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Abstract

In this article, motivated by the classic Hadamard factorization theorem about an entire function of finite 
order in the complex plane, we firstly prove that a harmonic function whose positive part satisfies some 
growth conditions, can be represented by its integral on the boundary of the half space. By using Nevan-
linna’s representation of harmonic functions and the modified Poisson kernel of the half space, we further 
prove a representation formula through integration against a certain measure on the boundary hyperplane 
for harmonic functions not necessarily continuous on the boundary hyperplane whose positive parts satisfy 
weaker growing conditions than the first question. The result is further generalized by involving a parameter 
m dealing with the singularity at the infinity.
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1. Introduction

Some fundamental properties of entire functions of finite order and type in the complex plane 
or analytic functions in the right (upper) half-plane, have been well studied (see [2,10]). In light 
of results from Complex Analysis, the order of a classic harmonic function with the Poisson 
integral in the half space of Rn is 1, if we define the order of harmonic functions in higher-
dimensions similarly to that of entire functions. In what follows, H = {x ∈ R

n : x = (x′, xn),

x′ ∈R
n−1, xn > 0} represents the upper half space of Rn.

However, when the order is greater than 1, as far as we know, there has been one paper 
concerning this higher-dimensional problem: The recent paper [15] establishes an integral repre-
sentation for harmonic functions in H with order less than 2, by using Carleman’s formula and 
Nevanlinna’s representation [16]. The latter mentioned two formulas in one complex variable 
were useful in the classical theory of functions of one complex variable. Paper [16] generalized 
the Carleman’s formula for harmonic functions in the half plane to the higher-dimensional half 
space, and established a Nevanlinna’s representation for harmonic functions in the half sphere 
by using Hörmander’s theorem, so they are invaluable tools in the study of harmonic functions 
in the half space H as well.

The classic Hadamard factorization theorem of an entire function of finite order [3] and the 
inner and outer factorization theorem of analytic functions in the Hardy spaces in a half plane 
[6,9] motivate us to carry out this study on harmonic functions in higher-dimensional spaces as 
given in the forthcoming two sections. Such a higher-dimensional situation is important, inter-
esting and worthwhile for further investigation. In Section 2 we employ Carleman’s formula [16]
to give the integral representation of harmonic functions with order less than 3, where integral 
boundary conditions are assumed in place of growth conditions describing the finite order or 
type properties for entire functions. We also prove that a harmonic function with a finite order, 
not necessarily continuous on the boundary hyperplane, has an integral representation involving 
a measure. We make use of Nevanlinna’s representation [16] and the modified Poisson kernel of 
the half space H [5]. Integral boundary conditions are used to displace the terminology of finite 
order as well. In Section 3 we provide proofs of the main results.

2. Preliminaries

The notation and terminology that are used in this article can be found in [4,15].
Recall that H is the Euclidean half space, we then have the hyperplane Rn = {x ∈ R

n : x =
(x′, xn), xn = 0}, which will be denoted as ∂H. We identify Rn with Rn−1 ×R and write x ∈R

n

as x = (x′, xn), where x′ = (x1, · · · , xn−1) ∈ R
n−1. Let θ be the angle between x and ên, i.e., 

xn = |x| cos θ , |x′| = |x| sin θ (0 ≤ θ < π
2 ), x ∈ H. We will write x = x1ê1 + · · · + xn−1ên−1 +

xnên, where êi is the ith unit coordinate vector and ên is the normal to ∂H.
For a measurable function u on ∂H, the Poisson integral

P [u](x) = 2xn

nωn

∫
∂H

u(y′)
|x − y′|n dy′ (2.1)

will exist and then define a harmonic function in H if [1,12]
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∫
∂H

|u(y′)|
1 + |y′|n dy′ < ∞, (2.2)

where ωn = π
n
2

�(1+ n
2 )

is the volume of the unit n-ball. If u is continuous then P [u](x) is the 
solution of the half space Dirichlet problem.

The recent paper [15] partly employs the methods of [14] to weaken the condition (2.2) into

∫
∂H

u+(y′)
1 + |y′|n+1

dy′ < ∞, (2.3)

and give the integral representation

u = 2xn

nωn

∫
∂H

(
1

|x − y′|n − 1

1 + |y′|n
)

u(y′)dy′. (2.4)

One of the purposes of this article is to further weaken the boundary condition (2.3). We will first 
introduce the modified Poisson integral of harmonic functions. Subsequently, we will give the 
integral expression of harmonic functions by involving a parameter m dealing with singularity at 
the infinity.

