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Hardy space decomposition of Lp on the unit circle: 0 < p ≤ 1

Hai-Chou Lia, Guan-Tie Dengb and Tao Qiana

aDepartment of Mathematics, University of Macau, Macao; bSchool of Mathematical Sciences, Beijing Normal
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ABSTRACT

In this paper, we consider Hardy space decomposition of Lp(∂D), 0 <
p ≤ 1, where D stands for the open unit disc, and ∂D is its boundary.
Hardy spaces decompositions for Lp(∂D) and Lp(R) for 1 ≤ p ≤ ∞
are, as classical results, available in the literature. For 1 ≤ p ≤ ∞, the
basic tools are the Plemelj formula and the boundedness of theHilbert
transformation. For 0 < p ≤ 1, neither on the real line, nor on the unit
circle, a Plemelj formula, or Hilbert transformation are available. In a
recent paper, Deng and Qian obtain Hardy spaces decomposition for
Lp(R), 0 < p < 1, on the real line by means of rational approximation.
In the present paper using rational functions, we achieve the same
goal for Lp(∂D) for the range 0 < p ≤ 1. The work on the unit circle
exposes the particular features of the kind of decomposition in the
compact situation adaptable to higher dimensions.
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1. Introduction

The Paley–Wiener Theorem for L2(R) functions states that f is the non-tangential limit
of a function in H2(C+) if and only if suppf̂ ⊂ [0,∞). The latter condition is equivalent
with

f̂ = χ[0,∞) f̂ , (1)

where for any setA, the notationχA denotes the characteristic function ofA, i.e.χA(x) = 1,
if x ∈ A; and χA(x) = 0, if x /∈ A.

Similarly, for an L2(R) function f , it is the non-tangential limit of a function inH2(C−)

if and only if suppf̂ ⊂ (−∞, 0], the latter being equivalent with

f̂ = χ(−∞,0] f̂ . (2)

Let now f ∈ L2(R). We have the decomposition f = f + + f −, where

f + = (χ[0,∞) f̂ )∨, f − = (χ(−∞,0] f̂ )∨. (3)

From (1) and (2)we see that f + and f − belong to, respectively, theHardy spacesH2(C+)

and H2(C−). Such decomposition can also be obtained through Hilbert transformation,

CONTACT Guan-Tie Deng denggt@bnu.edu.cn
© 2016 Taylor & Francis
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 511

denoted by H :

f ± =
(
1
2
(1 ± i( − i)sgn( · ))f̂

)∨

= 1
2

(
f ± iHf

)
,

where Hf is the Hilbert transform of f , given by

Hf (x) � 1
2π

∫ ∞

−∞
eiξx( − isgn(ξ))f̂ (ξ)dξ

= 1
π

lim
ε→0

∫
|x−t|>ε

f (t)
x − t

dt

� 1
π
p:v:

∫ ∞

−∞
f (t)
x − t

dt,

where the above first integral is taken in the L2-sense. For the relevant knowledge we refer
the reader to, say, [1].

The above decomposition can also be reached through the Plemelj formula: For f ∈
L2(R) one can well define a Hardy H2(C+) function through the Cauchy transformation

F+(z) = 1
2π i

∫ ∞

−∞
f (t)
t − z

dt, z = x + iy, y > 0. (4)

Then the Plemelj formula asserts

lim
y→0+ F(z) = 1

2
(
f + iHf

) = f +(x), a.e. (5)

Similarly, for z ∈ C
−, z = x + iy, y < 0, we have

F−(z) = 1
2π i

∫ −∞

∞
f (t)
t − z

dt, z = x + iy, y < 0, (6)

and

lim
y→0− F(z) = 1

2
(
f − iHf

) = f −(x), a.e. (7)

