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Preface

The 10th International ISAAC Congress (International Society for Analysis, its
Applications, and Computations), was held at the University of Macau, China
from August 3 to August 8, 2015. It has been a tradition that at these conferences
there is a session “Clifford and Quaternionic Analysis”, starting from the first
International ISAAC Congress held at the University of Delaware in 1997. Its
tradition of mixing speakers from the area and from related fields as well as using
the opportunity of inviting local speakers has not only made it one of the largest
sessions, but also contributed to show how active and interesting the field is to
other mathematical communities. For a branch of mathematics which started as
an active research field in form of a generalization of complex analysis only in
the 1970s, these sessions are crucial in promoting and advertising the area, in
particular, showing new and interesting directions. It is obvious that only a small
part of the talks could find its way into a single volume. Therefore, the papers
in this volume present a careful selection of the contributions presented during
the session. The editors hope that the present choice of several different aspects
and direction of hypercomplex analysis will give the interested reader many new
ideas and promising new directions. Among the new directions, the editors would
like to point out the overviews on quaternionic spectral theory, Clifford differential
forms, and script geometry. That also classic topics in Clifford analysis are well
alive and running can be seen in the papers by de Ridder, Eelbode, Eriksson,
Ferreira, Kheyfits, Ren and their co-authors. Moreover, also applications are an
important part of the field as the papers by Baratchart, Cerejeiras, Guerlebeck,
Grigoriev and their co-authors demonstrate.

The editors express their gratitude to the contributors to this volume and
to the work of the anonymous referees without which this volume would never
have seen the light. They also thank warmly professor Tao Qian as chairman of
the local organizing committee of the Conference, and the University of Macau
for the organization of such a wonderful event. Furthermore, they would like to
thank professor Luigi Rodino, president of the ISAAC society, for his work and
dedication to make ISAAC the foremost international organization in the area of
Mathematical Analysis.

May 2016, The Editors
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Cauchy–Pompeiu Formula for Multi-meta-
weighted-monogenic Functions of first class

Eusebio Ariza Garćıa and Antonio Di Teodoro

Abstract. In this paper we give a Cauchy–Pompeiu type integral formula for
a class of functions called multi-meta-weighted-monogenic using a distance
calculated via the quadratic form associated with an elliptic operator. This
is used for the construction of the kernel over the domain Rm+1, constructed
by fixing the real part for all products of

Rm+1 = Rm1 × Rm2 × · · · × Rmn .

Also, we present a section where we discuss the inhomogeneous meta-n-
weighted-monogenic equation and a distributional solution for this equation is
obtained. In some special cases, the distributional solution becomes a classical
solution.

Mathematics Subject Classification (2010). 30A05; 15A66; 30G35.

Keywords. Monogenic functions, meta-monogenic functions, multi-meta-
weighted-monogenic functions, meta-n-weighted-monogenic functions, Clif-
ford type algebras.

1. Actual state of theory of multi-monogenic functions

The theory of multi-monogenic functions generalizes the theory of holomorphic
functions in several complex variables to the case of monogenic functions. This
theory (Cauchy’s integral formula, Hartog’s extension theorem, Cousin problem,
and so on) can be found in [11] as an extension of the works [10, 21] to the case
of holomorphic functions.

In addition to the construction of this theory, Tutschke and Hung Son [23]
discuss a theory of multi-monogenic functions in the case that the dimension 2m

of the corresponding algebra of Clifford type is defined by

m+ 1 =

n∑
j=1

mj .
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With the help of Clifford algebras depending on parameters in [22], the authors
discuss the case when all of the factor spaces Rm1+1 have the same real part. On
the other hand, in [1] the multi-meta-monogenic theory worked out when for each
partial space Rmj+1 have its own real part and mj imaginary units.

Another approach to the theory of monogenic functions in several vector
variables, in the special case qij = 1, was developed by Sommen and collaborators.
The main difference between the works of Sommen et al. and Tutschke and Hung
Son is the motivation. While for Tutschke and Hung Son the problem is how to
define the dimension of the Clifford algebra in such a way that the dimensions
mj of the n given Euclidean spaces Rmj have an equivalent influence on the final
choice of the dimension m. That is, no space Rmj is preferred in comparison with
the other spaces. On the other hand, for Sommen and collaborators the idea is to
define axial algebras to extend the Clifford structure, see [3, 4, 6, 13, 18, 19, 20].

Another difference between these works is the use of the first-order differ-
ential operator. Whereas Tutschke and Hung Son use the Cauchy–Riemann op-
erator and its consequences in lower dimension [22, 23], Sommen et al. use the
Dirac operator and the simple factorization of the Laplace operator, and as conse-
quence, the applications in physics [6, 3, 13]. Despite the use of the Dirac operator
in physics problems, the modification of the Clifford structure for a more gen-
eral structure like Clifford depending on parameter algebra, allows us to use the
Cauchy–Riemann operator with the identification of the real part with the time
parameter, in order to obtain operators as D’Alembert, Heat, among others. See
[9, 16, 26].

Finally, the extension of the theory of multi-monogenic functions in several
variables in the Sommen–Soucek approach has allowed to obtain many properties
in the direction of axial algebras, as series expansion, harmonic spherical, polyno-
mial representation and separately monogenic functions. See [6, 7, 13, 18, 19, 20].

In the ideas of Tutschke and Hung Son many things are yet to be covered.

Recently, we contributed to the development of this theory constructing in-
tegral representation formulas using an algebraic structure of Clifford type, where
the Cauchy–Riemann operator is constructed placing for each partial space Rmj+1,
its own real part and mj imaginary units. To do that, the multi-meta-ϕ-monogenic
of second class operator was introduced. See [2].

When we discuss the so-called Dirac operator, with constant parameters,
one can, physically, model Dirac fermions realized in a homogeneous material.
Consider the description of such Dirac fermions by means of a space-dependent
velocity that allows the extension of the analysis to heterogeneous material, i.e.,
situations in which the sample is composed of two or more materials attached to
each other. In these circumstances, the boundary or matching conditions at the
interfaces are an important ingredient in determining the physical properties of
the sample. Mathematically speaking, this corresponds to determining a boundary
value problem and the conditions for the existence and uniqueness of solutions to
the corresponding Dirac equation. See [17].
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A natural mathematical extension of these previous situations is to consider a
case where the parameters (or weights) of the modified Dirac operator are Clifford
or real-valued functions. In this case, it is interesting to discuss the relevant math-
ematical and physical implications for the associated boundary value problem.
See [8].

That is the reason for considering weights in the structure of the Dirac op-
erator. As a first step, we propose integral representation formulas for constant
parameter (or weights). This method combined with the ideas of multi-monogenic
functions and separately monogenic functions allows us to construct integral rep-
resentation of the non-constant weighted Dirac operator.

In this paper we give a Cauchy-type integral formula for a new class of func-
tions called multi-meta-weighted-monogenic over a bounded domain Ω ⊂ Rm+1

constructed by fixing the real part for all factors of

Rm+1 = Rm1 × Rm2 × · · · × Rmn .

In order to do this, we first introduce a more general class of functions, called
meta-n-weighted-monogenic functions. We obtain a Cauchy–Pompeiu integral for-
mula for this class of functions. Second, motivated by the fact that multi-meta-
weighted-monogenic functions are a particular class of meta-n-weighted-monogenic
functions, we have that the Cauchy–Pompeiu integral formula obtained for the
multi-meta-weighted-monogenic functions is also valid for the meta-n-weighted-
monogenic functions.

Additionally, in this work we present a section where we discuss the inhomo-
geneous meta-n-weighted-monogenic equation and obtain a distributional solution
for such an equation.

Although the integral formula is developed only for an elliptic operator, we
believe that this contribution represents a first step in the extension of the theory.

2. Preliminaries and notations

2.1. Clifford algebras depending on parameters

LetAl, for l ≥ 1, be the classical Clifford algebra with basis {eA}, A = (α1, . . . , αk)
with 1 ≤ α1 < · · · < αk ≤ l, and the multiplication rules given by⎧⎪⎨⎪⎩

e20 = e0,

e2i = −e0, for i = 1, . . . , l,

eiek + ekei = 0, for i, k = 1, . . . , n and i �= k,

where e0 is the identity element. Thus, Al is 2l-dimensional as a real space and
non-commutative for l ≥ 2. See [5].

A generalization of the Clifford algebra is given by fixing a set of real-valued
functions αi(p) and γik(p), i, k = 1, . . . , l, i �= k, possibly depending on a parameter
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p where p can be a real number or a real-valued function, and considering the more
general multiplication rules for the elements of the basis {eA}, (see [24, 25]),⎧⎨⎩

e20 = 1,
e2i = −αi, for i = 1, . . . , l,
eiek + ekei = 2γik, for i, k = 1, . . . , l and i �= k.

The obtained algebra is called a Clifford algebra depending on parameters,
and it is denoted by Al(2, αi, γik). If the αi’s and γik’s are constant, this algebra
is usually denoted by A∗

l,2.

The uniquely defined Cauchy–Riemann

D = ∂0 +

l∑
i=1

ei∂i,

where ∂i = ∂xi is the partial differentiation with respect to xi for i = 0, 1, . . . , l.
A continuously differentiable A∗

l,2-valued function is said to be monogenic if it
satisfies the equation Du = 0.

If the operator considered inA∗
l,2 is the weighted-monogenic operator given by

Dq = q0∂0 +

l∑
i=1

qiei∂i,

where q = (q0, q1, . . . , ql) is a constant vector in Rl+1, a continuously differentiable
A∗

l,2-valued function is said to be weighted-monogenic if it satisfies the equation
Dqu = 0.

Let Ω be a bounded domain in Rl+1 with sufficiently smooth boundary. If

u : Rl+1 → A∗
l,2

is a weighted-monogenic function in Ω, then we get the homogeneous second-order
differential equation

DqDqu = q20∂
2
0u+

l∑
i=1

αiq
2
i ∂

2
i u− 2

∑
i<k

γikqiqk∂i∂ku = 0 (2.1)

where

Dq = q0∂0 −
l∑

i=1

qiei∂i.

Since the coefficients αk and γik are real, the differential equation (2.1) is uncou-
pled, that is, each real-valued component uA of u satisfies this differential equation.
If the αk are supposed to be positive and the absolute values of the γik are not
too large, then (2.1) is elliptic.
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Without lost of generality, we can assume that q0 = 1, thus the coefficient
matrix of the differential equation (2.1) is

B =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
0 α1q

2
1 −γ12q1q2 · · · −γ1lq1ql

0 −γ21q1q2 α2q
2
2 −γ2lq2ql

...
...

...
. . .

...
0 −γl1q1ql −γl2q2ql · · · αlq

2
l

⎞⎟⎟⎟⎟⎟⎠ . (2.2)

We will assume that the determinant of (2.2) is different from zero. This is satisfied,
for instance, if it is the elliptic case. Then (2.2) has an inverse matrix having the
form

B−1 =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 A11 . . . A1l

...
...

. . .
...

0 Al1 . . . All

⎞⎟⎟⎟⎠ ,

where Aik = Aki. We must assume that qk �= 0 for each k ∈ N. Using these
coefficients, we define for two points ξ = (ξ0, ξ1, . . . , ξn) and x = (x0, x1, . . . , xm)
of Rl+1 a non-Euclidean distance � by

�2 = (x0 − ξ0)
2 +

l∑
i,k=1

Aik(xi − ξi)(xk − ξk). (2.3)

Using this distance, the function E(x, ξ) is constructed, for a bounded domain
Ω in Rl+1 with sufficiently smooth boundary ∂Ω, by

E(x, ξ) = 1

ωl+1

1

�l+1

⎛⎝(x0 − ξ0)−
l∑

i,k=1

eiqiAik(xk − ξk)

⎞⎠ , (2.4)

for x, ξ ∈ Rl+1.

Following the idea given in [25], it is easy to see that E(x, ξ) is a (left and
right) weighted-monogenic function.

Denoting

℘(x, ξ) =

l∑
s=0

λs

qs
(xs − ξs), (2.5)

we define the function Eλ(x, ξ) by

Eλ(x, ξ) = exp (℘(x, ξ)) E(x, ξ). (2.6)

Note that the function Eλ(x, ξ) satisfies the equation

DqEλ = λEλ,
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where λ =

l∑
i=0

λiei. In fact,

DqEλ(x, ξ) = Dq (exp (℘(x, ξ))) · E(x, ξ) + exp (℘(x, ξ)) ·DqE(x, ξ)

=

l∑
i=0

λi

qi
qiei · exp (℘(x, ξ)) · E(x, ξ)

= λEλ(x, ξ).
In view of this, we have that

DqEλ(x, ξ)− λEλ(x, ξ) = 0,

that is,
Dq,λEλ(x, ξ) = 0,

where Dq,λ = Dq − λ is the, so-called, meta-weighted-monogenic operator. This
mean that Eλ(x, ξ) is a (left) meta-weighted-monogenic function.

Remark 2.1. Eλ(x, ξ) is also a right solution of Dq,λ.

3. Clifford-algebra-valued functions in several variables

Consider the function u defined in the (real) Euclidean space

Rk+1 × Rm2+1 × · · · × Rmn+1

with dimension equal to

k +

n∑
j=2

mj + n.

Function u depends on n variables

x(1) = (x
(1)
0 , . . . , x

(1)
k ) and x(j) = (x

(j)
0 , . . . , x(j)

mj
), j = 2, . . . , n.

Suppose we take the same real part for all of the factor spaces, in such a way
that

x
(1)
0 = x

(2)
0 = · · · = x

(n)
0 = x0

is the common real part. In this case we put k = m1 − 1 and the functions can be
considered as defined in the space

Rm1 × Rm2 × · · · × Rmn .

Remark 3.1. A second possibility is to use different real parts. This case is discussed
in [2].

We define ϕ(1)- and ϕ(j)-Cauchy–Riemann operators, for j = 2, . . . , n, re-
spectively, by

Dϕ(1) = ϕ0∂0 +

m1−1∑
i=1

ϕiei∂i
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and

Dϕ(j) = ϕ0∂0 +

m1+···+mj−1∑
i=m1+···+mj−1

ϕiei∂i,

where ∂0 corresponds to the derivative with respect to the common real part x0,
∂i corresponds to the derivative with respect to xi,

ϕ(1) = ϕ0 +

m1−1∑
i=1

ϕiei,

ϕ(j) = ϕ0 +

m1+···+mj−1∑
i=m1+···+mj−1

ϕiei,

m+ 1 = m1 + · · ·+mn and ϕi can be real-valued functions defined in Rm+1.

Remark 3.2. For each j = 2, . . . , n, operator Dϕ(j) can be rewritten in the form

Dϕ(j) = e0ϕ0(x)∂0 +

mj−1∑
i=0

ei+ajϕi+aj (x)∂i+aj (3.1)

and

ϕ(j) = ϕ0 +

mj−1∑
i=0

ϕi+aj ei+aj ,

where aj = m1 + · · ·+mj−1.

4. Clifford type algebra and the associated
multi-meta-weighted-monogenic operator

Define

m+ 1 =

n∑
j=1

mj , (4.1)

consider Rm+1 and the corresponding algebra of Clifford type, which dimension is
2m, defined by following algebraic structure. Denote the basis vectors of

Rm+1 = Rm1 × Rm2 × · · · × Rmn .

by

{e0 = 1, . . . , em1−1; em1 , . . . , em1+m2−1; . . . em−mn , . . . , em}.

Let s be one of the indices:

s = m1,m1 +m2, . . . ,m1 + · · ·+mn−1, (4.2)
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whereas k and l are indices (between 1 and m) which are different from these n−1
indices s. Then the algebra Am(σ1) is defined by the structure relations{

e2s = αs, e2k = −αk,

ekel + elek = 2γlk,
(4.3)

where αk and γlk = γkl are real numbers, s is as (4.2) and l, k = 1, 2, . . . ,m.
The Dϕ(j),λ(j) operator is given by

Dϕ(j),λ(j) = Dϕ(j) − λ(j), (4.4)

for j = 1, . . . , n, where

λ(1) = λ0 +

m1−1∑
i=1

λiei,

λ(j) = λ0 +

mj−1∑
i=0

λi+aj ei+aj , for j = 2, . . . , n,

λi are real numbers and Dϕ(j) is given by (3.1) .

Definition 4.1. A function u ∈ C1(Ω,Am(σ1)) satisfying the system

Dϕ(j),λ(j)u = 0,

for each j = 1, . . . , n, is said to be multi-meta-weighted-monogenic of first class or
multi-meta-weighted-monogenic (for short).

Remark 4.2. In order to clarify the purpose of the paper. We work with a multi-
algebraic structure based in fixing the real part for all products of

Rm+1 = Rm1 × Rm2 × · · · × Rmn .

this induces the treatment of the theory to find integral representation via elliptic
operators, based on a specific kind of operator according to this algebra. On the
other hand, other possibility to construct a multi-algebraic structure is putting,
for each subdomain, his own real parts,

R = Rm1+1 × Rm2+1 × · · · × Rmn+1.

This case is discussed in [2].

In the next section we will construct our kernel using a distance calculated
via the quadratic form associated to an elliptic second-order operator.

5. n-weighted-monogenic functions

Let Ω be a bounded domain in Rm+1 = Rm1 × · · · × Rmn . Consider the Clifford
type algebra Am(σ1) defined by (4.3) , λ(j) and ϕ(j) as in Subsection 4.
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Definition 5.1. Let Dϕ be the operator given by

Dϕ = nϕ0∂0 +

m∑
i=1

ϕiei∂i. (5.1)

A continuously differentiable Am(σ1)-valued function u defined in Ω and satisfying
Dϕu = 0 is said to be an n-weighted-monogenic function.

Remark 5.2. Note that

Dϕ =
n∑

j=1

Dϕ(j) .

Therefore, if u is a multi-weighted-monogenic function, then u is n-weighted-
monogenic as well.

5.1. Green’s integral formula for Dϕ

Let Ω(j) be a bounded domain in Rmj , u =
∑
A

uAeA and v =
∑
B

vBeB Am(σ1)-

valued functions defined in Ω = Ω(1)×Ω(2)× · · · ×Ω(n) ⊂ Rm+1 and continuously
differentiable in Ω. Using a similar argument to that given in [25], it can be proved
the following Green type integral formula∫

Ω

(vDϕ · u+ v ·Dϕu) dx = |Nϕ|
∫
∂Ω

v · dτ · u, (5.2)

where

Nϕ = (ϕ0N0, ϕ1N1, . . . , ϕmNm),

dτ = N̂ϕdμ and N̂ϕ =
Nϕ

|Nϕ|
.

Let us write the left-hand side of (5.2) as∫
Ω

(vDϕ · u+ v · (Dϕu− λu+ λu)) dx

=

∫
Ω

(v(Dϕ + λ) · u+ v · (Dϕ − λ)u) dx.

where

λ = nλ0e0 +

m∑
i=1

λiei, (5.3)

λi ∈ R for i = 0, 1, . . . ,m. Doing Dϕ,λ = Dϕ − λ and Dϕ,−λ = Dϕ + λ, we obtain
the formula ∫

Ω

(vDϕ,−λ · u+ v ·Dϕ,λu)dx =

∫
∂Ω

v · dτ · u. (5.4)

We will call this formula the Green type formula for operator Dϕ,λ.

Remark 5.3. A solution of Dϕ,λu = 0 is called a meta-n-weighted-monogenic
function.
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Remark 5.4. Note that if u is a multi-meta-weighted-monogenic function, then u
is meta-n-weighted-monogenic. In fact,

Dϕ,λ =

n∑
j=1

Dϕ(j),λ(j) .

5.2. Solution for Dϕ,λ

Consider the operatorDϕ given by (5.1). Let Ω be a bounded domain in Rm+1 with
sufficiently smooth boundary. If u : Rm+1 → Am(σ1) is a n-weighted-monogenic
function in Ω, then we get the homogeneous second-order differential equation

DϕDϕu = n2ϕ2
0∂

2
0u+

m∑
i=1

αiϕ
2
i ∂

2
i u− 2

n∑
j=2

αajϕ
2
aj
∂2
aj
u− 2

∑
i<k

γikϕiϕk∂i∂ku = 0,

(5.5)
where

Dϕ = nϕ0∂0 −
m∑
i=1

ϕiei∂i.

Since the coefficients αk and γik are real, the differential equation (5.5) is uncou-
pled; that is, each real-valued component uA of u satisfies this differential equation.
If the αk are supposed to be positive and the absolute values of the γik are not
too large, then (5.5) is elliptic.

We can assume, without lost of generality, that ϕ0 = 1, thus the coefficient
matrix of the differential equation (5.5) is

B =

⎛⎜⎜⎜⎜⎜⎝
n2 0 0 · · · 0
0 α1ϕ

2
1 −γ12ϕ1ϕ2 · · · −γ1mϕ1ϕm

0 −γ21ϕ1ϕ2 α2ϕ
2
2 −γ2mϕ2ϕm

...
...

...
. . .

...
0 −γm1ϕ1ϕm −γm2ϕ2ϕm · · · αmϕ2

m

⎞⎟⎟⎟⎟⎟⎠ , (5.6)

where the (s+ 1)(s+ 1)-entrie is of the form bss = −αsϕ
2
s, being s given by (4.2).

Assuming that the determinant of B is different from zero (this is the case for
elliptic operators), B has an inverse matrix having the form

B−1 =

⎛⎜⎜⎜⎝
1
n2 0 . . . 0
0 A11 . . . A1m

...
...

. . .
...

0 Am1 . . . Amm

⎞⎟⎟⎟⎠ ,

where Aik = Aki and we must assume that ϕk �= 0 for each

k ∈ {1, 2, . . . ,m} .
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Using the coefficients of B−1 we define, for two points ξ = (ξ0, ξ1, . . . , ξm) and
x = (x0, x1, . . . , xm) of Rm+1, the non-Euclidean distance � by

�2 =
1

n2
(x0 − ξ0)

2 +

m∑
i,k=1

Aik(xi − ξi)(xk − ξk). (5.7)

With this distance, we define the function E(x, ξ) by

E(x, ξ) =
1

ωm+1

1

�m+1

⎛⎝ 1

n
(x0 − ξ0)−

m∑
i,k=1

eiϕiAik(xk − ξk)

⎞⎠ . (5.8)

It is easy to see that

ωm+1DϕE(x, ξ) = Dϕ

(
1

�m+1

)
·K(x, ξ) +

1

�m+1
·DϕK(x, ξ),

where K(x, ξ) = 1
n (x0− ξ0)−

m∑
i,k=1

eiϕiAik(xk− ξk). A straightforward calculation

gives

ωm+1DϕE(x, ξ) = −
m+ 1

�m+3
K(x, ξ) ·K(x, ξ) +

1

�m+1
(1 +m)

= −m+ 1

�m+3
�2 +

1

�m+1
(1 +m)

= 0,

i.e., E(x, ξ) is a (left) n-weighted-monogenic function.

Remark 5.5. E(x, ξ) is a right n-weighted-monogenic function also.

Denoting

℘(x, ξ) = λ0(x0 − ξ0) +

m∑
j=1

λj

ϕj
(xj − ξj), (5.9)

we define the function Eλ(x, ξ) by

Eλ(x, ξ) = exp (℘(x, ξ))E(x, ξ). (5.10)

Note that the function Eλ(x, ξ) satisfies the equation

DϕEλ = λEλ,

where λ is given by (5.3), i.e., λ = nλ0 +
m∑
i=1

λiei.
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In fact, since exp (℘(x, ξ)) is a real-valued function, we have

DϕEλ(x, ξ) = Dϕ (exp (℘(x, ξ))) · E(x, ξ) + exp (℘(x, ξ)) ·DϕE(x, ξ)

=

[
nλ0 +

m∑
j=1

λj

ϕj
ϕjej

]
· exp (℘(x, ξ))E(x, ξ)

= λEλ(x, ξ).

In view of this, we have that

DϕEλ(x, ξ) − λEλ(x, ξ) = 0,

that is,

Dϕ,λEλ(x, ξ) = 0.

This means that Eλ(x, ξ) is a left meta-n-weighted-monogenic function.

Remark 5.6. Eλ(x, ξ) is also a right solution of Dϕ,λ. A similar calculation shows
that

E−λ := exp (−℘(x, ξ))E(x, ξ)
is such that Dϕ,−λE−λ(x, ξ) = E−λ(x, ξ)Dϕ,−λ = 0.

5.3. Cauchy–Pompeiu formula for Dϕ,λ

Now we are going to show that Eλ(x, ξ) turns out to be a fundamental solution
for Dϕ,λ with the singularity at x = ξ (see [15] for more details of fundamental
solutions).

First, since the differential equation (5.5) is supposed to be elliptic, the non-
Euclidean distance � defined by (5.7) can be estimated by � ≥ cr, where c is a
constant and r is the Euclidean distance of x and ξ. Thus we have

|Eλ(x, ξ)| ≤
1

ωm+1

1

�m+1

(
|x0 − ξ0|

n
+

m∑
i,j=1

|ϕi||Aij ||xj − ξj |
)
e℘(x, ξ)

≤ const

rm
.

Therefore Eλ(x, ξ) has a weak singularity at x = ξ. The same is true for E−λ(x, ξ).

Now, let Uε(ξ) be an ε-neighbourhood of ξ. Applying the formula (5.4) on

Ωε = Ω− Uε(ξ) and v = E−λ(x, ξ) we obtain the expression∫
Ωε

E−λ(x, ξ) ·Dϕ,λu dx =

∫
∂Ω

E−λ(x, ξ) · dτ · u+

∫
|x−ξ|=ε

E−λ(x, ξ) · dτ · u. (5.11)

Consider the points in |x− ξ| = ε represented in the form x− ξ = εy, where
y is a point of the unit sphere. Let �0 be the non-Euclidean distance between the
points y and (0, 0, . . . , 0). Then (5.7) implies that � = ε�0 and

E−λ(y, 0) = e−ε℘(y, 0) 1

ωm+1
· 1

�m+1
0 εm

(
1

n
y0 −

m∑
i,j=1

ϕieiAijyj

)
.
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Moreover, we have dμ = εmdμ1, where dμ1 is the measure element of the
unit sphere. And so the integral

−
∫

|x−ξ|=ε

E−λ(x, ξ) · dτ

is independent on ε. It depends (continuously) only on the values of the constants
αj , γij in the structure relations. We denote this value by c(αj , γij). On the other
hand, since u is continuous then

lim
ε→0

∫
|x−ξ|=ε

E−λ(x, ξ) · dτ · u(x) = lim
ε→0

∫
|x−ξ|=ε

E−λ(x, ξ) · dτ · (u(x)− u(ξ) + u(ξ))

= −c(αj , γij) · u(ξ).
Hence, we have established the next result.

Theorem 5.7. In interior points ξ of Ω, each function u twice continuously differ-
entiable with values in the Clifford algebra An(2, αj , γij) can be represented by

c(αj , γij) · u(ξ) =
∫
∂Ω

E−λ(x, ξ) · dτ · u(x)−
∫
Ω

E−λ(x, ξ) ·Dϕ,λu(x) dx (5.12)

Remark 5.8. As a corollary of this formula we have the Cauchy type formula

c(αj , γij) · u(ξ) =
∫
∂Ω

E−λ(x, ξ) · dτ · u(x).

In a complete analogous way, we can obtain the Cauchy–Pompeiu formula

Theorem 5.9. In interior points ξ of Ω each function ν twice continuously differ-
entiable with values in the Clifford algebra A(σ1) can be represented by

ν(ξ) · c(αj , γij) =

∫
∂Ω

ν(x) · dτ · Eλ(x, ξ) −
∫
Ω

ν(x)Dϕ,−λ · Eλ(x, ξ)dx.

Remark 5.10. Remark 5.4 implies that these integral representations are also valid
for multi-meta-weighted-monogenic functions.

5.4. Example

Consider the case n = 2, m1 = 2, m2 = 1. Then m = 2 and functions u are to be
defined in Rm+1 = R2 × R1. We have

u = u(x0, x1, x2) = u0(x0, x1, x2) + u1(x0, x1, x2)e1 + u2(x0, x1, x2)e2,

where 1, e1, e2 is the standard basis of R3. If α1 = α2 = 1 and γ12 = 0, the
Clifford type algebra A2 is generated by the structure relations{

e21 = −1, e22 = 1,
e1e2 + e2e1 = 0.

Note that
Dϕ = 2∂0 + ϕ1e1∂1 + ϕ2e2∂2



14 E. Ariza Garćıa and A. Di Teodoro

and

D(1)
ϕ = ∂0 + ϕ1e1∂1, D(2)

ϕ = ∂0 + ϕ2e2∂2,

where ϕ1 and ϕ2 are real numbers. Thus, if u = u0 + u1e1 + u2e2, we have that

D
(1)
ϕ u = 0 and D

(2)
ϕ u = 0 are equivalent, respectively, to the systems{

∂0u0 − ϕ1∂1u1 = 0, ∂0u1 − ϕ1∂1u0 = 0,
∂0u2 = 0, ϕ1∂1u2 = 0,

and {
∂0u0 + ϕ2∂2u2 = 0, ∂0u1 = 0,
∂0u2 + ϕ2∂2u0 = 0, ϕ1∂2u1 = 0.

This implies that a multi-weighted-monogenic function must satisfy

u(x0, x1, x2) = c0x0 + c1x1e1 + c2x2e2,

with c0, c1, c2 ∈ R. However, a 2-weighted-monogenic function is not necessarily of
this form. In fact,

u(x0, x1, x2) = 2(x1 + x2) + (x2 − x0)ϕ1e1 + (x1 − x0)ϕ2e2

and

E(x0, x1, x2) =
1

ω3

1

�3

(
1

2
x0 −

1

ϕ1
x1e1 +

1

ϕ2
x2e2

)
are two 2-weighted-monogenic functions but not multi-weighted-monogenic, where
� is the distance defined by

�2 =
1

4
x2
0 +

1

ϕ2
1

x2
1 −

1

ϕ2
2

x2
1

and ϕ2 is small enough.

6. Distributional solution for the inhomogeneous
meta-n-weighted-monogenic equation

The theory developed above is useful to solve some types of differential equations.
In particular, the equation uDϕ,−λ = h with h a continuous function in Ω.

In fact, we have the result

Theorem 6.1. Let h be a A(σ1)-valued continuous function in Ω. Then

u(x) = −
∫
Ω

h(ξ) · c−1(αj , γij) · E−λ(x, ξ) dξ (6.1)

is a solution of the equation uDϕ,−λ = h in Ω, where E−λ defined as in (5.10) and
c(αj , γij) is supposed to be invertible.
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Proof. Let φ be a test function k times continuously differentiable. Replacing u
with φ in the Cauchy–Pompeiu formula (5.12), we obtain

c(αj , γij) · φ(ξ) =
∫
Ω

E−λ(x, ξ) ·Dϕ,λφ(x) dx.

Taking into account Fubini’s theorem for weakly singular integrands, we have∫
Ωx

u(x) ·Dϕ,λφ(x) dx = −
∫
Ωx

∫
Ωξ

h(ξ) · c−1(αj , γij) · E−λ(x, ξ) ·Dϕ,λφ(x) dξ dx

= −
∫
Ωξ

h(ξ) · c−1(αj , γij) ·
[∫

Ωx

E−λ(x, ξ) ·Dϕ,λφ(x) dx

]
dξ = −

∫
Ωξ

h(ξ)φ(ξ) dξ.

Thus ∫
Ωx

[u(x) ·Dϕ,λφ(x) + h(x) · φ(x)] dx = 0. (6.2)

Using (5.4),∫
Ωx

[u(x)Dϕ,−λ · φ(x) + u(x) ·Dϕ,λφ(x)] dx = 0

is also true. The last equation and (6.2) give us, for any test function φ, that∫
Ωx

[−u(x)Dϕ,−λ · φ(x) + h(x) · φ(x)] dx

=

∫
Ωx

[−u(x)D−λ + h(x)] · φ(x) dx = 0.

Therefore, from the Fundamental Lemma of variational calculus, it follows
that −u(x)D−λ + h(x) = 0. �
Remark 6.2. If h is not continuous but it is integrable in Ω, then u defined by
(6.1) is a distributional solution of uDϕ,−λ = h in Ω.

7. Concluding remarks

• An alternative to the approach presented in this work is to iterate, in each
Ω(j), a Cauchy integral formula given for weighted-monogenic functions. This
approach is discussed in [2, 6] and can be adapted to this case.

• A disadvantage of this method, as can be seen in section 5.2, is that the
method works for elliptic operators because we construct our kernel through
the use of a distance calculated via the quadratic form associated to an elliptic
second-order operator.

• A wide quantity of problems can be solved using the integral representations
given in this work. For example, initial value problems and boundary value
problems involving the weighted monogenic differential operators, the study
of properties of the different integral operators derived from our integral
representations and its applications, representation in power series of the
different weighted-monogenic functions defined here and its applications, etc.
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• We believe that this theory of multi-monogenic functions, in connection with
the theory of wavelets, allows us to solve problems related with solar energy,
phototherapy, climate change. See [12, 14].
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Abstract. We will review the recent development of rational approximation in
one and several real and complex variables. The concept rational approxima-
tion is closely related to greedy algorithms, based on a dictionary consisting
of Szegő kernels in the present context.
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1. Introduction

Traditionally, rational approximation is mostly restricted to approximation to
functions of one complex variable in various domains. Recently a number of adap-
tive or sparse representation methods were developed, including in principle the
greedy algorithms and those based on learning theory, including the SVM method
([25, 26]), that all fit into the concept of rational approximation. This article
mainly concerns the greedy algorithm method in relation to a dictionary in the
context at hand. Under the greedy algorithm method, rational approximation is
generalized to include approximation in several complex and real variables. This
idea, in particular, is applicable to function spaces with a Cauchy structure, as
well as to reproducing kernel Hilbert spaces. Below we discuss this concept in a
number of individual contexts.

2. Preliminaries on Greedy algorithm in Hilbert spaces

Let H be a Hilbert space with a dictionary, where, by a dictionary, we mean a set

D ⊂ H satisfying (i) e ∈ D implies ‖e‖ = 1; and (ii) span{D} = H.

Supported in part by MYRG116(Y1-L3)-FST13- QT; and FDCT 098/2012/A3.
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The most basic greedy algorithm would be the following. Let ρ ∈ (0, 1] be
fixed. Let f ∈ H and g1 = f. Choose e1 ∈ H such that

|〈g1, e1〉| ≥ ρ sup{|〈g1, e〉| | e ∈ D}.
When ρ ∈ (0, 1), a desired e1 always exists. While for ρ = 1, a desired e1 satisfying
the above requirement may not exist. In the context of the present paper, where a
Cauchy structure prevails, the desired e1 for ρ = 1 always exists. Our discussion,
however, is for the general case ρ ∈ (0, 1]. Subsequently, we have the decomposition

f = 〈g1, e1〉e1 + g2,

where g2 is the standard remainder :

g2 = f − 〈g1, e1〉e1.
Obviously, g2 is orthogonal with 〈g1, e1〉e1, and hence,

‖f‖2 = ‖〈g1, e1〉e1‖2 + ‖g2‖2 = |〈g1, e1〉|2 + ‖g2‖2.
Therefore, to minimize ‖g2‖2 is to maximize |〈g1, e1〉|2. If we apply the same re-
duction to g2, we obtain the standard remainder g3, where

f = 〈g1, e1〉e1 + 〈g2, e2〉e2 + g3,

and

‖f‖2 = |〈g1, e1〉|2 + |〈g2, e2〉|2 + ‖g3‖2,
where e2 is chosen so that

|〈g2, e2〉| ≥ ρ sup{|〈g2, e〉| | e ∈ D}.
Repeating the same procedure on g3 we get g4, and so on. Inductively we

obtain

f =

n∑
k=1

〈gk, ek〉ek + gk+1

and

‖f‖2 =
n∑

k=1

|〈gk, ek〉|2 + ‖gk+1‖2,

where ek is chosen to make

|〈gk, ek〉| ≥ ρ sup{|〈gk, e〉| | e ∈ D},
while e1, . . . , ek−1 were previously chosen.

The theory of greedy algorithms ([18], [40]) asserts that

f =

∞∑
k=1

〈gk, ek〉ek and ‖f‖2 =
∞∑
k=1

|〈gk, ek〉|2.

The above-described algorithm is the so-calledGeneral Greedy Algorithm. A refine-
ment of the general greedy algorithm is the so-called Orthogonal Greedy Algorithm.
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The difference is only that the gk are replaced by the orthogonal remainders g̃k,
defined through the relation

f =

n∑
k=1

〈g̃k, Bk〉Bk + g̃k+1, (2.1)

where {B1, . . . , Bk−1, Bk} is the G-S orthogonalization of {B1, . . . , Bk−1, ek}, and
ek is chosen so that

|〈g̃k, ek〉| ≥ ρ sup{|〈g̃k, e〉| | e ∈ D}.
Among the well-known greedy algorithms, the most effective one would be the

just described Orthogonal Greedy Algorithm. We note that neither the General
Greedy Algorithm, nor the Orthogonal Greedy Algorithm can repeatedly select
dictionary elements: Repeated selections or even selecting one in the linear span
of the already selected will give nil contribution to the energy approximation.

When the space is a reproducing kernel Hilbert space, consisting of functions
defined, say, in a setD, and if the dictionary consists of the normalized reproducing
kernels ea, where a ranges over a set D ⊂ CN for some N , then for any f ∈ H,

〈f, ea〉 = r(a)f(a),

where r(a) > 0 is the normalizing constant that makes ‖ea‖ = 1.
In such a case, at each recursive step of the General Greedy and Orthogonal

Greedy Algorithms, one seeks a suitable ea such that

r(a)|f(a)| ≥ ρ sup{r(b)|f(b)| | b ∈ D}.
Numerically this is easy to achieve through computation based on the information
on the known function f.

We will show that under certain assumption there exists a variation of the
Orthogonal Greedy Algorithm that allows repeated selection of the variable a. Re-
peating the selection of the variable a corresponds to selecting directional deriva-
tives, of order one and higher, of the dictionary elements ea.

This new greedy algorithm proposed in [37], called Pre-Orthogonal Greedy
Algorithm (P-OGA), is formulated as follows.

Let {ea1 , . . . , ean−1} be the (n − 1)-tuple of the previously selected dictio-
nary elements, and {B1, . . . , Bn−1} its G-S orthogonalization. Sometimes Bk =
B{a1,...,ak} is more precisely written as Bak

{a1,...,ak−1}. The selection criterion for

an is

|〈fn, Ban

{a1,...,an−1}〉| ≥ ρ sup{|〈fn, Ba
{a1,...,an−1}〉| | a ∈ D}, (2.2)

where fn is the standard remainder with respect to the orthonormal system
{B1, . . . , Bn−1}. We note that under such a selection criterion fk is different from
g̃k defined through (2.1).

Now we add an assumption under which the machinery that we design will
work. Namely, we assume for any f ∈ H and a1, . . . , an−1 ∈ D that

lim
a→∂D

|〈f,Ba
{a1,...,an−1}〉| = 0, (2.3)
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where ∂D indicates the boundary of D in CN ∪ ∞. We show that under this
assumption, if the dictionary is suitably extended, then the threshold ρ = 1 can
be reached, and the following equality holds:

|〈fn, Ban

{a1,...,an−1}〉| = max{|〈fn, Ba
{a1,...,an−1}〉| | a ∈ D}. (2.4)

The extension of the dictionary consists in adjoining the directional deriva-
tives of the kernels ea with respect to a, in all directions and for all a ∈ D. This of
course only makes sense if D is open and ea has some smoothness with respect to
a. Hereafter we assume that a→ ea is smooth as a function D→ H, in particular
the derivatives of ea again lie in H as limits of divided differences in H. In all
examples that we shall deal with, ea is even analytic with respect to a, and this
warrants the discussion below.

In fact, the Cauchy–Schwarz inequality gives

|〈fn, Ba
{a1,...,an−1}〉| ≤ ‖fn‖.

Thus, there exists a sequence of points, a(l), converging to an interior or a boundary
point of D, liml→∞ a(l) = an, such that

lim
l→∞

|〈fn, Ba(l)

{a1,...,an−1}〉| = sup{|〈fn, Ba
{a1,...,an−1}〉| | a ∈ D}. (2.5)

With the assumption (2.3) the limiting point an of a(l) must be an inte-
rior point of D unless fn ≡ 0. In the latter case, our contention trivially holds.
Otherwise, the relation (2.5) becomes

lim
l→∞

|〈fn, Ba(l)

{a1,...,an−1}〉| = max{|〈fn, Ba
{a1,...,an−1}〉| | a ∈ D.} (2.6)

Next, we compute

lim
l→∞

Ba(l)

{a1,...,an−1}.

Denote by P{a1,...,an−1} the projection operator from H to span{B1, . . . , Bn−1}.
Now, there are two cases.

1. The limiting point ean is not in span {B1, . . . , Bn−1}. In such a case, an, in
particular, does not coincide with any of a1, . . . , an−1, and Ban

{a1,...,an−1} is

just given by

Ban

{a1,...,an−1} =
ean − P{a1,...,an−1}ean

‖ean − Pa1,...,an−1ean‖
, (2.7)

and

{B1, . . . , Bn−1, B
an

{a1,...,an−1}}

is the G-S orthogonalization of

{B1, . . . , Bn−1, ean}.
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2. The limiting point ean lies in span {B1, . . . , Bn−1}. In particular, if an co-
incides with one of a1, . . . , an−1, we are in this case. We note that none

of the ea(l) is in span{B1, . . . , Bn−1}, for, otherwise, Ba(l)

{a1,...,an−1} = 0, and

|〈fn, Ba(l)

{a1,...,an−1}〉| will have no contribution towards the maximum. We con-

sequently have

Ba(l)

{a1,...,an−1} =
ea(l) − P{a1,...,an−1}ea(l)

‖ea(l) − Pa1,...,an−1ea(l)‖

=

(
ea(l) − P{a1,...,an−1}ea(l)

)
−
(
ean − P{a1,...,an−1}ean

)
‖
(
ea(l) − Pa1,...,an−1ea(l)

)
−
(
ean − P{a1,...,an−1}ean

)
‖

=
(ea(l) − ean)− P{a1,...,an−1} (ea(l) − ean)

‖ (ea(l) − ean)− P{a1,...,an−1} (ea(l) − ean) ‖

=

(
e
a(l)−ean

‖e
a(l)−ean‖

)
− P{a1,...,an−1}

(
e
a(l)−ean

‖e
a(l)−ean‖

)
‖
(

e
a(l)−ean

‖e
a(l)−ean‖

)
− P{a1,...,an−1}

(
e
a(l)−ean

‖e
a(l)−ean‖

)
‖
.

Extracting a subsequence if necessary, we may suppose that (ea(l) − ean)/‖ea(l) −
ean‖ converges to some unit vector ν ∈ H. If ν is not in span{B1, . . . , Bn−1},
then we can take the limit in the above expression as a(l) → an, to obtain that

Ba(l)

{a1,...,an−1} converges to B∂van

{a1,...,an−1}, where the notation ∂v indicates that we

computed the directional derivative of ea in the direction v.

When ν ∈ span{B1, . . . , Bn−1}, then the above expression has indeterminate
limiting form 0/0, and higher-order derivatives must be computed that we will not
discuss further. Observe there may be several directions ν, accounting for the fact
that an needs not be unique. In particular, the directions along the real or purely
imaginary axes induce partial derivatives of the reproducing kernels ([37]).

The just described theory mainly grows out from the study of the Hardy
space H2 on the open unit disc. It is then applied, at least in part or adaptively,
to other contexts in one or several complex variables, as well as in the Clifford
algebra setting. That helps to form a concept of rational approximation in various
contexts. In the following sections we will briefly review the particulars of each
individual context.

3. The Hardy H2(D) case

The so-called AFD and Pre-Orthogonal Greedy Algorithm were originated from
this context. In this section D represents the open unit disc. Among the equivalent
definitions of the Hardy H2(D) space we will cite only

H2(D) = {f(z) =
∞∑
k=0

ckz
k | ck ∈ C, ‖f‖H2:=

∞∑
k=0

|ck|2 <∞, |z| < 1}.
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f ∈ H2(D) implies that f is holomorphic in D, and, as an important property,
the partial sum of the infinite series on the unit circle has a L2(∂D)-limit that
equals to the non-tangential boundary limit limr→1− f(reit) almost everywhere.
Those boundary limits form a closed subspace of the L2 space on the boundary
circle, denoted by H2(∂D). The mapping from H2(D) to H2(∂D) is an isometry.
We hence identify the space H2(∂D) with H2(D). If we start from a function f in
L2(∂D) with Fourier coefficients ck, k = 0,±1,±2, . . . , then we have the so-called
Hardy spaces decomposition f = f+ + f−, where

f+(eit) =

∞∑
k=0

cke
ikt, f−(eit) =

−∞∑
k=−1

cke
ikt.

If f is real-valued on the circle, then we have

f = 2Ref+ − c0.

The last relation shows that approximation of functions in L2(∂D) can be
reduced to that of functions in the Hardy class. In other contexts we have analogous
relations, so the case of Hardy spaces on which we concentrate below will be a
prototypical example.

In H2(D), the normalized reproducing kernels (also known as Szegő kernels)
are the rational functions

ea(z) =

√
1− |a|2
1− az

, a ∈ D. (3.1)

Then {ea}a∈D is a dictionary of H2(D). Let A = (a1, . . . , an) ∈ Dn be a
n-tuple. If the ak are all distinct, we associate to A the n-tuple (ea1,...,ean

) of
normalized reproducing kernels. More generally, if A consists of m < n distinct
points b1, . . . , bm where bk is repeated lk times with l1 + · · · + lm = n, then we
associate to A the n-tuple

(E{b1,1}, . . . , E{b1,l1}, E{b2,1}, . . . , E{b2,l2}, . . . , E{bm,1}, . . . , E{bm,lm}) (3.2)

defined as follows. We set E{0,j}(z) = zj, and if ak �= 0 then E{ak,j}(z) =
c(ak,j)

(1−akz)j
,

where c(ak, j) is the constant making ‖E{ak,j}‖ = 1. The orthogonalization of (3.2)
is the so-called Takenaka–Malmquist (TM-) system, or orthogonal rational system,
(B1, . . . , Bn), where

Bk(z) = B{a1,...,ak}(z) =

√
1− |ak|2
1− akz

k−1∏
l=1

z − al
1− alz

[28, Lecture V]. We call each Bk a modified Blaschke product. One recognizes

that the rational function

√
1−|an|2
1−anz

in front is the Szegő kernel and the product
thereafter is the Blaschke product with the zeros a1, . . . , ak−1. The claim is: when
studying rational approximation in H2(D), TM systems are unavoidable. This is
no wonder, because every rational function is a linear combination of E{bk,j} for
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some bk. Existing studies on TM systems include Laguerre and Kautz systems.
The traditional works on TM systems deal with the condition

∞∑
k=1

(1− |ak|) =∞. (3.3)

This is called the hyperbolic non-separability condition. For any p ∈ [1,∞),
it is necessary and sufficient for the corresponding TM system to be complete
in Hp(D) ([15]). Also, for 1 < p < ∞ and any sequence (a1, . . . , an, . . . ), the
corresponding TM system is a Schauder basis of the closure of span{Bn}∞n=1 in
Hp(D) ([33]).

The difference with the current study is that the parameters a1, . . . , an, . . .
used to approximate a given function are not fixed before hand, nor are they
required to satisfy the hyperbolic non-separability condition (3.3), and, corre-
spondingly, the induced TM-system {Bn} is not necessarily a basis. Instead, we
adaptively select the parameters an, as in greedy algorithms, and thus formulate
expansions of given signals with fast convergence. Below we will introduce our main
algorithm in the unit disc case called Adaptive Fourier Decomposition, abbreviated
as AFD ([34]).

Let f be any function in H2(D). Letting f1 = f, recursively and for any n
complex numbers a1, . . . , an in D, we have

f(z) = 〈f1, ea1〉ea1(z) + f2(z)
z − ea1

1− a1z
,

and

f2(z) = 〈f2, ea2〉ea2(z) + f3(z)
z − ea2

1− a2z
,

etc. so that we arrive at

f(z) =

n∑
k=1

〈fk, eak
〉B{a1,...,ak}(z) + fn+1(z)

n∏
k=1

z − ak
1− akz

. (3.4)

This identity gives rise to an interpolating rational function to f for the
interpolating points a1, . . . , an where repeated points correspond to interpolation
with derivatives of the function.

The identity, furthermore, gives rise to fast approximation in energy if one
selects ak, once a1, . . . , ak−1 have been fixed, according to the formula:

ak = argmax{|〈fk, ea〉|2 | a ∈ D}. (3.5)

The following energy relation is to be noted:

‖f‖2 =
n∑

k=1

|〈fk, eak
〉|2 + ‖fn+1‖2.
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Under the selection criterion (3.5) we can show that in the energy sense ([34]),
namely in the sense of strong convergence in H2(D),

f =

∞∑
k=1

〈fk, eak
〉Bk.

The above-described AFD, or Core AFD algorithm was published in 2012 and
lately, in 2015, found to be equivalent with the Pre-Orthogonal Greedy Algorithm
([37]). The motivation of AFD is characterizing positive-instantaneous-frequency
decomposition, or mono-component decomposition of signals. There followed two
elaborations on AFD of which one is the called unwinding AFD ([27, 30, 17]) and
the other is geablack towards n-best rational approximation ([35, 31]).

Unwinding AFD dwells on Core AFD and the principle of energy front-
loading for Nevanlinna outer functions in one complex variable. The latter principle
addresses the following fact: if F (z) =

∑∞
k=0 ckz

k is a H2(D)-function with the
Nevanlinna factorization (see [20], [43]): F (z) = I(z)O(z), where I(z) and O(z)
are, respectively, its inner and outer factors, and if we write O(z) =

∑∞
k=0 dkz

k,
then there holds for any positive integer N that

N∑
k=0

|ck|2 ≤
N∑

k=0

|dk|2.

