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Consecutive minimum phase expansion of
physically realizable signals with applications
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In digital signal processing, it is a well know fact that a causal signal of finite energy is front loaded if and only if the
corresponding analytic signal, or the physically realizable signal, is a minimum phase signal, or an outer function in the
complex analysis terminology. Based on this fact, a series expansion method, called unwinding adaptive Fourier decom-
position (AFD), to give rise to positive frequency representations with rapid convergence was proposed several years ago.
It appears to be a promising positive frequency representation with great potential of applications. The corresponding
algorithm, however, is complicated due to consecutive extractions of outer functions involving computation of Hilbert
transforms. This paper is to propose a practical algorithm for unwinding AFD that does not depend on computation of
Hilbert transform, but, instead, factorizes out the Blaschke product type of inner functions. The proposed method sig-
nificantly improves applicability of unwinding AFD. As an application, we give the associated Dirac-type time-frequency
distribution of physically realizable signals. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

In signal analysis functions in the Hardy spaces H2 are identical, in various contexts, with analytic signals of finite energy, and in the
periodic case, physically realizable signals. The close relation between functions in the Hardy spaces and signals of finite energy in
general may be seen as follows ([1, 2]). For a real-valued signal of finite energy, denoted by f , we have the relations

f D 2RefC � c0, (1)

where

f
�

eit
�
D

1X
kD�1

ckeikt , fC.eit/ D

1X
kD0

ckeikt ,

where ck ’s are the Fourier coefficients satisfying the relation

kfk2 D

1X
�1

jckj
2 <1.

In the aforementioned formulation, fC is the related Hardy space function, or the analytic signal associated with f . The space of complex
analytic functions in the unit disc

H2.D/ D

(
f : D! C j f .z/ D

1X
kD0

ckzk ,
1X

kD0

jckj
2 <1

)

is defined to be the Hardy H2 space in the unit disc D. The unit disc formulation corresponds to signals defined on compact intervals
or periodic signals. Signals on the whole time range .�1,1/ are related to the Hardy space of the upper-half complex plane. In such
case, a real-valued signal f of finite energy satisfies
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f D 2RefC, fC.x/ D
1

2�

Z 1
0

eix� Of .�/d� , Of .�/ D

Z 1
�1

e�ix� f .x/dx, kfk2 D 2kOfk2 <1.

The aforementioned relations show that the study of a real-valued signal, f , may be reduced to the study of its Hardy space projection
fC. This idea and the related theory and practice have been developed by a number of researchers ([1–11]).

Adaptive Fourier decompositions, or AFDs, amount to adaptively expanding functions in the Hardy spaces into linear combinations
of the related Szegö kernels, or more precisely, the parameterized Szegö kernels or reproducing kernels of the underlying Hardy spaces,
namely the Hardy H2 spaces. With the concept AFD, besides the standard Szegö kernels, we also allow higher order Szegö kernels and
other functions closely related to Szegö kernels, including partial fractions with multiple poles.

Because the work [11] and [12], AFDs, including what is lately called Core AFD and its variations ([10]), have become more
sophisticated and have found their applications ([7, 13]).

The current paper concentrates on the unit disc context. The upper-half plane context has an analogous theory. The normalized
Szegö kernel of the unit disc is

ea.z/ D

p
1 � jaj2

1 � az
.

We call it the parameterized Szegö kernel by the parameter a 2 D. It enjoys the reproducing property: For f 2 H2.D/,

hf , eai D
p

1 � jaj2f .a/.

The last formula is essentially the Cauchy formula.
Let a1, : : : , an, : : : be a sequence of complex numbers inside the unit disc where an ¤ am if n ¤ m. Applying the Gram–Schmidt

orthogonalization process to ea1 , : : : , ean , : : :, we obtain the associated orthonormal rational system, called Takenaka-Malmquist system
or TM system in brief,

fBng
1
kD0, Bn.z/ D

p
1 � janj2

1 � anz

n�1Y
kD1

z � ak

1 � akz
. (2)

We note that the formula for Bn allows an D am for n ¤ m. Without the assumption an ¤ am, n ¤ m, the sequence ea1 , : : : , ean , : : :,
should be replaced by a related sequence Ea1 , : : : , Ean , : : :, where multiples of an’s are taken into account. The resulted fBng

1
nD1 by

applying the G-S process to Ea1 , : : : , Ean , : : : allowing multiple an’s are of the same forms as those derived under the assumption an ¤

am, n ¤ m ([11]). When all the an’s are identical with 0 the system reduces to fzn�1g1nD1, being the Fourier system for the Hardy space
H2.D/. This last remark gives a reason of the terminology adaptive Fourier decomposition by adaptive implementation of the rational
system fBg1nD1.