The significance of the L2(R) space decomposition into the Hardy spaces H2(C±) lays
on the fact that the Hardy space functions have very good properties vs. the L2-functions:
The functions f ± are non-tangential boundary limits of analytic functions, the latter being
analytically defined in their respective domains. We note that a function in Lp is a.e.
determined, that is, if f = g , a.e., then f and g are considered as the same function in Lp. In
this regard one cannot assume a general Lp-function to have desired smoothness. On the
other hand, a.e. identical Lp functions correspond to the sameHardy space decomposition,
the latter having any kinds of smoothness in their domains of definition. Furthermore,
Cauchy’s theory and techniques are applicable to Hardy space functions. Finally, there is a
one-to-one correspondence between the Hardy space functions and their non-tangential
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512 H.-C. LI ET AL.

boundary limits. Based on what just-mentioned delicate analysis on the L2-functions can
be carried out via their Hardy space components. Such treatment of L2-functions, for
instance, has ample applications in both the theoretical and applicable mathematics. In
particular, some demonstrative results in signal analysis have recently been obtained.[2–6]

Both the above-mentioned Fourier spectrum characterization and the Plemelj formula
can be extended to Hardy Hp(R) spaces with some cases of p �= 2. Systematic studies
on the spectrum properties as well as the Lp decomposition are carried out in [7,8] for
1 ≤ p ≤ ∞. In particular, (5) and (7) hold for f ∈ Lp(R), 1 < p < ∞; while f ∈ Hp(R) if
and only if f ∈ Lp(R) and in the distributional sense suppf̂ ⊂ [0,∞) for all 1 ≤ p ≤ ∞.

Comparatively, the Plemelj formula approach is more effective and realizable as Fourier
transformation on the Lp(R) spaces for p > 2 gives rise to, in general, only distributions.
The Fourier spectrum characterization, as well as the Hardy spaces decompositions are
generalized to Hardy spaces on tubes in higher dimensions.[9]

There exists an analogous theory on the unit circle for 1 ≤ p ≤ ∞.They have particular
features as they are expressed by Fourier series.[1,10] Now we turn to the index range
0 < p ≤ 1.

Aleksandrov [11] andDeng andQian [12] have studied the case Lp(R), 0 < p < 1.There
is no Fourier transformation theory for functions in such Lp(R) spaces as they are not even
distributions. One, however, can have Hp spaces decompositions. The paper [11] uses the
real method of harmonic analysis bymaking use of a dense subclass of the Lp(R)-functions
with vanishing moment conditions and Hilbert transforms. Comparatively, [12] uses the
complex analysis methods, and, in particular, rational function approximation to achieve
the function decomposition goal. The methods in [12] are direct and constructive. For the
index range 0 < p ≤ 1, the present paper obtains the Lp(∂D) Hardy spaces decomposition
using rational approximation.

The writing plan of the paper is as follows. The second section contains preliminary
knowledge on the analytic Hardy spaces. We state our main results in the third section,
that is the Hardy spaces decomposition theorem of the Lp(∂D), 0 < p ≤ 1. The fourth
section contains main technical lemmas. The last two sections, as key part, provide the
proofs of the main theorems and lemmas.

2. Preliminaries on the analytic function spaces

Throughout this paper, we denote the unit disc and the upper-half plane by, respectively,
D and C

+. That is,
D = {

z = reiθ : 0 < r < 1, −π ≤ θ < π
}

and
C

+ = {z = x + iy : x ∈ R, y > 0}.
The boundary of the unit disc, that is the unit circle, is denoted as

∂D = {
z = eiθ : −π ≤ θ < π

}
.

Moreover, DO denotes the outside of the closure of the unite disc:

DO = {
z = reiθ : r > 1, −π < θ ≤ π

}
.

D
ow

nl
oa

de
d 

by
 [

G
az

i U
ni

ve
rs

ity
] 

at
 1

7:
52

 2
0 

Fe
br

ua
ry

 2
01

6 



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 513

Hp(D) and Hp(C+) denote the Hardy spaces on the unit disc and the upper-half plane,
respectively. Now, we introduce their classical definitions.[1,10,13].
Definition 2.1: When 0 < p < ∞, we say f ∈ Hp(D) if f (z) is an analytic function on D,
and satisfies

‖f ‖Hp
I

= sup
0<r<1

Mp(f , r) < ∞,

where

Mp(f , r) =
(∫ π

−π

|f (reiθ )|p dθ

) 1
p
.

