f, g ∈ L2(Rm; Cl0,m) can be equipped with a Hermitian
inner product,

〈 f, g〉L2(Rm ;Cl0,m) := Sc

[∫
Rm

f (x)g(x)dx

]
(2.1)

whose associated norm is

‖ f ‖L2(Rm ;Cl0,m) :=
(∫

Rm
| f (x)|2dx

)1/2

.

In this paper, we study the signals which are defined in Rm taking values in Rm
1 . That is

f (x) : Rm −→ Rm
1 ,

f (x) = f0(x) + f1(x)e1 + f2(x)e2 + · · · + fm(x)em,

where fi (x), i = 1, 2, . . . , m is real-valued functions.
For any signal f (x) ∈ (Rm, Rm

1 ), we have the polar form [31]:

f (x) = f0(x) + f1(x)e1 + f2(x)e2 + · · · + fm(x)em

= | f (x)|eu(x)θ(x)

= ρ(x)eu(x)θ(x),
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1700 Y. Yang et al.

with amplitude

ρ(x) := | f (x)| =
√

f 2
0 (x) + f 2

1 (x) + · · · + f 2
m(x)

and orientation

u(x) := f1(x)e1 + f2(x)e2 + · · · + fm(x)em√
f 2
1 (x) + f 2

2 (x) + · · · + f 2
m(x)

belongs to the unit sphere Sm−1 := {x ∈ Rm | |x |2 = 1} of m-dimensional Euclidean space
Rm . The phase angle is

θ(x) := arctan

√
f 2
1 (x) + f 2

2 (x) + · + f 2
m(x)

f0(x)
∈ [0, π ]

and the phase vector is eu(x)θ(x).

3. Fourier transform of hypercomplex signals

If f ∈ L1(Rm, Cl0,m), the Fourier transform of f is defined by

F{ f }(ξ) := 1√
(2π)m

∫
Rm

e−i〈x,ξ 〉 f (x)dx (3.1)

where 〈x, ξ 〉 := x1ξ1 + · · · + xmξm is the usual inner product in Euclidean space Rm and
the inverse Fourier transform by

f (x) = 1√
(2π)m

∫
Rm

ei〈x,ξ 〉F{ f }(ξ)dξ .

Note If f ∈ L1(Rm, Rm
1 ), then F{ f } is a complex para-vector valued.

Let f (x), g(x) ∈ L2(Rm, Cl0,m), for

〈 f (x), g(x)〉 = Sc
∫

Rm
f (x)g(x)dx,

the well-known Plancherel Theorem holds

Sc

[∫
Rm

f (x)g(x)dx

]
= Sc

[∫
Rm

F{ f }(ξ)F{g}(ξ)dξ

]
.

In particular, for f = g ∈ L2(Rm, Rm
1 ), the Parseval Theorem is obtained:∫

Rm
| f (x)|2dx =

∫
Rm

|F{ f }(ξ)|2dξ . (3.2)

Next, we prove the following partial derivative properties.

Lemma 3.1 Let f (x) be a real para-vector-valued signal. If f (x) and ∂ f (x)

∂xk
∈ L1(Rm)

for k = 1, . . . , m, then

F

{
∂

∂xk
f (x)

}
(ξ) = iξk F{ f }(ξ). (3.3)
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Complex Variables and Elliptic Equations 1701

Proof Applying the integration by parts and complex value −iuk can be commutative
with any para-vector-valued signals, we obtain

F

{
∂

∂xk
f (x)

}
(ξ) = 1√

(2π)m

∫
Rm

[
∂

∂xk
f (x)

]
e−i〈x,ξ 〉dx

= − 1√
(2π)m

∫
Rm

(−iξk) f (x)e−i〈x,ξ 〉dx

= iξk F{ f }(ξ).

