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Abstract Subsequent to our recent work on Fourier spectrum characterization of
Hardy spaces H p(R) for the index range 1 ≤ p ≤ ∞, in this paper we prove further
results on rational Approximation, integral representation and Fourier spectrum char-
acterization of functions for the Hardy spaces H p(R), 0 < p ≤ ∞, with particular
interest in the index range 0 < p ≤ 1. We show that the set of rational functions in
H p(C+1) with the single pole −i is dense in H p(C+1) for 0 < p < ∞. Secondly,
for 0 < p < 1, through rational function approximation we show that any function
f in L p(R) can be decomposed into a sum g + h, where g and h are, in the L p(R)

convergence sense, the non-tangential boundary limits of functions in, respectively,
H p(C+1) and H p(C−1), where H p(Ck) (k = ±1) are the Hardy spaces in the half
plane Ck = {z = x + iy : ky > 0}. We give Laplace integral representation formulas
for functions in the Hardy spaces H p, 0 < p ≤ 2. Besides one in the integral repre-
sentation formula we give an alternative version of Fourier spectrum characterization
for functions in the boundary Hardy spaces H p for 0 < p ≤ 1.
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1 Introduction

The classical Hardy space H p(Ck), 0 < p < +∞, k = ±1, consists of the functions
f analytic in the half plane Ck = {z = x + iy : ky > 0}. They are Banach spaces for
1 ≤ p < ∞ under the norms

‖ f ‖H p
k

= sup
ky>0

(∫ ∞

−∞
| f (x + iy)|pdx

) 1
p ;

and complete metric spaces for 0 < p < 1 under the metric functions

d( f, g) = sup
ky>0

∫ ∞

−∞
| f (x + iy)|pdx .

A function f ∈ H p(Ck) has non-tangential boundary limits (NTBLs) f (x) for almost
all x ∈ R. The corresponding boundary function belongs to L p(R). For 1 ≤ p < ∞,

‖ f ‖p =
(∫ ∞

−∞
| f (x)|pdx

) 1
p = ‖ f ‖H p

k
.

For p = ∞ the Hardy spaces H∞(Ck) (k = ±1) are defined to be the set of bounded
analytic functions in Ck . They are Banach spaces under the norms

‖ f ‖H∞
k

= sup{| f (z)| : z ∈ Ck}.

As for the finite indices p cases any f ∈ H∞(Ck) has non-tangential boundary limit
(NTBL) f (x) for almost all x ∈ R. Similarly, we have

‖ f ‖∞ = ess sup{| f (x)| : x ∈ R} = ‖ f ‖H∞(Ck ).

We note that g(z) ∈ H p(C−1) if and only if the function f (z) = g(z̄) ∈ H p(C+1).
The correspondence between their non-tangential boundary limits and the functions
themselves in the Hardy spaces is an isometric isomorphism. We denote by H p

k (R)

the spaces of the non-tangential boundary limits, or, precisely,

H p
k (R) =

{
f : R → C, f is the NTBL of a function in H p(Ck)

}
.

For p = 2 the boundary Hardy spaces H2
k (R) are Hilbert spaces.

We will need some very smooth classes of analytic functions that are dense in
H p(C+1) and will play the role of the polynomials in the disc case. Garnett [5] shows
the following results.
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Theorem A [5] Let N be a positive integer. For 0 < p < ∞, pN > 1, the class AN

is dense in H p(C+1), where AN is the family of H p(C+1) functions satisfying

1. f (z) is infinitely differentiable in C+1,
2. |z|N f (z) → 0 as z → ∞, z ∈ C+1.

We shall notice that the condition pN > 1 implies the class AN is contained in
H p(C+1). Let α be a complex number and RN (α) the family of rational functions
f (z) = (z + α)−N−1P((z + α)−1), P(w) are polynomials. We notice that the class
RN (α) is contained in the class AN for Imα > 0.

The tasks of this paper are threefold. The first, replacing the class AN by the class
RN (i), we will generalize Theorem A as

Theorem 1 Let N be a positive integer. For 0 < p < ∞, Np > 1, the class RN (i)
is dense in H p(C+1).

Corollary 1 Let N be a positive integer. For 0 < p < ∞, Np > 1, the classRN (−i)
is dense in H p(C−1).

The second task is decomposition of functions in L p(R), 0 < p < 1, into sums of
the corresponding Hardy space functions in H p

+1(R) and in H p
−1(R) through rational

functions approximation, and, in fact, by using what we call as rational atoms.