When p = ∞, we say f ∈ H∞(D) if f (z) is a bounded analytic function on D and write

‖f ‖H∞
I

= sup
z∈D

|f (z)|.

For p ≥ 1, ‖ · ‖p is the norm of Hp(D), and Hp(D) is a Banach space.
For 0 < p < 1, the inequality

|z1 + z2|p ≤ |z1|p + |z2|p

holds that implies that Hp(D) is a metric space with the metric

d(f , g) = ‖f − g‖pp.

It is further shown that Hp(D) is a complete metric space.
Moreover, according to the theory of subharmonic functions in the unit disc D, there is

another definition of Hp(D). That is, f ∈ Hp(D) if and only if the subharmonic function
|f (z)|p has a harmonic majorant, and, for p < ∞, ‖f ‖p is the value of the least harmonic
majorant at z = 0. This definition ofHp(D) in term of harmonic majorants is conformally
invariant. It is used to define Hp functions on any plane domain or Riemann surface.[1]

Similarly, the Banach or complete metric spaces Hp(DO), 0 < p ≤ ∞, for outside the
closed unit disc are defined as follows.
Definition 2.2: When 0 < p < ∞, we say f ∈ Hp(DO) if f (z) is an analytic function on
DO, and satisfies

‖f ‖Hp
O

= sup
r>1

Mp(f , r) < ∞,

where

Mp(f , r) =
(∫ π

−π

|f (reiθ )|p dθ

) 1
p
.

When p = ∞, we say f ∈ H∞(DO) if f (z) is a bounded analytic function on DO. The
norm of the space is defined by

‖f ‖H∞
O

= sup
z∈DO

|f (z)|.

The Hardy spaces of the upper- and lower-half complex planes are irrelevant to this
paper, we suppress their definitions.
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514 H.-C. LI ET AL.

Since |f |p is subharmonic for f ∈ Hp(D), the function Mp(f , r) increases in r ∈ (0, 1),
and

‖f ‖Hp
I

= sup
{
Mp(f , r) : 0 < r < 1

}
= lim

0<r<1,r→1
Mp(f , r).

The existence of the non-tangential boundary limit of f (z) ∈ Hp(D) is an important
property of Hardy spaces. Denoting by f (eiθ ) the boundary limit, we have f (eiθ ) ∈
Lp([−π ,π]), and

‖f ‖p =
(∫ π

−π

|f (eiθ )|pdθ

) 1
p = ‖f ‖Hp

I
.

The correspondence between theHardy space functions and their boundary limits are one-
to-one, and, in fact, an isometric isomorphism. In the sequence, with an abuse of notation,
we mix up the notations for the Hardy space functions and their boundary limits, as well
as their respective norms.

For the Hardy spaces outside the closed unit disc the situation is similar. In the sequel
we use, correspondingly, the self explanatory notations.

We denote by LpI (∂D) and LpO(∂D) the closed subspaces of Lp(∂D), consisting of,
respectively, the non-tangential boundary limits of the functions of Hp(D) and Hp(DO).

The task of this paper is to show

Lp(∂D) = LpI (∂D) + LpO(∂D),

where the right-hand side is not a direct sum, nor the intersection of LpI (∂D) and LpO(∂D) is
the trivial function set containing only the zero function.Note that the notation f ∈ Lp(∂D)

if and only if F ∈ Lp([−π ,π]), where F(t) = f (eit).

3. Main results: decomposition of the Lp(∂D)

In this paper, similarly to [12], we use the rational approximationmethod to obtain Lp(∂D)

space decomposition on the unit circle for the range of 0 < p ≤ 1. Rational approximation,
being a particular one of complex approximation in general, has a long history.[14] On
the real line case it has been proved that any function f ∈ Lp(R), 0 < p < 1, has a Hardy
space decomposition f = f1 + f2, where f1 and f2 are the non-tangential boundary limits
of two Hardy space functions, respectively, in the upper- and lower-half planes.[11,12] In
[12] such functions f1 and f2 are obtained through sequences of rational functions with
poles in, respectively, the lower- and upper-half planes.

