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This paper devotes to studying uncertainty principles of Heisenberg type for signals 
defined on Rn taking values in a Clifford algebra. For real-para-vector-valued signals 
possessing all first-order partial derivatives we obtain two uncertainty principles of 
which both correspond to the strongest form of the Heisenberg type uncertainty 
principles for the one-dimensional space. The lower-bounds of the new uncertainty 
principles are in terms of a scalar-valued phase derivative. Through Hardy spaces 
decomposition we also obtain two forms of uncertainty principles for real-valued 
signals of finite energy with the first order Sobolev type smoothness.
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1. Introduction

In history both W. Heisenberg and N. Wiener promoted the concept uncertainty principle in relation 
to physics [13,16]. In quantum mechanics the Heisenberg uncertainty principle addresses a fundamental 
problem: the values of a pair of canonically conjugate observables such as the position and the momentum 
of particles cannot be both determined precisely in any quantum state. In the language of harmonic analysis, 
the uncertainty principle says that a nonzero function and its Fourier transform cannot both be sharply 
localized. It is Gabor’s fundamental work [15] that really brings uncertainty principle to the sight of signal 
analysts. The classical uncertainty principle [15] can be represented by the inequality

σ2
t,sσ

2
ω,s ≥

1
4 , (1.1)

where σ2
t,s and σ2

ω,s are respectively the duration and bandwidth of a signal s(t) ∈ L2(R) with ‖s‖2 = 1, 
defined as
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σ2
t,s �

∞∫
−∞

(t− 〈t〉s)2|s(t)|2dt (1.2)

and

σ2
ω,s �

∞∫
−∞

(ω − 〈ω〉s)2|ŝ(ω)|2dω, (1.3)

where 〈t〉s and 〈ω〉s are the means of time t and Fourier frequency ω, respectively, defined by

〈t〉s �
∞∫

−∞

t|s(t)|2dt, (1.4)

and

〈ω〉s �
∞∫

−∞

ω|ŝ(ω)|2dω, (1.5)

where ŝ(ω) is the Fourier transformation of s(t), defined by

ŝ(ω) � 1√
2π

∞∫
−∞

e−itωs(t)dt. (1.6)

For a signal expressed as s(t) = |s(t)|eiϕ(t) a stronger result is available [8,7], referred to as the strong 
uncertainty principle:

σ2
t,sσ

2
ω,s ≥

1
4 + Cov2

s, (1.7)

where

Covs =
∞∫

−∞

tϕ′(t)|s(t)|2dt− 〈t〉s〈ω〉s =
∞∫

−∞

(t− 〈t〉s)(ϕ′(t) − 〈ω〉s)|s(t)|2dt

is the covariance of the signal.
The recent paper [9] strengthens the result (1.7) through proving a larger lower-bound, called extra-strong 

uncertainty principle:

σ2
t,sσ

2
ω,s ≥

1
4 + COV2

s, (1.8)

where COVs is the absolute covariance of the signal, defined as

COVs =
∞∫

−∞

|(t− 〈t〉s)(ϕ′(t) − 〈ω〉s)||s(t)|2dt. (1.9)

By definition, COVs is obviously larger than Covs. In our view, all the progresses of the classical uncer-
tainty principle correspond to the three mentioned forms, viz., (1.1), (1.7) and (1.8).
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Recently some researchers studied uncertainty principles for signals in higher dimensional Euclidean 
spaces with the Clifford algebra setting [1,2,18,17,21,22,24], as well as the quaternionic setting [3,14,23]. 
For higher dimensional signals, uncertainty principles expose, as an important aspect, how the variance of 
a multivariate vector-valued function and the variance of its Clifford Fourier transform, or its quaternionic 
Fourier transform, if appropriate, are related. In the present study, we work with the Clifford algebra setting. 
The literature [1,17,18] obtain a “directional” uncertainty principle for multivariate and Clifford-valued 
functions f : Rm → Clm,0, m = 2, 3 (mod 4). The obtained directional uncertainty principle essentially 
corresponds to the primary step (1.1). The work [21] obtains two uncertainty principles for signals in higher 
dimensions of which one is for real-scalar-valued signals, and the other for axial-form signals. In order to 
state the obtained results in [21] and those in the present paper we need to recall a number of definitions. 
We first note that the improvements of the classical uncertainty principle (1.1) are all dependent on a phase 
derivative concept. In signal analysis phase derivative is well accepted as instantaneous frequency of a signal, 
the latter being of central importance in signals analysis. This paper further promotes the role of phase 
derivative in uncertainty principles for higher dimensional spaces.

Let e1, . . . , em denote the basic elements spanning the Euclidean space Rm of which each is like the 
complex imaginary element i with the property e2

k = −1, but with the anti-commutativity ekel = −elek, 
k 	= l. The corresponding real- and complex-Clifford algebras both are of the linear dimension 2m whose 
elements are of the form x = x0 + x′, where x0 and x′ are the scalar and non-scalar parts of x, denoted, 
respectively, by x0 = Sc{x} and x′ = Nsc{x} (for more details see Section 2). We will be working on 
functions defined on Rm or Rm

1 = {x = x0 + x : x0 ∈ R, x ∈ Rm}, and taking values in the complex 
Clifford algebra. The elements in Rm and Rm

1 are, respectively, called vectors and para-vectors. To define 
the phase and amplitude and their derivatives of a para-vector-valued function f(x) defined on a region 
Ω ⊂ Rn, we represent f(x) in the polar coordinate form [22]:

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + · · · + fm(x)em

= ρ(x)[f0(x)
ρ(x) + u(x)

ρ(x) ]

= ρ(x)[f0(x)
ρ(x) + u(x)

|u(x)|
|u(x)|
ρ(x) ]

= ρ(x)[cos θ(x) + u(x)
|u(x)| sin θ(x)]

= ρ(x)e
u(x)
|u(x)| θ(x), (1.10)

where u(x) = f1(x)e1 +f2(x)e2 + · · ·+fm(x)em, ρ(x) =
√
f2
0 (x) + f2

1 (x) + f2
2 (x) + · · · + f2

m(x) is called the 

amplitude, and θ(x) = arctan |u(x)|
f0(x) is called the phase angle. We, in particular, note that 

(
u(x)
|u(x)|

)2
= −1, 

that partially justifies the above introduced phase concept. Below we adopt the phase derivative definitions 
given in [24] and define amplitude derivatives of f(x) in the consistent way.

In higher dimensions, to define phase derivatives, the following first-order partial differential operator, 
called Dirac differential operator will be used, that reduces to the operator 1i

d
dt in the one-dimensional case:

D = ∂

∂x1
e1 + · · · + ∂

∂xm
em.

Definition 1.1. Let f(x) = ρ(x)e
u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued, and all the first order partial 

derivatives of f(x) exist. Then there are two alternative ways to define the phase derivative of f , namely

θ′1(x) = Sc
{
[Df(x)][f(x)]−1} (1.11)
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or

θ′2(x) = Sc{[Dθ(x)] u(x)
|u(x)| }. (1.12)

Two alternative amplitude derivatives are accordingly

ρ′1(x) � Dρ(x) (1.13)

and

ρ′2(x) � ρ(x)Nsc
{
[Df(x)][f(x)]−1} . (1.14)

The above phase derivatives θ′1(x), θ′2(x) are first studied in [24]. For m = 1, θ′1 and θ′2 coincide with each 
other, both being identical with the classical phase derivative, and so do ρ′1 and ρ′2. In higher dimensions 
the two above defined amplitude derivatives lead to two definitions of variance of the frequency, viz., varξ
and var∗ξ , as given in Definition 1.2 (for more details see Remark 4.5).

With the Dirac operator, like the Cauchy–Riemann operator in the one complex variable case, one can 
define Clifford holomorphic functions in the higher dimensional spaces, being analogous with the complex 
holomorphic functions of one complex variable, called monogenic functions. In particular, the Hardy spaces 
constituted by the para-vector-valued monogenic functions in the upper-half space coincide with the conju-
gate harmonic systems in the sense of Stein and Weiss [20]. The Hardy spaces employed in this theory are 
not restricted to only contain para-vector-valued monogenic functions.

