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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES

ALAN MCcINTOSH AND TAO QIAN

ABSTRACT. We develop the theory of Fourier multipliers actingon Lp(y) where
y is a Lipschitz curve of the form y = {x + ig(x)} with ||g|lcc < o0 and
|lg’lloo < oo . The aim is to better understand convolution singular integrals B
defined naturally on such curves by

Bu(z) = p.v. / o(z - Du(l)dC

Y

for almost all z € y.

1. INTRODUCTION

Let y be a Lipschitz curve in the complex plane which has the form y =
{x +ig(x)} for some function g with Lipschitz constant N. Our interest is
in the L,-boundedness of convolution singular integral operators B defined on
Ly(y) by

Bu(z) = p.v. / o(z - Ou()de
7

for a suitable function ¢ on I' =y — y, and in similar kinds of operators.

Such operators can sometimes be expressed as B = b(D,) where D, =
d/dz|, and b is the Fourier transform of ¢ . In particular it is known that B
is a bounded operator on L,(y) for 1 < p < oo if b is a bounded holomorphic
function on a double sector SB = {z € C||arg(z)| < u or |arg(—z)| < u} with
tanuy > N.

When the curve y is contained in a strip {z|| %7 z| < M} then we can
sometimes write (Bu)™ = bii where

aE) = /e-"ziu(z)dz, Coo<E< 0.
7

We then call b an L,(y)-Fourier multiplier whenever B is a bounded operator
on L,(y).

In this paper we shall describe and discuss the spaces M,(y) of L,(y)-Fourier
multipliers, and give various conditions on b which imply that b € M,(y). We
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158 ALAN McINTOSH AND TAO QIAN

shall discuss the connection between these functions b, the operators b(D,),
and convolution operators on y.

We have already noted that whenever b extends to a bounded holomorphic
function on a double sector SB with tany > N, then b € M,(y) for 1 <p<
oo. Aside from this, the most interesting condition we give is that whenever
b(&)exp(2B|E]) € Mp(R) for some f > M, then b € M,(y). In particular
every bounded measurable function with compact support is an L,(y)-Fourier
multiplier.

These results have already been announced in [5]. The classical case when
y = R has been treated in a number of places, (e.g., [7]), so we shall not give
individual references to the results which we are generalizing.

We would like to thank the many people with whom we have discussed this
material, in particular Werner Ricker. This research has been conducted at
Macquarie University in Sydney and at the Centre for Mathematical Analysis
in Canberra, to both of whom we express our appreciation.

2. CONVOLUTIONS AND DIFFERENTIATION ON LIPSCHITZ CURVES

Throughout this paper y denotes the Lipschitz curve consisting of points
x +ig(x) € C, where x € R and g is a Lipschitz function which satisfies
g loo £ N < oo. Here C denotes the complex numbers and R the reals. We
shall use the following spaces of complex valued functions.

If 1 <p<oo, L,(y) is the space of equivalence classes of functions u: y —
C which are measurable with respect to |dz| and for which

1/p
lul = {/|u<z>|ﬂ|dz|} <o, 1<p<c,
Ve

or
[[U]|loo = esssup|u(z)| < oo.

The space Cy(y) is the space of continuous functions # on y which converge
to 0 at oo, together with the norm ||u||. = sup|u(z)|.

For 1 < p < oo, (Ly(y), Ly(y)) is a dual pair of Banach spaces under
(u,v) = fu(z)v(z)dz, asis (Ly(y), Co(y)), where p’ = (1 —p~")~!. To be
specific, for 1 <p < o,

lullp = sup{[(u, v)| | v € Ly(?), [Vl = 1},
and
llully = sup{|(u, v)| | v € Co(7), |l = 1}.
Suppose that ¢ is a function defined on a subset of C which contains I' =

{z-{¢|z €y, €y}, and that u is a measurable function on y. Then ¢ x*u is
defined by (¢ xu)(z) = fy @(z—C)u({)d{ for those z for which ¢(z —-)u(:) €

L(y).

Theorem 2.1. Let 1 < p < co. Suppose that u € L,(y) and that for almost all
zey, op(z—-) € Li(y) and ¢(-— z) € L(y). Then

1/p’' 1/p
o+ ull, < sup{ [0tz - cmm} sup{ [0t~ C)IIdZI} lully
z€y UJy fey Uy

where p' = (1 —p~1)~!.
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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES 159

Proof. First note that ¢(z — -)u(-) is measurable for almost all z € y. Then,
if 1<p<oo,

o ety < { [ { f10tz - oneonact) a1}
= { /y ( /y lo(z = )" lo(z - c>|'/”|u<c>||da)p |dz|}””
< { [ (fiote- cwa)ml (/10 - Onupiaz) |dz|}l/p
<sup ([ Io(z - cmda)”pl {[ [1oc- oldziopia)

<sup [0tz SI) " sup ( /y lo(z = O)ldz1) .

The cases p =1 and p = oo have similar proofs. O

This theorem will now be used to obtain bounds on the operators R; defined
by
Riu=¢,xu

where, when %24 >0,

e Rez>0,
"’*(Z):{o, Rez<0,
and, when %21<0,
0, Fez >0,
#i(2) = { —iei*z R, z<0.

Let w=tan"! N,and S, ={z€C||argz| < w or |arg(-z)| < w} U {0}.

Theorem 2.2. (i) If A ¢ Sy, then R; is a bounded operator on Ly(y), 1 <p <
0o, and on Cy(y), and ||R;|| < {dist(4, Su,)}~'V1+ N2 in each case.

