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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES

ALAN McINTOSH AND TAO QIAN

Abstract. We develop the theory of Fourier multipliers acting on Lp(y) where

7 is a Lipschitz curve of the form y = {x + ig(x)} with ||g||oo < oo and

\\g'\\oo < oo . The aim is to better understand convolution singular integrals B

defined naturally on such curves by

Bu(z) = p.v. ¡9(z-r)u(r)dr
Jy

for almost all z € y .

1. Introduction

Let y be a Lipschitz curve in the complex plane which has the form y =

{x + ig(x)} for some function g with Lipschitz constant N. Our interest is

in the Lp-boundedness of convolution singular integral operators B defined on

LP(y) by

Ä«(z) = p.v. [<p(z-Ou{QdC
Jy

for a suitable function <p on T — y - y, and in similar kinds of operators.

Such operators can sometimes be expressed as B = b(Dy) where Dy =

d/dz\y and b is the Fourier transform of tp . In particular it is known that B

is a bounded operator on Lp(y) for 1 < p < oo if o is a bounded holomorphic

function on a double sector S® = {z £ C| |arg(z)| < p or |arg(-z)| < p} with

tan p > N.
When the curve y is contained in a strip {z\\Jrm-z\ < M} then we can

sometimes write (Bu)~ = bit where

«(£) = / e~iziu(z) dz,        -oo < t\ < oo.
Jy

We then call b an Lp(y)-Fourier multiplier whenever B is a bounded operator

on Lp(y).
In this paper we shall describe and discuss the spaces Mp(y) of Lp(y)-Fourier

multipliers, and give various conditions on b which imply that b £ Mp(y). We
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158 ALAN McINTOSH AND TAO QIAN

shall discuss the connection between these functions b, the operators b(Dy),

and convolution operators on y .

We have already noted that whenever b extends to a bounded holomorphic

function on a double sector S® with tanp > N, then b £ Mp(y) for 1 < p <

oo. Aside from this, the most interesting condition we give is that whenever

b(C)exp(2ß\C\) £ MP(R) for some ß > M, then b £ Mp(y). In particular
every bounded measurable function with compact support is an L2(y)-Fourier

multiplier.
These results have already been announced in [5]. The classical case when

y = R has been treated in a number of places, (e.g., [7]), so we shall not give

individual references to the results which we are generalizing.

We would like to thank the many people with whom we have discussed this

material, in particular Werner Ricker. This research has been conducted at

Macquarie University in Sydney and at the Centre for Mathematical Analysis

in Canberra, to both of whom we express our appreciation.

2. Convolutions and differentiation on Lipschitz curves

Throughout this paper y denotes the Lipschitz curve consisting of points

x + ig(x) £ C, where x £ R and g is a Lipschitz function which satisfies

Hg'lloo < tY < oo . Here C denotes the complex numbers and E the reals. We

shall use the following spaces of complex valued functions.

If 1 < P < °o, Lp(y) is the space of equivalence classes of functions u: y —>

C which are measurable with respect to \dz\ and for which

IMIp = w lu(z)H^zl \    <o°,      i<p<oo,

or

||m||oo = esssup|«(z)| < oo.

The space Cn(y) is the space of continuous functions u on y which converge

to 0 at oo , together with the norm ||m||oo = sup|n(z)|.

For 1 < p < oo, (Lp(y), Lp>(y)) is a dual pair of Banach spaces under

(u, v) = Ju(z)v(z)dz, as is (Lx(y), C0(y)), where p' - (1 - p~x)~x . To be

specific, for 1 < p < oo ,

||w||p = sup{|(M, v)\ | v £Lp,(y), \\v\\pl = 1},

and

||u||i =sup{|(a, v)\ \v eC0(y), Hull«, = 1}.

Suppose that <p is a function defined on a subset of C which contains T —

{z - C|z e y, C e y} , and that « is a measurable function on y . Then (p * u is

defined by (tp*u)(z) = / <p(z -Ç)u(Ç)d( forthose z for which <p(z -•)"(•) e

Lx(y).

Theorem 2.1. Let 1 < p < oo. Suppose that u £ Lp(y) and that for almost all

z £ y, <p(z - •) £ Lx(y) and <p(- - z) £ Lx(y). Then

||ç»*«||p<sup{/|ç»(z-C)||rfC|}   * sup{ [\<p(z-0\\dz\)  P\\u\\p
Z6}*   Uy J iey   Uy )

where p' = (1 - »_1)_1.
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Proof. First note that <p(z - -)u(-) is measurable for almost all z £ y . Then,

if 1 < p < oo,

\\<P * «II, < {/ {/\9(z - CMQWdClJ \dz\} '

= [J (/\<p(z - 0\1/p'\<p(z - Ol^MQWdClJ \dz\}

\<p(z - C)\\dC\y (J \<p(z - OlMOPVil) \dz\\

<sup([\<p(z-0\\dÇ\)  ? \¡ ¡\(p(z-Q\\dz\\u(Q\P\dQ\  '
zey   \Jy J yjy Jy )

< sup ( [ \<p(z - OHrfCl)   " sup ( f \<p(z - Q\\dz\] \\u\\p .
zey \Jy ) rey \Jy J

The cases p = 1 and p = oo have similar proofs.   D

This theorem will now be used to obtain bounds on the operators Rx defined

by
RxU = tpx*u

where, when Jfm. X > 0,

f ieaz, ¿fez>0,

^(Z)_\0, ¿fez<0,

and, when J7m X < 0,

0, &z>0,

-ieiXz, &z<0.

Let œ = tan-1 tV , and Sw = {z £ C | |argz| < to or |arg(-z)| < oj) U {0} .

Theorem 2.2. (i) //A ^ 5c, ¿Ae« Rx is a bounded operator on Lp(y), \<p<

oo, and on C0(y), and \\Rx\\ < {dist(A, Sw)}~l\/l + tV2 in each case.

(ii) //" ||g||ex, < M < oo and ^fmX ^ 0, £/ze« Rx is a bounded operator on

Lp(y), 1 <p <oo, andon C0(y), and \\RX\\ < \J^X\~xexp(2M\^X\Wl + N2
in each case.