We suppose that a measurable function u on ∂H satisfies the conditions

∫
∂H

u+(y′)
1 + |y′|n+2

dy′ < ∞ (2.5)

and

∫
H

xnu
+(x)

1 + |x|n+1
dx < ∞. (2.6)

By means of Carleman’s formula and Nevanlinna’s formula [16], with the proof in [15], we can 
derive the boundary convergence condition and the integral representation of u.

Theorem 2.1. If a harmonic function u(x) satisfies (2.5) and (2.6), then

∫
∂H

|u(y′)|
1 + |y′|n+2

dy′ < ∞; (2.7)

and there exist constants c1 and c2, such that

u(x) = 2xn

nωn

∫
∂H

(
1

|x − y′|n − 1

1 + |y′|n − |x|
1 + |y′|n+1

)u(y′)dy′ + c1xn|x| + c2xn. (2.8)
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Remark 2.1. Theorem 2.1 generalizes the results of harmonic functions in [1,5,8,14,15].

Based on the idea of the classic Hadamard theorem of entire functions of finite order and 
the inner and outer function factorization theorem of analytic functions in Hardy spaces in a 
half-plane, as well as Riesz representation theorem, we now turn to an interesting connection 
between integral and measure. When m is an integer, denote by H(m) the space of functions u
that are harmonic in H and satisfy

I = sup
0<|ε|<1

∫
∂H

u+(ε′ + y′)
1 + |y′|n+m

dy′ < ∞ (2.9)

and

∫
H

xnu
+(x)

1 + |x|n+m+2
dx < ∞. (2.10)

For u ∈ H(m), u �≡ 0, u(x) is bounded in the half sphere B+
R = {x ∈ H, |x| = R, xn > 0, R > 1}, 

thereby, the non-tangential limit of u(x) exists in the cone

�α(x′) = {x = (x′, xn) ∈H, |x′ − y′| < αxn, y
′ ∈ ∂H, α > 0},

and the non-tangential limit function u(x′) is also bounded in �α(x′) [1].
If m ≥ 0 is an integer, paper [4] defines the modified Poisson kernel of order m for x ∈ H as 

follows:

P m
H

(x, y) =

⎧⎪⎨
⎪⎩

PH(x, y), when |y| ≤ 1,

PH(x, y) − 2xn

nωn

m−1∑
k=0

|x|k
|y|n+k C

n
2
k

(
x·y

|x||y|
)

, when |y| > 1.

For the coefficients C
n
2
k (t) and its properties see [8], pp. 82 and 92. Reference [4] also gives the 

following estimation:

|P m
H

(x, y)| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A|x|n+m

xn−1
n |y|n+m

, 1 < |y| ≤ 2|x|;
Axn|x|m

xn−1
n |y|n+m

, |y| > max{1,2|x|};
2

ωn

1

xn−1
n

, |y| ≤ 1,

(2.11)

for |x| > 1 and a constant A (as is customary, A will denote a finite, positive constant depending 
at most on n and m, not necessarily the same on any two occurrences).
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Motivated by [14,15], our second aim in this article is to establish the following theorem:

Theorem 2.2. Suppose u(x) ∈H(m). Then

(1)

I = sup
0<|ε|<1

∫
∂H

|u(ε′ + y′)|
1 + |y′|n+m

dy′ < ∞.

(2) There exists a measure μ on ∂H such that

∫
∂H

d|μ(y′)|
1 + |y′|n+m

< ∞.

(3) There exists a polynomial Q(x) of degree m − 3 such that

u(x) = Q(x) +
∫
∂H

Pm(x, y′)dμ(y′).

Remark 2.2. Theorem 2.2 generalizes the results in [5,14,15].