Theorem 2 (Hardy spaces decomposition of L p functions for 0 < p < 1) Suppose
that 0 < p < 1 and f ∈ L p(R). Then, there exist a positive constant Ap and
two sequences of rational functions {Pk(z)} and {Qk(z)} such that Pk ∈ H p(C+1),
Qk ∈ H p(C−1) and

∞∑
k=1

(
‖Pk‖p

H p
+1

+ ‖Qk‖p
H p

−1

)
≤ Ap‖ f ‖p

p, (1)

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣ f −

n∑
k=1

(Pk + Qk)

∣∣∣∣∣
∣∣∣∣∣
p

= 0. (2)

Moreover,

g(z) =
∞∑
k=1

Pk(z) ∈ H p(C+1), h(z) =
∞∑
k=1

Qk(z) ∈ H p(C−1), (3)

and g(x) and h(x) are the non-tangential boundary values of functions for g ∈
H p(C+1) and h ∈ H p(C−1), respectively, f (x) = g(x) + h(x) almost everywhere,
and

‖ f ‖p
p ≤ ‖g‖p

p + ‖h‖p
p ≤ Ap‖ f ‖p

p,

that is, in the sense of L p(R),

L p(R) = H p
+1(R) + H p

−1(R).
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For the uniqueness of the decomposition, we can ask the following question: what
is the intersection space H p

+1(R)
⋂

H p
−1(R)? Aleksandrov [1,2] gives an answer for

this problem.

Theorem B [1,2] Let 0 < p < 1 and X p denote the L p closure of the set of f ∈
L p(R) which can be written in the form

f (x) =
N∑
j=1

c j
x − a j

, a j ∈ R, c j ∈ C.

Then

X p = H p
+1(R)

⋂
H p

−1(R).

Aleksandrov’s proof [1,2] is rather long involving vanishing moments and the
Hilbert transformation. We present a more straightforward proof for this result.

The Fourier transform of a function f ∈ L1(R) is defined, for x ∈ R, by

f̂ (x) = 1√
2π

∫
R

f (t)e−i xt dt.

Based on the Fourier transformation defined for L1(R)-functions, Fourier trans-
formation can be extended to L2(R), and then to L p(R), 0 < p < 2, and finally to
L p(R), 2 < p ≤ ∞, the latest bring in the distribution sense.

The classical Paley–Wiener Theorem deals with the Hardy H2(C+1) space [3–
6,10] asserting that f ∈ L2(R) is the NTBL of a function in H2(C+1) if and only if
supp f̂ ⊂ [0,∞). Moreover, in such case, the integral representation

f (z) = 1√
2π

∫ ∞

0
eitz f̂ (t)dt (4)

holds.
We recall that Fourier transform of a tempered distribution T is defined through

the relation

(T̂ , ϕ) = (T, ϕ̂)

for ϕ in the Schwarz class S. This coincides with the traditional definition of Fourier
transformation for functions in L p(R), 1 ≤ p ≤ 2. A measurable function f satisfy-
ing

f (x)

(1 + x2)m
∈ L p(R) (1 ≤ p ≤ ∞)

for some positive integer integer m is called a tempered L p function (when p = ∞
such a function is often called a slowly increasing function). The Fourier transform is
a one to one mapping from S onto S.
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It is proved in [7] that a function in H p
+1(R), 1 ≤ p ≤ ∞, induces a tempered

distribution T f such that suppT̂ f ⊂ [0,∞). In [8], the converse of the result is proved:
Let T f be the tempered distribution induced by f in L p(R), 1 ≤ p ≤ ∞. If suppT̂ f ⊂
[0,∞), then f ∈ H p

+1(R).

The third task of this paper is to extend the above mentioned Fourier spectrum
results, as well as the formula (4) to 0 < p < 1.

Theorem 3 (Integral representation formula for the index range 0 < p ≤ 1) If
0 < p ≤ 1, f ∈ H p(C+1), then there exist a positive constant Ap, depending only
on p, and a slowly increasing continuous function F whose support is contained in
[0,∞), satisfying that, for ϕ in the Schwarz class S,

(F, ϕ) = lim
y>0,y→0

∫
R

f (x + iy)ϕ̂(x)dx,

and that

|F(t)| � Ap‖ f ‖H p
+1

|t | 1p −1
, (t ∈ R), (5)

and

f (z) = 1√
2π

∫ ∞

0
F(t)eitzdt (z ∈ C+1). (6)

Duren cites on page 197 of [4] that the argument to prove the integral representation
(4) for p = 2 can be generalized to give an analogous representation for H p(C+1)-
functions for 1 ≤ p < 2. A proof for the range 1 ≤ p < 2, in fact, is not obvious, and
so far has not appeared in the literature, as far as concerned by the authors. We are to
prove the following theorem corresponding to what Duren stated.