(ii) If ||glloo < M < 00 and Sm A # 0, then R, is a bounded operator on
L,(y), 1 <p<oo,andon Co(y), and ||R;| < |57 A|"lexp(2M|Ze A|)V1 + N?
in each case.

(iii) Under the assumptions of either (i) or (ii) above, (Ru, v) = (u, —R_,v)
for ue Ly(y), ve€ Ly(y), 1 <p<oo (and hence for u€ Li(y), v € Co(7)).
Proof. The proof is a direct application of Theorem 2.1. For example, if
SmA> N|Fe k| and z € y, then

[loatz-0lati = [ lee-onag
Y Yz
< {dist(4, Su)}'V1+ N2, O

By y; and y} we denote the curves
y; ={l €y Fel < Fez} and yf ={{€yp|Fel>Rez}.
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160 ALAN MCcINTOSH AND TAO QIAN
Let us write down explicitly the definition of R,u, valid for u € L,(y) under
condition (i) or (ii) above.
ify_ ez 0y ()dt, FmAi>0,

}?lu(z) = .z .
—1i fy+ eM=0u()dt, FmA<O.

Define the derivative of a Lipschitz function # on y by
d . u(z+h)—u(z)
/ = — = _—
u'(z)= FE yu(z) Illl_rg { A a.e.
z+h€y

and note that

u(x+igx)) =01+ ig’(x))'liu(x +ig(x)).
dz dx

14

Next use duality to define D, , to be the closed linear operator with largest
domain Z (D, ) in Ly(y), 1 <p < oo, or Z(D, o) in Co(y), which satisfies

(D}',pua ’U) = (u, iv,)

for all Lipschitz functions v on y with compact support.

The following properties of D, , can be verified either directly on y, or
by reduction to the properties of the corresponding operator D, in L,(R) or
Co(R).

Theorem 2.3. (i) D, pu(x +ig(x)) = (1 +ig'(x))"'Dyu(x + ig(x)) and
D (Dy,p) = {ulu(- +ig(-))) € Z(Dp)}

_{W,,'(V), 1<p<oo,
~ L Ao(y) = {u e G| € Co(7)}, p=0,

which is dense in L,(y) (or Co(y)) except when p = oo. Moreover, for all p,
the space of Lipschitz functions on y with compact support is dense in & (D, p)
under the norm |[ull, + 11Dy pull, (or ||ulloo + 11Dy, 0tlloo) -

(i) If1<p<oo, 1<p' <0, l/p+1/p' =1, then

(Dy ptt, v) = —(u, Dy, pv), uec Wpl()’), (S Wpl/(y),

and
(Dy u,v)=—(u, D, ov), ueWl(y), vedAy).

Each operator has the largest domain under which the equality holds.
(iii) Suppose S A # 0. If either A ¢ S, or ||gllcc < M, then

(—=(Dy,p +ADu, Ryv) = (u, v)

for all u e 2(D,,,) and v in the appropriate dual space. Consequently A is
not in the spectrum of D, ,, (D, , —AI)~!' = R; and so

{dist(1, S,)}"'VI+ N2 ifi¢Se,
| Al exp2M| R AWTF N2 if llglloo < M,

in Ly(y), 1 <p<oo,orin Co(y).

I(Dy,p = A7 < {
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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES 161

We shall write D, in place of D, , when the space in which it is acting is
understood.

3. FuncTIONS oF D,

There are numerous ways of defining a functional calculus of an operator.
For D,, it is easy to define b(D,) when b € ¥(S)), where 4 > w=tan"' N,
and

‘I’(SO) ={be HOO(SO) 1B <l (1 +1¢|%)! for some c, s > 0}.

Here S° denotes the open set SJ = {{ € C| |arg{| < u or |arg(~{)| < u} and
H,, (SO) denotes the space of bounded holomorphic functions defined on SJ.
(See Figure 1.)

For b e ‘1’(52) , the operator b(D,) can be defined as an operator on L,(y),
1 <p<oo,oron Cy(y), by

(D)) = 5 /b() dt

where ¢ is a path consisting of four rays as indicated. The integral converges
absolutely in the operator norm topology and

16(D,)] < ¢ / 1L+ 12%)71 121 1d2) < oo

It is straightforward to show that the definition of b(D,) is independent of
the precise rays used, that (b,b)(D,) = b\(D,)b(D,) when b, is also in ‘I’(Sg),
and that (b(D,)u, v) = (u, b(—D,)v) for each of the dualities introduced pre-
viously; cf. [3, 4].

The operator b(D,) can also be expressed as convolution with a suitable
function ¢ defined as follows.

Let py denote the ray {sexp(i6)|0 < s < co}. For b € Hy(Sp2) and z € 59,
define the holomorphic function ¢ on Sg by

(¥ 0(2)= 37 [ eb@dr-5 [ embyag
Pe

P(n+a)

FIGURE 1
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162 ALAN McINTOSH AND TAO QIAN

where —u< -0 <argz<nm—-60<m+puand —u<-a<n+argz<n—a<
7 + u. The definition is independent of the precise choice of 8 and «. It is
not difficult to verify that

|9(2)] < {mdist(z, C~ SN} |l -

Under the assumption that b € ¥(S9), that is, |b({)| < c[¢[*(1 + [¢[*)!
where we shall take 0 < s < 1, then ¢ satisfies a stronger estimate, and we
find that

lp(2) < clz 7 (1 +12%)7, 2z €S, ~ {0},

for a different constant c¢. In this case the restriction of ¢ to R belongs to
L,(R), and b is precisely the classical Fourier transform of ¢ . That is,

b(&) = /R e p(x)dx, EeR.

We leave the verification of this to the reader. A discussion of the more general
situation when b € H(S2) will be presented in [6].