The purpose of this article is to give a practical algorithm for unwinding AFD, that, in the engineering terminology, may be rephrased
as consecutive minimum phase expansion of physically realizable signals. Before we get into the algorithm issue, we now first summa-
rize the idea of Unwinding AFD from digital signal processing (DSP): it is a process of consecutive extractions of front loaded signals
being incorporated into each step of Core AFD. We first recall the Nevanlinna Factorization Theorem.

From now on, we restrict ourselves to the Hardy H2 space for the unit disc. For functions in Hardy spaces, the Nevanlinna Theorem
asserts that if f 2 H2.D/, then f .z/ D Of .z/If .z/, where Of and If are, respectively, the outer and inner function factors of f . The inner
function part can be further decomposed as If D Bf Sf , where Bf and Sf are, respectively, called the Blaschke and singular inner function
part of the inner function If . The aforementioned factorization decompositions are unique up to unimodular constant factors. The
Outer, Blaschke, and singular inner functions in relation to f are given, respectively, by (6), (7), and (8).

We say a physically realizable signal of finite energy f is front loaded, if with the series expansion f D
P1

kD0 ckzk , and for any other
physically realizable signal of finite energy g D

P1
kD0 dkzk , there always holds

nX
kD0

jckj
2 �

nX
kD0

jdkj
2, for any positive integer n.

In DSP, it is a well known fact that a physically realizable function of finite energy f is front loaded if and only if f itself is an outer
function, or, equivalently, a minimum phase signal.

Within each step of the theoretical unwinding AFD algorithm, extracting out the outer function part of a function f 2 H2.D/ requires
computing a Hilbert transform. The cost of computing Hilbert transform is high, but the accuracy is low, which prevents unwinding AFD
from practical use. There have been a number of competitive algorithms for computation of Hilbert transform that are all insufficient
to treat the complexity of Unwinding AFD. Due to the super effectiveness of unwinding AFD (see [10]), however, a deep study on the
algorithm is necessary. This article presents an algorithm that, with a low-computation cost, significantly lifts up the convergence speed
of unwinding AFD series. The writing plan of the paper is as follows. In Section 2, we give a revision on the theoretical algorithm of
unwinding AFD. In Section 3, we introduce our new and practical algorithm with examples for comparison. In Section 4, we introduce
the Dirac-type time-frequency distribution based on the positive frequency decomposition of signals obtained from Unwinding AFD.
In the final section, Section 5, we draw conclusions.
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2. A revision on unwinding AFD

Because of the relation (1), we can restrict ourselves to merely the Hardy spaces, and, precisely, H2.D/. Let f1 D f 2 H2.D/. By using
the Nevanlinna’s factorization theorem ([14]), we have the decomposition f1 D O1I1, where O1 and I1 are, respectively, the outer and
inner functions associated with f1. Note that in the factorization, we ignore the difference between two functions, deferring only by a
multiplicative unimodular constant. For any a1 2 D, we have the identity

f .z/ D I1.z/hO1, ea1iea1.z/C I1.z/

 
O1.z/ � hO1, ea1iea1.z/

z�a1
1�a1z

!
z � a1

1 � a1z
.