Theorem C ([4], integral representation formula for index range 1 ≤ p ≤ 2) Suppose
1 ≤ p ≤ 2, f ∈ L p(R). Then f ∈ H p

+1(R) if and only if supp f̂ ⊂ [0,+∞).
Moreover, under such conditions the integral representation (4) holds.

We, in fact, prove analogous formulas for all the cases 0 < p ≤ 2. For the range
0 < p < 1 we need to prove extra estimates to guarantee the integrability (see the
proof of Theorem 3). The idea of using rational approximation is motivated by the
studies of Takenaka–Malmquist systems in Hardy H p spaces for 1 ≤ p ≤ ∞ [9,11].
For the range of 1 ≤ p ≤ ∞ this aspect is related to the Plemelj formula in terms
of Hilbert transform that has immediate implication to Fourier spectrum characteri-
zation in the case. For the range of 0 < p < 1 the Plemelj formula approach is not
available.



908 G. Deng, T. Qian

2 Proofs of Theorems

We need the following lemmas.

Lemma 1 Suppose that 0 < p < 1 and R is a rational function with R ∈ L p(R).

For k = ±1, if R(z) is analytic in the half plane Ck , then R ∈ H p(Ck).

Proof Let 0 < p < 1, R(z) = P(z)
Q(z) , where P(z) and Q(z) are co-prime polynomials

with degrees m and n, respectively. Then there exists a constant c 	= 0 such that

lim
z→∞ R(z)zn−m = c.

As consequence, there exists a constant M0 > 1 such that

|c|
2

|z|m−n ≤ |R(z)| ≤ 2|c||z|m−n, |z| > M0.

R ∈ L p([M0,∞)) implies that p(m − n) < −1, and so for y ≥ 0,

∫
|x |>M0

|R(x + iy)|pdx � (2|c|)p
∫

|x |>M0

|x + iy|p(m−n)dx

� (2|c|)p
∫

|x |>M0

|x |p(m−n)dx � 2p+1|c|p
p(n − m) − 1

< ∞.

Similarly for y > M0,

∫
|x |≤M0

|R(x + iy)|pdx � (2|c|)p
∫

|x |≤M0

|x + iy|p(m−n)dx

� 2(2|c|)pM p(m−n)+1
0 < ∞.

If R(z) is analytic in the upper half plane C+1, then Q(z) 	= 0 for z ∈ C+1. If,
furthermore, Q(x) 	= 0 for x ∈ R, then R(z) is continuous in the rectangle E0 =
[−M0, M0] × [0, M0], and so R ∈ H p(C+1). Otherwise, the null set NQ = {a ∈
R : Q(a) = 0} of Q in R is a finite set. Let NQ = {a1, a2, . . . , aq} with a1 < a2 <

· · · < aq , and P(ak) 	= 0( k = 1, 2, . . . , q). Then there exists a polynomial Q1(z)
with Q1(ak) 	= 0 ( k = 1, 2, . . . , q) and positive integers lk( k = 1, 2, . . . , q) such
that

Q(z) = (z − a1)
l1(z − a2)

l2 · · · (z − aq)
lq Q1(z);

and, there exist positive constants δ, ε0 and M1 > ε0 such that

ε0 ≤ |R(z)(z − ak)
lk | ≤ M1,

for z = x + iy ∈ Ik = {z = x + iy : 0 < |x − ak | ≤ δ, 0 ≤ y ≤ δ}.
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Therefore,
∫

|x−ak |≤δ

|R(x)|pdx ≥ ε
p
0

∫
|x−ak |≤δ

|x − ak |−plk dx .

The fact that R ∈ L p([ak − δ, ak + δ]) implies that plk < 1. So, for y ∈ [0, δ],
∫

|x−ak |≤δ

|R(x + iy)|pdx � Mp
1

∫
|x−ak |≤δ

|x + iy − ak |−plk dx

� Mp
1

∫
|x−ak |≤δ

|x − ak |−plk dx = 2Mp
1 δ1−plk

1 − plk
< ∞.

Since the poles of R(z) in the closed upper half plane are identical with NQ , R(z) is
continuous in the bounded closed set

{z ∈ E0 : z /∈ Ik, k = 1, 2, . . . , q}.

Therefore
∫

|x |≤M0

|R(x + iy)|pdx

is uniformly bounded for y ∈ [0, M0]. This proves that R ∈ H p(C+1). If R(z) is
analytic in the lower half plane C−1, Lemma 1 can be proved similarly.