It is a consequence of the estimate given above for ¢ and of Theorem 2.1 that
¢*u € Ly(y) whenever u € L,(y) and that ¢ *xu € Co(y) whenever u € Cy(y).
We shall now show that, for u in each of these spaces, b(D,)u = ¢ xu . Indeed,
for ue Ly(y) or Co(y), z€y and w< 8 < u,

(p*u)(z /(p z —w)u(w)dw

SIS
+/y+ /p_g‘/ﬁ /p(m)] =) p(Cyu(w) d{ dw

= 57 60D, ~ D) w0y d
= b(D,)u(z).

Here J is the path made up of the rays —p_g, pg, —p(n-9) and —p(r+g). The
estimate proved in Theorem 2.1 has been used to change the order of integration,
and then the convolution formula for (D, —{I)~! given in §2 has been applied.

4. THE H,-FUNCTIONAL CALCULUS OF D,

This section is a summary of results initially developed in [2] and in [4]. A
full treatment will appear in [6]. Also see [3].

The functional calculus for D, described in the previous section can be
extended to all of HOO(SB) provided 1 < p < co. This means that whenever

b e Hw(S,‘,’) for some u > w, an operator b(D,) acting on L,(y) can be
defined in a natural way. The following properties hold:

16Dyl < cullblloo,  (B1D)(Dy) = bi(Dy)b(Dy),
(a1by + ab)(Dy) = a1 by(Dy) + ab(D,)
whenever b, b; € Hyo(SD) and a, o) €C.
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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES 163

The operator b(D,) is uniquely determined by the following convergence
result. Suppose (b,) is a sequence of functions in ‘I’(SB) such that

(1) ||bnlloc <const, n=1,2,3,...;
(ii) forall 0 <d <A< oo, b, — b uniformly on {{ € S9|d < |{| < A}.
Then b,(D,)u — b(D,)u forall u e Ly(y).

As well as the function ¢ defined in equation () of §3, a second holomor-
phic function ¢, can be defined on S, = {z € S} | #-z > 0} so that ¢ and
@1 have the following properties.

(@) 9i(2) = p(2) + 9(-2), z€Sp,;

(b) @1 € Hyo(S?,) whenever w < v < u;

(c)if ue L,(y), then

b(D)u(z) = lim { /

o(z = Du()d( + ¢1(st<z))u(z>}

Yoo

for almost all z € y, where y, ., = {{ €y ||z—{| > ¢} and t(z) is the unit
tangent vector to y at z.

This result has a kind of converse which we now state.
Theorem 4.1. Let ¢ and ¢, be holomorphic functions on Sg and SB . respec-
tively, where u > w, and suppose that
(i) 91(2) = 9(2) +9(~2), z€S),,
(i) @1 € Ho(Sp,) and z9(z) € Hoo(SD) .
Let 1 <p<oo. For ue Ly(y), let

(Bu)(z) = gl_r{(l){ o(z - Ou(l)dl + (m(ﬁt(Z))u(Z)}

Voo
where t(z) and 7y, . are specified above. Then (Bu)(z) is defined for almost all
z €y, and B is a bounded linear operator on Ly(y). Moreover B = b(D,) for
some b € Hy(S9) and some v > w.

In particular, if ¢ isodd and ¢, = 0, then (Bu)(z) = p.v. fy e(z—Q)u(t)d¢.

The best known special case of these results occurs when b({) = sgn({),
where sgn({) is defined on S? by

1, %gC >0,

sgn(t) = { 1, #(<0.

In this case ¢(z) = i(nz)~', ¢,(z) =0, and B is the principal-value Cauchy
integral C, defined by

Gu(z) = p.v.i/
7

/4

1
Sopud)de.
The boundedness of C, on L,(y) was first proved in [1].

5. FOURIER TRANSFORMS ON CURVES IN A STRIP

We turn now to a more detailed study of the case when the function g
defining y satisfies ||g|lcc < M < 0o as well as ||g’||oc < N < oo. To do this
we introduce the following Banach spaces for —oo < f < 00:

& ={w: (-o0, 00) —» C | w is Lebesgue measurable and |wllg, < oo},
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164 ALAN MCcINTOSH AND TAO QIAN

and
&={we&|w, vw"c&y},
where
o 12
Il ={ [ rw@)Pexniapieh de
and

lwllgz = {llwlig, + llw'IF, + lw"IF}".
B B

We regard & 7 as a test space with dual (£7)’ and embed &_p in (&)’ using
= [Z w(&)v(&)d when w e &g and v € &2, noting that |(w v)| <
“'U)”g_p"'l)”g}z and that (w,v) =0 forall v € & if and only if w =0. We
remark that if o < § then & C &, and &} C é’(} where the embeddings are
continuous and dense, so (&2)' C (&7)'.
The following definitions of Fourier transform and inverse Fourier transform

will be used throughout the paper.
If ue Li(y) define

(&) = /eizéu(z)dz.