Definition 1.2. Let f(x) = ρ(x)e
u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued with ‖f‖2 = 1. Assume that 

all the first order partial derivatives of f(x) exist. Then the mean of time is given by

〈x〉 =
∫

Rm

ix|f(x)|2dx, (1.15)

the variance of x is

varx =
∫

Rm

(ix− 〈x〉)2|f(x)|2dx, (1.16)

the mean of frequency is

〈ξ〉 =
∫

Rm

|iξ||f̂+(ξ)|2dξ −
∫

Rm

|iξ||f̂−(ξ)|2dξ, (1.17)

the mean of ξ2 is defined by

〈ξ2〉 =
∫

Rm

|iξ|2|f̂(ξ)|2dξ,

the variance of frequency is alternatively defined by one of the following two formulas:

varξ =
∫

[|iξ| − 〈ξ〉]2|f̂+(ξ)|2dξ +
∫

[−|iξ| − 〈ξ〉]2|f̂−(ξ)|2dξ, (1.18)

Rm Rm
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or

var∗ξ �
∫

Rm

[θ′1(x) − 〈ξ〉]2|f(x)|2dx +
∫

Rm

|ρ′1(x)|2dx. (1.19)

The covariance is defined by

Cov =
∫

Rm

(ix− 〈x〉)[θ′1(x) − 〈ξ〉]|f(x)|2dx, (1.20)

and the absolute covariance is defined by

COV =
∫

Rm

|ix− 〈x〉||θ′1(x) − 〈ξ〉||f(x)|2dx, (1.21)

where f̂(ξ), f̂+(ξ) and f̂−(ξ) are Fourier transform of f(x), f+(x) and f−(x), respectively, and f+ and f−

are the upper- and lower-Hardy H2-spaces projections of f , with the relation f = f+ + f−.

We will, in the main part of this paper, give justifications and detailed explanations for the above 
introduced definitions. Now we are ready to review some existing results. For real-scalar-valued signals 
f(x) ∈ L2(Rm) the work [21] obtains

varxvarξ ≥ m2

4 ; (1.22)

while for signals of the axial-form f(x) = U(|x|) + x
|x|V (|x|) ∈ L2(Rm) where U(|x|) and V (|x|) are scalar-

valued, [21] obtains

varxvarξ ≥ [−m

2 + (m− 1)
∫

Rm

V 2dx]2 + Cov2. (1.23)

It is easy to see that when m = 1, the lower bounds of (1.22) and (1.23) reduce, respectively, to those 
of (1.1) and (1.7). With this observation we say that (1.22) and (1.23) correspond to the weaker types of 
uncertainty principles. Moreover, (1.23) is restricted to only signals of the axial-form. The work [22] gives 
an uncertainty principle for real-para-vector-valued signal f(x) = ρ(x)e

u(x)
|u(x)| θ(x), read as

⎛
⎝ ∫

Rm

|x|2|f(x)|2dx

⎞
⎠
⎛
⎝ ∫

Rm

|ξ|2|f̂(ξ)|2dξ

⎞
⎠ ≥ m2

4 + COV2
xξ, (1.24)

where the absolute covariance COVxξ is defined by

COVxξ :=
m∑

k=1

∫
Rm

∣∣∣∣xkNSc
{(

∂

∂xk
e

u(x)
|u(x)| θ(x)

)
e−

u(x)
|u(x)| θ(x)

}∣∣∣∣ |f(x)|2dx, (1.25)

where ρ(x), u(x) and θ(x) are defined in (1.10).
The uncertainty principle given by (1.24) does reduce to the strongest form (1.8) for m = 1. It, however, 

for m > 1, does not use the global scalar-valued phase derivatives given in Definition 1.1. It would be very 
interesting to establish uncertainty principles in terms of the scalar-valued phase derivatives and compare 
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their sharpness. In the present paper through a scalar-valued phase derivative related COV, we achieve to 
obtain two incomparable uncertainty principles, namely

varxvar∗ξ ≥ m2

4 + COV2 (1.26)

and

varxvarξ ≥ 1
4 |im + M |2 + COV2. (1.27)

The uncertainty principles (1.26) and (1.27), for real-para-vector-valued signals, are under the assumption 
that all the first order classical partial derivatives exist. Both those uncertainty principles essentially corre-
spond to (1.8). As in the classical case both those results and the proofs are naturally related to phase and 
amplitude derivatives of the signals.

If we do not assume existence of the first order partial derivatives, we cannot directly define the phase 
and amplitude derivatives. Without such smoothness assumption we, instead, use the Hardy spaces de-
composition. As example, we consider real-scalar-valued signals. For those signals, under a Sobolev type 
smoothness condition (weak smoothness), two types of uncertainty principles, corresponding to (1.26) and 
(1.27), respectively, are derived.

The paper is organized as follows. In Section 2, we recall some basic knowledge of Clifford algebras. In 
Section 3, we define and analyze phase and amplitude derivatives of real-para-vector-valued signals in the 
Clifford algebra setting. Section 4 is devoted to studying the means and variances of time and frequency 
in the Clifford algebra setting. Section 5 discusses uncertainty principles for real-para-vector-valued signals 
with all the first order partial derivatives. We deduce two different types of uncertainty principles, both 
corresponding to the strongest form in the one-dimensional case, (1.8). In Section 6 we treat non-smooth 
real scalar-valued signals by using the Hardy spaces decomposition method.

2. Preliminaries

We now recall some basic knowledge of Clifford algebra (see [6,12]). Let e1, . . . , em be basic elements
satisfying eiej + ejei = −2δij , where δij = 1 if i = j and δij = 0 otherwise, i, j = 1, 2, . . . , m. Let

Rm
1 = {x0 + x, x ∈ Rm},

where

Rm = {x = x1e1 + . . . + xmem : xj ∈ R, j = 1, 2, . . . ,m}

is identical with the usual m-dimensional Euclidean space.
An element in Rm is called a vector. The real (complex) Clifford algebra generated by e1, e2, . . . , em, 

denoted by Rm (Cm), is the non-commutative algebra generated by e1, e2, . . . , em, over the real (complex) 
field R (C). A general element in Rm is of the form x =

∑
T xTeT , where xT ∈ R, and eT = ei1ei2 · · · eil , 

being called induced products, where T runs over all the ordered subsets of {1, . . . , m}, namely

T = {1 ≤ i1 < · · · < ik ≤ m}, 1 ≤ k ≤ m.

When T = ø, we set eø = e0 = 1. We denote |T | = l where l is the number of the indices involved. A general 
Clifford number x may be decomposed into

x =
m∑

x(l), x(l) =
∑

xTeT .

l=0 |T |=l
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A Clifford number of the form x(l) is called a Clifford number of l-form. A Clifford number of 2-form is also 
called a bi-vector.

The multiplication of two vectors x =
∑m

j=1 xjej and y =
∑m

j=1 yjej is given by

xy = x · y + x ∧ y

where x · y is a scalar, denoted by Sc(xy) and given by

x · y = −
m∑
j=1

xjyj = 1
2(xy + yx) = −〈x, y〉,

and x ∧ y is the non-scalar part of xy, denoted by NSc(xy) and given by

x ∧ y =
∑
i<j

eij(xiyj − xjyi) = 1
2(xy − yx),

being a bi-vector, denoted by Bi(xy).
The Clifford conjugation and reversion of eT = ei1 · · · eil are ēT = ēil · · · ēi1 , ēj = −ej and ẽT =

eil · · · ei1 . So the Clifford conjugation of a vector x is x = −x.
It is easy to verify that 0 	= x ∈ Rm implies

x−1 = x

|x|2 .

The natural inner product between x = ΣTxTeT and y =
∑

T yTeT in Cm, denoted by 〈x, y〉, is the 
complex number ΣTxT yT . The norm associated with this inner product is

|x| = 〈x, x〉 1
2 =

(
ΣT |xT |2

) 1
2 .

Let f(x) = ΣT fT (x)eT , where x = x0 + x ∈ Rm
1 , and fT are complex-valued functions. We will use the 

homogeneous Dirac operator D and the non-homogeneous Dirac operator D, where

D = ∂

∂x1
e1 + · · · + ∂

∂xm
em,

and

D = ∂

∂x0
+ D.