Since ∞∑
k=0

|ck|2 = ‖F‖2 = ‖O‖2 =

∞∑
k=0

|dk|2,

the above inequality amounts to saying that the outer part of a Hardy function has
best polynomial approximation of degree N in H2(D) that converges faster than
that of the original function. This suggests that when decomposing a function in
H2(D), it may be a good strategy to perform the Nevanlinna factorization and then
decompose the outer part instead of the original function, to finally multiply back
by the inner factor which is a finite Blaschke product, at least when the function is
continuous on ∂D. Of course, performing the Nevanlinna factorization is not such
an easy business as it essentially involves estimating conjugate functions, and fair
judgement should be used in each case.

The related theory is developed in [27, 30, 17]. Experiments show that Un-
winding AFD is indeed among the best positive frequency decomposition methods
([32]). The authors became aware late 2015 that the Ph.D. thesis of M. Nahon
([27]) at Yale University, 2000, under the guidance of R. Coifman, develops an
analogous unwinding algorithm based on the Nevanlinna factorization ([20, 43]).
In a recent paper by Coifman and Steinerberger, theoretical aspects of the algo-
rithm are further developed ([17]).

Cyclic AFD was designed to approach the problem of n-best rational approx-
imation in H2(D). The problem is formulated as follows. Given f ∈ H2(D), find a
rational function of the form p/q, with deg{p} and deg{q} not exceeding n, and q
zero-free inside the unit disc, such that ‖f − p/q‖ is minimum among all possible
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rational functions of the same kind. The latter are just the rational functions of
degree no larger than n in H2(D). Existence of such minimizing rational func-
tions was proved a long time ago, but a theoretical algorithm for finding p/q to
give rise to the minimum is still an open issue. A detailed account of the problem
may be found in [4, 11, 5, 12, 14]. Both the RARL2 algorithm (which extends
to the matrix-valued case, see www-sop.inria.fr/apics/RARL2/rarl2.html for
a description and tutorial as well as [7, 9, 19] for further references) and the one
through Cyclic AFD ([31]) provide practical algorithms. RARL2 is a descent algo-
rithm using Schur parameters to describe Blaschke products of given degree along
with a compactification thereof to ensure convergence to a local optimum. It is
used in identification and design of microwave devices, see [29, 39]. The algorithm
using Cyclic AFD is parameterized by the zeros of the denominator polynomial,
and uses the fact that the expansion as a sum of modified Blaschke products

n∑
k=1

〈fk, eak
〉B{a1,...,ak}(z)

is a rational function of degree no larger than n by construction. The theory
and algorithmic scheme of Cyclic AFD are definitely simpler (though the 1-D
search over a ∈ D iterated at each step to reach a fixed point is nontrivial),
but convergence to a local minimum is still an issue. Cyclic AFD corresponds
to simultaneous optimal selection of n parameters, while Core AFD corresponds
to sequential selection of n parameters ([31]). For some related studies we refer
to [5, 8, 14, 13]. Other algorithms based on fixed point heuristics or balanced
truncation of Hankel operators to approach rational H2(D)-approximation can be
found, e.g., in [41, 22].

The above considerations and algorithms extend to the context of the half-
plane rather than the disk, by means of conformal mapping. The reason is that
a conformal map from the disk to the half-plane is a rational function of degree
1 (i.e., a Möbius transform) and therefore it preserves rationality and the degree,
see [20, Ch. I]. There is also a parallel approach by using TM systems and the
corresponding maximal principle in the half-plane. More generally, the relevant
extension of what precedes to more general domains is that of best meromorphic
approximation with n poles, see [10].

For functions of multivalent variables, finding a basis is equivalent to finding a
uniqueness set. That is a fundamental task and therefore of great interest in math-
ematical analysis. It is, however, in many cases difficult to achieve. On the other
hand, Szegő kernels are usually simple rational functions, and fast representation
of signals as linear combinations of Szegő kernels has great significance in relation
to applications. The principles outlined in the last two sections are valid and the
results available in a number of contexts for several real and complex variables,
and with functions valued in vectors and matrices. We give a brief introduction to
this circle of ideas in the following sections.
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4. Quaternionic and Clifford contexts for functions
of several real variables

Denote by Q the quaternion algebra, and by Am the Clifford algebra of linear
dimension 2m. The analogues of AFD have been formulated for Hardy spaces in
the setting of Q and of Am in [36] [42], respectively. The first setting is very much
in the spirit of AFD. The second, however, is more in the spirit of General Greedy
Algorithm with dictionary consisting of the higher-order Szegő kernels, due to the
fact that the inner product of Clifford algebra-valued functions is not necessarily
scalar-valued. That prevents the G-S orthogonalization process from being applied.

Define Rm+1
+ = {x = (x0, x) ∈ Rm+1;x0 > 0, x ∈ Rm}. We briefly in-

troduce the AFD (General Greedy Algorithm) in the Hardy space H2(R4
+) of

the upper half-space (resp. H2(Rm+1
+ )), which consists of Q-valued (resp. Am-

valued) left monogenic functions [21]. For the parallel theory in the Hardy spaces
on the unit ball, see [36, 42]. Denote by φa(x) the non-normalized Szegő kernel

of H2(R4
+) (resp. H2(Rm+1

+ )), i.e. φa(x) = x+a
|x+a|4 (resp. φa(x) = x+a

|x+a|m+1 ). Re-

garding H2(R4
+), although Q is a non-commutative algebra, it is not difficult to

apply the P-OGA to {φa(x), a, x ∈ R4
+} to obtain an orthonormal system {Bn}∞n=1

parameterized by the selected sequence {a(n)}∞n=1 in R4
+. Similar to AFD, one has

limn→∞ ||f −
∑n

k=1 Bk〈f,Bk〉|| = 0. We note that the study of AFD in the setting
of Q predates that of P-OGA: the latter is a generalization of the former.

As to H2(Rm+1
+ ), we introduce the completion of the Szegő kernel dictionary

given by

D̃ =

{
ψβ,a(x)

||ψβ,a||
, β = (β1, . . . , βm+1), a, x ∈ Rm+1

+

}
,

where

ψβ,a(x) =
∂|β|

∂aβ1

0 · · · ∂a
βm+1

m+1

φa(x).

For each f ∈ H2(Rm+1
+ ), applying the General Greedy Algorithm with D̃

one has

lim
n→∞

∥∥∥∥∥f −
n∑

k=1

ψβ(k),a(k)

||ψβ(k),a(k) ||

〈
gk,

ψβ(k),a(k)

||ψβ(k),a(k) ||

〉∥∥∥∥∥ = 0,

where gk is the standard remainder defined in §2.
The sphere cases are also considered in the quaternionic and Clifford algebra

settings ([36, 42]).

In both settings it is shown that a global maximal selection of the parameter
is attainable at each step of the recursive process (i.e., ρ = 1). In particular, one
can obtain rational approximations of functions in L2(R4) by applying the corre-
sponding AFD and the well-known Sokhotskyi–Plemelj formula (e.g., [21, 36]).
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5. Several complex variables

Similar approximation schemes in settings involving several complex variables have
also been studied. In fact, one can consider functions defined on various classical
domains, with values in CN, or CN×M matrices, etc.

5.1. Functions defined on n-torus

Denote by T n the n-torus, where T = ∂D. There are two generalizations of AFD
in the Hardy space of the n-torus H2(T n) ([37]). One merely consists in processing
P-OGA in this context (i.e., it is shown that P-OGA is applicable to H2(T n)). The
other is based on the product-TM system. As to the former, we omit the details as
it should be clear from the previous section already how to perform. Below, we give
a brief introduction to the latter. For simplicity, we consider only the case n = 2.

Denote by Ba
k(z) the modified Blaschke product (a member of the TM sys-

tem) associated with the sequence a = {ak}∞k=1 in D. We introduce the tensor
product type modified Blaschke product {Ba

k(z) ⊗ Bb
l (w)}, where a,b ⊂ D and

(z, w) ∈ D2 = D×D. For f ∈ H2(T 2), we look for a rational approximation
of f of separable type given by f = limm→∞

∑
1≤k,l≤m〈f,Ba

k ⊗ Bb
l 〉Ba

k ⊗ Bb
l =

limm→∞ Sm(f) in the H2-norm. Denote by Dm(f) = Sm(f) − Sm−1(f) the m-
partial sum difference. The main step is to select (a∗m+1, b

∗
m+1) ∈ D2 according to

the maximal problem

(a∗m+1, b
∗
m+1) := arg sup

(am+1,bm+1)∈D2

||Dm+1(f)||2, (5.1)

where {a1, . . . , am} and {b1, . . . , bm} are previously fixed.
The existence of (a∗m+1, b

∗
m+1) is proved in [37] through a technical discussion.

In a way similar to previously described AFD, Sm(f) converges to f in the H2-
norm if each (ak, bk) is selected according to criterion (5.1). As an application, one
can obtain rational approximations of functions in L2(T 2).

5.2. Functions defined on Rn in the setting of Hardy spaces on tubes

As mentioned in the previous sections, one can obtain rational approximations of
functions in L2 of the boundary of a domain by applying AFD in the domain. Since
Rn can be written as the union of 2n octants, seeking rational approximations
of functions in L2(Rn) motivates the study of AFD in Hardy spaces on tubes
over octants ([24]). For the purpose of illustration, it suffices here to investigate
AFD in the Hardy space of the tube over the first octant H2(TΓ1), where TΓ1 =
C+ × · · · ×C+.

Denote by Sz(w) the Cauchy–Szegő kernel of H2(TΓ1), i.e.,

Sz(w) =

n∏
j=1

−1
2πi(wk − zk)

.

By using the methodology P-OGA, one can obtain an orthonormal system
{Bk}∞k=1 parameterized by the sequence {z(k)}∞k=1 ⊂ TΓ1 . Indeed, {Bk}∞k=1 is the
G-S orthogonalization of the selected Cauchy–Szegő kernels and, if necessary, their



30 L. Baratchart, W.-X. Mai and T. Qian

higher-order directional derivatives. It is concluded in [24] that the attainability
of a global maximal selection at each step follows from a certain kind of boundary
behavior of functions in H2(TΓ1), called “boundary vanishing condition (BVC)”
(also see [37]). After verifying the BVC in H2(TΓ1), the convergence follows from
the general theory given in [37]. In [24] the P- OGA generalization of AFD in the
Hardy spaces on tubes over regular cones is also given.

5.3. Matrix-valued signals defined in the unit disc

We denote by Hp×q
2 the space of p× q matrices with entries in H2(D). In a recent

paper of D. Alpay, F. Colombo, T. Qian and I. Sabadini they show that it is
possible, as in the scalar case, to decompose those functions as linear combinations
of suitably modified matrix-valued Blaschke product, in an adaptive way. The
procedure is based on a generalization to the matrix-valued case of the maximum
selection principle of 1-D AFD, which involves not only selections of suitable points
in the unit disc but also suitable orthogonal projections. It can be shown that the
maximum selection principle again gives rise to a convergent algorithm ([1]). The
analogous parametrization in terms of Schur analysis and tangential interpolation
directions was given earlier in [6], and has been used to design a matrix-valued
version of the RARL2 algorithm, see [19].

5.4. Adaptive decomposition: the case of the Drury–Arveson space

Blaschke factors and products have counterparts in the unit ball of CN , and this
fact allows us to extend the maximum selection principle to the case of functions
in the Drury–Arveson space of functions analytic in the unit ball of Cn. This gives
rise to an algorithm which is a variation of the higher-dimensional AFD. In the
corresponding paper of D. Alpay, F. Colombo, T. Qian and I. Sabadini they also in-
troduce infinite Blaschke products in this setting and study their convergence ([2]).

5.5. Matrix-valued signals defined on the polydisc

The polydisc case has been given special attention, due to its connection with
image processing. It develops in the context of multi-trigonometric series, like 2-
D AFD treated in an earlier subsection. An alternative setting is given in the
third paper of D. Alpay, F. Colombo, T. Qian and I. Sabadini where they develop
interpolation theory as well as an operator-valued Blaschke product method that
offers an adaptive expansion of holomorphic functions in the Hardy space over the
polydisc corresponding to signals on the n-torus ([3]).

6. AFD and Aveiro method in reproducing kernel Hilbert spaces

We first note that the Hardy H2 space is a reproducing kernel Hilbert space,
where the reproducing kernel is given by the Szegő kernel. Subsequently, P-OGA
was proposed as an expansion algorithm in reproducing kernel Hilbert spaces (see
§2) although in the previous sections we restrict ourselves to AFD in various
Hardy spaces. The key of AFD (or P-OGA) is the construction of an orthonormal
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system by applying the G-S orthogonalization process to the selected reproducing
kernels and their higher-order derivatives. Such a construction ensures that the
approximating function and its derivatives meet interpolation conditions to the
approximated function at the selected points.

The study of interpolating functions is closely related to interpolation and
sampling problems in reproducing kernel Hilbert spaces, some prototypical aspects
of which may be found in [38]. We use the notation HK to indicate that H is a
reproducing kernel Hilbert space admitting a reproducing kernel K(q, p). Suppose
that HK consists of holomorphic functions defined in an open set E ⊂ C. Let
further {pk}∞k=1 ⊂ E be a sequence of distinct points. The so-called Aveiro Method,
proposed by S. Saitoh et al. in [16], aims at constructing an approximating function
to f ∈ HK involving a finite number of sampling points {p1, . . . , pn}.

Based on this work, the authors of [23] propose the so-called “Aveiro Method
under complete dictionary (AMUCD)” by combining the ideas of P-OGA with
Aveiro Method. Roughly speaking, AMUCD enhances the power of Aveiro Method
in that the approximating function given by AMUCD does not require all elements
of {pk}∞k=1 to be distinct. As in AFD, the representation and its derivatives enjoy
interpolation properties at {pk}∞k=1. It is shown in [23] that AMUCD is applicable
to the classical Hardy spaces and Paley–Wiener spaces. It turns out that AMUCD
is, in fact, an alternative representation of AFD. Nevertheless, AMUCD has the
advantage not to require working out the related orthonormal system, whereas
in many instances of P-OGA one does not know explicit formulas for the related
orthonormal system of functions.
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Abstract. The classical M. Riesz theorem on the boundedness of the conjuga-
tion operator for harmonic functions and Kolmogorov’s weak-type inequality
are proved in the framework of the octonion-valued monogenic functions.
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1. Introduction and statement of results

Monogenic functions of octonion variables, due to their potential, yet not com-
pletely fulfilled utility in physics [9], continue to attract attention of researchers.
J. Baez in his very informative survey formulates the development of an octonionic
analogue of the theory of analytic functions as the first item in his list of 14 im-
portant open octonion-related problems [3, p. 201, first bullet]. In this note, we
continue the study of this topic; see, e.g., [4, 10, 11, 14, 15, 16] and especially [17]
and the references therein.

An octonionic version of M. Riesz theorem, see MR below, about conjugate
harmonic functions has been recently published [5]; here we give octonionic versions
of the classical Kolmogorov’s weak-type inequality and shorten the proof of Riesz’
theorem [5].

The monogenic functions are analogs of analytic functions in the octonionic
framework. Just like the classical theorems of M. Riesz and Kolmogorov, the gen-
eralizations of these results are useful in the study of boundary value problems for
monogenic functions.

The theorem of Kolmogorov K2 is valid for all p, 0 < p < 1. However, due
to the fact that powers |f |p of octonionic monogenic functions are subharmonic
only for 6/7 ≤ p [10], our Theorem 2 below, which is an octonionic analog of the
theorem K2, is also valid only for 6/7 ≤ p.
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First we remind a few standard definitions and classical results, and state
our results. The proofs are given in Section 2.

Given a harmonic function u(x, y) in a simply-connected domain of the com-
plex plane, a harmonic function v(x, y) is called its conjugate harmonic function,
if they satisfy the Cauchy–Riemann system of partial differential equations

∂u

∂x
=

∂v

∂y
;

∂v

∂x
= −∂u

∂y
.

It is clear that a conjugate harmonic function is determined only up to an additive
constant; we norm it as v(0) = 0.

Theorem MR (M. Riesz, 1927). Let u be a harmonic function in the unit disc. If

u ∈ Lp[0, 2π]

for 1 < p < ∞, then its conjugate harmonic function v = ũ ∈ Lp[0, 2π] as well,
and

‖v‖Lp ≤ Ap‖f‖Lp.

The exact value of the constant Ap was found by Pichorides [19], it is Ap = tan π
2p

if 1 < p ≤ 2, and its reciprocal Ap = cot π
2p if 2 ≤ p < ∞. We remark that

Ap ≈ 2
π(p−1) as p→ 1 and Ap ≈ 2

πp as p→∞.

If p = 1, the statement fails, that is, the conjugation operator is not bounded
in L1. However, in this case the operator has the weak-type 1.

Theorem K1 (Kolmogorov, 1925). Let u be a harmonic function in the unit disk
and v = ũ its conjugate harmonic function. For any positive λ > 0, the inequality
is valid,

meas {x : |v(x)| > λ} ≤ A
‖u‖L1

λ
,

where meas stands for the Lebesgue measure and A is an absolute constant.

Moreover, the following inequality holds good too.

Theorem K2 (Kolmogorov, 1925). If a harmonic function

u ∈ L1[0, 2π],

then its conjugate harmonic function v, normalized by v(0) = 0, is integrable as
well, v = ũ ∈ Lp[0, 2π] for any 0 < p < 1, and

‖v‖L1 ≤ Bp‖u‖Lp

where the constant Bp depends on p only.

It should be mentioned that a quaternionic version of the M. Riesz theorem
is known, see Avetisyan [2] and the references therein; namely the quaternionic
monogenic function is integrable, whenever its vector component is integrable.
Conjugate harmonic functions in Clifford algebras were studied by Nolder [18];
our Proposition 1 below is an analog of Lemma 1.6 in [18]. However, the algebra
of octonions is not a Clifford algebra due to the non-associativity of the octonions.
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The non-commutative, non-associative, alternative division algebra of octo-
nions O is an 8-dimensional vector space with the basis elements {e0 ≡ 1, e1, . . .,
e7}, satisfying the multiplication table

ei × ej e1 e2 e3 e4 e5 e6 e7
e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e3 e6 −e1 e5 −e4 −e2 −1

.

The non-commutativity and non-associativity of the algebra O result in cer-
tain difficulties in a study of this algebra. However, as early as in 1933, P. Stein
[21] employed the subharmonic functions in his study of M. Riesz’ theorem. Since
then, this tool has been used by various authors, see [7], [20] and the references
therein and above. If the final claim depends only on the modulus |f | of the left-
or right-monogenic function f , the use of subharmonicity allows in many problems
to fix certain ordering and/or association from the outset and work with this order
to the end of the proof, when it can be seen that the result does not depend upon
a particular ordering and association.

We use the following notation. Let x = (x0, x1, . . . , x7) ∈ R8 be a vector of
real numbers and

oct =

7∑
j=0

xjej

be a generic octonion oct ∈ O. Consider real-valued continuously differentiable
functions

f0(x), . . . , f7(x), x ∈ Ω,

in a simply-connected domain Ω ⊂ R8. The octonion-valued left-monogenic func-
tions in Ω are defined as 8-dimensional vector-functions

f(x) =
7∑

j=0

fj(x)ej ,x ∈ Ω, (1.1)

satisfying the operator equation

D[f ] = 0, (1.2)

where D =
∑7

j=0
∂

∂xj
ej is the Dirac or Cauchy–Riemann–Fueter operator; ∂/∂xj ,

j = 0, 1, . . . , 7, are partial derivatives with respect to the coordinates in R8. Thus,
we study functional-theoretical properties of the elements of the kernel of the Dirac
operator D.
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Solutions of the system [f ]D = 0 are called right-monogenic functions; the
functions, which are both left- and right-monogenic, are called (two-sided) mono-
genic functions. Hereafter, we always discuss the left-monogenic functions; the
proofs go word-by-word for the right- and two-sided monogenic functions. More-
over, since adding a constant to any component fj of any solution of system
(1.2)–(1.3) does not violate the system, we will assume that f(0) = 0.

Combining representations (1.1) and (1.2) and using the linear independence
of the basis octonions e0, . . . , e7, it follows that equation (1.2) is equivalent to
a system of eight first-order linear partial differential equations with constant
coefficients with respect to the unknown functions f0, f1, . . . , f7. This system can
be written down as the matrix equation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x0
− ∂

∂x1
− ∂

∂x2
− ∂

∂x3
− ∂

∂x4
− ∂

∂x5
− ∂

∂x6
− ∂

∂x7
∂

∂x1

∂

∂x0
− ∂

∂x4
− ∂

∂x7

∂

∂x2
− ∂

∂x6

∂

∂x5

∂

∂x3
∂

∂x2

∂

∂x4

∂

∂x0
− ∂

∂x5
− ∂

∂x1

∂

∂x3
− ∂

∂x7

∂

∂x6
∂

∂x3

∂

∂x7

∂

∂x5

∂

∂x0
− ∂

∂x6
− ∂

∂x2

∂

∂x4
− ∂

∂x1
∂

∂x4
− ∂

∂x2

∂

∂x1

∂

∂x6

∂

∂x0
− ∂

∂x7
− ∂

∂x3

∂

∂x5
∂

∂x5

∂

∂x6
− ∂

∂x3

∂

∂x2

∂

∂x7

∂

∂x0
− ∂

∂x1
− ∂

∂x4
∂

∂x6
− ∂

∂x5

∂

∂x7
− ∂

∂x4

∂

∂x3

∂

∂x1

∂

∂x0
− ∂

∂x2
∂

∂x7
− ∂

∂x3
− ∂

∂x6

∂

∂x1
− ∂

∂x5

∂

∂x4

∂

∂x2

∂

∂x0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

f3

f4

f5

f6

f7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(1.3)

with respect to the scalar real-valued functions f0, . . . , f7.

Differentiating the equations of system (1.2)–(1.3) and adding them, one
immediately derives the equations

Δf0(x) = · · · = Δf7(x) = 0, x ∈ Ω,

where Δ is the 8-dimensional Laplace operator. Hence, all the components f0, . . .,
f7 of an octonion-valued monogenic function f are the classical harmonic functions.

Equations (1.2) such that each component fj , j ≥ 0, is harmonic, are called
the Generalized Cauchy–Riemann systems (GCR) – see Stein and Weiss [20, pp.
231–234]. More general systems

n∑
j=0

Aj
∂f

∂xj
+Bf = 0
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with constant matrices Aj and B were considered, in different context, by Ev-
grafov [8].

Stein and Weiss have proved that for any GCR system there exists a non-
negative index p0 < 1 such that |F |p is a subharmonic function for all p ≥ p0. It
is known (ibid, p. 234) that for the M. Riesz system in Rn,⎧⎨⎩

∂f1
∂x1

+ · · ·+ ∂fn
∂xn

= 0

∂fi
∂xj

=
∂fj
∂xi

, i, j = 1, . . . , n,

the exact value of p0 is (n− 2)/(n− 1). Our system (1.2)–(1.3) is not the M. Riesz
system, however, the same assertion is valid for system (1.2)–(1.3) in R8; namely,
it has been proven in [10] that for the octonion-valued monogenic functions, that
is, for the solutions of system (1.2)–(1.3),

p0 =
n− 2

n− 1

∣∣∣∣
n=8

= 6/7.

As Stein and Weiss have noticed (ibid., p. 233) the inequality p0 < 1 allows
one to develop a substantive theory of the Hardy spaces for the corresponding sys-
tems (1.2), in our case for octonionic monogenic functions. Certain other properties
of the octonion-valued monogenic functions, for instance, the Phragmén–Lindelöf
principle, the three-lines theorem, Paley–Wiener theorem, and some others, have
been also proven in [4, 14, 15, 16, 17].

For a monogenic function f , the function f0 is called the scalar component
of f , the vector-function fv = (f1, . . . , f7) the vector component. It is worth men-
tioning that even in the case of quaternionic, that is, four-component monogenic
functions [2, p. 911, Remark 1.2], in a bound f0 through fv from above, the right-
hand side must contain all the three components of fv. That is why in the results
below f0 is estimated from above by fv.

The gradient of scalar functions f0, . . . , f7 is

∇fj(x) =
(
∂fj(x)

∂x0
,
∂fj(x)

∂x1
, . . . ,

∂fj(x)

∂x7

)
,

thus ∣∣∇fj(x)∣∣2= ∣∣∣∣∂fj(x)∂x0

∣∣∣∣2+∣∣∣∣∂fj(x)∂x1

∣∣∣∣2+ · · ·+ ∣∣∣∣∂fj(x)∂x7

∣∣∣∣2.
We introduce also the 64-tuple function

∇f(x) = (∇f0(x),∇f1(x), . . . ,∇f7(x)) ,
called the second gradient of f [20, Chap. VI, Sect. 5.9], and the 56-tuple function
∇fv,

∇fv(x) = (∇f1(x),∇f2(x), . . . ,∇f7(x)) , (1.4)

hence ∣∣∇f ∣∣2= ∣∣∇f0∣∣2+∣∣∇fv∣∣2. (1.5)
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To prove the boundedness of the conjugation operator for the octonion-valued
monogenic functions in Lp, 1 < p <∞, firstly we notice that due to the positivity
of the subharmonic function |f(x)|p when p ≥ 6/7, if f is integrable over the
boundary of the domain, then f and all its harmonic components fi, i = 0, 1, . . . , 7,
have non-tangential boundary values almost everywhere on the boundary. When x
is at the boundary of the domain, by f(x) we mean these non-tangential boundary
values. We let B denote the unit ball in R8, S = ∂B, and dσ the surface area
measure on S. Now we state our results. Theorem 1.1 is an analog of M. Riesz
theorem in the octonionic framework.

Theorem 1.1. Let f be monogenic in B and 0 ≤ r < 1. Then for any finite p > 1
there exists the constant Cp depending on p only such that∫

S

|f(r, θ)|pdσ(θ) ≤ C

∫
S

|fv(r, θ)|pdσ(θ)

for any constant C ≥ Cp.

If 1 < p ≤ 2, then we can take

Cp =
7

p− 1
,

and for 2 ≤ p <∞,

Cp = 7(p− 1),

hence the constants have the same asymptotic behavior when p→ 1 or p→∞ as
in Pichorides’ result.

Our proofs are based on the following inequality, which may be of independent
interest.

Proposition 1.2. If f is an octonionic monogenic function, then∣∣∇f0∣∣2≤ 7
∣∣∇fv∣∣2, (1.6)

therefore ∣∣∇f ∣∣2≤ 8
∣∣∇fv∣∣2, (1.7)

where ∇f0 is the gradient of the scalar function f0 and the second gradients ∇f
and ∇fv are defined above, see (1.4) and the paragraph before it.

The next corollary follows immediately.

Corollary 1.3. Under the conditions of Theorem 1.1, for 1 < p <∞,∫
S

|f0(r, θ)|pdσ(θ) ≤
(
C1/p

p + 1
)p

∫
S

|fv(r, θ)|pdσ(θ).

In the case 0 < p ≤ 1, when the Riesz theorem is known to fail, some relevant
results were established by Kolmogorov and Zygmund. The following statements
are similar to Kolmogorov’s Theorem K2 if p < 1 and his weak-type estimate,
Theorem K1 if p = 1.
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Proposition 1.4. If f is octonion-monogenic in the unit ball B and integrable on
the unit sphere, f ∈ L(S), then for any p, 6/7 ≤ p ≤ 1, and 0 < r < 1,(∫

S

|f(r, θ)|pdσ(θ)
)1/p

≤ (σ8)
1−p
p

∫
S

|f(θ)|dσ(θ),

where σ8 is the surface area of the unit sphere S in R8.

As a corollary, we straightforwardly derive the weak-type inequality for the
octonion-valued monogenic functions, which can be thought of as a (weak) substi-
tution for the weak-type inequality in the case of monogenic functions.

Theorem 1.5. Assuming the conditions of Proposition 1.4 and setting p = 6/7 in
it, we have

meas
{
x ∈ B

∣∣ |f0(x)| > λ
}
≤ 7

8

||fv||2L2(S)

λ2

where meas stands for the Lebesgue measure in R8.

Remark 1.6. We prove the results for the functions in a ball, however, similar
assertions are valid for functions in the half-spaces as well – cf. for example, [13,
Lecture 19].

Remark 1.7. It is worth mentioning that Theorem 1.5 claims a stronger rate of
decay of the measure as λ → ∞, namely λ−2 rather than the classical rate λ−1,
however, the bound involves the L2 norm rather than L1 norm.

Remark 1.8. As a corollary of Theorem 1.1, it is possible to derive a proof of the
Paley–Wiener theorem for the monogenic functions, Cf. [17].

2. Proofs

As usual, derivatives of the vector-functions f(x) and fv(x) are computed compo-
nent-wise, that is,

∂f(x)

∂xk
=

7∑
j=0

∂fj(x)

∂xk
ej for k = 0, 1, . . . , 7.

The following proofs essentially use properties of the superharmonic func-
tions, see, for example, [1] or [13]. We mention here only that for smooth functions
u(x), x ∈ Ω, which is the case in our work, the superharmonicity is equivalent to
the inequality Δu(x) ≤ 0 for all x in the domain Ω. In turn, the latter is equivalent
to the mean-value inequality, namely, the average of a superharmonic function over
any sphere (or ball) within its domain does not exceed the value of the function
at the center of the sphere (or ball).

This “superharmonic” approach was developed by M. Essen [7].
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Proof of Proposition 1.2. The first equation of system (1.2)–(1.3) implies that

∂f0(x)

∂x0
=

∂f1(x)

∂x1
+ · · ·+ ∂f7(x)

∂x7
,

the sequel equations of (1.3) give similar expressions for the next partial derivatives
∂f0(x)
∂xj

, j = 1, 2, . . . , 7. Squaring each of these equations and using the elementary

inequality

(a1 + a2 + · · ·+ a7)
2 ≤ 7

(
a21 + · · ·+ a27

)
, (2.1)

where aj are real numbers, we derive the estimates(
∂f0(x)

∂x0

)2

≤ 7

((
∂f1(x)

∂x1

)2

+

(
∂f2(x)

∂x2

)2

+ · · ·+
(
∂f7(x)

∂x7

)2
)
,

(
∂f0(x)

∂x1

)2

≤ 7

((
∂f1(x)

∂x0

)2

+

(
∂f2(x)

∂x4

)2

+ · · ·+
(
∂f7(x)

∂x3

)2
)
,

(
∂f0(x)

∂x2

)2

≤ 7

((
∂f1(x)

∂x4

)2

+

(
∂f2(x)

∂x0

)2

+ · · ·+
(
∂f7(x)

∂x6

)2
)
,

. . . . . . . . .(
∂f0(x)

∂x7

)2

≤ 7

((
∂f1(x)

∂x3

)2

+

(
∂f2(x)

∂x6

)2

+ · · ·+
(
∂f7(x)

∂x0

)2
)
.

Keeping in mind the matrix in (1.3), we notice that every first-order partial
derivative of each component fj occurs in these inequalities exactly once. There-
fore, adding up these eight inequalities for (∂f0/∂x0)

2, . . . , (∂f0/∂x7)
2, we get

inequality (1.6) of Proposition 1.2, namely,∣∣∇f0(x)∣∣2≤ 7
(∣∣∇f1(x)∣∣2+ · · ·+ ∣∣∇f7(x)∣∣2) = 7

∣∣∇fv(x)∣∣2.
Combining the latter with (1.5), we deduce inequality (1.7), thus completing the
proof of the proposition. �

Remark 2.1. A simple example of the 7-vector (1, 1, 1, 1, 1, 1, 1) shows that the
factor 7 in (2.1) cannot be decreased.

The next lemma can be traced back to Kuran [12] (subharmonic version) and
Essen [7].

Lemma 2.2. If f is a monogenic function and 1 < p ≤ 2, then the function

g(x) = |f(x)|p − C|fv(x)|p

is superharmonic in B, whenever a constant C ≥ Cp = 7
p−1 .
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Proof. Since the components f0, f1, . . . , f7 of the monogenic function f are har-
monic functions, it suffices to prove that the Laplacian Δg is nonpositive, Δg(x) ≤
0. The proof is based on the following well-known equation, which can be deduced
by a direct computation,

Δ|f(x)|p = p|f(x)|p−4

{
(p− 2)

7∑
j=0

(
f(x) · ∂f(x)

∂xj

)2

+ |f(x)|2
7∑

j=0

∣∣∣∣∂f(x)∂xj

∣∣∣∣2
}
,

where f(x) · ∂f(x)∂xj
=
∑7

k=0 fk(x) ·
∂fk(x)
∂xj

– see [20, Chap. VI, Proof of Theor. 4.9].

Since p ≤ 2, the latter implies the inequality

Δ|f(x)|p ≤ p|f(x)|p−2
7∑

j=0

∣∣∣∣∂f(x)∂xj

∣∣∣∣2. (2.2)

Similarly,

Δ|fv(x)|p = p|fv(x)|p−4

{
(p− 2)

7∑
j=0

(
fv(x) ·

∂fv(x)

∂xj

)2

+ |fv(x)|2
7∑

j=0

∣∣∣∣∂fv(x)∂xj

∣∣∣∣2
}
.

Estimating the scalar product by the Schwarz inequality, we compute

7∑
j=0

(
fv ·

∂fv
∂xj

)2

≤
7∑

j=0

|fv|2
∣∣∣∣∂fv∂xj

∣∣∣∣2= |fv|2|∇fv|2.
Obviously |fv| ≤ |f |, hence

|f |p−2 ≤ |fv|p−2,

for we consider here p ≤ 2. Since

|∇fv|2 =

7∑
j=0

∣∣∣∣∂fv∂xj

∣∣∣∣2,
we derive

Δ|fv|p ≥ p|fv|p−4
{
(p− 2)|fv|2|∇fv|2 + |fv|2|∇fv|2

}
= p(p− 1)|fv|p−2|∇fv|2.

(2.3)

Inserting (2.2) and (2.3) into the equation for Δg = Δ|f |p−CΔ|fv|p, we complete
the proof. �

Proof of Theorem 1.1. As in [7] or [13], we first consider the case 1 < p ≤ 2. Let

f(x) =

7∑
j=0

fj(x)ej

be a monogenic octonion-valued function, f0 its scalar component and

fv =

7∑
j=1

fjej ≡ (f1, . . . , f7)
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its vector component. As was mentioned above, without loss of generality we as-
sume that f(0) = 0.

By Lemma 1.1, the function |f |p−C|fv|p with C ≥ 7/(p−1) is superharmonic,
thus its spherical mean does not exceed its value at the center of the sphere. Due
to the assumption f(0) = 0, we arrive at the inequality∫

S

|f(x)|pdσ ≤ C

∫
S

|fv(x)|pdσ, (2.4)

we sought for. The non-commutativity and non-associativity of the octonions are
bypassed here, for we integrate only scalar-valued functions.

For 2 ≤ p <∞, we proceed by duality. Set q = p/(p− 1), thus 1 < q ≤ 2, in
which case the conclusion has already been proven. Let S(r) be the sphere of radius
r centered at the origin of R8. Writing down the norm in Lp(S(1− ε)), 0 < ε < 1,
as the supremum over the unit ball in the dual space Lq, using the symmetry of the
involved bilinear form (cf. [13, p. 144]), then estimating this form by the Hölder
inequality, and finally applying the result proven above for the case q ∈ (1, 2], we
finish the proof. �

Proof of Proposition 1.4. The function

h(r) =

(∫
S

|f(r, θ)|pdσ(θ)
)1/p

is increasing on (0, 1) [1, Cor. 3.2.6] and upper-bounded there by the condition;
therefore, application of the Hölder inequality with 1/p > 1 and 1/(1−p) completes
the proof. �

Proof of Theorem 1.5. From inequality (2.4) with p = 2 and C = C2 = 7 we get

1

σ8

∫
S

|f(x)|2dσ ≤ 7

σ8

∫
S

|fv(x)|2dσ,

and since the volume average is dominated by the surface average [1, Cor. 3.2.6],
the latter implies the inequality

1

ω8

∫
B

|f(x)|2dx ≤ 7

σ8

∫
S

|fv(x)|2dσ,

where ω8 is the volume of the 8-dimensional unit ball. The conclusion follows if
we drop in the integral on the left a positive part where |f | ≤ λ and note that
σ8 = 8ω8. �
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1. Introduction

In the last decade a new paradigm has taken hold in signal and image processing:
compressed sensing. The possibility of reconstructing a signal by only a few mea-
surements under the condition that the representation in a given basis or frame
is sparse has allowed to look at new methods and algorithms. Although sparsity
constraints are directly connected only with non-convex optimization the unique-
ness property shown by Candès, Rhomberg, and Tao [11] allows the application of
simple convex algorithms, such as linear programming. This has been applied to
a variety of situations, but here we are interested in applying it to a generaliza-
tion of the standard Fourier basis, the case of so-called nonlinear Fourier atoms.
Decomposition algorithms for this kind of atoms were thoroughly investigated by
the group of T. Qian in Macau during the last decade ([14]). Although the original
starting point for T. Qian was the investigation into a mathematical justification
of the Hilbert–Huang transform and the empirical mode decomposition, the under-
lying structure is much older. The whole approach is in fact based on the question
of decomposing a function on the unit circle in terms of Blaschke products, that
means in terms of the so-called Takenaka–Malmquist system. Despite being one of
the classic topics in Complex Analysis this system is rather unknown in the signal
processing community which has its focus on Wavelet and Gabor decompositions.
This is the main reason why investigations from the point of signal processing into
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this system basically restarted within the last decade, not only by T. Qian and
his co-authors, but also by M. Pap and her collaborators in the framework of the
study of the so-called Voice transform ([26] and [27]). Due to its close connection
with the group of Möbius transformations they can also be used to describe di-
lated functions on the unit circle which was used in the definition of hyperbolic
wavelets. While the adaptive Fourier decompositions of T. Qian showed its capaci-
ties in a variety of examples, principally in linear systems theory, it still constitutes
a greedy algorithm and it is a priori not clear that in applications the number of
atoms can be kept sufficiently small as not to be affected by the exponentially
rising costs. In fact, in the recent PhD-thesis by L. Shuang (cf. [31]) a comparison
between the AFD (Adaptive Fourier Decomposition)-method and Basis Pursuit
where made showing that there are indeed situations where a Basis Pursuit has
an advantage. The mathematical justification for the applicability of Basis Pursuit
was given only by an asymptotic analysis and, therefore, is only valid for large scale
matrices. Here, we will use a compressed sensing approach to the reconstruction
of a given signal in terms of Takenaka–Malmquist systems. The direct approach
to compressed sensing involves the checking of the null space property. Tradition-
ally, this is done by verifying the RIP condition, that is to say, that the sampling
matrix behaves almost as an isometry for sparse vectors since RIP implies the null
space property (see [17]). Unfortunately, a direct verification of this condition for
the kind of matrices we are dealing with is extremely difficult. Therefore, we will
use the approach by Rauhut [30] for the case of the classic Fourier basis to give
a general answer. But a direct adaptation represents some additional problems.
For instance, the calculation of the expectation value turns out to be much more
demanding due to the lack of structure (no easy multiplication rule). Furthermore,
in the last section we will make a comparison between our approach and the results
in [31]. We are not going to make a comparison with the AFD method of T. Qian
since that comparison was already done in [31].

2. Non-linear Fourier atoms

Nonlinear Fourier atoms are a family of nonlinear Fourier bases, seen as an ex-
tension of the classical Fourier basis, that have been constructed and applied to
signal processing [13, 15]). For any complex number a = reita , r = |a| < 1, the
nonlinear phase function θa(t) is defined by the non-tangential boundary value of
the Möbius transformation

τa(z) =
z − a

1− āz
,

that is, the nonlinear Fourier atom is given by

eiθa(t) := τa(e
it) =

eit − a

1− āeit
.
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Note that θa(t+ 2π) = θa(t) + 2π and its derivative is the Poisson kernel

θ′a(t) =
1− r2

1 + r2 − 2r cos(ta − t)
= Re

(
eit + reita

eit − reita

)
, (2.1)

which satisfies

0 <
1− r

1 + r
≤ θ′a(t) ≤

1 + r

1− r
. (2.2)

For any sequence (ck)k∈Z of finite nonzero terms it holds∑
k∈Z

|ck|2 =
1

2π

∫
T

∣∣ckeikx∣∣2 dx =
1

2π

∫
T

∣∣∣ckeikθa(t)∣∣∣2 θ′a(t)dt,
which by combining it with (2.2) implies that we can consider the so-called non-
linear Fourier basis {einθa(t), n ∈ Z} of L2(T) with T = {z ∈ C : |z| = 1} denoting
the unit circle ([13], [29]). Note that if a = 0, {einθa(t), n ∈ Z} reduces to the clas-
sic Fourier basis {eint, n ∈ Z}. These atoms are star-like functions, convex with
positive phase derivative on the boundary and they are linked to nonharmonic
Fourier series and TM systems (see, for instance, [28]).

2.1. Hardy spaces

We consider the following function spaces:

• L2(T) as the Hilbert space of square integrable functions over the unit circle.
• For 1 ≤ p < ∞ the Hardy space Hp is defined as the space of all analytic
functions f in D for which the norm

‖f‖p = sup
0≤r<1

(
1

2π

∫
[0,2π]

|f(reit)|pdt
)1/p

if finite ([18]). The space H∞ consists of all bounded analytic functions f in
D with norm given by

‖f‖∞ = sup
|z|<1

|f(z)|.

For functions in Hp(D), 1 ≤ p ≤ ∞, the radial limit

f̃(eit) = lim
r→1

f(reit)

exists almost everywhere in t (Fatou’s Theorem), and indeed f̃ ∈ Lp(T). Moreover

‖f‖p = sup
0≤r<1

(
1

2π

∫
[0,2π]

|f(reit)|pdt
)1/p

=: ‖f̃‖Lp(T).

We normally identify f with f̃ and can regard Hp as the subspace of those
functions in Lp(T) for which the negative Fourier coefficients vanish, that is:

1

2π

∫
[0,2π]

f̃(eit)e−intdt = 0
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for all n < 0. Then a function f̃ ∼
∑∞

n=0 anz
n can be naturally identified with the

power series f(z) =
∑∞

n=0 anz
n defining an analytic function f in D = {z ∈ C :

|z| < 1}.
One can also obtain the extension from f̃ to f by convolving it with the

Poisson kernel Kr, namely

f(reit) =
1

2π

∫
[0,2π]

Kr,t(ta − t)f̃(eit)dt

where Kr,t(ta − t) is Poisson kernel from (2.1).
The case p = 2 is simpler since for a function f : z �→

∑∞
n=0 anz

n we have

‖f‖2 =

( ∞∑
n=0

|an|2
)1/2

.

We have the following inclusions:

H∞ ⊂ Hp ⊂ Hq ⊂ H1,

for 1 < q ≤ p <∞.

2.2. Takenaka–Malmquist system as non-linear Fourier atoms

The Takenaka–Malmquist (TM) system belongs to the families of unit analytic
signals with nonlinear phase and is closely linked to non-linear Fourier atoms.

Given a sequence (ak)
∞
k=1 of points in D we associate with it the modified

Blaschke products B1, B2, . . . , defined by

Bn(z) =

√
1− |an|2
1− ānz

ϕn(z) and B−n(z) = Bn (1/z̄),

for n = 0, 1, 2, . . .. Hereby the finite Blaschke product is given by

ϕp(z) =

p−1∏
k=0

z − ak
1− ākz

, (2.3)

where ak ∈ D for all k ≥ 0. Although the usual orthonormal Fourier atoms
{einω, n ∈ Z} form an orthogonal basis in L2(T) in general the nonlinear Fourier
atoms {einθ(t), n ∈ Z} are not orthogonal. The Gram–Schmidt orthonormalization
process leads to the TM basis {Bn : n ≥ 0} which is known to be complete and
orthogonal in H2(D) and to the basis {Bn : n ∈ Z} which forms an orthogonal
basis in L2(T) if and only if it satisfies the condition

∞∑
n=1

(1− |an|) =∞. (2.4)

Condition (2.4) implies that the parameters ak in (2.3) converge to 0. We
recall that if ak = 0 we obtain the classical Fourier basis as a usual case (see, for
instance, [8]).
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The inner product of two complex functions g1 and g2 in T is defined as

〈g1, g2〉 =
1

2πi

∫
T

g1(z)g2(z)
dz

z
. (2.5)

Alternatively from (2.5) the inner product can be written as

〈g1, g2〉 =
1

2π

∫ 2π

0

g1(eix)g2(e
ix)dx

and the induced norm will be denoted by ‖ · ‖2.
To give some examples when an = b (n ∈ N0), we have Bn = Lb

n (n ∈ N0)
forming the discrete Laguerre system, and in case of a2k−1 = a, a2k = b (k ∈ N0)
we get {Bn, n ∈ N0} as the Kautz system investigated in [3].

3. Sparse sampling in Takenaka–Malmquist system

Since we want to follow the approach of Rauhut [30] we have to look at his setting
with trigonometric polynomials being replaced by atoms of the form

Ban(x) =

√
1− |an|2

1− aneix

n−1∏
k=0

eix − ak
1− akeix

,

where an ∈ C is such that |an| < 1. These atoms are star-like functions, con-
vex with positive phase derivative on the boundary and they are linked to TM
systems insofar as they represent elements of the orthogonal basis generated by
(a0, a1, . . . , an, . . .). Hereby, we denote by

∏
d the space spanned by at most d of

its elements. In other words an element f ∈
∏

d is of the form

f(x) =
d∑

n=1

cn

√
1− |an|2

1− aneix

n−1∏
k=0

eix − ak
1− akeix

, x ∈ [0, 2π], |ak| < 1, cn ∈ C. (3.1)

We assume that the sequence of coefficients c = (ck) is supported on a set T
which is much smaller than the dimension of

∏
d, that is to say, the finite com-

bination in (3.1) is sparse. However, a priori nothing is known about T apart
from its maximum size. Thus, it is useful to introduce the set (not a linear space)∏

d(M) ⊂
∏

d of all polynomials of type (3.1) such that their sequence of coef-
ficients c = (cn) have support on a set T ⊂ {1, . . . , d} satisfying |T | ≤ M , i.e.,
f ∈

∏
d(M) is of the form

f(x) =
∑
n∈T

cn

√
1− |an|2

1− aneix

n−1∏
k=0

eix − ak
1− akeix

.

Again, the objective is, given a sampling set X := {x1, x2, . . . , xN} of inde-
pendent random variables having uniform distribution on [0, 2π], to reconstruct
f ∈

∏
d(M) from the samples f(xj) at those N randomly chosen points.
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3.1. Description of the main results

In this paper we will prove the following theorems.

Theorem 3.1. Assume f ∈
∏

q(M) with some sparsity M ∈ N. Let x1, x2, . . . , xN ∈
[0, 2π] be independent random variables having the uniform distribution on [0, 2π].
Choose n ∈ N, β > 0, κ > 0 and K1, . . . ,Kn ∈ N such that

a :=

n∑
m=1

βn/Km < 1 and
κ

1− κ
≤ 1− a

1 + a
M−3/2. (3.2)

Set θ := (NK) /M . Then with probability at least

1−
(
Cd

[
dβ−2n

n∑
m=1

G2mKm(θ) + κ−2K2n M N2nG2n(θ)

])
, (3.3)

where d := dim(
∏

d), Gn(θ) = θ−n
∑	n

2 

k=1 S2(n, k)θ

k, and S2(n, k) denote the Stir-
ling numbers of the second kind, f can be reconstructed exactly from its sample
values f(x1), . . . , f(xN ) by solving the minimization problem

min ‖(cn)‖1 :=

d∑
n=1

|cn|,

s .a. f(xj) :=

d∑
n=1

cn

√
1− |an|2

1− aneixj

n−1∏
k=0

eixj − ak
1− akeixj

, j = 1, . . . , N. (3.4)

For a given n it is reasonable to take Km ≈ m/n, m = 1, . . . , n, rounding
m/n to the nearest integer. Then we can choose β quite close to the maximal value
such that a =

∑n
m=1 β

n/Km < 1. By our choice of Km we approximately have
n∑

m=1

βn/Km ≈
n∑

m=1

βm ≈ β

1− β
.

Thus, the optimal β will always be close to 1/2.
Although we are not going to prove them in this paper the following theo-

rems can be easily obtained by adapting the proof of the previous theorem. Their
proofs are straightforward adaptation of the corresponding proofs in [30] with the
necessary modifications coming from the proof of Theorem 3.1. For more details
we refer to the thesis [20]. To make it more clear the principal difficulty resides
in the proof of Theorem 3.1 since the adaptations for the proofs of the other two
theorems do not depend on the actual choice of the system, i.e., the proof of the
first theorem provides the necessary basis for the proof of the other two theorems
without the need for further modifications.

Theorem 3.2. There exists an absolute constant C > 0 such that the following is
true. Assume f ∈

∏
d(M) for some sparsity M ∈ N. Let x1, x2, . . . , xN ∈ [0, 2π]

be independent random variables having the uniform distribution on [0, 2π]. If for
some ε > 0 it holds

N ≥ CM log(dε) (3.5)
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then with probability at least 1− ε the function f can be recovered from its sample
values f(xj), j = 1, . . . , N , by solving the �1-minimization problem (3.4).

Theorem 3.3. Let x1, x2, . . . , xN ∈ [0, 2π] be independent random variables having
the uniform distribution on [0, 2π]. Further assume that T is a random subset of
[0, 2π] modeled by

a :=

n∑
m=1

βn/Km < 1 and
k

1− k
≤ 1− a

1 + a
((α+ 1)E|T |)−3/2. (3.6)

Then with probability at least

1−
(
κ−2W (n,N,E|T |,d)+β−2nd

n∑
m=1

Z(Km,m,N,E|T |,d)+exp

(
− 3α2

6+2α
E|T |

))
(3.7)

any f ∈
∏

T ⊂
∏

q(|T |) can be reconstructed exactly from its sample values

f(x1), . . . , f(xN ) by solving the minimization problem (3.4).

3.2. Proof of the main result

To prove our theorem we have to introduce some auxiliary notations: �2(D), �2(T ),
�2(X) will denote the �2-spaces of sequences indexed by D = {1, 2, . . . , d}, T ,
and X , respectively, all endowed with the usual Euclidean norm. Moreover, we
introduce the operator FX : �2(D)→ �2(X) given as

FX :=

[√
1− |an|2

1− aneixj

n−1∏
k=0

eixj − ak
1− akeixj

]
j=1,...,N, n=1,...,d

.