Y
Then # is a continuous function satisfying

(&) < *M]jully,

so i€ &y forall f>M,and |allz, < (B~ M)~2|ul; .
For g > M and w € &, define the holomorphic function W

={{eC||F»{l < B}

on the strip

by
1 [ .
i - i
00 =5 [ eFw@dz,
and note (by considering real {) that if & =0 then w =0. Let
(&)V(7) ={w], |we &)} and (&})"(y) = {wl, | w € &}}

and equip these spaces with the norms ||0|(g,)v() = llw|lg, and ll'lIJ"(gp;)\/(y) =

lwlig; -
Theorem 5.1. (i) A holomorphic function f on Xg belongs to (£3)" if and only
if
sup /lf(x+ iy))Pdx < .
lyl<B
Moreover

1 ] ' 172
oty < V2 sup { [loGx+ mPdx} < ful,.
IvI<B
(i) If w € & and |7 z| < M, then

[(2)] < (8~ M)~ wllg
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FOURIER MULTIPLIERS ON LIPSCHITZ CURVES 165

and

sup |W(x +iy)| — 0 as|x| - oo,
yI<M

so w|, € Co(y). Hence (&3)V(y) is continuously embedded in Co(y).
(iil) If w, v € &, then

1 [ o}
[aeredz = 5 [ wenea
(iv) A holomorphic function f on Xz belongs to (g/f)v if and only if

sup /l(l +x3) f(x + iy)Pdx < 0.
lyl<B

Moreover, there exists cg >0 such that

1/2
—||w||gz < sup {/l +Xx )w(x+1y)|2dx} < Cﬂ”'ll)"gﬂz.

(v) (é’l,z) (y) is contmuously embedded in L,(y) for all p suchthat 1 <p <
0.
Proof. The various estimates for w are straightforward, the second part of (ii)
being deduced from Cauchy’s formula on rectangles with vertices (1+ %),95’; z+
3i(M + B). Because of part (ii), the Cauchy theorem can be used to show
that fy'u')(z)f)(z) dz = [pW(x)v(x)dx so (iii) follows from the usual Parseval’s
equation. It is also not difficult to see that functions f with the stated properties
are of the form f = for w € & or gpz . To prove part (v), first show that if
we&?,and |y| < M, then (1 + x2)|(x + iy)| < C"’w”g;g for some constant
c. O

We remark that J g> w(&p)V(7) is the space & (y) used by Coifman and
Meyer [2].

In the next theorem we state some density. results and another version of
Parseval’s formula.

Theorem 5.2. Let B >a>M,and 1 <p <.
(i) The following inclusions are all dense:

(EDV() c LinL,n(&)V(») < L,n(&)V(r) < (&)®)

n n n n
(EHV(y) LynLy(y) L, N (&) () &)V ()
n n
Ly(y) Ly(7)

(ii) In the above, L,(y) can be replaced by Cy(7).
(iii)
1 [,
Juew@dz= 5 [~ a@u-ae
y T J-oo
forall ue Li(y) and we &g.
(iv) If u€ Ly(y) and u =0, then u=0.

The horizontal inclusions are dense for the following reason. Let u €
(&)V(y). For each ¢ > 0, define u,(z) = (1 +&2z2)~'u(z). By parts (i)
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166 ALAN MCcINTOSH AND TAO QIAN

and (iv) of the proposition above, u, € (gﬂz)v(y). Also u, — u in L,(y) and
in Cy(y). So these inclusions are dense. We have already noted that (gﬂz)"(y)
is dense in (&2)V(y), and (&3)V(y) is dense in (&,)Y(7).

The remainder of the proof will be deferred until after we have introduced
some approximation techniques.

We see immediately from Theorem 5.1 that the following definition of Fourier
transform is consistent with the preceding one for functions u € Li(y).

If u € Ly(y) for some p such that 1 < p < oo, define o € (&})' by
(@, w-) = [,u(z)w(z)dz forall we &7, where w_(§) = w(-¢).

Note that this definition is independent of f > M, and that the mapping
F 1 Ly(y) — (8}2)’ defined by % (1) = @ is continuous and one-one. (We are
using the fact that (é’ﬂz)v(y) is densely and continuously embedded in L,(y)
when 1< p < oo and in Cy(y), and that (L,(7), Ly (7)) and (Li(?), Co(¥))
are dual pairs of Banach spaces.)

Whenever it makes sense, the Fourier transform and the inverse Fourier trans-
form defined above are inverse operations:

Theorem 5.3. Let u € Ly(y) for some p such that 1 <p <oo. Let w e & for
some B> M. Then u=w ifandonly if w=1.

The proof of this theorem is also deferred till later in this section.
In the approximation arguments we shall use the maximal function M,u
defined for locally integrable functions # on y by

Myu(z) = sup p~! u(@)llde|
>0 B(z,p)

where z € y and B(z, p) = {¢ € y||¢ — z| < p}. The following propositions
can be proved by the usual methods. Recall that N > ||g’|| -

Proposition. There exist constants ¢, ny for 1 <p < oo and cy such that
IMyullp < cp,wllull,,  ueLp(y),

and
M{z € y|Myu(z) > A} < cnllulli, ueLy(y), A>0.

Here / denotes the measure introduced by arc-length.

Proposition. Suppose that u is a locally integrable function on y and that ¢ xu
and y xu are well defined, where y is a decreasing function in L(0, co) such
that

lo(2)| < w(lx|), z=x+1iyeT,
where I ={z—-{|z,{ €y}. Then, forall z €y,

lo *u(z)| < enllylli Myu(z).

The latter result has a straightforward proof for functions y of the form
w(l) = X, axxx({), where x, is the characteristic function of a ball with
centre 0. For general y , use a sequence of such functions to approach y from
below.
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The approximation arguments also involve showing that a function u is the
limit of a sequence ¢, « in an appropriate sense, where ¢,(z) = ng(nz) and
¢ is a holomorphic function defined on all of C which satisfies

(1) / p(x)dx =1
and

C _ . 0
(2) |(o(z)|§—l+x2, z=x+Iiy€es,,

for some constant ¢, where tanu > N .

When N < /4 we can take f(z) = exp(—z2?). For n/4 < N < /2, there
do exist such functions ¢, as will be shown in the appendix. We shall call a
sequence (¢,) constructed as above an identity sequence.