3. The proofs of the theorems

Proof of Theorem 2.1. Carleman’s formula of harmonic functions [15,16] implies

∫
{x: |x|=R, xn>0}

u−(x)
nxn

Rn+1
dσ(x) +

∫
{x: r<|x′|<R, xn=0}

u−(x′)
(

1

|x′|n − 1

Rn

)
dx′ =

∫
{x: |x|=R, xn>0}

u+(x)
nxn

Rn+1
dσ(x) +

∫
{x: r<|x′|<R, xn=0}

u+(x′)
(

1

|x′|n − 1

Rn

)
dx′ − c1

rn
− c2

Rn
≤ Auρ(R),

(3.1)

for R > 1, where u− = max{−u(x), 0} and u+ = max{u(x), 0} are negative part and positive 
part of u(x), respectively. u1(R) = 1 + ln(1 + R), uρ(R) = 1 + (1 + R)ρ−1, ρ �= 1. Let

�1(R) :=
∫

u+(x′)
(

1

|x′|n − 1

Rn

)
dx′.
{x∈H:1<|x|<R,xn=0}
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Then

�1(R) ≤ 2n

2n − 1

∫
{x∈H:1<|x|<2R,xn=0}

u+(x′)
(

1

|x′|n − 1

(2R)n

)
dx′

≤ Auρ(R). (3.2)

Taking into account

∞∫
1

1

Rn+2

∫
{x∈H:1<|x|<R,xn=0}

u−(x′)
(

1

|x′|n − 1

Rn

)
dx′dR

=
∫

{x∈H:|x|>1,xn=0}
u−(x′)

∞∫
|x′|

1

Rn+2

(
1

|x′|n − 1

Rn

)
dRdx′,

we have
∞∫

1

1

Rn+2

∫
{x∈H:1<|x|<R,xn=0}

u−(x′)
(

1

|x′|n − 1

Rn

)
dx′dR

≤
∞∫

1

1

Rn+2

∫
{x∈H:|x|=R,xn>0}

u+(x)
nxn

Rn+1
dσ(x)dR

+
∞∫

1

1

Rn+2

∫
{x∈H:1<|x|<R,xn=0}

u+(x′)
(

1

|x′|n − 1

Rn

)
dx′dR

−
∞∫

1

1

Rn+2

( c1

Rn
+ c2

)
dR < ∞.

According to Nevanlinna’s formula of harmonic functions in half sphere [16], we know that

u(x) =
∫

{y∈H: |y|=R, yn>0}

R2 − |x|2
ωnR

(
1

|y − x|n − 1

|y − x∗|n
)

u(y)dσ(y)

+ 2xn

nωn

∫
{y∈H: r<|y′|<R, yn=0}

(
1

|y′ − x|n − Rn

|x|n
1

|y′ − x̃|n
)

u(y′)dy′,

for R > 1, |x| < R and xn > 0. Applying Carleman’s formula of harmonic functions, we have

2xn

nωn

∫
{y∈H: 1<|y′|<R, yn=0}

(
1

Rn
− Rn

|x|n
1

|y′ − x̃|n
)

u(y′)dy′

+ 2xn

nωn

∫
′

(
1

|y′|n − 1

Rn

)
u(y′)dy′ = d(R)
{y∈H: 1<|y |<R, yn=0}
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where d(R) is a constant depending on function u and d(R) tending to a constant d as R → ∞. 
Set

L0(x,R) :=
∫

{y∈H: |y|=R, yn>0}

(
1

|y − x|n − 1

|y − x∗|n
)

u(y)dσ (y),

L1(x,R) := R2 − |x|2
ωnR

L0(x,R) −
∫

{x: |x|=R, xn>0}

nxnu(x)

Rn+1
dσ(x),

L2(x,R) :=
∫

{y∈H: |y|=R, yn=0}

(
2xn

nωn

1

Rn
− Rn

|x|n |y − x̃|n
)

u(y′)dσ (y′),

L3(x,R) := 2xn

nωn

∫
{y∈H: 1<|y′|<R, yn=0}

(
1

1 + |y′|n + |x|
1 + |y′|n+1

− Rn

|x|n
1

|y′ − x̃|n
)

u(y′)dy′,

c := d + 2xn

nωn

∫
{y∈H: 1<|y′|<R, yn=0}

(
1

1 + |y′|n − 1

|y′|n
)

u(y′)dy′.

Write

m+(R) = n

Rn+1

∫
{x: |x|=R, xn>0}

xnu
+(x)dσ (x), R > 0;

m−(R) = n

Rn+1

∫
{x: |x|=R, xn>0}

xnu
−(x)dσ (x), R > 0.