We recall that |ak| < 1, for all k = 1, . . . , d.
By FTX we represent the restriction of FX to sequences supported only on T,

thus, an operator acting from �2(T ) in �2(X). Furthermore, the adjoint operators
are given by F∗

X : �2(X)→ �2(D) and F∗
TX : �2(X)→ �2(T ).

Our problem is to reconstructing a sequence c ∈ �2(D) from β = FXc ∈ �2(X)
by solving the problem min ‖c‖1 subject to FXc = β. Obviously, if k /∈ supp c then
sgn(c)k = 0 while |sgn(c)k| = 1 for all k ∈ supp c.

Our proof is based on the following lemma (see also [30] and [11]).

Lemma 3.4. Let c ∈ �2(D) and T := supp c. Assume FTX : �2(T ) → �2(X)
to be injective. Suppose that there exists a vector P ∈ �2(D) with the following
properties:

(i) Pk = sgn (c) for all k ∈ T,
(ii) |Pk| < 1 for all k /∈ T ,
(iii) there exists a vector λ ∈ �2(X) such that P = F∗

Xλ.

Then c is the unique minimizer to problem (3.4).

Proof. Let us assume X �= ∅ and c �= 0 to exclude the trivial cases. Furthermore,
let us suppose that the vector P exists. Let b be any vector different to c with
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FXb = FXc. Consider h := b − c, then FXq vanishes on X. This means that for
bk, k ∈ T , we have the following estimate

|bk| = |ck + dk| = |(ck + hk)sgn ck sgn ck|
= | (ck sgn ck + hk sgn ck) sgnck| = | |ck|+ hk sgn ck||sgnck|
= | |ck|+ hk sgn ck| ≥ |ck|+Re (hk sgn ck) = |ck|+Re

(
hk Pk

)
.

Thus, for any k ∈ T we have |ck| + Re
(
hk Pk

)
≤ |bk|. Otherwise, for k �∈ T we

have Re
(
hk Pk

)
≤ |hk| = |hk| since |Pk| < 1. Thus

‖b‖�1 ≥ ‖c‖�1 +
∑

k∈[−q,q]∩Z

Re
(
hk Pk

)
.

Now, from condition (iii) we can conclude

∑
k∈[−q,q]∩Z

Re
(
hk Pk

)
= Re

⎛⎝ ∑
k∈[−q,q]∩Z

hk (F∗
Xλ)k

⎞⎠
= Re

(
N∑
i=1

(FX h) (xi)λ(xi)

)
= 0

whereas FX h vanishes. Thus, ‖b‖�1 ≥ ‖c‖�1. The equality holds when ‖hk‖ =
Re

(
hk Pk

)
for all k �∈ T. Since ‖Pk‖ < 1, this forces h to vanish outside of T.

Taking in account the injectivity of FTX we have that since FXh vanishes on X ,
h vanishes identically and we have b = c. Thus, this shows that c is the unique
minimizer to the problem (3.4). �

Before we can start our proof we need an additional lemma about the max-
imum of the Blaschke product. Let us point out that the usual estimates on the
maximum of a Blaschke product which can be found in the literature are not good
enough in this context since we want to estimate a probability.

Lemma 3.5. Let be ε > 0 and an, z ∈ C such that an = α + iβ and z = x + iy,
n = 1, . . . , d. If |an| < 1, |z| = 1, and either | ± 1− an| = ε or | ± i− an| = ε then
the set of functions

fan(z) =
1− |an|2

|1− anz|2
, (3.8)

has a uniform maximum which can be estimated by

maxan∈D

(
maxzA∈T

1− |an|2

|1− anz|2

)
≤ 2

ε
− 1.

Since this proof consists of lengthy, but straightforward calculations we refer
to [20].

For the proof of our main theorem we have to remark that if N ≥ |T | then
FTX is injective almost surely. This means that we need to show now that with
high probability there exists a vector P with the properties assumed in Lemma 3.4.
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To do this we introduce the restriction operator RT : �2(D) → �2(T ) given by
RT ck = ck for k ∈ T and its adjoint R∗

T = ET : �2(T ) → �2(D) which is the
operator that extends a vector outside T by zero, i.e., (ET d)k = dk for k ∈ T and
(ET d)k = 0 otherwise.

Now assume for the moment that F∗
TXFTX : �2(T )→ �2(T ) is invertible. In

this case we can construct P explicitly by

P := F∗
XFTX(F∗

TXFTX)−1RT sgn(c),

where as before T := suppc. Then clearly P has property (i) and property (iii) in
Lemma 3.4 with

λ := FTX(F∗
TXFTX)−1RT sgn(c) ∈ �2(X).

We are left with proving that P has property (ii) of Lemma 3.4 with high
probability.

To this end we follow [30] and introduce the auxiliary operators

H : �2(T )→ �2(D), H := DET −F∗
XFTX

and

H0 : �2(T )→ �2(T ), H0 := RTH = DIT −F∗
TXFTX ,

where IT denotes the identity on l2(T ) and the diagonal matrix D has entries

Dmm =

N∑
j=1

√
1− |am|2

1− ame−ixj

m−1∏
�=0

e−ixj − a�
1− a�e−ixj

√
1− |am|2

1− ameixj

m−1∏
�=0

eixj − a�
1− a�eixj

.

Obviously, H0 is self-adjoint, and H = [hmn], where

hmn := Dmnδmn −
N∑
j=1

√
1− |am|2

1− ame−ixj

m−1∏
�=0

e−ixj − a�
1− a�e−ixj

√
1− |an|2

1− aneixj

n−1∏
k=0

eixj − ak
1− akeixj

,

(3.9)
acts on a vector as

(Hc)m = −
d∑

n=1,
n�=m

N∑
j=1

√
1− |am|2

1− ame−ixj

m−1∏
�=0

e−ixj − a�
1− a�e−ixj

√
1− |an|2

1− aneixj

n−1∏
k=0

eixj − ak
1− akeixj

cn.

(3.10)

Now we can write

P = (DET −H)(DIT −H0)
−1RT sgn(c).

As we are interested in property (ii) in Lemma 3.4 we consider only values of P
on T c = D \ T. Since RT cET = 0 we have

Pk = −D−1RT cH

(
IT −D−1H0

)−1

RT sgn(c) for all k ∈ T c.
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We can study the term
(
IT −D−1H0

)−1
via the von Neumann series (see,

for instance, [22]) of
(
IT − (D−1H0)

n
)−1

= IT +An with

An :=

∞∑
r=1

(
D−1H0

)rn
, n ∈ N. (3.11)

Here, we get

(
IT − (D−1H0)

)−1
= (IT +An)

n−1∑
m=0

(
D−1H0

)m
.

Therefore, we can write on the complement of T

RT cP = H(IT +An)

( n−1∑
m=0

(
D−1H0

)m)
D−1RT sgn(c) = −

(
P (1) + P (2)

)
,

where

P (1) = DSnD
−1sgn(c) and P (2) = HAnRT (I + Sn−1)D

−1sgn(c),

with Sn :=

n−1∑
m=0

(
D−1HRT

)m
.

Since our goal is to estimate P(supk∈T c |Pk| ≥ 1) we consider a1, a2 > 0 to be
numbers satisfying a1 + a2 = 1 and we have

P
(
supk∈T c |Pk| ≥ 1

)
≤ P

({
supk∈T c |P (1)

k | ≥ a1
}
∪
{
supk∈T c |P (2)

k | ≥ a2
})

. (3.12)

This leads to the estimates

P
(
|P (1)

k | ≥ a1
)
= P

(∣∣(DSnD
−1sgn(c)

)
k

∣∣ ≥ a1
)

≤ P(Ek) := P

( n∑
m=1

|(D(D−1HRT )
mD−1sgn(c))k| ≥ a1

)
.

and

supk∈T c |P (2)
k | ≤ ‖P (2)‖∞ (3.13)

≤ ‖HAnD
−1‖�∞(T )→�∞(D)

(
1 + ‖RTDSn−1D

−1sgn(c)‖�∞(T )

)
where �∞(D) denotes the space of bounded sequences indexed by D.

For the term ‖RTDSn−1D
−1sgn(c)‖�∞(T ) similarly as in (3.13) we get

P
(
|(DSn−1D

−1sgn(c))k| ≥ a1
)
≤ P(Ek)

= P

( n∑
m=1

|(D(D−1HRT )
mD−1sgn(c))k| ≥ a1

)

= P

( n∑
m=1

|((HD−1RT )
mD−1sgn(c))k| ≥ a1

)
.
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Now, we know as well that∥∥HAnD
−1
∥∥
∞ ≤

∥∥HD−1DAnD
−1
∥∥
∞ ≤

∥∥HD−1
∥∥
∞
∥∥DAnD

−1
∥∥
∞ . (3.14)

with DAnD
−1 =

∞∑
r=1

D
(
D−1H0

)rn
D−1.

For the estimation of the term
∥∥DAnD

−1
∥∥
∞ we can use the Frobenius norm

‖A‖2F = Tr(AA∗). Note that the trace of a product of a matrix with a diagonal ma-
trix D with same dimension is commutative, i.e., Tr(AD) = Tr(DA). Therefore,

in our case
∥∥DAnD

−1
∥∥2
F
= Tr(AnA

∗
n). Thus, for now, we suppose that∥∥∥D (

D−1H0

)n
D−1

∥∥∥
F
≤ κ < 1. (3.15)

From the definition (3.11) of An, it follows that∥∥DAnD
−1
∥∥
F
=

∥∥∥∥∥D
∞∑
r=1

(
D−1H0

)rn

D−1

∥∥∥∥∥
F

≤
∞∑
r=1

∥∥D(D−1H0)
nD−1

∥∥r
F

≤
∞∑
r=1

κr =
κ

1− κ
. (3.16)

For the term
∥∥HD−1

∥∥
∞, we have to remind us that the matrix H is given by

H = [h�k] := D�k −
N∑
j=1

√
1− |a�|2

1− a�e−ixj

�−1∏
s=0

eixj − as
1− aseixj

√
1− |ak|2

1− akeixj

k−1∏
m=0

e−ixj − am
1− ame−ixj

,

such that by (3.9) and

∣∣∣∣ �−1∏
s=0

eix − as
1− aseix

∣∣∣∣ = 1 and

∣∣∣∣ k−1∏
m=0

e−ix − am
1− ame−ix

∣∣∣∣ = 1 we obtain

∥∥HD−1
∥∥
∞ ≤ sup�

∑
� �=k∈T

N∑
j=1

∣∣∣∣∣
√
1− |a�|2

1− a�ei·xj

∣∣∣∣∣
∣∣∣∣∣
√
1− |ak|2

1− ake−i·xj

∣∣∣∣∣ ∣∣D−1
kk

∣∣ . (3.17)

Using the estimate from Lemma 3.5 in the last expression, we can further estimate

sup�
∑

� �=k∈T

N∑
j=1

√
2

ε
− 1

√
2

ε
− 1

∣∣D−1
kk

∣∣ ≤ sup�
∑

� �=k∈T

N

(
2

ε
− 1

) ∣∣D−1
kk

∣∣
= N

(
2

ε
− 1

)
sup�

∑
� �=k∈T

∣∣D−1
kk

∣∣ ≤ N
2

ε
sup�

∑
� �=k∈T

∣∣D−1
kk

∣∣ .
We recall that

|Dkk| =
N∑
j=1

1− |a�|2

|1− a�ei·xj |2
≥ N ·minj

1− |a�|2

|1− a�ei·xj |2
≥ N

1− |a�|2
(1 + |a�|)2

= N
1− |a�|
1 + |a�|

≥ N
ε

2
. (3.18)
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Then, taking into account (3.18) expression (3.17) be further simplified to

sup�
∑

� �=k∈T

N∑
j=1

∣∣∣∣∣
√
1− |a�|2

1− a�ei·xj

∣∣∣∣∣
∣∣∣∣∣
√
1− |ak|2

1− ake−i·xj

∣∣∣∣∣ ∣∣D−1
kk

∣∣ ≤ N
2

ε
sup�

∑
� �=k∈T

∣∣D−1
kk

∣∣
Nε

2

2

Nε
(|T | − 1) ≤ |T |. (3.19)

Now, from (3.14), (3.16) and (3.19), we get the estimate∥∥HAnD
−1
∥∥
∞ ≤

∥∥HD−1DAnD
−1
∥∥
∞ ≤

∥∥HD−1
∥∥
∞
∥∥DAnD

−1
∥∥
∞

≤ |T | κ

1− κ
. (3.20)

Thus, from (3.15) and ‖Sn−1sgn(c)‖∞ < a1 it follows

supk∈T c |P (2)
k | ≤ (1 + a1)

κ

1− κ
|T |

3
2 . (3.21)

Therefore, taking into account the estimate (3.18) from (3.21) and if
κ

1− κ
≤ a2

1 + a1
|T |−

3
2 (3.22)

then supk∈T c |P (2)
k | ≥ a2 as intended.

Also it follows from (3.22) that κ < 1 and |T | ≥ 1 (note that if T = ∅ then
c = 0) and �1-minimization will clearly recover f . Furthermore, we have

P
(
supk∈T c |Pk| ≥ 1

)
≤

∑
k∈D

P(Ek) + P
( ∥∥(D−1H0)

n
∥∥
F
≥ κ

)
. (3.23)

Thus, we need to estimate P(Ek) and P
( ∥∥(D−1H0)

n
∥∥
F
≥ κ

)
.

3.3. Analysis of powers of G0

Our above considerations mean that we need to estimate the powers of the random
matrix G0 = D−1H0 in Frobenius norm. In fact we will need the expectation value
EX of it to estimate the probability.

Lemma 3.6. It holds

EX [‖Gn
0‖

2
F ] ≤

min{n,N}∑
t=1

N !

(N − t)!

∑
A∈P (2n,t)

Cd C(A, T ),

with

Cd :=

(
2n∏
s=1

N∑
ls=1

∣∣Bks(e
ixls )

∣∣2)−1

(3.24)

and

C(A, T ) :=
∑

k1,k2,...,k2n∈T,kr �=kr+1

∏
A∈A

(
2

ε
− 1

)t

(3.25)

for a small ε defined as in Lemma 3.5.
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Proof. As first step we have to remark that it will be a quite hard problem to
calculate the expectation value with respect to a Blaschke product and, therefore,
we are more interested to get an estimate.

Let us start by taking a closer look at the self-adjoint matrix G0. We need
to estimate ‖Gn

0‖
2
F = Tr(G2n

0 ). Since we have

FX :=
[
Bk(e

ixj )
]
j=1,...,N,k=1,...,d

(3.26)

=

[√
1− |ak|2

1− akeixj

k−1∏
t=0

eixj − at
1− ateixj

]
j=1,...,N,k=1,...,d

,

we know that the diagonal matrix D and its inverse D−1 are given by

D :=

⎡⎣ N∑
j=1

∣∣Bk(e
ixj )

∣∣2 δk�
⎤⎦
k,�∈T

, D−1 :=

⎡⎣ N∑
j=1

∣∣Bk(e
ixj )

∣∣2 δk�
⎤⎦−1

k,�∈T

,

and, additionally, we have the matrix H0 given by

H0 :=

⎡⎣(1− δlk)

N∑
j=1

Bl(eixj )Bk(e
ixj )

⎤⎦
k,l∈T

.

Consider now the entry (l, k) of the matrix G0 = D−1H0. Here we get

G0(l, k) := (D−1H0)lk = (1− δlk)
Bl • Bk

‖Bl‖2
, (3.27)

where we used the discrete scalar product

Bl • Bk =

N∑
j=1

Bl(eixj )Bk(e
ixj )

and the norm

‖Bk‖2 =

N∑
j=1

∣∣Bk(e
ixj )

∣∣2 .
We aim to estimate the square of Frobenius norm of (3.27), i.e.,∥∥∥(D−1H0

)n∥∥∥2
F
= Tr

[(
D−1H0

)2n]
= Tr

[
G2n

0

]
.

We need to calculate G2n
0 (k1, k1). From now on, and in order to simplify

the notation, we always assume kj �= kj+1 without explicitly mentioning it. The
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general form of G2n
0 (k1, k1) is given by

G2n
0 (k1, k1) =

∑
k2,...,k2n∈T

G0(k1, k2)G0(k2, k3) · · ·G0(k2n, k1)

=
∑

k2,...,k2n∈T

2n∏
r=1

G0(kr, kr+1).

In a more detailed form we have

G2n
0 (k1, k1) =

∑
k2,...,k2n∈T

Bk1 • Bk2

‖Bk1‖
2

Bk2 • Bk3

‖Bk2‖
2 · · · Bk2n • Bk1

‖Bk2n‖
2

=
∑

k2,...,k2n∈T

N∑
j1,...,j2n=1

Bk1(e
ixj1 )Bk2(e

ixj1 )∑N
l1=1

∣∣Bk1(e
ixl1 )

∣∣2 Bk2(e
ixj2 )Bk3(e

ixj2 )∑N
l2=1

∣∣Bk2(e
ixl2 )

∣∣2 · · ·
· · · Bk2n(e

ixj2n )Bk1(e
ixj2n )∑N

l2n=1

∣∣Bk2n(e
ixl2n )

∣∣2 .

As in [30] we have to switch to partitions A since some indices ir might be the same
which means that we cannot use directly the product rule for the expectation value
since it is only valid for independent random variables. We associate a partition
A = (A1, A2, . . . , At) of {1, . . . , 2n} to a certain vector i1, . . . , i2n such that ir = ir′

if and only if r and r′ are contained in the same set Ai ∈ A. This is allows us to
unambiguously write iA instead of ir if r ∈ A. Furthermore, if A ∈ A contains
only a pair of elements Batr

(zA)Batr+1
(zA) then the term will vanish due to the

condition kr �= kr+1. Thus, we only need to consider partitions A satisfying |A| ≥ 2
for all A ∈ A, i.e., partitions in P (2n, t) with t > 1. Additionally, we need to
remember that the number of vectors (�A1 , . . . , �At) ∈ {1, . . . , N}t with different
entries is exactly N · · · (N − t + 1) = N !/(N − t)! if N ≥ t and 0 if N ≤ t. Thus,
we obtain the expectation value of the trace of the matrix

EX

[
Tr

(
G2n

0

)]
=

∑
k1,k2,...,k2n∈T

N∑
j1,...,j2n=1

∏
A∈A

(
2n∏
s=1

N∑
ls=1

∣∣Bks(e
ixls )

∣∣2)−1

× EX

[∏
r∈A

Bkr(e
ixjA )Bkr+1(e

ixjA )

]
. (3.28)

This description is possible since the terms
∑N

ls=1

∣∣Bks(e
ixls )

∣∣2 are actually fixed

constants. The complete calculation of (3.28) can be found in the appendix.

Since xjA has uniform distribution on [0, 2π] from (3.28) we have to look for
the expectation value

EX

[∏
r∈A

Bkr (e
ixjA )Bkr+1(e

ixjA )

]
.
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For |A| = 2, (note that kr �= kr+1, ks �= ks+1 and kr = ks+1) we obtain

EX

[
Bkr (e

ixjA )Bkr+1(e
ixjA )Bks(e

ixjA )Bks+1(e
ixjA )

]
= EX

[
|Bkr (e

ixjA )|2Bkr+1(e
ixjA )Bks(e

ixjA )
]

=
1

2πi

∫
|zA|=1

1− |akr |2
|1− akrzA|2

√
1− |akr+1 |2

1− akr+1zA

kr+1−1∏
s=0

zA − as
1− aszA

×
√
1− |aks |2

1− akszA

ks−1∏
u=0

zA − au
1− auzA

√
1− |aks+1 |2

1− aks+1zA

ks+1−1∏
n=0

zA − an
1− anzA

dzA
zA

. (3.29)

On the one hand, if ks = kr+1 from expression (3.29) we obtain

EX

[
|Bkr (e

ixjA )|2|Bks(e
ixjA )|2

]
=

1

2πi

∫
|zA|=1

1− |akr |2
|1− akrzA|2

1− |akr |2
|1− akrzA|2

dzA
zA

=
1− |akr |2
1− akraks

aks

aks − akr

+
1− |aks |2
1− aksakr

akr

akr − aks

.

To estimate the last value we will consider the estimate by Lemma 3.5 and
introduce the quantities ε2 = |ar − as| and ε1 keeping in mind that |a| < 1.
Thereby, we get

1− |akr |2
1− akraks

aks

aks − akr

+
1− |aks |2
1− aksakr

akr

akr − aks

≤
√

2

ε1
− 1
|a1|
ε2

+

√
2

ε1
− 1
|a2|
ε2
≤ 2

√
2

ε1
− 1

1

ε2
=

2

ε2

√
2

ε1
− 1.

On the other hand, if ks �= kr+1 from expression (3.29) we obtain

EX

[∣∣Bkr(e
ixjA )

∣∣2 Bkr+1(e
ixjA )Bks(e

ixjA )
]

=
1

2π

∫
|zA|=1

1− |akr |2

|1− akrzA|
2

√
1− |akr+1 |2

1− akr+1zA

×
kr+1−1∏
t=0

zA − at
1− atzA

√
1− |aks |2

1− akszA

ks−1∏
u=0

zA − au
1− auzA

dzA
zA

=
1

2π

∫
|zA|=1

1− |akr |2
1− akrzA

zA
zA − akr

√
1− |akr+1 |2
zA − akr+1

×
kr+1−1∏
t=0

zA − at
1− atzA

√
1− |aks |2

1− akszA

ks−1∏
u=0

zA − au
1− auzA

dzA. (3.30)
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From the last expression by assuming ks > kr+1 we get

EX

[
|Bkr(e

ixjA )|2|Bks(e
ixjA )|2

]
=

1

2π

∫
|zA|=1

1− |akr |2
1− akrzA

zA
zA − akr

√
1− |akr+1 |2
zA − akr+1

√
1− |aks |2

1− akszA

ks−1∏
u=kr+1

zA − au
1− auzA

dzA

= akr

√
1− |akr+1 |2

1− akr+1akr

√
1− |aks |2

1− aksakr

ks−1∏
u=kr+1+1

akr − au
1− auakr

. (3.31)

We can estimate the absolute value of the last result in (3.31) as

|akr |

∣∣∣∣∣∣
√
1− |akr+1 |2

1− akr+1akr

√
1− |aks |2

1− aksakr

ks−1∏
u=kr+1+1

akr − au
1− auakr

∣∣∣∣∣∣
≤
√

1− |akr+1 |2∣∣1− akr+1akr

∣∣2
√

1− |aks |2

|1− aksakr |
2

ks−1∏
u=kr+1+1

∣∣∣∣ akr − au
1− auakr

∣∣∣∣ ≤ 2

ε
− 1,

such that

|akr | < 1 and d(akr , au) =

∣∣∣∣ akr − au
1− auakr

∣∣∣∣ < 1,

where d(akr , au) is called pseudo-hyperbolic distance between au and akr .
Note that if ks < kr+1, we obtain basically the same result. For |A| = n, we

shall obtain in the same way

E

[
n∏

s=1

Bkrs
(eixjs )Bkrs+1(e

ixjs )

]
≤
(
2

ε
− 1

)n−1

.

Before we show this we are going to give two remarks. First of all we can
easily check that if the components are all different, i.e.,

E

[
n∏

s=1

Bkrs
(eixjs )Bkrs+1(e

ixjs )

]
with krs �=krt when s �= t we get zero as the result. Furthermore, it is also easy to see

that the highest value in the estimates happen when the pair Bkr(e
ixjA )Bks(e

ixjA )
repeats itself n times with rs �= rs + 1.

This means that, although keeping r �= t, the main problem is to estimate
the values of the integral for the expectation value

EX

[(
Bar(xsA )Bat(xsA)

)n]
=

1

2π

∫
|zA|=1

(
Bar(xsA )Bat(xsA )

)n dz

izA
(3.32)

which leads to

EX

[(
Bar(xsA )Bat(xsA )

)n]
=

1

2π

∫
|zA|=1

(√
1− |ar|2

1− arzA

√
1− |at|2

1− atzA

)n
dzA
izA

, with r �= t.
(3.33)
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Let us start our estimate as follows∣∣∣∣∣ 12π
∫
|z|=1

(√
1− |ar|2
1− arz

√
1− |at|2
1− atz

)n
dz

iz

∣∣∣∣∣
≤ 1

|2πi|

∫
|z|=1

∣∣∣∣∣
√

1− |ar|2

|1− arz|2

√
1− |at|2

|1− atz|2

∣∣∣∣∣
n

|dz|.

≤
(
maxan∈Dmaxz∈T

1− |an|2

|1− anz|2

)n

≤
(
2

ε
− 1

)n

.

From this using Lemma 3.5 we get

C(A, T ) :=
∑

r1,r2,...,r2n∈T,rj �=rj+1

∏
A∈A

(
2

ε
− 1

)|A|
=

∏
A∈A

(
2

ε
− 1

)|A|
T 2n−|A|+1

= K ×#

{
(r1, r2, . . . , r2n) ∈ T 2n : rj �= rj+1

∧
∑
r∈A

∫
|zA|=1

2n∏
r=1

Bar(zA)Bar+1(zA)
dzA
izA

�= 0, ∀A ∈ A
}
, (3.34)

where

K :=
∏
A∈A

(
2

ε
− 1

)|A|
. (3.35)

Let us remark that in the above considerations everything depends on the
result of the integral ∫

|zA|=1

2n∏
r=1

Bar(zA)Bar+1(zA)
dzA
izA

(3.36)

for A ∈ P (2n, t). Here, the indices (t1, t2, . . . , t2n) ∈ T 2n are subjected to the |A| =
t constraints where the above integral is different of zero. This also is the principal
point if one wants to extend the proof to more general cases like frames. �

3.4. Analysis of P(Ek)

We have to study the term P(Ek) in (3.23). In the usual manner, let βm = βn/Km ,
m = 1, . . . , n be positive numbers satisfying

n∑
m=1

βm = a1
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and Km ∈ N, m = 1, . . . , n, some natural numbers. For k ∈ D as before we have

P(Ek) = P

( n∑
m=1

∣∣((D−1HRT

)m
sgn(c)

)
k

∣∣ ≥ a1

)

=

n∑
m=1

P
( ∣∣((D−1HRT )

msgn(c)
)
k

∣∣2Km
β−2Km
m ≥ 1

)
(3.37)

≤
n∑

m=1

E[
∣∣((D−1HRT )

msgn(c)
)
k

∣∣2Km
]β−2Km

m , (3.38)

where we now have β−2Km
m = β−2n for all m. We remark that (3.37) and (3.38)

are obtained from (even when the expectation is infinite) E(X) =
∑∞

i=1 P(X ≥ i).
Thus, we obtain

P(Ek) ≤ β−2n
n∑

m=1

E[
∣∣((D−1HRT )

msgn(c)
)
k

∣∣2Km
] (3.39)

and the condition a1 =

n∑
m=1

βm reads as

a1 = a =

n∑
m=1

βn/Km < 1.

The above consideration means that we have to study the expectation value
appearing in (3.39). The following proof is similar to the one of Lemma 3.6.

Lemma 3.7. For k ∈ D and c ∈ �2(D) with supp c = T we have

E

[∣∣∣((D−1HRT

)m
sgn c

)
k

∣∣∣2K] ≤ min{Km,N}∑
t=1

N !

(N − t)!

∑
A∈P (2Km,t)

Cd × B(A, T ).

Hereby, we identify partitions of [2Km] in P (2Km, t) with partitions of [2K]× [m]
with fixed kr and kr+1 such that kr �= kr+1,

Cd =

(
2K∏
q=1

m∏
s=1

N∑
ls=1

∣∣∣Bk
(q)
s
(eix

(q)
ls )

∣∣∣2)−1

,

and

B(A, T ) =
∑

k
(1)
1 ,k

(1)
2 ,...,k(1)

m ∈T
...

k
(2K)
1 ,k

(2K)
2 ,...,k(2K)

m ∈T

k
(p)
j �=k

(p)
j+1 j∈[m]

∏
A∈A

(
2

ε
− 1

)t

for a small ε defined as in Lemma 3.5.

For the proof of this lemma, we reefer to the appendix.
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Now the objective is to complete the proof of Theorem 3.1 by joining all
the established facts. Consider the absolute value of the quantity C(A, T ) defined
in (3.25) for A ∈ P (2n, t). Here the indices (k1, . . . , k2n) ∈ T 2n are subjected to the
|A| = t linear constraints (3.36) for all A ∈ A. These constraints are independent
except when the sum of the integrals is zero. Thus, from (3.34) and (3.35) we can
estimate

|C(A, T )| ≤ Kt |T |2n−t+1 ≤ KtM2n−t+1. (3.40)

By Lemma 3.6 we obtain

E
[∥∥D−1Hn

0

∥∥2
F

]
≤ Cd

min{n,N}∑
t=1

N !

(N − t)!

∑
A∈P (2n,t)

Kt |T |2n−t+1

≤ CdM2n+1
n∑

t=1

(
NK
M

)t

S2(2n, t),

where S2(n, t) = |P (2n, t)| are the associated Stirling numbers of the second kind.

Set θ = NK
M . Markov’s inequality now yields

P
(∥∥∥(D−1H0

)n∥∥∥
F
≥ κ

)
= P

(∥∥∥(D−1H0

)n∥∥∥2
F
≥ κ2

)
≤ κ−2 E

[∥∥∥(D−1H0

)n∥∥∥2
F

]
≤ κ−2 CdK2n M N2nG2n(θ).

Let us note that from (3.15) we have κ < 1. So, we have
∥∥D (

D−1H0

)n
D−1

∥∥
F
≤ κ

which implies
(
IT −

(
D−1H0

)n)
is invertible by a von Neumann series. In the same

way, F∗
TXFTX = DT

(
IT −D−1H0

)
is invertible. Hence, also FTX is injective.

Let us now consider P (Ek). By Lemma 3.7 we need to bound B(A, T ) defined
in (A.2), i.e., the number of vectors (k

(p)
j ) ∈ T 2Km satisfying k

(p)
j = k

(p)
j+1 for all

A ∈ A with A ∈ P (2Km, t). These are t independent linear constraints. Therefore,
the number of these indices is bounded from above by |T |2Km−t ≤M2Km−t. Thus,
in same way, by taking θ = NK

M , we obtain

EX

[∣∣∣((D−1HRT

)m
sgn c

)
k

∣∣∣2K] ≤ Cd Km∑
t=1

(NK)t S2(2Km, t)M2Km−t.

Let us consider P(failure) as the probability that the exact reconstruction of
f by �1-minimization fails.

By Lemma 3.4 and (3.23) we again obtain

P(failure) ≤ P ({FTX is not injective} ∪ {supk∈T c |Pk| ≥ 1})

≤ Cd
∑
k∈D

P(Ek) + P
(∥∥∥(D−1H0

)n∥∥∥ ≥ k
)
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≤ Cd dβ−2n
n∑

m=1

G2mKm(θ) + κ−2 CdK2n M N2nG2n(θ)

= Cd
[
dβ−2n

n∑
m=1

G2mKm(θ) + κ−2K2n M N2nG2n(θ)

]
under the conditions

a1 = a =
n∑

m=1

βn/Km < 1, a2 + a1 = 1, i.e., a2 = 1− a,

κ

1− κ
≤ a2

1 + a1
M−3/2 =

1− a

1 + a
M−3/2.

4. Applications

The main goal of this section is to present some numerical experiments using
Takenaka–Malmquist systems. Since their main field of application is in the study
of transfer functions in systems identification we choose some examples of such
functions. To allow for comparison we use the following two examples of transfer
functions from a recent thesis [31],

E(z) = ee
z

and F (z) =
0.247z4 + 0.0355z3

0.3329z2 − 1.2727z + 1
.

But before this we take the Poisson kernel

P (ζ, z0) =
r2 − |z0|2

2πr|z0 − ζ|2

as an example. This function is of particular interest to us due to the fact that
whenever |z0| → 1 we get a singularity at the point z0 whose influence can be
studied for different parameters z0.

For the numerical calculations we use the Matlab toolbox �1-Magic [10] which
adopts a Linear Programming to minimize the �1-norm of our coefficients x subject
to y = Ax using the primal-dual interior point method (see, for instance, [34]) with
A being our sampling matrix.

Since �1-Magic works with real-valued vectors we need to modify our (com-
plex-valued) system. We rewrite our complex multiplication (α+iβ)(v+iw) = a+ib
as a matrix-vector multiplication, i.e.,(

α −β
β α

)(
v
w

)
=

(
a
b

)
.

This allows us to rewrite the complex linear system in the form ỹ =Mx̃ with

M =

(
Re(A) −Im(A)
Im(A) Re(A)

)
and x̃ =

(
Re(x)
Im(x)

)
, ỹ =

(
Re(y)
Im(y)

)
.
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We need to choose our points ai for the Blaschke products. To this end we take a
grid given by the points

{zk� = rke
i 2π�

22k , � = 0, 1, . . . , 22k − 1, k = 0, . . . ,m}

where rk = 2k−2−k

2k+2−k denotes the radius of the concentric circles such that on the

circle with radius rk we take 22k equidistant points (see for instance [25]). From
this grid we take N randomly chosen points, i.e., a vector a = (a1, . . . , aN).

For our examples we made the simulation using Matlab 8.5.0(R2015a) run-
ning on a laptop with Intel(R) Core(TM) i3-4010U CPU 1.70 GHz, RAM 4GB,
Windows 10, OS 64-bit(win64).

Example. Consider the Poisson kernel over the unit circle (see [21])

g(ζ, z0) =
1− |z0|2

2π|z0 − ζ|2 .

In this example we choose z0 to be near to zero, in this case z0 = −0.1 and
the function is sampled by N = 1300 measurements. In Figure 1 we can see the
reconstruction of the function by using only M = 55 samples. This corresponds to
4.23% of our total measurements.

When we choose z0 = −0.5 with the same number of measurements (N =
1300) we can see a similar level of reconstruction (cf. Figure 1) with a slight increase
in the number of used samples (M = 70).

For values of z0 near to the unit circle, i.e., |z0| ∼= 1 (in our case we choose
z0 = −0.8), with the same number of measurements (N = 1300) we can see that
again with a slight increase in the number of taken sampling points (M = 130) we
get a similar quality of reconstruction while using the same percentage (10%) for
a smaller number of sampling points (M = 20) in the case of z0 = −0.8 we still
can get a decent approximation with a dramatically smaller running time.

From this example we redraw the following observations:

1. Within the same number of measurements, when |z0| is near to zero we have
the best reconstruction in the least time.

2. When the modulus of the parameter z0 is close to 1 it requires more samples
to reconstruct the signal.

3. The reconstruction is better in case when |aj − r| < ε with ε relatively small
and the parameter aj being randomly chosen.

We will use the next examples to compare our results with the results from
the PhD-thesis of L. Shuang [31]. Note that in his case he chooses the parameter aj
from an a-priori given grid while in our case we use randomly chosen parameters.

Example. Consider the example of the transfer function (from [31])

F (z) =
0.247z4 + 0.0355z3

0.3329z2 − 1.2727z + 1
.

For this example we sample the above function using 1000 samples (same as
in [31]).
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Figure 1. From left to right, top to bottom: z0 = −0.1, 55 sampling
points corresponds to ≈ 4.23% of total measurements. Time = 329.85
s, relative error = 0.0045; z0 = −0.5, 70 sampling points corresponds
to ≈ 5.38% of total measurements. Time = 302.72 s, relative error
= 0.0057; z0 = −0.8,M = 130, 130 sampling points equivalent to
10% of total measurements. Time = 324.75 s, relative error = 0.0094;
z0 = −0.8,M = 20, 20 sampling points corresponds to 10% of total
measurements. Time = 2.0242 s, relative error = 0.0145

In Shuang’s work the relative error is 0.022 compared to the relative error of
approximately 0.0004 in our case. Additionally, let us take a look to what happens
if we take a bigger number of samples of the original function (M = 110). The
original signal and the reconstructed signal can be seen in Figure 2. We can point
out that the relative error is less than 0.0002 compared to a relative error of 0.004
in Shuang’s work.

Unfortunately, since the author in [31] did not provide any information on
the used hardware any comparison of runtimes is pure speculation.

Example. Consider the function

E(z) = ee
z

.

As we did in the previous example we sample our function in the same way (1000
samples) as in [31].
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Figure 2. Left: the original image and the reconstructed image ob-
tained from 55 random samples (5, 5%), relative error = 3.2271e-04.
Right: The original signal and the reconstructed signal obtained from
110 samples (11%), relative error = 1.8086e-04.

In Figure 3 – Top Left we can observe that with only M = 12 sampling
points we can reconstruct our function with relative error = 0.00046. In the work
of Shuang the reconstruction was done with a relative error of 0.0004 but using a
larger number of sampling points (M = 55).

In Figure 3 – Top Right we can observe that if we use the same number of
sampling points M = 55 as in [31] then we get a relative error of 0.00002.

For M = 110 (Figure 3 – Bottom) the relative error is 0.000004 in contrast
to the relative error from Shuang’s example which is 0.00003.

Again, since the author in [31] did not provide any information on the used
hardware any comparison of run times is pure speculation.

Taking into account these two last examples we can make the following ob-
servations:

1. Using the same number of measurements our method provides a better ap-
proximation than the approach in the thesis of Shuang [31];

2. Moreover, the same relative error is attained with our method by using a
smaller number of sampling points.
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Figure 3. Top Left: reconstruction using 12 sampling points (corre-
sponding to 1.2% of total measurements). Relative error = 4.5945e-04.
Top Right: 55 sampling points corresponds to 5, 5% of total measure-
ments. Relative error = 1.8646e-05. Bottom: 110 sampling points corre-
sponds to 11% of total measurements. Relative error = 3.8346e-06.
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Appendix: Additional calculi

A.1. Estimation of the term
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A.2. Expectation value of the trace of G2n
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We recall that the terms
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A.3. Proof of Lemma 3.7

Proof. Let be σ := sgn (c) and
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Taking a 2Kth power yields∣∣∣∣((D−1HRT
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(with equality if all the entries of σ are equal on T ). Let us consider the expecta-
tion value appearing in the sum. As in the proof of Lemma 3.6 we have to take into
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Note that if A ∈ A contains only one element then the last expression vanishes

due to the condition k
(p)
r �= k

(p)
r+1 Thus, we only need to consider partitions A in

P (2Km, t). Now we are able to rewrite the inequality in (A.1) as
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with
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for a small ε such that |(±1, 0)− an| = ε or |(0,±1)− an| = ε.
This proves the lemma. �
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[10] E. Candès, J. Romberg, �1-MAGIC: Recovery of Sparse Signals via Convex Program-
ming, 2005. Available at http://www.acm.caltech.edu/l1magic.

[11] E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information, IEEE Trans. Inform. Theory,
52 (2) (2006), 489–509.

[12] S. Chen, D.L. Donoho, Basis Pursuit: Technical report, Department of Statistics,
Stanford University (1994), available at
http://statweb.stanford.edu/ donoho/Reports/1994/asilomar.pdf

http://www.acm.caltech.edu/l1magic
http://statweb.stanford.edu/donoho/Reports/1994/asilomar.pdf


76 P. Cerejeiras, Q. Chen, N. Gomes and S. Hartmann

[13] Q. Chen, L.Q. Li, T. Qian, Two families of unit analytic signals with nonlinear phase,
Physica D, 221 (1), (2006) 1–12.

[14] Q. Chen, L. Li, T. Qian, Time-frequency Aspects of Nonlinear Fourier Atoms,
Wavelet analysis and applications. Selected papers based on the presentations at the
conference (WAA 2005), Macau, China, 29th November–2nd December 2005, Basel
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Abstract. In this paper we describe the foundation of a new kind of discrete
geometry and calculus called Script Geometry. It allows to work with more
general meshes than classic simplicial complexes. We provide the basic defi-
nitions as well as several examples, like the Klein bottle and the projective
plane. Furthermore, we also introduce the corresponding Dirac and Laplace
operators which should lay the groundwork for the development of the corre-
sponding discrete function theory.
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1. Introduction

In the last two decades one can observe an ever increasing interest in the analysis
of discrete structures. On one hand the fact that nowadays everybody can harness
large computational power, but the computer is restricted to work with discrete
values only, created an increased interest in working with discrete structures. This
is true even for persons who are originally unrelated to the field. An outstanding
example can be seen in the change of the philosophy of the Finite Element Method.

From the classical point of view the finite element method is essentially a
method for discretization of partial differential equations via a variational for-
mulation, i.e., one first establishes the variational formulation and discretizes the
problem by creating ansatz spaces via introducing a mesh (normally by triangular-
ization) and (spline) functions defined over the mesh. One of the major problems
with this approach is that there is no a priori connection between the choice of
the mesh and the variational formulation. The modern approach lifts the problem
and, therefore, the finite element modelation directly on to the mesh, resulting in
the so-called Finite Element Exterior Calculus [1, 14]. Hereby, one chooses first
the mesh and introduces a boundary operator given by the mesh which induces
the corresponding discrete variational formulation. From a practical point of view
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this is even more interesting since finite element meshes are also widely being ap-
plied in other fields, such as computer graphics [13, 14]. In this framework notions
of discrete vector fields and operators acting on them, e.g., discrete divergence
and curl, appear in a rather canonical way instead of being introduced artificially
by additional discretizing a continuous formulation. This also leads to immediate
applications such as the problem of discrete Hodge decompositions of 3D vector
fields on irregular grids. In this context one can also study the notion of a Dirac
operator [27].

Yet, if we look at the literature the existing theory is based on working with
simplicial complexes and triangularizations [13].

But the meshes in FEM or in computer graphics are not just restricted to
meshes coming from triangularization and representing simplicial complexes. Al-
ready discretizations based on quadrilaterals hexagons are not in this class. There-
fore, a more general geometrical approach than the one based on simplicial com-
plexes is needed. Furthermore, there are problems in other fields (like physics)
which are traditionally modeled in a continuous ways. Nowadays, such problems
are more and more studied directly on the discrete level, the principal example
being the Ising model from statistical physics as opposed to the continuous Heisen-
berg model. But also here one is not just limited to classic lattices or triangulariza-
tions, yet for more general lattices which are not just simplicial complexes a corre-
sponding geometrical theory is missing. These models require a discrete function
theory to work with them, similar to the 2D-case where discrete complex analysis
plays a major role. In fact most of the recent advances on the 2D-Ising model by
S. Smirnov and his collaborators are based on a clever interaction between classic
and discrete complex analysis [29]. This is possible since discrete complex analysis
is under (more or less) constant development since the forties [25, 28].

Unfortunately, the same cannot be said about the higher-dimensional case.
While lately one can observe several approaches to create a discrete function theory
in higher dimensions based on lattice discretizations of the Dirac operator (see [32,
26, 21, 18, 19, 4, 8]) they are closer in spirit to finite difference methods than finite
element methods ([5, 22, 23, 2, 6]). Nevertheless, these approaches lead to a well-
established function theory [17, 9, 10, 11, 12, 20, 7]. For a function theory in
connection with the above-mentioned finite element exterior calculus we do not
want to be restricted to meshes coming from simplicial complexes. Therefore, one
needs a new kind of geometry which allows to work directly with general meshes.

In this paper we are going to lay the foundations of a new type of discrete
geometry called script geometry which is not restricted to simplicial complexes.
After a short review of simplicial topology we define the principal objects as well as
introduce the corresponding Dirac and Laplace operators as discrete versions of the
abstract Hodge–Dirac operator. Furthermore, to give a more clear understanding
of what we are aiming at we are going to present several examples, such as the
Möbius strip, the Klein bottle, the torus, and the projective plane. It is our modest
hope that the presented framework will be interesting enough to be explored by
many mathematicians in the future.
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2. Brief review of simplicial topology

An abstract simplicial complex is a collection S of finite non-empty sets, such that if
A is an element of S, then every non-empty subset of A is also an element of S. An
element A of S is called a simplex of S; its dimension is one less than the number
of its elements, and each non-empty subset of A is called a face of A. Vertices of
S are the one-point elements v of S, and {v} is by definition a 0-simplex.

If K is a topological simplicial complex and V its vertex set, then the col-
lection of all subsets {a0, . . . , an} of V such that the vertices a0, . . . , an span a
simplex of K, is called the vertex scheme of K. The vertex scheme of a topological
simplicial complex is an example of abstract simplicial complex. In fact, every ab-
stract complex S is isomorphic to the vertex scheme for some simplicial complex
K, called also the geometric realization of S, uniquely determined up to a linear
isomorphism.

Let σ be an abstract simplex. Two orderings of its vertex set are equivalent if
they differ by an even permutation. There are two equivalence classes (in dimen-
sions bigger than 1), each one of them called an orientation of σ. For 0-simplexes,
there is only one orientation.

If K is a simplicial complex, then a p-chain on K is a function c from the set
of oriented p-simplices of K to Z, such that: (a) c(σ) = −c(−σ); and (b) c(σ) = 0
for all but finitely many oriented p-simplices σ. Addition of oriented p-chains is
done by adding their integer values. The resulting group is denoted by Cp(K).

If σ is an oriented simplex, the elementary chain c corresponding to σ is the
function defined as follows: (a) c(σ) = 1, (b) c(−σ) = −1, and (c) c(τ) = 0 for
all other oriented simplices. The usual convention denotes by σ both the oriented
simplex and its elementary p-chain c. This allows the notation −σ for the simplex
with opposite orientation than σ.

A well-known result is that Cp(K) is a free Abelian group, a basis is obtained
by orienting each p-simplex and using the corresponding elementary chains as a
basis. Therefore, with the exception of C0(K), the groups Cp(K) have no natural
basis, as one must orient the p-simplices in K in an arbitrary fashion to obtain a
basis.

The homomorphism of groups:

∂p : Cp(K)→ Cp−1(K)

is called the boundary operator, defined by

∂p[v0, . . . , vp] :=

p∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vp],

where the hat means deletion from the array. The operator ∂p is well defined and
it has the property

∂p(−σ) = −∂p(σ),
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for all simplices σ. For example:

∂1[v0, v1] = v1 − v0, ∂2[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1].

It can be proved that

∂p−1 ◦ ∂p = 0,

so the kernel of ∂p, denoted by Zp(K) is the group of p-cycles, and the image of
∂p+1, denoted by Bp(K), is the group of p-boundaries. The pth homology group
of K is then defined as

Hp(K) := Zp(K)/Bp(K).

Cohomology is usually defined using the Hom functor. That makes cocycles
to be “picket fences” inside triangularizations of manifolds.

3. Script geometry

Let us start with the definition of our most basic object, the notion of a script.

Definition 3.1. A script is a collection

S := {S−1,S0,S1, . . . ,Sk, . . . ,Sm} (3.1)

of sets Sk, the elements of which are called k-cells. In particular,

S−1 := {∞}, S0 := {p1, . . . , pj , . . . , pn0},
S1 := {l1, . . . , lj , . . . , ln1}, S2 := {v1, . . . , vj , . . . , vn2}, . . . ,
Sk := {ck1 , . . . , ckj , . . . , cknk

} .
Traditionally 0, 1 and 2-cells are called points, lines and planes, respectively.

Definition 3.2. A linear combination over Z of k-cells is called a k-chain:

Ck :=
∑

j
λk
j c

k
j , λk

j ∈ Z , (3.2)

and we denote the module of k-chains by Ck. The support of a k-chain Ck is the
set of k-cells ckj that are involved in the linear combination (3.2), i.e., for which

λk
j �= 0.

Definition 3.3. The boundary map ∂ from Sk into Ck−1, the module of (k − 1)-
chains, is defined by:

∂ckj :=
∑

s
μk,s
j ck−1

s , μk,s
j ∈ Z (3.3)

which naturally extends to the module Ck, and it is subject to ∂2 = 0.

Let us remark that the coefficients μk,s
j in (3.3) are uniquely determining the

boundary operator ∂. For example, if P0 is a 0-chain, then if P0 =
∑

j
λ0
jpj , we

have:

∂pj = 1 · ∞, ∂P0 =
(∑

j
λ0
j

)
· ∞ ,
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therefore ∂P0 = 0 if and only if
∑

j
λ0
j = 0. For a generic k-cell ckj , since ∂2 = 0

by definition, we have:

0 = ∂2ckj = ∂
(∑

s
μk,s
j ck−1

s

)
=
∑
�

(∑
s
μk,s
j μk−1,�

s

)
ck−2
�

therefore: ∑
s
μk,s
j μk−1,�

s = 0,

for all �.

Definition 3.4. A k-chain Ck for which ∂Ck = 0, it is called a k-cycle. A k-chain

Ck =
∑

j
λk
j c

k
j

for which λk
j = ±1 is called an oriented surface, or simply a surface. A surface Ck

for which ∂Ck = 0 is a closed surface.

Definition 3.5. A script S for which every cell boundary ∂ckj is a closed surface is
called a geoscript.

Definition 3.6. A closed surface Ck is called tight if and only if for every closed
surface C′

k with suppC′
k ⊂ suppCk, it follows that C

′
k = ±Ck, i.e., Ck is the only

closed surface, up to sign, with support inside suppCk.
A tight cell c is a cell for which ∂c is a closed tight surface. A geoscript is

called tight if all its cells have a boundary which is a tight surface, i.e., all its cells
are tight cells.

Any point pj is obviously tight. A line l is tight if and only if ∂l = pj−pk, i.e.,
every tight line connects two points. Every plane v which is tight has a boundary

∂v =

t∑
j=1

λj lj , λj = ±1,

which forms a polygon, i.e., λj∂lj = pj − pj+1 whereby pt+1 = p1, and all points
p1, . . . , pt are different.

In Figure 1, we have drawn two examples of tight scripts and the far right one
is a non-tight script. Please note that the “loop” script in Figure 1 is defined by:

S0 = {p0, p1}, S1 = {l1, l2}, S2 = {v},
∂l1 = p1 − p0, ∂l2 = p0 − p1, ∂v = l1 + l2.