�

Lemma 3.2 Let f (x) be a real para-vector-valued signal. If ∂ f
∂xk

∈ L2(Rm) for k =
1, . . . , m, then ∫

Rm
ξ2

k |F{ f }(ξ)|2dξ =
∫

Rm

∣∣∣∣ ∂

∂xk
f (x)

∣∣∣∣
2

dx . (3.4)

Proof Applying (3.3) in Lemma 3.1 and Parseval Theorem of Fourier transform, we obtain∫
Rm

ξ2
k |F{ f }(ξ)|2dξ =

∫
Rm

∣∣∣iξk F{ f (x)}(ξ)

∣∣∣2 dξ

=
∫

Rm

∣∣∣∣F
{

∂

∂xk
f (x)

}
(ξ)

∣∣∣∣
2

dξ

=
∫

Rm

∣∣∣∣ ∂

∂xk
f (x)

∣∣∣∣
2

dx .

�

4. Uncertainty principles

In the following, we explicitly prove and generalize the latest result about the stronger
uncertainty principle with absolute covariance to real para-vector-valued signals. We also
give sufficient and necessary conditions such that they minimize the uncertainty product.

Before this, we need the following propositions.

Proposition 4.1 For any real para-vector-valued signal f (x) = A( f )(x)eu(x)θ(x), if
∂

∂xk
u(x) exists for k = 1, 2, . . . , m, then

Sc

[(
∂

∂xk
u(x)

)
u(x)

]
= 0. (4.1)

Proof For

u(x) = f1(x)e1 + f2(x)e2 + · · · + fm(x)em√
f 2
1 (x) + f 2

2 (x) + · · · + f 2
m(x)

,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ac
au

 L
ib

ra
ry

] 
at

 0
0:

26
 2

4 
A

ug
us

t 2
01

7 



1702 Y. Yang et al.

we have u2(x) = −1. by calculation directly, we have

0 = ∂

∂xk
u2(x)

=
(

∂

∂xk
u(x)

)
u(x) + u(x)

(
∂

∂xk
u(x)

)

=
(

∂

∂xk
u(x)

)
u(x) +

(
∂

∂xk
u(x)

)
u(x)

= 2Sc

[(
∂

∂xk
u(x)

)
u(x)

]
.

This completes the proof. �

Proposition 4.2 For any real para-vector-valued signal f (x) = ρ(x)eu(x)θ(x), if
∂

∂xk
eu(x)θ(x) exists for k = 1, 2, . . . , m, then

Sc

[(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

]
= 0. (4.2)

Proof Applying the generalized Euler formula, we have

eu(x)θ(x) = cos θ(x) + u(x) sin θ(x).

By calculation directly, we have

∂

∂xk
eu(x)θ(x)

= − sin θ(x)
∂θ(x)

∂xk
+ ∂u(x)

∂xk
sin θ(x) + u(x) cos θ(x)

∂θ(x)

∂xk
.

Therefore,(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

=
(

− sin θ(x)
∂θ(x)

∂xk
+ ∂u(x)

∂xk
sin θ(x) + u(x) cos θ(x)

∂θ(x)

∂xk

) (
cos θ(x) − u(x) sin θ(x)

)
= ∂θ(x)

∂xk
u(x) + ∂u(x)

∂xk
sin θ(x) cos θ(x) − ∂u(x)

∂xk
u(x) sin2 θ(x). (4.3)

Clearly, the scalar part of the multiplication of
(

∂
∂xk

eu(x)θ(x)
)

and e−u(x)θ(x) is decided by
the scalar part of

−∂u(x)

∂xk
u(x) sin2 θ(x).

Due to Proposition 4.1, we have

Sc

[(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

]
= 0.

This completes the proof. �
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Complex Variables and Elliptic Equations 1703

Remark 4.1 In one-dimensional cases, for signal f (x) = ρ(x)eiθ(x), it is easy to see that(
∂

∂x
eiθ(x)

)
e−iθ(x) = iθ ′(x).

Remark 4.2 From formulas (4.2) and (4.3), we find that the multiplication of
(

∂
∂xk

eu(x)θ(x)
)

and e−u(x)θ(x) has two parts: the vector part and the bi-vector part. Therefore, we have(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x) +

(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x) = 0.