Note the following properties. Let w,(s) = n(1 + n2s2)~!, s > 0. Then

(3) For each n, |pa(2)| < cyn(|x]), z=x+iy € Sy.

(4) Foreach n, [§° wa(s)ds=3m.

(5)Forall 6 >0, [°wu(s)ds— 0 as n—co.

(6) For each n and each { ey, fy on(z=0)dz=1.

The following two theorems specify ways in which ¢, x u converges to u.

Theorem 5.4. Let (p,) be an identity sequence. Then
(i) there exist constants c, n for 1 < p < oo such that

sup |@n xulll <cp nllullp, ue Ly(y),
n

p
(it) if u € Lp(y), 1 < p < oo, then, for almost all z € y,

1im (9, * u)(2) = (z),
(iii) if w € Lp(y), 1 <p < oo, then

1im (g +u) = ull, =0,
(iv) if u € Co(y), then

1im (g + ) = oo = 0.

Proof. Part (i) is a consequence of the previous two propositions. Next suppose
that u € Cy(y). By property (6),

(9n * u)(2) — u(z) = / ou(z = O(u(C) - u(z)) d¢

[{—z|<d

N / onlz = O)(u(0) - u(z)) dL
|{—z|>6

=L +1.

Let ¢ > 0. Choose J small enough that |u({) —u(z)| < ¢ forall { € y with
|¢ — z| < 6. Therefore, by properties (3) and (4),

I < s/wn(z— Ollde] < cen/T+ V2.
Y
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An application of property (5) now shows that I, < ¢ for all sufficiently large
n. Hence

|@n *u(z) —u(z)| < e(l +cnv'1+ N2).

Part (iv) now follows, as does part (ii) in the case when u € Cy(y).

For u € Ly(y), 1 < p < o, and any 6 > 0, there is a decomposition
u =v+w where v € Cyp(y) and |lw|, < . Therefore, by the preceding
propositions,

1{z ey Hm lpn*u(z) - u(z)| >}
=l{zey|n@o|(o,,*w(z)—w(z)| >K}
<i{zey| m lpn»w(2)|> jr}+1{z €7 | w(2)] > §)

<Hzey|Muw(z)> ik} +l{zey||lw(z) > ik}
< ek Pllw|lf < ckPE”.

Let 0 — O first and then let k — 0. We conclude that
l{ze y| T g * u(z) - u(2)| >0} =0.

This identity gives (ii) when 1 < p < co. The case p = oo can be reduced to
the case p =1 by a localization argument.
(iii) For u € Ly(y), define U € L,(R) by U(x) = u(x +ig(x)). Then

/ onle = O)(u(C) - u(-)) dL

4

1(@n * u) - ull, =

Ly(7)

<c /R e =DV - V0|
—c /Ry/(|s|) ‘U(x) ~U(x- %)) ds L
< c/R w(|s|) ”U(x) -U (x - %) Ldx) ds

s
=c/R w(|s))A (U, ;) ds
where

AV, 5) =[ve-v (x-3)

Ly(dx)

Note that A(U,s/n) — 0 as n — oo and A(U, s/n) < 2||U|,. By the
Lebesgue dominated convergence theorem, the last integral tends to zero as
n—oo. O

For the identity sequence (¢,) given by ¢,(z) = ng(nz) where ¢ satisfies
(1) and (2), let ®, = ¢, and ® = é (the classical Fourier transforms). Then
P, (&) = P(n~'¢) where P is a continuous function which satisfies ®(0) = 1.

For each A > 0 there exists ¢; such that

|D(&)| < e, —00 < & < 00.
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To see this for £ > 0 note that

()] = i [ eomax

—00

= I/ ~REx=Mg(x —iA)dx

—00
o0

< el / lp(x — id)| dx = ce™*°.
—00

To see it when & < 0, replace A by —4 in the above estimate.
So @, € & forall n andall # > 0. Clearly ®, — 1 uniformly on compact
subsets of (—oo, 00).

Theorem 5.5. Let (¢,) be an identity sequence, let ®, = ¢,,, and suppose B >
a>M.

(1) If w e &, then ¢, *w = (Pyw)¥ € (&)V(y), and Pyw - w in &,.
(i) If u € Li(y), then @, xu = (P,01)" € (&)V(y) and Ot — it in & 4.
Proof. Part (i) is a consequence of the preceding comments, as are the facts

that, when u € Li(y), ®nit € & and ®,a — & in &_ 5. Moreover

OnU(z) = / oulz = Ou(l) d¢
Y

_ / % / ” ®,(&)ekE0 dzu(C) d¢
y — 00

_ % / - / e~ %Cu(L) de*dy (&) dE

= / ®y(6)e de
= (®,a)V(z). O

We are finally in a position to prove Theorems 5.2 and 5.3.

Proof of Theorem 5.2. (i) Let u € Ly N Ly(y). Then ¢, *xu € (&)V(y) as well
asin Li(y) and L,(y), and ¢, xu — u in L;(y) and L,(y). We conclude
that LN L,N (&)Y (y) is densein LyNL,(y), and therefore in L,(y). So the
larger space L, N (&;)V(y) is dense in L,(y). The density of L, N (&3)Y(y) in
L, n(&,)V(y) is also a consequence of the above theorems. The fact that the
remaining embeddings are dense was shown previously.

(ii) Reason as above with L,(y) replaced by Cy(7).

(iii) Let u € Li(y) and w € & . Then ¢, xu = (P,i1)V € (&4)V(7), and
therefore, by Theorem 5.1(iii),

[onrwineaz= 52 [~ @en-eae.

Now ¢, *u—u in Li(y) and ®,&t —» & in c?.,g. The result follows.