In the present paper, we obtain the following Hardy spaces decomposition: For any
f ∈ Lp([−π ,π]), 0 < p ≤ 1, there holds f = fI + fO, where fI and fO are non-tangential
boundary limits of functions in the Hardy spaces Hp(D) and Hp(DO), respectively.
Theorem 3.1: For 0 < p < 1 there holds

Lp(∂D) = LpI (∂D) + LpO(∂D)

in the following sense: There exist a positive constant Ap and two sequences of rational
functions {Pk(z)} ⊆ Hp(D) and {Qk(z)} ⊆ Hp(DO) such that
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 515

(i) ∞∑
k=1

(
‖Pk‖pHp

I
+ ‖Qk‖pHp

O

)
≤ Ap‖f ‖pp, (8)

(ii)

lim
n→∞ ||f −

n∑
k=1

(Pk + Qk)||p = 0, (9)

(iii)

g(z) =
∞∑
k=1

Pk(z) ∈ Hp(D), h(z) =
∞∑
k=1

Qk(z) ∈ Hp(DO), (10)

(iv) g(eiθ ) and h(eiθ ) are the non-tangential boundary limits of functions g(z) ∈ Hp(D)

and h(z) ∈ Hp(DO), respectively, f (eiθ ) = g(eiθ ) + h(eiθ ) almost everywhere for
θ ∈ [−π ,π].

(v)
‖f ‖pp ≤ ‖g‖pp + ‖h‖pp ≤ Ap‖f ‖pp.

For p = 1 there holds a similar decomposition result under an extra vanishing moment
condition. However, the second inequality in the inequality chain given in (v) does not
hold.
Theorem 3.2: Let f ∈ L1(∂D) and f satisfy the vanishing moment condition

∫ π

−π

f (x)dx = 0.

Then, there exist a positive constant C and two sequences of rational functions {Pk(z)} ⊆
H1(D) and {Qk(z)} ⊆ H1(DO) such that

(i) ∞∑
k=1

(
‖Pk‖H1

I
+ ‖Qk‖H1

O

)
≤ C‖f ‖1, (11)

(ii)

lim
n→∞ ||f −

n∑
k=1

(Pk + Qk)||1 = 0, (12)

(iii)

g(z) =
∞∑
k=1

Pk(z) ∈ H1(D), h(z) =
∞∑
k=1

Qk(z) ∈ H1(DO), (13)

(iv) g(eiθ ) and h(eiθ ) are the non-tangential boundary limits of functions for g(z) ∈
H1(D) and h(z) ∈ H1(DO), respectively, f (eiθ ) = g(eiθ )+h(eiθ ) almost everywhere
for θ ∈ [−π ,π]. In summary, we have

L1(∂D) = L1I (∂D) + L1O(∂D)

in the sense of L1.
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516 H.-C. LI ET AL.

4. Main lemmas

In order to prove the theorems we need the following lemmas. Lemmas 4.1–4.3 are used
to prove Theorem 3.1, and Lemmas 4.4 and 4.5 are used to prove Theorem 3.2.
Lemma 4.1:

(1) If R(eiθ ) ∈ Lp([−π ,π]), 0 < p < 1, and the rational function R(z) is analytic in the
unit disc D = {z : |z| < 1, }. Then R(z) ∈ Hp(D).

(2) If R(eiθ ) ∈ Lp([−π ,π]), 0 < p < 1, and the rational function R(z) is analytic in
DO = {z : |z| > 1}. Then R(z) ∈ Hp(DO).