Lemma 2 If 0 < p ≤ 1, f ∈ L p(R) , then, for ε > 0, there exists a sequence of
rational functions {Rk(z)}, whose poles are either i or −i, such that

∞∑
k=1

||Rk ||pp ≤ (1 + ε)‖ f ‖p
p (7)

and

lim
n→∞ || f −

n∑
k=1

Rk ||p = 0. (8)

Proof For the case 0 < p < 1, we can assume that ‖ f ‖p
p > 0. The fractional linear

mapping (the Cayley transformation)

z = α(w) = i
1 − w

1 + w

is a conformal mapping from the unit disc U = {w : |w| < 1} to the upper half plane
C+1, its inverse mapping is

β(z) = i − z

z + i
.
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Let x = α(eiθ ), θ ∈ [−π, π ]. Then x = tan θ
2 and dx = dθ

1+cos θ
. So,

∫ ∞

−∞
| f (x)|pdx =

∫ π

−π

∣∣∣∣ f (tan θ

2
)

∣∣∣∣
p dθ

1 + cos θ
< ∞.

This implies that the function

g(θ) = f (tan θ
2 )

(1 + cos θ)
1
p

∈ L p([−π, π ]).

Since the set of trigonometric polynomials is dense in L p([−π, π ]), there exists a
sequence of rational functions {rk(w)}, whose poles can only be zero, with the expres-
sion rk(eiθ ) = ∑mk

j=−mk
ck, j ei jθ , such that

lim
k→∞ ||g(θ) − rk(e

iθ )||L p([−π,π ]) = 0.

Furthermore, for any ε > 0, the sequence of rational functions {rk(w)} can be chosen
so that

||g(θ) − rk(e
iθ )||pL p([−π,π ]) ≤ Aε

4k+3 ,

where Aε = ‖ f ‖p
pε. Since 0 < p < 1, there exists a positive integer l p such that

1 < p2l p ≤ 2. Takem = 2l p−1. Thenm is a positive integer satisfying 1 < 2pm ≤ 2.
Thus we have 0 ≥ 2(pm − 1) > −1, and, as consequence, the function

g1(θ) = (2 sin2 θ)pm−1 ∈ L1
[
0,

π

2

]
.

The function g2(x) = x
1
p−m is also continuous in the interval [0, 2]. The Weierstrass

Theorem asserts that there exists a sequence of polynomials {qk(x)} such that

|g2(x) − qk(x)| <
Aε

Mp
k C14k+3

, (9)

where

Mk =
mk∑

j=−mk

|ck, j | + 1, C1 =
∫ π

2

0
g1(θ)dθ.

Thus we obtain

∫ π
2

0
|(2 sin2 θ)

1
p −m − qk(2 sin

2 θ)|pg1(θ)dθ ≤ Aε

Mk4k+3 .
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The function

sk(e
iθ ) = rk(e

iθ )qk(1 + cos θ)(1 + cos θ)m

is a trigonometric polynomial, and satisfies

Jk =
∫ π

−π

∣∣∣∣∣rk(eiθ ) − sk(eiθ )

(1 + cos θ)
1
p

∣∣∣∣∣
p

dθ.

≤ Mp
k

∫ π

−π

|1 − qk(1 + cos θ)(1 + cos θ)
m− 1

p |pdθ

= Mp
k

∫ π

−π

|(1 + cos θ)
1
p−m − qk(1 + cos θ)|p(1 + cos θ)pm−1dθ

= Mp
k

∫ π

−π

|g2(1 + cos θ) − qk(1 + cos θ)|p(1 + cos θ)pm−1dθ.

Hence, by (9),

Jk ≤ Aε

C14k+3

∫ π

−π

(1 + cos θ)pm−1dθ = Aε

C14k+2

∫ π
2

− π
2

(2 cos θ)pm−1dθ

≤ Aε

C14k+2

∫ π
2

− π
2

(2 sin θ)pm−1dθ = 2Aε

4k+2 .

Finally, the function

gk(θ) = sk(eiθ )

(1 + cos θ)
1
p

satisfies

||g − gk ||pL p([−π,π ])

≤ ||g − rk(e
i ·)||pL p([−π,π ]) + ||rk(ei ·) − gk ||pL p([−π,π ]) ≤ Aε

4k+1 ,

and

||g − gk ||pL p([−π,π ]) =
∫ π

−π

∣∣∣∣ f (tan θ

2
) − sk(e

iθ )

∣∣∣∣
p dθ

1 + cos θ

=
∫ ∞

−∞

∣∣∣∣ f (x) − sk

(
i − x

x + i

)∣∣∣∣
p

dx ≤ Aε

4k+1 .