Proposition 4.3 For any real para-vector-valued signal f (x) = ρ(x)eu(x)θ(x), if ∂
∂xk

f (x)

exists for k = 1, 2, . . . , m,
then ∣∣∣∣ ∂

∂xk
f (x)

∣∣∣∣
2

=
[

∂

∂xk
ρ(x)

]2

+ ρ2(x)

∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣
2

. (4.4)

Proof For f (x) = ρ(x)eu(x)θ(x), we have

∂

∂xk
f (x) = ∂

∂xk

[
ρ(x)eu(x)θ(x)

]
=
(

∂

∂xk
ρ(x)

)
eu(x)θ(x) + ρ(x)

∂

∂xk

(
eu(x)θ(x)

)
.

Therefore,∥∥∥∥ ∂

∂xk
f (x)

∥∥∥∥2
= ∂

∂xk
f (x)

∂

∂xk
f (x)

=
[(

∂

∂xk
ρ

)
euθ + ρ

∂

∂xk

(
euθ

)][( ∂

∂xk
ρ

)
e−uθ + ρ

∂

∂xk

(
euθ

)]

=
(

∂

∂xk
ρ

)2
+ ρ2 ∂

∂xk

(
euθ

) ∂

∂xk

(
euθ

)+ ρ

(
∂

∂xk
ρ

)[
∂

∂xk

(
euθ

)
e−uθ + ∂

∂xk

(
euθ

)
e−uθ

]
.

By Remark 4.2, we have

∂

∂xk

(
euθ
)

e−uθ + ∂

∂xk

(
euθ
)

e−uθ = 0.

While,

ρ2 ∂

∂xk

(
euθ
) ∂

∂xk

(
euθ
) = ρ2 ∂

∂xk

(
euθ
)

e−uθ ∂

∂xk

(
euθ
)

e−uθ

= ρ2
∣∣∣∣ ∂

∂xk

(
euθ
)

e−uθ

∣∣∣∣
2

.

This completes the proof. �

Clearly, using (3.4) and (4.4), we have
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1704 Y. Yang et al.

Theorem 4.1 For any real para-vector-valued signal f (x) = ρ(x)eu(x)θ(x), if f ∈
L1⋂ L2(Rm), and for k = 1, 2, . . . , m, ∂

∂xk
f exist and are also in L2(Rm, Rm

1 ), then

∫
Rm

ξ2
k |F{ f }(ξ)|2dξ =

∫
Rm

[
∂

∂xk
ρ(x)

]2

dx

+
∫

Rm
ρ2(x)

∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣
2

dx . (4.5)

Remark 4.3 (4.5) is an effective formula to compute
∫

R2 ξ2
k |F{ f }(ξ)|2dξ . Using this

formula, we can avoid computing the Fourier transform of f (x).
Due to Remark 4.1, in classical cases, we have [13]:

σ 2
ω =

∫ ∞

−∞
ρ′2(x)dx +

∫ ∞

−∞
ρ2(x)θ ′2(x)dx .

Theorem 4.2 (Uncertainty Principle in spatial case) Let f (x) be a real para-vector-
valued signal with ‖ f (x)‖L2 = 1. If xk f and ∂ f

∂xk
∈ L2(Rm) for k = 1, . . . , m, then(∫

Rm
x2

k | f (x)|2dx

)(∫
Rm

ξ2
k |F{ f }(u)|2du

)
≥ 1

4
+ COV2

xkξk ,
(4.6)

where the absolute covariance of every variable is defined by

COVxkξk :=
∫

Rm

∣∣∣∣xk

(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

∣∣∣∣ ρ2(x)dx .

The equality (4.6) holds if and only if

f (x) = e− α1
2 x2

1−···− αm
2 x2

m eu(x)θ(x)

and ∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

∣∣∣∣ = βk |xk |.

Here αk > 0 and βk > 0 for k = 1, . . . , m.