Lemma 4.2: Let 0 < p < 1, f (eiθ ) ∈ Lp([−π ,π]) and ε > 0. there exists a sequence of
trigonometric polynomials Rk(eiθ ) = ∑

|j|≤Nk
ckjeijθ such that

∞∑
k=1

||Rk||pp ≤ (1 + ε)‖f ‖pp (14)

and

lim
n→∞ ||f −

n∑
k=1

Rk||p = 0. (15)

With the help of Lemma 4.1, we can obtain the following important Lemma 4.3.
Lemma 4.3: Suppose that 0 < p < 1 and R is a rational function with R(eiθ )
∈ Lp([−π ,π]), then there exist two rational functions P(z) ∈ Hp(D) and Q(z) ∈ Hp(DO)

such that
R(z) = P(z) + Q(z),

for |z| = 1, and
‖P‖p

Hp
I

+ ‖Q|p
Hp
O

≤ Cp‖R‖pp.
where Cp is a constant only dependent on p.

However, for the case p = 1 there does not hold the analogue results to Lemmas 4.2
and 4.3 under the same conditions. In order to have such result, we need to add the
vanishing moment condition, viz.,

∫ π

−π
f (x)dx = 0.

Lemma 4.4: Let A be the set of trigonometric polynomials Rk(eiθ ) = ∑
|k|≤N ckeikθ with

the property
∫ π

−π
R(eiθ )dθ = 0. If f (eiθ ) ∈ L1([−π ,π]) and ∫ π

−π
f (eiθ )dθ = 0, then, for

any ε > 0, there exists a sequence of trigonometric polynomials {Rk(eiθ )} in A such that

∞∑
k=1

||Rk||1 ≤ (1 + ε)‖f ‖1 (16)

and

lim
n→∞ ||f −

n∑
k=1

Rk||1 = 0. (17)

5. The proofs of themain lemmas

In this section, we are to prove the important lemmas.
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 517

5.1. Proof of Lemma 4.1

Proof: By the assumption, we can let R(z) be of the following form:

R(z) = P(z)
Q(z)

,

where P(z), Q(z) are polynomials of z satisfying

Q(z) = Q1(z)(z − eiθ1)l1 · · · (z − eiθk)lk ,

Q1(eiθj) �= 0, lj < ∞, j = 1, 2, . . . , k; and, there exists a positive constant M1 > 0 such
that

M1 ≥
∣∣∣∣ P(z)
Q1(z)

∣∣∣∣ , z ∈ D.

It is clear that there exists ε0 ∈ (0, 1) such that

−π < θ1 − 2ε0 < θ1 + 2ε0 < θ2 − 2ε0 < θ2 + 2ε0 < . . . < θk − 2ε0 < θk + 2ε0 < π.

Moreover, there exists a positive constantM0 such that

∣∣∣∣ P(eiθ )
Q1(eiθ )

∣∣∣∣ ≥ M0 for θ ∈
k⋃

j=1

[θj − 2ε0, θj + 2ε0].

Let Jk = ⋃k
j=1 Ij, where Ij = {θ ∈ (−π ,π) : |θ − θj| < ε0}, then,

∫ π

−π

|R(eiθ )|p dθ =
∫ π

−π

∣∣∣∣ P(eiθ )
Q1(eiθ )

∣∣∣∣
p dθ∏k

j=1 |eiθ − eiθj |plj

≥
k∑

j=1

∫
Ij

∣∣∣∣ P(eiθ )
Q1(eiθ )

∣∣∣∣
p dθ∏k

j=1 |eiθ − eiθj |plj

≥ Mp
0

k∑
j=1

∫
Ij

dθ∏k
j=1 |eiθ − eiθj |plj

≥ Mp
0

∫
Jk

dθ∏k
j=1 |eiθ − eiθj |plj . (18)

Observing that, for j ∈ {1, 2, . . . , k}, there is
1

|eiθ − eiθj | = 1∣∣∣∣ei
θ+θj
2 (ei

θ−θj
2 − e−i

θ−θj
2 )

∣∣∣∣
= 1∣∣∣2 sin θ−θj

2

∣∣∣ ≥ 1
|θ − θj| . (19)

Thus, fixing j ∈ {1, 2, . . . , k},
∫ π

−π

|R(eiθ )|p dθ ≥ Mp
0

ε
pLk
0

∫
Ij

dθ

|θ − θj|plj
, (20)
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518 H.-C. LI ET AL.

where Lk = ∑k
s=1 ls, The fact R(eiθ ) ∈ Lp([−π ,π]) implies plj < 1 for all j ∈ {1, 2, . . . , k}.