We define the “left” and “right” role of the operators D and D, respectively, by

Df =
m∑
i=1

∑
T

∂fT
∂xi

eieT , Df =
m∑
i=0

∑
T

∂fT
∂xi

eieT

and

fD =
m∑∑ ∂fT

∂xi
eTei, fD =

m∑∑ ∂fT
∂xi

eTei.

i=1 T i=0 T
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If f has all continuous first order partial derivatives and Df = 0 in a (connected and open) domain Ω ⊆ Rm
1 , 

then we say that f is left-monogenic in Ω; and, if fD = 0 in Ω ⊆ Rm
1 , we say that f is right-monogenic

in Ω. If f is both left- and right-monogenic, then we say that f is monogenic.
We call

E(x) = x

|x|m+1

the Cauchy kernel in Rm
1 . It is easy to verify that E(x) is a monogenic function in Rm

1 \{0}.

3. Derivatives of phase and amplitude of signals on Rm

Phase derivative is well accepted as instantaneous frequency of a signal, the latter playing an important 
role in signal analysis ([4] and [5]). In the studies of uncertainty principles of one-dimensional signals, the 
phase and amplitude derivatives are involved [8,11,10]. In the present paper we will consider uncertainty 
principle for signals on Rm. To develop a comprehensive theory in higher dimensions we need to formulate 
appropriate phase and amplitude derivative concepts for multivariate functions. We first have a revision on 
the one-dimensional case.

Let s(t) = ρ(t)eiϕ(t) be a signal defined on R, ρ(t) = |s(t)|. Assume that the classical derivatives of s(t), 
ρ(t) and ϕ(t) all exist. Taking the derivative with respect to t and dividing s(t) on both sides, we obtain

ϕ′(t) = Im
[
s′(t)
s(t)

]
, (3.28)

and

ρ′(t) = ρ(t)Re
[
s′(t)
s(t)

]
, (3.29)

where Im
[
s′(t)
s(t)

]
and Re

[
s′(t)
s(t)

]
denote, respectively, the imaginary and the real parts of s

′(t)
s(t) .

In the following, we assume that signals f(x) are defined in Rm taking values in Rm
1 , that is,

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + · · · + fm(x)em,

where fi(x), i = 0, 1, 2, · · · , m, are real-scalar-valued and have all the classical first order partial derivatives.
Similarly with one-dimensional case we define the Fourier transform of f ∈ L1(Rm) by

f̂(ξ) = 1
(2π)m

2

∫
Rm

e−i〈x,ξ〉f(x)dx. (3.30)

If f̂ is also in L1(Rm), then the inversion formula holds, that is

f(x) = 1
(2π)m

2

∫
Rm

ei〈x,ξ〉f̂(ξ)dξ. (3.31)

There holds the Plancherel Theorem

‖f̂‖2
2 = ‖f‖2

2, f ∈ L1(Rm) ∩ L2(Rm).
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Through a density argument, both the Fourier transformation and its inverse can be extended to L2(Rm)
in which the Plancherel Theorem remains to hold. When we use the formulas (3.30) and (3.31) for L2(Rm)
functions, we keep in mind that the convergence of the integrals is in the L2-sense.

The Hilbert transform of f(x) is defined as any of the following equivalent forms

Hf(x) = 1
(2π)m

2

∫
Rm

Dei〈x,ξ〉

|ξ| f̂(ξ)dξ

= 1
(2π)m

2

∫
Rm

iξ
|ξ|e

i〈x,ξ〉f̂(ξ)dξ

= 2
σm

lim
ε→0+

∫
|x−t|>ε

x− t

|x− t|m+1 f(t)dt

= −
m∑
j=1

ejRj(f)(x),

where Rj(f)(x) = 2
σm

limε→0+
∫
|x−t|>ε

xj−tj
|x−t|m+1 f(t)dt is the jth-Riesz transform of f [20], σm =

2πm+1
2 /Γ(m+1

2 ) is the surface area of the unit sphere of Rm+1.
For f(x) ∈ L2(Rm), we have the decomposition f(x) = f+(x) + f−(x), f̂±(ξ) = χ±(ξ)f̂(ξ), where 

f±(x) ∈ H±
2 (Rm), and (see [19])

f±(x) = 1
2[f(x) ±Hf(x)]

= 1
(2π)m

2

∫
Rm

ei〈x,ξ〉χ±(ξ)f̂(ξ)dξ

= lim
x0→0±

f±(x), (3.32)

where

f±(x) = 1
(2π)m

2

∫
Rm

e∓x0|ξ|ei〈x,ξ〉χ±(ξ)f̂(ξ)dξ, x = x0 + x ∈ Rm
1

±,

and χ±(ξ) = 1
2(1 ± i ξ

|ξ| ). It is straightforward to verify that χ2
±(ξ) = χ±(ξ), χ+(ξ) + χ−(ξ) = 1, 

χ+(ξ)χ−(ξ) = χ−(ξ)χ+(ξ) = 0 and |ξ|χ±(ξ) = ±iξχ±(ξ). H+
2 (Rm) and H−

2 (Rm) are the non-tangential 
boundary values of the Hardy spaces functions on Rm

1
+ and Rm

1
−, the latter being the upper- and the 

lower-half (m + 1)-dimensional Euclidean spaces (see [19]).

Remark 3.1. When m = 1, ξ = x1e1, and

χ±(ξ) = 1
2(1 ± i

ξ

|ξ| ) = 1
2(1 ± i x1e1

|x1e1|
) = 1

2[1 ± isgn(x1)e1].

Let e1 = −i, then

χ±(ξ) = 1[1 ± isgn(x1)e1] = 1 [1 ± sgn(x1)] = χ±(x1).
2 2
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Based on this, when m = 1,

D = ∂

∂x1
e1 = 1

i
∂

∂x1
.

In the introduction part, we represent f(x) in the polar coordinate form

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + · · · + fm(x)em = ρ(x)e
u(x)
|u(x)| θ(x),

and define phase and amplitude derivatives. In fact, the phase derivatives θ′1(x), θ′2(x) correspond to, re-
spectively, the right- and left-hand side of (3.28). We explain this through computations.

On the one hand, since

f(x) = ρ(x)e
u(x)
|u(x)| θ(x),

we have

f(x)f(x) = |f(x)|2 = ρ2(x), and [f(x)]−1 = f(x)
f(x)f(x)

= 1
ρ(x)e

− u(x)
|u(x)| θ(x).

On the other hand,

Df(x) = D[ρ(x)e
u(x)
|u(x)| θ(x)] = [Dρ(x)]e

u(x)
|u(x)| θ(x) + ρ(x)[De

u(x)
|u(x)| θ(x)].

Hence,

[Df(x)][f(x)]−1

=
{

[Dρ(x)]e
u(x)
|u(x)| θ(x) + ρ(x)[De

u(x)
|u(x)| θ(x)]

}
[ 1
ρ(x)e

− u(x)
|u(x)| θ(x)]

= [Dρ(x)]
ρ(x) + [De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x). (3.33)

We further obtain

[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)

=
{
D[cos θ(x) + u(x)

|u(x)| sin θ(x)]
}
e−

u(x)
|u(x)| θ(x)

=
{
− sin θ(x)[Dθ(x)] + sin θ(x)[D u(x)

|u(x)| ] + cos θ(x)[Dθ(x)] u(x)
|u(x)|

}
e−

u(x)
|u(x)| θ(x)

=
{

sin θ(x)[Dθ(x)] u(x)
|u(x)|

u(x)
|u(x)| + sin θ(x)[D u(x)

|u(x)| ]

+ cos θ(x)[Dθ(x)] u(x)
|u(x)|

}
e−

u(x)
|u(x)| θ(x)

=
{

[Dθ(x)] u(x)
|u(x)| [cos θ(x) + sin θ(x) u(x)

|u(x)| ] + sin θ(x)[D u(x)
|u(x)| ]

}
e−

u(x)
|u(x)| θ(x)

=
{

[Dθ(x)] u(x)
|u(x)|e

u(x)
|u(x)| θ(x) + sin θ(x)[D u(x)

|u(x)| ]
}
e−

u(x)
|u(x)| θ(x)

= [Dθ(x)] u(x) + sin θ(x)[D u(x) ]e−
u(x)
|u(x)| θ(x).
|u(x)| |u(x)|
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Therefore,

[Df(x)][f(x)]−1 = [Dρ(x)]
ρ(x) + [Dθ(x)] u(x)

|u(x)| + sin θ(x)[D u(x)
|u(x)| ]e

− u(x)
|u(x)| θ(x). (3.34)

If we want to define the phase derivation like the right-hand side of (3.28), then we have

θ′1(x) � Sc
{
[Df(x)][f(x)]−1} .

