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Consecutive minimum phase expansion of
physically realizable signals with applications

Weixiong Mai®*!, Pei Dang®, Liming Zhang‘ and Tao Qian®

Communicated by X. Wang

In digital signal processing, it is a well know fact that a causal signal of finite energy is front loaded if and only if the
corresponding analytic signal, or the physically realizable signal, is a minimum phase signal, or an outer function in the
complex analysis terminology. Based on this fact, a series expansion method, called unwinding adaptive Fourier decom-
position (AFD), to give rise to positive frequency representations with rapid convergence was proposed several years ago.
It appears to be a promising positive frequency representation with great potential of applications. The corresponding
algorithm, however, is complicated due to consecutive extractions of outer functions involving computation of Hilbert
transforms. This paper is to propose a practical algorithm for unwinding AFD that does not depend on computation of
Hilbert transform, but, instead, factorizes out the Blaschke product type of inner functions. The proposed method sig-
nificantly improves applicability of unwinding AFD. As an application, we give the associated Dirac-type time-frequency
distribution of physically realizable signals. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

In signal analysis functions in the Hardy spaces H? are identical, in various contexts, with analytic signals of finite energy, and in the
periodic case, physically realizable signals. The close relation between functions in the Hardy spaces and signals of finite energy in
general may be seen as follows ([1, 2]). For a real-valued signal of finite energy, denoted by f, we have the relations

f=2Reft —co, (1

)

where

oo 0o
f(eir) — Z Ckeikr, f+(eir) — cheikt’

k=—o00 k=0

where ¢i's are the Fourier coefficients satisfying the relation
o0
IF12 = Jal? < o0
—0

In the aforementioned formulation, f is the related Hardy space function, or the analytic signal associated with f. The space of complex
analytic functions in the unit disc

o0 o0
H(D) = {f:D—>C[f)) =Y az' ) |al’ < oo
k=0 k=0

is defined to be the Hardy H? space in the unit disc D. The unit disc formulation corresponds to signals defined on compact intervals
or periodic signals. Signals on the whole time range (—oo, 00) are related to the Hardy space of the upper-half complex plane. In such
case, a real-valued signal f of finite energy satisfies
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The aforementioned relations show that the study of a real-valued signal, f, may be reduced to the study of its Hardy space projection
f*.This idea and the related theory and practice have been developed by a number of researchers ([1-11]).

Adaptive Fourier decompositions, or AFDs, amount to adaptively expanding functions in the Hardy spaces into linear combinations
of the related Szeg6 kernels, or more precisely, the parameterized Szegd kernels or reproducing kernels of the underlying Hardy spaces,
namely the Hardy H? spaces. With the concept AFD, besides the standard Szegé kernels, we also allow higher order Szegé kernels and
other functions closely related to Szego kernels, including partial fractions with multiple poles.

Because the work [11] and [12], AFDs, including what is lately called Core AFD and its variations ([10]), have become more
sophisticated and have found their applications ([7, 13]).

The current paper concentrates on the unit disc context. The upper-half plane context has an analogous theory. The normalized
Szego kernel of the unit disc is

V1—laf

eq(2) = =
o) = ———

We call it the parameterized Szegé kernel by the parameter a € D. It enjoys the reproducing property: For f € H?(D),

(f,ea) = V1 —la]*f(a).

The last formula is essentially the Cauchy formula.

Letay,...,an, ... be a sequence of complex numbers inside the unit disc where a, # ap if n # m. Applying the Gram-Schmidt
orthogonalization processtoeg,, . . ., €4,, . . ., We obtain the associated orthonormal rational system, called Takenaka-Malmquist system
or TM system in brief,

—1

V1—lan2 T~ z—ax

B2, Bn(z) = — —. 2
2o B =[] =50 @

k=1
We note that the formula for B, allows a, = an, for n # m. Without the assumption a, # am,n # m, the sequence e,,,...,€q,, ...
should be replaced by a related sequence E,, ..., Eq,, ..., where multiples of a,’s are taken into account. The resulted {B,}52, by
applying the G-S process to Eg,, . . ., Eq,, . . . allowing multiple a,’s are of the same forms as those derived under the assumption a, #

am,n # m ([11]). When all the a,,'s are identical with 0 the system reduces to {z"~'}52,, being the Fourier system for the Hardy space
H?(D). This last remark gives a reason of the terminology adaptive Fourier decomposition by adaptive implementation of the rational
system {B}°2 ;.