Next, we are to show

sup
0<r<1

∫ π

−π

|R(reiθ )|p dθ < ∞. (21)

If 0 < r < 1
2 , then |reiθ − eiθj | > 1

2 , so

∫ π

−π

|R(reiθ )|p dθ =
∫ π

−π

∣∣∣∣ P(reiθ )
Q1(reiθ )

∣∣∣∣
p dθ∏k

j=1 |reiθ − eiθj |plj

≤ Mp
1

∫ π

−π

dθ∏k
j=1 |reiθ − eiθj |plj ≤ 2πMp

12
Lk ; (22)

if 1
2 ≤ r < 1, then

∫ π

−π

|R(reiθ )|p dθ ≤ Mp
1

∫ π

−π

dθ∏k
j=1 |rei(θ−θj) − 1|plj . (23)

Observe that, for |ϕ| < π , 12 ≤ r < 1,

|reiϕ − 1|2 = (1 − r)2 + 2r(1 − cosϕ)

> 2r(1 − cosϕ) = 4r sin2
(ϕ

2

)
≥ ϕ2

π2 .

Thus, (23) becomes
∫ π

−π

|R(reiθ )|p dθ ≤ Mp
1

∫ π

−π

dθ

∏k
j=1

(
θ−θj

π

)plj

= M2

∫
(−π ,π)\Jk

dθ∏k
j=1 |θ − θj|plj

+ M2

∫
Jk

dθ∏k
j=1 |θ − θj|plj

≤ 2πM2ε
−pLk
0 + M2ε

−pLk
0

∑
j=1

k
∫
Ij

dθ

|θ − θj|plj
< ∞, (24)

whereM2 = Mp
1π

Lk .

Combining (22) and (24), we obtain (21). Together with the analyticity of R(z) inD, we
obtain R(z) ∈ Hp(D). The proof of Lemma 4.1 is complete. �

5.2. Proof of Lemma 4.2

Proof: Let f (eiθ ) ∈ Lp([−π ,π]), 0 < p < 1, ‖f ‖p > 0 and ε > 0, since the set of
trigonometric polynomials is dense inLp([−π ,π]), there exists a sequenceof trigonometric
polynomials rk(eiθ ) = ∑

|j|≤Nk
ckjeijθ such that

‖f − rk‖pp <
ε‖f ‖pp
2k+2 .
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 519

Then
‖rk‖pp = ‖rk − f + f ‖pp ≤ ‖f − rk‖pp + ‖f ‖pp ≤ (1 + ε

2k+2 ‖f ‖pp,
and

‖rk+1 − rk‖pp = ‖rk+1 − f + f − rk‖pp ≤ ‖rk+1 − f ‖pp + ‖f − rk‖pp ≤ ε

2k+1 ‖f ‖pp,

for k = 2, 3, . . .. So if we take

R1(z) = r1(z), Rk(z) = rk(z) − rk−1(z), (k = 2, 3, . . . )

then
n∑

k=1

Rk(z) = r1(z) + (r2(z) − r1(z)) + · · · + (rn(z) − rn−1(z)) = rn(z).

Thus, we can obtain that ∞∑
k=1

||Rk||pp ≤ (1 + ε)‖f ‖pp,

and

lim
n→∞ ||f −

n∑
k=1

Rk||p = lim
n→∞ ||f − rn||p = 0.