If we want to define it in accordance with the left-hand side of (3.28), which is a direct application of the 
spherical Dirac operator to the phase function, we should have

θ′2(x) � Sc{[Dθ(x)] u(x)
|u(x)| }.

According to (3.33) and (3.34), taking into account the fact that [Dρ(x)]
ρ(x) is a pure vector, we have, explicitly,

θ′1(x) = Sc
{
[Df(x)][f(x)]−1}

= Sc
{

[Dθ(x)] u(x)
|u(x)|

}
+ Sc

{
sin θ(x)[D u(x)

|u(x)| ]e
− u(x)

|u(x)| θ(x)
}

= θ′2(x) + Sc
{

sin θ(x)[D u(x)
|u(x)| ]e

− u(x)
|u(x)| θ(x)

}
. (3.35)

Therefore, the difference between the two phase derivatives is Sc
{

sin θ(x)[D u(x)
|u(x)| ]e

− u(x)
|u(x)| θ(x)

}
. Similarly, 

based on the left-hand and right-hand sides of (3.29), we can define amplitude derivative as

ρ′1(x) � Dρ(x), (3.36)

or

ρ′2(x) � ρ(x)Nsc
{
[Df(x)][f(x)]−1} . (3.37)

Based on (3.33), we have

Dρ(x) = ρ(x)
{

[Df(x)][f(x)]−1 − [De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)

}
. (3.38)

Since Dρ(x) is vector-valued, (3.36) can be further represented as

ρ′1(x) = Dρ(x)

= ρ(x)
{

Nsc{[Df(x)][f(x)]−1} − Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

}
= ρ′2(x) − ρ(x)Nsc{[De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}. (3.39)

In the one-dimensional case, corresponding to the homogeneous case m = 1, under mild conditions 
D u(x)

|u(x)| = 1
i

d
dx1

[ 1i sgn(f1)] = 0. Then Sc
{

sin θ(x)[D u(x)
|u(x)| ]e

− u(x)
|u(x)| θ(x)

}
and Nsc{[De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

reduce to zero. As a consequence, θ′1(x) = θ′2(x), and ρ′1(x) = ρ′2(x).
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4. Mean and variance of time and frequency for signals on Rm

In this section, for a real-para-vector-valued signal f(x) and its Clifford Fourier transform f̂(ξ), we are to 
define means of x and frequency ξ. Since, for one-dimensional signal s(t), t ∈ R, the mean of t is called the 
mean of time, in higher dimensions we also phrase the corresponding quantities as the mean of time instead 
of the mean of the space variable x. We first review the related knowledge for the one-dimensional case in 
subsection 4.1. Then in subsection 4.2 we give definitions of means and variances of time and frequency for 
signals on Rm with the Clifford algebra setting.

4.1. Means and variances of time and frequency for signals on R

The revision on the one-dimensional case is methodological. It would hint which would be the reasonable 
ways to define the counterpart concepts in higher dimensions. The definitions of means and variances of 
time and frequency for signals on R are given in the introduction part. In [8], 〈ω〉s and σ2

ω,s are represented 
in the time domain. The representations of 〈ω〉s and σ2

ω,s in the time domain give reasons for the means, as 
well as the phase and amplitude derivatives. Here we enclose the proof of the results.

Theorem 4.1. Let s(t) = ρ(t)eiϕ(t) ∈ L2(R), ρ(t) = |s(t)| with ‖s‖2 = 1. Assume that the classical derivatives 
ρ′(t), ϕ′(t) and s′(t) all exist and are Lebesgue measurable, and s′(t) is in L2(R). Then there hold

〈ω〉s =
∞∫

−∞

ϕ′(t)|s(t)|2dt, (4.40)

and

σ2
ω,s =

∞∫
−∞

[ρ′(t)]2dt +
∞∫

−∞

[ϕ′(t) − 〈ω〉s]2|s(t)|2dt. (4.41)

Proof. Since s, s′ ∈ L2(R), then ŝ(ω), ωŝ(ω) ∈ L2(R). Hölder’s inequality implies ω|ŝ(ω)|2, ω2|ŝ(ω)|2 ∈
L1(R), and hence 〈ω〉s and σ2

ω,s are well defined. Then

〈ω〉s =
∞∫

−∞

ω|ŝ(ω)|2dω

= −
∞∫

−∞

is′(t)s(t)dt

= −i

∫
L

s′(t)
s(t) |s(t)|

2dt

=
∫
L

Im
{
s′(t)
s(t)

}
|s(t)|2dt

=
∞∫

−∞

ϕ′(t)|s(t)|2dt,

and
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σ2
ω,s =

∞∫
−∞

[ω − 〈ω〉s]2|ŝ(ω)|2dω

=
∞∫

−∞

[−is′(t) − 〈ω〉ss(t)][−is′(t) − 〈ω〉ss(t)]dt

=
∫
L

|s
′(t)
s(t) − i〈ω〉s|2|s(t)|2dt

=
∫
L

Re2
{
s′(t)
s(t)

}
|s(t)|2dt +

∞∫
−∞

{
Im[s

′(t)
s(t) ] − 〈ω〉s

}2

|s(t)|2dt

=
∞∫

−∞

[ρ′(t)]2 dt +
∞∫

−∞

[ϕ′(t) − 〈ω〉s]2 |s(t)|2dt,

where L = {t ∈ R|s(t) 	= 0}. �
4.2. Means and variances of time and frequency for signals on Rm

Now we discuss the means and variances of time and frequency for signals on Rm. The paper [21] proposes 
some definitions of means and variances of time and frequency for real-valued signals on Rm, that essentially 
correspond to (1.4), (1.5), (1.2) and (1.3). In this study, we also use the similar method to define mean and 
variance of time and frequency. Since the signals we consider are para-vector-valued, our definitions of mean 
and variance of frequency have some differences from those in [21]. We have gave our definition of mean and 
variance of time and frequency in the introduction part. In the following, we give some comments about our 
definition.

Remark 4.2. When m = 1, the mean and variance of time for f(x) ∈ L2(Rm), that is, (1.15) and (1.16), 
are reduced to

〈x〉 =
∫
R1

ix1e1|f(x)|2dx =
∫
R1

x1|f(x)|2dx,

and

varx =
∫
R1

(ix1e1 − 〈x〉)2|f(x)|2dx =
∫
R1

(x1 − 〈x〉)2|f(x)|2dx.

Those coincide with (1.4) and (1.2), respectively, in the one-dimensional case.

In the following remark we verify that varx is a real number.

Remark 4.3. It is easy to see that the mean of time

〈x〉 =
∫

Rm

ix|f(x)|2dx,

is complex-vector-valued number and can be written in another form
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〈x〉 = ia,

where a is real-vector-valued number. Then

varx =
∫

Rm

(ix− 〈x〉)2|f(x)|2dx =
∫

Rm

|x− a|2|f(x)|2dx,

where we used (x− a)2 = −|x− a|2.

Remark 4.4. When m = 1, the mean and variance of frequency defined in (1.17) and (1.18) are reduced to

〈ξ〉 =
∫
R1

|iξ1e1||f̂+(ξ)|2dξ −
∫
R1

|iξ1e1||f̂−(ξ)|2dξ

=
∞∫
0

ξ1|f̂(ξ)|2dξ +
0∫

−∞

ξ1|f̂(ξ)|2dξ

=
∞∫

−∞

ξ1|f̂(ξ)|2dξ,

and

varξ =
∫
R1

[|iξ1e1| − 〈ξ〉]2|χ+(ξ1)f̂(ξ)|2dξ +
∫
R1

[−|iξ1e1| − 〈ξ〉]2|χ−(ξ1)f̂(ξ)|2dξ

=
∞∫
0

[ξ1 − 〈ξ〉]2|f̂(ξ)|2dξ +
0∫

−∞

[ξ1 − 〈ξ〉]2|f̂(ξ)|2dξ

=
∞∫

−∞

(ξ1 − 〈ξ〉)2|f̂(ξ)|2dξ.

Those, respectively, coincide with (1.5) and (1.3).