The purpose of this article is to give a practical algorithm for unwinding AFD, that, in the engineering terminology, may be rephrased
as consecutive minimum phase expansion of physically realizable signals. Before we get into the algorithm issue, we now first summa-
rize the idea of Unwinding AFD from digital signal processing (DSP): it is a process of consecutive extractions of front loaded signals
being incorporated into each step of Core AFD. We first recall the Nevanlinna Factorization Theorem.

From now on, we restrict ourselves to the Hardy H? space for the unit disc. For functions in Hardy spaces, the Nevanlinna Theorem
asserts that if f € H?(D), then f(z) = Or(2)l¢(z), where O and Ir are, respectively, the outer and inner function factors of f. The inner
function part can be further decomposed as Ir = B¢S, where B and Sy are, respectively, called the Blaschke and singular inner function
part of the inner function /r. The aforementioned factorization decompositions are unique up to unimodular constant factors. The
Outer, Blaschke, and singular inner functions in relation to f are given, respectively, by (6), (7), and (8).

We say a physically realizable signal of finite energy f is front loaded, if with the series expansion f = Y ;2 ¢,z¥, and for any other

physically realizable signal of finite energy g = Y 2, dz*, there always holds
n n
Z lck|? = Z |dk|%, for any positive integer n.
k=0 k=0

In DSP, it is a well known fact that a physically realizable function of finite energy f is front loaded if and only if f itself is an outer
function, or, equivalently, a minimum phase signal.

Within each step of the theoretical unwinding AFD algorithm, extracting out the outer function part of a function f € H?(D) requires
computing a Hilbert transform. The cost of computing Hilbert transform is high, but the accuracy is low, which prevents unwinding AFD
from practical use. There have been a number of competitive algorithms for computation of Hilbert transform that are all insufficient
to treat the complexity of Unwinding AFD. Due to the super effectiveness of unwinding AFD (see [10]), however, a deep study on the
algorithm is necessary. This article presents an algorithm that, with a low-computation cost, significantly lifts up the convergence speed
of unwinding AFD series. The writing plan of the paper is as follows. In Section 2, we give a revision on the theoretical algorithm of
unwinding AFD. In Section 3, we introduce our new and practical algorithm with examples for comparison. In Section 4, we introduce
the Dirac-type time-frequency distribution based on the positive frequency decomposition of signals obtained from Unwinding AFD.
In the final section, Section 5, we draw conclusions.
|
Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62-72

IS]
o
o
N
El
n
o
>
I
[<]
:
o

8
<
S

3

2
ﬂ
o)
E
o
g
£
2

8

El
o
<3
=
1S)
8
N
3

3

5]

®
D
o
g
[e]
8

E
L

@

]
s
2

o
=1
E
]

ul
c
2

<

S

E
o
&
8
N
K
=3
]

2
)
3
?
3
(=%
o
o
3
2
=
?
2
7
15}
=1
E
o
g
g
2
8
El
Q
3
7
23
o
8
3
2
=
3
o
=]
E
e
o
=1
E
9]
c
g
g
c
]
o,
c
8
9
3
o
]
)
[
Q
2
Q
Ei
g
g
=3
o
8
=




W. MAI ETAL.
I ——

2. Arevision on unwinding AFD

Because of the relation (1), we can restrict ourselves to merely the Hardy spaces, and, precisely, H*(D). Let f; = f € H?(D). By using
the Nevanlinna’s factorization theorem ([14]), we have the decomposition f; = O;/;, where O, and I, are, respectively, the outer and
inner functions associated with f;. Note that in the factorization, we ignore the difference between two functions, deferring only by a
multiplicative unimodular constant. For any a; € D, we have the identity

() = 1h(2) (O e, )eq, 2) + h(2) <O1 O e (z)) o

1—a1z

The reasoning of doing such factorization and expansion is referred to a concept called ‘energy delay’ in DSP; see, for instance, [12].
Denote

o) = 1D = Oven)en @

1—aiz

and apply the Nevanlinna factorization to f, and get f, = ,0,. Next, to f,, we repeat what is performed to f;, and so on. We obtain,

after n steps,
n

n
Z — dg
f2) = Y (Onea)I® @Bi(2) + (@) [ ] o (3)
k=1 k=1
where
Ok(2) — (O, ez )eaq (z
10 = 1yl fo = Ok g (2) = «(2) <z—kak ar ) €ay (- ). @
T—akz
The aforementioned equation is an identity forany a;, . . ., a, in the unit disc. What makes it to be unwinding AFD is that the selection

of each a satisfies the maximal selection principle
ay = maxarg{|(Qx, es)| | a € D}.