The reasoning of doing such factorization and expansion is referred to a concept called ‘energy delay’ in DSP; see, for instance, [12].
Denote

f2.z/ D
O1.z/ � hO1, ea1iea1.z/

z�a1
1�a1z

,

and apply the Nevanlinna factorization to f2 and get f2 D I2O2. Next, to f2, we repeat what is performed to f1, and so on. We obtain,
after n steps,

f .z/ D
nX

kD1

hOk , eak iI
.k/.z/Bk.z/C In.z/

nY
kD1

z � ak

1 � akz
fnC1, (3)

where

I.k/ D I1 � � � Ik , fk D IkOk , fkC1.z/ D
Ok.z/ � hOk , eak ieak .z/

z�ak
1�ak z

. (4)

The aforementioned equation is an identity for any a1, : : : , an in the unit disc. What makes it to be unwinding AFD is that the selection
of each ak satisfies the maximal selection principle

ak D max argfjhQk , eaij j a 2 Dg.

In [11], it is proved that such ak 2 D exists, and under maximal selections of ak ’s, there holds

f .z/ D
1X

kD1

hOk , eak iI
.k/.z/Bk.z/. (5)

We note that the decomposition is orthonormal. Based on the analogous property of a TM system, the unit-norm property of
I.k/.z/Bk.z/ is obvious. Now, we show the orthogonality property. For any positive integers k, l, we have, by invoking Cauchy’s Theorem,

D
I.kCl/BkCl , I.k/Bk

E
D

1

2�

Z 2�

0
I.kC1/

�
eit
�
� � � I.kCl/

�
eit
�
� BkCl

�
eit
�

Bk

�
eit
�

dt D 0.

The nonlinear optimal selections of the ak ’s in core AFD already induce considerable complexity in its algorithm, what is added in the
Unwinding AFD case is the factorization that induces much more complexity. Performing the Nevanlinna factorization to any function
f 2 H2.D/, we have, more precisely, f D Of If , where Of is the outer function and If is the inner function of f , but further, If D Bf Sf , where
Bf is the Blaschke product part, and Sf is the singular inner function part of f . They are given, respectively, by the following formulas: for
z 2 D,

Of .z/ D Ce
1

2�

R 2�
0

eitCz
eit�z

log jf.eit/jdt , jCj D 1; (6)

and

Bf .z/ D zm
1Y

kDmC1

�jbkj

bk

z � bk

1 � bkz
, (7)

where bk , k D 1, 2, : : :, be all the zeros of f , and b1 D � � � D bm D 0, and bmCl ¤ 0, l D 1, 2, � � � ; and,

Sf .z/ D e�
R 2�

0
eitCz
eit�z

d�.t/, (8)

where d�.t/ is a positive regular Borel measure singular to Lebesgue measure. We note that in order to obtain unwinding AFD, we need
to compute both the outer and inner functions, and what we need, in fact, are the boundary limits of those functions.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62–72
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3. Computation of inner and outer functions

The natural method to obtain Of and If is to first work out Of by using the formula (6). We eventually need the boundary limit function
Of .eit/. Computing the boundary limit is equivalent to computing the Hilbert transform of log jf .eit/j. Once we achieve in getting Of

we use the formula If D f=Of to get the inner function, including its boundary limit. An algorithm for such computation costs a lot and
cannot be accurate, because of the singularity of the kernel of Hilbert transformation in general. This motivates an alternative strategy.
We proceed with first working out the inner function part, and then the outer function part. To do so, we introduce the mild assumption
that the Hardy space function under consideration may be analytically extended across the unit circle. The Hardy space theory then
implies that f has a trivial and, in fact, constant singular inner function, and Bf only has finitely many zeros as the ‘winding’ part. In such
case, If D Bf is easy to be obtained (7). Accordingly, and, accordingly, Of D f=Bf . In practice, we are given a discrete set of data on
the boundary. By analytic interpolation methods, we can find, in fact, a family of Hardy space functions that satisfy the discrete data
boundary condition, and being analytically extendable across the boundary of the unit disc. If, theoretically, the involved Hardy space
signal is not analytically extendable across the unit circle, then the introduced method only unwinds finite Blaschke products parts
and leaves infinite and singular inner function parts as they are. In such case, the results of approximation by Hardy space functions of
finitely many zeros guarantee applicability of the algorithm ([15]).

3.1. A practical method for finding zeros

From now on, we assume that f 2 H2.D/ is analytically extendable across the unit circle. In such case, Sf D 1. In practice, it is often the
case. If not, we, in fact, seek for an approximating function of such property. Under such assumption, we now claim that f has a finite
number of zeros on D. If not, the zeros of f have an accumulation point on D. The theorem of isolate zeros in complex analysis implies
that f � 0, which is the case of triviality.