(iii) Under the assumptions of either (i) or (ii) above, (RxU, v) - (u, -R-xv)

for u £ Lp(y), v £ Lp>(y), 1 <p < oo (and hence for u £ Lx(y), v £ Co(y)) ■

Proof. The proof is a direct application of Theorem 2.1.   For example, if

J^ X > N\MeX\ and z £y, then

<pá?) = !

/W-OII¿íl= / k*
Jy Jyz

U(z-f) PCI

<{dist(A,5tu)}-Vl+7Y2.   D

By yj and y+ we denote the curves

y~ = {C£y\^Ç<^z}   and   y+ = {C e y^C > ¿&z} •

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



160 ALAN McINTOSH AND TAO QIAN

Let us write down explicitly the definition of RxU, valid for u £ Lp(y) under

condition (i) or (ii) above.

{ i J-eW'-QuiQdÇ,     JW>0,
Rxu(z) = I      \     .„    n

\-iJne'^-^u(C)dC,   J>kX<0.

Define the derivative of a Lipschitz function m on y by

u(z + h) - u(z)
u{z)=Tz u(z) =   lim   <

A-o   t
a.e.

z+hey

and note that

d_
dz

u(x + ig(x)) = ( 1 + ig'(x)) lj^u(x + ig(x)) ■

Next use duality to define A,p t0 be the closed linear operator with largest

domain 9t(DyiP) in Lp(y), 1 < p < oo, or 3¡(Dy^) in C0(y), which satisfies

(Dy>pu,v) = (u, iv')

for all Lipschitz functions v on y with compact support.
The following properties of Dyp can be verified either directly on y, or

by reduction to the properties of the corresponding operator Dp in LP(R) or

Co(R).

Theorem 2.3. (i) Dy¡pu(x + ig(x)) = (1 + ig'(x))~xDpu(x + ig(x)) and

3r(Dy>p) = {u\u(' + ig(.)))£®(Dp)}
[yVx(y),        l<p<oo,

"lAo(y) = {u€Co(y)|M'GC0(y)},        p = 0,

which is dense in Lp(y) (or Co(y)) except when p = oo. Moreover, for all p,

the space of Lipschitz functions on y with compact support is dense in 3¡(D7tP)

under the norm ||m||p + ||A,pmIIp (or IMU + HA,oMlloo) •
(ii) // 1 < p < oo,  1 < p' < oo,  l/p + I/»' = 1, then

(Dy,pU,v) = -(u,Dy,p,v),        u£\Vx(y), v£Wx(y),

and

(DyAu,v) = -(u,Dy,0v),        u£Wxx(y), v £ A0(y).

Each operator has the largest domain under which the equality holds.

(iii) Suppose J7mX t¿ 0. If either X £ Sw or ||g||oo < M, then

(-(Dy<p + XI)u, Ryv) = (u,v)

for all u £ 3S(Dy,p) and v in the appropriate dual space.  Consequently X is

not in the spectrum of Dy p , (A-,p _ XI)~X — Rx and so

\\(Dy,p-XI)-X\\<
, {dist(X, s^-'VY+Ñ2 ifXfSw,

\J^X\-xexp(2M\^X\)vT+N2   if\\g\\oo < M,

in Lp(y),  1 < p < oo, or in C0(y).
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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES 161

We shall write Dy in place of Dyp when the space in which it is acting is
understood.

3. Functions of Dy

There are numerous ways of defining a functional calculus of an operator.

For Dy, it is easy to define b(Dy) when b £ 4/(5°), where p > co - tan-1 tV ,

and

¥(S°) = {b£ H^S*) | \b(C)\ < c\C\s(\ + |C|2T' for some c, s > 0}.

Here 5° denotes the open set 5° = {£ G C | |argC| < p or |arg(-£)| < p] and

Hoo(S^) denotes the space of bounded holomorphic functions defined on 5° .

(See Figure 1.)

For b £ 4*(5°), the operator b(Dy) can be defined as an operator on Lp(y),

1 < p < oo, or on Co(y), by

b(Dy)=±ï^b(0(Dy-Ç.I)-Xdt;

where ô is a path consisting of four rays as indicated. The integral converges
absolutely in the operator norm topology and

iwa)ii < c / icm + ici2VKr Vci < oo.
Js

It is straightforward to show that the definition of b(Dy) is independent of

the precise rays used, that (bxb)(Dy) = bx(Dy)b(Dy) when bx is also in T(5°),

and that (b(Dy)u, v) = (u, b(-Dy)v) for each of the dualities introduced pre-
viously; cf. [3, 4].

The operator b(Dy) can also be expressed as convolution with a suitable
function <p defined as follows.

Let pe denote the ray {sexp(/0)|O < s < oo}. For b g //oo(5°) and z g 5£,

define the holomorphic function q> on 5£ by

(*) <p(z) = i- / e^b(Q dC - ¿ /     e'^b(C) dÇ

Figure 1

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



162 ALAN McINTOSH AND TAO QIAN

where -p < -6 < arg z <n - 6 < n + p and -p < -a < n + arg z < n - a <

n + p. The definition is independent of the precise choice of 6 and a. It is

not difficult to verify that

Mz)|<{7rdist(z,C~50)}-1||6||oo.

Under the assumption that b £ ¥(5°), that is, \b(Q\ < c\Ç\s(l + Id2*)"1
where we shall take 0 < 5 < 1, then tp satisfies a stronger estimate, and we

find that
-i+i

(l + |z 2s\-l
z G Sw ~ {0},|p(z)|<c|z|

for a different constant c. In this case the restriction of tp to E belongs to
LX(R), and b is precisely the classical Fourier transform of tp . That is,

HO = I
Js.

e iix<p(x)dx,       i £

We leave the verification of this to the reader. A discussion of the more general

situation when b £ //oo(5°) will be presented in [6].

It is a consequence of the estimate given above for <p and of Theorem 2.1 that

(p*u£ Lp(y) whenever u £ Lp(y) and that <p*u £ Co(y) whenever u £ Co(y).