In [11], itis proved that such a; € D exists, and under maximal selections of ay’s, there holds

o0

@) =) (O eq)1® (2)Bi(2). (5)

k=1

We note that the decomposition is orthonormal. Based on the analogous property of a TM system, the unit-norm property of
1% (2)By(2) is obvious. Now, we show the orthogonality property. For any positive integers k, I, we have, by invoking Cauchy’s Theorem,

2
(I(k-}—l)Bk_Hl I(k)Bk> — % / /(k+1) (eir) . /(k'H) (eit) . Bk_H (eit) Ek (e”) dt = 0.
0

The nonlinear optimal selections of the ay's in core AFD already induce considerable complexity in its algorithm, what is added in the
Unwinding AFD case is the factorization that induces much more complexity. Performing the Nevanlinna factorization to any function
f € H?(D), we have, more precisely, f = Ofls, where O is the outer function and s is the inner function of f, but further, Ir = B¢S¢, where
Bt is the Blaschke product part, and S¢ is the singular inner function part of f. They are given, respectively, by the following formulas: for
zeD,

Or(z) = Cet 7 T2 Toal@nldt () _ 4, ©)
and
o0
—|b — b,
Bi(z) = 2" H MZ%, )
Pt b 1—byz

where by, k = 1,2,..., beall the zeros of f,and by = --- = b, = 0,and by, # 0,/ = 1,2,---;and,

Sp(2) = e~ 7w, ®)

where du(t) is a positive regular Borel measure singular to Lebesgue measure. We note that in order to obtain unwinding AFD, we need
to compute both the outer and inner functions, and what we need, in fact, are the boundary limits of those functions.
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3. Computation of inner and outer functions

The natural method to obtain Or and I is to first work out O by using the formula (6). We eventually need the boundary limit function
Or(e'"). Computing the boundary limit is equivalent to computing the Hilbert transform of log |f(e'!)|. Once we achieve in getting O¢
we use the formula Ir = f/Or to get the inner function, including its boundary limit. An algorithm for such computation costs a lot and
cannot be accurate, because of the singularity of the kernel of Hilbert transformation in general. This motivates an alternative strategy.
We proceed with first working out the inner function part, and then the outer function part. To do so, we introduce the mild assumption
that the Hardy space function under consideration may be analytically extended across the unit circle. The Hardy space theory then
implies that f has a trivial and, in fact, constant singular inner function, and B¢ only has finitely many zeros as the ‘winding’ part. In such
case, If = By is easy to be obtained (7). Accordingly, and, accordingly, O = f/Bs. In practice, we are given a discrete set of data on
the boundary. By analytic interpolation methods, we can find, in fact, a family of Hardy space functions that satisfy the discrete data
boundary condition, and being analytically extendable across the boundary of the unit disc. If, theoretically, the involved Hardy space
signal is not analytically extendable across the unit circle, then the introduced method only unwinds finite Blaschke products parts
and leaves infinite and singular inner function parts as they are. In such case, the results of approximation by Hardy space functions of
finitely many zeros guarantee applicability of the algorithm ([15]).

3.1.  Apractical method for finding zeros

From now on, we assume that f € H?(D) is analytically extendable across the unit circle. In such case, S¢ = 1. In practice, it is often the
case. If not, we, in fact, seek for an approximating function of such property. Under such assumption, we now claim that f has a finite
number of zeros on D. If not, the zeros of f have an accumulation point on D. The theorem of isolate zeros in complex analysis implies
that f = 0, which is the case of triviality.