The function

Qk(z) = sk

(
i − z

z + i

)
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is a rational function whose poles are either i or −i , and

||Qk ||pp =
∫ ∞

−∞
|Qk(x)|pdx =

∫ ∞

−∞

∣∣∣∣sk
(
i − x

x + i

)∣∣∣∣
p

dx ≤ ‖ f ‖p
p + Aε

4k+1

and

|| f − Qk ||pp =
∫ ∞

−∞

∣∣∣∣ f (x) − sk

(
i − x

x + i

)∣∣∣∣
p

dx ≤ 2Aε

4k+1 .

Therefore, the sequence of rational functions {Qk(z)} can be chosen so that

||Qk − Qk−1||pp ≤ Aε

4k
. (k = 2, 3, . . .)

Let

R1(z) = Q1(z), Rk(z) = Qk(z) − Qk−1(z), (k = 2, 3, . . .).

{Rk(z)} is a sequence of rational functions whose poles can only be i or −i , satisfying
(7) and (8). This completes the proof of Lemma 2.

Lemma 3 Suppose that 0 < p < 1 and that R ∈ L p(R) is a rational function whose
poles are contained in {i,−i}, then there exist two rational functions P ∈ H p(C+1)

and Q ∈ H p(C−1) such that R(z) = P(z) + Q(z) and

‖P‖p
H p

+1
+ ‖Q‖p

H p
−1

≤
(
1 + 4π

1 − p

)
‖R‖p

p,

Proof Let 0 < p < 1, R ∈ L p(R), and R be a rational function whose poles are
contained in {i,−i}. Then R(z) can be written as

R(z) =
n∑

k=−n

ck(β(z))k, where β(z) = i − z

z + i
.

Therefore, β(x) = eiθ(x), where θ(x) = arg(i − x)−arg(x+ i) ∈ (−π, π) for x ∈ R.
Define, for each ϕ ∈ R,

P(z, ϕ) = (β(z))m R(z)

(β(z))m − eiϕ
, Q(z, ϕ) = (β(z))−m R(z)

(β(z))−m − e−iϕ
,

wherem is any positive integer greater than the positive integer n. ByFubini’s theorem,

I =
∫ π

−π

∫ +∞

−∞
|P(x, ϕ)|pdxdϕ =

∫ π

−π

∫ +∞

−∞
|β(x)|mp|R(x)|p
|(β(x))m − eiϕ |p dxdϕ

=
∫ +∞

−∞

∫ π

−π

|R(x)|p
|1 − ei(ϕ−mθ(x))|p dϕdx .
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Observing that

∫ π

−π

2pdϕ

|1 − eiϕ−imθ(x)|p =
∫ π

−π

2pdϕ

|1 − eiϕ |p =
∫ π

−π

dϕ

sinp ϕ
2

≤ 4
∫ π

2

0

dϕ

( 2
π
ϕ)p

≤ 2π

1 − p
,

we obtain

I ≤ 21−pπ

1 − p

∫ +∞

−∞
|R(x)|pdx .

Therefore, there is a real number ϕ such that

∫ +∞

−∞
|P(x, ϕ)|pdx ≤ 2π

1 − p

∫ +∞

−∞
|R(x)|pdx .

For this specially chosen real number ϕ, by defining P(z) = P(z, ϕ), Q(z) =
Q(z, ϕ), we have R(z) = P(z) + Q(z). Since m > n, the functions P and Q
are rational functions and the poles of P(z) and Q(z) both are contained in the set
{i} ⋃{xk : k = 0, 1, 2, . . . , n − 1}, where through the Cayley Transformation

xk = α(e
i
n (ϕ+2kπ)) = tan2

(
1

2n
(ϕ + 2kπ)

)

are real numbers. Therefore, P(z) is analytic in the upper half plane C+1, and Q(z)
is analytic in the lower half plane C−1, and

∫ +∞

−∞
|P(x)|pdx ≤ 2π

1 − p

∫ +∞

−∞
|R(x)|pdx

∫ +∞

−∞
|Q(x)|pdx ≤

(
1 + 2π

1 − p

) ∫ +∞

−∞
|R(x)|pdx .

By Lemma 1, P ∈ H p(C+1), Q ∈ H p(C−1). This completes the proof of Lemma 3.

Proof of Theorem 1 If f ∈ H p(C+1), Np > 1, then, for any ε > 0, by Theorem A,
there exists function fN in H p(C+1)

⋂
C∞(C+1) such that

lim|z|→0,Imz≥0
|z|N+1| fN (z) = 0

and

‖ fN − f ‖H p
+1

< ε.