Remark 4.5. In Definition 1.2, we have two versions for variance of frequency. Those two versions both are 
inspired by the one-dimensional case, that is (4.41). As Remark 4.4 indicates, varξ corresponds to (4.41). 
Theorem 4.7 represents varξ in the time domain, that is

varξ =
∫

Rm

[θ′1(x) − 〈ξ〉]2|f(x)|2dx +
∫

Rm

|ρ′2(x)|2dx, (4.42)

that gives support to use ρ′2(x). Replacing ρ′2(x) with ρ′1(x) in (4.42) we have an alternative version of 
variance, that is, ∫

Rm

[θ′1(x) − 〈ξ〉]2|f(x)|2dx +
∫

Rm

|ρ′1(x)|2dx,

that is just the definition of var∗ξ . When m = 1, σ2
ω,s, varξ and var∗ξ all coincide. When m ≥ 2 they are, 

however, not. In the following we will establish an uncertainty principle for each of the two formulations 
varξ and var∗ξ .
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In the following two theorems, we represent 〈ξ〉, 〈ξ2〉 and varξ in time domain.

Theorem 4.6. Let f(x) = ρ(x)e
u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued and Df(x) ∈ L2(Rm) with 

‖f‖2 = 1. Then there holds

〈ξ〉 =
∫

Rm

θ′1(x)|f(x)|2dx, (4.43)

where θ′1 is given in Definition 1.1.

Proof. Since f(x) ∈ L2(Rm) and Df(x) ∈ L2(Rm), 〈ξ〉 is well defined. Since f(x) ∈ L2(Rm) is real-para-
vector-valued, we have

[f(x)]−1 = f(x)
|f(x)|2 ,

f̂(ξ) is a complex para-vector-valued function, χ+(ξ)f̂(ξ) and χ−(ξ)f̂(ξ) are complex-valued and are sums 
of some 0-form, 1-form and 2-form. There holds the relation

|χ±(ξ)f̂(ξ)|2 = Sc{χ±(ξ)f̂(ξ)[χ±(ξ)f̂(ξ)]}.

In what follows the property |ξ|χ±(ξ) = ±iξχ±(ξ) will be used. The property can be obtained directly by 

using the expression χ±(ξ) = 1
2 (1 ± i ξ

|ξ| ).
Then we have

〈ξ〉 =
∫

Rm

|iξ||f̂+(ξ)|2dξ −
∫

Rm

|iξ||f̂−(ξ)|2dξ

= Sc

⎧⎨
⎩
∫

Rm

|ξ|χ+(ξ)f̂(ξ)χ+(ξ)f̂(ξ)dξ −
∫

Rm

|ξ|χ−(ξ)f̂(ξ)χ−(ξ)f̂(ξ)dξ

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

iξχ+(ξ)f̂(ξ)χ+(ξ)f̂(ξ)dξ +
∫

Rm

iξχ−(ξ)f̂(ξ)χ−(ξ)f̂(ξ)dξ

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

iξ[χ+(ξ)f̂(ξ) + χ−(ξ)f̂(ξ)][χ+(ξ)f̂(ξ) + χ−(ξ)f̂(ξ)]dξ

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

iξf̂(ξ)f̂(ξ)dξ

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

Df(x)f(x)dx

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

[Df(x)][f(x)]−1f(x)f(x)dx

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

[Df(x)][f(x)]−1|f(x)|2dx

⎫⎬
⎭

Rm
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=
∫

Rm

Sc
{
[Df(x)][f(x)]−1} |f(x)|2dx

=
∫

Rm

θ′1(x)|f(x)|2dx, (4.44)

where the equalities

Sc

⎧⎨
⎩
∫

Rm

iξ
{
χ+(ξ)f̂(ξ)[χ−(ξ)f̂(ξ)]

}
dξ

⎫⎬
⎭ = 0, (4.45)

and

Sc

⎧⎨
⎩
∫

Rm

iξ
{
χ−(ξ)f̂(ξ)[χ+(ξ)f̂(ξ)]

}
dξ

⎫⎬
⎭ = 0, (4.46)

guarantee the fourth equal relation of (4.44).
We only prove (4.45). The proof of (4.46) is similar with the proof of (4.45).

Sc

⎧⎨
⎩
∫

Rm

iξ
{
χ+(ξ)f̂(ξ)[χ−(ξ)f̂(ξ)]

}
dξ

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

|ξ|χ+(ξ)f̂(ξ)[χ−(ξ)f̂(ξ)]dξ

⎫⎬
⎭

=
∫

Rm

|ξ|Sc
{
χ+(ξ)f̂(ξ)[χ−(ξ)f̂(ξ)]

}
dξ

=
∫

Rm

|ξ|Sc
{

[χ−(ξ)f̂(ξ)]χ+(ξ)f̂(ξ)
}
dξ

= Sc

⎧⎨
⎩
∫

Rm

|ξ|[f̂(ξ)]χ−(ξ)χ+(ξ)f̂(ξ)dξ

⎫⎬
⎭

= 0,

where we used the property χ−(ξ)χ+(ξ) = χ−(ξ)χ+(ξ) = 0. The proof is complete. �
Theorem 4.7. Let f(x) = ρ(x)e

u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued and Df(x) ∈ L2(Rm) with 

‖f‖2 = 1. Then there hold

〈ξ2〉 =
∫

Rm

[θ′1(x)]2|f(x)|2dx +
∫

Rm

|ρ′2(x)|2dx, (4.47)

and

varξ =
∫

Rm

[θ′1(x) − 〈ξ〉]2|f(x)|2dx +
∫

Rm

|ρ′2(x)|2dx, (4.48)

where θ′1 and ρ′2 are given in Definition 1.1.
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Proof. Since f(x) ∈ L2(Rm) and Df(x) ∈ L2(Rm), 〈ξ2〉 and varξ are well defined. Since f̂(ξ) is complex-
para-vector-valued, we have

|iξ|2|f̂(ξ)|2 = |iξf̂(ξ)|2 = Sc{iξf̂(ξ)[iξf̂(ξ)]}.

Since f(x) is a real-para-vector-valued function, we have that Df(x) is a sum of some 0-forms, 1-forms 
and 2-forms. Thus [Df(x)][f(x)]−1 is a sum of some 0-forms, 1-forms, 2-forms and 3-forms. By direct 
computation, we have

Sc
{

[Df(x)][f(x)]−1[Df(x)][f(x)]−1
}

= |[Df(x)][f(x)]−1|2

= Sc2 {[Df(x)][f(x)]−1}+ |NSc
{
[Df(x)][f(x)]−1} |2.

Then

〈ξ2〉 =
∫

Rm

|iξ|2|f̂(ξ)|2dξ

=
∫

Rm

|iξf̂(ξ)|2dξ

= Sc

⎧⎨
⎩
∫

Rm

iξf̂(ξ)iξf̂(ξ)dξ

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

Df(x)Df(x)dx

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

[Df(x)][f(x)]−1|f(x)|2[Df(x)][f(x)]−1dx

⎫⎬
⎭

= Sc

⎧⎨
⎩
∫

Rm

[Df(x)][f(x)]−1[Df(x)][f(x)]−1|f(x)|2dx

⎫⎬
⎭

=
∫

Rm

Sc
{

[Df(x)][f(x)]−1[Df(x)][f(x)]−1
}
|f(x)|2dx

=
∫

Rm

{
Sc2 {[Df(x)][f(x)]−1}+ |NSc

{
[Df(x)][f(x)]−1} |2} |f(x)|2dx

=
∫

Rm

Sc2 {[Df(x)][f(x)]−1} |f(x)|2dx +
∫

Rm

|NSc
{
[Df(x)][f(x)]−1} |2|f(x)|2dx,

and we further have

varξ =
∫

Rm

[|iξ| − 〈ξ〉]2|f̂+(ξ)|2dξ +
∫

Rm

[−|iξ| − 〈ξ〉]2|f̂−(ξ)|2dξ

=
∫

[|iξ|2 − 2〈ξ〉|iξ| + 〈ξ〉2]|f̂+(ξ)|2dξ +
∫

[|iξ|2 + 2〈ξ〉|iξ| + 〈ξ〉2]|f̂−(ξ)|2dξ

Rm Rm
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=
∫

Rm

|iξ|2|f̂+(ξ)|2dξ +
∫

Rm

|iξ|2|f̂−(ξ)|2dξ

− 2〈ξ〉[
∫

Rm

|iξ||f̂+(ξ)|2dξ −
∫

Rm

|iξ||f̂−(ξ)|2dξ]

+ 〈ξ〉2[
∫

Rm

|f̂+(ξ)|2dξ +
∫

Rm

|f̂−(ξ)|2dξ]