Note that a tight geoscript of dimension ≤ 2 is always topologically equivalent
to a CW-complex. For higher-dimensional geoscripts the situation can be more
general than CW-complexes.

The cells in a geoscript are oriented cells and can each come in two states of
orientation that are determined by the boundary map ∂(ckj ), i.e., if one replaces c

k
j

by dkj = −ckj then also ∂(dkj ) = −∂(ckj ). But in general there could be more than

two orientations on (closed surfaces inside) supp ∂(ckj ) and so the mere knowledge
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Figure 1. Examples of scripts

of supp ∂(ckj ) does not determine the orientations ±∂(ckj ). The tightness condition
however ensures that on supp ∂(ckj ) there can only be two states of closed orienta-

tion given by ±∂(ckj ), so that the state of orientation on each cell ckj can be fully
identified with the state of orientation on the boundary. The tightness condition
also implies a number of interesting geometric properties for scripts, such as a line
has two endpoints or a 2-cell is a polygon. In a forthcoming paper we prove that
using tightness one can determine when a two-dimensional script corresponds to
an oriented two-dimensional manifold.

Definition 3.7. A k-cell c is called a k-simplex if either c is a point (the case k = 0),
or the boundary ∂c of c is a tight (k− 1)-surface that is the sum (with coefficients
±1) of k + 1 different (k − 1)-cells that are also (k − 1)-simplexes. A simplicial
script is a tight geoscript for which all cells are simplexes.

Definition 3.8. A geomap G : S→ S′ between two tight geoscripts S and S′ is a
collection of linear maps

gk : Sk → S′
k

with the following two properties:

(a) the image of every k-surface Ck ∈ Sk is a k-surface C′
k ∈ S′

k, e.g., on a k-cell
ckj we have:

gk(c
k
j ) =

∑
μk,s
j c

′k
s , μk,s

j ∈ {−1, 1}.

(b) for each k, the natural extension of gk to a set of k-chains fulfills the relation:

∂gk(Ck) = gk−1(∂Ck).

Moreover, gk is called tight if it maps tight surfaces to tight surfaces.
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The notion of geomap can be used to define when two geoscripts are isomor-
phic. Let S = {S−1,S0,S1, . . . } and T = {T−1,T0,T1, . . . } be two geoscripts
and suppose we have a geomap given by gk : Sk → C(T)k, from Sk to the chains
of Tk, that is such that for every cell ckj ∈ Sk,

gk(c
k
j ) = ±dkj ,

where dkj ∈ Tk, i.e., suppose that gk is a bijection up to the sign between Sk and
Tk. Then we say that script S is isomorphic to script T. It means essentially that
one can change the signs of the cells provided one makes the necessary adjustments
for the boundary map ∂, and these adjustments are determined by the relations
∂gk = gk−1∂.

Definition 3.9. A geoscript S′ is called a refinement of a given geoscript S if there
exists an injective geomap G = {gk}k : S → S′. A refinement is called tight if
every gk is tight and if for each k, there exists only one surface C′

k inside the image
gk(c

k
j ) for which

∂C′
k = ∂gk(c

k
j ).

Theorem 3.10. Any tight geoscript S admits a refinement to a simplicial script S.

Proof. The proof is done by induction over k, and it is left as an exercise for the
avid reader. �

We define the analog of the homology groups of a tight script S, due to the
fact that the boundary operators ∂ : Ck+1 → Ck obey ∂2 = 0 in all dimensions k.
We define:

Hk(S) =: Zk(S)/Bk(S),

where Zk(S) is the group of (closed oriented) k-cycles, and Bk(S) is the group of
boundaries of (k + 1)-chains of S.

Definition 3.11. We define the inner product of k-chains by〈∑
s
αsc

k
s ,
∑

s
βsc

k
s

〉
:=

∑
αsβs.

Then the exterior derivative d on chains is defined by

dckj :=
∑
�

μk,�
j ck+1

� ,

naturally extended to the module of chains, and subject to the condition

〈dckj , ck+1
� 〉 = 〈ckj , ∂ck+1

� 〉 .

Similarly for the differential operators d, one can define the corresponding
cohomology groups Hk(S) of a tight script:

Hk(S) =: Zk(S)/Bk(S),

where Zk(S) is the group of (k+1)-chains closed with respect to d, and Bk(S) is
the group of coboundaries (in the image of d) of k-chains of S.
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Note that in the case of a simplicial script S being built by making use of
usual (triangular) simplexes, it is similar to the usual notion of a simplicial com-
plex. From dimension 3 and up a non-simplicial script does not uniquely determine
the topology of the supporting space, though. Therefore, in a certain sense, scripts
are a more loose concept than the traditional abstract simplexes.

4. The discrete Dirac and Laplace operators on scripts

Let f be a function defined on a tight script S with integer, real, complex, or
Clifford algebra values. For example, if S is has dimension 2, f is defined by

f = f0 + f1 + f2,

f0 =
∑
j∈S0

f0jpj, f1 =
∑
j∈S1

f1j lj , f2 =
∑
j∈S2

f2jvj .

Definition 4.1. The discrete Hodge–Dirac operator for a tight script S is defined
as

/∂ = ∂ + d,

acting on the corresponding parts of a function f .

For example, in the case n = 2, we have:

/∂f = ∂f1 + (df0 + ∂f2) + df1

=
∑
j∈S1

f1j∂lj +

⎛⎝∑
j∈S0

f0jdpj +
∑
j∈S2

f2j∂vj

⎞⎠+
∑
j∈S1

f1jdlj .

Definition 4.2. The discrete Laplace operator on a tight script S is defined by:

Δ =
1

2
(∂d+ d∂) =

1

2
(∂ + d)

2
=

1

2
/∂
2
. (4.1)

For example, for f as above, we have:

2Δf = ∂(df0) + (∂(df1) + d(∂f1)) + d(∂f2)

=
∑
j∈S0

f0j∂(dpj) +
∑
j∈S1

f1j (∂(dlj) + d(∂lj)) +
∑
j∈S2

f2jd(∂Pj).

Note that the Laplace operator defined above acts on all of S, not only on
vertices (points). Let us remark that the above definition can be seen as a con-
cretization of the abstract Hodge–Laplace operator [27]. Normally, the abstract
definition is given in terms of the exterior derivative d and its adjoint d∗, but in
our context we do not need to formally introduce the operator d∗. Furthermore,
one of the requirements for the discretization of the abstract Hodge–Dirac opera-
tor in [27] is that the exterior derivative commutes with bounded (or smoothed)
projections. This is not a trivial study and restricts their approach to simplicial
complexes. While this is natural in the context of looking at simplicial decompo-
sition of domains our setting is more general.
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5. Classic examples of scripts

We give below concrete descriptions and computations of scripts obtained from
classical examples of topological spaces.

5.1. A Möbius strip

As a topological space, the Möbius strip is obtained from a rectangle, identifying
one pair of opposite edges in reverse orientation. In order to make it a tight geo-
script, denoted by SM , we obtain the same result by gluing two rectangles along
one edge, as described in Figure 2. The script containes four points, six lines and

p

l

ll

l l

l

p

pp

pp l

5

2 2 33
1

1

2441

1 6
v1 v2

Figure 2. The Möbius script

two planes:

S0 = {p1, p2, p3, p4}, S1 = {l1, l2, l3, l4, l5, l6}, S2 = {v1, v2}.

The boundary operator ∂ acts on the Möbius script as follows:

∂l1 = p2 − p1, ∂l2 = p2 − p3,

∂l3 = p3 − p1, ∂l4 = p4 − p2,

∂l5 = p1 − p4, ∂l6 = p3 − p4.

Note that ∂(l2 + l3 + l4 + l5) = 0, so l2 + l3 + l4 + l5 is a tight closed curve.
Next, we have:

∂v1 = −l1 + l2 − l5 + l6,

∂v2 = −l1 + l3 − l4 − l6.

Note that all linear combinations of the boundaries above have coefficients
±1. Also, one can easily check that the boundary operator squares to 0, as desired.
For example:

∂ (∂v1) = −∂l1 + ∂l2 − ∂l5 + ∂l6

= −(p2 − p1) + (p2 − p3)− (p1 − p4) + (p3 − p4) = 0.
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Similarly ∂ (∂v2) = 0. Therefore, the Möbius script is a tight geoscript. Topo-
logically is equivalent to a CW-complex consisting of one 2-cell: (v1 + v2), three
1-cells: l1, (l2 + l3), (l4 + l5), and two 0-cells: p1, p2.

The script homology of SM is obtained in a similar fashion as one computes
the homology of a CW-complex. In more detail, consider the sequence of chains:

0
∂→ C2

∂→ C1
∂→ C0

∂→ 0.

We note that

∂(v1 + v2) = −2l1 + (l2 + l3)− (l4 + l5),

so the image of the boundary of the sum of the two planes is non-empty. Its kernel
is 0, so H2(SM ) = 0. Next,

∂l1 = p2 − p1, ∂(l2 + l3) = p2 − p1, ∂(l4 + l5) = p1 − p2,

therefore up to a sign, (l2+l3)−l1 and (l4+l5)−l1 are homologous cycles. The kernel
is two-dimensional (three line generators and the image is one-dimensional), so iso-
morphic to Z2. It follows that H1(SM ) = Z. Similarly, one obtains H0(SM ) = Z.

The differential operator d acts on the script SM as follows:

dp1 = −l1 − l3 + l5,

dp2 = l1 + l2 − l4,

dp3 = −l2 + l3 + l6,

dp4 = l4 − l5 − l6,

and

dl1 = −v1 − v2, dl2 = v1, dl3 = v2, dl4 = −v2,
dl5 = −v1, dl6 = v1 − v2.

For the cohomology of the script SM , we study the sequence:

0
d→ C0

d→ C1
d→ C2

d→ 0.

Note that

4∑
j=1

dpj = 0, therefore H0(SM ) = Z. Because

−dl1 = d(l2 + l3) = −d(l4 + l5) = v1 + v2,

therefore d(2l1 + (l2 + l3)− (l4 + l5)) = 0, so the kernel of d on lines is 3− 2 = 1-
dimensional. Moreover, the image of d on lines and the kernel of d on planes are
both generated by v1 + v2. Summarizing, the script cohomology of the Möbius
strip is indeed, as expected:

H0(SM ) = H1(SM ) = Z, H2(SM ) = 0.
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Since the discrete Dirac operator is defined as /∂ = ∂ + d, using

f = f0 + f1 + f2, f0 =

4∑
j=1

f0jpj , f1 =

6∑
j=1

f1j lj , f2 =

2∑
j=1

f2jvj ,

we have:
/∂f = ∂f1 + (df0 + ∂f2) + df1.

Computations yield to:

∂f1 =

⎡⎢⎢⎣
−1 0 −1 0 1 0
1 1 0 −1 0 0
0 −1 1 0 0 1
0 0 0 1 −1 −1

⎤⎥⎥⎦ [f1j]
t[pj],

where [f1j]
t is the column vector of the corresponding 6 inputs, and [pj] is the row

vector of the four points. Similarly we obtain:

df0 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 0 0
0 1 −1 0
−1 0 1 0
0 −1 0 1
1 0 0 −1
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ [f0j ]
t[lj ],

where we notice that the matrix above is the transpose of the previous one for
∂f1, as it should. Next we get:

∂f2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 −1
1 0
0 1
0 −1
−1 0
1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ [f2j ]
t[lj ],

and

df1 =

[
−1 1 0 0 −1 1
−1 0 1 −1 0 −1

]
[f1j]

t[vj ],

Put together, the Dirac operator in matrix form is given as:

/∂M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 −1 0 1 0 0 0
0 0 0 0 1 1 0 −1 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 0 0
0 0 0 0 0 0 0 1 −1 −1 0 0
−1 1 0 0 0 0 0 0 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0 1 0
−1 0 1 0 0 0 0 0 0 0 0 1
0 −1 0 1 0 0 0 0 0 0 0 −1
1 0 0 −1 0 0 0 0 0 0 −1 0
0 0 1 −1 0 0 0 0 0 0 1 −1
0 0 0 0 −1 1 0 0 −1 1 0 0
0 0 0 0 −1 0 1 −1 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2, 0, 2 of multiplicities 5, 2, 5, respectively.
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The discrete Laplace operator is given by:

2Δf = ∂(df0) + (∂(df1) + d(∂f1)) + d(∂f2)

=

3∑
j=0

f0j∂(dpj) +

8∑
j=1

f1j (∂(dlj) + d(∂lj)) +

4∑
j=1

f2jd(∂vj).

In matrix form we obtain:

2ΔMf =

⎡⎢⎢⎣
3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤⎥⎥⎦ [f0j ]
t[pj ]

+

⎡⎢⎢⎢⎢⎢⎢⎣
4 0 0 0 0 0
0 3 −1 −1 −1 0
0 −1 3 −1 −1 0
0 −1 −1 3 −1 0
0 −1 −1 −1 3 0
0 0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎦ [f1j ]
t[lj ]

+

[
4 0
0 4

]
[f2j]

t[vj ] .

In matrix form, the Laplacian of the Möbius script SM is given by the square of
the Dirac matrix:

ΔM =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1 0 0 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0 0 0 0
−1 −1 3 −1 0 0 0 0 0 0 0 0
−1 −1 −1 3 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 3 −1 −1 −1 0 0 0
0 0 0 0 0 −1 3 −1 −1 0 0 0
0 0 0 0 0 −1 −1 3 −1 0 0 0
0 0 0 0 0 −1 −1 −1 3 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.2. The torus

Consider the torus T equipped with the script defined as in Figure 3. Topologi-
cally it is obtained by identifying the opposite sides of a rectangle with the same
orientation. The boundary operator acts as follows:

∂l1 = p1 − p0, ∂l2 = p0 − p1,

∂l3 = p0 − p2, ∂l4 = p2 − p0,

∂l5 = p3 − p2, ∂l6 = p2 − p3,

∂l7 = p1 − p3, ∂l8 = p3 − p1,
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Figure 3. Torus script

and

∂v1 = l5 + l7 − l1 − l3,

∂v2 = l6 + l3 − l2 − l7,

∂v3 = l1 + l8 − l5 − l4,

∂v4 = l2 + l4 − l6 − l8.

All 0, 1 and 2-cells are tight cells, so the script ST above is a tight geoscript.

For the script homology of the torus, we consider the sequence of chains:

0
∂→ C2

∂→ C1
∂→ C0

∂→ 0,

and we note that:

4∑
j=1

∂lj = 0,

4∑
j=1

∂vj = 0,

so, if we denote the line sums l12 := (l1 + l2) and l34 := (l3 + l4), and γ the sum
of all vj , we have:

∂(l12) = ∂(l34) = 0, ∂γ = 0.

It turns out that l12 and l34 are a basis of H1(ST ) and γ is the generator of
H2(ST ), i.e., we capture the script homology of the torus:

H0(ST ) = Z, H1(ST ) = Z⊕ Z, H2(ST ) = Z.
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At the differential operator level, we obtain:

dp0 = −l1 + l2 + l3 − l4,

dp1 = l1 − l2 + l7 − l8,

dp2 = −l3 + l4 − l5 + l6,

dp3 = l5 − l6 − l7 + l8,

and

dl1 = −v1 + v3, dl2 = −v2 + v4,

dl3 = −v1 + v2, dl4 = −v3 + v4,

dl5 = v1 − v3, dl6 = −v4 + v2,

dl7 = v1 − v2, dl8 = v3 − v4.

Note that

3∑
j=0

dpj = 0,

8∑
j=1

lj = 0, and using the notation for the sum of two

lines, lij := li + lj, we have:

d(l15 − l26) = 0, d(p0 + p2) = −d(p1 + p3) = −(l15 − l26),

d(l37 − l48) = 0, d(p0 + p1) = −d(p2 + p3) = (l37 − l48).

Therefore each H0(ST ) and H2(ST ) have one generator, and H1(ST ) has
two generators. Summarizing, we obtain the script cohomology groups of ST is
given by:

H0(ST ) = Z, H1(ST ) = Z⊕ Z, H2(ST ) = Z.

Since the discrete Dirac operator is defined as /∂ = ∂ + d, using

f = f0 + f1 + f2, f0 =

3∑
j=0

f0jpj , f1 =

8∑
j=1

f1j lj , f2 =

4∑
j=1

f2jvj ,

we have:

/∂f = ∂f1 + (df0 + ∂f2) + df1.

Computations yield to:

∂f1 =

⎡⎢⎢⎣
−1 1 1 −1 0 0 0 0
1 −1 0 0 0 0 1 −1
0 0 −1 1 −1 1 0 0
0 0 0 0 1 −1 −1 1

⎤⎥⎥⎦ [f1j]
t[pj ],
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where [f1j ]
t is the column vector the corresponding 8 inputs, and [pj ] is the row

vector of the four points. Similarly we obtain:

df0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0
1 −1 0 0
1 0 −1 0
−1 0 1 0
0 0 −1 1
0 0 1 −1
0 1 0 −1
0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f0j ]

t[lj ],

where we notice that the matrix above is the transpose of the previous one for
∂f1. Next we get:

∂f2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
0 −1 0 1
−1 1 0 0
0 0 −1 1
1 0 −1 0
0 1 0 −1
1 −1 0 0
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f2j ]

t[lj ],

and

df1 =

⎡⎢⎢⎣
−1 0 −1 0 1 0 1 0
0 −1 1 0 0 1 −1 0
1 0 0 −1 −1 0 0 1
0 1 0 1 0 −1 0 −1

⎤⎥⎥⎦ [f1j ]
t[vj ],

Put together, the Dirac operator on the torus script in matrix form is given as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
1 0 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 −1 1 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 −1 0 −1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 0 −1 −1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 −1 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2
√
2,−2, 0, 2, 2

√
2 of multiplicities 2, 4, 4, 4, 2, respectively.
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The discrete Laplace operator is given by:

2ΔT f = ∂(df0) + (∂(df1) + d(∂f1)) + d(∂f2)

=
3∑

j=0

f0j∂(dpj) +
8∑

j=1

f1j (∂(dlj) + d(∂lj)) +
4∑

j=1

f2jd(∂vj).

We obtain:

ΔT f =

⎡⎢⎢⎣
2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤⎥⎥⎦ [f0j ]
t[pj ]

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0 0 0
−1 2 0 0 0 −1 0 0
0 0 2 −1 0 0 −1 0
0 0 −1 2 0 0 0 −1
−1 0 0 0 2 −1 0 0
0 −1 0 0 −1 2 0 0
0 0 −1 0 0 0 2 −1
0 0 0 −1 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f1j ]

t[lj ]

+

⎡⎢⎢⎣
2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤⎥⎥⎦ [f2j ]
t[vj ] .

In matrix form, the Laplacian of the script for the torus T is given by the square
of the Dirac matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 2 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 2 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 2 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0 2 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 2 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 2 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.3. The Klein bottle

Consider the Klein bottle equipped with the script SK defined as in Figure 4. It
is obtained from a rectangle identifying one pair of opposite sides with the same
orientations, and the other pair is identified with opposite line orientations. We
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Figure 4. Klein script

obtain the following script geometry of the Klein script:

∂l1 = p1 − p0, ∂l2 = p0 − p1,

∂l3 = p2 − p0, ∂l4 = p0 − p2,

∂l5 = p3 − p2, ∂l6 = p2 − p3,

∂l7 = p1 − p3, ∂l4 = p3 − p1,

and

∂v1 = l5 + l7 − l1 − l4,

∂v2 = l6 − l3 − l2 − l7,

∂v3 = l1 + l8 − l5 − l3,

∂v4 = l2 − l4 − l6 − l8.

Note again that this is a tight script, and we have:

4∑
j=1

∂vj = −2(l3 + l4) .

If we denote the line sum l12 := (l1 + l2) and l34 := (l3 + l4), and γ is the
sum of all vj , then l12 is a generator for H1(SK) modulo torsion, and l34 is a
torsion element of H1(SK). But γ is not a cycle anymore, as ∂γ = −2l34, i.e., we
recapture the script homology of the Klein bottle:

H0(SK) = Z, H1(SK) = Z⊕ Z2, H2(SK) = 0.



96 P. Cerejeiras, U. Kähler, F. Sommen and A. Vajiac

At the differential operator level, we obtain:

dp0 = −l1 + l2 − l3 + l4,

dp1 = l1 − l2 + l7 − l8,

dp2 = l3 − l4 − l5 + l6,

dp3 = l5 − l6 − l7 + l8,

and

dl1 = −v1 + v3, dl2 = −v2 + v4,

dl3 = −v2 − v3, dl4 = −v1 − v4,

dl5 = v1 − v3, dl6 = −v4 + v2,

dl7 = v1 − v2, dl8 = v3 − v4.

Note that

3∑
j=0

dpj = 0 and d((l1 − l2) + (l3 − l4)) = 0. Therefore H1(SK) is

generated by one element. Next, we have:

dl12 = −(v1 + v2) + (v3 + v4), dl34 = −(v1 + v2)− (v3 + v4),

therefore, because d(l12 + l34) = −2(v1 + v2), we obtain that H2(SK) = Z2. This
yields the script cohomology groups of SK :

H0(SK) = Z, H1(SK) = Z, H2(SK) = Z2.

The discrete Dirac operator for the Klein script above is given by the formula:

/∂f = ∂f1 + (df0 + ∂f2) + df1,

where

f = f0 + f1 + f2, f0 =

3∑
j=0

f0jpj , f1 =

8∑
j=1

f1j lj , f2 =

4∑
j=1

f2jvj .

Computations yield the following results:

∂f1 =

⎡⎢⎢⎣
−1 1 −1 1 0 0 0 0
1 −1 0 0 0 0 1 −1
0 0 1 −1 −1 1 0 0
0 0 0 0 1 −1 −1 1

⎤⎥⎥⎦ [f1j]
t[pj ],

df0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0
1 −1 0 0
−1 0 1 0
1 0 −1 0
0 0 −1 1
0 0 1 −1
0 1 0 −1
0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f0j ]

t[lj ].
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Next we get:

∂f2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
0 −1 0 1
0 −1 −1 0
−1 0 0 −1
1 0 −1 0
0 1 0 −1
1 −1 0 0
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f2j ]

t[lj ],

and

df1 =

⎡⎢⎢⎣
−1 0 0 −1 1 0 1 0
0 −1 −1 0 0 1 −1 0
1 0 −1 0 −1 0 0 1
0 1 0 −1 0 −1 0 −1

⎤⎥⎥⎦ [f1j ]
t[vj ],

In matrix form, the Dirac operator for the Klein script is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
−1 0 1 0 0 0 0 0 0 0 0 0 0 −1 −1 0
1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 −1
0 0 −1 1 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 −1 0 0 −1 1 0 1 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 −1 0 −1 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2
√
2,−2,−

√
2, 0,

√
2, 2, 2

√
2 of multiplicities 2, 3, 2, 2, 2, 3, 2, re-

spectively.
The Laplace operator is given by:

ΔKf =

⎡⎢⎣ 2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎤⎥⎦ [f0j ]
t[pj ] +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0 0 0
−1 2 0 0 0 −1 0 0
0 0 2 −1 0 0 1 −1
0 0 −1 2 0 0 −1 1
−1 0 0 0 2 −1 0 0
0 −1 0 0 −1 2 0 0
0 0 1 −1 0 0 2 −1
0 0 −1 1 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f1j ]

t[lj ]

+
1

2

⎡⎢⎣ 4 −1 −2 1
−1 4 1 −2
−2 1 4 −1
1 −2 −1 4

⎤⎥⎦ [f2j ]
t[vj ].
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5.4. The real projective plane

We investigate several scripts for the projective plane RP2. The simplest one is
given in Figure 5, but it is not a geoscript. Indeed, this script, denoted by SRP2,1

pp

p

p

1

1

22

l12l

l1
l2

v

Figure 5. Simplest projective script

is characterized by

S0 = {p1, p2}, S1 = {l1, l2}, S2 = {v},
∂l1 = p2 − p1, ∂l2 = p1 − p2, ∂v = 2l1 + 2l2.

Therefore the boundary of the 2-chain v is not a geochain, as it contains coefficients
different than ±1.

Denoting the line sum l12 := (l1 + l2) then l12 is representing the non-zero
element of H1(SRP2), and v is not a cycle, as ∂v = 2l12, i.e., we obtain the script
homology of the RP2:

H0(SRP2) = Z, H1(SRP2) = Z2, H2(SRP2) = 0.

For the differential operator d we get:

dp1 = −(l1 − l2), dp2 = l1 − l2,

dl1 = dl2 = v.

Note that the kernel of d on points is generated by p1+p2, so H0(SRP2) = Z.
Next, the kernel of d on lines and the image of d on points are both generated
by l1 − l2, which yields to H1(SRP2) = 0. The image of d(l1 + l2) = 2v, therefore
H2(SRP2) = Z2.

We compute the Dirac and Laplace operators on this script, yielding:

/∂RP2 =

⎛⎜⎜⎜⎜⎝
0 0 −1 1 0
0 0 1 −1 0
−1 1 0 0 2
1 −1 0 0 2
0 0 2 2 0

⎞⎟⎟⎟⎟⎠
with eigenvalues −2

√
2,−2, 0, 2, 2

√
2, all having multiplicities 1.
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The Laplacian operator for this script depicting RP2 is:

ΔRP2 =
1

2

⎛⎜⎜⎜⎜⎝
1 −1 0 0 0
−1 1 0 0 0
0 0 3 1 0
0 0 1 3 0
0 0 0 0 4

⎞⎟⎟⎟⎟⎠ .

In order to obtain a tight geoscript for the projective plane, we add one more
point p0 and four lines to the script above, as in Figure 6. We obtain:
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Figure 6. A tight geoscript for RP2

∂l1 = p2 − p1, ∂l2 = p1 − p2,

∂l3 = p2 − p0, ∂l4 = p1 − p0,

∂l5 = p2 − p0, ∂l6 = p1 − p0,

and

∂v1 = l2 − l6 + l5,

∂v2 = l1 − l3 + l6,

∂v3 = l2 − l4 + l3,

∂v4 = l1 − l5 + l4.

At the differential operator level, we obtain:

dp0 = −l3 − l4 − l5 − l6,

dp1 = −l1 + l2 + l4 + l6,

dp2 = l1 − l2 + l3 + l5,
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and

dl1 = v2 + v4, dl2 = v1 + v3,

dl3 = −v2 + v3, dl4 = −v3 + v4,

dl5 = v1 − v4, dl6 = v2 − v1.

The homology and cohomology of this real projective plane script is computed
in a similar way as in the case of the first RP2 script, yielding, of course, the same
result.

The discrete Dirac operator for the script above is given by:

/∂f = ∂f1 + (df0 + ∂f2) + df1,

where

f = f0 + f1 + f2, f0 =
2∑

j=0

f0jpj , f1 =
6∑

j=1

f1j lj , f2 =
4∑

j=1

f2jvj .

Computations yield the following results:

∂f1 =

⎡⎣ 0 0 −1 −1 −1 −1
−1 1 0 1 0 1
1 −1 1 0 1 0

⎤⎦ [f1j]
t[pj],

df0 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −1 1
0 1 −1
−1 0 1
−1 1 0
−1 0 1
−1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ [f0j ]
t[lj ],

∂f2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 1
1 0 1 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
−1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ [f2j ]
t[lj ],

and

df1 =

⎡⎢⎢⎣
0 1 0 0 1 −1
1 0 −1 0 0 1
0 1 1 −1 0 0
1 0 0 1 −1 0

⎤⎥⎥⎦ [f1j ]
t[vj ],
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In full matrix form we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 −1 −1 −1 0 0 0 0
0 0 0 −1 1 0 1 0 1 0 0 0 0
0 0 0 1 −1 1 0 1 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 1 0 1
0 1 −1 0 0 0 0 0 0 1 0 1 0
−1 0 1 0 0 0 0 0 0 0 −1 1 0
−1 1 0 0 0 0 0 0 0 0 0 −1 1
−1 0 1 0 0 0 0 0 0 1 0 0 −1
−1 1 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 1 0 0 1 −1 0 0 0 0
0 0 0 1 0 −1 0 0 1 0 0 0 0
0 0 0 0 1 1 −1 0 0 0 0 0 0
0 0 0 1 0 0 1 −1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues are: −
√
6,−
√
2, 0,

√
2,
√
6 with multiplicities 3, 3, 1, 3, 3, re-

spectively.
In matrix form, the Laplacian is given by the square of the Dirac matrix:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −2 −2 0 0 0 0 0 0 0 0 0 0
−2 4 −2 0 0 0 0 0 0 0 0 0 0
−2 −2 4 0 0 0 0 0 0 0 0 0 0
0 0 0 4 −2 0 0 0 0 0 0 0 0
0 0 0 −2 4 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 2 0 0 0 0 0
0 0 0 0 0 0 4 0 2 0 0 0 0
0 0 0 0 0 2 0 4 0 0 0 0 0
0 0 0 0 0 0 2 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 3 −1 1 −1
0 0 0 0 0 0 0 0 0 −1 3 −1 1
0 0 0 0 0 0 0 0 0 1 −1 3 −1
0 0 0 0 0 0 0 0 0 −1 1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A third script for RP2 is in the spirit of the torus and the Klein bottle, as
given in Figure 7.
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Figure 7. A third projective script
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We obtain:

∂l1 = p1 − p0, ∂l2 = p4 − p1,

∂l3 = p2 − p4, ∂l4 = p0 − p2,

∂l5 = p3 − p2, ∂l6 = p2 − p3,

∂l7 = p1 − p3, ∂l4 = p3 − p1,

and

∂v1 = l5 + l7 − l1 − l4,

∂v2 = l6 − l3 − l2 − l7,

∂v3 = −l2 + l8 − l5 − l3,

∂v4 = −l1 − l4 − l6 − l8.

We obtain

4∑
j=1

∂vj = −2(l1 + l2 + l3 + l4).

Denoting the line sum l1234 := (l1+ l2+ l3+ l4) and γ the sum of all vj , then
l1234 is a representing the non-zero element of H1(SRP2), and γ is not a cycle, as
∂γ = −2l1234, i.e., we get again:

H1(SRP2) � Z2, H2(SRP2) = 0.

The cohomology is calculated in a similar way.
Similar to the computations above for the Klein bottle, we obtain the follow-

ing matrix form for the discrete Dirac operator on RP2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1
0 −1 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0
0 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 −1 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1
0 0 −1 1 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 1 0 −1 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 −1 0 0 −1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0 −1 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues −2
√
2, −

√
5 +
√
5, −

√
5−
√
5, −2, −

√
2, 0,

√
2, 2,

√
5−
√
5,√

5 +
√
5, 2
√
2 with multiplicities 1, 2, 2, 3, 1, 3, 2, 2, 1, respectively.
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The Laplacian for this script depicting RP2 is given by:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 4 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 4 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −2 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 4 −1 0 1 −1 1 0 0 0 0 0 0
0 0 0 0 0 −1 4 1 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 4 −1 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 −1 4 0 0 −1 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 4 −2 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 −2 4 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 4 −2 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 −2 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 4 −1 −1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 4 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 2 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we can obtain an RP2 by adding a rectangle v3 to a Möbius strip M
(see Subsection 5.1) with boundary

∂v3 = l2 + l3 + l4 + l5 ,

as in Figure 8. It follows that
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Figure 8. Projective plane obtained from a Möbius strip

∂(v1 + v2 + v3) = 2(l2 + l3 − l1),

which is the generator of H1(SRP2) = Z2.
The differential operator d acts on this script as follows:

dp1 = −l1 − l3 + l5,

dp2 = l1 + l2 − l4,

dp3 = −l2 + l3 + l6,

dp4 = l4 − l5 − l6,
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and

dl1 = −v1 − v2, dl2 = v1 + v3, dl3 = v2 + v3, dl4 = −v2 + v3,

dl5 = −v1 + v3, dl6 = v1 − v2.

The resulting Dirac operator matrix for this script is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 −1 0 1 0 0 0 0
0 0 0 0 1 1 0 −1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 −1 −1 0 0 0
−1 1 0 0 0 0 0 0 0 0 −1 −1 0
0 1 −1 0 0 0 0 0 0 0 1 0 1
−1 0 1 0 0 0 0 0 0 0 0 1 1
0 −1 0 1 0 0 0 0 0 0 0 −1 1
1 0 0 −1 0 0 0 0 0 0 −1 0 1
0 0 1 −1 0 0 0 0 0 0 1 −1 0
0 0 0 0 −1 1 0 0 −1 1 0 0 0
0 0 0 0 −1 0 1 −1 0 −1 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

with eigenvalues −2, 0, 2 of multiplicities 6, 1, 6, respectively. The Laplacian of this
script is given by:

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1 0 0 0 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0 0 0 0 0
−1 −1 3 −1 0 0 0 0 0 0 0 0 0
−1 −1 −1 3 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.5. Connected sum of two projective planes

First, we construct the following tight script S2RP2 for a connected sum of two
RP2, as in Figure 9. Topologically it is obtained from two circles, then one cuts
a third “small” circle from each initial ones and glue them along their boundary
(with the same orientation) to form the connected sum. In Figure 9 the two initial
circles are: first (l1 + l2) from upper left corner identified with l1 + l2 from bottom
left corner – that gives a circle around the point p1; the second circle is l4+ l3 from
the upper right corner identified with l4 + l3 from lower right corner – a second
circle around p1. Finally, the gluing circle is (l6 + l5), also around p1. It is well
known that topologically RP2�RP2 is equivalent to a Klein bottle. We obtain the
following script geometry:

∂l1 = p2 − p1, ∂l2 = p1 − p2,

∂l3 = p1 − p3, ∂l4 = p3 − p1,

∂l5 = p1 − p0, ∂l6 = p0 − p1,

∂l7 = p0 − p1, ∂l8 = p1 − p0,
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Figure 9. Connected sum of two projective planes

and

∂v1 = l1 + l2 − l6 + l7,

∂v2 = l1 + l2 − l5 − l7,

∂v3 = l3 + l4 + l6 + l8,

∂v4 = l3 + l4 + l5 − l8 .

Therefore,
2∑

j=1

∂vj = 2(l1 + l2 + l3 + l4),

which lead to H1(S2RP2) � Z ⊕ Z2 and H2(S2RP2) = 0, same script holomology
of a Klein bottle.

At the differential operator level, we obtain:

dp0 = −l5 + l6 + l7 − l8,

dp1 = −l1 + l2 + l3 − l4 + l5 − l6 − l7 + l8,

dp2 = l1 − l2, dp3 = l4 − l3,

and

dl1 = v1 + v2, dl2 = v1 + v2,

dl3 = v3 + v4, dl4 = v3 + v4,

dl5 = −v2 + v4, dl6 = −v1 + v3,

dl7 = v1 − v2, dl8 = v3 − v4.
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In matrix form, the Dirac operator for the RP2�RP2 script is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0
0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 1 1
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 1 1
−1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
1 −1 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 1 1 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 −1 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with eigenvalues

−
√
7 +
√
17,−

√
6,−

√
7−
√
17,−2,−

√
2, 0,

√
2, 2,

√
7−
√
17,
√
6,

√
7 +
√
17

of multiplicities 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, respectively.
The Laplace operator is given by:

2Δ2RP2f =

⎡⎢⎢⎣
4 −4 0 0
−4 8 −2 −2
0 −2 2 0
0 −2 0 2

⎤⎥⎥⎦ [f0j ]
t[pj ]

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 −1 1 −2 0 1 −1
0 4 1 −1 0 −2 −1 1
−1 1 4 0 2 0 −1 1
1 −1 0 4 0 2 1 −1
−2 0 2 0 4 −2 −1 1
0 2 0 2 −2 4 1 −1
1 −1 −1 1 −1 1 4 −2
−1 1 1 −1 1 −1 −2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[f1j]

t[lj]

+
1

2

⎡⎢⎢⎣
4 1 −1 0
1 4 0 −1
−1 0 4 1
0 −1 1 4

⎤⎥⎥⎦ [f2j ]
t[vj ] .

A different method of obtaining the connected sum RP2�RP2 is done by
attaching two Möbius bands on the same boundary, as the projective plane RP2

minus a disk is topological equivalent to a Möbius strip. Looking back at Figure 2,
we attach to it a second Möbius band as in Figure 10. The two strips glued together
on the same four points p1, p2, p3, p4, containing two more lines l7, l8 and two more
planes v3, v4 as in Figure 10. To the computations of Subsection 5.1 we add the
following boundaries:

∂l7 = p1 − p2, ∂l8 = p4 − p3,

∂v3 = −l2 + l5 − l7 + l8, ∂v4 = −l3 + l4 − l7 − l8.
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Figure 10. Connecting two Möbius strips

Here we note that

∂(v1 + v2 − v3 − v4) = 2(l7 − l1),

is the generator of the H1(SRP2) = Z2 homology. Note that we obtain the same
script (different labelling) as the Klein bottle (see Figure 4), for which we per-
formed all the necessary computations in subsection 5.3.

6. Outlook

In [13, 15] the authors present an approach to discrete differential modeling, which
includes notions of discrete differential forms on simplexes and discrete manifolds,
discrete boundary and co-boundary operators, discrete Hodge decomposition, and
a discrete version of the Poincaré lemma. The same can and will be studied in
the case of Script Geometry although some of necessary tools need to be devel-
oped since Script Geometry is a more loose concept than working with simplicial
complexes.

In [14] the authors describe their approach to the theory of discrete exterior
calculus (DEC). They introduce notions of discrete vector fields and operators
acting on them, e.g., discrete divergence and curl, which has applications such as
a discrete Hodge decomposition of 3D vector fields on irregular grids. A closely
related work is discrete mechanics, where the main idea is to discretize the varia-
tional principle itself rather than the Euler–Lagrange equations. The discretization
is not intended on time only, DEC methods are used in spatially extended mechan-
ics, i.e., classical field theory. Furthermore, this theory is also widely applied in
discrete electromagnetism which is another field were we see applications of Script
Geometry in the future. This is also closely linked with a principal question in finite
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element exterior calculus. Up to now the commutativity of the exterior derivative
with bounded projections to sub-meshes was only being shown for simplicial de-
compositions of domains. From our point of view this is still a major drawback
for applying this calculus to more general type of meshes. Here, Script Geometry
could be the basis for a more general approach.

In [10, 11, 12] a complete function theory has been established for a Dirac
type operator on the grid Zn, including Taylor series, Fueter polynomials, and a
discrete Cauchy–Kovalevskaya theorem. We look forward to relate this work to
script geometry.
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A Panorama on Quaternionic Spectral Theory
and Related Functional Calculi

Fabrizio Colombo and David P. Kimsey

Abstract. In this paper we offer an overview of the state of the art of quater-
nionic spectral theory. Precisely we review some functional calculi and the
quaternionic spectral theorem based on the S-spectrum. We start with the S-
functional calculus which is the Riesz–Dunford functional calculus for quater-
nionic operators which suggested the existence of the S-spectrum of quater-
nionic operators, then we introduce the Spectral Theorem based on the S-
spectrum which is of fundamental importance for the formulation of quater-
nionic quantum mechanics. Moreover we discuss the quaternionic H∞-func-
tional calculus that is the quaternionic analogue of theH∞-functional calculus
for sectorial operators introduced by A. McIntosh. In the case a quaternionic
linear operator is the infinitesimal generator quaternionic group of linear op-
erators by the Laplace–Stieltjes transform we extend the Philips functional
calculus in this setting. The W -functional calculus and the F -functional calcu-
lus are monogenic functional calculi, in the spirit of the monogenic functional
calculus introduced by A. McIntosh, but both calculi are based on slice hy-
perholomorphic functions and on manipulations of their Cauchy formulas.
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Keywords. Quaternionic spectral theorem based on the S-spectrum, S-func-
tional calculus, H∞-functional calculus, Philips functional calculus, W -func-
tional calculus, F -functional calculus.

1. Introduction

The spectral theorem for normal linear operators on a complex Hilbert space, see
[25], is a crucial result to define functions of operators. Moreover, the spectral
theorem has an incredibly large number of applications. E.g., the spectral theorem
plays an important role in stating the axioms of quantum mechanics, because it
give the structure of the solution of the Schrödinger equation. The interest in spec-
tral theory for quaternionic operators is motivated by the paper [11] of Birkhoff and
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von Neumann, on the logic of quantum mechanics, who showed that Schrödinger
equation can be written basically in the complex or quaternionic setting.

Important contributions to the development of the quaternionic version of
quantum mechanics can be found in [1, 26, 28, 34], but the correct notion of
spectrum for quaternionic operators was still missing until the introduction of the
S-spectrum, see the book [21] and the references therein.

In classical functional analysis the most important tool to define functions
of a linear operator A acting on a complex Banach space X is the theory of
holomorphic functions. Replacing the Cauchy kernel by the resolvent operator of
A in the Cauchy formula for holomorphic functions we obtain the so-called Riesz–
Dunford functional calculus, see [24]. Under certain conditions, this calculus can
be extended to unbounded linear operators acting on a Banach space.

In the classical case the Riesz–Dunford functional calculus and the spectral
theorem are both based on the same notion of spectrum, for a bounded operator
A, its spectrum σ(A) is defined as

σ(A) = {λ ∈ C : λI −A is not invertible in B(X)}

where B(X) denotes the Banach space of all bounded linear operators acting on
X endowed with the natural norm. The resolvent set is defined as

ρ(A) := C \ σ(A)

and the resolvent operator is defined by

R(λ,A) := (λI −A)−1, λ ∈ ρ(A).

Several important properties of operators follows from that fact that R(λ,A) :
ρ(A)→ B(X) is a holomorphic function operator-valued.

In this introduction we will concentrate on the notions of spectra of a quater-
nionic linear operators to understand the difficulties behind the quaternionic spec-
tral theorem and the hyperholomorphic functional calculi. In the sections that
follow we will discuss in detail the spectral theorem and the functional calculi
based on the S-spectrum.

An element s in the set of quaternions H, is denoted by s = s0 + s1e1 +
s2e2 + s3e3, its conjugate is s = s0 − s1e1 − s2e2 − s3e3 where e1, e2 and e3 are
the imaginary units of the quaternion s, Re(s) = s0 is the real part and the norm
|s| is such that |s|2 = s20 + s21 + s22 + s23. We denote by B(V ) the left Banach space
of all bounded right linear operators acting on the two-sided quaternionic Banach
space V . Observe that when we consider a right linear quaternionic operator (the
case of left linear operators is similar) we have two possibilities. The left spectrum
σL(T ) of T ∈ B(V ) is defined by

σL(T ) = {s ∈ H : sI − T is not invertible in B(V )},

where the notation sI in B(V ) means that (sI)(v) = sv.
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The right spectrum σR(T ) of T is associated with the right eigenvalue prob-
lem, i.e., the search for those s ∈ H such that there exists a nonzero vector v
satisfying

T (v) = vs.

It is important to note that if s is a right eigenvalue, then all quaternions
belonging to the sphere r−1sr, r ∈ H \ {0}, are also eigenvalues. But observe that
the operator Is − T associated to the right eigenvalue problem is not linear, so
it is not clear what is the resolvent operator to be considered. The left resolvent
operator RL(s, T ) is defined by

RL(s, T ) := (sI − T )−1, s �∈ σL(T ),

but it is not known what notion of hyperholomorphicity it satisfies.

Because of this ambiguity in the definition of the quaternionic spectrum one
may be tempted to consider Fueter regular functions and see if their Cauchy kernel
suggests what kind of resolvent operator and spectrum one should consider.

Precisely, the Cauchy kernel G of Fueter regular functions is defined by

G(s, q) = s̄− q̄

|s− q|4 =
(s− q)−1

|s− q|2 = (s− q)−2(s− q)−1

and is both left and right Fueter regular on H\{0}. It admits the series expansion∑
n≥0

∑
ν∈σn

Pν(q)Gν(s), for |s| < |q| (1.1)

where σn is a set of indices of permutations and

Gν(s) :=
∂n

∂xn1
1 ∂xn2

2 ∂xn3
3

G(s, 0).

Here Pν(q) denotes the homogeneous polynomials

Pν(q) =
1

k!

∑
�1,...,�k

z�1 . . . z�k ,

where zj = xje0 − x0ej , for j = 1, 2, 3, and the sum is taken over all different
permutations of �1, . . . , �k. This polynomials Pν(q) replace the powers qn, n ∈
N∪{0}, that are not Fueter regular, in the Taylor series for this class of functions.
When we replaces q by operator T and we suppose that T = T0+e1T1+e2T2+e3T3,
where the bounded operators T�, � = 0, 1, 2, 3 commute among themselves, then
sum of the series (1.1) converges, for ‖T ‖ < |q|, to

(sI − T )−2(sI − T )−1,

where T = T0−e1T1−e2T2−e3T3; but in the case T�, � = 0, 1, 2, 3 do not commute
among themselves the sum is not known. It does not seem that it can reman as in
the case of commuting components because of the structure of the Cauchy–Fueter

kernel s−1

|s|2 = s−2s−1 we must be able to write |s|2 = ss also for operators and this
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can be done if TT = T 2
0 + T 2

1 + T 2
2 + T 2

3 that is when T�, � = 0, 1, 2, 3 commute
among themselves.

We do not know what kind of hyperholomorphicity there is associated to the
left resolvent operator RL(s, T ), but for the commuting case we can write

G(s, T ) = RL(s, T )
2RL(s, T )

when s �∈ σL(T ) and s �∈ σL(T ) and G(s, T ) is Cauchy–Fueter regular operator-
valued.

Now let us come to the spectral theorem and to what physicists use in quater-
nionic quantum mechanics. In Adler’s book [1], the right spectrum of quaternionic
linear operators with eigenvalues is used. However, there is no notion of holo-
morphicity. Consequently, only a partial spectral description of linear operators
appears in [1].

In the case of slice hyperholomorphicity the Cauchy kernel is given by the
sum of the series∑

n≥0

qns−1−n = −(q2 − 2qRe(s) + |s|2)−1(q − s), for |q| < |s|

and it does not depend on the commutativity of the components of q so that when
one replaces q by an operator T with noncommuting components the sum of the
above series remains the same. This crucial fact leads to the natural definition of
the S-spectrum. The S-spectrum, see [21], is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible in B(V)},
while the S-resolvent set is

ρS(T ) := H \ σS(T ).

Due to the noncommutativity of the quaternions and form the definition of
slice hyperholomorphicity, there are two different Cauchy kernels and so there are
two resolvent operators associated with a quaternionic linear operator: setting

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1, s ∈ ρS(T )

the left and the right S-resolvent operators are defined as

S−1
L (s, T ) := −Qs(T )(T − sI), S−1

R (s, T ) := −(T − sI)Qs(T ), s ∈ ρS(T ),
(1.2)

respectively. These two S-resolvent operators are slice hyperholomorphic functions
with values in B(V ). Recently it was possible to prove the quaternionic spectral
theorem based on the S-spectrum. This fact restores the analogy with the complex
case in which the Riesz–Dunford functional calculus and the spectral theorem
are based on the same notion of spectrum of a linear operator. To replace the
complex spectral theory with the quaternionic spectral theory we have to replace
the classical spectrum with the S-spectrum. We conclude by saying that the S-
spectrum can be defined also for n-tuples of not necessarily commuting operators
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and the Riesz–Dunford functional calculus can be extended to this case using the
notion of slice hyperholomorphic functions Clifford algebra-valued, see [21].

The plan of the paper is as follows. Section 1 is devoted to the problems that
led to the definition of the S-spectrum. Section 2 contains the Cauchy formulas
of slice hyperholomorphic functions. Section 3 contains the spectral theorem for
bounded normal operators. Section 4 is devoted to relating the spectral repre-
sentation in Section 3 with known results in the finite-dimensional case. Sections
5 is devoted to a treatment of the S-functional calculus for both bounded and
unbounded operators. Section 6 is devoted to the quaternionic version of the H∞-
functional calculus. Section 7 treats the Philips functional calculus which is based
on the bilateral quaternionic Laplace–Stieltjes transform and it applies to infini-
tesimal generators of quaternionic groups. In Section 8 we offer the quaternionic
version of the W-functional calculus. In Section 9 we recall the Fueter mapping
theorem in integral form and the related F -functional calculus.

2. Slice hyperholomorphic functions

In this section we recall some results on slice hyperholomorphic functions, more
details can be found in the books [4, 21, 30]. We denote by S the 2-sphere of purely
imaginary quaternions of modulus 1:

S = {q = x1e1 + x2e2 + x3e3 ∈ H | q2 = −1}

and we recall that for any i ∈ S we can define a complex plane Ci whose elements
are of the form q = u + iv for u, v ∈ R. Any quaternion q belongs to a suitable
complex plane: if we set

iq :=

{
q
|q| , if q �= 0

any i ∈ S, if q = 0,

then q = u + iqv with u = Re(q) and v = |q|, so, it follows that, the skew field of
quaternions H can be seen as

H =
⋃
i∈S

Ci.

For any q = u+ iqv ∈ H we define the set

[q] := {u+ iv | i ∈ S}.

A possible way to define slice hyperholomorphic functions is the following.

Definition 2.1 (Slice hyperholomorphic function). Let U ⊂ H be open and let
f : U → H be a real differentiable function. For any i ∈ S, let

fi := f |U∩Ci
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denote the restriction of f to the plane Ci. The function f is called left slice
hyperholomorphic if, for any i ∈ S,

1

2

(
∂

∂u
fi(q) + i

∂

∂v
fi(q)

)
= 0 for all q = u+ iv ∈ U ∩ Ci (2.1)

and right slice hyperholomorphic if, for any i ∈ S,

1

2

(
∂

∂u
fi(q) +

∂

∂v
fi(q)i

)
= 0 for all q = u+ iv ∈ U ∩ Ci. (2.2)

A left (or right) slice hyperholomorphic function that satisfies f(U ∩Ci) ⊂ Ci for
every i ∈ S is called intrinsic.

We denote the set of all left slice hyperholomorphic functions on U by
SHL(U), the set of all right slice hyperholomorphic functions on U by SHR(U)
and the set of all intrinsic functions by N (U).

Intrinsic functions are important because the multiplication and composition
operations preserve slice hyperholomorphicity. This is not true for arbitrary slice
hyperholomorphic functions.