We shall now show that, for u in each of these spaces, b(Dy)u = <p*u. Indeed,

for u £ Lp(y) or Co(y), z G y and co< 6 < p,

(<p*u)(z) tp(z
Jy

w)u(w)dw

1

2ñ
'PiK-e)Í-I-S-ÍJyz   Jpe       Jyz   Jp,

+ l I   -I IJyt Jp-e      Jyt J/>(*+»)

, [b(0(Dy-ÇI)-xu(Ç)dÇ
1 Js

,;i(z-tt)) b(Ç)u(w)dÇdw
i y; J p-e     Jyj

J_
~ 2th js

= b(Dy)u(z).

Here ô is the path made up of the rays -p-e, Pe , -P(n-d) and -p^n+g-¡. The

estimate proved in Theorem 2.1 has been used to change the order of integration,

and then the convolution formula for (Dy -ÇI)~X given in §2 has been applied.

4. The //oo-functional calculus of Dy

This section is a summary of results initially developed in [2] and in [4]. A

full treatment will appear in [6]. Also see [3].

The functional calculus for Dy described in the previous section can be

extended to all of //00(5'2) provided 1 < p < oo. This means that whenever

b G //oo(5^) for some p > co, an operator b(Dy) acting on Lp(y) can be

defined in a natural way. The following properties hold:

||Ô(A)||   <   C„||Ô||00  , (bXb)(Dy)   =   bX(Dy)b(Dy) ,

(axbx + ab)(Dy) = axbx (Dy) + ab(Dy)

whenever b, bx £ H^S®) and a, ax G C .
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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES 163

The operator b(Dy) is uniquely determined by the following convergence

result. Suppose (b„) is a sequence of functions in *F(5^) such that

(i)   HMoo < const, «=1,2,3,...;
(ii) for all 0 < Ô < A < oo , b„ -* b uniformly on {Ç g S°ß\o < |Ç| < A}.

Then bn(D7)u -> b(Dy)u for all u £ Lp(y).
As well as the function <p defined in equation (*) of §3, a second holomor-

phic function <px can be defined on 5j]+ = {z £ S®\ ¿%e z > 0} so that tp and

<px have the following properties.

(a) tp'x(z) = tp(z) + tp(-z), z£S°ß+;

(b) <px £ //oo(5°+) whenever to < v < p ;

(c) if « G Lp(y), then

¡ub(Dy)u(z) = lim { j     tp(z - CMC) dC + <Pi (et(z))K(z)

for almost all z £ y, where yZi£ = {Ç G y | |z - Ç| > e} and t(z) is the unit

tangent vector to y at z .

This result has a kind of converse which we now state.

Theorem 4.1. Let tp and tpx be holomorphic functions on 5° and S®+ respec-

tively, where p> to, and suppose that

(i) <p[(z) = <p(z) + <p(-z),  zg5°+,

(ii) tpx £ floo(5°+) and ztp(z) g H^S»).

Let 1 < p < oo. For u £ Lp(y), let

(Bu)(z) = \im\ j    <p(z - Qu(QdC + tpx(et(z))u(z)\

where t(z) and yz>£ are specified above. Then (Bu)(z) is defined for almost all

z £ y, and B is a bounded linear operator on Lp(y). Moreover B = b(Dy) for

some b £ H^S®) and some v > to.

In particular, if tp is odd and tpx = 0, then (Bu)(z) = p.v. / tp(z-Ç)u(Ç) dt,.

The best known special case of these results occurs when b(Q — sgn(C),

where sgn(£) is defined on 5° by

fl,      ^C>0,
Sgn(C) = \-l,    ^C<0.

In this case <p(z) = i(nz)~[ , <px(z) = 0, and B is the principal-value Cauchy

integral Cy defined by

CyU(z) = v.v.l- / -zu(Ç)dÇ.
n Jy z - C

The boundedness of Cy on Lp(y) was first proved in [1].

5. Fourier transforms on curves in a strip

We turn now to a more detailed study of the case when the function g

defining y satisfies ||,£f||oo < M < oo as well as ||g'||oo < N < oo. To do this

we introduce the following Banach spaces for -co < ß < oo :

8?ß — {w : (-oo, oo) —> C | w is Lebesgue measurable and ||u>||g^ < oo},
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164 ALAN MclNTOSH AND TAO QIAN

and

where
UOO •> 1/2

Jw(0\2cxp(2ß\c;\)d^

and

\\whr{\\w\\iß + \\w%ß + \\w%ß}y2.

We regard g?I as a test space with dual (%j)' and embed IL^ in (Wl)' using

(w ,v) — /^ io(^)t;(0 í/¿ when w £ &Lß and v £ Wj , noting that \(w , v)\ <

IMI«'_JMIg'2 » anc*tnat (w,v) =0 for all v £ <£} if and only if w = 0. We
P ß P

remark that if a < ß then %ß c %a and I^2 c i^2 where the embeddings are

continuous and dense, so (%2)' c (£^2)'.

The following definitions of Fourier transform and inverse Fourier transform

will be used throughout the paper.

If w G Li(y) define

û(Q= íelzíu(z)dz.
Jy

Then u is a continuous function satisfying

|ô(i)|<eK|Af||«||i,

so û G £., for all ß > M, and ||û||r_, < (ß - M)-Xl2\\u\\x .

For ß > M and w/€^, í/e/z«e the holomorphic function w on the strip

Xß = {C€C\\J^C\<ß}

by

tó(o=2^y e/Kui(í)</i,

and note (by considering real Q that if w = 0 then w; = 0. Let

(g»v(y) = {t&]7 | w £ gß)   and   (g>2)v(y) = {w\y \ w £ %j)

and equip these spaces with the norms ||tí'||(rí)v()') = IM|g¡, and IMI^jv^) =

IMIa? •
P

Theorem 5.1. (i) A holomorphic function f on Xß belongs to (£^)v if and only

if
sup / |/(x + z»|2 dx < oo.
|y|<

Moreover

^\\w\\gf < V2«sup jy* |tí;(x + /y)|2í/xj     < \\w\\gß

(ii) If w £%ß and \Jm z\ < M, then

\w(z)\<^(ß-M)-x\\wUß
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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES 165

and

sup \w(x + iy)\ -> 0   as \x\ -> oo,
\y\<M

so i&|y€Co(y). Hence (f^)v(y) is continuously embedded in Co(y).