=
∫

Rm

|iξ|2|f̂(ξ)|2dξ − 2〈ξ〉2 + 〈ξ〉2
∫

Rm

|f̂(ξ)|2dξ

=
∫

Rm

Sc2 {[Df(x)][f(x)]−1} |f(x)|2dx

+
∫

Rm

|NSc
{
[Df(x)][f(x)]−1} |2|f(x)|2dx

− 2〈ξ〉
∫

Rm

Sc
{
[Df(x)][f(x)]−1} |f(x)|2dx + 〈ξ〉2

∫
Rm

|f(x)|2dx

=
∫

Rm

{
Sc
{
[Df(x)][f(x)]−1}− 〈ξ〉

}2 |f(x)|2dx

+
∫

Rm

|NSc
{
[Df(x)][f(x)]−1} |2|f(x)|2dx

=
∫

Rm

[θ′1(x) − 〈ξ〉]2|f(x)|2dx +
∫

Rm

|ρ′2(x)|2dx,

where we used ∫
Rm

|iξ|2|f̂+(ξ)|2dξ +
∫

Rm

|iξ|2|f̂−(ξ)|2dξ =
∫

Rm

|iξ|2|f̂(ξ)|2dξ (4.49)

and ∫
Rm

|f̂+(ξ)|2dξ +
∫

Rm

|f̂−(ξ)|2dξ =
∫

Rm

|f̂(ξ)|2dξ. (4.50)

Now we prove (4.49).
∫

Rm

|iξ|2|f̂+(ξ)|2dξ +
∫

Rm

|iξ|2|f̂−(ξ)|2dξ

= Sc

⎧⎨
⎩
∫

Rm

|iξ|2[f̂+(ξ)f̂+(ξ) + f̂−(ξ)f̂−(ξ)]dξ

⎫⎬
⎭

= Sc
{ ∫

Rm

|iξ|2
{
[χ+(ξ)f̂(ξ)][χ+(ξ)f̂(ξ)] + [χ+(ξ)f̂(ξ)][χ−(ξ)f̂(ξ)]

+ [χ−(ξ)f̂(ξ)][χ+(ξ)f̂(ξ)] + [χ−(ξ)f̂(ξ)][χ−(ξ)f̂(ξ)]
}
dξ
}
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= Sc
{ ∫

Rm

|iξ|2[χ+(ξ)f̂(ξ) + χ−(ξ)f̂(ξ)][χ+(ξ)f̂(ξ) + χ−(ξ)f̂(ξ)]dξ
}

= Sc
{ ∫

Rm

|iξ|2[f̂(ξ)]f̂(ξ)dξ
}

=
∫

Rm

|iξ|2|f̂(ξ)|2dξ.

The proof of (4.50) is similar with that of (4.49), that is

∫
Rm

|f̂+(ξ)|2dξ +
∫

Rm

|f̂−(ξ)|2dξ

= Sc

⎧⎨
⎩
∫

Rm

[f̂+(ξ)f̂+(ξ) + f̂−(ξ)f̂−(ξ)]dξ

⎫⎬
⎭

= Sc
{ ∫

Rm

{
[χ+(ξ)f̂(ξ)][χ+(ξ)f̂(ξ)] + [χ+(ξ)f̂(ξ)][χ−(ξ)f̂(ξ)]

+ [χ−(ξ)f̂(ξ)][χ+(ξ)f̂(ξ)] + [χ−(ξ)f̂(ξ)][χ−(ξ)f̂(ξ)]
}
dξ
}

= Sc
{ ∫

Rm

[χ+(ξ)f̂(ξ) + χ−(ξ)f̂(ξ)][χ+(ξ)f̂(ξ) + χ−(ξ)f̂(ξ)]dξ
}

= Sc
{ ∫

Rm

[f̂(ξ)]f̂(ξ)dξ
}

=
∫

Rm

|f̂(ξ)|2dξ.

In the proofs of (4.49) and (4.50) we used

[χ+(ξ)f̂(ξ)][χ−(ξ)f̂(ξ)] = f̂(ξ)χ+(ξ)χ−(ξ)f̂(ξ) = 0

and

[χ−(ξ)f̂(ξ)][χ+(ξ)f̂(ξ)] = f̂(ξ)χ−(ξ)χ+(ξ)f̂(ξ) = 0.

The proof is complete. �
Remark 4.8. The reference [21] not only gives the definitions of the mean and variance of time and frequency 
for real-valued signals, as noted in the start of subsection 4.2, but also represents the mean and variance of 
frequency in the time domain. However, the method used in [21] is only valid for real-scalar-valued signals. 
Theorem 4.6 and Theorem 4.7 effectively represent the mean and variance of frequency in the time domain 
for real-para-vector-valued signals.

5. Uncertainty principle for real-para-vector-valued signals

The following is an application of Minkowski’s inequality.
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Lemma 5.1. Let g(x) = g0(x) +
∑m

|T |=1 gT (x)eT ∈ L1(Rm; Rm). Then there holds

∫
Rm

|g(x)|dx ≥ |
∫

Rm

g(x)dx|. (5.51)

By Lemma 5.1 and the Hölder inequality, we immediately have the following lemma.

Lemma 5.2. Let f(x) = ρ(x)e
u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued, and xf(x), Df(x) ∈ L2(Rm)

with ‖f‖2 = 1. Then

varx
∫

Rm

|ρ′1(x)|2dx

=
∫

Rm

(ix− 〈x〉)2|f(x)|2dx

·
∫

Rm

|Nsc{[Df(x)][f(x)]−1} − Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}|2|f(x)|2dx

≥ |
∫

Rm

{
Nsc{[Df(x)][f(x)]−1} − Nsc{[De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

}
(ix− 〈x〉)|f(x)|2dx|2.

Lemma 5.3. Let f(x) = ρ(x)e
u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued. Assume that all the first order 

partial derivatives of f(x) exist. Then

Nsc{[Df(x)]f(x)}ix

= 1
2[D|f(x)|2ix] − 1

2 |f(x)|2[Dix] + |f(x)|2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix.

Proof. As we indicate in Theorem 4.7, Df(x) is a sum of some 0-forms, 1-forms and 2-forms, then by direct 
calculation we know that [Df(x)]f(x) is real Clifford-valued and a sum of some 0-forms, 1-forms, 2-forms 
and 3-forms. We will use the notation Tri[h(x)] to denote the 3-form part of h(x) for a Clifford-valued 
function h(x).

From

Df(x) = [Dρ(x)]e
u(x)
|u(x)| θ(x) + ρ(x)[De

u(x)
|u(x)| θ(x)] and f(x) = ρ(x)e−

u(x)
|u(x)| θ(x),

we have

[Df(x)]f(x) = ρ(x)Dρ(x) + |f(x)|2[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x). (5.52)

It is easy to see

f(x)[Df(x)] = [Df(x)]f(x) = −ρ(x)Dρ(x) + |f(x)|2[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x).

Then we have

[Df(x)]f(x) − f(x)[Df(x)]

= 2ρ(x)Dρ(x) + |f(x)|2{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x) − [De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}
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= 2ρ(x)Dρ(x) +

|f(x)|2
{

2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)} − 2Tri{[De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

}
,

and

[Df(x)f(x) − f(x)Df(x)]ix

= 2ρ(x)[Dρ(x)]ix + 2|f(x)|2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix

− 2|f(x)|2Tri{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix

= D[|f(x)|2ix] − |f(x)|2[Dix] + 2|f(x)|2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix

− 2|f(x)|2Tri{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix.

Since ρ(x)[Dρ(x)] is vector-valued, by (5.52) we have

Tri{[Df(x)]f(x)} = |f(x)|2Tri{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}.

Hence

Nsc{[Df(x)]f(x)}ix

= 1
2

{
[Df(x)]f(x) − f(x)[Df(x)]

}
ix + Tri{[Df(x)]f(x)}ix

= 1
2D[|f(x)|2ix] − 1

2 |f(x)|2[Dix] + |f(x)|2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix

− |f(x)|2Tri{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix + Tri{[Df(x)]f(x)}ix

= 1
2D[|f(x)|2ix] − 1

2 |f(x)|2[Dix] + |f(x)|2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix. �

Now we study uncertainty principle by adopting var∗ξ as variance of frequency. The following is one of 
our main results.

Theorem 5.4. Let f(x) = ρ(x)e
u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued, xf(x), Df(x) ∈ L2(Rm) and 

‖f‖2 = 1. Then there holds

varxvar∗ξ ≥ m2

4 + COV2, (5.53)

where varx, var∗ξ and COV are defined in Definition 1.2.