(iv) This is a consequence of (iii) and the fact that (8"32)\’()/) is dense in
Li(y). O
Proof of Theorem 5.3. Let u € Ly(y), 1 <p < oo, and w € & . By Theorem
5.1(iii),

N 1 [ 1
Jo@p@dz= 5 [~ wew-ode = 5w, o)

y 27 J_ 2n
for all v € 27,2.
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Suppose that W = u € L,(y). Then

/w dz—/u(z)i)(z)dz=2—1n—(12,v_)
Y

forall v € gﬂz (by the definition of #). So # = w . Suppose on the other hand
that # =w € & . Then

N 1 N
/y’w(z)v(z)dz = —2;(10 , V)= /yu(z)v(z)dz

forall v e gﬁz . In particular,

/qon ~ )i dz—/(o,, ~ 2)u(z)dz

for an identity sequence ¢, . Taking limits for almost all { € y, we conclude
that w =u. O

We conclude this section by comparing the norms in L,(y) and L,(R) of
functions whose Fourier transforms have compact support.

Theorem 5.6. Let w € Ly(—oc, oo), and suppose the support of w is contained
in the interval [-S, S] for some S < oo. Let ¢ > 0. Then there exists ¢, > 0
such that, for all p € [1, 0],

Bz, < ceM ™" exp((1 + &)SM)|[D]| L, )

and
], ®) < ceM ™" exp((1 + &)SM)||W]|L, )

Proof. Let 6 denotea C? functionon (—oo, co) with supportin [—1—¢, 1+¢]
which equals 1 on a neighbourhood of [-1, 1], and 6s(&) = 6(&/S) for S > 1.
Then 65 is an entire function which satisfies

(1 +|2)6s(0)| < cel P ¢~ e 1HOSIF= L 1}

for some ¢;. So |6s({)] < fs(|¢]) for all ¢ such that | %= {| < M, where fs
isan L; function with | fs|l; < c:M~'exp((1 +¢&)SM).
By adapting the arguments used previously, we find that

w(z) = (Osw)” /05 (z - $)d¢
and

W, < ceM ™" exp((1 + &)SM)||W]| 1, x)

The proofs of the identity and the estimate are similar to those in §2. A corre-
sponding estimate holds if the roles of y and R are reversed. O

Note that the method of proof gives the estimates

1(0sw)¥ |z, < €, sIWllL,0»  N(Osw) L) < Cp, 5D L, )

for every function w € &; .

6. FOURIER MULTIPLIERS ON CURVES IN A STRIP

We continue to assume that the curve y is defined by a function g which
satisfies [|glloo < M and ||g'lloc < N.
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We are now in a position to define Fourier multipliers. Let 1 < p < o0, and
choose B < M.
For b € Lo (—00, ), define

161134,y = sup{ll(b) "Il 5) | 4 € Lp(v) N (E)" (), lluellp = 1}

and let M,(y) be the space of L-functions b for which ||b||s,(;) < oo. Func-
tions b € M,(y) are called L,(y)-Fourier multipliers.

When 1 <p <oo and b € M,(y), there is a unique bounded linear operator
B on L,(y) defined on the dense subspace L,(y) N (&3)Y(y) by Bu = (bit)".
When p = 0o and b € M, (), there is a unique bounded linear operator B on
Co(y) defined similarly. If b; and b, are L,(y)-Fourier multipliers with corre-
sponding operators B; and B, then b;b, is an L,(y)-Fourier multiplier with
corresponding operator B;B,. The function 1 is in M,(y) with corresponding
operator I.

The reason for using the space &; in the definition of Fourier multipliers is
that if w € & and b € Lo(—o0, o0), then bw is defined and belongs to &5 .
It is a consequence of Theorem 5.2(i) that the definition is independent of the
choice of §# aslongas f > M. A related result is the following.

Proposition. Let b € Lo.(—o00, 0o). Then

18111, ) = sup{ll(bw) ll, ) | w € &F 5 ||, = 1} -

In particular, b is an L,(y)-Fourier multiplier if the right-hand side is finite.

Proof. Suppose that the right-hand side is finite. Let u € L,(y) N (&3)V(y). By
Theorem 5.2(i) there is a sequence w, € gﬂz such that W, — u in Ly(y)N
(&) (7). The sequence W, is Cauchy in L,(y), so by the hypothesis, (bw,)¥
is Cauchy in L,(y), which implies that there exists v € L,(y) such that
(bwn)¥ — v in L,(y). Therefore bw, — 0 in (é’ﬂz)’. Also w, — @ in
&, so bw, — bt in &; and hence in (é’})’. We thus see that © = bit and
hence that (bw,)¥ — (b#t)¥ in L,(y). The result now follows. O

Proposition. If 1 <p < oo and p' = (1 —p~1)7!, then b € My(y) if and only
if b- € My(y), where b_(§) = b(=8), and ||b||am,y) = I1b-lIm,.(y)- The corre-
sponding operators B and B_ are dual in the sense that (Bu, v) = (u, B_v)
for all u and v in the appropriate spaces, and so they have the same spectra:
o(B)=0d(B-).

Proof. Apply twice the Parseval’s formula in Theorem 5.2(iii). O

We also need the following lemma, in which Lj,(—o00, c0) denotes the
Fréchet space of locally integrable functions on (—oo, 00).

Lemma. Suppose 1 <p<?2.

(1) If u e Ly(y), then @ € Liyc(—o0, oo) and the mapping u — @ is continu-
ous from Ly(y) to Ligc(—o0, 00).