Suppose that f has N; zeros in D and N, zeros on dD. Then,

N=N 4y = @, (9)
T2 T i e F T
Because f has a finite number of zeros in D, we have
1 f
Ny = lim 7f @ 4. (10)
§—0+ 21i Ji;1=1—5 f(2)
It is obvious that there exists § > 0 such that all zeros in D belongtoD,_s = {z € C| |z| < 1 — §}. We have that f(b) = 0 implies
b =arg min |f(2)|. (1)
z€D—s

because of these simple facts, we can find the N; zeros by the following steps.
Procedure:

1. Determine N by (9);

2. Setg; = f and apply (11) to g4, then obtain b satisfying g;(b;) = 0;

3. Set gk = gk—1 12__%%‘12 and apply (11) to gk, then obtain by satisfying gx(bx) = 0,2 <k < N;

4. The procedure ceases if |gi(bk)| > €9 > 0, where ¢ is a given constant. Otherwise, repeat step 3.

The procedure shows that in the process of AFD we factorize as many as possible Mdbius transforms in each step in order to speed up
the convergence.

4, Time frequency analysis of the decomposition

In this section, we concentrate on the time-frequency distribution induced by the proposed method. Recently, a novel development
of Dirac-type time-frequency distribution based on mono-component decomposition of signals is made in [7]. Here, we present the
time-frequency distribution of the proposed method in spirit of [7].

First, we recall the definition of periodic mono-component signals [12]. A signal of finite energy s(e") = p(t)e’®® on [0,27] is a
mono-component, if there holds the function equation

Hs = —is,
and suitably defined 6/ (t) > 0, where H(f)(e*) := 5-p.v fom f(e") cot (%51) dt is the circular Hilbert transform. Note that a signal of

finite energy is in the Hardy space H?(D) if and only if Hs = —is on the boundary.
The Blaschke product of f with the assumed properties in the previous section

N .
B (eir) =Mt 1_[ il 7e" _ b
k=m-1 bk 1— bke’f

is a mono-component signal.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62-72
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In fact, Be(e') = |Br(e")[e®® = 9D it is easy to calculate

N

1— |by?
o'(t) = '
“ kg 1= 2by] cos (t — 6, + |y 2

where by, = |bi|e/®. We also have

T—1bd _ 1— by _ T+ 16
14 bkl = 1—2|bk| cos (t — b,) + [bk]2 — 1— |bk|'

0<

therefore, 6/(t) > 0.
For a decomposition like f = Z,‘f; (Ok, eak)l(")B{,,hwak}, if we let a; = 0, then all {Byqq,,. .. (€")}52, are mono-components.
Let (Ok, eq )1 ™ (€")Bia,....a3 (€7) = pr(t)e?®. Simple computation on the Szegé kernel gives

V1 —lal?

)
V1= 2la] cos (t — Oa,) + |ax]?

Pk (t) = (O, €q,

and
k—1

k N j
by = —1l0sC—bo) —lail | 5 1 laf? Yy 162
k 1 —2|ak| cos (t — 0q,) + |ak|? pue 1 —2|a)| cos (t — bg) + |ay|? il 2|b/(j)| cos (t— eb”’) + |bl(j)|2’
1

where N; denotes the number of zeros of f; as defined in (4).

4.1. TTFD and CTTFD
As in [7], the transient time frequency distribution (TTFD) of a mono-component signal s(t) = p(t)e’® is defined by
1
PULE) = (O3~ 0O, (66 < R x |~ 4o
where
M, if §e[0/(t)— 350"(t) + 35]

Sm(E—-0'(t) =
ME=EO =00 E¢[0/(0)— 2,00t + .

Table l. Example 1.
k 1 2 3 4 5 6 7 8 9 10

ax 0.84—044i —0.03+0.80i —0.12—0.83i —0.65—0.07i 050+ 0.06i —0.65— 0.64i —0.77 + 0.38i —0.34 + 0.46i —0.45 + 0.22i 0.02 — 0.77i
by 092-0.17i —0.30+0.07i —0.17 +0.81i  0.07 — 0.90i 0.80i —0.06 — 0.10i —0.28 —0.22i —0.03 +0.01i 0.41 —0.65/ —0.10 + 0.16i
cx —0.58 +0.03i —0.19—0.22i 0.59—048i —0.02+ 0.82i —0.08 —0.06i —0.84 —0.81i 0.98 + 1.71i 0.24+091i 0.57 + 1.49i 0.22 — 0.03i