Proof. To prove inequality (5.53), due to (1.19), we need to prove the following two inequalities:

varx
∫

Rm

|ρ′1(x)|2dx ≥ m2

4 , (5.54)

and

varx
∫

[θ′1(x) − 〈ξ〉]2|f(x)|2dx ≥ COV2. (5.55)

Rm
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Now we prove the inequality (5.54). By using Lemma 5.2, we have

varx
∫

Rm

|ρ′1(x)|2dx

=
∫

Rm

(ix− 〈x〉)2|f(x)|2dx

·
∫

Rm

|Nsc{[Df(x)][f(x)]−1} − Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}|2|f(x)|2dx

≥ |
∫

Rm

{
Nsc{[Df(x)][f(x)]−1} − Nsc{[De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

}
(ix− 〈x〉)|f(x)|2dx|2

= |
∫

Rm

Nsc{[Df(x)][f(x)]−1|f(x)|2}(ix− 〈x〉)dx

−
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}(ix− 〈x〉)|f(x)|2dx|2

= |
∫

Rm

Nsc{[Df(x)]f(x)}ixdx

−
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix|f(x)|2dx|2

= |
∫

Rm

{
1
2D[|f(x)|2ix] − 1

2 |f(x)|2[Dix] + |f(x)|2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix

}
dx

−
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix|f(x)|2dx|2

= |
∫

Rm

{
1
2D[|f(x)|2ix] − 1

2 |f(x)|2[Dix]
}
dx|2

= m2

4 . (5.56)

The third equality in (5.56) is a consequence of the relation
∫

Rm

{
Nsc{[Df(x)][f(x)]−1} − Nsc{[De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

}
〈x〉|f(x)|2dx = 0. (5.57)

It is to be proved below. The fourth equality in (5.56) is obtained by using Lemma 5.3. The last equality in 
(5.56) follows from the following two relations:

∫
Rm

D[|f(x)|2ix]dx = 0 and D(ix) = −im.

Next we show (5.57). We recall, by invoking (3.38),
∫ {

Nsc{[Df(x)][f(x)]−1} − Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

}
〈x〉|f(x)|2dx
Rm
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=
∫

Rm

Dρ(x)
ρ(x)

|f(x)|2dx〈x〉

=
∫

Rm

[Dρ(x)]ρ(x)dx〈x〉

= 1
2

∫
Rm

[Dρ2(x)]dx〈x〉

= 0.

Finally, we prove (5.55) through Hölder’s inequality:

varx
∫

Rm

[θ′1(x) − 〈ξ〉]2|f(x)|2dx

=
∫

Rm

(ix− 〈x〉)2|f(x)|2dx
∫

Rm

{Sc{[Df(x)][f(x)]−1} − 〈ξ〉}2|f(x)|2dx

≥ {
∫

Rm

|ix− 〈x〉||Sc{[Df(x)][f(x)]−1} − 〈ξ〉||f(x)|2dx}2

= COV2. �
By using varξ as variance of frequency, we obtain, alternatively,

Theorem 5.5. Let f(x) = ρ(x)e
u(x)
|u(x)| θ(x) ∈ L2(Rm) be real-para-vector-valued, xf(x), Df(x) ∈ L2(Rm) and 

‖f‖2 = 1. Then there holds

varxvarξ ≥ 1
4 |im + M |2 + COV2, (5.58)

where

M = 2
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}(ix− 〈x〉)|f(x)|2dx.

Proof. The proof of Theorem 5.5 is the same as that of Theorem 5.4, except that, instead of (5.54), we need 
to show

varx
∫

Rm

|ρ′2(x)|2dx ≥ 1
4 |im + M |2. (5.59)

It is proceeded as

varx
∫

Rm

|ρ′2(x)|2dx

=
∫

Rm

(ix− 〈x〉)2|f(x)|2dx ·
∫

Rm

|Nsc{[Df(x)][f(x)]−1}|2|f(x)|2dx

≥ |
∫

Nsc{[Df(x)][f(x)]−1}(ix− 〈x〉)|f(x)|2dx|2
Rm
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= |
∫

Rm

Nsc{[Df(x)][f(x)]−1|f(x)|2}ixdx

−
∫

Rm

Nsc{[Df(x)][f(x)]−1}〈x〉|f(x)|2dx|2

= |
∫

Rm

Nsc{[Df(x)]f(x)}ixdx−
∫

Rm

Nsc{[Df(x)][f(x)]−1}〈x〉|f(x)|2dx|2

= |
∫

Rm

{
1
2D[|f(x)|2ix] − 1

2 |f(x)|2[Dix] + |f(x)|2NSc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}ix

}
dx

−
∫

Rm

Nsc{[Df(x)][f(x)]−1}〈x〉|f(x)|2dx|2

= 1
4 |im + 2

∫
Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}(ix− 〈x〉)|f(x)|2dx|2

where

∫
Rm

Nsc{[Df(x)][f(x)]−1}〈x〉|f(x)|2dx

=
∫

Rm

{
Dρ(x)
ρ(x) + Nsc{[De

u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}

}
|f(x)|2dx〈x〉

=
∫

Rm

Dρ(x)
ρ(x) |f(x)|2dx〈x〉 +

∫
Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}|f(x)|2dx〈x〉

=
∫

Rm

[Dρ(x)]ρ(x)dx〈x〉 +
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}|f(x)|2dx〈x〉

= 1
2

∫
Rm

[Dρ2(x)]dx〈x〉 +
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}|f(x)|2dx〈x〉

=
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}|f(x)|2dx〈x〉,

where we used the relation 
∫
Rm [Dρ2(x)]dx = 0. �

Remark 5.6. By Remark 4.2 and Remark 4.4, we know that when m = 1,

COV =
∫
R

|ix1e1 − 〈x〉||θ′1(x) − 〈ξ〉||f(x)|2dx1

coincides with (1.9). Hence for m = 1 the lower-bounds of (5.53) and (5.58) both reduce to that of (1.8). In 
other words, the two uncertainty principles both correspond to the strongest form of the classical uncertainty 
principle in one dimension.
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Remark 5.7. As we indicated in the introduction section, [22] gives the following type uncertainty principle 

for real-para-vector-valued signal f(x) = ρ(x)e
u(x)
|u(x)| θ(x):

⎛
⎝ ∫

Rm

|x|2|f(x)|2dx

⎞
⎠
⎛
⎝ ∫

Rm

|ξ|2|f̂(ξ)|2dξ

⎞
⎠ ≥ m2

4 + COV2
xξ. (5.60)

The left-hand side of (5.60) is the same as that of (5.58), except that the means of time and frequency both 
are assumed to be zero. If we also assume that the means of time and frequency are zero in (5.53) and 
(5.58), they can be rewritten as

⎛
⎝ ∫

Rm

|x|2|f(x)|2dx

⎞
⎠
⎛
⎝ ∫

Rm

[θ′1(x)]2|f(x)|2dx +
∫

Rm

|ρ′1(x)|2dx

⎞
⎠ ≥ m2

4 + COV2 (5.61)

and
⎛
⎝ ∫

Rm

|x|2|f(x)|2dx

⎞
⎠
⎛
⎝ ∫

Rm

|ξ|2|f̂(ξ)|2dξ

⎞
⎠ ≥ 1

4 |im + M |2 + COV2, (5.62)

where

M = 2
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}(ix)|f(x)|2dx

and

COV =
∫

Rm

|ix||θ′1(x)||f(x)|2dx.