The fractional linear mapping (the Cayley Transformation)

z = α(w) = i
1 − w

1 + w
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is a conformal mapping from the unit disc U = {w : |w| < 1} to the upper half plane
C+, its inverse mapping is

w = β(z) = i − z

z + i
.

Let hN (w) = fN (α(w)) and hN (−1) = 0, then hN (w) is continuous in the closed
disc U and

hN (w)

(
i
1 − w

1 + w

)N+1

→ 0, w ∈ U\{−1}, w → −1.

So,

hN (w)

(1 + w)N+1 → 0, w → −1, |w| ≤ 1, w 	= 1.

If let h̃N (w) = hN (w)

(1+w)N+1 and h̃N (−1) = 0, then h̃N (w) is analytic in the unit disc U

and continuous in the closed unit disc U . Therefore, there exists polynomial PN such
that

∣∣∣∣ hN (w)

(1 + w)N+1 − PN (1 + w)

∣∣∣∣ < ε, |w| ≤ 1, w 	= −1.

Thus,

| fN (α(w)) − (1 + w)N+1PN (1 + w)| < ε|1 + w|N+1, |w| ≤ 1, w 	= −1.

Since z = α(w) and w = i−z
i+z , the above inequality becomes

∣∣∣∣∣ fN (z) −
(

2i

i + z

)N+1

PN

(
2i

i + z

)∣∣∣∣∣ < ε

∣∣∣∣ 2i

i + z

∣∣∣∣
N+1

, Im z ≥ 0.

Therefore, we obtain

∫ ∞

−∞
| fN (x + iy) − R(x + iy)|p dx ≤ ε p2(N+1)p

∫ ∞

−∞

∣∣∣∣ 1

x2 + 1

∣∣∣∣
(N+1)p

dx,

where R(z) = ( 2i
i+z )

N+1PN ( 2i
i+z ) ∈ RN (i). This concludes that the class RN (i) is

dense in H p(C+1). The proof of Theorem 1 is complete.
The corollary can be proved similarly.
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Proof of Theorem 2 According to Lemma 1 and 2, there exist two sequences of ratio-
nal functions {Pk(z)} and {Qk(z)} such that Pk ∈ H p(C+1), Qk ∈ H p(C−1),

∞∑
k=1

(‖Pk‖p
p + ‖Qk‖p

p
) ≤ 2

(
1 + 2π

1 − p

)
‖ f ‖p

p

and

lim
n→∞ || f −

n∑
k=1

(Pk + Qk)||p = 0.

Since

‖Pk‖p
H p

+1
= ‖Pk‖p

p and ‖Qk‖p
H p

−1
= ‖Qk‖p

p,

we have that (1) and (2) hold. For any δ > 0, y > 0, the functions |P|p and |Q|p are
subharmonic. Hence,

∣∣∣∣∣
n∑

k=1

Pk(x + iy + iδ)

∣∣∣∣∣
p

≤
n∑

k=1

|Pk(x + iy + iδ)|p ≤ 2

πδ

n∑
k=1

‖Pk‖p
p.

This implies that the series

∞∑
k=1

Pk(z)

uniformly converges in the closed upper half plane {z : Imz ≥ δ} for any δ > 0. As
consequence, the function g(z) is analytic in the upper half plane C+1. Similarly, we
can prove that the function h(z) is analytic in the lower half planeC−1. (1) implies that
(3) holds. Therefore, the non-tangential boundary limits g(x) and h(x) of functions
for g ∈ H p(C+1) and h ∈ H p(C−1) exist almost everywhere. (2) implies that f (x) =
g(x) + h(x) almost everywhere.

A new proof of Theorem B There exist f (z) ∈ H p(C+1), g(z) ∈ H p(C−1) such that
f (x) = g(x), a.e.x ∈ R. By Theorem 1 and Corollary 1, for any ε >, there exist
R ∈ RN (i) and R2 ∈ RN (−i) such that

‖ f − R1‖H p
+1

= ‖ f − R1‖p <
ε

4
, ‖g − R2‖H p

−1
= ‖ f − R2‖p <

ε

4
.

By the definition of R ∈ RN (i) and R2 ∈ RN (−i), there exist polynomials P1 and
P2 such that

R1(z)= P1(β(z)+1)(β(z)+1)N+1, R2(z)= P2((β(z))−1 + 1)((β(z))−1 + 1)N+1,

where β(z) = i−z
i+z .
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Let m > max{degP1, degP2} + N + 1, and define, for each ϕ ∈ R,

R(z, ϕ) = R1(z) − (β(z))m(R1(z) − R2(z))

(β(z))m − eiϕ
.