k 1 12 13 14 15 16 17 18 19 20
ax —0.62—0.01i 0.60 + 0.34i —0.70 + 0.06i —0.36 + 0.38i 0.29 —0.67i —0.87 + 0.32i 0.63 + 0.02i  0.05—0.47i —0.07 + 0.53i —0.36—0.15i
by 0.63+40.69 —0.53+40.05i 043+ 0.63i 0.59+047i 0.48+ 0.09i 0.68i 048 —0.60i 0.68 +0.10i 0.11 4+ 0.69i —0.06 — 0.08i

cx 081+ 1.92i 15100+ 0.92i —0.43—1.81i 0.54—1.27i 0.68+0.58i —0.01—0.12i 191 —0.14i —0.98 + 1.07i —0.49 + 1.70i  0.08 + 0.39i

n=1
15 T . r r r r

original
proposed

10 k

1 2 3 4 5 6 7

Figure 1. Example 1.n = 1 (unwinding adaptive Fourier decomposition).

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62-72
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15 T T T T T u
original
proposed

10} 1

1 2 3 4 5 6 7

Figure 2. Example 1. n = 4 (unwinding adaptive Fourier decomposition).

15 T T T T T r
original
proposed

10 1

-5} ]

—10} i

-15

0 1 2 3 4 5 6 7

Figure 3. Example 1. n = 7 (unwinding adaptive Fourier decomposition).

15 " . . . . :

original
AFD

, el bt
UK 1 R LA

| |

-15

0 1 2 3 4 5 6 7
Figure 4. Example 1.n = 1 (adaptive Fourier decomposition).

where M is a large enough positive number to be determined in practice. When M goes to infinity, §y becomes the distributional Dirac
function. It is convenience and applicable that we make M to be a finite number.

If s(e™) is a multi-component signal, then s(e'*) can be decomposed into a sum of mono-component signals, say, for instance, in the
Unwinding AFD way:

. o o . . o .
s(€) =D sk(®) = D (Owea) ™ (") Biog,,...a (€F) = Y pr()e™®.
k=1 k=1 k=1

Then, the corresponding composing TTFD is defined through

P(t,§) = Y Pu(t.E) =Y pp(Ddm (€ — 6,(D),

k=1 k=1

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62-72
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n=4
15 T T . r r r

original
AFD

10} .

-5+

—10} 4

-15

1 2 3 4 5 6 7

o

Figure 5. Example 1. n = 4 (adaptive Fourier decomposition).

n=50
15 T T r r r -

original
AFD

10} 1

5L ]

—10}F |

-15

IN
ok
o
N

0 1 2 3

Figure 6. Example 1. n = 50 (adaptive Fourier decomposition).

Figure 7. Example 1. Transient time frequency given by unwinding adaptive Fourier decomposition.

where Py (t, £) is the TTFD of s (t).
For more details about TTFD and composing TTFD, see [7].

5. Experiments

Here, we give comparisons of the proposed method and AFD. Although AFD gives a fast approximation of signals in energy sense, it
does not perform well for signals with high frequency. We will show that the proposed method has the advantage in approximating
high-frequency signals.

|
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100

Figure 8. Example 1. Transient time frequency given by adaptive Fourier decomposition.

n=1
25

20

15
10

Figure 9. Example 2. n = 1 (unwinding adaptive Fourier decomposition).

Table ll. Example 2.
2

k 1 3 4 5 6 7 8 9 10

ax 076—0.57i 034+ 0.16i —0.55+0.69% 0.12—0.04i 0.74—0.43i —0.30+ 0.54i 0.64 + 0.06i —0.14—0.76i —0.36 —0.71i  0.59 — 0.50i
by —0.13—0.08i 0.25+0.69 0.75—0.51i 0.57 +0.17i —0.59 —0.20i —0.04 —0.23i —0.13 —0.25i —0.40 + 0.50i 0.78i —0.80 — 0.01i
¢k 064+ 041i —0.23 +0.83i 0.69 +0.36i 0.26—1.02i —2.98—0.69i —0.30—0.76i 0.79—0.59  1.05+ 0.36i —0.32+ 0.34i 0.52 —0.23i