Suppose that f has N1 zeros in D and N2 zeros on @D. Then,

N D N1 C
1

2
N2 D

1

2� i

Z
jzjD1

f 0.z/

f .z/
dz. (9)

Because f has a finite number of zeros in D, we have

N1 D lim
ı!0C

1

2� i

Z
jzjD1�ı

f 0.z/

f .z/
dz. (10)

It is obvious that there exists ı > 0 such that all zeros in D belong to D1�ı D fz 2 C j jzj < 1 � ıg. We have that f .b/ D 0 implies

b D arg min
z2D1�ı

jf .z/j. (11)

because of these simple facts, we can find the N1 zeros by the following steps.
Procedure:

1. Determine N by (9);
2. Set g1 D f and apply (11) to g1, then obtain b1 satisfying g1.b1/ D 0;
3. Set gk D gk�1

1�Nbk�1z
z�bk�1

and apply (11) to gk , then obtain bk satisfying gk.bk/ D 0, 2 � k � N;
4. The procedure ceases if jgk.bk/j > �0 > 0, where �0 is a given constant. Otherwise, repeat step 3.

The procedure shows that in the process of AFD we factorize as many as possible Möbius transforms in each step in order to speed up
the convergence.

4. Time frequency analysis of the decomposition

In this section, we concentrate on the time-frequency distribution induced by the proposed method. Recently, a novel development
of Dirac-type time-frequency distribution based on mono-component decomposition of signals is made in [7]. Here, we present the
time-frequency distribution of the proposed method in spirit of [7].

First, we recall the definition of periodic mono-component signals [12]. A signal of finite energy s.eit/ D �.t/ei�.t/ on Œ0, 2�� is a
mono-component, if there holds the function equation

Hs D �is,

and suitably defined � 0.t/ � 0, where H.f /.eix/ :D 1
2� p.v

R 2�
0 f .eit/ cot

�
x�t

2

�
dt is the circular Hilbert transform. Note that a signal of

finite energy is in the Hardy space H2.D/ if and only if Hs D �is on the boundary.
The Blaschke product of f with the assumed properties in the previous section

Bf

�
eit
�
D eimt

NY
kDmC1

�jbkj

bk

eit � bk

1 � Nbkeit

is a mono-component signal.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62–72
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In fact, Bf .eit/ D jBf .eit/jei�.t/ D ei�.t/, it is easy to calculate

� 0.t/ D
NX

kD1

1 � jbkj
2

1 � 2jbkj cos .t � �bk /C jbkj2
,

where bk D jbkjei�bk . We also have

0 <
1 � jbkj

1C jbkj
�

1 � jbkj
2

1 � 2jbkj cos .t � �bk /C jbkj2
�

1C jbkj

1 � jbkj
,

therefore, � 0.t/ > 0.
For a decomposition like f D

P1
kD1hOk , eak iI

.k/Bfa1,:::,akg, if we let a1 D 0, then all fBf0,a2,:::,akg.e
it/g1kD1 are mono-components.

Let hOk , eak iI
.k/.eit/Bfa1,:::,akg.e

it/ D �k.t/ei�k.t/. Simple computation on the Szegö kernel gives

�k.t/ D jhOk , eak ij

p
1 � jakj2p

1 � 2jakj cos .t � �ak /C jakj2

and

� 0k.t/ D
jakj cos .t � �ak / � jakj

2

1 � 2jakj cos .t � �ak /C jakj2
C

k�1X
lD1

1 � jalj
2

1 � 2jalj cos .t � �al /C jalj2
C

kX
jD1

NjX
lD1

1 � jb. j/
l j

2

1 � 2jb. j/
l j cos

�
t � �

b
. j/
l

�
C jb. j/

l j
2

,

where Nj denotes the number of zeros of fj as defined in (4).