Definition 2.2. The left slice hyperholomorphic Cauchy kernel is

S−1
L (s, q) = −(q2 − 2Re(s)q + |s|2)−1(q − s) for q /∈ [s]

and the right slice hyperholomorphic Cauchy kernel is

S−1
R (s, q) = −(q − s)(q2 − 2Re(s)q + |s|2)−1 for q /∈ [s].

Definition 2.3. Let U ⊆ H. We say that U is axially symmetric if, for all u+iv ∈ U ,
the whole 2-sphere [u+ iv] is contained in U .

Definition 2.4. Let U ⊆ H be a domain in H. We say that U is a slice domain
(s-domain for short) if U ∩ R is nonempty and if U ∩ Ci is a domain in Ci for all
i ∈ S.

So we can state the Cauchy formulas:

Theorem 2.5. Let U ⊂ H be an axially symmetric slice domain such that its bound-
ary ∂(U∩Ci) in Ci consists of a finite number of continuously differentiable Jordan
curves. Let i ∈ S and set dsi = −i ds. If f is left slice hyperholomorphic on an
open set that contains U , then

f(q) =
1

2π

∫
∂(U∩Ci)

S−1
L (s, q) dsi f(s) for all q ∈ U.

If f is right slice hyperholomorphic on an open set that contains U , then

f(q) =
1

2π

∫
∂(U∩Ci)

f(s) dsi S
−1
R (s, q) for all q ∈ U.

The above integrals depend neither on the open set U nor on the complex plane Ci

for i ∈ S.
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In the sequel we will need the following definitions.

Definition 2.6 (Argument function). Let s ∈ H \ {0}. We define arg(s) as the
unique number θ ∈ [0, π] such that s = |s|eθis .

Observe that θ = arg(s) does not depend on the choice of is if s ∈ R \ {0}
since p = |p|e0i for any i ∈ S if p > 0 and p = |p|eπi for any i ∈ S if p < 0.

Let ϑ ∈ [0, π] we define the sets

Sϑ = {s ∈ H | | arg(p)| ≤ ϑ or s = 0},

S0
ϑ = {s ∈ H | | arg(p)| < ϑ}. (2.3)

We now introduce the following subsets of the set of slice hyperholomorphic
functions that consist of bounded slice hyperholomorphic functions.

Definition 2.7. Let μ ∈ (0, π]. We set

SH∞
L (S0

μ) = {f ∈ SHL(S0
μ) such that ‖f‖∞ := sup

s∈S0
μ

|f(s)| <∞},

SH∞
R (S0

μ) = {f ∈ SHR(S0
μ) such that ‖f‖∞ := sup

s∈S0
μ

|f(s)| <∞},

N∞(S0
μ) := {f ∈ N (S0

μ) such that ‖f‖∞ := sup
s∈S0

μ

|f(s)| <∞}.

With these spaces of bounded functions with suitable decay conditions and
with the subclass of closed operators whose S-resolvent operators satisfy appro-
priate conditions we can extend the H∞-functional calculus in the quaternionic
setting.

3. The spectral theorem based on the S-spectrum

The spectral theorem for quaternionic normal matrices based on the right spectrum
is originally due to [38] and, also independently, to [12] (see also the survey papers
[46] and [27]). Moreover, in the literature there are some papers on the quaternionic
spectral theorem see [28, 43, 45], where the notion of spectrum is not made clear.
In the paper [10], using the quaternionic version of Herglotz theorem (see [9])
it is proved the spectral theorem for quaternionic unitary operator based on the
S-spectrum. The spectral theorem for bounded and unbounded normal operators
based on the S-spectrum was proved in [8]. In [32], the spectral theorem based
on S-spectrum is proved for compact normal operators on a quaternionic Hilbert
space. In this section we show the structure of the spectral theorem for normal
bounded quaternionic operators on a Hilbert space taken form [8].

Definition 3.1. Let H be a right linear quaternionic Hilbert space, endowed with
an H-valued inner product 〈·, ·〉 which satisfies, for every α, β ∈ H, and x, y, z ∈ H,
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the relations:

〈x, y〉 = 〈y, x〉.
〈x, x〉 ≥ 0 and ‖x‖2 := 〈x, x〉 = 0⇐⇒ x = 0.

〈xα + yβ, z〉 = 〈x, z〉α+ 〈y, z〉β.
〈x, yα+ zβ〉 = ᾱ〈x, y〉+ β̄〈x, z〉.

Theorem 3.2 ([31]). Let T ∈ L(H). The following statements hold:

(i) If T is positive, then σS(T ) ⊆ [0,∞). If, in particular, T ∈ B(H) is positive,
then

σS(T ) ⊆ [0, ‖T ‖].
(ii) If T is self-adjoint, then σS(T ) ⊆ R. If, in particular, T ∈ B(H) is self-

adjoint, then

σS(T ) ⊆ [−‖T ‖, ‖T ‖].
(iii) If T is anti self-adjoint, then σS(T ) ⊆ {p ∈ H : Re(p) = 0}. If, in particular,

T ∈ B(H) is anti self-adjoint, then

σS(T ) ⊆ {p ∈ H : Re(p) = 0 and |p| ≤ ‖T ‖}.
(iv) If T is unitary, then σS(T ) ⊆ S.

Throughout this paper, we will only be considering right quaternionic Hilbert
spaces. Consequently, we will use quaternionic Hilbert space in place of right quater-
nionic Hilbert space.

The following result can be found in Proposition 2.6 of [31] with the caveat
that the inner product in [31] is antilinear in the first variable and linear in the
second variable.

Theorem 3.3. Let N be an orthonormal basis of a quaternionic Hilbert space H.
Then every x ∈ H can be decomposed uniquely via

x =
∑
z∈N

z〈x, z〉, (3.1)

where∑
z∈N

z〈x, z〉 := sup

{ ∑
z∈Nf

z〈x, z〉 : Nf is a non-empty finite subset of N
}
.

Definition 3.4. Let J ∈ B(H) be anti self-adjoint and unitary and j ∈ S. Let

Hj
± denote the closed complex (with respect to the complex plane Cj) subspaces

given by

Hj
± = {x ∈ H : Jx = ±xj}. (3.2)

We will now formulate some useful results from [31] in the following lemma.

Lemma 3.5. If J is an anti self-adjoint and unitary operator and j ∈ S, then:

(i) Hj
± �= {0}.
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(ii) As a Cj-Hilbert space, H admits the following direct sum decomposition

H = Hj
+ ⊕H

j
−. (3.3)

Definition 3.6. Fix an orthonormal basis N of a quaternionic Hilbert space H. The
left scalar multiplication Lp of H induced by N is the map

(p, x) ∈ H×H �→ px ∈ H
given by

px :=
∑
y∈N

yp〈x, y〉.

Lemma 3.7 (Statement (a) of Proposition 3.8 in [31]). Let H be a quaternionic
Hilbert space. If J ∈ B(H) is an anti self-adjoint and unitary operator, then cor-
responding to any fixed j ∈ S, there exists a left-scalar multiplication Lp so that

J = Lj .

In the following theorem, we will make use of the operator |T | := (T ∗T )1/2

for T ∈ B(H). See Section 2.4 of [31] for a definition of the square root of a positive
operator which relies on the functional calculus therein.

Theorem 3.8. Let T ∈ B(H) be normal. Then there exist uniquely determined
operators A := (1/2)(T + T ∗) and B := (1/2)|T − T ∗| which both belong to B(H)
and an operator J ∈ B(H) which is uniquely determined on {Ker(T − T ∗)}⊥ so
that the following properties hold:

(i) T = A + J B.
(ii) A is self-adjoint and B is positive.
(iii) J is anti self-adjoint and unitary.
(iv) A, B and J mutually commute.
(v) For any fixed j ∈ S, there exists an orthonormal basis Nj of H with the

property that J = Lj.

Definition 3.9. Let Ω ⊆ H. We call Ω axially symmetric if p0 + ip1 ∈ Ω with
p0, p1 ∈ R and i ∈ S, then p0 + jp1 ∈ Ω ∩ Cj for all j ∈ S.

Definition 3.10. Let Ω ⊆ H be an axially symmetric set and let D ⊆ R2 be such
that

D = {(u, v) ∈ R2 : u+ jv ∈ Ω for some j ∈ S}.
Let S(Ω,H) denote the quaternionic linear space of slice continuous functions, i.e.,
S(Ω,H) consists of functions f : Ω→ H of the form

f(u+ jv) = f0(u, v) + jf1(u, v) for (u, v) ∈ D and for j ∈ S,

where f0 and f1 are continuous H-valued functions on D so that

f0(u, v) = f0(u,−v) and f1(u, v) = −f1(u,−v).
If f0 and f1 are real-valued, then we say that the continuous slice function f
is intrinsic. The subspace of intrinsic continuous slice functions is denoted by
SR(Ω,H).
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Remark 3.11. We observe that if f ∈ SR(Ω,H) and we consider the restriction of
f to Ωj := Ω∩Cj , where j ∈ S, then f has values in Cj . This fact makes clear the
notation SR(Ωj ,Cj).

With those tools at hand we can state the main steps that lead to the spectral
theorem based on the S-spectrum. The following result relates continuous functions
and slice continuous functions.

Lemma 3.12 (See Lemma 4.1 in [8]). Let C(Ω+
j ,R) denote the set of real-valued

continuous functions on Ω+
j = σS(T ) ∩ C+

j and SR(Ωj ,R) denote the set of real-

valued functions in SR(Ωj ,H), where Ωj = σS(T ) ∩ Cj. Let C0(Ω
+
j ,R) denote the

subset of functions f ∈ C(Ω+
j ,R) such that f |Ωj ∩R = 0. The following statements

hold:

(i) There exists a bijection between C(Ω+
j ,R) and SR(Ωj ,R).

(ii) If Ω+
j ∩ R �= ∅, then there exists a bijection between C0(Ω

+
j ,R) and purely

imaginary functions in SR(Ωj ,H).
(iii) If Ω+

j ∩ R = ∅, then there exists a bijection between C(Ω+
j ,R) and purely

imaginary functions in SR(Ωj ,H).

Now we construct the spectral measure associated to the normal operator
T = A+ JB ∈ B(H) be normal, fix x ∈ H and let

�x(g) = 〈g(T )x, x〉, g ∈ C(Ω+
j ,R),

where g(T ) = f0(B,A) is constructed by the continuous functional calculus. The
operator �x is a real-valued bounded linear functional on C(Ω+

j ,R). Moreover, �x
is a positive functional.

The Riesz representation theorem for continuous functions yields the exis-
tence of a uniquely determined positive-valued measure μx (for a fixed j ∈ S) so
that

�x(g) =

∫
Ω+

j

g(p)dμx(p), g ∈ C(Ω+
j ,R). (3.4)

By polarization we get

〈g(T )x, y〉 =
∫
Ω+

j

g(p)dμx,y(p), g ∈ C(Ω+
j ,R), (3.5)

where
4μx,y = μx+y − μx−y + e1μx+ye1 − e1μx−ye1

+ e1μx−ye2e3 − e1μx+ye2e3 + μx+ye3e3 − μx−ye3e3.
(3.6)

The measure μx,y has the following properties (see Lemma 4.3 in [8]):

(i) μxα+yβ,z = μx,zα+ μy,zβ, α, β ∈ H.

(ii) μx,yα+zβ = ᾱμx,y + β̄μx,z, α, β ∈ H.

(iii) |μx,y(σS(T ) ∩ C+
j )| ≤ ‖x‖‖y‖.

(iv) μ̄x,y = μy,x,
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for all x, y, z ∈ H. So thanks to the above properties from the Riesz representation
theorem for quaternionic Hilbert spaces it follows that there exists a bounded
linear operator E such that

μx,y(σ) = 〈x,E(σ)y〉, σ ∈ B(σS(T ) ∩C+
j ), (3.7)

where B(σS(T ) ∩ C+
j ) denotes the Borel set in σS(T ) ∩ C+

j .

Theorem 3.13 (See Theorem 4.5 in [8]). The B(H)-valued countably additive mea-
sure Ej (that we denote by E), given by (3.7), for all σ, τ ∈ B(σS(T )∩C+

j ), enjoys
the following properties:

(i) E(σ) = E(σ)∗.
(ii) ‖E(σ)‖ ≤ 1.
(iii) E(∅) = 0 and E(σS(T ) ∩ C+

j ) = IH.

(iv) E(σ ∩ τ) = E(σ)E(τ).
(v) E(σ)2 = E(σ).
(vi) If σS(T ) ∩ R = ∅ (respectively, σS(T ) ∩ R �= ∅), then E(σ) commutes with

f(T ) for all f ∈ C(σS(T ) ∩C+
j ,Cj) (respectively, f ∈ C0(σS(T ) ∩ C+

j ,Cj)).

(vii) E(σ) and E(τ) commute.

One of the crucial facts in the proof of the spectral theorem is to glue together
the components f0(T ), f1(T ), of the operators f(T ), and the operator J . It turns
out that, if T = A+ JB, and f = f0 + jf1 is an intrinsic slice continuous function
then by the continuous functional calculus for intrinsic functions in [31] we have

f(T ) = f0(A,B) + Jf1(A,B)

that we write in a more compact way as

f(T ) = f0(T ) + Jf1(T )

where f0(T ), f1(T ) and J commute among themselves so, see the proof of Lemma
4.4 in [8], we have

〈f(T )x, y〉 = 〈f0(T )x, y〉+ 〈f1(T )Jx, y〉

=

∫
Ω+

j

f0(p)d〈E(p)x, y〉 +
∫
Ω+

j

f1(p)d〈E(p)Jx, y〉, x, y ∈ H.

Using the properties of J and the decomposition of Theorem 3.8 we have the
two equivalent version of the spectral theorem.

Theorem 3.14 (Theorem 4.7 in [8]). Suppose T ∈ B(H) is normal, let J ∈ B(H)
be as in the decomposition of Theorem 3.8 and fix j ∈ S. Let Ω+

j = σS(T ) ∩ C+
j

and Πj
± denote the orthogonal projection onto Hj

± given in (3.3), respectively. If
σS(T ) ∩ R = ∅ (respectively σS(T ) ∩ R �= ∅), then there exists a unique spectral
measure Ej on Ω+

j so that

〈f(T )x, y〉 =
∫
Ω+

j

f0(p) d〈Ej(p)x, y〉+
∫
Ω+

j

f1(p) d〈JEj(p)x, y〉, x, y ∈ H, (3.8)
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or, equivalently,

〈f(T )x, y〉 =
∫
Ω+

j

f(p) d〈Πj
+Ej(p)x, y〉+

∫
Ω+

j

f(p) d〈Πj
−Ej(p)x, y〉, x, y ∈ H,

(3.9)
for f = f0+ f1j ∈ C(Ω+

j ,Cj) (respectively, C0(Ω
+
j ,Cj)), where f0 and f1 are real-

valued. Moreover, upon identifying the complex planes Ck with Cj in the natural
way by the mapping ϕjk, we have Ej(ϕjk(σ)) = Ek(σ), σ ∈ B(Ω+

k ) for all j, k ∈ S.

Remark 3.15. It should be noted that a spectral mapping principle for f(T ), as in
Theorem 3.14, holds in the following sense:

f(σS(T ) ∩ C+
j ) = σS(f(T )) ∩ C+

j , j ∈ S. (3.10)

Formula (3.10) has been shown in Theorem 7.8 in [31]. One can also check that
formula (3.10) holds by using Theorem 3.14.

We recall that in the paper [8] a very general functional calculus is con-
structed (see Section 5 in [8]), so that the Spectral Theorem 3.14 holds not only
for continuous functions but for a larger class. Moreover, the functional calculus in
Section 5 in [8] and the spectral theorem for bounded operators allows to extend
the spectral theorem to unbounded normal operators (see Theorem 6.2 in [8]) and
to define, for these operators, a functional calculus see Corollary 6.6 in [8]).

4. The spectral theorem in the finite-dimensional case

We will begin the section with a version of the spectral theorem for a normal
matrix T ∈ Hn×n, where Hn×n denotes the set of all n× n matrices with entries
in H, originally due to Lee [38] and, also independently, to Brenner [12] (see also
the survey papers [46] and [27]).

Theorem 4.1 ([38], [12]). Let T ∈ Hn×n be normal. Corresponding to any j ∈ S,
there exist a unitary matrix Uj and λ1, . . . , λn ∈ C+

j , where C+
j = {x + jy :

x ∈ R and y ≥ 0}, such that

T = Udiag(λ1, . . . , λn)U
∗. (4.1)

The goal of this section is to explain how (4.1) and (3.8) are related when
f(p) = p. An important ingredient in the proof of (3.8) is the decomposition

T = A+BJ, (4.2)

where A, B and J are mutually commuting operators belonging to B(H) with
the following properties: A = A∗, B is positive and J∗ = J−1 = −J . Note that
A and B are uniquely determined by T , however J is only unique on a certain
subspace ofH. The decomposition (4.2) was established in [31] using basic operator
factorization results. Moreover, (4.2) was proven in [31] without any dependence
on a spectral theorem.



A Panorama on Quaternionic Spectral Theory 123

We first note that if f(p) = p and H = Hn in (3.8), then

〈Tx, y〉 =
∫
σS(T )∩C

+
j

Re(p)d〈E(p)x, y〉 +
∫
σS(T )∩C

+
j

Im(p)d〈JE(p)x, y〉,

where x, y ∈ Hn. Since T ∈ Hn×n, we have σS(T ) = σR(T ), and hence

〈Tx, y〉 =
n∑

m=1

{Re(λm)〈E(λm)x, y〉+ Im(λm)〈JE(λm)x, y〉}

=

n∑
m=1

〈{Re(λm) + JIm(λm)}E(λm)x, y〉. (4.3)

On the other hand, from (4.1), we have

T = UD1U
∗ + UD2jU

∗,

where

D1 = diag(Re(λ1), . . . ,Re(λn)) and D2 = diag(Im(λ1), . . . , Im(λn)).

Moreover, if we let J = UjU∗, then we have A = UD1U
∗ and B = UD1U

∗

such that A = A∗, B is positive and J∗ = J−1 = −J and A, B and J mutually
commute. Thus,

Udiag(Re(λ1), . . . ,Re(λn))U
∗ =

n∑
m=1

Re(λm)E(λm) (4.4)

and

Udiag(Im(λ1), . . . , Im(λn))U
∗ =

n∑
m=1

Im(λm)E(λm). (4.5)

5. The S-functional calculus

The discovery of the Cauchy formula of slice hyperholomorphic functions [18] al-
lowed the full understanding of the quaternionic functional calculus, see [7, 15, 16].
In this section we recall the basic facts and for more details we suggest the original
papers [7, 15, 16] and the book [21]. Let V be a right vector space on H. A map
T : V → V is said to be a right linear operator if

T (u+ v) = T (u) + T (v), T (us) = T (u)s, for all s ∈ H, u, v ∈ V.

By EndR(V ) we denote the set of right linear operators acting on V . In the sequel,
we will consider only two-sided vector spaces V , otherwise the set EndR(V ) is
neither a left nor a right vector space over H. With this assumption, EndR(V )
becomes both a left and a right vector space on H with respect to the operations

(sT )(v) := sT (v), (Ts)(v) := T (sv), for all s ∈ H, v ∈ V. (5.1)

In particular (5.1) gives (sI)(v) = (Is)(v) = sv. Similar considerations can be
done when we consider V as a left vector space on H and a map T : V → V is
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a left linear operator. In the sequel, if we do not specify, we will always assume
that V is a two-sided quaternionic Banach space with norm ‖ · ‖. The two-sided
vector space B(V ) of all right linear bounded operators on V is a Banach spaces
if endowed with the natural norms:

‖T ‖ := sup
v∈V

‖T (v)‖
‖v‖ .

We will also denote by L(V ) the set of (right) linear operators. In this paper
we will mainly consider right linear operators for simplicity but all the results that
follows can be applied to left linear operators with suitable modifications of the
statements. The following theorem makes precise the heuristic discussion in the
introduction.

Theorem 5.1. Let T ∈ B(V ) and let s ∈ H. Then, for ‖T ‖ < |s|:
(1) the operator (T − sI)−1 s(T − sI)− T is the inverse of

∑
n≥0 T

ns−1−n and∑
n≥0

T ns−1−n = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (5.2)

(2) the operator (T − sI) s(T − sI)−1 − T is the inverse of
∑

n≥0 s
−1−nT n and∑

n≥0

s−1−nT n = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (5.3)

The above result involves just the powers T n of the operator T and in the
case T is written as T = T0 + iT1 + jT2 + kT3, where T�, � = 0, 1, 2, 3 are the
bounded operators we do not have to require that T� mutually commute. This is
the first crucial point. It is from the above theorem that the notion of S-spectrum
naturally shows up.

Definition 5.2 (The S-spectrum and the S-resolvent set). Let T ∈ B(V ). We define
the S-spectrum σS(T ) of T as:

σS(T ) = {s ∈ H : T 2 − 2 Re(s)T + |s|2I is not invertible in B(V)}.
The S-resolvent set ρS(T ) is defined by

ρS(T ) = H \ σS(T ).

The notion of S-spectrum of a linear quaternionic operator T is suggested
by the definition of S-resolvent operator that is the kernel useful for the quater-
nionic functional calculus. From the definition of the S-spectrum directly follows
its spherical nature.

Theorem 5.3 (Structure of the S-spectrum). Let T ∈ L(V ) and let p = p0+ p1i ∈
σS(T ). Then all the elements of the sphere [p0 + ip1] belong to σS(T ).

Definition 5.4 (The S-resolvent operators). Let V be a two-sided quaternionic
Banach space, T ∈ B(V ) and s ∈ ρS(T ). We define the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (5.4)
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and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (5.5)

In this setting there is a major difference with respect to the complex case.
Indeed, the resolvent equation involves both the S-resolvent operators. This means
that both formulations (using the two Cauchy formulas) of the S-functional cal-
culus are necessary.

Theorem 5.5 (see [7]). Let T ∈ B(V ). For s, p ∈ ρS(T ) with s /∈ [p], it is

S−1
R (s, T )S−1

L (p, T )v =
[
[S−1

R (s, T )− S−1
L (p, T )]p (5.6)

− s[S−1
R (s, T )− S−1

L (p, T )]
]
(p2 − 2s0p+ |s|2)−1v, v ∈ V.

We conclude with the fact that the spectrum of a bounded linear operator is
a nonempty and compact set also in the quaternionic setting.

Theorem 5.6 (Compactness of S-spectrum). Let T ∈ B(V ). Then the S-spectrum
σS(T ) is a compact nonempty subset of H.

Definition 5.7. Let V be a two-sided quaternionic Banach space, T ∈ B(V ) and
let U ⊂ H be an axially symmetric s-domain that contains the S-spectrum σS(T )
be such that ∂(U ∩ Cj) is union of a finite number of continuously differentiable
Jordan curves for every j ∈ S. We say that U is a T -admissible open set.

Definition 5.8. Let V be a two-sided quaternionic Banach space, T ∈ B(V ) and
let W be an open set in H.

(i) A function f ∈ SHL(W ) is said to be locally left slice hyperholomorphic on
σS(T ) if there exists a T -admissible domain U contained in H and such that

U ⊂ W . We denote by SHL
σS(T ) the set of locally slice hyperholomorphic

functions on σS(T ).

(ii) A function f ∈ SHR(W ) is said to be locally right slice hyperholomorphic
on σS(T ) if there exists a T -admissible domain U contained in H and such

that U ⊂W . We denote by SHR
σS(T ) the set of locally slice hyperholomorphic

functions on σS(T ).

Definition 5.9 (The (quaternionic) S-functional calculus). Let V be a two-sided
quaternionic Banach space and T ∈ B(V ). Let U ⊂ H be a T -admissible domain
and set dsi = −dsi. We define

f(T ) =
1

2π

∫
∂(U∩Ci)

S−1
L (s, T ) dsi f(s), for f ∈ SHL

σS(T ), (5.7)

and

f(T ) =
1

2π

∫
∂(U∩Ci)

f(s) dsi S
−1
R (s, T ), for f ∈ SHR

σS(T ). (5.8)

Remark 5.10. The S-functional calculus is well defined because the two integrals
depend neither on the open set U , that contains the S-spectrum of T , nor on the
imaginary unit i ∈ S.
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Associated to the quaternionic functional calculus there are the Riesz projec-
tors. We suppose that T ∈ B(V ) and σS(T ) = σ1S(T ) ∪ σ2S(T ), with

dist (σ1S(T ), σ2S(T )) > 0.

Let U1 and U2 be two axially symmetric slice domains such that σ1S(T ) ⊂ U1 and
σ2S(T ) ⊂ U2, with U1 ∩ U2 = ∅. We define that operators

P� :=
1

2π

∫
∂(U�∩Ci)

S−1
L (s, T ) dsi, � = 1, 2. (5.9)

Using the S-resolvent equation it follows that P� are projectors, that is P 2
� = P�,

and TP� = P�T for � = 1, 2.

The most important properties of the Riesz–Dunford functional calculus are
also shared also by the S-functional calculus. In fact, the S-functional calculus
agrees with that natural functional calculus for polynomials, thanks to the linearity
and the fact that

Tm =
1

2π

∫
∂(U∩Ci)

S−1
L (s, T ) dsi s

m, m ∈ N ∪ {0}

with obvious meaning of the symbols. In general it is not true that the product
of two slice hyperholomorphic functions is still slice hyperholomorphic, but when
we consider the multiplication by an intrinsic function, on the correct side, we
preserve the slice hyperholomorphicity (left or right). In the case (fg)(T ) is defined
we have the product rule (fg)(T ) = f(T )g(T ) of the S-functional calculus. For
intrinsic functions we also have the spectral mapping theorem and the spectral
radius theorem, see [7, 15, 16]. The Taylor Formula has been proved in [22].

5.1. The case of unbounded operators

The S-functional calculus can be extended to unbounded operators but there is
a strong condition to assume. As in the classical setting the function f has to
be holomorphic at infinity. In the quaternionic setting we say that f is a slice
hyperholomorphic function at ∞ if f(q) is slice hyperholomorphic function in a
set D′(∞, r) = {q ∈ H : |q| > r}, for some r > 0, and limq→∞ f(q) exists and it is
finite. We set f(∞) to be the value of this limit. We will see how this conditions can
be removed in the H∞-functional calculus or with the Phillips functional calculus,
where stronger conditions are assumed on the operator.

Definition 5.11. Let T ∈ L(V ) be densely defined and let Rs(T ) : D(T 2)→ V be
given by

Rs(T )x = {T 2 − 2Re(s)T + |s|2I}x, x ∈ D(T 2).

The S-resolvent set of T is defined as follows

ρS(T ) ={s ∈ V : Ker(Rs(T )) = {0}, Ran(Rs(T )) is dense

in V and Rs(T )
−1 ∈ B(V )}.
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The S-spectrum is defined as

σS(T ) = H \ ρS(T ).
We denote by K(V ) the set of right linear closed operators T : D(T ) ⊂ V → V,

such that D(T ) is dense in V . In the case of unbounded operators the S-spectrum
in not necessarily bounded and we have to take into account the point at infinity.
So we define the extended S-spectrum of T as

σS(T ) := σS(T ) ∪ {∞}.
For operators T ∈ K(V ) the definition of the set of locally slice hyperholo-

morphic functions on σS(T ) has to take into account the point at infinity so with

consider SHL
σS(T ), and also, analogously for SHR

σS(T ).

The open set U related to f ∈ SHL
σS(T ) (resp. SHR

σS(T )) need not to be
connected. Moreover, as in the classical functional calculus, U in general depends
on f and can be unbounded. In the case of unbounded operators we will always
require that the S-resolvent set is not empty.

Definition 5.12 (The S-functional calculus for unbounded operators). Consider
k ∈ R and the function

Φ : H→ H

defined by p = Φ(s) = (s − k)−1, Φ(∞) = 0, Φ(k) = ∞. Let T ∈ K(V ) with

ρS(T ) ∩ R �= ∅ and suppose that f ∈ SHL
σS(T ) (resp. SHR

σS(T )). Let us consider

φ(p) := f(Φ−1(p))

and the bounded linear operator defined by

A := (T − kI)−1, for some k ∈ ρS(T ) ∩ R.

We define, in both cases, the operator f(T ) as

f(T ) = φ(A). (5.10)

Since we assume that ρS(T ) �= ∅, we can define the operator

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1, s ∈ ρS(T ),

which is called the pseudo-resolvent (operator) of T . For right linear operators the
S-resolvent operators that are defined on the whole space V are given by:

Definition 5.13. Let T ∈ K(V ). The left S-resolvent operator is defined as

S−1
L (s, T ) := Qs(T )s− TQs(T ), s ∈ ρS(T ), (5.11)

and the right S-resolvent operator is defined as

S−1
R (s, T ) := −(T − Is)Qs(T ), s ∈ ρS(T ). (5.12)

From the above definitions of S-resolvent operators we get an integral repre-
sentation of the S-functional calculus. The following theorem also shows that the
S-functional calculus for unbounded operators is well defined because it does not
depend on the point k ∈ R that we choose to define f(T ) = φ(A).
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Theorem 5.14. Let V be a two-sided quaternionic Banach space and let W be a
T -admissible open set. Let T ∈ K(V ) with ρS(T )∩R �= ∅. Then the operator f(T )
defined in (5.10) is independent of k ∈ ρS(T )∩R, and, for f ∈ RL

σS(T ) and v ∈ V ,

we have

f(T )v = f(∞)Iv +
1

2π

∫
∂(W∩Ci)

S−1
L (s, T ) dsi f(s)v, (5.13)

and for f ∈ RR
σS(T ) and v ∈ V , we have

f(T )v = f(∞)Iv +
1

2π

∫
∂(W∩Ci)

f(s) dsi S
−1
R (s, T )v. (5.14)

For left linear operators a similar result holds. The proof of Theorem 5.14 is
based on the following non trivial relations between the S-resolvent of T and the
S-resolvent of A:

S−1
L (s, T )v = pIv − S−1

L (p,A)p2v, v ∈ V, (5.15)

and

S−1
R (s, T )v = pIv − p2S−1

R (p,A)v, v ∈ V. (5.16)

where T ∈ K(V ), Φ, φ are as above and on the facts that Φ(σS(T )) = σS(A) and
φ(p) = f(Φ−1(p)) determines a one-to-one correspondence between f ∈ SHσS(T )

and φ ∈ SHσS(A). The fractional powers have been studied in [23].

6. The H∞-functional calculus

The H∞-functional calculus has been introduced by A. McIntosh in [40] (see also
[2]) and can be considered an extension of the Riesz–Dunford functional calculus to
a class of unbounded operators. This calculus is connected with pseudo-differential
operators, with Kato’s square root problem, and with the study of evolution equa-
tions and, in particular, the characterization of maximal regularity and of the frac-
tional powers of differential operators. In the recent paper [3] the H∞-functional
calculus has been extended to quaternionic operators and to n-tuples of not nec-
essarily commuting operators. In this section we recall some of the main results
related to this calculus in the quaternionic setting.

Definition 6.1 (Operator of type ω). Let ω ∈ [0, π) we say the linear operator
T : D(T ) ⊆ V → V is of type ω if

(i) T is closed and densely defined
(ii) σS(T ) ⊂ Sϑ ∪ {∞}
(iii) for every ϑ ∈ (ω, π] there exists a positive constant Cϑ such that

‖S−1
L (s, T )‖ ≤ Cϑ

|s| for all non zero s ∈ S0
ϑ,

‖S−1
R (s, T )‖ ≤ Cϑ

|s| for all non zero s ∈ S0
ϑ.
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In order to define bounded functions of operators of type ω, we need a suitable
subclasses of bounded slice hyperholomorphic functions that we have introduced
in Section 1.

Definition 6.2. We define the spaces

ΨL(S0
μ) =

{
f ∈ SH∞

L (S0
μ) : ∃ α > 0, c > 0 |f(s)| ≤ c|s|α

1 + |s|2α , for all s ∈ S0
μ

}
,

ΨR(S0
μ) =

{
f ∈ SH∞

R (S0
μ) : ∃ α > 0, c > 0 |f(s)| ≤ c|s|α

1 + |s|2α , for all s ∈ S0
μ

}
,

Ψ(S0
μ) =

{
f ∈ N∞(S0

μ) : ∃ α > 0, c > 0 |f(s)| ≤ c|s|α
1 + |s|2α , for all s ∈ S0

μ

}
.

For operators of type ω and for slice hyperholomorphic functions as in Defi-
nition 6.2 we can define the following functional calculus.

Definition 6.3 (The S-functional calculus for operators of type ω). Let T be an
operator of type ω. Let i ∈ S, and let S0

μ be the sector defined above. Choose a

piecewise smooth path Γ in S0
μ ∩Ci that goes from∞eiθ to∞e−iθ, for ω < θ < μ,

then

ψ(T ) :=
1

2π

∫
Γ

S−1
L (s, T ) dsi ψ(s), for all ψ ∈ ΨL(S0

μ), (6.1)

ψ(T ) :=
1

2π

∫
Γ

ψ(s) dsi S
−1
R (s, T ), for all ψ ∈ ΨR(S0

μ). (6.2)

The S-functional calculus for operators of type ω is well defined because the
integrals (6.1) and (6.2) depend neither on Γ nor on i ∈ S, and they define bounded
operators, see Theorem 4.9 in [3]. Moreover the linearity of the calculus is obvious
and the product rule holds, see Theorem 4.12 in [3]. To define the H∞-functional
calculus we need the following set of operators:

Definition 6.4 (The setΩ). Let ω be a real number such that 0 ≤ ω ≤ π. We denote
by Ω the set of linear operators T acting on a two-sided quaternionic Banach space
such that:

(i) T is a linear operator of type ω;
(ii) T is one-to-one and with dense range.

Then we define the following function spaces according to the set of operators
defined above:

Definition 6.5. Let ω and μ be real numbers such that 0 ≤ ω < μ ≤ π, we set

FL(S0
μ) = {f ∈ SHL(S0

μ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0},
FR(S0

μ) = {f ∈ SHR(S0
μ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0},

F(S0
μ) = {f ∈ N (S0

μ) : |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0}.
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To extend the S-functional calculus for operators of type ω we consider a
quaternionic two-sided Banach space V , the operators in the class Ω, and

I) The non commutative algebra FL(S0
μ) (resp. FR(S0

μ)).

II) The S-functional calculus Φ for operators of type ω

Φ : ΨL(S0
μ) (resp. ΨR(S0

μ))→ B(V ), Φ : φ→ φ(T ).

III) The commutative subalgebra of FL(S0
μ) consisting of intrinsic rational func-

tions.
IV) The functions in FL(S0

μ) have at most polynomial growth. So taken an in-
trinsic rational functions ψ the operator ψ(T ) can be defined by the rational
functional calculus, see Definition 3.7 in [3].

V) We assume that ψ(T ) is injective.

Definition 6.6 (The quaternionic H∞ functional calculus). Let V be a two-sided
quaternionic Banach space and let T belong to the set Ω. For k ∈ N consider the
function

ψ(s) :=
( s

1 + s2

)k+1

.

For f ∈ FL(S0
μ), and T right linear we define the extended functional calculus as

f(T ) := (ψ(T ))−1(ψf)(T ). (6.3)

For f ∈ FR(S0
μ), and T left linear we define the extended functional calculus as

f(T ) := (fψ)(T )(ψ(T ))−1. (6.4)

We say that ψ regularizes f .

In the previous definition the operator (ψf)(T ) (resp. (fψ)(T )) is defined
using the S-functional calculus Φ for operators of type ω, and ψ(T ) is defined by
the rational functional calculus (see Definition 3.7 in [3]).

The following results is of crucial importance because it says that the quater-
nionic H∞ functional calculus is well defined because it does not depend on the
choice of ψ.

Theorem 6.7 (See Theorem 5.5 in [3]). The definition of the functional calculus
in (6.3) and in (6.4) does not depend on the choice of the intrinsic rational slice
hyperholomorphic function ψ.

This calculus can be applied to several operators in quaternionic analysis, for
example the Cauchy–Fueter operator, quaternionic operators appearing in quater-
nionic quantum mechanics, and the global operator that annihilates slice hyper-
holomorphic functions:

|q|2 ∂

∂x0
+ q

3∑
j=1

xj
∂

∂xj
, where q = x1e1 + x2e2 + x3e3.
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7. The Phillips functional calculus for quaternionic groups

In the papers [5, 17, 33] the problem of the generation of quaternionic groups and
semigroups is treated using the S-spectrum.

In this section we recall some important fact on the Phillips functional cal-
culus for quaternionic operators developed in the paper [6].

A family of bounded right-linear operators (U(t))t≥0 on V is called a strongly
continuous quaternionic semigroup if U(0) = I and U(t1 + t2) = U(t1)U(t2) for
t1, t2 ≥ 0 and if t �→ U(t)v is a continuous function on [0,∞) for any v ∈ V .

Definition 7.1. Let (U(t))t≥0 be a strongly continuous quaternionic semigroup. Set

D(T ) =
{
v ∈ V : lim

h→0+

1

h
(U(h)v − v) exists

}
and

Tv = lim
h→0+

1

h
(U(h)v − v), v ∈ D(T ).

The operator T is called the quaternionic infinitesimal generator of the semigroup
(U(t))t≥0.

We indicate that T is the infinitesimal generator of the semigroup (U(t))t≥0

by writing UT (t) instead to U(t).

The set D(T ) is a right subspace that is dense in V and T : D(T ) → V is a
right linear closed quaternionic operator.

Theorem 7.2. Let (UT (t))t≥0 be a strongly continuous quaternionic semigroup and
let T be its quaternionic infinitesimal generator. Then

ω0 := lim
t→∞

1

t
ln ‖UT (t)‖ <∞.

If s ∈ H with Re(s) > ω0 then s belongs ρS(T ) and

S−1
R (s, T ) =

∫ ∞

0

e−tsU(t) dt.

The question whether a closed linear operator is the infinitesimal genera-
tor of a strongly continuous semigroup is answered by the Hille–Yosida–Phillips
Theorem.

Theorem 7.3. Let T be a closed linear operator with dense domain. Then T is the
infinitesimal generator of a strongly continuous semigroup if and only if there exist
constants ω ∈ R and M > 0 such that σS(T ) ⊂ {s ∈ H : Re(s) ≤ ω} and such that
for any s0 ∈ R with s0 > ω∥∥(S−1

R (s0, T ))
n
∥∥ ≤ M

(s0 − ω)n
for n ∈ N.
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We consider the problem to characterize when a strongly continuous semi-
group of operators (UT (t))t≥0 can be extended to a group (ZT (t))t∈R of operators.
This extension is unique if it exists and if the family U−(t) = ZT (−t), t ≥ 0, is a
strongly continuous semigroup. Consider the identity

1

h
[U−(h)v − v] =

1

−h [−ZT (−2)[ZT (2 − h)v −ZT (2)v]], for h ∈ (0, 1).

By taking the limit for h → 0 we have that the infinitesimal generator of
U−(t) is −T and D(−T ) = D(T ). In this case T is called the quaternionic infin-
itesimal generator of the group (ZT (t))t∈R. The next theorem gives a necessary
and sufficient condition such that a semigroup can be extended to a group, see
Theorem 5.1 in [17].

Theorem 7.4. An operator T ∈ K(V ) is the quaternionic infinitesimal generator of
a strongly continuous group of bounded quaternionic linear operators if and only
if there exist real numbers M > 0 and ω ≥ 0 such that

‖(S−1
R (s0, T ))

n‖ ≤ M

(|s0| − ω)n
, for ω < |s0|. (7.1)

If T generates the group (ZT (t))t∈R, then ‖ZT (t)‖ ≤Meω|t|.

Definition 7.5. We denote by S(T ) the family of all quaternionic measures μ on
B(R) such that ∫

R

d|μ|(t) e(ω+ε)|t| <∞

for some ε = ε(μ) > 0. The function

L(μ)(s) =
∫
R

dμ(t) e−st, −(ω + ε) < Re(s) < (ω + ε)

is called the quaternionic bilateral (right) Laplace–Stieltjes transform of μ.

Definition 7.6. We denote by V(T ) the set of quaternionic bilateral Laplace–
Stieltjes transforms of measures in S(T ).

Definition 7.7 (Functions of the quaternionic infinitesimal generator). Let T be the
quaternionic infinitesimal generator of the strongly continuous group (ZT (t))t∈R

on a quaternionic Banach space V . For f ∈ V(T ) with

f(s) =

∫
R

dμ(t) e−st for − (ω + ε) < Re(s) < ω + ε,

and μ ∈ S(T ), we define the right linear operator f(T ) on V by

f(T )v =

∫
R

dμ(t)ZT (−t)v for v ∈ V. (7.2)

Theorem 7.8. For any f ∈ V(T ), the operator f(T ) is bounded.

It is important to note the in the case f is right slice hyperholomorphic at
infinity then the functional calculus defined by quaternionic bilateral Laplace–
Stieltjes transforms agrees with the S-functional calculus.
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Theorem 7.9. Let f ∈ V(T ) and suppose that f is right slice hyperholomorphic
at infinity. Then the operator f(T ) defined using the Laplace transform equals the
operator f [T ] obtained from the S-functional calculus.

The above theorem is more complicated to prove with respect to the classical
case. It is based on an integral representation of ZT (t), proved in Proposition 4.3
in [6]. Precisely, let α and c be real numbers such that

ω < c < |α|.
Then for any u ∈ D(T 2) we have

ZT (t)u =
1

2π

∫
∂(Wc∩Ci)

ets(α− s)−2 dsi S
−1
R (s, T )(αI − T )2u, (7.3)

where Wc is the strip Wc = {s ∈ H : −c < Re(s) < c} for c > 0 and we introduce
the set ∂(Wc∩Ci) for i ∈ S. It consists of the two lines s = c+ iτ and s = −c− iτ ,
τ ∈ R, and their orientation is such that on Ci the orientation of ∂(Wc ∩ Ci) is
positive.

8. The W -functional calculus

This calculus has been introduced in [14] for monogenic functions here we refor-
mulate it for the quaternionic setting. Using the Cauchy formula for slice hyper-
holomorphic functions it is possible to define an integral transforms that associate
to a slice hyperholomorphic function a Fueter regular function, that are defined as:

Definition 8.1 (Fueter regular functions). Let U be an open set in H. A real
differentiable function f : U → H is left Cauchy–Fueter (for brevity just Fueter)
regular if

∂

∂x0
f(q) + e1

∂

∂x1
f(q) + e2

∂

∂x2
f(q) + e3

∂

∂x3
f(q) = 0, q ∈ U.

It is right Fueter regular if

∂

∂x0
f(q) +

∂

∂x1
f(q)e1 +

∂

∂x2
f(q)e2 +

∂

∂x3
f(q)e3 = 0, q ∈ U.

Precisely, we use [44] to introduce an integral transform that associates to
a slice hyperholomorphic functions a Fueter regular function of plane wave type.
The following result is immediate, see [44] Section 1.1.

Proposition 8.2. Suppose that the differentiable functions (g1,−g2) satisfy the
Cauchy–Riemann system in an open set of the complex plane identified with the
set D of the pairs (u, p):

∂ug1(u, p) = −∂pg2(u, p), ∂pg1(u, p) = ∂ug2(u, p). (8.1)

Let

UD = {x ∈ H : x = u+ ωp, (u, p) ∈ D, ω ∈ S}
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and define the function G̃ : UD ⊆ H→ H

G̃(x) := g1(u, p)− ω g2(u, p). (8.2)

Then G̃(x) is slice hyperholomorphic in UD.

When necessary, we will identify H with R2×S by setting x �→ (x0, p, ω) and

instead of G̃(x) we will write G̃(x0, p, ω) (keeping the symbol G̃ for the function).

Starting from the slice hyperholomorphic function G̃(u, p, ω) in (8.2) we can
construct a Fueter regular function of plane wave type by replacing:

u = 〈x, ω〉, p = x0.

Suppose that the functions (g1,−g2) satisfy the Cauchy–Riemann system and let
us define the function

G(x0, 〈x, ω〉, ω) := g1(〈x, ω〉, x0) + ω g2(〈x, ω〉, x0), for ω ∈ S. (8.3)

We recall a simple result stated in [44]:

Proposition 8.3. The function G defined in (8.3) is left Fueter regular in the vari-
able x = x0 + x.

Definition 8.4. A function of the form (8.3) is called Fueter plane wave.

Definition 8.5 (The W -kernels). Let S−1
L (s, x), S−1

R (s, x) be the Cauchy kernels
of left and of right slice hyperholomorphic functions, respectively, and let ω ∈ S.
For 〈x, ω〉 − x0ω �∈ [s] we define

WL
ω (s,x) :=S−1

L (s,〈x,ω〉−x0ω)

=−[(〈x,ω〉−x0ω)
2−2s0(〈x,ω〉−x0ω)+ |s|2]−1(〈x,ω〉−x0ω−s),

and

WR
ω (s,x) :=S−1

R (s,〈x,ω〉−x0ω)

=−(〈x,ω〉−x0ω− s̄)[(〈x,ω〉−x0ω)
2−2Re(s)(〈x,ω〉−x0ω)+ |s|2]−1,

where ω ∈ S is considered as a parameter.

Observe thatWL
ω andWR

ω are obtained by the change of variable x→ 〈x, ω〉−
x0ω in the Cauchy kernels of slice hyperholomorphic functions and 〈x, ω〉− x0ω is
still a paravector. We have the theorem:

Theorem 8.6. Let ω ∈ S be a parameter and let U ⊂ H be an axially symmetric
slice domain. Suppose that ∂(U∩Ci) is a finite union of continuously differentiable
Jordan curves for every i ∈ S. Set dsi = −dsi for I ∈ S. Assume that 〈x, ω〉−x0ω ∈
U and that O is an open set containing U . Then the integrals

1

2π

∫
∂(U∩Ci)

WL
ω (s, x)dsif(s), for f ∈ SHL(O), (8.4)

1

2π

∫
∂(U∩Ci)

f(s)dsiW
R
ω (s, x), for f ∈ SHR(O), (8.5)

depend neither on the open set U nor on the imaginary unit i ∈ S.
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Observe that thanks to the Cauchy formula for slice hyperholomorphic func-
tions the integrals in (8.4) and (8.5) depend neither on the open set U nor on
i ∈ S.

Definition 8.7 (The W -transforms). Let U ⊂ H be an axially symmetric slice
domain. Suppose that ∂(U ∩ Ci) is a finite union of continuously differentiable
Jordan curves for every i ∈ S. Set dsi = −dsi for i ∈ S. Assume that 〈x, ω〉−x0ω ∈
U . If f is a (left) slice monogenic function on a set that contains U then we define
the left WL-transform as

f̆ω(x) =
1

2π

∫
∂(U∩Ci)

WL
ω (s, x)dsif(s), for f ∈ SHL(O). (8.6)

If f is a right slice monogenic function then we define the right WR-transform as

f̆ω(x) =
1

2π

∫
∂(U∩Ci)

f(s)dsiW
R
ω (s, x), for f ∈ SHR(O). (8.7)

Here ω ∈ S is a parameter.

We observe that:

I) For every ω ∈ S the function WL
ω (s, x) is right slice hyperholomorphic in

s and left Fueter regular in x for every x, s such that (〈x, ω〉 − x0ω) �∈ [s].
Moreover, the WL-transform maps left slice hyperholomorphic functions f

into left Fueter regular plane wave functions f̆ω.

II) For every ω ∈ S the function WR
ω (s, x) is left slice hyperholomorphic in s

and right Fueter regular in x for every x, s such that (〈x, ω〉 − x0ω) �∈ [s].
Moreover, the WR-transform maps right slice hyperholomorphic functions f

into right Fueter regular plane wave functions f̆ω.

We now make a refinement of the above result in order to prepare the defini-
tion of a variation of the Fueter functional calculus, that is the functional calculus
based of the Cauchy–Fueter formula, namely the W -functional calculus.

Theorem 8.8. Let T = T0 + e1T1 + e2T2 + e3T3 ∈ B(V ) be such that for ‖T ‖ < |s|
where s ∈ H. Assume that ω ∈ S and define the operator

Aω :=

3∑
j=1

Tjωj − T0ω.

Then we have:

I) Aω belongs to B(V ).
II) The operator A2

ω − 2Re(s)Aω + |s|2I is invertible for ‖T ‖ < |s| for all ω ∈ S.
III) For ‖T ‖ < |s| for all ω ∈ S we have∑

m≥0

Am
ω s−1−m = −(A2

ω − 2Re(s)Aω + |s|2I)−1(Aω − sI), (8.8)

∑
m≥0

s−1−mAm
ω = −(Aω − sI)(A2

ω − 2Re(s)Aω + |s|2I)−1. (8.9)
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The above theorem motivates the notion of W -spectrum.

Definition 8.9 (The W -spectrum and the W -resolvent set). Let T ∈ B(V ) and
let ω ∈ S, we define the operators

Aω =
3∑

j=1

Tjωj − T0ω

and
Qω(T, s) := A2

ω − 2s0Aω + |s|2I.
We define the W -spectrum σW (T ) of T as:

σW (T, ω) = {s ∈ Rn+1 : Qω(T, s) is not invertible in B(V )}.
The W -resolvent set ρW (T ) is defined by

ρW (T, ω) = H \ σW (T, ω).

The proofs of the following two results, which will be useful in the sequel,
follow as in the case of the S-spectrum.

Theorem 8.10 (Structure of the W -spectrum). Let T ∈ B(V ), ω ∈ S, and let
p = p0+p1j ∈ [p0+p1j] ⊂ H\R, such that p ∈ σW (T, ω). Then all the elements of
the 2-sphere [p0 + p1j] belong to σW (T, ω). Thus the W -spectrum consists of real
points and/or 2-spheres.

Theorem 8.11 (Compactness of the W -spectrum). Let T ∈ B(V ), ω ∈ S. Then
the W -spectrum σW (T, ω) is a compact nonempty set.