Since

1

n

∞∫
1

m+(R)dR = 1

n

∞∫
1

∫
{x: |x|=R, xn>0}

nxnu
+(x)

Rn+1
dσ(x)dR

=
∫
H

xnu
+(x)

1 + |x|n+1
dx < ∞, (3.3)

and

1

n

∞∫
1

m−(R)dR < ∞, (3.4)

by (3.2), we obtain
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∫
{x′∈∂H:|x′|>1}

u+(x′)
1 + |x′|n+2

dx′

=
∞∫

1

1

Rn+2

∫
{x′∈∂H:1<|x′|<R}

(
1

|x′|n − 1

Rn

)
u+(x′)dx′dR

=
∞∫

1

�1(R)

Rn+1
dR < ∞. (3.5)

By (3.1) and the Fubini theorem, we have

∫
{x′∈∂H:1<|x′|<∞}

u−(x′)
1 + |x′|n+2

dx′ < ∞.

(2.7) is proved.
Because

L1(x,R) ≤ C1(|x|)
Rn+1

∫
{x∈H,|x|=R,xn>0}

nxnu(x)dσ(x)

= C1(|x|)
Rn

[m+(R) + m−(R)],

where C1(|x|) is a positive constant depending on x, there exists an increasing sequence {Rn}
such that

lim
R→∞Rn = ∞, lim

R→∞
m+(Rn) + m−(Rn)

Rn
n

= 0,

consequently,

lim
n→∞L1(x,R) = 0.

Similarly, there exists a positive constant C2(|x|) depending on x, when R ≥ 2|x| + 1, we have

|L2(x,R)| ≤ C2(|x|)
Rn

∫
{y∈H,|y′|<R,yn=0}

|u(y′)|
1 + |y′|n+2

dy′,

and then

lim L2(x,R) = 0.

n→∞
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L3(x,R) = 2xn

nωn

∫
{y∈H: 1<|y′|<R, yn=0}

(
1

Rn
− Rn

|x|n
1

|y′ − x̃|n
)

u(y′)dy′

+ 2xn

nωn

∫
{y∈H: 1<|y′|<R, yn=0}

(
1

|y′|n − 1

Rn

)
u(y′)dy′

+ 2xn|x|
nωn

∫
{y∈H: 1<|y′|<R, yn=0}

u(y′)
|y′|n+1

dy′

+ 2xn

nωn

∫
{y∈H: 1<|y′|<R, yn=0}

(
1

1 + |y′|n − 1

|y′|n )u(y′)dy′

= d(R) + c1xn|x| + c − d,

where c is a constant depends on xn. Therefore,

u(x) = 2xn

nωn

∫
{y∈H: 1<|y′|<r, yn=0}

(
1

|x − y′|n − 1

1 + |y′|n − |x|
1 + |y′|n+1

)
u(y′)dy′

+ L1(x,R) + L2(x,R) + L3(x,R).

Combining the estimates of L1(x, R), L2(x, R) and L3(x, R), the result (2.8) follows. �
Proof of Theorem 2.2. If u ∈ H(m), for every ε = (ε1, · · · , εn) = (ε′, εn) ∈ R

n, where ε′ =
(ε1, · · · , εn−1) ∈ R

n−1, 0 < |ε′| ≤ |ε| < 1, and |x| < R (R > 1), applying Nevanlinna’s formula 
of harmonic functions in the half sphere [16] to u(x + ε), we obtain

u(x + ε) =
∫

{y∈H: |y|=R, yn>0}

R2 − |x|2
nωnR

(
1

|y − x|n − 1

|y − x∗|n
)

u(y + ε)dσ (y)

+ 2xn

nωn

∫
{y∈H: r<|y′|<R, yn=0}

(
1

|y′ − x|n − Rn

|x|n
1

|y′ − x̃|n
)

u(y′ + ε′)dy′. (3.6)

Write

m±(R, ε) = R2 − |x|2
ωnR

∫
{y∈H: |y|=R, yn>0}

(
1

|y − x|n − 1

|y − x∗|n
)

u±(y + ε)dσ (y);

n±(R, ε′) = 2xn

nωn

∫
{y∈H: r<|y′|<R, yn=0}

(
1

|y′ − x|n − Rn

|x|n
1

|y′ − x̃|n
)

u±(y′ + ε′)dy′.