Proof Applying formula (4.5), we have(∫
Rm

x2
k | f (x)|2dx

)(∫
Rm

ξ2
k |F{ f }(ξ)|2dξ

)

=
(∫

Rm
x2

k ρ2dx

)(∫
Rm

[
∂

∂xk
ρ(x)

]2

dx +
∫

Rm
ρ2
∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣
2

dx

)

=
(∫

Rm
x2

k ρ2dx

)(∫
Rm

[
∂

∂xk
ρ(x)

]2

dx

)

+
(∫

Rm
x2

k ρ2dx

)(∫
R2

ρ2(x)

∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣
2

dx

)
(4.7)
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Complex Variables and Elliptic Equations 1705

Using Hölder inequality, we have(∫
Rm

x2
k ρ2dx

)(∫
Rm

[
∂

∂xk
ρ(x)

]2

dx

)

≥
(∫

Rm

∣∣∣∣xkρ

[
∂

∂xk
ρ(x)

]∣∣∣∣ dx

)2

≥
∣∣∣∣
∫

Rm
xkρ

[
∂

∂xk
ρ(x)

]
dx

∣∣∣∣
2

=
∣∣∣∣
∫

Rm

1

2

∂

∂xk

(
ρ2xk

)
dx −

∫
R2

1

2
ρ2dx

∣∣∣∣
2

= 1

4
. (4.8)

The first term of (4.8) is a perfect differential and integrates to zero. The second term gives
one half since we assume the signal is unit energy.

Similarly, we have(∫
Rm

x2
k ρ2dx

)(∫
Rm

ρ2(x)

∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣
2

dx

)

≥
(∫

Rm

∣∣∣∣xk

(
∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣ ρ2dx

)2

= COV2
xkξk

. (4.9)

connecting (4.7)–(4.9), the inequality (4.6) holds.
Next, we deduce the conditions under which the equation holds in (4.6). The equation

in (4.8) holds if and only if ∂
∂xk

ρ(x) = ±αk xkρ(x), where αk > 0. That is ρ(x) = e± αk
2 x2

k .

For f (x) ∈ L2(Rm), then we choose ρ(x) = e− αk
2 x2

k .
Clearly, the equation holds in (4.9) if and only if∣∣∣∣

(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

∣∣∣∣ = βk |xk |, βk > 0.

This completes the proof. �

Corollary 4.1 Let f (x) be a real para-vector-valued signal with ‖ f (x)‖L2 = 1. If
xk f and ∂ f

∂xk
∈ L2(Rm) for k = 1, . . . , m„ then(∫

Rm
x2

k | f (x)|2dx

)(∫
Rm

ξ2
k |F{ f }(u)|2du

)
≥ 1

4
+ Cov2

xkξk ,
(4.10)

where the covariance for every variable is defined by

Covxkξk :=
∫

Rm
xk

(
∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)ρ2(x)dx .

Theorem 4.3 (Uncertainty Principle in directional case) Let f (x) = | f (x)|eu(x)θ(x) be
a real para-vector-valued signal with ‖ f ‖L2 = 1. If xk f (x), ∂

∂xk
f (x) ∈ L2(Rm), for
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1706 Y. Yang et al.

k = 1, 2, . . . , m, then(∫
Rm

|x |2| f (x)|2dx

)(∫
Rm

|ξ |2|F{ f }(ξ)|2dξ

)

≥ m2

4
+ COV2

xξ , (4.11)

where the absolute covariance in directional case is

COVxξ :=
m∑

k=1

COVxkξk .

The equality (4.11) holds if and only if f (x) = e− α
2 |x |2 eu(x)θ(x) and∣∣∣( ∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

∣∣∣ = β|xk |. Here α > 0 and β > 0.