Definition 8.12 (W -resolvent operators). Let T ∈ B(V ), ω ∈ S and Aω :=∑3
j=1 Tjωj − T0ω. For s ∈ ρW (T ) we define the left W -resolvent operator by

WL
ω (s, T ) = −(A2

ω − 2Re(s)Aω + |s|2I)−1(Aω − sI), (8.10)

and the right W -resolvent operator by

WR
ω (s, T ) = −(Aω − sI)(A2

ω − 2Re(s)Aω + |s|2I)−1. (8.11)

Definition 8.13. Let T ∈ B(V ), ω ∈ S and let U ⊂ H be an axially symmetric slice
domain.

• We say that U is admissible (for T ) if it contains the W -spectrum σW (T, ω),
and if ∂(U ∩ Ci) is union of a finite number of rectifiable Jordan curves for
every i ∈ S.

• Let O be an open set in H. A function f ∈ SHL(O) (resp. right f ∈ SHR(O))
is said to be locally left (resp. right) slice hyperholomorphic on σW (T, ω) if
there exists an admissible domain U ⊂ H such that U ⊂ O.

• We will denote by SHL
σW (T,ω) (resp. SHR

σW (T,ω)) the set of locally left (resp.

right) slice hyperholomorphic functions on σW (T, ω).

The proof of the next result follows the proof of Theorem 8.6 and so it is
based on the corresponding proof in the case of the S-functional calculus.
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Theorem 8.14. Let T ∈ B(V ) and let ω ∈ S. Let U be an admissible set for T and
set dsi = ds/i. Then the integrals

1

2π

∫
∂(U∩Ci)

WL
ω (s, T ) dsi f(s), for f ∈ SHL

σW (T,ω) (8.12)

and
1

2π

∫
∂(U∩Ci)

f(s) dsiW
R
ω (s, T ), for f ∈ SHR

σW (T,ω) (8.13)

depend neither on the open set U nor on the imaginary unit i ∈ S.

The above theorem is important because it shows that the following definition
of the W -functional calculus is well posed.

Definition 8.15 (The W -functional calculus for bounded operators). Let T ∈ B(V )
and let ω ∈ S. Let U be an admissible set for T and set dsi = ds/i. We define the
W -functional calculus for bounded operators as

f̆ω(T ) =
1

2π

∫
∂(U∩Ci)

WL
ω (s, T ) dsi f(s), for f ∈ SHL

σW (T,ω), (8.14)

and

f̆ω(T ) =
1

2π

∫
∂(U∩Ci)

f(s) dsi W
R
ω (s, T ), for f ∈ SHR

σW (T,ω). (8.15)

The W -functional calculus is a monogenic functional calculus that is based on

slice hyperholomorphic functions but it produces operators f̆ω(T ) where f̆ω(s) is a
Fueter regular function. The W -functional calculus, and the F -functional calculus
treated in the next section, are monogenic, or better to say Fueter functional
calculi when we deal with the quaternionic setting, because they are in the spirit
of the monogenic functional calculus (based on the Cauchy formula of monogenic
functions) introduced and studied by A. McIntosh and is collaborators in a series
of papers [36, 37, 39] and the book [35].

9. The F -functional calculus

The Fueter mapping theorem is one of the deepest results in hypercomplex anal-
ysis, see [29]. It gives a procedure to generate Cauchy–Fueter regular functions
starting from holomorphic functions of a complex variable. In the case of Clifford
algebra-valued functions the proof of the analogue of the Fueter mapping theorem
is due to Sce [42] for n odd and to Qian [41] for the general case.

Using the Cauchy formula for slice hyperholomorphic functions it is possible
to give the Fueter mapping theorem an integral representation. This has been
done in [20], and in the recent paper [13] the authors introduce the formulations
of the F -functional calculus and the F -resolvent equation which are important to
study the Riesz projectors associated to this calculus. The extension to unbounded
operators has been done in [19]. Here we recall some facts for the case of bounded
operators.
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Definition 9.1 (The F -kernel). Let q, s ∈ H. We define, for s �∈ [q], the FL-kernel as

FL(s, q) := −4(s− q̄)(s2 − 2Re(q)s+ |q|2)−2,

and the FR-kernel as

FR(s, q) := −4(s2 − 2Re(q)s+ |q|2)−2(s− q̄).

With the above notation the Fueter mapping theorem in integral form be-
comes:

Theorem 9.2 (The Fueter mapping theorem in integral form). Set dsi = ds/i and
let W ⊂ H be an open set. Let U be a bounded axially symmetric slice domain such
that U ⊂ W . Suppose that the boundary of U ∩ Ci consists of a finite number of
rectifiable Jordan curves for any i ∈ S.

(a) If q ∈ U and f ∈ SHL(W ) then f̆(q) = Δf(q) is left Fueter regular and it
admits the integral representation

f̆(q) =
1

2π

∫
∂(U∩Ci)

FL(s, q)dsif(s), (9.1)

(b) If q ∈ U and f ∈ SHR(W ) then f̆(q) = Δf(q) is right Fueter regular and it
admits the integral representation

f̆(q) =
1

2π

∫
∂(U∩Ci)

f(s)dsiF
R(s, q). (9.2)

The integrals depend neither on U and nor on the imaginary unit i ∈ S.

We now consider the formulations of the F -functional calculus in the quater-
nionic setting for right linear quaternionic operators. The same formulation holds
also for left linear operators with a suitable interpretation of the symbols.

Definition 9.3. We will denote by BC(V ) the subclass of B(V ) that consists of
those quaternionic operators T that can be written as

T = T0 + e1T1 + e2T2 + e3T3

where the operators T�, � = 0, 1, 2, 3 commute among themselves.

Definition 9.4 (The F -spectrum and the F -resolvent sets). Let T ∈ BC(V ). We
define the F -spectrum σF (T ) of T as

σF (T ) = {s ∈ H : s2I − s(T + T ) + TT is not invertible}.
The S-resolvent set ρS(T ) is defined as

ρF (T ) = H \ σF (T ).

Theorem 9.5 (Structure of the F -spectrum). Let T ∈ BC(V ) and let p = p0+p1I ∈
p0+p1S ⊂ H\R, such that p ∈ σF (T ). Then all the elements of the sphere p0+p1S
belong to σF (T ).
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We point out that the F -spectrum is well defined just for operators T that
belong to BC(V ). The F -spectrum can be seen as the commutative version of the
S-spectrum because

σS(T ) = σF (T ), for all T ∈ BC(V ).

In the case the components of T do not commute then it is not true that TT =
TT = T 2

0 + T 2
1 + T 2

2 + T 2
3 and so the F -spectrum is not well defined.

As a consequence if T ∈ BC(V ), then the F -spectrum σF (T ) is a compact
nonempty set.

Definition 9.6 (F -resolvent operators). Let T ∈ BC(V ). For s ∈ ρF (T ) we define
the left F -resolvent operator as

FL(s, T ) := −4(sI − T )(s2I − s(T + T ) + TT )−2,

and the right F -resolvent operator as

FR(s, T ) := −4(s2I − s(T + T ) + TT )−2(sI − T ).

The definition of T -admissible set U and of locally left (resp. right) slice hy-
perholomorphic functions on the F -spectrum σF (T ) can be obtained by rephrasing
the definition for the S-spectrum.

We will denote by SHL
σF (T ) (resp. right SHR

σF (T )) the set of locally left (resp.

right) slice hyperholomorphic functions on σF (T ).

Definition 9.7 (The quaternionic F -functional calculus for bounded operators).
Let T ∈ BC(V ) and set dsi = ds/i, for i ∈ S. We define the formulations of the
quaternionic F -functional calculus as

f̆(T ) :=
1

2π

∫
∂(U∩Ci)

FL(s, T ) dsi f(s), f ∈ SHL
σF (T ), (9.3)

and

f̆(T ) :=
1

2π

∫
∂(U∩Ci)

f(s) dsi F
R(s, T ), f ∈ SHR

σF (T ), (9.4)

where U is T -admissible.

The definition of the quaternionic F -functional calculus for bounded oper-
ators is well posed since it was proved that the integrals (9.3) and (9.4) depend
neither on the open set U (that contains the F -spectrum) nor on the imaginary
unit i ∈ S.

Theorem 9.8 (The quaternionic F -resolvent equation). Let T ∈ BC(V ). Then for
p, s ∈ ρF (T ) the following equation holds

FR(s, T )S−1
C,L(p, T ) + S−1

C,R(s, T )F
L(p, T ) +

1

4

(
sFR(s, T )FL(p, T )p

− sFR(s, T )TFL(p, T )− FR(s, T )TFL(p, T )p+ FR(s, T )T 2FL(p, T )
)

=
[(
FR(s, T )− FL(p, T )

)
p− s̄

(
FR(s, T )− FL(p, T )

)]
(p2 − 2s0p+ |s|2)−1.
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where the quaternionic SC-resolvent operators are defined as

S−1
C,L(s, T ) := (sI − T )(s2I − s(T + T ) + TT )−1, s ∈ ρF (T ) (9.5)

and

S−1
C,R(s, T ) := (s2I − s(T + T ) + TT )−1(sI − T ), s ∈ ρF (T ). (9.6)

As a consequence of the quaternionic F -resolvent equations we can study the
Riesz projectors associated with the quaternionic F -functional calculus.

Theorem 9.9. Let T ∈ BC(V ). Let σF (T ) = σ1F (T ) ∪ σ2F (T ), with

dist (σ1F (T ), σ2F (T )) > 0.

Let U1 and U2 be two T -admissible sets such that σ1F (T ) ⊂ U1 and σ2F (T ) ⊂ U2,
with U1 ∩ U2 = ∅. Set

P̆� :=
C

2π

∫
∂(U�∩Ci)

FL(s, T ) dsis
2, � = 1, 2,

where C := Δq2. Then, for � = 1, 2, the following properties hold:

(1) P̆ 2
� = P̆�,

(2) T P̆� = P̆�T , � = 1, 2.

Even thought the F -resolvent equation seems to be very complicated it is
allows one to prove that P̆ 2

� = P̆�, for � = 1, 2. We cannot expect a simpler
F -resolvent equation because the F -functional calculus is based on an integral
transform and not on a Cauchy formula.
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Models for Some Irreducible Representations
of so(m,C) in Discrete Clifford Analysis

Hilde De Ridder and Tim Raeymaekers

Abstract. In this paper we work in the ‘split’ discrete Clifford analysis set-
ting, i.e., the m-dimensional function theory concerning null-functions of the
discrete Dirac operator ∂, defined on the grid Zm, involving both forward
and backward differences. This Dirac operator factorizes the (discrete) Star-
Laplacian (Δ∗ = ∂2). We show how the space Hk of discrete k-homogeneous
spherical harmonics, which is a reducible so(m,C)-representation, may ex-
plicitly be decomposed into 22m isomorphic copies of irreducible so(m,C)-
representations with highest weight (k, 0, . . . , 0). The key element is the in-
troduction of 22m idempotents, dividing the discrete Clifford algebra in 22m

subalgebras of dimension
(
k+m−1

k

)− (
k+m−3

k

)
.
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Keywords. Discrete Clifford analysis, irreducible representation, orthogonal
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In classical Clifford analysis, the infinitesimal ‘rotations’ are given by the angular
momentum operators, in our function theoretical setting denoted by the differential
operators La,b = xa∂xb

−xb∂xa . These operators satisfy the commutation relations

[La,b, Lc,d] = δb,c La,d − δb,d La,c − δa,c Lb,d + δa,d Lb,c,

which are the defining relations of the orthogonal Lie algebra so(m). Since these
are endomorphisms of the space Hk(m,C) of scalar-valued harmonic polynomials
homogeneous of degree k, this polynomial space is a model for an (irreducible)
so(m,C)-representation [see, e.g., [9, 1]]. Classically, to establishMk, the space of
spinor-valued monogenics, homogeneous of degree k, as so(m,C)-representation,
the following operators are considered

dR(ea,b) :Mk →Mk, Mk �→
(
La,b +

1

2
ea eb

)
Mk.

The first author acknowledges the support of the Research Foundation – Flanders (FWO), grant
no. FWO13\PDO\039.
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These operators are endomorphisms of Mk which also satisfy the defining
relations of so(m,C):

[dR(ea,b), dR(ec,d)] = δb,c dR(ea,d)− δb,d dR(ea,c)− δa,c dR(eb,d) + δa,d dR(eb,c).

In [5], we developed discrete counterparts of the operators La,b and dR(ea,b)
in the discrete Clifford analysis setting.

Definition 1. The (discrete) angular momentum operators are discrete operators
La,b = ξa ∂b + ξb ∂a, 1 � a �= b � m, acting on the discrete functions. Here ξa and
∂a, a = 1, . . . ,m are the discrete vector variables and co-ordinate differences in
the discrete Clifford analysis setting (see Section 1). For a = b, we define La,a =
0. Furthermore, let the operator Ωa,b act on discrete functions f as Ωa,b f =
La,b f eb ea.

The discrete angular momentum operators also satisfy the defining relations
of the orthogonal Lie algebra so(m) (see, e.g., [11]):

[Ωa,b,Ωc,d] = δb,c Ωa,d − δb,dΩa,c − δa,cΩb,d + δa,d Ωb,c.

Furthermore, they are endomorphisms of the space Hk of Clifford algebra-valued
k-homogeneous harmonics since Ωa,b commutes with sl2 =

{
Δ, ξ2,E+ m

2

}
, for all

(a, b). We thus concluded that Hk is a representation of so(m,C); however, this is
not an irreducible representation, as will be shown in the following sections.

An important difference with the Euclidean Clifford setting is the addition
of the basis elements eb ea to the right of the considered function f . This will
have consequences later on in this paper, when we describe irreducible representa-
tions by means of an idempotent; the action of so(m,C) elements will affect this
idempotent, in the sense that the representation can no longer be interpreted as a
left ideal in the Clifford algebra. Another unexpected result was the possibility to
rotate points of the grid Zm over all real angles by rotation of the discrete delta
functions (resp. distributions); we are thus not longer restricted to rotating over
(integer multiples of) right angles.

In a similar manner, discrete operators dR(ea,b) were constructed in [5], sat-
isfying the defining relations of the orthogonal lie algebra so(m) and commuting
with osp(1|2) =

{
∂, ξ,E+ m

2

}
which makes them endomorphisms of the space

Mk of k-homogeneous discrete monogenic polynomials. As such,Mk is a reducible
so(m,C)-representation. The decomposition ofMk into irreducible representations
will be the topic of an upcoming paper.

Describing the discrete harmonic spaces Hk as so(m,C)-representations will
be most effective (from a representation-theoretic point of view) when the repre-
sentations are irreducible. Only then will we be able to draw conclusions about
for example Gelfand–Tsetlin bases (see, e.g., [12]). An accurate description of the
decomposition is thus very important, and this will be done for Hk in the following
sections.

To keep this paper self-contained, we start with a preliminary section on the
discrete Clifford analysis framework. Throughout this paper, we will use concepts
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regarding the Cartan subalgebra and the positive roots of the orthogonal Lie al-
gebra so(m,C), hence in Section 2, we briefly summarize these concepts, based on
[8]. In Section 3, we describe the decomposition of Hk in irreducible components,
both for even and for odd dimension.

1. Preliminaries

Let Rm be the m-dimensional Euclidian space with orthonormal basis ej, j =
1, . . . ,m and consider the Clifford algebra Rm,0 over Rm, governed by the multi-
plication relations eiej+ejei = 2δij . Passing to the so-called ‘split’ discrete setting
[6, 2], we embed this Clifford algebra into the bigger complex one C2m, the under-
lying vector space of which has twice the dimension, and introduce forward and
backward basis elements e±j satisfying the following anti-commutator rules:{

e−j , e
−
�

}
=
{
e+j , e

+
�

}
= 0,

{
e+j , e

−
�

}
= δj�, j, � = 1, . . . ,m.

The connection to the original basis ej is given by e+j + e−j = ej , j = 1, . . . ,m.

This implies e2j = 1, in contrast to the usual Clifford setting where traditionally

e2j = −1 is chosen.
Now consider the standard equidistant lattice Zm; the coordinates of a Clif-

ford vector x will thus only take integer values. We construct a discrete Dirac
operator factorizing the discrete Laplacian, using both forward and backward dif-
ferences Δ±

j , j = 1, . . . ,m, acting on Clifford-valued functions f as follows:

Δ+
j [f ](x) = f(x+ ej)− f(x), Δ−

j [f ](x) = f(x)− f(x− ej).

With respect to the Zm-grid, the usual definition of the discrete Laplacian in
x ∈ Zm is

Δ∗[f ](x) =
m∑
j=1

Δ+
j Δ

−
j [f ](x) =

m∑
j=1

(f(x+ ej) + f(x− ej))− 2mf(x).

This operator is also known as “Star-Laplacian”, denoted from now on as Δ.
An appropriate definition (see, e.g., [6, 7]) of a discrete Dirac operator ∂ factorizing
Δ, i.e., satisfying ∂2 = Δ, is obtained by combining the forward and backward
basis elements with the corresponding forward and backward differences, more
precisely

∂ =

m∑
j=1

(
e+j Δ

+
j + e−j Δ

−
j

)
.

In order to receive an analogue of the classical Weyl relations ∂xjxk−xk∂xj =

δjk, the coordinate vector variable operators ξj = e+j X−
j + e−j X+

j are defined by

their interaction with the corresponding coordinate operators ∂j = e+j Δ+
j +e−j Δ−

j ,

according to the skew Weyl relations, cf. [2]:

∂j ξj − ξj ∂j = 1, j = 1, . . . ,m,
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which imply that ∂j ξ
k
j [1] = k ξk−1

j [1]. The operators ξj and ∂j furthermore satisfy
the following anti-commutator relations:

{ξj , ξk} = {∂j , ∂k} = {∂j , ξk} = 0, j �= k, j, k = 1, . . . ,m

implying that ∂� ξ
k
j [1] = 0, j �= �.

The natural powers ξkj [1] of the operator ξj acting on the ground state 1
are the basic discrete k-homogeneous polynomials of degree k in the variable xj ,
i.e., E ξkj [1] = k ξkj [1], where E =

∑m
j=1 ξj ∂j is the discrete Euler operator. They

constitute a basis for all discrete polynomials. Explicit formulas for ξkj [1] are given

for example in [2, 3]; furthermore ξkj [1](xj) = 0 if k � 2 |xj |+ 1.

A discrete function is discrete harmonic in a domain Ω ⊂ Zm if Δf(x) = 0 for
all x ∈ Ω. The space of discrete harmonic homogeneous polynomials of degree k
is denoted Hk, while the space of all discrete harmonic homogeneous polynomials
is denoted H. It is clear that H =

⊕∞
k=0Hk. The dimensions over the discrete

Clifford algebra are

dim(Hk) =

(
k +m− 1

k

)
−
(
k +m− 3

k

)
.

2. Orthogonal Lie algebras

We will start by briefly introducing the orthogonal Lie algebra so(m,C); a detailed
description can be found for example in, e.g., [8]. The orthogonal Lie algebra

so(m,C) is generated in even dimension m = 2n by m(m−1)
2 basis elements Ha,

Xa,b, Ya,b and Za,b (1 � a, b � n) and in odd dimension m = 2n + 1 these basis
elements are extended to a full basis of so(m,C) by 2n extra elements Uj and Vj ,
1 � j � n:

so(2n,C) = spanC {Ha, Xa,b, Ya,b, Za,b, 1 � a, b � n, a �= b} ,
so(2n+ 1,C) = spanC {Ha, Xa,b, Ya,b, Za,b, Ua, Va, 1 � a, b � n, a �= b} .

These basis elements are the root vectors of the adjoint representation of
so(m,C) in accordance to [8, 10].

The Cartan subalgebra can be chosen as h = {Ha, 1 � a � n}, independent of
the parity of the dimension, i.e., so(2n,C) and so(2n+1,C) are both Lie algebras
of rank n. The roots of so(m,C) (see also [11]) are determined by considering the
adjoint representation:

[Hs, Ya,b] = (δsa + δsb)Ya,b = ((La + Lb) (Hs))Ya,b,

[Hs, Xa,b] = (δsa − δsb)Xa,b = ((La − Lb) (Hs))Xa,b,

[Hs, Za,b] = − (δsa + δsb)Za,b = ((−La − Lb) (Hs))Za,b,

[Hs, Ua] = δsa Ua = (La(Hs))Ua,

[Hs, Va] = −δsa Ua = (−La(Hs))Ua,
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where {La, 1 � a � n} is a basis of the dual vector space h∗ of the Cartan subalge-
bra h, i.e., La (Hb) = δa,b. Note in particular that the Cartan subalgebra elements
Ha can be calculated by taking the commutator of a positive root vector with its
corresponding negative root vector:

[Ya,b, Za,b] = −Ha −Hb, [Xa,b, Xb,a] = Ha −Hb.

We thus deduce the following roots and root vectors.

m = 2n m = 2n+ 1

root root vector

La − Lb Xa,b

La + Lb Ya,b

−La − Lb Za,b

root root vector

La − Lb Xa,b

La + Lb Ya,b

−La − Lb Za,b

La Ua

−La Va

To make a distinction between positive and negative roots, we consider the
linear functional l : h∗ → R defined by fixing n different real numbers ci such that
for all ai ∈ R:

l (a1 L1 + · · ·+ an Ln) = a1 c1 + · · ·+ an cn.

We choose the constants ci such that the ordering c1 > c2 > · · · > cn > 0 is
satisfied. With this convention, the positive roots in even dimension, i.e., roots α
for which l(α) > 0, are given by

{La + Lb : 1 � a �= b � n} ∪ {La − Lb : 1 � a < b � n} .

The negative roots, i.e., roots α for which l(α) < 0, are given by

{−La − Lb : 1 � a �= b � n} ∪ {La − Lb : 1 � b < a � n} .

In odd dimension, one finds positive roots

{La + Lb : 1 � a �= b � n} ∪ {La − Lb : 1 � a < b � n) ∪ {La : 1 � a � n}

and negative roots

{−La − Lb : 1 � a �= b � n} ∪ {La − Lb : 1 � b < a � n) ∪ {−La : 1 � a � n} .

As illustrative examples, we depict the root diagrams of so(6,C):
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L1 − L2

L1 + L2

−L1 − L2

−L1 + L3

L2 + L3

−L2 + L3

L1 + L3

−L2 − L3

and of so(7,C):

L3

−L3

L1−L1

−L2

L2

In [5], we introduced the algebra so(m,C) (up to an isomorphism) in the
discrete Clifford analysis context. The generators of so(m,C) were not given in
terms of the root vectors and Cartan subalgebra, but rather by the generators
{Ωa,b : 1 � a �= b � m} introduced in Definition 1, satisfying the defining relations
of so(m,C):

[Ωa,b,Ωc,d] = δa,dΩb,c + δb,cΩa,d − δa,cΩb,d − δb,d Ωa,c. (2.1)

In the following sections, we will re-establish the orthogonal Lie algebra in the
discrete Clifford analysis setting, but now by determining the explicit expressions
of the root vectors and Cartan subalgebra.

3. Decomposition of Hk in irreducible representations

The space of discrete harmonic Clifford-valued homogeneous polynomials Hk is
a representation for so(m,C). To see this, we again consider the operators Ωa,b :
Hk → Hk:

Ωa,b(Hk) = La,bHk eb ea = (ξb ∂a + ξa ∂b)Hk eb ea, a �= b and Ωa,a = 0.
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By calculating the dimension, we immediately may conclude that this repre-
sentation is not just a model for the irreducible representation with highest weight
(k, 0, . . . , 0) like the classical case:

dimC (Hk) = dimC2m (Hk) dimC (C2m) = 22m
((

k +m− 1

k

)
−
(
k +m− 3

k

))
,

while

dimC (k, 0, . . . , 0) =

((
k +m− 1

k

)
−
(
k +m− 3

k

))
.

Here (k, 0, . . . , 0) represents the irreducible representation of so(m,C) with
highest weight (k, 0, . . . , 0). This means that Hk is probably reducible. The re-
mainder of this article exactly deals with the decomposition of this space into
irreducible representations.

Classically, one considers the scalar-valued harmonic polynomials as an ir-
reducible representation of so(m,C) within the space of Clifford-valued harmonic
polynomials. However, note that in the discrete setting, due to the addition of
the basis elements eb ea in the definition of the operators Ωa,b, and the fact that
La,b itself is not scalar, the operators Ωa,b are no longer scalar. Hence the sub-
space of Hk of scalar harmonics, i.e., harmonic functions that have scalar Taylor
series coefficients, is not an invariant under their action. To arrive at irreducible
representations of so(m,C) within the space of Clifford-valued discrete harmonics
Hk, we must thus reconsider our approach. We will do this by introducing an
appropriate idempotent with which we multiply our harmonics from the right. To
determine which idempotent is appropriate, we first consider the analogues of the
root system of so(m,C) in our discrete Clifford setting.

3.1. Even dimension m = 2n

Definition 2. We define the operators Ha, Xa,b, Ya,b and Za,b ∈ so(m,C):

Ha = iΩ2a−1,2a, 1 � a � n,

Xa,b =
1

2
(Ω2a−1,2b−1 + iΩ2a−1,2b − iΩ2a,2b−1 +Ω2a,2b) ,

Ya,b =
1

2
(Ω2a−1,2b−1 − iΩ2a−1,2b − iΩ2a,2b−1 − Ω2a,2b) ,

Za,b =
1

2
(Ω2a−1,2b−1 + iΩ2a−1,2b + iΩ2a,2b−1 − Ω2a,2b) , 1 � a, b � n.

Note that, because Ωa,b = −Ωb,a, we find that Yb,a = −Ya,b. Furthermore,
Ωa,a = 0 implies that Ya,a = 0. The same holds for Za,b. For Xa,b, we find that
Xb,a �= Xa,b and that Xa,a = Ha hence we consider all couples (a, b) with a �= b.
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Remark 3. Note that we can reconstruct the original operators Ωa,b as Ω2a−1,2a =
−iHa and for a �= b:

2 Ω2a−1,2b−1 = Xa,b −Xb,a + Ya,b + Za,b,

−2iΩ2a,2b−1 = Xa,b +Xb,a + Ya,b − Za,b,

2iΩ2a−1,2b = Xa,b +Xb,a − Ya,b + Za,b,

2Ω2a,2b = Xa,b −Xb,a − Ya,b − Za,b.

We will now show that these operators indeed show the expected commutator
relations associated with the root system of so(m,C):

Lemma 4. The following commutator relations hold:

[Hj , Ya,b] = (δja + δjb) Ya,b = (La + Lb) (Hj)Ya,b,

[Hj , Xa,b] = (δja − δjb)Xa,b = (La − Lb) (Hj)Xa,b,

[Hj , Za,b] = − (δja + δjb)Za,b = − (La + Lb) (Hj)Za,b,

[Ya,b, Zc,d] = δadXb,c + δbc Xa,d − δacXb,d − δbd Xa,c,

[Xa,b, Xc,d] = δbcXa,d − δad Xc,b,

[Xa,b, Yc,d] = δbc Ya,d − δbd Ya,c,

[Xa,b, Zc,d] = δad Zb,c − δac Zb,d,

[Ya,b, Yc,d] = 0,

[Za,b, Zc,d] = 0.

In particular, Xa,b, a < b resp. Ya,b are root vectors corresponding to the positive
roots La − Lb, resp. La + Lb. Furthermore, Xa,b with a > b and Za,b are root
vectors corresponding to the negative roots La − Lb resp. −La − Lb.

Proof. We will only write down the commutator relation [Hj , Ya,b] and [Xa,b, Yc,d]
here, the other ones can be proven in a similar fashion.

[Hj , Ya,b] =
1

2
[iΩ2j−1,2j ,Ω2a−1,2b−1 − iΩ2a−1,2b − iΩ2a,2b−1 − Ω2a,2b] .

Applying the commutator rule (2.1) results in:

[Hj , Ya,b] =
i

2
(δjb Ω2j,2a−1 − δja Ω2j,2b−1) +

1

2
(−δjb Ω2j−1,2a−1 − δja Ω2j,2b)

+
1

2
(δja Ω2j−1,2b−1 + δjb Ω2j,2a)−

i

2
(−δjb Ω2j−1,2a + δja Ω2j−1,2b)

= δja Yj,b + δjb Ya,j = (δja + δjb)Ya,b.

For the second statement, we again apply (2.1):

4 [Xa,b, Yc,d] = 2 δbc (Ω2a−1,2d−1 − iΩ2a−1,2d − iΩ2a,2d−1 − Ω2a,2d)

− 2 δbd (Ω2a−1,2c−1 − iΩ2a−1,2c − Ω2a,2c − iΩ2a,2c−1)

= 2 δbc Ya,d − 2 δbd Ya,c. �
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In this discrete setting, the Cartan subalgebra h ⊂ so(m,C) is given by

h = {Ha, 1 � a � n} .

As the Cartan elements mutually commute, their action on any representation
of so(m,C) can be diagonalized simultaneously, since so(m,C) is semi-simple, m >
2. Any finite-dimensional representation Vμ of the Lie algebra so(m,C) may thus
be decomposed as eigenspaces for the subalgebra h. The set of n eigenvalues of
such an eigenspace is also known as the weight of the considered eigenspace and
the eigenspace itself is called weight space. We may decompose Vμ according to a
finite set of weights W :

Vμ =
⊕
λ∈W

Vλ

where Vλ = {P ∈ Vμ : Ha P = �i P, 1 � a � n}, for all λ = (�1, . . . , �n) ∈ W .

In particular, we consider the decomposition of the representation Hk. If we
are thus to introduce an idempotent I and a harmonic polynomial Pk such that the
space spanC {Pk I} is a weight space of a representation of the orthogonal algebra
with weight (�1, . . . , �n), it must certainly hold that Ha Pk I = �a Pk I. Therefor,
the necessary idempotents must satisfy

∀ a = 1, . . . , n, ∃ ca ∈ C : I e2a−1 e2a = ca I.

Definition 5. For 1 � s � n, we denote the following Clifford elements

I±2s−1 =
(
e+2s−1e

−
2s−1 ± e+2s−1

)
, I±2s =

(
e+2se

−
2s ± i e+2s

)
,

K±
2s−1 =

(
e−2s−1e

+
2s−1 ± e−2s−1

)
, K±

2s =
(
e−2se

+
2s ± i e−2s

)
.

Lemma 6. Let Is= I+2s−1I
−
2s=

(
e+2s−1e

−
2s−1+e+2s−1

)(
e+2se

−
2s− ie+2s

)
for 1 � s � n.

Then the Clifford element

I =

n∏
s=1

Is =

n∏
s=1

(
e+2s−1e

−
2s−1 + e+2s−1

) (
e+2se

−
2s − i e+2s

)
is an idempotent (I2 = I) and it satisfies

I e2s−1e2s = i I, ∀ 1 � s � n.

Proof. Note that

I±2s−1 e2s−1 =
(
e+2s−1 ± e+2s−1e

−
2s−1

)
= ±

(
e+2s−1e

−
2s−1 ± e+2s−1

)
= ± I±2s−1,

K±
2s−1 e2s−1 =

(
e−2s−1 ± e−2s−1e

+
2s−1

)
= ±

(
e−2s−1e

+
2s−1 ± e−2s−1

)
= ±K±

2s−1,

I±2s e2s =
(
e+2s ± i e+2se

−
2s

)
= ± i

(
e+2se

−
2s ∓ i e+2s

)
= ± i I∓2s,

K±
2s e2s =

(
e−2s ± i e−2se

+
2s

)
= ± i

(
e−2se

+
2s ∓ i e−2s

)
= ± iK∓

2s.

We start with the second statement. We choose s = 1 (the general proof is
similar). Since I±s ek = ek I

∓
s , ∀s �= k, the element e1e2 commutes with all Is,
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s = 2, . . . , n:

I e1e2 = I+1 I−2 e1 e2

n∏
s=2

(
I+2s−1 I

−
2s

)
= I+1 e1 I

+
2 e2

n∏
s=2

(
I+2s−1 I

−
2s

)
= i I+1 I−2

n∏
s=2

(
I+2s−1 I

−
2s

)
= i I.

To check the idempotency, we consider:

I2 =

(
n∏

s=1

Is

)2

=

(
n∏

s=1

(
e+2s−1e

−
2s−1 + e+2s−1

) (
e+2se

−
2s − i e+2s

))2

.

For s = 1, the factor I+1 =
(
e+1 e

−
1 + e+1

)
has a term e+1 e

−
1 that commutes

with all I±j , j �= 1, and a term e+1 that does not. Indeed, e+1 I±s = I∓s e+1 , s �= 1.

However, as both terms will eventually be multiplied with I+1 from the right and
as e+1 I+1 = e+1

(
e+1 e

−
1 + e+1

)
= 0 (because of the isotropy of e+1 ), the e+1 -term

automatically vanishes. We only need to determine the result of the commuting
part:

I2 =

n∏
p=1

(
e+2p−1e

−
2p−1 e

+
2pe

−
2p

) n∏
s=1

(
e+2s−1e

−
2s−1 + e+2s−1

) (
e+2se

−
2s − i e+2s

)
=

n∏
s=1

e+2s−1e
−
2s−1

(
e+2s−1e

−
2s−1 + e+2s−1

)
e+2se

−
2s

(
e+2se

−
2s − i e+2s

)
=

n∏
s=1

(
e+2s−1e

−
2s−1 + e+2s−1

) (
e+2se

−
2s − i e+2s

)
= I. �

Lemma 7. If we replace any (or multiple) elements I+2s−1 with I−2s−1, K+
2s−1 or

K−
2s−1, the resulting Clifford element is still an idempotent. The same holds if we

replace any (or multiple) elements I−2s by I+2s or K±
2s. Furthermore

I±2s−1I
±
2s e2s−1 e2s = ± (∓i) I±2s−1I

±
2s,

I±2s−1 K
±
2s e2s−1 e2s = ± (∓i) I±2s−1 K

±
2s,

K±
2s−1 I

±
2s e2s−1 e2s = ± (∓i)K±

2s−1 I
±
2s,

K±
2s−1 K

±
2s e2s−1 e2s = ± (∓i)K±

2s−1 K
±
2s.

Proof. We here only consider the combination of I±2s−1 with I±2s. The proofs of the
other combinations are similar. So let

I =
n∏

s=1

I±2s−1I
±
2s =

n∏
s=1

(
e+2s−1e

−
2s−1± e+2s−1

) (
e+2se

−
2s ± i e+2s

)
.
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Again because of the isotropy of e+i (and of e−i ), in each case, we only need
to consider the commuting part:

I2 =

n∏
p=1

(
e+2p−1e

−
2p−1 e

+
2pe

−
2p

) n∏
s=1

(
e+2s−1e

−
2s−1± e+2s−1

) (
e+2se

−
2s ± i e+2s

)
=

n∏
s=1

e+2s−1e
−
2s−1

(
e+2s−1e

−
2s−1± e+2s−1

)
e+2se

−
2s

(
e+2se

−
2s ± i e+2s

)
=

n∏
s=1

(
e+2s−1e

−
2s−1± e+2s−1

) (
e+2se

−
2s ± i e+2s

)
= I.

Furthermore I±1 I±2 e1 e2 = I±1 e1 I
∓
2 e2 = ± (∓ i) I±1 I±2 and similar for other 1 �

s � n. �

Remark 8. By combining the different idempotents, we can form all basis elements
of the Clifford algebra. Indeed

I+2s−1 + I−2s−1 =
(
e+2s−1e

−
2s−1 + e+2s−1

)
+
(
e+2s−1e

−
2s−1 − e+2s−1

)
= 2 e+2s−1e

−
2s−1,

K+
2s−1 +K−

2s−1 =
(
e−2s−1e

+
2s−1 + e−2s−1

)
+
(
e−2s−1e

+
2s−1 − e−2s−1

)
= 2 e−2s−1e

+
2s−1,

I+2s−1 − I−2s−1 =
(
e+2s−1e

−
2s−1 + e+2s−1

)
−
(
e+2s−1e

−
2s−1 − e+2s−1

)
= 2 e+2s−1,

K+
2s−1 −K−

2s−1 =
(
e−2s−1e

+
2s−1 + e−2s−1

)
−
(
e−2s−1e

+
2s−1 − e−2s−1

)
= 2 e−2s−1

and, since 1 = e+2s−1e
−
2s−1 + e−2s−1e

+
2s−1, we can also produce scalars. Similar

combinations are used to arrive at e+2se
−
2s, e

−
2se

+
2s and e±2s.

We find that Hk decomposes into the direct sum of 4m = 22m subspaces
Hk I, where the idempotent I runs over all idempotents mentioned above. In the
following sections, we will always denote the idempotent

n∏
s=1

(
e+2s−1e

−
2s−1 + e+2s−1

) (
e+2se

−
2s − i e+2s

)
by I.

We already established that H2k is a representation of so(2n,C). This rep-
resentation is reducible. A mutual eigenspace of all generators of h is given by
spanC {f2k I} where

f2k = ((ξ2 + ξ1) (ξ2 − ξ1))
k
.

If we consider the representationH2k+1, then the corresponding weight space
of all elements of the Cartan subalgebra is given by spanC {f2k+1 I} where

f2k+1 = (ξ2 + ξ1) ((ξ2 − ξ1) (ξ2 + ξ1))
k
.

Lemma 9. The subspace spanC {f2k I} resp. spanC {f2k+1 I} is an eigenspace of all
generators of h, and can hence be seen as (part of) a weight space of an so(m,C)-
representation with weight (2k, 0, . . . , 0), resp. (2k + 1, 0, . . . , 0).
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Proof. Since the generating elements f2k and f2k+1 only contain ξ1 and ξ2, we only
need to consider H1 = iΩ1,2. The generating elements will automatically vanish
under the action of the other h-elements. It was previously established (see [4],
proof of Prop. 2) that

∂1f2k = ∂2 f2k = 2k (ξ2 − ξ1) ((ξ2 + ξ1) (ξ2 − ξ1))
k−1

,

∂1f2k+1 = ∂2f2k+1 = (2k + 1) ((ξ2 − ξ1) (ξ2 + ξ1))
k
.

From this, the action of H1 = iΩ12 follows easily:

H1 f2k I = i (ξ1 ∂2 + ξ2 ∂1) f2k I e2e1

= i (2k) (ξ1 + ξ2) (ξ2 − ξ1) ((ξ2 + ξ1) (ξ2 − ξ1))
k−1

(−i I)
= (2k) ((ξ2 + ξ1) (ξ2 + ξ1))

k
I

= 2k f2k I,

while

H1 f2k+1 I = i (ξ1 ∂2 + ξ2 ∂1) f2k+1 I e2e1

= i (2k + 1) (ξ1 + ξ2) ((ξ2 − ξ1) (ξ2 + ξ1))
k
(−i I)

= (2k + 1) f2k+1 I. �

Lemma 10. The 1-dimensional spaces spanC {f2k I} and spanC {f2k+1 I} vanish
under the action of the positive roots, i.e.,

Ya,b (f2k I) = 0, ∀(a, b), a �= b,

Xa,b (f2k I) = 0, ∀(a, b), a < b,

Ya,b (f2k+1 I) = 0, ∀(a, b), a �= b,

Xa,b (f2k+1 I) = 0, ∀(a, b), a < b.

Proof. Since f2k and f2k+1 only contain ξ2 and ξ1, we only need to consider (a, b)
with b = 1 and a > 1:

2 Ya,1 (f2k I) = (Ω2a−1,1 − iΩ2a−1,2 − iΩ2a,1 − Ω2a,2) f2k I

= ξ2a−1 (∂1f2k) I e1e2a−1 − i ξ2a−1 (∂2f2k) I e2e2a−1

− i ξ2a (∂1f2k) I e1e2a − ξ2a (∂2f2k) I e2e2a.

We thus consider

I e1e2a = I+1 I−2 . . . I+2a−1 I
−
2a e1 e2a I+2a+1 I

−
2a+2 . . . I

+
2n−1I

−
2n

= I+1 e1 I+2 I−3 . . . I+2a−2 I
−
2a−1 I

+
2a e2a I+2a+1 I

−
2a+2 . . . I

+
2n−1I

−
2n

= i I+1 I+2 I−3 . . . I+2a−2 I
−
2a−1 I

−
2a I

+
2a+1 I

−
2a+2 . . . I

+
2n−1I

−
2n.

Denote for now

I1,a = I+1

changed sign of factor 2 . . . 2a − 1︷ ︸︸ ︷
I+2 I−3 . . . I+2a−2 I

−
2a−1 I−2a I

+
2a+1 I

−
2a+2 . . . I

+
2n−1I

−
2n.
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Then I e1 e2a = i I1,a and

I e1 e2a−1 = I+1 I−2 . . . I+2a−1 e1 e2a−1 I−2a . . . I
+
2n−1 I

−
2n

= I+1 e1 I+2 . . . I−2a−1 e2a−1 I−2a . . . I
+
2n−1 I

−
2n

= − I+1 I+2 . . . I+2a−2 I
−
2a−1 I

−
2a . . . I

+
2n−1 I

−
2n

= −I1,a,
I e2 e2a = I+1 I−2 . . . I+2a−1 I

−
2a e2 e2a I+2a+1 . . . I

+
2n−1 I

−
2n

= I+1 I−2 e2 I −
3 . . . I−2a−1 I

+
2a e2a I+2a+1 . . . I

+
2n−1 I

−
2n

= (−i) i I+1 I +
2 I −

3 . . . I−2a−1 I
−
2a I

+
2a+1 . . . I

+
2n−1 I

−
2n

= I1,a,

I e2 e2a−1 = I+1 I−2 . . . I+2a−1 e2 e2a−1 I−2a . . . I
+
2n−1 I

−
2n

= I+1 I−2 e2 I−3 . . . I−2a−1 e2a−1 I−2a . . . I
+
2n−1 I

−
2n

= (−1) (−i) I+1 I +
2 I−3 . . . I+2a−2 I

−
2a−1 I

−
2a . . . I

+
2n−1 I

−
2n

= i I1,a.

We recall that ∂1f2k = ∂2f2k and combining all this, we find that

2 Ya,1 (f2k I) = − ξ2a−1 (∂1f2k) I
1,a − i ξ2a−1 (∂1f2k)

(
i I1,a

)
− i ξ2a (∂1f2k)

(
i I1,a

)
− ξ2a (∂1f2k) I

1,a = 0.

The case of f2k+1 is completely similar.

For Xa,b with a < b we only need to consider the case where a = 1 and 1 < b:

2X1,b (f2k I) = (Ω1,2b−1 + iΩ1,2b − iΩ2,2b−1 +Ω2,2b) f2k I

= ξ2b−1 ∂1f2k I e2b−1e1 + i ξ2b ∂1f2k I e2be1

− i ξ2b−1 ∂2f2k I e2b−1e2 + ξ2b ∂2f2k I e2be2

= ξ2b−1 ∂1f2k I
1,b − i2 ξ2b ∂1f2k I

1,b

+ (−i)2 ξ2b−1 ∂1f2k I
1,b − ξ2b ∂1f2k I

1,b = 0.

The case of f2k+1 is again completely similar. �

Corollary 11. The space spanC {fk I} is a 1-dimensional highest weight space with
weight (k, 0, . . . , 0). As such, it generates an irreducible representation of so(m,C),
see for example [8].

We will from now on denote (k) = (k, 0, . . . , 0).

Remark 12. The space Hk I is not a left so(m,C)-module, i.e., the image of the
space Hk I under the action of a rotations Ωa,b does not belong to Hk I, but to
some Hk J with J a different idempotent. As such, direct calculations with the
given irreducible representations may become somewhat trickier (although not
impossible) than in the classical Clifford setting.
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Each space spanC {fk J}, where J runs over all possible idempotents such
that the highest weight is (k), generates an independent isomorphic irreducible
representation since the highest weight space of such an irreducible representation
is one-dimensional. The element fk J of weight (k) can thus not be found in the
irreducible representation spanned by another element fk J

′ (with J ′ a different
idempotent).

Note that not every combination of fk with an idempotent J delivers the
weight vector (k). Half of all idempotents J delivers a weight space spanC {fk J}
with weight (k); the other half delivers a weight space spanC {fk J} with weight
(−k) (which is in fact a lowest weight space, see remark below). However, in those
cases, the vector gk J where we denoted

g2k = ((ξ2 − ξ1) (ξ2 + ξ1))
k
,

g2k+1 = (ξ2 − ξ1) ((ξ2 + ξ1) (ξ2 − ξ1))
k
,

is a highest weight vector with weight (k) for our choice of positive root system.
Again, these weight vectors will all generate independent isomorphic so(m,C)-
representations. We thus get 22m different highest weight vectors which generate
22m different isomorphic irreducible representations.

Remark 13. When the space spanC {fk J} spans a weight space with weight (−k),
the negative roots act trivially on this space, as one would expect.

Each of these representations has dimension
(
k+m−1

k

)
−
(
k+m−3

k

)
(see, e.g.,

[8]). By considering all 22m idempotents and as

dimC (Hk(m,C2m)) =

((
k +m− 1

k

)
−
(
k +m− 3

k

))
dimC(C2m)

= 22m
((

k +m− 1

k

)
−
(
k +m− 3

k

))
,

we find that we can decompose the space Hk(m,C2m) into 22m irreducible isomor-
phic representations of so(m,C).

3.2. Odd dimension m = 2n + 1

In odd dimension, we extend the set of generators Ha, Xa,b, Ya,b and Za,b of the
root system with the 2n mappings:

Us =
1√
2
(Ω2s−1,m − iΩ2s,m) , Vs =

1√
2
(Ω2s−1,m + iΩ2s,m) ,

where 1 � s � n. With the addition of these 2n mappings, we are again able
to reconstruct all original Ωab’s since

√
2 Ω2s−1,m = Us + Vs and −

√
2iΩ2s,m =

Us − Vs.

Lemma 14. For 1 � s, j � n, it holds that

[Hs, Uj ] = δsj Uj = Lj(Hs)Uj ,

[Hs, Vj ] = −δsj Vj = −Lj(Hs)Vj .



Models for Some Irreducible Representations 157

In particular, Uj is a root vector corresponding to the positive root Lj and Vj is a
root vector corresponding with the negative root −Lj, ∀ 1 � j � n.

Proof. Take 1 � s, j � n:
√
2 [Hs, Uj ] = i [Ω2s−1,2s,Ω2j−1,m] + [Ω2s−1,2s,Ω2j,m]

= i (−δsj Ω2s,m) + (δsj Ω2s−1,m)

=
√
2 δsj Us,

√
2 [Hs, Vj ] = i [Ω2s−1,2s,Ω2j−1,m]− [Ω2s−1,2s,Ω2j,m]

= i (−δsj Ω2s,m)− (δsj Ω2s−1,m)

= −
√
2 δsj Vs. �

Lemma 15. The operators Uj and Vj satisfy the following additional commutator
relations with Xa,b, Ya,b and Za,b:

[Uj, Xa,b] = −δjb Ua, [Vj , Xa,b] = δja Vb,

[Uj , Ya,b] = 0, [Vj , Ya,b] = δja Ub − δjb Ua,

[Vj , Za,b] = 0, [Uj , Za,b] = −δjb Va + δja Vb,

[Uj , U�] = −Yj,�, j �= �, [Uj , Vj ] = −Hj ,

[Vj , V�] = −Zj,�, j �= � [Uj , V�] = −Xj,�, j �= �.

Proof. We only show the first proof, as the other relations use similar arguments.
√
2 [Uj , Xa,b] = δjb (Ωm,2a−1 − iΩm,2a) = δjb (−Ω2a−1,m + iΩ2a,m)

= −
√
2 δjb Ua. �

To establish highest weight vectors in the odd-dimensional case, we further
introduce

I±m =
(
e+me−m ± e+m

)
, K±

m =
(
e−me+m ± e−m

)
and denote I =

∏n
s=1

(
I+2s−1 I

−
2s

)
I+m. Then the elements f2k I and f2k+1 I are still

weight vectors with weights (2k, 0, . . . , 0) resp. (2k+1, 0, . . . , 0) which vanish under
the positive roots Ya,b and Xa,b (a < b). We only need to consider the positive
roots involving the extra factor m.

Lemma 16. The generators of the representation f2k I and f2k+1 I vanish under
the operator Uj, 1 � j � n, i.e., f2k I and f2k+1 I are highest weight vectors:

Uj (f2k I) = 0, Uj (f2k+1 I) = 0, ∀ 1 � j � n.

Proof. Since
√
2Uj (f2k I) = (Ω2j−1,m − iΩ2j,m) f2k I
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and f2k contains only ξ1 and ξ2, we find that Uj (f2k I) will immediately be zero
unless j = 1. Then

√
2U1 (f2k I) = ξm ∂1 f2k I em e1 − i ξm ∂2f2k I em e2

= 2k ξm g2k−1 (I em e1 − i I em e2) .

We complete the proof by noting that

I em e1 = −I+1 e1 I+2 I−3 . . . I−2n−1 I
+
2n I−m em = I+1 I+2 I−3 . . . I−2n−1 I

+
2n I

−
m,

I em e2 = −I+1 I−2 e2 I−3 . . . I−2n−1 I
+
2n I−m em = (−i) I+1 I+2 I−3 . . . I−2n−1 I

+
2n I−m.

The proof for f2k+1 I is completely similar. �
Remark 17. Let m = 2n+ 1. We compare the dimensions:

dimCHk = 22m
((

k +m− 1

k

)
−
(
k +m− 3

k

))
On the other hand, we have found 42n+1 = 22m different highest weight vec-

tors and thus 22m isomorphic irreducible representations with combined dimension

22m
((

k +m− 1

k

)
−
(
k +m− 3

k

))
.

We may thus conclude that Hk decomposes into 22m isomorphic irreducible rep-
resentations of so(m,C).