(iii) If w , v £ e'ß, then

j w(z)v(z)dz = ± f° w(Ç)v(-t)dÇ.

(iv) A holomorphic function f on Xß belongs to (f^2)v if and only if

sup / 1(1 +x2)/(x + iy)\2dx < oo.
\y\<ßJ

Moreover, there exists Cß > 0 such that

— IMI« <  sup \ / |(l+X2)tí)(x + í»|2í/xi       <Cß\\w\\f2.
Cß ? \y\<f¡   U J '

(v) (%}y(y) is continuously embedded in Lp(y) for all p suchthat \<p<

00.

Proof. The various estimates for w are straightforward, the second part of (ii)

being deduced from Cauchy's formula on rectangles with vertices ( 1 ± \)¿%e z±

\i(M + ß). Because of part (ii), the Cauchy theorem can be used to show

that J w(z)i)(z) dz = JR ii(x)v(x) dx so (iii) follows from the usual Parseval's

equation. It is also not difficult to see that functions / with the stated properties

are of the form f = w for w e ^ or ^ . To prove part (v), first show that if

w £ %}, and \y\ < M, then (1 + x2)|tí;(x + iy)\ < c\\w\\g-2 for some constant

c.   □

We remark that U«>a/(^)v(/') *s me space sé(y) used by Coifman and

Meyer [2].
In the next theorem we state some density, results and another version of

Parseval's formula.

Theorem 5.2. Let ß > a> M, and 1 < p < oo.
(i) The following inclusions are all dense:

(%2y(y)   c   LxnLpn(^r(y)   c   L,n(^)v(y)   c   (g»v(y)
n n n n

(fQ2)v(y) Lx n Lp(y) Lp n (^Q)v(y) (%aY(y)

n n
LP(y) Lp(y)

(ii) In the above, Lp(y) can be replaced by C0(y).

(iii)

J u(z)w(z) dz = ̂ J°° w(£)M-0 di

for all u £ Lx(y) and w £%ß.
(iv) If ue Li(y) and U = 0, then u = 0.

The horizontal inclusions are dense for the following reason.    Let  u £
(g»v(y).   For each e > 0, define uc(z) = (1 + e2z2)~xu(z).   By parts (i)
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and (iv) of the proposition above, us g (%ß2Y(y). Also uE -> u in Lp(y) and

in Co(y). So these inclusions are dense. We have already noted that (8^2)v(y)

is dense in (g*a2)v(y), and (8»v(y) is dense in (â*a)v(y).

The remainder of the proof will be deferred until after we have introduced

some approximation techniques.

We see immediately from Theorem 5.1 that the following definition of Fourier

transform is consistent with the preceding one for functions u £ Lx(y).

If « G Lp(y) for some p such that 1 < p < oo, define û G (féj)' by

(û,W-) = Ju(z)w(z)dz for all w g Wj , where w-(£) = w(-Ç).

Note that this definition is independent of ß > M, and that the mapping

7?": Lp(y) —> (&})' defined by ¡F(u) = û is continuous and one-one. (We are

using the fact that (&ß2)y(y) is densely and continuously embedded in Lp(y)

when 1 < p < oo and in C0(y), and that (Lp(y), Lpl(y)) and (Li(y), Co(y))

are dual pairs of Banach spaces.)

Whenever it makes sense, the Fourier transform and the inverse Fourier trans-

form defined above are inverse operations:

Theorem 5.3. Let u £ Lp(y) for some p such that 1 < p < oo. Let w £ *eß for

some ß > M. Then u = w if and only if w = û.

The proof of this theorem is also deferred till later in this section.

In the approximation arguments we shall use the maximal function Myu

defined for locally integrable functions u on y by

Myu(z) = supp~x [        \u(0\\dC\
p>0 JB(z,p)

where z G y and B(z, p) = {Ç G y||( - z\ < p}. The following propositions

can be proved by the usual methods. Recall that N > ||g'||oo •

Proposition. There exist constants cPyx for 1 < p < oo and Cn such that

\\Myu\\p<cPiN\\u\\p,        u£Lp(y),

and

Xl{z £ y\MyU(z) > X} < cN\\u\\x,        u £ Lx(y), X>0.

Here / denotes the measure introduced by arc-length.

Proposition. Suppose that u is a locally integrable function on y and that tp*u

and y/*u are well defined, where y/ is a decreasing function in Lx(0, oo) such

that

\<p(z)\ < V(\x\),        z = x + iy£T,

where T = {z - Qz, Ç G y}. Then, for all z £ y,

\tp*u(z)\ <cN\\y/\\xMyu(z).

The latter result has a straightforward proof for functions y/ of the form

y/(Ç) = J2kakXk(C), where Xk is the characteristic function of a ball with

centre 0. For general ip , use a sequence of such functions to approach ip from

below.
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The approximation arguments also involve showing that a function u is the

limit of a sequence tp„ * u in an appropriate sense, where tpn(z) = ntp(nz) and

tp is a holomorphic function defined on all of C which satisfies

/oo tp(x)dx= 1
-oo

and

(2) |ç>(z)|<T^I,       z = x + iyeS°,

for some constant c, where tanp > N.

When TV < n/4 we can take f(z) = exp(-z2). For n/4 < N < n/2, there

do exist such functions tp, as will be shown in the appendix. We shall call a

sequence (tp„) constructed as above an identity sequence.

Note the following properties. Let y/n(s) = «(1 + n2s2)~x, s > 0. Then

(3) For each n , \tpn(z)\ < cy/„(|x|), z = x + iy £ 5° .

(4) For each n , /0°° \p„(s) ds = \n.

(5) For all ô > 0, J™ ipn(s) ds -* 0 as n -> oo.