That is, (14) and (15) can be obtained, and then, the proof of Lemma 4.2 is complete. �

5.3. Proof of Lemma 4.3

Proof: If the trigonometric polynomial R(eiθ ) ∈ Lp([−π ,π]), 0 < p < 1, and can be
represented as R(eiθ ) = ∑

|k|≤N ckeikθ , then for z ∈ C, we let, using the same symbol,

R(z) =
∑

|k|≤N

ckzk.

In order to decompose this rational function R(z) into a sum of two rational functions
P(z) and Q(z) which are in the Hardy spacesHp(D) andHp(DO), respectively, we first let

P(z,ϕ) = zN1

zN1 − eiϕ
R(z), Q(z,ϕ) = z−N1

z−N1 − e−iϕ R(z),

for z ∈ C and ϕ ∈ R, where N1 > N is a positive integer. Then, the equality

P(z,ϕ) + Q(z,ϕ) = R(z) (25)

holds for z ∈ C and ϕ ∈ R with zN1 �= eiϕ.

Next, we want to find a special real number ϕ0 ∈ R such that P(z,ϕ0) ∈ Hp(D),
Q(z,ϕ0) = R(z) − P(z,ϕ0) ∈ Hp(DO) for this fixed ϕ0 ∈ R and the estimation in
Lemma 4.3 holds. The proof of Lemma 4.3 will be completed by letting P(z) = P(z,ϕ0)

and Q(z) = Q(z,ϕ0).
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520 H.-C. LI ET AL.

Weobserve that the functionsP(z,ϕ) andQ(z,ϕ) are both rational functions.Moreover,
the poles of P(z,ϕ) are contained in the boundary of the unit disc, ∂D. Similarly, the poles
ofQ(z,ϕ) are contained in ∂D

⋃{0}. Therefore, P(z,ϕ) andQ(z,ϕ) are analytic in the unit
disc D and DO, respectively.

Let
I =

∫ π

−π

∫ π

−π

|P(eiθ ,ϕ)|p dθdϕ,

then

I =
∫ π

−π

∫ π

−π

|R(eiθ )|p
|eiN1θ − eiϕ |p dθdϕ

=
∫ π

−π

|R(eiθ )|p
(∫ π

−π

1
|eiN1θ − eiϕ|p dϕ

)
dθ.

Observing
∫ π

−π

1
|eiN1θ − eiϕ |p dϕ = 1

2p

∫ π

−π

2p

|1 − eiϕ |p dϕ

= 1
2p

∫ π

−π

1
| sin ϕ

2 |p dϕ

= 4
2p

∫ π
2

0

1
sinp ϕ

dϕ

≤ 4
2p

∫ π
2

0

dϕ(
2ϕ
π

)p = 21−pπ

1 − p
,

we obtain

I ≤ 21−pπ

1 − p

∫ π

−π

|R(eiθ )|p dθ = 21−pπ

1 − p
‖R‖pp.

Therefore, there exists a real number ϕ0 such that

‖P‖pp ≤ 21−pπ

1 − p
‖R‖pp.

where P(z) = P(z,ϕ0). Finally, let Q(z) = Q(z,ϕ0), since

Q(z) = R(z) − P(z) and |R(z) − P(z)|p ≤ |R(z)|p + |P(z)|p,

we have

‖Q‖pp = ‖R − P‖pp ≤ ‖R|pp + ‖P‖pp ≤
(
1 + 21−pπ

1 − p

)
‖R‖pp.

so
‖P‖p + ‖Q‖p ≤ Cp‖R‖p,

where the constant

Cp =
(
1 + 21−pπ

1 − p

) 1
p

+
(
21−pπ

1 − p

) 1
p

.
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 521

Lemma 4.1 assures that
P(z) ∈ Hp(D), Q(z) ∈ Hp(DO).