(ii) If u € Ly(y), then (Bu)™ = bii.
Proof. Let 6g be the cut-off function used in Theorem 5.6. By the estimate
following that theorem, and by the theorem of Titchmarsh, it follows that

10swllp < cpll(Osw)Y I, ®) < €. slWllL, )
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for all w € & . The density of L,N(&3)"(?) in L,(y) can now be used to show
that, for every function u € L,(y), the Fourier transform # can be identified
with a locally integrable function. Part (ii) then follows. O

It is well known that if b is a Lebesgue measurable function on (—oo, 00)
which satisfies bit = (Bu)~ for some bounded operator B on L,(R) and all
ueLnLy,(R), then b € L(—o0, 00) and ||l < ||B]|. We are now in a

position to prove a related result for L,(y)-Fourier multipliers.

Theorem 6.1. Suppose 1 < p < oo, and let b € My(y).
(i) The spectrum a(B) of the operator B corresponding to b satisfies

a(B) D ess-range(b).

(i) Ibllee < 1B1lag, () -

(iii) My(y) is complete, and hence is a Banach algebra.
Proof. (i) 1<p<2.

Let #(A, p) and F (A, p) denote the open and closed balls with centre A
and radius p.

Suppose A ¢ o(B). Then there exists ¥ and p > 0 such that (B — ul) is
invertible and satisfies ||(B — uI)~!|| < k for all u € Z (A, p). We shall use
this inequality in a moment to prove that

(%) 16s/(b — m)llee < csk

where Og is the cut-off function used in Theorem 5.6 (with ¢ < 1) and cs
is a constant which depends on S (and M and p) but not on x. Thus
{b(&)|-S <E<S}NF(u, (csk)~') has measure zero. On covering £ (4, p)
with finitely many balls of the form & (u(csk)™!), we see that {b(¢)| - S <

E<S}INZ(A, p) has measure zero. On considering a sequence of numbers S
which tends to infinity, we find that

F (4, p) Ness-range(b) = 2.

Therefore ess-range(b) C o(B).

It remains for us to prove (x). We do this by defining a bounded operator
Fs , on L,(R) which satisfies
(%) (b—p)(Fs,qu)~=0si, ucLy(R),

and ||Fs, .|l < csk where ¢s depends on S but not on 4, and then using the
comment preceding the theorem to deduce ().
Define Fs , by Fs ,u = 65* (B — ul)~'(6s*u) for u € L,(R). Then by
the final estimates in §5,
IFs, uttllr,m) < Cp,2sll(B — u) ™" (Bs * u)ll L, )
< Ky, 25|60 * ullL,5) < KSp, 56, 251l L, m)

as required. We leave it to the reader to check (xx).
This completes the proof of (i) when 1 < p < 2. The result for 2 < p < ©
follows by duality on applying the preceding proposition.
(i1) 16llcc = sup{]A| | A € ess-range(d)}
<sup{|A| |1 € a(B)} < |IB| = 1blla,) -
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(iii) What remains to be shown is that M,(y) is complete. Let (b,) be a
Cauchy sequence in M,(y), and let B, be the operator on L,(y) corresponding
to b,. Then B, converges in the operator norm to an operator B on L,(y),
and, by (ii), b, converges in the L,, norm to a function b € Ly (—o0, 00). It
is straightforward to show that b € M,(y), b, — b in M,(y), and B is the
operator corresponding to b. O

7. EXAMPLES OF L,(7)-FOURIER MULTIPLIERS

We continue to assume that the curve y is defined by a function g which
satisfies ||gllc < M and |g'llc < N.
First consider convolutions.

Theorem 7.1. Suppose 1 < p < oo. Let ¢ be a holomorphic function defined
on a simply connected open neighbourhood of T = y —y which satisfies |¢(z)| <
W(|He z|) where [;°y(s)ds < oco. Define

b(&) = /e‘i"f(p(x)dx , —00 < E<00.
R
Then b € M,(y) and the corresponding operator B is given by
Bu(z) = [ plz - DuD)dC ae
b

forall ue Ly(y) (if 1 <p<oo) or ue Cy(y) (if p=00). Moreover
1/p' 1/p
ot < sup { [tocz - 0att} " sup{ [ 100z - Oliaz1}
<21 +N2/oo w(s)ds.
0

Proof. Tt can easily be verified that ¢ xw = (bw)Y forall w € é’ﬂ’- . On making
use of Theorems 2.1 and 5.2, the result follows. 0O

We could have been a little more ambitious in the preceding section, and
treated multiplier spaces M,(y, y2) where y; and y, are two curves of the
type under consideration. Let us do so briefly now.

My(y1, 72) = {b € Loo(—00, 00) | |1l a3, ,7,) < o0}
where

181,31 ,72) = sUP{Il(6W)” |, ) /N DNl y) | W € &, D € Lp(11)} -

If y; is a third such curve, and b € My(y,, y2), by € My(72, y3), then bib €
Mp(71, v3) and

”blb"Mp(Yl,)'s) < ”bl||Mp(72,73)||b||Mp()'l,)'2) .

Theorem 7.1 can be adapted to this setting provided ¢ is defined on a neigh-
bourhood of y,—7, . We give an example. Let ¢g(z) = frn~'(z2+2)~!. Then
bg(&) = exp(—BI&]). If B> M, then bg € M,(7, R) and

1/p' 1/p
1bsllagr,m) < sup{ [1ostz ;x)|dx} sup{ / wﬂ(z—x)udzl}
zey R x€R y
< BB — M) \(1 + N2/
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Also, bg € M,(R, y) and

168110, ) < B(B: — M)~ (1 + N2)/¥",

It is a consequence of Theorem 5.7 that every L,(R)-Fourier multiplier with
compact support is an L,(y)-Fourier multiplier. Somewhat more general is the
following theorem.