If R > 1, (3.6) becomes

m−(R, ε) + n−(R, ε′) = m+(R, ε) + n+(R, ε′) − u(x + ε), (3.7)
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and

+∞∫
2

m+(R, ε)

Rm+1
dR =

∫
{y∈H: |y|=R, yn>0}

R2 − |x|2
nωnR

(
1

|y − x|n − 1

|y − x∗|n
)

u+(y + ε)dσ (y)

≤ A

∫
{y∈H: |y|=R, yn>0}

ynu
+(y + ε)

Rn+m
dσ(y)

≤ A

∫
{y∈H: |y|=R, yn>0}

(yn + εn)u
+(y + ε)

[(y′ + ε′)2 + (yn + εn)2] n+m
2

dσ(y) < AI.

Hence

sup
0<|ε|<1

+∞∫
2

m+(R, ε)

Rm+1
dR ≤ AI < ∞, (3.8)

and

sup
0<|ε|<1

lim inf
R→∞ m+(R, ε) = 0.

By

n+(R, ε′) = 2xn

nωn

∫
{y∈H: r<|y′|<R, yn=0}

(
1

|y′ − x|n − Rn

|x|n
1

|y′ − x̃|n
)

u+(y′ + ε′)dy′

≤
∫

{y∈H: r<|y′|<R, yn=0}

2xn

nωn

u+(y′ + ε′)
|y|n sinn ϕ

dy′

≤ 2xn

nωn

∫
{y∈H: r<|y′|<R, yn=0}

u+(y′ + ε′)
|y′|n dy′,

we have

+∞∫
2

n+(R, ε′)
Rm+1

dR ≤ 2xn

nωn

∫
{y′∈∂H: r<|y′|<R}

u+(y′ + ε′)
|y′|n+m+1

dy′ < ∞. (3.9)

It is evident that

sup
0<|ε′|<1

+∞∫ −u(y′ + ε′)
Rm+1

dR = 1

2m+1
sup

0<|ε|<1
[−u(y′ + ε′)] < ∞. (3.10)
2
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(3.7)–(3.10) imply

sup
0<|ε′|<1

+∞∫
2

n−(R, ε′)
Rm+1

dR < ∞, (3.11)

and

sup
0<|ε′|<1

+∞∫
2

∫
∂H

ynu
−(y′ + ε′)
Rm+n

dy′dR ≤ sup
0<|ε|<1

+∞∫
2

m−(R, ε)

Rm+n
dR < ∞.

If R > 1, we have

n−(R, ε′) ≥ 2xn

nωn

∫
{y∈H: 1<|y′|< R

2 , yn=0}

(
1

|y′ − x|n − Rn

|x|n
1

|y′ − x̃|n
)

u−(y′ + ε′)dy′

≥
∫

{y∈H: 1<|y′|< R
2 , yn=0}

(
1

|y′|n + 1
− Rn

1 + |y′|n
)

u−(y′ + ε′)dy′

≥
∫

{y∈H: 1<|y′|< R
2 , yn=0}

u−(y′ + ε′)
1 + |y′|n dy′. (3.12)

By (3.10), (3.12) and the Fubini theorem, we see that

sup
0<|ε′|<1

+∞∫
2

R
2∫

1

u−(y′ + ε′)
1 + |y′|n dy′dR =

sup
0<|ε′|<1

+∞∫
1

u−(y′ + ε′)
(1 + |y′|n)|y′|n+m−1

dy′ ≤

sup
0<|ε′|<1

+∞∫
2

n−(R, ε′)
Rn+m

dR < ∞. (3.13)

By (2.9) and (3.13),

I = sup
0<|ε′|<1

∫
{y∈H: r<|y′|<R, yn=0}

|u(y′ + ε′)|
|y′|n+m

dy′ < ∞.

(1) is proved.
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Let

um(x + ε′) =
∫
∂H

P m
H

(x, y′)u(y′ + ε′)dy′.

Suppose χ
B+

R

(y′) is the characteristic function of B+
R = BR ∩ H, we fix a boundary point a′ =

(a1, a2, · · · , an−1) ∈ ∂H and choose a large T > |a′| + 1, then um(x + ε′) may be written as

um(x + ε′) =
∫

|y′|≤2T

PH(x, y′)u(y′ + ε′)dy′

− 2xn

nωn

∫
1≤|y′|≤2T

m−1∑
k=0

|x|k
|y|n+k

C
n/2
k

(
x · y
|x||y|

)
u(y′ + ε′)dy′

+
∫

|y′|≥2T

P m
H

(x, y′)u(y′ + ε′)dy′

= Xε′(x) − Yε′(x) + Zε′(x).