(6) For each n and each C G y, f <p„(z -Qdz = \.

The following two theorems specify ways in which tpn * u converges to u.

Theorem 5.4. Let (<p„) be an identity sequence. Then

(i) there exist constants cp^ for 1 < p < oo such that

SUp|ç?„ * W| <CptN\\u\\p,        u£Lp(y),
p

(ii) if u £ Lp(y), 1 < p < oo, then, for almost all z £y,

lim (tpn * u)(z) = u(z),
n—>oc

(iii) if u £ Lp(y),  1 < p < oo, then

lim \\(tp„ *u)- u\\p = 0,
7Ï—»OO

(iv) if u £ C0(y), then

lim ||(ç>„ *u) - «Hex, = 0.
n—»oo

Proof. Part (i) is a consequence of the previous two propositions. Next suppose
that u £ C0(y). By property (6),

(tpn*u)(z)-u(z)= / tpn(z-C)(u(Q-u(z))dC
J\r-z\<6

+ / tpn(z-Q(u(Ç)-u(z))dÇ
J\r-z\>ö

= Il+I2.

Let e > 0. Choose ô small enough that \u(Q - u(z)\ < e for all Ç G y with

|C - z| < Ô . Therefore, by properties (3) and (4),

Ii <e [\tpn(z-C)\\dC\<CE7iV\+N2.
Jy
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An application of property (5) now shows that I2 < e for all sufficiently large

n. Hence

\tp„ * u(z) - u(z)\ < e(l + cnVTTÑ2).

Part (iv) now follows, as does part (ii) in the case when u £ Q(y).

For u G Lp(y), 1 < p < oo, and any ô > 0, there is a decomposition

u — v + w where v £ Co(y) and \\w\\p < ô. Therefore, by the preceding

propositions,

/1z £ y | lim \tpn * u(z) - u(z)\ > k\
L H—»oo J

= / \z £ y I lim \tpn *w(z) -u>(z)| > k\
L n—»oo J

< / \z £ y I lim \tpn *w(z)\ > \k\ + /{z g y | |iu(z)| > \k)
L n—»oo ¿    J ¿

< l{z £ y | MyW(z) > jk} + l{z £ y \ \w(z)\ > ±/c}

< CK~P \\W \\pp <CK-pÔ".

Let ô -» 0 first and then let k -+ 0. We conclude that

/(z G y | lim |ç>„ *m(z) - m(z)| > o} =0.
t /I—»oo J

This identity gives (ii) when 1 < p < oo. The case p = oo can be reduced to

the case p — 1 by a localization argument.
(iii) For w g Lp(y), define £/ G LP(R) by £/(x) = m(x + ig(x)) • Then

\\(q>n * u) - u\\p = II / <pn(-- 0(u(0 -"(•)) ¿C

<c|/^(|x-y|)|i/(x)-C/(y)|Jy

= c|/V(M) C/(x)-i/(x-i)
IMr v       "'

<c f ¥(\s\)\\u(x)-u(x-^-)
Jr " \       n/

= cJyf(\s\)A(u,ji)ds

L„(dx)

L„(dx)

Lp(dx)

ds

where

a(u, -) = ||í7(x)-í7fx--S)|
\      ni v      n>\ Lp(dx)

Note that A(U,s/n) -> 0 as n -* oo  and A(U,s/n) < 2\\U\\P.   By the
Lebesgue dominated convergence theorem, the last integral tends to zero as

«->oo.    D

For the identity sequence (tpn) given by tp„(z) - ntp(nz) where tp satisfies

(1) and (2), let 0„ = tpn and <P = </> (the classical Fourier transforms). Then

<[>„(£) = <p(n~xZ) where O is a continuous function which satisfies 0(0) = 1.

For each X > 0 there exists Cx such that

MZ)\<cxe-W, -oo < Ç < oo.
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To see this for £ > 0 note that

/oo I   /»oo

e~iixtp(x) dx\ = \       e-*(x-a)tp(x - iX) dx
-oo \J—oo

/oo
\ç(x - iX)\ dx = cxe-W.

-oo

To see it when ¿; < 0, replace X by -X in the above estimate.
So <ï>n G e?ß for all n and all ß > 0. Clearly <P„ —> 1 uniformly on compact

subsets of (-oo, oo).

Theorem 5.5. Let (tpn) be an identity sequence, let 0„ = tp„, and suppose ß >

a> M.

(i) If w £ ^a, then tp„ * w = (<Pnw)v G (%ßY(y), and <Pnw -> u; in %a.

(ii) If u£ Lx(y), then tpn*u = (<P„«)V g (%ßY(y) and <i>nû ->■ û in ^ß.

Proof. Part (i) is a consequence of the preceding comments, as are the facts

that, when u £ Lx(y), <P„w G <§^ and <P„« —» û in W-ß . Moreover

<pn*u(z)=     <pn(z-Ç)u(Ç)dÇ
Jy

= I ¿ l°° ®„(0ei({z-Q dÇu(Q dÇ

= ¿/°° Je-^QdÇe^^n^dZ
1 /-OO

= 2W   fi(í)*»(í)^r^

= (<M)v(z).    D

We are finally in a position to prove Theorems 5.2 and 5.3.

Proof of Theorem 5.2. (i) Let u £ Lxn Lp(y). Then tpn * u £ (£^)v(y) as well

as in Lx(y) and Lp(y), and tpn * u —► w in Li(y) and Lp(y). We conclude

that Li nLp n (^ßY(y) is dense in Lx r\Lp(y), and therefore in Lp(y). So the

larger space Lp n (ê^)v(y) is dense in Lp(y). The density of Lp n (8/?)v(y) in

Lp n (^,)v(y) is also a consequence of the above theorems. The fact that the

remaining embeddings are dense was shown previously.

(ii) Reason as above with Lp(y) replaced by Cn(y).

(iii) Let u £ Lx(y) and w £ &ß. Then <p„ * u = (<P„w)v G (£^)v(y), and

therefore, by Theorem 5.1 (iii),

¡(tpn * u)(z)w(z) dz = ^Ja° («MXfM-fl ¿Í ■

Now tpn*u^> u in Li(y) and <P„w —> û in <§Ljj. The result follows.