Notice that β(x) = eiθ(x), where θ(x) = arg(i−x)−arg(x+ i) ∈ (−π, π) for x ∈ R.
By Fubini’s theorem,

J =
∫ +π

−π

∫ +∞

−∞
|R(x, ϕ) − R1(x)|p dxdϕ

=
∫ +∞

−∞

∫ +π

−π

|R1(x) − R2(x)|p
|(1 − eiϕ−imθ(x)|p dϕdx .

Observing

∫ π

−π

2pdϕ

|1 − eiϕ−imθ(x)|p =
∫ π

−π

2pdϕ

|1 − eiϕ |p =
∫ π

−π

dϕ

sinp ϕ
2

≤ 4
∫ π

2

0

dϕ

( 2
π
ϕ)p

≤ 2π

1 − p
,

we obtain

J ≤ 21−pπ

1 − p

∫ +∞

−∞
|R1(x) − R2(x)|pdx .

Therefore, there is a real number ϕ such that

∫ +∞

−∞
|R(x, ϕ) − R1(x)|p dx ≤ 2π

1 − p
((ε/4)p + (ε/4)p).

Therefore, we have

∫ +∞

−∞
|R(x, ϕ) − f (x)|p dx

≤
∫ +∞

−∞
|R(x, ϕ) − R1(x)|p dx +

∫ +∞

−∞
|R1(x) − f (x)|p dx

≤ (ε/4)p + 4π

1 − p
(ε/4)p.

So, R(z) = R(z, ϕ) ∈ L p(R) is a rational function of z. There is a polynomial P3
with degP3 = N + 1 + degP1 such that R(z) = P3(β(z) + 1). So the poles of R are
contained in {xk : k = 0, 1, . . . ,m + 1}, where

xk = α
(
e
i(ϕ+2kπ)

m

)
= tan2

(
(ϕ + 2kπ)

2m

)
.

Thus, R(z) ∈ X p.
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Proof of Theorem 3 Recall that the Paley–Wiener Theorem asserts that g ∈ H2(C+1)

if and only if ĝ ∈ L2(R) with the support suppĝ ⊂ [0,∞), such that

g(z) = 1√
2π

∫ ∞

0
ĝ(t)eitzdt (z ∈ C+1).

In the case there holds the equality

∫ ∞

0
|ĝ(t)|2dt = ‖g‖2

H2+1
.

Let 0 < p ≤ 1, f ∈ H p(C+1). For δ > 0, let fδ(z) = f (z + iδ). Then | f |p is
subharmonic, and, for y > 0,

| fδ(x + iy)| � Cp‖ f ‖H p
+1

δ
− 1

p ,

where C p
p = 2

π
. Therefore

∫ ∞

−∞
| fδ(x + iy)|2dx �

∫ ∞

−∞
| fδ(x + iy)|p| fδ(x + iy)|2−pdx � C2−p

p ‖ f ‖2
H p

+1
δ
1− 2

p ,

and
∫ ∞

−∞
| fδ(x + iy)|dx =

∫ ∞

−∞
| fδ(x + iy)|p| fδ(x + iy)|1−pdx � C1−p

p ‖ f ‖H p
+1

δ
1− 1

p .

Therefore, supp f̂δ ⊂ [0,∞), and

fδ(z) = 1√
2π

∫ ∞

0
f̂δ(s)e

itzdt. (10)

For y > 0, fδ(x + iy) = (Py ∗ fδ)(x), where

Py(x) = Re

(
i

π z

)
= y

π(x2 + y2)

is the Poisson kernel of the upper plane C+. It is well known that fδ ∈ L2(R), Py ∈
L1(R), P̂y(s) = e−|s|y for almost all s ∈ R, and f̂δ+y(s) = f̂δ(s)e−|s|y . So, for
almost all s ∈ R, f̂δ+y(s)e|s|(δ+y) = f̂δ(s)e|s|δ . Hence, the function F(s) = f̂δ(s)e|s|δ
is independent of δ > 0, with suppF ⊂ [0,∞), and

∫ ∞

−∞
|F(s)|2e−2|s|δdt =

∫ ∞

−∞
| f̂δ(x)|2dx

=
∫ ∞

−∞
| fδ(x)|2dx � C2−p

p ‖ f ‖2
H p

+1
δ
1− 2

p .
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Therefore, for any δ > 0,

|F(s)| = | f̂δ(s)|esδ � ‖ fδ‖1esδ � C1−p
p ‖ f ‖H p

+1
esδδ−Bp ,

where Bp = 1
p − 1 � 0. Since

inf{|s|δ − Bp log δ : δ > 0} = Bp − Bp(log Bp − log |s|),

we have

|F(s)| � C1−p
p ‖ f ‖H p

+1
B

−Bp
p eBp |s|Bp .