4.1. TTFD and CTTFD

As in [7], the transient time frequency distribution (TTFD) of a mono-component signal s.t/ D �.t/ei�.t/ is defined by

P.t, �/ D �2.t/ıM.� � �
0.t//, .t, �/ 2 R �

�
�

1

2M
,C1

�

where

ıM.� � �
0.t// D

(
M, if � 2

�
� 0.t/ � 1

2M , � 0.t/C 1
2M

	
,

0, if � …
�
� 0.t/ � 1

2M , � 0.t/C 1
2M

	
.

Table I. Example 1.
k 1 2 3 4 5 6 7 8 9 10

ak 0.84� 0.44i �0.03C 0.80i �0.12� 0.83i �0.65� 0.07i 0.50C 0.06i �0.65� 0.64i �0.77C 0.38i �0.34C 0.46i �0.45C 0.22i 0.02� 0.77i
bk 0.92� 0.17i �0.30C 0.07i �0.17C 0.81i 0.07� 0.90i 0.80i �0.06� 0.10i �0.28� 0.22i �0.03C 0.01i 0.41� 0.65i �0.10C 0.16i
ck �0.58C 0.03i �0.19� 0.22i 0.59� 0.48i �0.02C 0.82i �0.08� 0.06i �0.84� 0.81i 0.98C 1.71i 0.24C 0.91i 0.57C 1.49i 0.22� 0.03i

k 11 12 13 14 15 16 17 18 19 20
ak �0.62� 0.01i 0.60C 0.34i �0.70C 0.06i �0.36C 0.38i 0.29� 0.67i �0.87C 0.32i 0.63C 0.02i 0.05� 0.47i �0.07C 0.53i �0.36�0.15i
bk 0.63C 0.69i �0.53C 0.05i 0.43C 0.63i 0.59C 0.47i 0.48C 0.09i 0.68i 0.48� 0.60i 0.68C 0.10i 0.11C 0.69i �0.06� 0.08i
ck 0.81C 1.92i 1.5100C 0.92i �0.43� 1.81i 0.54� 1.27i 0.68C 0.58i �0.01� 0.12i 1.91� 0.14i �0.98C 1.07i �0.49C 1.70i 0.08C 0.39i

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15
n=1

original
proposed

Figure 1. Example 1. n D 1 (unwinding adaptive Fourier decomposition).
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0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15
n=4

original
proposed

Figure 2. Example 1. n D 4 (unwinding adaptive Fourier decomposition).

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15
n=7

original
proposed

Figure 3. Example 1. n D 7 (unwinding adaptive Fourier decomposition).

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15
n=1

original
AFD

Figure 4. Example 1. n D 1 (adaptive Fourier decomposition).

where M is a large enough positive number to be determined in practice. When M goes to infinity, ıM becomes the distributional Dirac
function. It is convenience and applicable that we make M to be a finite number.

If s.eit/ is a multi-component signal, then s.eit/ can be decomposed into a sum of mono-component signals, say, for instance, in the
Unwinding AFD way:

s
�

eit
�
D

1X
kD1

sk.t/ D
1X

kD1

hOk , eak iI
.k/
�

eit
�

Bf0,a2,:::,akg

�
eit
�
D

1X
kD1

�k.t/e
i�k.t/.

Then, the corresponding composing TTFD is defined through

P.t, �/ D
1X

kD1

Pk.t, �/ D
1X

kD1

�2
k .t/ıM

�
� � � 0k.t/

�
,

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62–72
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0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15
n=4

original
AFD

Figure 5. Example 1. n D 4 (adaptive Fourier decomposition).

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

15
n=50

original
AFD

Figure 6. Example 1. n D 50 (adaptive Fourier decomposition).

0 1 2 3 4 5 6

10

20

30

40

50

60

70

80

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 7. Example 1. Transient time frequency given by unwinding adaptive Fourier decomposition.

where Pk.t, �/ is the TTFD of sk.t/.
For more details about TTFD and composing TTFD, see [7].

5. Experiments

Here, we give comparisons of the proposed method and AFD. Although AFD gives a fast approximation of signals in energy sense, it
does not perform well for signals with high frequency. We will show that the proposed method has the advantage in approximating
high-frequency signals.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62–72
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Figure 8. Example 1. Transient time frequency given by adaptive Fourier decomposition.
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Figure 9. Example 2. n D 1 (unwinding adaptive Fourier decomposition).