(iv) This is a consequence of (iii) and the fact that (^Y(y) is dense in

U(y).   D

Proof of Theorem 5.3. Let m G Lp(y), 1 < p < oo, and toe^. By Theorem

5.1 (iii),
/" 1    Z"00 1
/ w(z)v(z) dz = ^        w(t)v(-i) d£ = 2¿(w , v.)

for all v £%2.
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Suppose that w = u G Lp(y). Then

/ w(z)v(z)dz = / u(z)v(z)dz = — («, v-)

for all v £ ê'n (by the definition of it). So û = w . Suppose on the other hand

that u = w£^. Then

w(z)v(z)dz = —(w ,v_) =     u(z)v(z)dz

for all v g %} . In particular,

tpn(Ç- z)w(z)dz=     <pn(C- z)u(z)dz
Jy J y

for an identity sequence tpn ■ Taking limits for almost all Ç £ y, we conclude

that w = u.   D

We conclude this section by comparing the norms in Lp(y) and LP(R) of
functions whose Fourier transforms have compact support.

Theorem 5.6. Let w £ L2(-oo, oo), and suppose the support of w is contained

in the interval [-5, 5] for some 5 < oo. Let e > 0. Then there exists cE > 0

such that, for all p £ [1, oo],

Plli»W < ctM~x exp((l + e)SM)\\w\\Lp{M)

and
IMIl^r) < cEM~x exp((l + c)SAf)||t&||L((W .

Proof. Let 6 denote a C2 function on (-oo, oo) with support in [-1-e, 1+e]

which equals 1 on a neighbourhood of [-1, 1], and 6S(Ç) = 9(£/S) for 5 > 1.
Then 6S is an entire function which satisfies

(i + \Q2)\es(o\ < ce|j5*cr vi+4)5Mr"cl -1}

for some c£. So \6S(Ç)\ < fs(\Q) for all C such that \J^Q<M, where fs
is an Lx function with \\fs\\\ < ceM~x exp((l + e)SM).

By adapting the arguments used previously, we find that

w(z) = (9swY(z) = [ ds(z - Qw(C)dÇ
Jr

and
PIIl„(7) < ccM~x exp((l + e)5M)||i&||i,(H).

The proofs of the identity and the estimate are similar to those in §2. A corre-

sponding estimate holds if the roles of y and E are reversed.   D

Note that the method of proof gives the estimates

ll(Ö^)V||MK) < Cp,s\m\Lp(y) ,      H(0s1i>)V||z,(,.) < C,,s||l&||MR)

for every function w £ e'ß .

6. Fourier multipliers on curves in a strip

We continue to assume that the curve y is defined by a function g which

satisfies ||g||oo < M and ||g'||oo < N ■
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We are now in a position to define Fourier multipliers. Let 1 < p < oo , and

choose ß < M.

For b £ Loo(-00, oo), define

\\b\\Mp(y) = sup{||(èâ)v||Mr) I u £ Lp(y) n (£»v(y), \\u\\p = 1}

and let Mp(y) be the space of L^o-functions b for which H^Ha^m < °o. Func-

tions b £ Mp(y) are called Lp(y)-Fourier multipliers.

When 1 < p < oo and b £ Mp(y), there is a unique bounded linear operator

B on Lp(y) defined on the dense subspace Lp(y) n (e'ßY(y) by Bu = (buy ■
When p = oo and b £ M^y), there is a unique bounded linear operator B on

Co(y) defined similarly. If bx and ¿>2 are Lp(y)-Fourier multipliers with corre-

sponding operators Bx and ß2 then bxbi is an Lp(y)-Fourier multiplier with

corresponding operator BXB2. The function 1 is in Mp(y) with corresponding

operator /.

The reason for using the space ^ in the definition of Fourier multipliers is

that if w £ Wß and b £ L^-oo, oo), then bw is defined and belongs to #^ .

It is a consequence of Theorem 5.2(i) that the definition is independent of the

choice of ß as long as ß > M. A related result is the following.

Proposition. Let b £ L00(-oo, oo). Then

\\b\\Mp(y) = SUVUKbwYW^y) \W£%¡,   \\w\\L?(y) = 1}-

In particular, b is an Lp(y)-Fourier multiplier if the right-hand side is finite.

Proof. Suppose that the right-hand side is finite. Let u £ Lp(y) n (^Y(y). By

Theorem 5.2(i) there is a sequence w„ £ <£} such that wn —> u in Lp(y) n

(%ßY(y) ■ The sequence wn is Cauchy in Lp(y), so by the hypothesis, (bw„)y

is Cauchy in Lp(y), which implies that there exists v g Lp(y) such that

(bwn)v -•« in Lp(y). Therefore bw„ -> v in (g^2)'. Also wn -* it in

Wß, so bwn —► bû in f^ and hence in (^2)'. We thus see that v = bit and

hence that (bw„Y -* (buy in Lp(y). The result now follows.   D

Proposition. //" 1 < p < oo a«ú? p' - (1 -p-1)-1, then b £ Mp(y) if and only

if b- £ Mpl(y), where b-(Ç) = b(-Ç), and \\b\\M¡,{y) = HMIj^oo . The corre-
sponding operators B and B- are dual in the sense that (Bu, v) = (u, B-v)

for all u and v  in the appropriate spaces, and so they have the same spectra:

o(B) = a(B.).

Proof. Apply twice the Parseval's formula in Theorem 5.2(iii).   D

We also need the following lemma, in which Lloc(-oo, oo) denotes the

Fréchet space of locally integrable functions on (-00, 00).

Lemma. Suppose 1 <p<2.
(i) If u £ Lp(y), then u £ LXoc(-oo, 00) and the mapping u —► « is continu-

ous from Lp(y) to LXoc(-oo, 00).

(ii) If u£ Lp(y), then (Buy = bit.