Proof Applying (3.4) and (4.4), we have(∫
Rm

|x |2| f (x)|2dx

)(∫
Rm

|ξ |2|F{ f }(ξ)|2dξ

)

=
(∫

Rm

m∑
k=1

x2
k ρ2dx

)(∫
Rm

m∑
k=1

ξ2
k |F{ f }(ξ)|2dξ

)

=
(∫

Rm

m∑
k=1

x2
k ρ2dx

)(∫
Rm

m∑
k=1

∣∣∣∣ ∂

∂xk
f (x)

∣∣∣∣
2

dx

)

=
(∫

Rm

m∑
k=1

x2
k ρ2dx

)(∫
Rm

m∑
k=1

[
∂

∂xk
ρ(x)

]2

+ ρ2(x)

∣∣∣∣
(

∂

∂xk
euθ

) (
e−uθ

)∣∣∣∣
2

dx

)

=
(∫

Rm

m∑
k=1

x2
k ρ2dx

)(∫
Rm

m∑
k=1

[
∂

∂xk
ρ(x)

]2

dx

)

+
(∫

Rm

m∑
k=1

x2
k ρ2dx

)(∫
Rm

m∑
k=1

ρ2(x)

∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣
2

dx

)
.

Applying the Schwarz inequality of continuous and discrete cases, we have(∫
Rm

m∑
k=1

x2
k ρ2dx

)(∫
Rm

m∑
k=1

[
∂

∂xk
ρ(x)

]2

dx

)

≥
∣∣∣∣∣∣
∫

Rm

(
m∑

k=1

x2
k ρ2

) 1
2
(

m∑
k=1

(
∂

∂xk
ρ

)2
) 1

2

dx

∣∣∣∣∣∣
2

≥
∣∣∣∣∣
∫

Rm

m∑
k=1

(
∂

∂xk
ρ

)
xkρdx

∣∣∣∣∣
2

= m2

4
.
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Complex Variables and Elliptic Equations 1707

(4.8) is used in the last step. Similarly, we have(∫
Rm

m∑
k=1

x2
k ρ2dx

)(∫
Rm

m∑
k=1

ρ2(x)

∣∣∣∣
(

∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)∣∣∣∣
2

dx

)

≥
(

m∑
k=1

∫
Rm

∣∣∣∣xk

(
∂

∂xk
euθ

)
e−uθ

∣∣∣∣ ρ2dx

)2

.

Similarly, like Theorem 4.2, the equality (4.11) holds if and only if f (x) = e− α
2 |x |2eu(x)θ(x)

and |( ∂
∂xk

eu(x)θ(x))e−u(x)θ(x)| = β|xk |. Here α > 0 and β > 0. This completes the
proof. �

Corollary 4.2 Let f (x) = | f (x)|eu(x)θ(x) be a real para-vector-valued signal with
‖ f ‖L2 = 1. If xk f (x), ∂

∂xk
f (x) ∈ L2(Rm), for k = 1, 2, . . . , m then(∫

Rm
|x |2| f (x)|2dx

)(∫
Rm

|ξ |2|F{ f }(ξ)|2dξ

)

≥ m2

4
+
∣∣∣Covxξ

∣∣∣2 ,

where the covariance in directional case is

Covxξ :=
m∑

k=1

Covxkξk .

5. Example

Example 5.1 Consider a real para-vector-valued signal of unit energy

f (x) =
(α

π

)m
4

e
−α|x |2

2 eu |x |2
2 ,

where α is a positive real number and u ∈ Sm is a vector-valued constant.
Computing directly, we have∫

Rm
x2

k | f (x)|2dx =
(α

π

)m
2
∫

Rm
x2

k e−α|x |2 dx

= 1

2α
,

and ∫
Rm

ξ2
k |F{ f }(ξ)|2dξ =

∫
Rm

(
∂

∂xk
ρ

)2

dx +
∫

R2
ρ2
∣∣∣∣
(

∂

∂xk
euθ

)
e−uθ

∣∣∣∣
2

dx

=
(α

π

)m
2

α2
∫

Rm
x2

k e−α|x |2 dx +
(α

π

)m
2
∫

Rm
x2

k e−α|x |2dx

= α

2
+ 1

2α
.
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1708 Y. Yang et al.