k 1 12 13 14 15 16 17 18 19 20

ax —0.06 —0.63i 0.66 + 0.33i 0.25+0.74i —0.37 —0.27i 0.45i 0.67 +0.33i 0.27 +0.78i —0.22—0.62i 0.83 —0.20i —0.38 — 0.06i
by —0.33 —0.02i —0.44 + 0.68i 0.46 +0.39i  0.56 + 0.28i 0.60 + 0.31i —0.19—0.29i —0.54 +0.03i 091 + 0.12i —0.63 + 0.02i —0.38 — 0.03i
¢k 024—100i 092—033i 196+ 0.60i —091—0.13i 2.10 + 1.44i 0.21 —0.82i —0.80 +0.29i —0.81 + 1.15i 0.12—0.86i  0.14 — 0.06i

n=5
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20 | proposed |

deo1jdde au) Aq pauBACE 9.2 SI 1L YO ‘35N 0 SBINI 0} AIRIGIT UIIUO AB]IM UO (SUONIPUOD-PUE-SLLLBYLICY" A3 1M AJeIq[BU1[UO//:SY) SUONIPUOD PLEE SIS | U} 885 *[£202/70/02] UO ARiq 1 auIIUO AB]IM ‘0B32 N BURILI0D) AQ 09VE BLIW/Z00T OT/I0pALcY" A3 1M AR BU1[UO//SNY WOl Papeojumod ‘T ‘9T0Z ‘9L T660T

Figure 10. Example 2. n = 5 (unwinding adaptive Fourier decomposition).
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5.1. Example 1

Denote by B, = By,,....q3 the modified Blaschke product as given in (1.2). The signal is given by the samples of the following function

20
g (eit) = Biby,...by0} (eit) ZCkB{m,---,ﬂk} (eir) '
=1

where t € [0, 27r). The parameters (ax, bx and ¢) of Example 1 are given in Table I.

Specifically, the samples of g; are from t; = %2_4”,] =1,2,...,1024.

From Figures 1-3 and Figures 5-7, we know that the proposed method can give a good approximation to g; with n = 7, while AFD
gives an approximation in a similar level with n = 50. Comparing Figure 4 and Figure 8, we see that TFD given by the proposed method

is more reasonable than the one given by AFD.

n=10
‘ ‘ ‘ ‘ ‘ (;riginal
20 | proposed |

15 1

0 1 2 3 4 5 6 7

Figure 12. Example 2. Transient time frequency given by unwinding adaptive Fourier decomposition.

n=1

original

-10
-15

-20
0

Figure 13. Example 2. n = 1 (adaptive Fourier decomposition).

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62-72

85UB01"] SUOWILLIOD BAITER.D) 3|ged! dde U} AQ pauBACE 9 SI 1L YO ‘35N JO SBINI 0y ARG 1T 3UIIUO AB]IM UO (SUOIIPUOD-PUE-SLLLBYICY" A3 1M AJeIq I [BUT[UO//:S1Y) SUONIPUOD PLE S | U1 885 *[£202/70/02] Uo ARiq i aUIIUO AB]IM ‘0B32 N BURILI0D) AQ 09VE BLIW/ZO0T OT/I0pALcY" A3 1M AJRIqBUI[UO//SNY WOIJ PAPeojumoq ‘T ‘9T0Z ‘9L T660T



W. MAI ETAL.
n=5
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original
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n=40

original
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Figure 15. Example 2. n = 40 (adaptive Fourier decomposition).
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Figure 16. Example 2. Transient time frequency given by adaptive Fourier decomposition.

5.2. Example 2
Here, we consider that the example is of the following form, which is with slight difference of Example 1

20

92 (eir) = (B{bh---,bzo} (eir) + 1) chB{ah-»-«ak} (eit) ’
j=1

where t € [0, 27r). The parameters (ax, bx and ¢) of Example 2 are given in Table II.

Similarly, the samples of g, are from the values of g, at points t; = 27’1%’;1),1' =1,2,...,1024.
Unlike g4, g, can not be first factorized out (Byy,,... 5,3 + 1) by the proposed method. However, the results show that performances
of the proposed method are still better than the AFDs of the same order. We can easily conclude this by comparing Figures 9-12 and

Figures 13-16.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 62-72
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Conclusion

In this paper, a new and effective algorithm for Unwinding AFD is presented and tested through theoretical examples. We then use the
new algorithm and the resulted positive frequency representation to give a Dirac type time-frequency distribution of signals.
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