Proof. Let 6$ be the cut-off" function used in Theorem 5.6. By the estimate

following that theorem, and by the theorem of Titchmarsh, it follows that

\\&sw\\P' < cp\\(eswY\\Lpm < Cp,S\\w\\Lp{y)
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for all w G Wß . The density of Lpf)(^Y(y) in Lp(y) can now be used to show

that, for every function u £ Lp(y), the Fourier transform û can be identified
with a locally integrable function. Part (ii) then follows.   D

It is well known that if b is a Lebesgue measurable function on (-00, 00)

which satisfies bu = (Buy for some bounded operator B on LP(R) and all

m G Lx n LP(R), then b £ L^—oo, 00) and ||ô||oo < \\B\\ ■ We are now in a

position to prove a related result for Lp(y)-Fourier multipliers.

Theorem 6.1. Suppose 1 < p < 00, and let b g Mp(y).

(i) The spectrum o(B) of the operator B corresponding to b satisfies

o(B) z> ess-range(fb).

(Ü)     ||0||=c<||¿lk(rt.
(iii)   Mp(y) is complete, and hence is a Banach algebra.

Proof, (i) 1 < p < 2._
Let ¿%(X, p) and 38 (X, p) denote the open and closed balls with centre X

and radius p.
Suppose X ^ a(B). Then there exists k and p > 0 such that (B - pi) is

invertible and satisfies \\(B - pl)~x\\ < k for all p £ 3§(X, p). We shall use

this inequality in a moment to prove that

(*) \\Qs/(b-p)\U<cSK

where 8s is the cut-off* function used in Theorem 5.6 (with e < 1) and cs
is a constant which depends on 5 (and M and p) but not on p. Thus

{b(Ç)\ -S < Ç < 5} n¿8(p, (csk)~x) has measure zero, uncovering 33(X,p)

with finitely many balls of the form 3§(p(csK)~x), we see that {b(Ç)\ - S <

£ < 5} V\3ê(X, p) has measure zero. On considering a sequence of numbers 5

which tends to infinity, we find that

32(X, p) n ess-range(ô) = 0.

Therefore ess-range(è) c a(B).
It remains for us to prove (*). We do this by defining a bounded operator

Fs,p on LP(R) which satisfies

(**) (b-p)(FSiftuy = dsû,        u£Lp(R),

and H-Fs^H < csk where cs depends on 5 but not on p, and then using the

comment preceding the theorem to deduce (*).

Define Fs,ß by FSßu = f)2s * (B - pl)~x(ds * u) for u £ LP(R). Then by

the final estimates in §5,

\\Fs,p.u\\Lp{R) < cp,2s\\(B - piyl(Gs * u)\\Lp(y)

< KCpt2S\\ès * u\\Lp{y) < KCp,SCp ,2s||M||z»(R)

as required. We leave it to the reader to check (**).

This completes the proof of (i) when 1 < p < 2. The result for 2 < p < 00

follows by duality on applying the preceding proposition.

(ii) ||¿>||oo = sup{|A| I X £ ess-range(è)}

<SM0{\X\\X£0(B)}<\\B\\ = \\b\\MAy).
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(iii) What remains to be shown is that Mp(y) is complete. Let (bn) be a

Cauchy sequence in Mp(y), and let B„ be the operator on Lp(y) corresponding
to bn . Then Bn converges in the operator norm to an operator B on Lp(y),

and, by (ii), bn converges in the Loo norm to a function b £ L^-oo ,00). It

is straightforward to show that b £ Mp(y), b„ -* b in Mp(y), and B is the

operator corresponding to b .   D

7. Examples of Lp(y)-Fourier multipliers

We continue to assume that the curve y is defined by a function g which

satisfies ||g||oo < M and ||g'||oo < N.

First consider convolutions.

Theorem 7.1. Suppose 1 < p < 00. Let tp be a holomorphic function defined

on a simply connected open neighbourhood ofT = y-y which satisfies \tp(z)\ <

y/(\âêe z\) where J0°° y/(s) ds < 00. Define

b(£,) = / e~ixl"tp(x) dx,        -00 < Ç < 00.
JR

Then b £ Mp(y) and the corresponding operator B is given by

Bu(z)= Í <p(z-C)u(C)dC   a.e.
Jy

for all u £ Lp(y) (if 1 < p < 00) or u £ Cn(y) (if p - 00). Moreover

l|Ô|k(y)<SUp{||9>(z-f)||rfC|}    'supj/Wz-Olldzl}    "

/•oo

<2\/l +7Y2 /    y/(s)ds.
Jo

Proof. It can easily be verified that tp*w - (bwY for all w £^j . On making

use of Theorems 2.1 and 5.2, the result follows.   D

We could have been a little more ambitious in the preceding section, and

treated multiplier spaces Mp(yx, y2) where yx and y2 are two curves of the

type under consideration. Let us do so briefly now.

Mp(yx, y2) = {b £ L^-oo, 00) | \\b\\Mp(yi ,y2) < 00}

where

\\b\\Mp(yx ,n) = sup{||(¿>u;)v||L;)(y2)/p||Myi) \we&ß, w£ Lp(yx)}.

If y3 is a third such curve, and b £ Mp(yx, y2), bx £ Mp(y2, y^), then bxb £

Mp(yx, y3) and

\\b\b\\Mp(yx,y}) < WblWMrto.y^WbWMpiyi ,») ■

Theorem 7.1 can be adapted to this setting provided tp is defined on a neigh-
bourhood of y2-yi . We give an example. Let tpß(z) = ßn~x(z2 + ß2yx . Then

bß(Z) = exp(-/?|£|). If ß > M, then bß G Mp(y,R) and

\\bß\\Mp(y,R) < SUP {   /  \<pß(z - X)\ dx \ SUD I       \tpß(z - X)\\dz\ \
zey (Jr )       xeR (Jy )

<ß(ß2-M2yx(l+N2)x'2p.
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Also, bß £ MP(R, y) and

\\bß\\Mp{R,y) < ß(ß2 - M2yx(l + N2)x'2?'.