Theorem 7.2. Suppose 1 < p <oco. For b € L(R), define

J5(&) = b(S)exp(2B(E]) -
If fp € My(R) for some B> M, then b € M,(y) and

181lag,05) < B*(B2 = M*)"2(1+ N))2|| fyllag,my -
Proof. Write b = bg fgbg with bg defined above. Then, from above,

161131, 5) < Bgllag,r, I f8llMg, @108 21,0, &) O

The following results are immediate consequences of this result and of known
results about L,(R)-Fourier multipliers.

(1) 1 < p < . The characteristic function y, of every bounded interval
J = [a, b] is an L,(y)-Fourier multiplier. The corresponding operator B is
given by

=L [ rpitz=0a _ gitz—opy 1
Bu(z) = ¢ [ (0100 — o0 —u(tya

forall u e Ly(y).

(2) p = 2. Every Lebesgue measurable function » which satisfies |b(&)| <
cexp(—2p|&|) for some f > M and ¢ >0 is a L,(y)-Fourier multiplier.

(3) 1 <p<oo.If |b(&)| <cexp(—2B|&|) for some B> M and ¢ > 0, and,
forall a > 0.

2a
/ |dg(x)| < const.,
a

where g(¢) = b(&)exp(28I¢]), then b € M, (y).

The third result is our analogue of the Marcinkiewicz multiplier theorem.
Clearly, more such results could be listed.

Our next task is to investigate the connection between multipliers and func-
tions of D,. We use the notation and definitions of §§3 and 4. Theorem 7.4
connects our results on b(D,) with the results of Coifman and Meyer in [2].
Also see [6].

Theorem 7.3. Suppose 1 < p < oo. If a function b € L (R) can be extended
to a function b € ‘P(SB) for some u > tan~!' N, then b € M,(y) and the
corresponding operator B on L,(y), 1 < p < oo, or on Cy(y) satisfies B =
b(Dy).

Proof. This is an immediate consequence of the preceding theorem and the
results stated in §3. O

Theorem 7.4. Suppose 1 < p < oo. If a function b € Lo (R) can be extended
to a function b € Hy(SD) for some u > tan~' N, then b € My(y) and the
corresponding operator B on Ly(y), 1 < p < oo, satisfies B = b(D,).
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Proof. Let b € Hoo(Sg). We need to prove that (bw)¥ = b(D,)w for all
w e &. Sofix w € & . Choose a sequence (b,) of functions in ‘¥(S))
which satisfies

(1) |bnlloc < const. n=1,2,3,...;

(i) for all 0 <d <A< oo, b, — b uniformly on {{ € Sp|6 < |{| < A}.
As stated in §4, b,(D,)w — b(D,)w in L,(y). Moreover, it is readily seen
that b,w — bw in &, so (b,w)" — (bw)¥ in Ly(y). By Theorem 7.3,
bn(Dy)w = (byw)Y . We conclude that b(D,)w = (bw)" as required. O

An explicit formula for b(D,) was given in §4. See [6] for details.

Corollary. Suppose 1 < p < oco. The characteristic function x; of every interval
J is an J,(y)-Fourier multiplier.

Proof. We have already seen this in the case when J is bounded. On the other
hand, when J = (0, o) or (—o0, 0), the boundedness of y; is an immediate
consequence of Theorem 7.4. The case when J is an arbitrary unbounded
interval can easily be reduced to a combination of these two situations. 0O

The bounded operators E; corresponding to y; are spectral projections of
D, . Note however that they have not been shown to be uniformly bounded,
and indeed it can be proved that ||E_o 4l > c;exp(|al(]|lgll —€)). So, by
the uniform boundedness principle, E(_., 5 does not converge strongly to the
identity as a — oo . Nevertheless they do tie in with the general spectral theories
developed by Ricker and Kluvanek.

We conclude with the remark that the classical version of Theorem 7.4 (with
y = R) is an immediate consequence of the Marcinkiewicz multiplier theorem,
whereas there is quite a disparity between Theorem 7.4 for general y and the
result (3) following Theorem 7.2. It may be of interest to look for conditions
on b tobein M,(y) which tie together both types of results.

8. APPENDIX

In the approximation arguments of §5 we used the following result. The proof
below is a modification of one given by Michael Benedicks and Peter Jones.

Theorem. Let 0 < u < n/2. There exists an entire holomorphic function ¢
which satisfies, for some constant c,,

(1) / p(x)dx = 1
and
C .
) PEIS oy, z=x+iyes).

Proof. Firstlet f be the holomorphic function defined on the upper-half plane
by f(z) = (i + z)"2exp((—iz)*) where A satisfies ©/24 < /2 — 1. Note that

(i) |f(z)] = |i + z|~* for all z € &, where & is the curve given by
|3m —argz| = n/24, and

(ii) |f(iy)| = oo as y — +o00. (See Figure 2.)

Next define G by

{ i Js 2 (0 d¢, z below &,
G(Z) = ) |
3 Js =2 S0 dl+ f(z), zaboved.
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FIGURE 2

The function G extends to a continuous function on C which is in fact an
entire holomorphic function. It is bounded below J and unbounded above ¢
(and hence not identically zero).

Finally, define ¢ by ¢(z) = kG'(z)G'(Z) where x is a normalizing factor.
Then ¢ has the required properties. O

Added in proof. A discussion of Fourier multipliers on L,(X), where X is a
Lipschitz surface of the form X = {(s, g(s))|s € R™} with ||Vg|lcc < N,
is contained in Clifford algebras, Fourier transforms, and singular convolution
operators on Lipschitz surfaces by Chun Li, Alan McIntosh and Tao Qian, Mac-
quarie Mathematics Report No. 91-087.
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