Therefore, the proof of Lemma 4.3 is completed by noticing that ‖P‖Hp
I

= ‖P‖p and
‖Q|Hp

O
= ‖Q‖p. �

5.4. Proof of Lemma 4.4

Proof: We can assume that f �≡ 0 is a real function, which satisfies f (eiθ ) ∈ L1([−π ,π])
and

∫ π

−π
f (eiθ )dθ = 0. Let f (eiθ ) = f +(eiθ ) − f −(eiθ ), where f +(eiθ ) = max{f (eiθ ), 0},

f −(eiθ ) = max{−f (eiθ ), 0}.
Since the set of trigonometric polynomials is dense in L1([−π ,π]), it follows that, for

ε > 0, there exist two sequences of trigonometric polynomials {r1k}, {r2k} such that

‖r1k − f +‖1 < εk

2
, ‖r2k − f −‖1 < εk

2
,

where εk = ε‖f ‖1
2k+3 . Then we have

‖r1k − r2k − f ‖1 ≤ ‖r1k − f +‖1 + ‖r2k − f −‖1 < εk.

If we let
αk =

∫ π

−π

(
r1k(eiθ ) − r2k(eiθ )

)
dθ ,

then

|αk| =
∣∣∣∣
∫ π

−π

(
r1k(eiθ ) − f +(eiθ )

)
dθ +

∫ π

−π

(
f −(eiθ ) − r2k(eiθ )

)
dθ

∣∣∣∣
≤ ‖r1k − f +‖1 + ‖r2k − f −‖1 < εk.

The rational function
rk(eiθ ) = r1k(eiθ ) − r2k(eiθ ) − αk

2π
satisfies ∫ π

−π

rk(eiθ )dθ =
∫ π

−π

(
r1k(eiθ ) − r2k(eiθ )

)
dθ − αk = 0,

that is, rk(eiθ ) ∈ A. Furthermore, we have

‖rk − f ‖1 =
∫ π

−π

∣∣∣r1k(eiθ ) − r2k(eiθ ) − αk

2π
− f (eiθ )

∣∣∣ dθ

≤
∫ π

−π

∣∣r1k(eiθ ) − r2k(eiθ ) − f (eiθ )
∣∣ dθ +

∫ π

−π

∣∣∣ αk

2π

∣∣∣ dθ < 2εk,

‖rk‖1 = ‖rk − f + f ‖1 ≤ ‖rk − f ‖1 + ‖f ‖1 <
( ε

2k+2 + 1
)

‖f ‖1,

and

‖rk − rk−1‖1 = ‖rk − f + f − rk−1‖1 ≤ ‖rk − f ‖1 + ‖f − rk−1‖1 < ε

2k
‖f ‖1.
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522 H.-C. LI ET AL.

Letting
R1(z) = r1(z), Rk(z) = rk(z) − rk−1(z), k = 2, 3, . . . ,

the sequence {Rk(z)} is one consisting of rational functions satisfying (16) and (17). This
completes the proof. �

6. Proofs of themain theorems

Based on the above technical lemmas, we now prove Theorems 3.1 and 3.2.
Proof of Theorem 3.1: By Lemmas 4.2 and 4.3, we obtain that, there exist two sequences
of rational functions Pk(z) ∈ Hp(D) and Qk(z) ∈ Hp(DO) such that

∞∑
k=1

(‖Pk‖pp + ‖Qk‖pp) ≤ Aε‖f ‖pp,

and

lim
n→∞ ‖f −

n∑
k=1

(Pk + Qk)‖p = 0.

Since Pk(z) ∈ Hp(D) and Qk(z) ∈ Hp(DO), we have

‖Pk‖pp = ‖Pk‖pHp , ‖Qk‖pp = ‖Qk‖pHp .

Thus (8) and (9) hold, consequently, (10) as well. Therefore, the non-tangential boundary
limits g(eiθ ) and h(eiθ ) of functions g(z) and h(z) exist almost everywhere, respectively.
Moreover, (9) implies that f (eiθ ) = g(eiθ )+h(eiθ ) almost everywhere. This completes the
proof. �
Proof of Theorem 3.2: To prove the case p = 1 we follow the same idea as we prove
Theorem 3.1 but invoke Lemmas 4.3 and 4.4. �
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