4. Conclusion and future research

The space Hk of discrete k-homogeneous harmonic polynomials is a reducible
representation of so(m,C), which can be decomposed into 22m isomorphic copies
of irreducible so(m,C)-representations with highest weight (k, 0, . . . , 0). This is
done by means of 22m idempotents. Let

f2k = ((ξ2 + ξ1) (ξ2 − ξ1))
k
,

g2k = ((ξ2 − ξ1) (ξ2 + ξ1))
k
,

f2k+1 = (ξ2 + ξ1) ((ξ2 − ξ1) (ξ2 + ξ1))
k ,

g2k+1 = (ξ2 − ξ1) ((ξ2 + ξ1) (ξ2 − ξ1))
k
,

be discrete homogeneous harmonic functions of degree 2k (resp. 2k+1). For each
choice of idempotent I from the set of 22m idempotents

n∏
s=1

Fs, Fs ∈
{
I±2s−1I

±
2s, I

±
2s−1K

±
2s, K

±
2s−1I

±
2s, K

±
2s−1K

±
2s

}
,

where

I±2s−1 =
(
e+2s−1e

−
2s−1 ± e+2s−1

)
, I±2s =

(
e+2se

−
2s ± i e+2s

)
,

K±
2s−1 =

(
e−2s−1e

+
2s−1 ± e−2s−1

)
, K±

2s =
(
e−2se

+
2s ± i e−2s

)
,
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either the subspace span
C {fj I} or the subspace spanC {gj I} generates an irre-

ducible so(m,C)-representation with highest weight (j, 0, . . . , 0), j ∈ {2k, 2k + 1},
under the action of the negative roots.

In an upcoming paper, we decompose the space of discrete k-homogeneous mono-
genic polynomials in irreducible so(m,C)-representation, creating in this way a
notion of discrete spinors.
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Abstract. In this paper we study special polynomial solutions to the higher
spin Laplace operator, which is a conformally invariant second-order operator
acting on fields taking values in the space of symmetric tensors. We will
consider a particular subalgebra of the conformal symmetry algebra and use a
ladder formalism to generate special solutions for this operator. For the normal
Laplace operator this leads to harmonic polynomials expressed in terms of
Gegenbauer polynomials, in the higher spin case the resulting solutions are
more complicated.
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1. Introduction

Classical harmonic and Clifford analysis are function theories in m dimensions in
which conformally invariant operators are studied using a unified framework. We
refer to some of the standard textbooks, see [2, 6, 15, 16]. Traditionally, most of
the attention was aimed at the Laplace operator Δx and the Dirac operator ∂x,
but it seems that various higher spin generalizations of both operators have re-
cently gained their place in the aforementioned function theories. Far from claiming
completeness, we refer to, e.g., [3, 7, 9–11,13] for papers in the context of Clifford
analysis.

In the present paper we continue the investigation of a particular higher spin
generalization: we focus our attention on the operators Dk, indexed by k ∈ N and
introduced in [5], which are connected to both the Laplace operator (D0 = Δx) and
the Rarita–Schwinger operators Rk, see [3]. These second-order operators are con-
formally invariant and defined on functions taking values in the space Hk(Rm,C)
of k-homogeneous harmonics in a dummy variable (our model for higher spin fields,
hereby drawing inspiration from [4], which reduce to scalar values in C for k = 0).
In particular, we construct special solutions using a method which for k = 0 yields
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harmonics expressed in terms of Gegenbauer polynomials. This method uses a spe-
cial conformal symmetry which gives rise to a subalgebra sl(2) of the full conformal
symmetry algebra so(1,m+1); this was heavily exploited in [12] to provide a rep-
resentation theoretical proof for the celebrated Fueter theorem in Clifford analysis.

In the classical case k = 0, the role of these solutions cannot be underesti-
mated: they are related to the reproducing kernel for the spaces Hl(Rm,C) and
they are crucial in the construction of Gelfand–Tsetlin bases due to their connec-
tion with the so-called branching problem from so(m) to so(m− 1). However, the
situation is more complicated for Dk with k > 0. The reason for this is the follow-
ing: whereas the spaces Hl(Rm,C) define an irreducible representation for so(m),
the space of l-homogeneous solutions for Dk is no longer irreducible. In a sense,
this leads to a certain ambiguity in the search for a higher spin version of these
Gegenbauer type solutions: one can either generalize them using the conformal
inversion (the approach adopted in the present paper), or one can focus on the
fact that they should for instance reproduce certain solution spaces (which is the
path we have pursued in our paper [8]).

So in this paper, we will again consider a particular subalgebra sl(2) of the full
conformal symmetry algebra and use the associated ladder formalism to generate
solutions for the operator Dk (see Section 3). In contrast to the classical case,
recognizing these solutions in terms of well-known special functions turns out to be
a difficult problem; we believe that this stems from the fact that the solution spaces
are not irreducible. This will be explained in Section 4, invoking the branching
problem. Finally, in the last sections we will give an explicit example (Section 5)
and an overview of future interests (Section 6).

2. The higher spin Laplace operator Dk

First of all we give a quick introduction into higher spin Clifford analysis. The
operators Dk will be defined on the space C∞(Rm,Hk(Rm,C)), which consists of
functions f(x, u) such that

f(x, u) := fx(u) ∈ Hk(R
m,C), ∀x ∈ Rm.

There is a natural action of the group Spin(m) on these functions (the so-
called regular action), given by H(s)[f ](x, u) = f(sxs, sus). The derived action of
the corresponding Lie algebra so(m) is given by

dH(eij)[f ](x, u) = (Lx
ij + Lu

ij)f(x, u),

with for instance Lx
ij := xi∂xj − xj∂xi the angular operators in the x-variable. Let

Pl,k(R2m,C) be the space of polynomials in two variables x and u with degree of
homogeneity in x (resp. u) equal to l (resp. k).

Definition 2.1. For all integers l ≥ k, the space of simplicial harmonics is defined as

Hl,k(R
2m,C) := Pl,k(R

2m,C) ∩ ker(Δx,Δu, 〈x, ∂u〉 , 〈∂x, ∂u〉) ,
where we adopted the notation ker(D1, . . . , Dn) := ker(D1) ∩ · · · ∩ ker(Dn).
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We hereby list some properties of the space of simplicial harmonics Hl,k(R2m,C):

• If m > 4, the spaces Hl,k form an irreducible so(m)-representation.
• In this case their highest weight is equal to (l, k, 0, . . . , 0), with highest weight
vector

(x1 − ix2)
l−k((x1 − ix2)(u3 − iu4)− (x3 − ix4)(u1 − iu2))

k.

• If l = k then by symmetry Hk,k(R2m,C) ⊂ ker(〈u, ∂x〉).
Next we will give the definition of the higher spin Laplace operator as well

as some basic properties, for more details we refer to [5]. The generalization of the
Laplace operator to the higher spin case is defined as the operator

Dk : C∞(Rm,Hk)→ C∞(Rm,Hk)

with

Dk = Δx −
4

2k +m− 2

(
〈u, ∂x〉 −

|u|2
2k +m− 4

〈∂u, ∂x〉
)
〈∂u, ∂x〉 .

This operator is conformally invariant with respect to the following inversion:

f(x, u) �→ JR[f ](x, u) := |x|2−mf

(
x

|x|2 ,
xux

|x|2

)
.

The following operator will be crucial for our purposes, as it will play the
role of the ladder operator mentioned in the introduction (the proof follows from
straightforward calculations):

Lemma 2.2. One has that

JR∂xiJR = |x|2∂xi + 2 〈x, u〉 ∂ui − 2ui 〈x, ∂u〉 − xi(2Ex +m− 2).

Using this operator we can realize a copy of the Lie algebra sl(2) inside the
full conformal Lie algebra so(1,m+1) of (generalized) symmetries for the operators
Dk (see [5] for more details).

Proposition 2.3. We have the following realization of sl(2):

sl(2) ∼= Alg(JR∂xjJR, ∂xj , 2Ex +m− 2).

As mentioned earlier, one of the main differences between the Laplace oper-
ator Δx and the operators Dk for k �= 0 is the fact that the polynomial kernel for
the latter operator is not irreducible under the action of so(m). As a matter of
fact, in [5] is was shown that one can decompose the l-homogeneous kernel of Dk

as follows:

kerlDk =

k⊕
i=0

k−i⊕
j=0

(JRΔxJR)
i 〈u, ∂x〉i+j Hl−i+j,k−i−j .

Note that these embedding operators are explicitly given as follows:
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Lemma 2.4. The operator JRΔxJR is given by:

JRΔxJR = |x|4Δx + 4
(
(2Eu +m− 4) 〈u, x〉+ |u|2 〈x, ∂u〉

)
〈x, ∂u〉

+ 4|x|2 (〈u, x〉 〈∂u, ∂x〉 − 〈u, ∂x〉 〈x, ∂u〉) .

3. Invariant polynomial solutions

Similar to the construction of the harmonic Gegenbauer polynomials, we will con-
struct special solutions for Dk by repeated action of the operator from Lemma 2.2.
In the harmonic case (k = 0), this was done by letting it act on the constant 1 but
here we need the raising operator to act on a k-homogeneous polynomial in the
dummy variable u ∈ Rm. This polynomial must belong to the kernel of the opera-
tor Δu and should be so(m− 1)-invariant, so as not to violate the invariance built
into the raising operator. Therefore, the only possibility is the harmonic Gegen-
bauer polynomial in the variable u. We will implement the following notation: for
j ≤ k we put

P j
k (u) = |u|

k−jC
m
2 −1+j

k−j

(
u1

|u|

)
.

For j > k we adopt the convention that P j
k (u) = 0. Note that for j = 0,

this is precisely the harmonic polynomial in u ∈ Rm we use as a starting point.
Although this is no longer true for j > 0, the resulting Gegenbauer polynomials
still have a special meaning: they occur as embedding factors for the branching
problem for harmonic polynomials in u ∈ Rm. Indeed, one has that

P j
k (u) : Hj(R

m−1)→ Hk(R
m) : Hj(u2, . . . , um) �→ P j

k (u)Hj(u2, . . . , um) .

In other words: P j
k (u) can be interpreted as a multiplication operator which

gives harmonics on Rm when acting on a harmonic of a certain degree in a space of
one dimension less. The reason for this is the following: these embeddings can also
be written in terms of the classical Kelvin inversion JΔ for harmonic functions
given by

JΔ[f(x)] := |u|2−mf

(
u

|u|2

)
.

Indeed, one has that

(JΔ∂u1JΔ)
k−j = JΔ∂

k−j
u1
JΔ : Hj(R

m−1)→ Hk(R
m) .

To lighten the notation we denote the raising operator by means of

X := JR∂x1JR .

We are interested in finding an expression for X [P j
k (u)], as this often occurs

in what follows. We first prove a Leibniz type rule:

Lemma 3.1. For f(x, u) and g(x, u) in C∞(R2m,C), one has:

X [fg] = X [f ]g + fX [g] + (m− 2)x1fg .
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Proof. Each term in the formula for X satisfies the Leibniz rule, except for the
multiplication with (2−m)x1. To compensate this we have to add the additional
last term in the formula above. �

Lemma 3.2. For every j ∈ N we have that:

X [P j
k (u)] = 2(m− 2 + 2j) (〈x, u〉 − u1x1)P

j+1
k (u)− (m− 2)x1P

j
k (u).

Proof. As we are acting on polynomials that are independent of x, our raising
operator reduces to X = 2 〈x, u〉 ∂u1 − 2u1 〈x, ∂u〉 − x1(m− 2). Using the fact that

d

dt
Cμ

n (t) = 2μCμ+1
n−1(t)

the desired result follows from straightforward calculations. �

Next, we show that the action of the raising operator yields polynomial so-
lutions for Dk of a special form (linear combinations of Gegenbauer polynomials
in u):

Theorem 3.3. For each k, l ∈ N we have that:

X l[P 0
k (u)] =

min(k,l)∑
i=0

f
(l)
i (x1, |x|, u1, 〈u, x〉)P i

k(u).

Proof. We take an arbitrary k fixed and proceed via induction on l. If l = 0 the

result is trivial since f
(0)
0 = 1. Assume it holds for all values up to and including

(l − 1). This means that:

X l[P 0
k (u)] = XX l−1[P 0

k (u)]

=

min(k,l−1)∑
i=0

X [f
(l−1)
i (x1, |x|, u1, 〈u, x〉)P i

k(u)]

For each 0 ≤ i ≤ min(k, l − 1) we have that

X [f
(l−1)
i (x1, |x|, u1, 〈u, x〉)P i

k(u)] = X [f
(l−1)
i (x1, |x|, u1, 〈u, x〉)]P i

k(u)

+ f
(l−1)
i (x1, |x|, u1, 〈u, x〉)X [P i

k(u)]

+ (m− 2)x1f
(l−1)
i (x1, |x|, u1, 〈u, x〉)P i

k(u).

We know from the previous lemma that X [P i
k(u)] looks as follows:

X [P j
k (u)] = 2(m− 2 + 2i) (〈x, u〉 − u1x1)P

i+1
k (u)− (m− 2)x1P

i
k(u)

and thus this is of the correct form. All that we have to check is that X [f
(l−1)
i ]

only depends on the given parameters to complete the proof which follows from
the chain rule and straightforward calculations. �
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From this proof we can extract a recursive relation for the functions f
(l)
i :

Proposition 3.4. For 0 ≤ i ≤ min(k, l) we have that:

f l
i (x1, |x|, u1, 〈u, x〉) = X [f

(l−1)
i (x1, |x|, u1, 〈u, x〉)]

+ f
(l−1)
i−1 (x1, |x|, u1, 〈u, x〉)2(m− 4 + 2i) (〈x, u〉 − u1x1) .

An explicit formula for f
(l)
0 is obtained in the following lemma:

Lemma 3.5. For each l ∈ N we have that:

f
(l)
0 (x1, |x|, u1, 〈u, x〉) = (−1)ll!|x|lC

m
2 −1

l

(
x1

|x|

)
.

Proof. As the recursive relation reduces to f
(l)
0 = X [f

(l−1)
0 ] for all l ∈ N, and the

fact that
X l[1] =

(
|x|2∂x1 − x1(2Ex +m− 2)

)l
[1] ,

the result follows from the harmonic case (k = 0). �
Note that this shows that X l[P 0

k (u)] can in fact be seen as ‘a deformation’ of
a harmonic polynomial in both x and u ∈ Rm (i.e., up to a remaining polynomial
to make it a solution for Dk):

X l[P 0
k (u)] = (−1)ll!|x|l|u|kC

m
2 −1

l

(
x1

|x|

)
C

m
2 −1

k

(
u1

|u|

)
+Restl,k(x, u) .

We can illustrate the previous results with a scheme, where the arrows show which
coefficients contribute to a specific term:

P 0
k

��

���
��

��
��

P 0
k

��

���
��

��
��

P 0
k

��

���
��

��
��

�
P 0
k

��

���
��

��
��

��
P 0
k

��

���
��

��
��

��
P 0
k

P 1
k

��

���
��

��
��

P 1
k

��

���
��

��
��

�
P 1
k

��

���
��

��
��

��
P 1
k

��

���
��

��
��

��
P 1
k

P 2
k

�� P 2
k

�� P 2
k

�� P 2
k

P k−1
k

��

���
��

��
��

��
P k−1
k

��

���
��

��
��

��
P k−1
k

P k
k

�� P k
k

In the harmonic case, the repeated action of the raising operator leads to a
polynomial depending on the squared norm of the vector variable (an invariant)
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and the inner product with a fixed unit vector (reducing the invariance by one
dimension). In the present setting, the previous results suggest a result depending
on the variables

(r, s, t) :=

(
x1

|x| ,
u1

|u| ,
〈

x

|x| ,
u

|u|

〉)
which is shown in the next theorem:

Theorem 3.6. For all l, k ∈ N there exists a function fl,k(r, s, t) : R3 → C such
that:

X l[P 0
k (u)] = |x|l|u|kfl,k (r, s, t) .

Proof. Take arbitrary k and l. Using Theorem 3.3 we know that:

X l[P 0
k (u)] =

min{k,l}∑
i=0

f
(l)
i (x1, |x|, u1, 〈u, x〉)P i

k(u)

=

min{k,l}∑
i=0

|u|k−if
(l)
i (x1, |x|, u1, 〈u, x〉)C

m
2 −1+i

k−i (s) .

Using Proposition 3.4 we can conclude that

Exf
(l)
i = lf

(l−1)
i

Euf
(l)
i = if

(l−1)
i

which means that f
(l)
i (x1, |x|, u1, 〈u, x〉) = |x|l|u|ig(l)i (r, s, t) for some function g

(l)
i .

This finishes the proof. �

One can rewrite the action of the raising operator X , using the variables
(r, s, t). We want to find an operator Ql such that:

X [|x|l|u|kfl,k(r, s, t)] = |x|l+1|u|kQlfl,k(r, s, t).

Using Lemma 3.1 and the chain rule, straightforward calculations give us that:

Ql := (1 − r2)∂r + 2(t− sr)∂s − (s− rt)∂t − (l +m− 2).

We can also use our sl(2)-realization to find an inverse. Recall that we have that

0 P 0
k (u)

JR∂x1JR��
∂x1

��

2Ex+m−2

��
(JR∂x1JR)[P

0
k (u)]

JR∂x1JR��
∂x1

��

2Ex+m−2

��
(JR∂x1JR)

2[P 0
k (u)]

2Ex+m−2

��

JR∂x1JR��
∂x1

�� •
∂x1

��

It is also well known that for sl(2) ∼= Alg(X,Y,H) the following commutation
relation holds (with a ∈ N):

[Y,Xa+1] = −(a+ 1)Xa(H + a).



168 D. Eelbode and T. Janssens

If we apply this to our situation we find that:

∂x1(JR∂x1JR)
l+1[P 0

k (u)] = [∂x1 , (JR∂x1JR)
l+1][P 0

k (u)]

= −(l + 1)(m− 2 + l)(JR∂x1JR)
l[P 0

k (u)].

Moreover it should be easy to see that ∂x1 |x|l+1|u|kfl+1,k(r, s, t) can be writ-
ten as:

|x|l|u|k
(
(l + 1)r + (1 − r2)∂r + (s− rt)∂t

)
fl+1,k(r, s, t).

Defining the operator Ll by means of

Ll = −
1

(l + 1)(m− 2 + l)

(
(l + 1)r + (1− r2)∂r + (s− rt)∂t

)
,

we can now say that

∂x1 |x|l+1|u|kfl+1,k(r, s, t) = −(l + 1)(m− 2 + l)|x|l|u|kLl(∂r, 0, ∂t)fl+1(r, s, t).

This operator serves as the inverse, as can be observed from direct calcula-
tions. Indeed, we have that both

|x|l|u|kLl(∂r, 0, ∂t)Ql(∂r, ∂s, ∂t)fl,k(r, s, t)

= − 1

(l + 1)(m− 2 + l)
∂x1 |x|l+1|u|kQl(∂r, ∂s, ∂t)fl,k(r, s, t)

= − 1

(l + 1)(m− 2 + l)
∂x1(JR∂x1JR)

l+1[P 0
k (u)]

= (JR∂x1JR)
l[P 0

k (u)]

= |x|l|u|kfl,k(r, s, t)
and

|x|l+1|u|kQl(∂r, ∂s, ∂t)Ll(∂r, 0, ∂t)fl+1,k(r, s, t)

= (JR∂x1JR)|x|l|u|kLl(∂r, 0, ∂t)fl+1,k(r, s, t)

= − 1

(l + 1)(m− 2 + l)
(JR∂x1JR)∂x1 |x|l+1|u|kfl+1,k(r, s, t)

= − 1

(l + 1)(m− 2 + l)
(JR∂x1JR)∂x1(JR∂x1JR)

l+1[P 0
k (u)]

= (JR∂x1JR)
l+1[P 0

k (u)]

= |x|l+1|u|kfl+1,k(r, s, t) .

The motivation for introducing this inverse is encoded in the scheme at the
top of the next page, where we have also defined the polynomial:

Sk = − 1

k + 1

(
(1− s2)∂s − (k +m− 2)s

)
.

Given any fl,k, we can thus complete the scheme.
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f0,0

Q0 ��

S0

		

f1,0

Q1 ��
L0

�� f2,0
L1

�� fl,0

Ql ��
fl+1,0

Ll

��

f0,1

Q0 ��

S1

		

f1,1

Q1 ��
L0

�� f2,1
L1

�� fl,1

Ql ��
fl+1,1

Ll

��

f0,2

Q0 ��
f1,2

Q1 ��
L0

�� f2,2
L1

�� fl,2

Ql ��
fl+1,2

Ll

��

f0,k

Q0 ��

Sk

		

f1,k

Q1 ��
L0

�� f2,k
L1

�� fl,k

Ql ��
fl+1,k

Ll

��

f0,k+1

Q0 ��
f1,k+1

Q1 ��
L0

�� f2,k+1
L1

�� fl,k+1

Ql ��
fl+1,k+1

Ll

��

Proposition 3.7. The functions fl,k(r, s, t), defined by

X l

[
|u|kC

m
2 −1

k

(
u1

|u|

)]
= |x|l|u|kfl,k(r, s, t)

can be written as:

fl,k(r, s, t) =

l∑
a=0

k∑
b=0

min{l−a,k−b}∑
c=0

αl,k(a, b, c)r
asbtc

where the αl,k(a, b, c) satisfy the following recursive relation:

αl,k(a, b, c) = (a+ 1)αl−1,k(a+ 1, b, c) + (c− a− 2b− l −m+ 4)αl−1,k(a− 1, b, c)

− 2(b+ 1)αl−1,k(a, b+ 1, c− 1)− (c+ 1)αl−1,k(a, b− 1, c+ 1).

We have adopted the convention that: αl,k(a, b, c) = 0 if any of the indices
are out of bounds. Moreover, because |x|l|u|kfl,k(r, s, t) ∈ Pl,k, if:

l − a− c �≡ 0 mod 2 or k − b− c �≡ 0 mod 2

then αl,k(a, b, c) = 0.

Proof. This follows from the fact that fl,k(r, s, t) = Ql−1fl−1,k(r, s, t) and direct
calculations. �

Despite the existence of this recursive relation, it proves difficult to find a
general expression for the coefficients. We expected the coefficients to be a ratio-
nal function involving polynomials in the dimension m of degree one. However, at
some point in the calculation an irreducible (over Q) second degree polynomial in
m appears (even when restricting to low k values) which makes it impossible to
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recognize a product of Gamma functions (something which could lead to hyper-
geometric coefficients). For instance, let k = 2 and look at the coefficient of the
term r2s2 for the first values for l:

l-values αl,2(2, 2, 0)

l = 2 1
2 (m− 2)m(m+ 2)(m+ 4)

l = 4 −3(m− 2)m(m+ 2)(m+ 4)(m+ 10)

l = 6 45
2 (m− 2)m(m+ 2)(m+ 4)(m2 + 22m+ 104)

l = 8 −210(m− 2)m(m+ 2)(m+ 4)(m+ 6)(m+ 10)(m+ 20)

l = 10 4725
2 (m− 2)m(m+ 2)(m+ 4)(m+ 6)(m+ 8)(m2 + 38m+ 328)

The reason for this unexpected term could be the following: in the classical
case we found a unique invariant when looking at the repeated action of the raising
operator. In our current setting this is no longer the case: the space of the so(m−1)-
invariant polynomial solutions to Dk is (k+1)-dimensional (provided that l ≥ k),
which means that we are dealing with a certain linear combination. Fortunately
we can find a suitable basis for this space.

4. Branching rules

In the previous section, we have found special solutions for Dk which can be written
as |x|l|u|kflk(r, s, t). As they are polynomials on R2m, this implies that

fl,k(r, s, t) =

l∑
a=0

k∑
b=0

min{l−a,k−b}∑
c=0

αl,k(a, b, c)r
asbtc.

Since multiplying with |x|l|u|k has to give a polynomial, we can conclude that

l even (resp. odd) =⇒ αlk(a, b, c) = 0 if a+ c is odd (resp. even)
k even (resp. odd) =⇒ αlk(a, b, c) = 0 if b+ c is odd (resp. even)

These polynomials belong to the (k+1)-dimensional space of so(m− 1)-invariant
polynomials in kerlDk and the following theorem provides us with a suitable basis:

Theorem 4.1. Let m > 4, and let Pl,k(x, u) ∈ kerlDk be an so(m − 1)-invariant
solution for Dk with l ≥ k. In that case there exist constants ci ∈ C (i = 0, . . . , k)
such that:

Pl,k(x, u) =
k∑

i=0

ci(JRΔxJR)
i 〈u, ∂x〉k |x|l+k−2iC

m
2 −1

l+k−2i(r)

Proof. We recall the fact that Hl,k is an irreducible so(m)-representation with
highest weight (l, k, 0, . . . , 0). This means that:

Hl,k

∣∣∣∣so(m)

so(m−1)

∼=
l⊕

i=k

k⊕
j=0

(i, j, 0, . . . , 0)
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and thus there is no scalar component to be found unless k = 0. From the classical
harmonic result we know that the so(m − 1)-invariant subspace in Hl+k−2i is
generated by the harmonic Gegenbauer polynomial of degree l+ k− 2i. Using the
embedding factors for the simplicial harmonics in kerlDk (see [5]), we arrive at
the proof. �

From this theorem we can also conclude that each so(m− 1)-invariant poly-
nomial in kerlDk has to be of the form |x|l|u|kg(r, s, t) since it can be shown that
both the operators 〈u, ∂x〉 and JRΔxJR preserve this form.

5. Example

We will find an explicit formula for one of the so(m − 1)-invariants in kerlDk

namely:

〈u, ∂x〉k |x|l+kC
m
2 −1

l+k

(
x1

|x|

)
.

This is a rather special solution, as it is not induced by the solutions for
kerDk−1. By this we mean the following: a special class of solutions for Dk contains
polynomials in (x, u) which belong to the kernel of both Δx and 〈∂x, ∂u〉 (see
the definition of Dk in Section 2). In physics, these solutions are important as
they satisfy certain gauge conditions (they are harmonic and satisfy the condition
〈∂x, ∂u〉f(x, u) = 0). As was shown in [5], this operator 〈∂x, ∂u〉 also maps solutions
for Dk surjectively to solutions for Dk−1, although the inversion is a non-trivial
operator. The component we are about to describe does not come from such an
inversion procedure, as it is killed by the operator 〈∂x, ∂u〉. To obtain an explicit
expression we calculate the repeated action of 〈u, ∂x〉 on

|x|nCμ
n (r) =

	n
2 
∑

j=0

(−1)j2n−2j Γ(n− j + μ)

Γ(μ)j!(n− 2j)!
xn−2j
1 |x|2j =

	n
2 
∑

j=0

αn(j, μ)x
n−2j
1 |x|2j .

We need to following lemmas, all of which are easily proven by straightforward
calculations and induction.

Lemma 5.1. Let k ∈ N and f, g k-times differentiable functions on Rm then

〈u, ∂x〉k (fg) =
k∑

i=0

(
k

i

)(
〈u, ∂x〉k−i f

)(
〈u, ∂x〉i g

)
.

Lemma 5.2. Let a, b ∈ N then

〈u, ∂x〉a xb
1 = (b)au

a
1x

b−a
1

where (b)a = b(b− 1) · · · (b− a+ 1) is the lowering factorial.
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Lemma 5.3. Let a, b ∈ N then

〈u, ∂x〉a |x|2b =
	a

2 
∑
i=0

2a−2i(a)2i(b)a−i

i!
〈u, x〉a−2i |u|2i|x|2b−2a+2i.

This means that 〈u, ∂x〉k |x|nCμ
n (r) is given by:

	n
2 
∑

j=0

αn(j, μ)

k∑
i=0

(
k

i

)(
〈u, ∂x〉k−i

xn−2j
1

)(
〈u, ∂x〉i |x|2j

)

=

	n
2 
∑

j=0

αn(j, μ)

k∑
i=0

(
k

i

)(
(n− 2j)k−iu

k−i
1 xn−2j−k+i

1

)

×
	 i
2 
∑

h=0

2i−2h(i)2h(j)i−h

h!
〈u, x〉i−2h |u|2h|x|2j−2i+2h

=

	n
2 
∑

j=0

k∑
i=0

	 i
2 
∑

h=0

γn,k,μ(i, j, h)u
k−i
1 xn−2j−k+i

1 〈u, x〉i−2h |u|2h|x|2j−2i+2h

= |x|n−k|u|k
	n

2 
∑
j=0

k∑
i=0

	 i
2 
∑

h=0

γn,k,μ(i, j, h)

(
u1

|u|

)k−i (
x1

|x|

)n−2j−k+i (〈
u

|u| ,
x

|x|

〉)i−2h

with

γn,k,μ(i, j, h) := αn(j, μ)

(
k

i

)
(n− 2j)k−i

2i−2h(i)2h(j)i−h

h!
.

If we want to write this into our chosen standard form then we would have
to do the following substitutions:

a := n− 2j − k + i

b := k − i

c := i− 2h.

It is here that the parity conditions on our coefficients will appear. Since
c = k − b− 2h we know that c+ b ≡ k mod 2. Completely analogue one can use
the fact that a = n− 2j − k + c+ 2h to conclude that a+ c ≡ n− k mod 2. Also
we can see that c ≤ k − b and c ≤ n− k − a to end up with:

n−k∑
a=0

k∑
b=0

min(n−k−a,k−b)∑
c=0

εn,k(a, b, c)γn,k,μ

(
k − b,

n− a− b

2
,
k − b− c

2

)
rasbtc

where εn,k(a, b, c) = 0 if the parity conditions are not met, and equal to 1 other-
wise. These conditions also guarantee that the arguments of the γn,k,μ are positive
integers. There is however a way to get rid of the factor εn,k(a, b, c) in the summa-
tion if we slightly change our summation indices. If we use the fact that, for each
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a, b, c, there have to exist i, j such that a = n− k − c − 2i and b = k − c− 2j we
can write our expression as:

min(n−k,k)∑
c=0

	n−k−c
2 
∑

i=0

	 k−c
2 
∑

j=0

γn,k,μ (c+ 2j, c+ i+ j, j) rn−k−c−2isk−c−2jtc.

Combining all of the above gives us the following theorem:

Theorem 5.4. For each l, k ∈ N the following so(m − 1)-invariant polynomial
belongs to kerlDk:

l∑
a=0

k∑
b=0

min(l−a,k−b)∑
c=0

εl,k(a, b, c)γl,k

(
k − b,

l + k − a− b

2
,
k − b− c

2

)
rasbtc

where

γl,k(i, j, h) := (−1)j2l+k+i−2j−2h

(
k

i

)
(i)2h(j)i−h

h!j!(l + i− 2j)!

Γ(l + k − j + m
2 − 1)

Γ(m2 − 1)

and εl,k(a, b, c) is equal to 1 when both a+ c ≡ l mod 2 and b+ c ≡ k mod 2, and
equal to zero otherwise.

6. Further research

It is clear that knowing invariants in the spaces Hi,j(R2m,C) under a certain
subalgebra is crucial in order to understand the invariants in the kernel of Dk.
There is however one particular important subspace of kerlDk we are interested
in: namely Hl,k(R2m,C). To find an invariant in the latter space a branching to
so(m − 1) will be insufficient, but when branching to so(m − 2) one has to deal
with multiplicities (see Section 4). In [8] we further explore this problem to find an
arguably more suitable generalisation for the harmonic Gegenbauer polynomials.
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A New Cauchy Type Integral Formula for
Quaternionic k-hypermonogenic Functions

Sirkka-Liisa Eriksson and Heikki Orelma

Abstract. In complex function theory holomorphic functions are conjugate
gradient of real harmonic functions. We may build function theories in higher
dimensions based on this idea if we generalize harmonic functions and define
the conjugate gradient operator. We study this type of function theory in
R3 connected to harmonic functions with respect to the Laplace–Beltrami
operator of the Riemannian metric ds2 = x−2k

2

(∑2
i=0 dx

2
i

)
. The domain of

the definition of our functions is in R3 and the image space is the associative
algebra of quaternions H generated by 1, e1, e2 and e12 = e1e2 satisfying the
relation eiej + ejei = −2δij , i, j = 1, 2. The complex field C is identified by
the set {x0 + x1e1 | x0, x1 ∈ R}. The conjugate gradient is defined in terms

of modified Dirac operator, introduced by Mkf = Df + kx−1
2 Qf , where Qf

is given by the decomposition f (x) = Pf (x) + Qf (x) e2 with Pf (x) and

Qf (x) in C and Qf is the usual complex conjugation.

Leutwiler noticed around 1990 that if the usual Euclidean metric is
changed to the hyperbolic metric of the Poincaré upper half-space model
(k = 1), then the power function (x0 + x1e1 + x2e2)

n, calculated using quater-
nions, is the conjugate gradient of the a hyperbolic harmonic function. We
study functions, called k-hypermonogenic, satisfying Mkf = 0. Monogenic
functions are 0-hypermonogenic. Moreover, 1-hypermonogenic functions are
hypermonogenic defined by H. Leutwiler and the first author.

We prove a new Cauchy type integral formulas for k-hypermonogenic
functions where the kernels are calculated using the hyperbolic distance and
are k-hypermonogenic functions. This formula gives the known formulas in
case of monogenic and hypermonogenic functions. It also produces new
Cauchy and Teodorescu type integral operators investigated in the future
research.

Mathematics Subject Classification (2010). Primary 30G35; Secondary 30A96.

Keywords. k-hypermonogenic, k-hyperbolic harmonic, Laplace–Beltrami,
monogenic, Clifford algebra, hyperbolic metric, hyperbolic Laplace.
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1. Introduction

We study generalized function theory connected to the Riemannian metric

ds2 =
dx2

0 + dx2
1 + dx2

2

x2k
2

.

When k = 0 the metrics is Euclidean and when k = 1 the metric is the hyperbolic
metric of Poincaré upper half-space. We are studying functions whose domain is in
the Euclidean space R3 and the image space the associative real division algebra
of quaternions. In this case we define generalized holomorphic functions, called k-
hypermonogenic. Our theory combines together the theory of monogenic functions
(k = 0) and hypermonogenic functions (k = 1). Moreover, it is also connected to
the eigenfunctions of the hyperbolic Laplace operator of the Poincaré upper half-
space model.

Hypermonogenic functions were introduced by H. Leutwiler and the first
author in [6]. Overview to the theory is written in [8] or [10]. Two types of Cauchy
integral formulas for hypermonogenic functions were proved in [7] and the total
formula with two hypermonogenic kernels in [2]. The formulas were improved to
contain just one single kernel in [9] and [4]. Later in [5] it was invented the
surprising result that the kernel is the Cauchy kernel of monogenic function shifted
to the Euclidean center of the hyperbolic ball.

The general complicated integral formulas for k-hypermonogenic functions
were proved in [3]. In our main result of this paper we present in R3 a new Cauchy
formula for k-hypermongenic functions.This formula corrects and improves the
formula presented in [14, Theorems 3.22 and 3.23] where the function gk has a cal-
culation error. Moreover the kernels are vanishing at the infinity. When k = 0, this
formula is just the Cauchy formula of monogenic functions. In case k = 1, we ob-
tain the Cauchy formula of hypermonogenic functions. Moreover our formula also
gives an integral operators of boundary functions producing a k-hypermongenic
function. The generalization of these results to higher dimensions is under inves-
tigations.

2. Preliminaries

To make the reading easier, we recall the notations and main concepts used in
this paper. The real associated division algebra of quaternions is denoted by H.
Its generating elements are denoted by e1, e2, e3 and they satisfy the properties
e1e2 = e3 and eiej+ejei = −2δij where δij is the usual Kronecker delta. Elements
x = x0 + x1e1 + x2e2 for x0, x1, x2 ∈ R are called paravectors. The vector space
R3 is identified with the real vector space of paravectors and therefore elements
x0 + x1e1 + x2e2 and (x0, x1, x2) are identified. The field of complex numbers is
identified with the field {x0 + x1e1| x0, x1 ∈ R}. Our general assumption is that
the domain of our functions is an open subset Ω of R3 and their image space
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is the set of quaternions. We also assume that our functions are continuously
differentiable.

We use three common involutions. If q = x0 + x1e1 + x2e2 + x3e3 and
x0, x1, x2, x3 ∈ R they are defined by

q′ = x0 − x1e1 − x2e2 + x3e3, (the main involution)

q∗ = x0 + x1e1 + x2e2 − x3e3, (the reversion)

q̄ = x0 − x1e1 − x2e2 − x3e3. (the conjugation)

The conjugation satisfies q = (q′)∗ = (q∗)′.
Using the unique decomposition q = u + ve2 for u, v ∈ C we define the

mappings P : H→ C and Q : H→ C by Pq = u and Qq = v (see [6]). In order to
compute the P - and Q-parts easily, we define also a new involution q → q̂ by

q̂ = q0 + q1e1 − q2e2 − q3e3.

The simple observations

a′e2 = e2â and â = −e2a′e2
hold for all a ∈ H. We also obtain the formulas

Pq =
1

2
(q + q̂) =

1

2
(q − e2q

′e2) = −
1

2
(qe2 + e2q

′) e2, (2.1)

Qq = −1

2
(q − q̂) e2 = −1

2
(qe2 − e2q

′) . (2.2)

The involutions satisfy the following product rules

(ab)
′
= a′b′, (ab)

∗
= b∗a∗,

ab = b a, âb = âb̂

for all quaternions a and b. The mappings P and Q have the product rules (see [6])

P (ab) = (Pa)Pb− (Qa)Q′ (b) , (2.3)

Q (ab) = (Pa)Qb+ (Qa)P ′ (b) = aQb+ (Qa) b′. (2.4)

Moreover if a ∈ C then

a′ = a (2.5)

â = a (2.6)

and

a′e2 = e2a.

The topology in H is introduced by the norm

|q| =
√

x2
0 + x2

1 + x2
2 + x2

3 =
√
qq̄.

The left and right Dirac (or Cauchy–Riemann) operators in H are defined by

Dlf =
∂f

∂x0
+ e1

∂f

∂x1
+ e2

∂f

∂x2
, Drf =

∂f

∂x0
+

∂f

∂x1
e1 +

∂f

∂x2
e2
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and their conjugate operators Dl and Dr by

Dlf =
∂f

∂x0
− e1

∂f

∂x1
− e2

∂f

∂x2
, Drf =

∂f

∂x0
− ∂f

∂x1
e1 −

∂f

∂x2
e2.

The modified Dirac operators M l
k, M

l

k, M
r
k and M

r

k in H and for k ∈ R are
introduced (see [1]) by

M l
kf (x) = Dlf (x) + k

Qf (x)

x2
, M r

kf (x) = Drf (x) + k
Qf (x)

x2
,

M
l

kf (x) = Dlf (x)− k
Qf (x)

x2
, M

r

kf (x) = Drf (x) + k
Qf (x)

x2

for x ∈ {x ∈ Ω | x2 �= 0}. The operator M l
1 is abbreviated by M (see [6]).

Definition 2.1. Let Ω ⊂ R3 be an open set. Let k ∈ R. A mapping f : Ω → H
is called left k-hypermonogenic, if f ∈ C1 (Ω) and M l

kf (x) = 0 for any x ∈
{x ∈ Ω | x2 �= 0}. The 0-hypermonogenic functions are called monogenic. The 1-
hypermonogenic functions are called briefly hypermonogenic. The right k-hyper-
monogenic functions are defined similarly. A twice continuously differentiable func-

tion f : Ω → H is called k-hyperbolic harmonic if M
l

kM
l
kf = 0 for any x ∈

{x ∈ Ω | x2 �= 0} .

We have the following characterization of k-hyperbolic harmonic functions.

Proposition 2.2 (cf. [1]). Let f : Ω→ H be twice continuously differentiable. Then

x2
2MkMkf = x2

2 f − kx2
∂f

∂x2
+ kQfe2.

Moreover f is k-hyperbolic if and only if

x2
2 Pf − kx2

∂Pf

∂x2
= 0,

x2
2 Qf − kx2

∂Qf

∂x2
+ kQf = 0.

We directly obtain the following corollaries.

Corollary 2.3. A twice twice continuously differentiable function f : Ω → H is
k-hyperbolic harmonic for any k ∈ R if nd only if it has the presentation

f (x) = g (x) + cx2e2,

where g : Ω→ C is a harmonic function independent of x2 and c ∈ C.

Corollary 2.4. The identity function f (x) = x is k-hyperbolic harmonic for any
value of k.

We recall two main relations between k-hyperbolic harmonic functions and
k-hypermonogenic functions.
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Theorem 2.5 (cf. [6]). Let Ω ⊂ R3 be an open set and f : Ω → H be twice
continuously differentiable. Then f is k-hypermonogenic if and only if f and xf (x)
are k-hyperbolic harmonic functions.

Proposition 2.6 (cf. [1]). Let Ω ⊂ R3 be an open set. If a function h : Ω→ H is k-

hyperbolic harmonic then M
l

kh is k-hypermonogenic. Conversely, if a mapping f :
Ω → H is k-hypermonogenic there exists locally a complex k-hyperbolic harmonic
function h satisfying f = Dh.

A key observation is the following relation between k- and −k-hypermono-
genic functions.

Theorem 2.7 (cf. [2]). Let Ω be an open subset of R3\{x2 = 0} and f : Ω→ H be
a C1 (Ω,H) function. A function f : Ω→ H is k-hypermonogenic if and only if the

function x−k
2 fen is −k-hypermonogenic.

3. Cauchy formula for k-hypermonogenic functions

The hyperbolic metric of the Poincaré upper half-space model is the Riemannian
metric

ds2 =
dx2

0 + dx2
1 + dx2

2

x2
2

and its Laplace–Beltrami operator is

Δhf = x2
2Δf − x2

∂f

∂x2
,

which is also called the hyperbolic Laplace operator. The hyperbolic distance may
be computed as follows (see [16]).

Lemma 3.1. The hyperbolic distance dh(x, a) between the points x and a in R3
+ is

dh(x, a) = arcosh λ(x, a) = ln
(
λ(x, a) +

√
λ(x, a)2 − 1

)
,

where

λ(x, a) =
|x− a|2 + |x− â|2

4x2a2
=
|x− a|2

2x2a2
+ 1

and |x− a| is the usual Euclidean distance in R3 between the points a and x.

We recall the following important relation between the Euclidean and hyper-
bolic balls.

Proposition 3.2 (cf. [16]). The hyperbolic ball Bh (a, rh) in R3
+ with the hyperbolic

center a = a0 + a1e1 + a2e2 and the radius rh is the same as the Euclidean ball
with the Euclidean center

ca (rh) = a0 + a1e1 + a2 cosh rhe2

and the Euclidean radius re = a2 sinh rh.
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We use the following calculation rules, proved in [11].

Lemma 3.3. If c (x, a) = Pa+ a2λ(x, a)e2 then

D
x
λ (x, a) =

x− c (x, a)

a2x2
,

D
x
dh (x, a) =

x− c (x, a)

a2x2 sinh dh (x, a)
=

x− c (x, a)

x2 |x− c (x, a)| .

We remark that applying the previous proposition we notice that c (x, a) is the
Euclidean center of the hyperbolic ball Bh (a, dh (x, a)) and the value |x− c (x, a)|
is its Euclidean radius.

A key tool is the relation between k-hyperbolic harmonic functions and the
eigenfunctions of the hyperbolic Laplace–Beltrami operator, stated slightly more
general form as follows.

Proposition 3.4 (cf. [12]). If u is a real-valued solution of the equation

x2
2  h (x)− kx2

∂h

∂x2
(x) + lh (x) = 0 (3.1)

in an open subset Ω ⊂ R3
+, then f(x) = x

1−k
2

2 u(x) is the eigenfunction of the

hyperbolic Laplace operator corresponding to the eigenvalue 1
4

(
k2 + 2k − 3− 4l

)
.

Conversely, if f is an eigenfunction of the hyperbolic Laplace operator correspond-

ing to the eigenvalue l in an open subset Ω ⊂ R3
+ then u(x) = x

k−1
2

2 f(x) is the

solution of the equation (3.1) in Ω with γ = 1
4

(
k2 + 2k − 3− 4l

)
.

The hyperbolic Laplace for functions depending only on dh (x, e2) = rh is

 hf (rh) =
∂2f

∂r2h
+ 2 coth rh

∂f

∂rh

(see [11] and [13]). The general solution depending on the hyperbolic distance is
computed in [14].

Theorem 3.5 (cf. [14]). The general solution of the equation

∂2f

∂r2h
+ 2 coth rh

∂f

∂rh
+ γf = 0 (3.2)

is

f (rh) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C cosh(

√
1−γrh)

sinh rh
+

C0 sinh(
√
1−γrh)

sinh rh
, if γ < 1,

C
sinh rh

+ C0rh
sinh rh

, if γ = 1,

C cos(
√
γ−1rh)

sinh rh
+

C0 sin(
√
γ−1rh)

sinh rh
, if γ > 1,

for real constants C and C0.

In our case γ = 1
4 (4 − (k + 1)2), hence there are bounded solutions if −3 ≤

k ≤ 1.



Improved Integral 181

Corollary 3.6. If −3 ≤ k ≤ 1 the function

f (rh) =
C0 sinh

(
|k+1|

2 rh

)
sinh rh

is a bounded solution of the equation (3.2) vanishing when rh (x, a)→∞.

A kernel function in not unique but we later see that the following functions
produce k-hypermonogenic functions possessing the nicest symmetry properties.

Proposition 3.7. If γ = 1
4 (4−(k+1)2) then one solution of (3.2) with a singularity

at a vanishing when dh (x, a)→∞ is

Fk (x, a) =

⎧⎪⎨⎪⎩
cosh

(
dh(x,a)(k+1)

2

)
sinh dh(x,a)

, if − 1 < k < 1

e−
|k+1|dh(x,a)

2

sinh dh(x,a)
, if k ≤ −1 or k ≥ 1.

Moreover the function gk (x, a) = x
k−1
2

2 a
k−1
2

2 Fk (x, a) is k-hyperbolic harmonic with
respect to the both variables x and a outside the point x = a vanishing when
x2 →∞.

Proof. The first statement is clear. We look more carefully the second statement.
Without loosing the generality, we may pick a = e2 and abbreviate λ = λ (x, e2).
If −1 < k < 1 the result holds. If k ≤ −1 or k ≥ 1 applying Lemma 3.1 we obtain

λ2 − 1 = (λ− 1) (λ+ 1) =
|x− e2|2 |x+ e2|2

2x2

and therefore

x
k−1
2

2 e−
|k+1|dh(x,a)

2

sinh dh (x, a)
=

x
k−1
2

2(
λ+

√
λ2 − 1

) |k+1|
2
√
λ2 − 1

=
2

|k+1|+2
2 x

k+1
2

+
|k+1|

2

2(
1 + |Px|2 + x2

2 + |x− e2| |x+ e2|
) |k+1|

2 |x− e2| |x+ e2|

≤ 2
|k+1|+2

2

x
|k+1|

2
− k+1

2

2 |x2
2 − 1|

,

completing the proof of the first case.

Similarly in cases k ≤ −1 and k ≥ 1 we compute

hk (x, a) = as+1
2 xs−1

2 wk (x, a) p (x, a) ,
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where

wk (x, a) = (1− s) e−|s|rhe2
x− ca (rh)

a2
− |s| sinh rhe−|s|rh − e−|s|rh cosh rh

=

{
(1− s) e−srhe2

x−Pa
a2

− se−(s−1)rh , if k ≥ 1,

(1− s) esrhe2
x−Pa
a2

+ se(s−1)rh , if k ≤ −1.

Applying [11], we infer that the function p (x, a) is hypermonogenic, completing
the proof. �

The kernel functions have been computed earlier in the classical harmonic
case k = 0 and in the hyperbolic case k = −1 and k = 1 (see [15] and in the
general case [2]). Our formulas are the same up to multiplying constants.

Corollary 3.8.

Fk (x, a) =

⎧⎪⎪⎨⎪⎪⎩
1

|x−a| , if k = 0,

1
a2x2 sinh dh(x,a)

= 2
|x−a2||x+a2| , if k = −1,

coth dh (x, a)− 1, if k = 1.

Proof. If k = 0 then using hyperbolic identities we compute

F0 (x, a) =
cosh

(
dh(x,a)

2

)
√
x2a2 sinh dh (x, a)

=

√
coshdh (x, a) + 1
√
2x2a2

√
λ2 − 1

=
1√

2x2a2
√
λ− 1

=
1

|x− a| .

Similarly we calculate the case k = −1 as follows

F−1 (x, a) =
1

a2x2 sinh dh (x, a)

=
1

a2x2

√
λ2 − 1

=
2

|x− a2| |x+ a2|
.

The case k = 1 is obtained from

F1 (x, a) = cothdh (x, a)− 1. �

Using Proposition 2.6, we may directly compute the corresponding k-hyper-
monogenic function.

Theorem 3.9. Set rh = dh (x, a) and s = k+1
2 . If we denote

wk (x, a) =

⎧⎨⎩ (1− s) v (srh) e2
x−Pa
a2

− sv ((s− 1) rh) , if − 1 < k,

v (srh)
(
(1− s) e2

x−Pa
a2

+ se−rh
)
, if k ≤ −1,
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v (srh) =

⎧⎨⎩ cosh
(

dh(x,a)(k+1)
2

)
, if − 1 < k < 1,

e−
|k+1|dh(x,a)

2 , if k ≤ −1 or k ≥ 1.

and

p (x, a) =
(x− ca (rh))

−1

x2 |x− ca (rh)|
then the function

hk (x, a) = as+1
2 xs−1

2 wk (x, a) p (x, a)

is paravector-valued k-hypermonogenic outside x = a with respect to x and p(x, a)
is hypermonogenic with respect to x.

Proof. Denote s = k+1
2 . Applying the previous corollary and Proposition 2.6, we

note that the function

gk (x2, rh) =
as−1
2 xs−1

2 v (srh)

sinh rh

is k-hyperbolic harmonic and hk = D
x
g (x2,rh) is k-hypermonogenic. Assume first

that −1 < k < 1. We just make simple calculations

hk (x, a)

as−1
2 xs−1

2

= − (s− 1)
v (srh) e2
x2 sinh rh

+

(
sinh rh sinh (srh)− v (srh) cosh rh

sinh2 rh

)
D

x
rh.

Applying Lemma 3.3, we obtain

D
x
rh

a22 sinh
2 rh

=
x− ca (rh)

x2 |x− ca (rh)|3
=

(x− ca (rh))
−1

x2 |x− ca (rh)|
and

x− c (x, a)

a2

(x− ca (rh))
−1

x2 |x− ca (rh)|
=

1

a2x2 |x− ca (rh)|

=
1

a22x2 sinh rh
.