Thus F is a slowly increasing continuous function F whose support is contained in
[0,∞). Letting δ → 0 in (10), we see that (7) holds. F can also be regard as a tempered
distribution defined through

(F, ϕ̂) =
∫
R

F(x)ϕ̂(x)dx

for ϕ in the Schwarz class S. So,

lim
δ→0

∫
R

fδ(x)ϕ(x)dx = lim
δ→0

∫ +∞

0
f̂δ(x)ϕ̂(x)dx

= lim
δ→0

∫ +∞

0
F(x)e−δx ϕ̂(x)dx = (F, ϕ̂).

This completes the proof of Theorem 3.

A proof of Theorem C Let 1 ≤ p ≤ 2. If f ∈ L p and supp f̂ ⊂ [0,∞), then

|χ[0,∞)(t)e
2π i z·t f̂ (t)| = χ[0,∞)(t)| f̂ (t)|e−2πy·t ∈ L1(Rn),

where χ[0,∞)(t) is the characteristic function of [0,∞), that is, χ[0,∞)(t) = 1, for
t ∈ [0,∞), and otherwise zero. It is evident that the function

G(z) = 1√
2π

∫
R

eizt f̂ (t)dt =
∫
R

χ[0,∞)(t)e
izt f̂ (t)dt

is holomorphic in C+1. To complete the proof of Theorem C, it is sufficient to prove
that G(z) ∈ H p(C+1) and the boundary limit of G(z) is f (x) as y → 0. Fix z ∈ C+1
and let

gz(t) = χ[0,∞)(t)
eizt√
2π

, g̃z(t) = gz(−t)
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then gz ∈ L1(R)
⋂

L2(R), ĝz(s) = 1
2π i(s−z) and

G(z) = 1√
2π

∫
R

χ[0,∞)(t)e
izt 1√

2π

(∫
R

e−ist F(s)ds

)
dt

= 1

2π i

∫
R

f (s)ds

s − z
.

For z, w ∈ C+1, let

I (z, w) = 1

4π2

∫
R

f (t)dt

(t − z)(t − w)
.

Then

I (z, w) =
∫
R

ĝz(t) f (t)ĝw(−t)dt.

For z, w ∈ C+1,
√
2π ĝz(t)ĝw(−t) = ĝz ∗ g̃w(t), where

(gz ∗ g̃w)(t) =
∫
R

gz(ξ)g̃w(t − ξ)dξ =
∫
R

gz(ξ)gw(ξ − t)dξ

= 1

2π

∫
R

χ[0,∞)(ξ)e2π i zξχ[0,∞)(ξ − t)e2π iw(ξ−t)dξ.

Therefore,

I (z, w) = 1√
2π

∫
R

f̂ (s)χ[0,∞)(s)(gz ∗ g̃w)(s)ds

= 1

(
√
2π)3

∫
R

f̂ (s)χ[0,∞)(s)
∫
R

χ[0,∞)(ξ)e2π i z·ξχ[0,∞)(ξ − s)e2π iw·(ξ−s)dξds.

By Fubini’s theorem and the relation

χ[0,∞)(t)χ[0,∞)(t + s)χ[0,∞)(s) = χ[0,∞)(t)χ[0,∞)(s),

we have

I (z, w) = 1

(
√
2π)3

∫
R

∫
R

χ[0,∞)(s)χ[0,∞)(t)χ[0,∞)(t + s)eiz(s+t)eiwt f̂ (s)dsdt

= 1

(
√
2π)3

∫
R

∫
R

χ[0,∞)(t)χ[0,∞)(s)e
izsei(z+w)t f̂ (s)dtds

= i

2π

G(z)

z + w
.
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Thus, for z ∈ C+1, we have −z̄ ∈ C+1, and

I (z,−z̄) = i

2π

G(z)

z − z̄
= G(z)

4πy
, z = x + iy, y > 0.

So,

G(z) =
∫
R

4πy f (t)dt

(2π)2(t − z)(t − z̄)
=

∫
R

f (t)P(x − t, y)dt,

where P(x, y) = y
π(x2+y2)

is the Poisson Kernel of the upper half plane C+1. There-

fore, the boundary limit of G(z) is f (x) as y → 0 and G(z) ∈ H p(C+1). The proof
of Theorem C is complete.
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