It is easy to see that Covxkξk = u
2α

, COVxkξk = 1
2α

, k = 1, 2, . . . , m. Then(∫
Rm

x2
k | f (x)|2dx

)(∫
Rm

ξ2
k |F{ f }(ξ)|2dξ

)

= 1

4
+ 1

4α2

= 1

4
+
(

1

2α

)2

= 1

4
+ COV2

x1ξ1

= 1

4
+ | u

2α
|2 = 1

4
+ |Covx1ξ1 |2

and (∫
Rm

|x |2| f (x)|2dx

)(∫
Rm

|ξ |2|F{ f }(ξ)|2dξ

)

= m2

4
+ m2

4α2

= m2

4
+
( m

2α

)2 = m2

4
+ COV2

xξ

= m2

4
+ |mu

2α
|2 = m2

4
+
∣∣∣Covxξ

∣∣∣2 .

Note that, in this case, the stronger forms of uncertainty principle of Theorems 4.2 and 4.3
become equalities. In fact, |( ∂

∂xk
eu(x)θ(x))e−u(x)θ(x)| = |uxk |, which satisfies the conditions

as given in (4.6) and (4.11).

Example 5.2 Consider a real para-vector-valued signal of unit energy

f (x) =
(α

π

)m
4

e
−α|x |2

2 eβ1x1e1 ,

where α is a positive real number and β1 ∈ R.
By Example 5.1, we have∫

Rm
x2

k | f (x)|2dx =
(α

π

)m
2
∫

Rm
x2

k e−α|x |2 dx

= 1

2α
. (5.1)

By direct calculation, we have∫
Rm

ξ2
1 |F{ f }(ξ)|2dξ =

∫
Rm

(
∂

∂x1
ρ

)2

dx +
∫

Rm
ρ2
∣∣∣∣
(

∂

∂x1
euθ

)
e−uθ

∣∣∣∣
2

dx

=
(α

π

)m
2

α2
∫

Rm
x2

1 e−α|x |2 dx +
(α

π

)m
2

β2
1

∫
Rm

e−α|x |2 dx

= α

2
+ β2

1 (5.2)

and for k = 2, . . . , m, we have
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Complex Variables and Elliptic Equations 1709

∫
Rm

ξ2
k |F{ f }(ξ)|2dξ =

∫
Rm

(
∂

∂xk
ρ

)2

dx +
∫

Rm
ρ2
∣∣∣∣
(

∂

∂xk
euθ

)
e−uθ

∣∣∣∣
2

dx

=
(α

π

)m
2

α2
∫

Rm
x2

k e−α|x |2 dx

= α

2
. (5.3)

Clearly, we have Covxkξk = 0, for k = 1, 2, . . . , m, and COVx1ξ1 = |β1|√
πα

, COVxkξk = 0
for k = 2, . . . , m.

Therefore, we have(∫
Rm

x2
1 | f (x)|2dx

)(∫
Rm

ξ2
1 |F{ f }(ξ)|2dξ

)

= 1

4
+ β2

1

2α

>
1

4
+ β2

1

πα
= 1

4
+ COV2

x1ξ1

>
1

4
= 1

4
+ |Covx1ξ1 |2 (5.4)

and for k = 2, . . . , m (∫
Rm

x2
k | f (x)|2dx

)(∫
Rm

ξ2
k |F{ f }(ξ)|2dξ

)

= 1

4

= 1

4
+ COV2

xkξk

= 1

4
+ |Covxkξk |2. (5.5)

Expressions (5.4) and (5.5) verify Theorem 4.2.
Applying (5.1)–(5.3), we have∫

Rm
|x |2| f (x)|2dx = m

2α
,

∫
Rm

|ξ |2|F{ f }(ξ)|2dξ = mα

2
+ β2

1 .

Then (∫
Rm

|x |2| f (x)|2dx

)(∫
Rm

|ξ |2|F{ f }(ξ)|2dξ

)

= m2

4
+ m

2α
β2

1

>
m2

4
+ β2

1

πα
= m2

4
+ COV2

xξ

>
m2

4
= m2

4
+
∣∣∣Covxξ

∣∣∣2 . (5.6)
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1710 Y. Yang et al.

Here Covxξ = 0 and COVxξ = |β1|√
πα

. (5.6) verifies Theorem 4.3.
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