Table II. Example 2.
k 1 2 3 4 5 6 7 8 9 10

ak 0.76� 0.57i 0.34C 0.16i �0.55C 0.69i 0.12� 0.04i 0.74� 0.43i �0.30C 0.54i 0.64C 0.06i �0.14� 0.76i �0.36� 0.71i 0.59� 0.50i
bk �0.13� 0.08i 0.25C 0.69i 0.75� 0.51i 0.57C 0.17i �0.59� 0.20i �0.04� 0.23i �0.13� 0.25i �0.40C 0.50i 0.78i �0.80� 0.01i
ck 0.64C 0.41i �0.23C 0.83i 0.69C 0.36i 0.26� 1.02i �2.98� 0.69i �0.30� 0.76i 0.79� 0.59i 1.05C 0.36i �0.32C 0.34i 0.52� 0.23i

k 11 12 13 14 15 16 17 18 19 20
ak �0.06� 0.63i 0.66C 0.33i 0.25C 0.74i �0.37� 0.27i 0.45i 0.67C 0.33i 0.27C 0.78i �0.22� 0.62i 0.83� 0.20i �0.38� 0.06i
bk �0.33� 0.02i �0.44C 0.68i 0.46C 0.39i 0.56C 0.28i 0.60C 0.31i �0.19� 0.29i �0.54C 0.03i 0.91C 0.12i �0.63C 0.02i �0.38� 0.03i
ck 0.24� 1.00i 0.92� 0.33i 1.96C 0.60i �0.91� 0.13i 2.10C 1.44i 0.21� 0.82i �0.80C 0.29i �0.81C 1.15i 0.12� 0.86i 0.14� 0.06i
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Figure 10. Example 2. n D 5 (unwinding adaptive Fourier decomposition).
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5.1. Example 1

Denote by Bn D Bfa1,:::,akg the modified Blaschke product as given in (1.2). The signal is given by the samples of the following function

g1

�
eit
�
D Bfb1,:::,b20g

�
eit
� 20X

jD1

ckBfa1,:::,akg

�
eit
�

,

where t 2 Œ0, 2�/. The parameters (ak , bk and ck) of Example 1 are given in Table I.
Specifically, the samples of g1 are from tj D

2�.j�1/
1024 , j D 1, 2, : : : , 1024.

From Figures 1–3 and Figures 5–7, we know that the proposed method can give a good approximation to g1 with n D 7, while AFD
gives an approximation in a similar level with n D 50. Comparing Figure 4 and Figure 8, we see that TFD given by the proposed method
is more reasonable than the one given by AFD.
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Figure 11. Example 2. n D 10 (unwinding adaptive Fourier decomposition).
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Figure 12. Example 2. Transient time frequency given by unwinding adaptive Fourier decomposition.
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Figure 13. Example 2. n D 1 (adaptive Fourier decomposition).
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Figure 14. Example 2. n D 5 (adaptive Fourier decomposition).
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Figure 15. Example 2. n D 40 (adaptive Fourier decomposition).
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Figure 16. Example 2. Transient time frequency given by adaptive Fourier decomposition.

5.2. Example 2

Here, we consider that the example is of the following form, which is with slight difference of Example 1

g2

�
eit
�
D
�

Bfb1,:::,b20g

�
eit
�
C 1

� 20X
jD1

ckBfa1,:::,akg

�
eit
�

,

where t 2 Œ0, 2�/. The parameters (ak , bk and ck) of Example 2 are given in Table II.
Similarly, the samples of g2 are from the values of g2 at points tj D

2�.j�1/
1024 , j D 1, 2, : : : , 1024.

Unlike g1, g2 can not be first factorized out .Bfb1,:::,b20g C 1/ by the proposed method. However, the results show that performances
of the proposed method are still better than the AFDs of the same order. We can easily conclude this by comparing Figures 9–12 and
Figures 13–16.
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W. MAI ET AL.

6. Conclusion

In this paper, a new and effective algorithm for Unwinding AFD is presented and tested through theoretical examples. We then use the
new algorithm and the resulted positive frequency representation to give a Dirac type time-frequency distribution of signals.
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