The function Xε′(x) is harmonic in B+
R and is the Poisson integral of u(y′ + ε′)χ

B+
R

(y′), with 

Xε′(x) = u(y′ + ε′), Yε′(x) is a harmonic polynomial multiplied by xn with Yε′(y′) = 0, y′ ∈
B+

R (y′), Zε′(x) is harmonic in B+
R with Zε′(y′) = 0, |y′| ≤ T . Hence um(x, ε′) is harmonic in H

for any T > 2 and

lim
xn→0

um(x + ε′) = u(x′ + ε′), x′ ∈ ∂H.

Denoted by C[1 + |y′|n+m] the space of all continuous function G(x) on H for which

lim
|y′|→±∞

|G(y′)|(1 + |y′|n+m) = 0,

define the norm

‖G‖ = sup
y′∈∂H

|G(y′)|(1 + |y′|n+m),

so C[1 + |y′|n+m] is a Banach space and

P m
H

(x, y′) ∈ C[1 + |y′|n+m].

Let δk = (δ
(k)
1 , · · · , δ(k)

n−1, 0), |δk| ↘ 0. Define the linear functional on C[1 + |y′|n+m]

�k[G(y′)] =
∫

G(y′)u(y′ + δk)dy′,

∂H
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and

|�n[G(y′)]| ≤ [ sup
y′∈∂H

|G(y′)|(1 + |y ′|n+m)] ·
∫
∂H

|u(y′ + δk)|
|y′|n+m

dy′

≤ ‖ G ‖ sup
0<|δk |<1

∫
∂H

|u(y′ + δk)|
1 + |y′|n+m

dy′;

‖ �n ‖ ≤ sup
0<|δk |<1

∫
∂H

|u(y′ + δk)|
1 + |y′|n+m

dy′,

so �k is a bounded linear functional on C[1 + |y′|n+m], and we can construct a subsequence of 
u(ε′

k + y′), ε′
k = (ε

(k)
1 , · · · , ε(k)

n−1, 0), such that [11]

�(G) = lim
k→∞�k(G) = lim

k→∞

∫
∂H

G(y′)u(y′ + ε′
k)dy′, G(y′) ∈ C[1 + |y′|n+m], (3.14)

and

‖ � ‖≤ sup
0<|ε′

k |<1

∫
∂H

|u(ε′
k + y′)|

1 + |y′|n+m
dy′,

� is a bounded linear functional on C[1 + |y′|n+m]. By the Riesz representation theorem, there 
exists a measure μ on ∂H such that

�(G) =
∫
∂H

G(y′)dμ(y′),G(y′) ∈ C[1 + |y′|n+m], (3.15)

∫
∂H

d|μ|(y′)
1 + |y′|n+m

= lim
k→∞

∫
∂H

|u(y′ + ε′
k)|

1 + |y′|n+m
dt ≤ sup

0<|ε′
k |<1

∫
∂H

|u(ε′
k + y′)|

1 + |y′|n+m
dy′ < ∞.

Thus (2) holds.
Let

hε′(x) = u(x + ε′) − um(x + ε′).

By the Schwarz reflection principle [11], p. 68 and [7], p. 28, there exists a harmonic function 
hε′(x∗) in Rn, such that

hε′(x∗) = −hε′(x) = −[u(x + ε′) − um(x + ε′)], x ∈ H,

x∗ = (x′, −xn) is the reflection point of x with respect to ∂H, h(y′) ≡ 0, y′ ∈ ∂H. By the spher-
ical harmonic expansion theorem [11], p. 100, Theorem 2.1 in [13], p. 139, orthogonality of 
spherical harmonics [13], p. 141, and the proof of Theorem [4], p. 58, we know that
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hε′(x) =
m+1∑
k=0

Pk(x + ε′)

is a harmonic polynomial Qε′(x) of degree not greater than m + 1 which vanishes on the bound-
ary ∂H such that

u(x, ε′) =
m+1∑
k=0

Pk(x + ε′) + um(x, ε′) = Qε′(x) + um(x, ε′), x ∈H, (3.16)

in which Pk(x + ε′)(k = 0, 1, · · · ) are homogeneous harmonic polynomials of degree k.
Let ε → 0 in (3.16), it follows that

u(x) = Q(x) + um(x). �
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