To compare the lower-bounds in (5.60), (5.61) and (5.62), we write COV and COVxξ precisely, as

COV =
∫

Rm

|ix||θ′1(x)||f(x)|2dx

=
∫

Rm

|ix|
∣∣Sc
{
[Df(x)][f(x)]−1}∣∣ |f(x)|2dx

(3.33)======
∫

Rm

|ix|
∣∣∣Sc
{

[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)

}∣∣∣ |f(x)|2dx

=
∫

Rm

(
m∑

k=1

x2
k)

1
2

∣∣∣∣∣Sc
{

m∑
k=1

ek
(

∂

∂xk
e

u(x)
|u(x)| θ(x)

)
e−

u(x)
|u(x)| θ(x)

}∣∣∣∣∣ |f(x)|2dx

=
∫

Rm

(
m∑

k=1

x2
k)

1
2

∣∣∣∣∣Sc
{

m∑
k=1

ekNSc
{(

∂

∂xk
e

u(x)
|u(x)| θ(x)

)
e−

u(x)
|u(x)| θ(x)

}}∣∣∣∣∣ |f(x)|2dx, (5.63)

and
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COVxξ =
m∑

k=1

∫
Rm

∣∣∣∣xkNSc
{(

∂

∂xk
e

u(x)
|u(x)| θ(x)

)
e−

u(x)
|u(x)| θ(x)

}∣∣∣∣ |f(x)|2dx

=
∫

Rm

m∑
k=1

|xk|
∣∣∣∣NSc

{(
∂

∂xk
e

u(x)
|u(x)| θ(x)

)
e−

u(x)
|u(x)| θ(x)

}∣∣∣∣ |f(x)|2dx. (5.64)

Based on the last parts of (5.63) and (5.64) we are unable to show which of COV and COVxξ is larger. 
However, an example in [22] shows that COV is greater than COVxξ at least for some signals. The used 
signal is

f(x) = (α
π

)m
4 e

−α|x|2
2 eβ1x1e1 ,

where α is a positive real number and β1 ∈ R. The means of time and frequency of f(x) are both zero. It 
can be calculated directly that

(
∂

∂x1
e

u(x)
|u(x)| θ(x)

)
e−

u(x)
|u(x)| θ(x) = β1e1

and (
∂

∂xk
e

u(x)
|u(x)| θ(x)

)
e−

u(x)
|u(x)| θ(x) = 0, k = 2, 3, · · · ,m.

Then by (5.64) and (5.63), we have

COVxξ =
∫

Rm

|x1β1| |f(x)|2dx,

COV =
∫

Rm

(
m∑

k=1

x2
k)

1
2 |β1| |f(x)|2dx > COVxξ,

and

M = 2
∫

Rm

Nsc{[De
u(x)
|u(x)| θ(x)]e−

u(x)
|u(x)| θ(x)}(ix)|f(x)|2dx = 0.

We can conclude that for this signal the lower-bound of (5.61) and that of (5.62) coincide, and they both 
are larger than that of (5.60).

6. Uncertainty principle for real-scalar-valued signals on Rm

For a real-scalar-valued function f(x) ∈ L2(Rm), it is easy to see that f±(x) are real-para-vector-valued, 
f̂(ξ) is complex-scalar-valued and f̂±(ξ) are complex-para-vector-valued.

We call f+(x) = 1
2 [f(x) + Hf(x)] the monogenic signal associated with f , where Hf is the Hilbert 

transform in Rm. In the following, we will study f+ instead of f . As a matter of fact, the analytic or 
monogenic signal f+ is more informative than f itself in studying the space and frequency means. Moreover, 
f+ has the great advantage being the non-tangential boundary limit of a Hardy space function in the related 
domain [11].

To define the phase and amplitude derivatives of the monogenic signal f+(x), we represent f+(x) in the 
polar coordinate form (see [24]).
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f+(x) = 1
2[f(x) + Hf(x)]

= ρ+(x)
[
f(x)
ρ+(x) + Hf(x)

ρ+(x)

]

= ρ+(x)
[
f(x)
ρ+(x) + Hf(x)

|Hf(x)|
|Hf(x)|
ρ+(x)

]

= ρ+(x)
[
cos θ+(x) + Hf(x)

|Hf(x)| sin θ+(x)
]

= ρ+(x)e
Hf(x)
|Hf(x)| θ+(x), (6.65)

where ρ+(x) = 1
2
√

f2(x) + |Hf(x)|2 is called the amplitude, θ+(x) = arctan |Hf(x)|
f(x) the phase angle, 

Hf(x)
|Hf(x)|θ+(x) the phase vector, and e

Hf(x)
|Hf(x)| θ+(x) the phase direction of f .

The following explanation would be necessary. In the following definition we apply the homogeneous 
Dirac operator to the amplitude and phase-related functions in relation to the non-tangential boundary 
limit of the associated monogenic function, as well as to the boundary function itself. The boundary limit 
function, however, may not be smooth. The amplitude and phase-related functions, as consequence, may not 
be smooth either. Therefore, the required classical partial derivatives may not exist. The right understanding 
of the application of the homogeneous Dirac operator to f+ is as follows (see [11]): We apply Dirac operator 
D to f+(x0 + x), x0 > 0, that, as a monogenic function on Rm+

1 , is smooth. Once we have defined 
Df+(x0 + x), we take non-tangential boundary limit to obtain Df+(x). The definitions of Dθ+(x) and 
Dρ+(x) are similar. The existence of boundary limit is guaranteed by the assumption that f belongs to the 
relevant Sobolev space.

Now we introduce the phase derivative and the amplitude derivative of f+(x).

Definition 6.1. Let f(x) ∈ L2(Rm) be real scalar-valued with ξf̂(ξ) ∈ L2(Rm). Then the phase derivative 

of f+(x) = ρ+(x)e
Hf(x)
|Hf(x)| θ+(x) can be defined by the following two ways

θ′+,1(x) = Sc
{
[Df+(x)][f+(x)]−1} (6.66)

and

θ′+,2(x) = Sc{[Dθ+(x)] Hf(x)
|Hf(x)| }. (6.67)

The amplitude derivative is also defined by two ways

ρ′+,1(x) � Dρ+(x) (6.68)

and

ρ′+,2(x) � ρ+(x)Nsc
{
[Df+(x)][f+(x)]−1} . (6.69)

Definition 6.2. Let f(x) ∈ L2(Rm) be real scalar-valued with ξf̂(ξ) ∈ L2(Rm), and xf+(x) ∈ L2(Rm) with 
‖f+‖2 = 1, where f+ is given by (6.65). Then the mean of time is given by

〈x〉+ =
∫

ix|f+(x)|2dx, (6.70)

Rm
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the variance of x is

varx,+ =
∫

Rm

(ix− 〈x〉+)2|f+(x)|2dx, (6.71)

the mean of frequency is

〈ξ〉+ =
∫

Rm

|iξ||f̂+(ξ)|2dξ, (6.72)

the variance of frequency is defined by the following two formulas:

varξ,+ =
∫

Rm

(|iξ| − 〈ξ〉+)2|f̂+(ξ)|2dξ, (6.73)

and

var∗ξ,+ �
∫

Rm

[θ′+,1(x) − 〈ξ〉+]2|f+(x)|2dx +
∫

Rm

|ρ′+,1(x)|2dx. (6.74)

The covariance is defined by

Cov+ =
∫

Rm

(ix− 〈x〉+)[θ′+,1(x) − 〈ξ〉+]|f+(x)|2dx, (6.75)

and the absolute covariance is defined by

COV+ =
∫

Rm

|ix− 〈x〉+||θ′+,1(x) − 〈ξ〉+||f+(x)|2dx. (6.76)

Lemma 6.3. Let f(x) ∈ L2(Rm) be real-scalar-valued with ξf̂(ξ) ∈ L2(Rm) and ‖f+‖2 = 1, where f+ is 
given by (6.65). Then there hold

〈ξ〉+ =
∫

Rm

θ′+,1(x)|f+(x)|2dx (6.77)

and

varξ,+ =
∫

Rm

[θ′+,1(x) − 〈ξ〉+]2|f+(x)|2dx +
∫

Rm

|ρ′+,2(x)|2dx. (6.78)

Proof. The method to prove Lemma 6.3 is the same as that of Theorem 4.6 and Theorem 4.7. �
Note that the proofs of (6.77) and (6.78) also can be found in the papers [24] and [21], respectively.

Theorem 6.4. Let f(x) ∈ L2(Rm) be real scalar-valued with ξf̂(ξ) ∈ L2(Rm), and xf+(x) ∈ L2(Rm) with 
‖f+‖2 = 1, where f+ is given by (6.65). Then there hold

varx,+var∗ξ,+ ≥ m2
+ COV2

+, (6.79)
4
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and

varx,+varξ,+ ≥ 1
4 |im + M |2 + COV2

+, (6.80)

where

M = 2
∫

Rm

Nsc{[De
Hf(x)
|Hf(x)| θ+(x)]e−

Hf(x)
|Hf(x)| θ+(x)}(ix− 〈x〉+)|f+(x)|2dx.

Proof. The proof of Theorem 6.4 is analogous with that of Theorem 5.4 and Theorem 5.5. �
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