It is a consequence of Theorem 5.7 that every Lp(E)-Fourier multiplier with

compact support is an Lp(y)-Fourier multiplier. Somewhat more general is the

following theorem.

Theorem 7.2. Suppose 1 < p < oo. For b £ L^E), define

fß(C) = b(i)exp(2ß\C\).

If fß £ MP(R) for some ß > M, then b £ Mp(y) and

\\b\\Mp{y) < ß\ß2 - M2y2(\ + N2)xl2\\fß\\Mpm .

Proof. Write b = bßfßbß with bß defined above. Then, from above,

I|£||m„(30 < 11 ^>S 11 Afp (K, y ) 11 //Ï11 Afp (K) 11 ¿'y? 11 Aip (7 , IR) •     □

The following results are immediate consequences of this result and of known

results about Lp(E)-Fourier multipliers.

( 1 ) 1 < p < oo . The characteristic function xj of every bounded interval

J = [a, b] is an Lp(y)-Fourier multiplier. The corresponding operator B is
given by

Bu(z) = - [{e^-U" -ei{z-i)b}—^(QdÇ
n Jy z-Q

for all u £ Lp(y).
(2) p = 2. Every Lebesgue measurable function b which satisfies \b(Ç)\ <

cexp(-2ß\t;\) for some ß > M and c > 0 is a L2(y)-Fourier multiplier.

(3) 1 <p<oo. If \b(i)\ <cexp(-2£|£|) for some ß > M and c>0,and,
for all a > 0.

¡■2a

j    \dg(x)\ < const.,
Ja

where g(Ç) = b(t,)exo(2ß\l;\), then b £ Mp(y).
The third result is our analogue of the Marcinkiewicz multiplier theorem.

Clearly, more such results could be listed.

Our next task is to investigate the connection between multipliers and func-

tions of Dy. We use the notation and definitions of §§3 and 4. Theorem 7.4

connects our results on b(Dy) with the results of Coif man and Meyer in [2].

Also see [6].

Theorem 7.3. Suppose 1 < p < oo. If a function b £ LX(R) can be extended

to a function b £ XF(5°) for some p > tan-1 TV, then b £ Mp(y) and the

corresponding operator B on Lp(y),  1 < p < oo, or on Q(y) satisfies B =

b(Dy).

Proof. This is an immediate consequence of the preceding theorem and the

results stated in §3.   D

Theorem 7.4. Suppose 1 < p < oo. If a function b £ LX(R) can be extended

to a function b £ //oo(5°) for some p > tan-1 N, then b £ Mp(y) and the

corresponding operator B on Lp(y),  1 < p < oo, satisfies B = b(Dy).
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Proof. Let b £ //œ(5°). We need to prove that (bw)v = b(Dy)w for all

w £ S'ß . So fix w £ <op . Choose a sequence (b„) of functions in *F(5°)

which satisfies

(i) HMoo < const.   « = 1,2,3,...;
(ii) for all 0 < Ô < A < oo, bn-+b uniformly on {Ç G S°\ö < |C| < A} .

As stated in §4, bn(Dy)w —> b(Dy)w in Lp(y).  Moreover, it is readily seen

that b„w -» eu;  in f^2, so (b„wY -* (bwY  in Lp(y).   By Theorem 7.3,

bn(Dy)w = (b„wY . We conclude that b(Dy)w - (bw)w as required.   D

An explicit formula for b(Dy) was given in §4. See [6] for details.

Corollary. Suppose 1 < p < oo. The characteristic function Xj of every interval

J is an Jp(y)-Fourier multiplier.

Proof. We have already seen this in the case when J is bounded. On the other

hand, when J = (0, oo) or (-oo, 0), the boundedness of Xj is an immediate

consequence of Theorem 7.4. The case when J is an arbitrary unbounded

interval can easily be reduced to a combination of these two situations.   D

The bounded operators Ej corresponding to xj are spectral projections of

Dy. Note however that they have not been shown to be uniformly bounded,

and indeed it can be proved that H^-oo^H > c£exp(|a|(||g||oo - e)). So, by

the uniform boundedness principle, £,(_00iflj does not converge strongly to the

identity as a —» oo . Nevertheless they do tie in with the general spectral theories

developed by Ricker and Kluvánek.
We conclude with the remark that the classical version of Theorem 7.4 (with

y = E) is an immediate consequence of the Marcinkiewicz multiplier theorem,

whereas there is quite a disparity between Theorem 7.4 for general y and the

result (3) following Theorem 7.2. It may be of interest to look for conditions

on b to be in Mp(y) which tie together both types of results.

8. Appendix

In the approximation arguments of §5 we used the following result. The proof
below is a modification of one given by Michael Benedicks and Peter Jones.

Theorem. Let 0 < p < n/2. There exists an entire holomorphic function tp

which satisfies, for some constant cß,

/oo tp(x)dx= 1
-OO

and

(2) \9{z)\<-^-,        z = x + iy£Sl

Proof. First let / be the holomorphic function defined on the upper-half plane

by f(z) = (i + zy2exp((-iz)x) where X satisfies n/2X < n/2 - p. Note that

(i)   |/(z)|  =  |/ + z|~2  for all  z  g ô, where  ô  is the curve given by

| \n - arg z| = n/2X, and
(ii) \f(iy)\ —> oo as y —» +oo. (See Figure 2.)

Next define G by

í¿7/á5V"(0¿C, z below <5,

\hh 1^/(0 dC + f(z),    z above ô.
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Figure 2

The function G extends to a continuous function on C which is in fact an

entire holomorphic function. It is bounded below ô and unbounded above ô

(and hence not identically zero).

Finally, define tp by tp(z) — kG'(z)G'(z) where k is a normalizing factor.

Then tp has the required properties.   D

Added in proof. A discussion of Fourier multipliers on LP(L), where X is a

Lipschitz surface of the form I = {(s, g(s))\s £ Rm] with \\VgWoc < N,

is contained in Clifford algebras, Fourier transforms, and singular convolution

operators on Lipschitz surfaces by Chun Li, Alan Mclntosh and Tao Qian, Mac-

quarie Mathematics Report No. 91-087.
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