Hence we obtain

hk (x, a)

as+1
2 xs−1

2

= wk (x, a)
(x− ca (rh))

−1

x2 |x− ca (rh)|
and

wk (x, a) = (1− s) v (srh) e2
x− ca (rh)

a2
+ s sinh rh sinh (srh)− v (srh) cosh rh

= (1− s) v (srh) e2
x− Pa

a2
+ s (sinh rh sinh (srh)− v (srh) cosh rh)

= (1− s) v (srh) e2
x− Pa

a2
− sv ((s− 1) rh) . �
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Denote the real surface measure by dS and a real weighted volume measure by

dmk =
1

xk
2

dm.

Using [14] we obtain the integral formula for the P -part.

Theorem 3.10. Let Ω be an open subset of R3
+ (or R3−) and K ⊂ Ω be a smoothly

bounded compact set with the outer unit normal field ν. Let s = k+1
2 and

hk (x, a) = as+1
2 xs−1

2 wk (x, a) p (x, a)

be the same function as in Theorem 3.9. If f is k-hypermonogenic in Ω and a ∈ K,
then

Pf (a) =
1

4π

∫
∂K

P (hk (x, a) νf (x))
dS

xk
2

.

Similarly using [14] we obtain the integral formula also for the Q-part.

Theorem 3.11. Let Ω be an open subset of R3
+ (or R3−) and K ⊂ Ω be a smoothly

bounded compact set with the outer unit normal field ν. The function

v−k (x, a) = ak2h−k (x, a)

is paravector-valued −k-hypermonogenic outside x = a with respect to x. If f is
k-hypermonogenic in Ω and a ∈ K, then

Qf (a) =
1

4π

∫
∂K

Q (v−k (x, a) νf (x)) dS.

We recall the Cauchy-type kernel of hypermonogenic functions.

Lemma 3.12 (cf. [5]). If x and a belong to R3
+ then the function

(x− c (x, a))
−1

x2 |x− c (x, a)| = 4x2
(x− a)

−1

|x− a| e2
(x− â)

−1

|x− â|

= 4x2
(x− â)

−1

|x− â| e2
(x− a)

−1

|x− a|
is hypermonogenic with respect to x outside the point x = a.

We verify important symmetry properties of the kernels.

Lemma 3.13.

Phk (x, a) = D
x

1gk (x, a)

= −Da

1gk (a, x) = −Phk (a, x) ,

where
hk (a, x) = D

a
gk (a, x)

and

D
a

1f =
∂f

∂a0
+ e1

∂f

∂a1
.
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Proof. We recall that

D
x
dh (x, a) =

x− c (x, a)

a2x2 sinh dh (x, a)
=

x− c (x, a)

x2 |x− c (x, a)|
and

D
a
dh (x, a) =

a− c (a, x)

a2 |a− c (a, x)| =
a− c (a, x)

a2x2 sinh dh (x, a)
.

Denoting g s = k+1
2 and dh (x, a) = rh, we just compute

D1
x
g (x2,rh) = a

k−1
2

2 x
k−1
2

2

(
sv′ (sr) sin rh − v (sr) cosh rh

sinh2 rh

)
D1

x
rh

= a
k−3
2

2 x
k−3
2

2

(
sv′ (sr) sin rh − v (sr) cosh rh

sinh2 rh

)
Px− Pa

sinh rh

= a
k−3
2

2 x
k−3
2

2

(
sv′ (sr) sin rh − v (sr) cosh rh

sinh3 rh

)(
Px− Pa

)
.

Hence

D1
a
g (x2,rh) = a

k−3
2

2 x
k−3
2

2

(
sv′ (sr) sin rh − v (sr) cosh rh

sinh3 rh

)(
Pa− Px

)
= −D1

x
g (x2,rh) = −Phk. �

There is a surprising symmetry relation between

x−k
2 Qhk (a, x) and ak2Qh−k (x, a)

stated next. We need this result in order to simplify the formula of the kernels in
the Cauchy-type integral formula.

Lemma 3.14.

x−k
2 Qhk (a, x) + ak2Qh−k (x, a) = 0,

x−k
2 Qhk (x, a) + ak2Qh−k (a, x) = 0.

Proof. Assume first that −1 < k < 1. We just start to compute

gk (x2, rh) =
a

k−1
2

2 x
k−1
2

2 cosh
((

k+1
2

)
rh
)

sinh rh
and

g−k (x2, rh) =
a

−k−1
2

2 x
−k−1

2
2 cosh

((−k+1
2

)
rh
)

sinh rh

=
a

−k−1
2

2 x
−k−1

2
2 cosh

((
k−1
2

)
rh
)

sinh rh
.

Since

hk (a, x) = D1
a
gk (a2,rh)−

∂gk (a2,rh) e2
∂a2
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applying ∂rh
∂a2

= a2−x2 cosh rh
a2x2 sinh rh

and the hyperbolic identities we obtain the formula

Qhk (a, x)

x
k−1
2

2 a
k−1
2

2

= − (k + 1) cosh (srh)

2a2 sinh rh
+

(k + 1) sinh (srh) cosh rh

2a2 sinh
2 rh

− cosh (srh)

a2 sinh
3 rh

− (k + 1) sinh (srh)

2x2 sinh
2 rh

+
cosh (srh) cosh rh

x2 sinh
3 rh

.

Hence we have

Qh−k (x, a)

a
−1−k

2
2 x

−1−k
2

2

=
(k − 1) cosh ((s− 1) rh)

2x2 sinh rh
+

(k − 1) sinh ((s− 1) rh) cosh rh

2x2 sinh
2 rh

− cosh ((s− 1) rh)

x2 sinh
3 rh

− (k − 1) sinh ((s− 1) rh)

2a2 sinh
2 rh

+
cosh ((s− 1) rh) cosh rh

a2 sinh
3 rh

.

Moreover, applying hyperbolic identities of the sum, we infer

Qhk (a, x)

x
k−1
2

2 a
k−1
2

2

= − (k − 1) cosh ((s− 1) rh)

2x2 sinh rh
− (k − 1) sinh ((s− 1) rh) cosh rh

2x2 sinh
2 rh

+
cosh ((s− 1) rh)

x2 sinh
3 rh

+
(k − 1) sinh ((s− 1) rh)

2a2 sinh
2 rh

− cosh ((s− 1) rh) cosh rh

a2 sinh
3 rh

.

Hence we conclude the first assertion.

In the final case assume that k ≥ 1. Since ∂rh
∂x2

= x2−a2 cosh rh
a2x2 sinh rh

after elementary

calculations we may simplify as follows

e
k−1
2 rhQh−k (x, a)

a
− k−1

2
2 x

−k−1
2

2

=
k + 1

2x2 sinh rh
+

x2 − cosh rha2

x2a2 sinh
3 rh

cosh rh

+
k − 1

2

(
x2 − cosh rha2

x2a2 sinh
2 rh

)
=

k − 1

2x2 sinh rh
+

x2 cosh rh − a2

x2a2 sinh
3 rh

+
k − 1

2

x2 − cosh rha2

x2a2 sinh
2 rh

.

Moreover it holds

e
k+1
2 rhQh−k (x,a)

a
− k−1

2
2 x

−k−1
2

2

=
1−k

2a2sinhrh
+

a2−coshrhx2

x2a2sinh
3rh

coshrh+
k+1

2

(
a2−coshrhx2

x2a2sinhrh

)
=− k+1

2

1

a2sinhrh
+
a2coshrh−x2

x2a2sinh
3rh

+
k+1

2

a2−coshrhx2

x2a2sinh
2rh

.



Improved Integral 187

Applying the formula e−rh = cosh rh − sinh rh and the previous result we
compute

e((k−1)/2)rhQhk (a, x)

a
(k−1)/2
2 x

(k−1)/2
2

=
k − 1

2

a2 cos rh − x2

x2a2 sinh
2 rh

+
a2 − cosh rhx2

x2a2 sinh
3 rh

− k − 1

2x2 sinh rh
. �

Theorem 3.15. Let Ω be an open subset of R3
+ and K be an open set whose closer

K ⊂ Ω is a smoothly bounded compact set with the outer unit normal field ν. If f
is k-hypermonogenic in Ω and a ∈

∫
K then

f (a) =
1

4π

∫
∂K

(
r1 (a, x)

P (ν (x) f (x))

xk
2

+ r2 (a, x)Q
′ (ν (x) f (x))

)
dS (x)

where the functions

r1 (a, x) = −hk (a, x) = −D
a
gk (a, x) ,

r2a, x) = −ak2h−k (a, x) e2 = −ak2D
a
g−k (a, x) e2

are k-hypermonogenic with respect to a.

Proof. Applying Theorems 3.10 and 3.11 plus the formulas (2.1) and (2.2), we
deduce

Pf (a) +Qf (a) e2 =
1

4π

∫
∂K

x−k
2 P (hk (x, a) νf (x)) +Q (v−k (x, a) νf (x)) e2

dS

xk
2

=
1

8π

∫
∂K

x−k
2

(
hk (x, a) νf (x) + ̂hk (x, a)ν̂f (x)

)
dS

+
1

8π

∫
∂K

ak2

(
h−k (x, a) νf (x)− ̂h−k (x, a)ν̂f (x)

)
dS.

Collecting the similar parts and using (2.1), (2.2) and Lemma 3.14, we obtain

f(a) =
1

4π

∫
∂K

(
x−k
2 A(x, y)P (ν (x) f (x)) +B(x, y)Q′ (ν (x) f (x))

)
dS (x)

where the abbreviated functions are

A(x, y) = 2−1x−k
2

(
hk (x, a) + ĥk (x, a)

)
+ 2−1ak2

(
h−k (x, a)− ĥ−k (x, a)

)
= x−k

2 Phk (x, a) + ak2Qh−k (x, a) e2

= −x−k
2 Phk (a, x)− x−k

2 Qhk (a, x) e2 +
(
x−k
2 Qhk (a, x) + ak2Qh−k (x, a)

)
e2

= −x−k
2 hk (a, x)

and

B(x, y) = 2−1x−k
2

(
hk (x, a)− ĥk (x, a)

)
e2 + 2−1ak2

(
h−k (x, a) + ĥ−k (x, a)

)
e2

= −x−k
2 Qhk (x, a) + ak2Ph−k (x, a) e2

= −ak2Ph−k (a, x) e2 + ak2Qh−k (a, x)− x−k
2 Qhk (x, a)− ak2Qh−k (a, x)

= −ak2h−k (a, x) e2,

finishing the proof. �
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In the special cases k = 0 and k = 1, we have the known Cauchy formulas.

Theorem 3.16. Let Ω be an open subset of R3
+ and K be an open set whose closer

K ⊂ Ω is a smoothly bounded compact set with the outer unit normal field ν. If f
is monogenic in Ω and a ∈

∫
K then

f (a) =
1

4π

∫
∂K

(x− a)
−1

|x− a| ν (x) f (x) dS (x) .

Theorem 3.17 (cf. [9]). Let Ω be an open subset of R3
+ and K ⊂ Ω a smoothly

bounded compact set with outer unit normal field ν. If f is hypermonogenic in Ω
and a ∈

∫
K, then

f (a) =
1

4π

∫
∂K

(−k (a, x)P (ν (y) f (y)) + k1 (a, y)Q
′ (ν (y) f (y)))dσ,

where the kernels

k (a, y) = 4a2
(a− y)

−1

|a− y|1
en

(a− ŷ)
−1

|a− y| = − 1

y2
D

a

(∫ 1

|a−y|
|a−ŷ|

(
1− s2

)
s2

ds

)

=
(a− c (a, y))

−1

a2 |a− c (a, y)| (3.3)

and

k1 (a, y) = a2D
x
(

1

|a− y| |a− ŷ|

)
e2

are both hypermonogenic with respect to a in R3\ {y, ŷ}.

Using the standard arguments we may also verify that we obtain two integral
operators producing k-hypermonogenic functions.

Theorem 3.18. Let Ω be an open subset of R3
+ and K be an open set whose closer

K ⊂ Ω is a smoothly bounded compact set with the outer unit normal field ν. If f
is continuous in Ω and a ∈

∫
K then the functions

g1 (a) =
1

4π

∫
∂K

hk (a, x)P (ν (x) f (x)) dS (x)

g2 (a) =
1

4π

∫
∂K

ak2h−k (a, x) e2Q
′ (ν (x) f (x)) dS (x)

are k-hypermonogenic.
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Eigenfunctions and Fundamental Solutions
of the Caputo Fractional Laplace and
Dirac Operators
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Abstract. In this paper, by using the method of separation of variables, we
obtain eigenfunctions and fundamental solutions for the three parameter frac-
tional Laplace operator defined via fractional Caputo derivatives. The solu-
tions are expressed using the Mittag-Leffler function and we show some graph-
ical representations for some parameters. A family of fundamental solutions of
the corresponding fractional Dirac operator is also obtained. Particular cases
are considered in both cases.
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26A33; 30G35; 35C05.

Keywords. Fractional partial differential equations; fractional Laplace and
Dirac operators; Caputo derivative; eigenfunctions; fundamental solution.

1. Introduction

In the last decades the interest in fractional calculus increased substantially. Among
all the subjects there is a considerable interest in the study of ordinary and partial
fractional differential equations regarding the mathematical aspects and methods
of their solutions, and their applications in diverse areas such as physics, chemistry,
engineering, optics or quantum mechanics (see, for example, [7–12, 14, 16]).

Here we consider a fractional Laplace operator in 3-dimensional space us-
ing Caputo derivatives with different order of differentiation for each direction.
Previous approaches for this type of operators where considered in [15], [3], and
[4]. In [15] the author studied eigenfunctions and fundamental solutions for the
two-parameter fractional Laplace operator defined with Riemann–Liouville frac-
tional derivatives. In [3] the authors extended the results for three dimensions and
derived also fundamental solutions for the fractional Dirac operator which fac-
torizes the fractional Laplace operator. Since there is a duality relation between
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Caputo and Riemann–Liouville fractional derivatives presented in the formula of
fractional integration by parts, there is need to study also fractional Laplace and
Dirac operators with fractional derivatives defined in the Caputo sense. The aim
of this paper is to use the method of separation of variables to present a formula
for the family of eigenfunctions and fundamental solutions of the three-parameter
fractional Laplace operator defined by Caputo fractional derivatives, as well as a
family of fundamental solutions of the associated fractional Dirac operator. For the
sake of simplicity we restrict ourselves to the three-dimensional case, however the
results can be generalized for an arbitrary dimension. We observe that these oper-
ators were considered in [4] where the authors applied an operational approach via
Laplace transform to construct general families of eigenfunctions and fundamental
solutions.

The structure of the paper reads as follows: in the Preliminaries we recall
some basic facts about fractional calculus, special functions and Clifford analysis,
which are necessary for the development of this work. In Subsection 3.1 we use the
method of separation of variables to describe a complete family of eigenfunctions
and fundamental solutions of the fractional Laplace operator. In Subsection 3.2
we compute a family of fundamental solutions for the fractional Dirac operator.
Finally, we point out that for the particular case of α = β = γ = 1 the obtained
formulas coincide with the correspondents classical formulas.

2. Preliminaries

2.1. Fractional calculus and special functions

Let
(
CDα

a+f
)
(x) denote the Caputo fractional derivative of order α > 0 (see [10])

(
CDα

a+f
)
(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α+1−n
dt, n = [α] + 1, x > a, (2.1)

where [α] means the integer part of α. When 0 < α < 1 then (2.1) takes the form(
CDα

a+f
)
(x) =

1

Γ(1− α)

∫ x

a

f ′(t)
(x− t)α

dt. (2.2)

The Riemann–Liouville fractional integral of order α > 0 is given by (see [10])

(Iαa+f) (x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt, x > a. (2.3)

We denote by Iαa+(L1) the class of functions f represented by the fractional
integral (2.3) of a summable function, that is f = Iαa+ϕ, ϕ ∈ L1(a, b). A description
of this class of functions was given in [13].

Theorem 2.1. A function f ∈ Iαa+(L1), α > 0 if and only if In−α
a+ f ∈ ACn([a, b]),

n = [α] + 1 and (In−α
a+ f)(k)(a) = 0, k = 0, . . . , n− 1.
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In Theorem 2.1 ACn([a, b]) denotes the class of functions f , which are contin-
uously differentiable on the segment [a, b] up to order n−1 and f (n−1) is absolutely
continuous on [a, b]. Removing the last condition in Theorem 2.1 we obtain the
class of functions that admits a summable fractional derivative.

Definition 2.2 ([13]). A function f ∈ L1(a, b) has a summable fractional derivative(
Dα

a+f
)
(x) if

(
In−α
a+ f

)
(x) ∈ ACn([a, b]), where n = [α] + 1.

If a function f admits a summable fractional derivative, then the composition
of (2.1) and (2.3) can be written in the form (see, e.g., [12])

(
Iαa+

CDα
a+f

)
(x) = f(x) −

n−1∑
k=0

f (k)(a)

k!
(x− a)k, n = [α] + 1. (2.4)

If f ∈ Iαa+(L1) then (2.4) reduces to
(
Iαa+

CDα
a+f

)
(x) = f(x). Nevertheless we

note that
(
CDα

a+ Iαa+f
)
(x) = f(x) in both cases. We observe that, in general, the

semigroup property for the composition of Caputo fractional does not hold. We
present three sufficient conditions under which the law of exponents hold. They
can be applied in different situations accordingly with the conditions assumed to
the function f .

Theorem 2.3 ([2, p. 56]). Let f ∈ Ck[a, b], a > 0 and k ∈ N. Moreover, let α, β > 0
be such that there exists l ∈ N with l ≤ k and α, α + β ∈ [l − 1, l]. Then

CDα
a+

CDβ
a+f(x) =

CDα+β
a+ f(x). (2.5)

This theorem highlights a constraint on the applicability of the semigroup
both with respect to the request of smoothness of the function and with respect to
the ranges of the real orders of differentiation α and β. This means, for example,
that, if α ∈ (0, 1], then the law of exponents is applicable if β ∈ [0, 1 − α) and
f ∈ Ck, with k = 1. Here we notice that in most cases the law of exponents is
not applicable for fractional Caputo derivatives, but anyhow there are different
techniques to handle sequential fractional derivatives (see for example [12]). Since
for f ∈ C [α]+1([a, b]) the Caputo derivative is a special case of the Grünwald–
Letnikov fractional derivative (see [12, § 2.2.3]) then we have the following theorem:

Theorem 2.4 ([12, § 2.2.6]). Let α, β > 0 and f ∈ Cn([a, b]), a > 0, n = [α] + 1.
Then

CDα
a+

CDβ
a+f(x) =

CDα+β
a+ f(x) (2.6)

holds for arbitrary β if the function f satisfies the conditions

f (k)(a) = 0, for k = 0, 1, . . . , n− 2. (2.7)

For functions f(x) that have a locally integrable singularity at x = a we have
the following result.
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Theorem 2.5 ([5]). Suppose that f(x) = (x − a)λg(x), where a, λ > 0 and g(x)

has the generalized power series expansion g(x) =

∞∑
n=0

an(x − a)nγ with radius of

convergence R > 0, 0 < γ ≤ 1. Then

CDα
a+

CDβ
a+f(x) =

CDα+β
a+ f(x) (2.8)

for all (x − a) ∈ (0, R), the coefficients an = 0 for n given by nγ + λ− β = 0 and
either

(a) λ > μ, μ = max (β + [α], [β + α])

or

(b) λ ≤ μ, ak = 0, for k = 0, 1, . . . ,
[
μ−λ
γ

]
; here [x] denotes the greatest integer

less than or equal to x.

One important function used in this paper is the two-parameter Mittag-
Leffler function Eμ,ν(z) [6], which is defined in terms of the power series by

Eμ,ν(z) =
∞∑
n=0

zn

Γ(μn+ ν)
, μ > 0, ν ∈ R, z ∈ C. (2.9)

In particular, the function Eμ,ν(z) is entire of order ρ = 1
μ and type σ = 1. The

exponential, trigonometric and hyperbolic functions are expressed through (2.9)
as follows (see [6]):

E1,1 (z) = ez, E2,1

(
−z2

)
= cos(z), E2,1(z

2) = cosh(z),

zE2,2

(
−z2

)
= sin(z), zE2,2

(
z2
)
= sinh(z).

Two important fractional integral and differential formulae involving the two-
parametric Mittag-Leffler function are the following

Iαa+

(
(x− a)ν−1Eμ,ν (k(x− a)μ)

)
= (x − a)α+ν−1Eμ,ν+α (k(x− a)μ) (2.10)

CDα
a+

(
(x− a)ν−1Eμ,ν (k(x− a)μ)

)
= (x − a)ν−α−1Eμ,ν−α (k(x− a)μ) (2.11)

for all α > 0, μ > 0, ν ∈ R, k ∈ C, a > 0, x > a.
Our approach leads to the resolution of a linear Abel integral equation of the

second kind, which solution is given using the Mittag–Leffler function, accordingly
with the next Theorem.

Theorem 2.6 ([6, Thm. 4.2]). Let f ∈ L1[a, b], α > 0 and λ ∈ C. Then the integral
equation

u(x) = f(x) +
λ

Γ(α)

∫ x

a

(x− t)α−1u(t) dt, x ∈ [a, b]

has a unique solution

u(x) = f(x) + λ

∫ x

a

(x− t)α−1Eα,α(λ(x − t)α)f(t) dt. (2.12)
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2.2. Clifford analysis

Let {e1, . . . , ed} be the standard basis of the Euclidean vector space in Rd. The
associated Clifford algebra R0,d is the free algebra generated by Rd modulo x2 =
−||x||2 e0, where x ∈ Rd and e0 is the neutral element with respect to the multi-
plication operation in the Clifford algebra R0,d. The defining relation induces the
multiplication rules

eiej + ejei = −2δij , (2.13)

where δij denotes Kronecker’s delta. In particular, e2i = −1 for all i = 1, . . . , d.
The standard basis vectors thus operate as imaginary units. A vector space basis
for R0,d is given by the set {eA : A ⊆ {1, . . . , d}} with eA = el1el2 . . . elr , where
1 ≤ l1 < · · · < lr ≤ d, 0 ≤ r ≤ d, e∅ := e0 := 1. Each a ∈ R0,d can be written
in the form a =

∑
A aA eA, with aA ∈ R. The conjugation in the Clifford algebra

R0,d is defined by a =
∑

A aA eA, where eA = elr elr−1 . . . el1 , and ej = −ej for
j = 1, . . . , d, e0 = e0 = 1. An important subspace of the real Clifford algebra R0,d

is the so-called space of paravectors Rd
1 = R

⊕
Rd, being the sum of scalars and

vectors. Each non-zero vector a ∈ Rd
1 has a multiplicative inverse given by a

||a||2 .

A R0,d-valued function f over Ω ⊆ Rd
1 has the representation f =

∑
A eAfA,

with components fA : Ω → R0,d. Properties such as continuity or differentiability
have to be understood componentwise. Next, we recall the Euclidean Dirac oper-

ator D =
∑d

j=1 ej∂xj , which factorizes the d-dimensional Euclidean Laplace, i.e.,

D2 = −Δ. A R0,d-valued function f is called left-monogenic if it satisfies Du = 0
on Ω (resp. right-monogenic if it satisfies uD = 0 on Ω).

For more details about Clifford algebras and basic concepts of its associated
function theory we refer the interested reader for example to [1].

3. Method of separation of variables

3.1. Eigenfunctions and fundamental solution of the fractional Laplace operator

We consider the eigenfunction problem for the fractional Laplace operator
CΔα

+ u(x) = λu(x), i.e.,(
CD1+α

x+
0

u
)
(x, y, z) +

(
CD1+β

y+
0

u
)
(x, y, z)

+
(
CD1+γ

z+
0

u
)
(x, y, z) = λ u(x, y, z),

(3.1)

where λ ∈ C, (α, β, γ) ∈]0, 1]3, (x, y, z) ∈ Ω = [x0, X0] × [y0, Y0] × [z0, Z0],
x0, y0, z0 > 0, X0, Y0, Z0 < ∞, and u(x, y, z) admits summable fractional deriva-

tives CD1+α

x+
0

, CD1+β

y+
0

and CD1+γ

z+
0

. Taking the integral operator I1+α

x+
0

from both sides
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of (3.1) and taking into account (2.4) we get

u(x, y, z)− u(x0, y, z)− (x− x0)u
′
x(x0, y, z)

+
(
I1+α

x+
0

CD1+β

y+
0

u
)
(x, y, z) +

(
I1+α

x+
0

CD1+γ

z+
0

u
)
(x, y, z)

= λ
(
I1+α

x+
0

u
)
(x, y, z). (3.2)

Now, applying the operator I1+β

y+
0

to both sides of the previous expression and

using Fubini’s Theorem we get(
I1+β

y+
0

u
)
(x, y, z)−

(
I1+β

y+
0

f0

)
(y, z)− (x− x0)

(
I1+β

y+
0

f1

)
(y, z)

+
(
I1+α

x+
0

u
)
(x, y, z)−

(
I1+α

x+
0

u
)
(x, y0, z)

− (y − y0)
(
I1+α

x+
0

u′
y

)
(x, y0, z) +

(
I1+α

x+
0

I1+β

y+
0

CD1+γ

z+
0

u
)
(x, y, z)

= λ
(
I1+α

x+
0

I1+β

y+
0

u
)
(x, y, z), (3.3)

where we denote Cauchy’s fractional integral conditions by

f0(y, z) = u(x0, y, z), f1(y, z) = u′
x(x0, y, z). (3.4)

Finally, applying the operator I1+γ

z+
0

to both sides of equation (3.3) and using

Fubini’s Theorem we get(
I1+β

y+
0

I1+γ

z+
0

u
)
(x, y, z)−

(
I1+β

y+
0

I1+γ

z+
0

f0

)
(y, z)− (x− x0)

(
I1+β

y+
0

I1+γ

z+
0

f1

)
(y, z)

+
(
I1+α

x+
0

I1+γ

z+
0

u
)
(x, y, z)−

(
I1+α

x+
0

I1+γ

z+
0

h0

)
(x, z)

− (y − y0)
(
I1+α

x+
0

I1+γ

z+
0

h1

)
(x, z) +

(
I1+α

x+
0

I1+β

y+
0

u
)
(x, y, z)

−
(
I1+α

x+
0

I1+β

y+
0

u
)
(x, y, z0)− (z − z0)

(
I1+α

x+
0

I1+β

y+
0

u′
z

)
(x, y, z0)

= λ
(
I1+α

x+
0

I1+β

y+
0

I1+γ

z+
0

u
)
(x, y, z),

which is equivalent to(
I1+β

y+
0

I1+γ

z+
0

u
)
(x, y, z) +

(
I1+α

x+
0

I1+γ

z+
0

u
)
(x, y, z)

+
(
I1+α

x+
0

I1+β

y+
0

u
)
(x, y, z)− λ

(
I1+α

x+
0

I1+β

y+
0

I1+γ

z+
0

u
)
(x, y, z)

=
(
I1+β

y+
0

I1+γ

z+
0

f0

)
(y, z) + (x− x0)

(
I1+β

y+
0

I1+γ

z+
0

f1

)
(y, z)

+
(
I1+α

x+
0

I1+γ

z+
0

h0

)
(x, z) + (y − y0)

(
I1+α

x+
0

I1+γ

z+
0

h1

)
(x, z)

+
(
I1+α

x+
0

I1+β

y+
0

g0

)
(x, y) + (z − z0)

(
I1+α

x+
0

I1+β

y+
0

g1

)
(x, y), (3.5)
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where we denote Cauchy’s fractional integral conditions by

h0(x, z) = u(x, y0, z), h1(x, z) = u′
y(x, y0, z), (3.6)

g0(x, y) = u(x, y, z0), g1(x, y) = u′
z(x, y, z0). (3.7)

Assume that the eigenfunctions are such that u(x, y, z) = u1(x)u2(y)u3(z). Sub-
stituting in (3.5) and taking into account the initial conditions (3.4), (3.6), and
(3.7) we obtain

u1(x)
(
I1+β

y+
0

u2(y) I
1+γ

z+
0

u3(z)
)
+ u2(y)

(
I1+α

x+
0

u1(x) I
1+γ

z+
0

u3(z)
)

+ u3(z)
(
I1+α

x+
0

u1(x) I
1+β

y+
0

u2(y)
)

− λ
(
I1+α

x+
0

u1

)
(x)

(
I1+β

y+
0

u2

)
(y)

(
I1+γ

z+
0

u3

)
(z)

= a1

(
I1+β

y+
0

u2(y) I
1+γ

z+
0

u3(z)
)

+ a2(x− x0)
(
I1+β

y+
0

u2(y) I
1+γ

z+
0

u3(z)
)

+ b1

(
I1+α

x+
0

u1(x) I
1+γ

z+
0

u3(z)
)
+ b2(y − y0)

(
I1+α

x+
0

u1(x) I
1+γ

z+
0

u3(z)
)

+ c1

(
I1+α

x+
0

u1(x) I
1+β

y+
0

u2(y)
)
+ c2(z − z0)

(
I1+α

x+
0

u1(x) I
1+β

y+
0

u2(y)
)
, (3.8)

where

a1 = u1(x0), a2 = u′
1,x(x0),

b1 = u2(y0), b2 = u′
2,y(y0),

c1 = u3(z0), c2 = u′
3,z(z0),

are constants defined by the initial conditions (3.4), (3.6), and (3.7). Supposing
that (

I1+α

x+
0

u1

)
(x)

(
I1+β

y+
0

u2

)
(y)

(
I1+γ

z+
0

u3

)
(z) �= 0,

for (x, y, z) ∈ Ω, we can divide (3.8) by this factor. Separating the variables we
get the following three Abel type second kind integral equations:

u1(x)− μ
(
I1+α

x+
0

u1

)
(x) = a1 + a2(x− x0), (3.9)

u2(y) + ν
(
I1+β

y+
0

u2

)
(y) = b1 + b2(y − y0), (3.10)

u3(z) + (μ− λ− ν)
(
I1+γ

z+
0

u3

)
(z) = c1 + c2(z − z0), (3.11)

where λ, μ, ν ∈ C are constants. We observe that the equality(
I1+α

x+
0

u1

)
(x)

(
I1+β

y+
0

u2

)
(y)

(
I1+γ

z+
0

u3

)
(z) = 0,

for at least one point (x∗, y∗, z∗) agrees with (3.8), (3.9), (3.10), and (3.11). Solv-
ing the latter equations using (2.12) in Theorem 2.6 and after straightforward
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computations we obtain the following family of eigenfunctions uλ,μ,ν(x, y, z) =
u1(x) u2(y) u3(z), with

u1(x) = a1 E1+α,1

(
μ(x− x0)

1+α
)
+ a2(x − x0) E1+α,2

(
μ(x− x0)

1+α
)
, (3.12)

u2(y) = b1 E1+β,1

(
−ν(y − y0)

1+β
)
+ b2(y − y0) E1+β,2

(
−ν(y − y0)

1+β
)
, (3.13)

u3(z) = c1 E1+γ,1

(
(μ− λ− ν)(z − z0)

1+γ
)

+ c2(z − z0) E1+γ,2

(
(μ− λ− ν)(z − z0)

1+γ
)
. (3.14)

For the particular case of λ = 0 (fundamental solution), μ = 2, ν = 1,
x0 = y0 = z0 = 0, X0 = Z0 = 5, Y0 = 15, and ai = bi = ci = 1, with i = 1, 2, we
show the graphical representation of the components u1, u2, u3 for α, β, γ equal
to 1

4 ,
1
2 ,

3
4 , 1. The plots were obtained using the software Mathematica 9 since this

software is able to evaluate and to graphically represent functions involving the
Mittag-Leffler functions.

Figure 1. Plots of the components u1, u2 and u3, when λ = 0, μ = 2,

ν = 1, x0 = y0 = z0 = 0, X0 = Z0 = 5, Y0 = 15, and ai = bi = ci = 1, and

different values of α, β, and γ.

From the plots we observe that the components u1 and u3 are of exponential
type and the increasing of the curve coincides with the decreasing of the parame-
ters. For the component u2 the sinusoidal behavior observed in the classical case
β = 1 suffers a relaxation with the decreasing of the parameter β.
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Remark 3.1. In the special case of α = β = γ = 1 the functions u1, u2 and u3 take
the form

u1(x) = a1 cosh (
√
μ (x− x0)) +

a2√
μ

sinh (
√
μ (x− x0)) , (3.15)

u2(y) = b1 cos
(√

ν (y − y0)
)
+

b2√
ν

sin
(√

ν (y − y0)
)
, (3.16)

u3(z) = c1 cosh
(√

μ− λ− ν (z − z0)
)

+
c2√

μ− λ− ν
sinh

(√
μ− λ− ν (z − z0)

)
, (3.17)

which are the components of the fundamental solution of the Laplace operator in
R3 obtained by the method of separation of variables.

3.2. Fundamental solution of the fractional Dirac operator

In this section we compute the fundamental solution for the three-dimensional
fractional left Dirac operator defined via Caputo derivatives

CD
(α,β,γ)
+ := e1

CD
1+α
2

x+
0

+ e2
CD

1+β
2

y+
0

+ e3
CD

1+γ
2

z+
0

, (α, β, γ) ∈ ]0, 1]3. (3.18)

This operator factorizes the fractional Laplace operator CΔ
(α,β,γ)
+ for Clifford-

valued functions f given by

f(x, y, z) =
∑
A

eAfA(x, y, z),

where eA ∈ {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}, and each real-valued function fA
satisfies one of the sufficient conditions presented in Theorems 2.3, 2.4 or 2.5. In
fact, for such functions we can apply the semigroup property (2.5) to obtain

CD
1+γ
2

x+
0

(
CD

1+γ
2

x+
0

fA

)
= CD1+α

x+
0

fA,
CD

1+β
2

y+
0

(
CD

1+β
2

y+
0

fA

)
= CD1+β

y+
0

fA,

CD
1+γ
2

z+
0

(
CD

1+γ
2

z+
0

fA

)
= CD1+γ

z+
0

fA. (3.19)

Moreover, for the mixed fractional derivatives CD
1+α
2

x+
0

(
CD

1+β
2

y+
0

fA

)
, due to the

Leibniz rule for the differentiation under integral sign, Fubini’s Theorem and
Schwarz’ Theorem, we have

CD
1+α
2

x+
0

(
CD

1+β
2

y+
0

fA

)
= CD

1+β
2

y+
0

(
CD

1+α
2

x+
0

fA

)
, (3.20)

CD
1+α
2

x+
0

(
CD

1+γ
2

z+
0

fA

)
= CD

1+γ
2

z+
0

(
CD

1+α
2

x+
0

fA

)
, (3.21)

CD
1+β
2

y+
0

(
CD

1+γ
2

z+
0

fA

)
= CD

1+γ
2

z+
0

(
CD

1+β
2

y+
0

fA

)
. (3.22)
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From (3.19), (3.20), (3.21), (3.22) and the multiplication rules (2.13) of the Clifford
algebra, we finally get

CD
(α,β,γ)
+

(
CD

(α,β,γ)
+ f

)
= − CΔ

(α,β,γ)
+ f, (3.23)

i.e., the fractional Dirac operator factorizes the fractional Laplace operator.

In order to get the fundamental solution of CD
(α,β,γ)
+ we apply this operator to

the fundamental solution u(x, y, z) = u1(x)u2(y)u3(z), where ui are given by
(3.12), (3.13) and (3.14), respectively. To make the calculations we make use of
the derivation rule (2.11) and the fractional analogous formula for differentiation
of integrals depending on a parameter where the upper limit also depends on the
same parameter (see [12, Section 2.7.4]). Hence,

U(x, y, z) =
(
CD

(α,β,γ)
+ u

)
(x, y, z)

= e1 u2(y) u3(z)
(
CD

1+γ
2

x+
0

u1

)
(x) + e2 u1(x) u3(z)

(
CD

1+β
2

y+
0

u2

)
(y)

+ e3 u1(x) u2(y)
(
CD

1+γ
2

z+
0

u3

)
(z), (3.24)

where u1, u2, u3 are given respectively by (3.12), (3.13), (3.14) and(
CD

1+γ
2

x+
0

u1

)
(x) = a1 (x− x0)

− 1+α
2 E1+α, 1−α

2

(
μ(x− x0)

1+α
)

+ a2 (x− x0)
1−α
2 E1+α, 3−α

2

(
μ(x− x0)

1+α
)
, (3.25)(

CD
1+β
2

y+
0

u2

)
(y) = b1 (y − y0)

− 1−β
2 E1+β, 1−β

2

(
−ν(y − y0)

1+β
)

+ b2 (y − y0)
1−β
2 E1+β, 3−β

2

(
−ν(y − y0)

1+β
)
, (3.26)(

CD
1+γ
2

z+
0

u3

)
(z) = c1 (z − z0)

1−γ
2 E1+γ, 1−γ

2

(
(−μ+ λ+ ν)(z − z0)

1+γ
)

+ c2 (z − z0)
1−γ
2 E1+γ, 3−γ

2

(
(−μ+ λ+ ν)(z − z0)

1+γ
)
.

(3.27)

Remark 3.2. In the special case of α = β = γ = 1, u1, u2 and u3 take the form
(3.15), (3.16) and (3.17), respectively, and expressions (3.25), (3.26), and (3.27)
take the form

(Dxu1) (x) = a1
√
μ sinh (

√
μ (x− x0)) + a2 sinh (

√
μ (x− x0)) ,

(Dyu2) (y) = b1
√
ν sin

(√
ν (y − y0)

)
+ b2 cos

(√
ν (y − y0)

)
,

(Dzu3) (z) = c1
√
−μ+ λ+ ν sinh

(√
μ− λ− ν (z − z0)

)
+ c2 sinh

(√
μ− λ− ν (z − z0)

)
,

which are the components of the fundamental solution of the Dirac operator in R3

obtained by the method of separation of variables.
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Three-dimensional Analogue of
Kolosov–Muskhelishvili Formulae

Yuri Grigor’ev

Abstract. In the plane elasticity an effective method of using the holomor-
phic complex function theory is based on Kolosov–Muskhelishvili formulae.
For a three-dimensional case monogenic Clifford functions or regular quater-
nion functions of a reduced quaternion variable are used. Such functions are
solutions of the Moisil–Theodoresco system. In recent papers some variants
of three-dimensional Kolosov–Muskhelishvili formulae are obtained but only
for star-shaped regions. For applications it is very important to have these
formulae for a wider class of domains. We propose the generalized Kolosov–
Muskhelishvili formulae in arbitrary simply connected domains with a smooth
boundary not only star-shaped, where a notion of harmonic primitive function
is used. The method of proving is based on a new theorem about reconstruc-
tion of a regular function from a given scalar part.

Mathematics Subject Classification (2010). Primary 30G35; Secondary 74B05.

Keywords. Classical linear elasticity, functions of hypercomplex variables and
generalized variables, regular quaternionic functions, Moisil–Theodoresco sys-
tem, representation formulae.

1. Introduction

In two-dimensional problems of the theory of elasticity the methods of complex
variable theory are effectively used. In plane problems the basis of this is the rep-
resentation of the general solution of the equilibrium equations in terms of two
arbitrary analytic functions called the Kolosov–Muskhelishvili formulae [34]. In
axially symmetric problems different classes of generalized analytic functions of
complex variable [1, 39], p- and (p, q)-analytic functions [38] are used. As a gen-
eralization of the method of complex functions in multidimensional problems the
methods of hypercomplex functions are developed (see [9, 11, 26, 28, 29, 30], etc.).
For three-dimensional problems of mathematical physics such an apparatus is the

This work was supported by RFBR grant 15-41-05081.
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Moisil–Theodoresco system theory, which is developed as the theory of regular
quaternion functions of reduced quaternion variable [15, 17, 20, 26, 22, 23, 24].
We note that this theory is partially covered by Clifford analysis. In [32] the
first quaternion solution of the equilibrium equations of the theory of elasticity is
obtained. In [16, 17, 18, 21, 22, 23, 24] some forms of a three-dimensional quater-
niuonic analogue of the Kolosov–Muskhelishvili formulae for displacements and
their applications are obtained in the star-shaped domains. Another variant of
the spatial generalization of the Kolosov–Muskhelishvili formulae with expressions
for stresses is obtained for the star-shaped domains by using a notion of mono-
genic primitive in [5, 6, 7]. By means of a quaternionic refinement of the classical
harmonic Papkovich–Neuber solution in [37] a monogenic formulation of the three-
dimensional elasticity problem is also obtained with some geometrical restrictions
on a domain. In [8] an alternative Kolosov–Muskhelishvili formula for the displace-
ment field by means of a (paravector-valued) monogenic, an anti-monogenic and
a ψ-hyperholomorphic function is proposed. In [22, 37] one can find short reviews
about some other results in using hypercomplex functions in the three-dimensional
elasticity. In this paper we present the quaternionic Kolosov–Muskhelishvili formu-
lae with the expressions for stresses in arbitrary simply connected domains with
a smooth boundary not only star-shaped, where the notion of harmonic primitive
function is used. The theorem about the reconstruction of the regular function
from the given scalar part is proved.

2. Preliminaries and notations

Let i, j, k be the basic quaternions obeying the following rules of multiplication:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

An element q of the quaternion algebra H we write in the form q = q0+ iqx+ jqy+
kqz = q0 +q, where q0, qx, qy, qz are the real numbers, q0 is called the scalar part
of the quaternion, q = iqx + jqy + kqz is called the vector part of the quaternion
q. The quaternion conjugation is denoted as q̃ = q0 − q.

Let x, y, z be the Cartesian coordinates in the Euclidean space R3. Let Ω be a
domain of R3 with a piecewise smooth boundary. A quaternion-valued function or,
briefly, H-valued function f of a reduced quaternion variable r = ix+ jy+kz ∈ R3

is a mapping

f : Ω −→ H,

such that

f(r) = f0(r) + f(r) = f0(x, y, z) + ifx(x, y, z) + jfy(x, y, z) + kfz(x, y, z).

The functions f0, fx, fy, fz are real-valued defined in Ω. Continuity, differen-
tiability or integrability of f are defined coordinate-wisely. The differential opera-
tor ∇ = i∂x + j∂y + k∂z is called the generalized Cauchy–Riemann operator.
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According to [14, 33] a function f is called left-regular in Ω if

∇f = 0, r ∈ Ω. (2.1)

A similar definition can be given for right-regular functions. From now on we use
only left-regular functions that, for simplicity, we call regular. With the vectorial
notations the regularity condition is given as follows:

∇f(r) = −∇ · f(r) +∇f0(r) +∇× f(r) = 0, (2.2)

where ∇f0, ∇ · f , ∇× f are the usual gradient, divergence and curl, respectively.
Thus, the coordinate-wise representations of the regularity condition are given as
follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

fx,x + fy,y + fz,z = 0,

f0,x + fz,y − fy,z = 0,

f0,y + fx,z − fz,x = 0,

f0,z + fy,x − fx,y = 0.

(2.3)

The system (2.3) is called the Moisil–Theodoresco system (MTS) [33, 3, 9]
and is a spatial generalization of the Cauchy–Riemann system (CRS). If we assume
that f depends only on two variables, for example, x and y, then the MTS (2.3)
splits into two CRS and the complex functions f(ζ) = fx(x, y)− ify(x, y), g(ζ) =
f0(x, y) − ifz(x, y) will be the analytic functions of complex variable ζ = x + iy.
If the MTS is written in the cylindrical coordinates ρ, ϕ, z, then in the case
of axial symmetry the MTS splits into two generalized by Vekua [39] CRS and
f(ζ) = f0(z, ρ)−ifϕ(z, ρ), g(ζ) = fz(z, ρ)−ifρ(z, ρ) will be the generalized analytic
by Vekua functions of the complex variable ζ = z+ iρ. Exactly these functions are
used in axially symmetric problems [1].

A quaternion function F is called a primitive of a regular function f if
∇F = f . Because a regular function f is a harmonic function then a primitive
function F is also harmonic and the function F is also called as a harmonic
primitive. In this approach the primitive function is also a solution of the in-
homogeneous MTS and differs from that defined in [10], [27] because a concept of
hyperderivative is not used and it is not a regular (monogenic) function. In the
complex analysis solutions of inhomogeneous Cauchy–Riemann system dF/dz̄ = f
are expressed by the Theodoresco operator (transform). Therefore, the harmonic
primitive can be considered as a variant of the generalized Theodoresco transform
for the MTS. The generalized Theodoresco transform is used in a hypercomplex
operator method [28].

The equation of elastic equilibrium is called the Lamé equation and has the
next form

Lu ≡ (λ+ 2μ)∇(∇ · u)− μ∇× (∇× u) = 0. (2.4)

If we introduce the next scalar function f0 and vector function f

(λ+ 2μ)∇ · u = f0, −μ∇× u = f , (2.5)
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then the Lamé equation (2.4) is transformed into the MTS

∇ · f = 0, ∇f0 +∇× f = 0, (2.6)

thus, the quaternion function f = f0 + f is regular. In the paper [32] it was
indicated that the connection (2.5) between the Lamé equation and quaternion
functions was first pointed by G. Moisil.

Hooke’s Law in the Cartesian coordinates xi (i = 1, 2, 3) expresses connec-
tions between components σij of a stress tensor and components εij of a deforma-
tion tensor and for three-dimensional linear elasticity has the form

σij = (λ+ 2μ)(∇ · u)δij + 2μεij ,

εij =
1

2
(ui,j + uj,i) , (i, j = 1, 2, 3)

(2.7)

hereinafter the index after the comma means the partial derivative of the appro-
priate variable, δij is the Kronecker delta function.

We use the usual quaternionic notations in the MTS theory [15, 20, 22, 23, 24].
Some authors have used only matrix algebra methods for the MTS theory, for
example, A. Bitsadze [3] in such a way defines three-dimensional analogues of the
Cauchy type integral for the MTS. In Clifford analysis notations [5, 6, 7] in the
MTS theory the reduced quaternionic variable has the form x = x0+ e1x1+ e2x2,
where e1 and e2 are Clifford algebra units. This approach provides a natural way
for introducing notions of hypercomplex derivative and monogenic primitive [27].
However, in the usual quaternionic notations it is possible to define hypercomplex
derivatives for the MTS [31].

We will also use the next notations:

• ∂Ω denotes the boundary of a domain Ω ∈ R3;
• Ω ≡ Ω ∪ ∂Ω denotes the closure of Ω;
• Cl+α denotes the set of functions having continuous partial derivatives up
to order l and whose lth-order partial derivatives satisfy a Holder condition
with an exponent α;

• ∂Ω ∈ Cl+α denotes the smooth boundary ∂Ω that can be covered by a finite
number of spheres and intersections ∂Ω with these spheres can be described
in local coordinates by means of functions from Cl+α (see [25]).

3. Reconstruction of regular function from given scalar part

All components of a regular function are harmonic functions. Let f0 be a given
scalar harmonic function. It is known then we can reconstruct a regular function
f = f0 + f with f0 as a scalar part but only in the star-shaped domains [41, 23]
up to a gradient of arbitrary harmonic function ψ0:

f = f0 + f = f0 + r×
1∫

0

tα∇f(rt)dt +∇ψ0.
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In this section we will show that such the reconstruction is possible for any sim-
ply connected (not only star-shaped) arbitrary domain in R3 but with a smooth
boundary. A domain Ω ∈ R3 is said to be simply connected if every closed curve in
Ω can be shrunk to a point without leaving Ω (equivalently, if every closed curve in
Ω is the boundary of some surface contained completely within Ω). The procedure
of such reconstruction is needed for the main result in Section 4.

We must use a solution of Dirichlet problem in the form of a double layer
potential with certain smoothness of density. For this purpose it will be useful the
next

Theorem 3.1. Let Ω ∈ R3 be a bounded domain with the boundary ∂Ω ∈ Cl+α,
l ≥ 2, 0 < α < 1; the double layer potential

u(r) = W [μ](r) ≡
∮
∂Ω

μ(�)
�− r

|�− r|3 · dS� = −
∮
∂Ω

μ(�)
∂

∂n

1

|�− r|dS� (3.1)

where ∂/∂n denotes a differentiation in the direction of the outward normal of ∂Ω,
is the solution of the next Dirichlet problem

 u(r) = 0, r ∈ Ω,

u(r) = ϕ(r) ∈ C0(∂Ω), r ∈ ∂Ω.
(3.2)

Then the function u(r) belongs to the class Cl+α(Ω) if and only if one of the next
two conditions is fulfilled

ϕ ∈ Cl+α(∂Ω), (3.3)

μ ∈ Cl+α(∂Ω). (3.4)

Proof. Let the conditions of the theorem be fulfilled and u(r) ∈ Cl+α(Ω). Then
obviously the condition (3.3) is fulfilled and μ ∈ C0(∂Ω). It is known [25] that for
the boundary value of a double potential with continuous density and defined on
the Lyapunov surface we have W [μ] ∈ Cβ with an arbitrary value for β ∈ (0, 1).
Let β0 be subjected to the condition α < β0 < 1, thus W [μ] ∈ Cβ0 . It is known
from the potential theory [25] that the function μ is a solution of the next integral
equation of second type

μ(r) +
1

2π
W [μ](r) =

1

2π
ϕ(r), r ∈ ∂Ω, (3.5)

where according to (3.3) ϕ ∈ Cl+α. Thus, we have the inclusion μ ∈ Cβ0(∂Ω). Then
according to [25] we have the inclusion W [μ] ∈ C1+β1(∂Ω), where β1 ∈ (α, β0).
Again, referring to the equation (3.5), we see that μ ∈ C1+β1(∂Ω). Repeating
these arguments as many times as necessary we get the inclusion μ ∈ C1+γ(∂Ω),
where γ > α. Hence, we have the inclusion μ ∈ C1+α(∂Ω) and the necessity of the
condition (3.4) is proved.

Now let ϕ ∈ Cl+α(∂Ω). Then according to Schauder’s theorem [40] we have
u ∈ Cl+α(Ω) and the sufficiency of the condition (3.3) is proved. Let μ ∈ Cl+α(∂Ω).
Then we have the inclusion [25] W [μ] ∈ Cl+1+γ , where γ ∈ (0, α) is arbitrary.
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Because of Cl+1+γ(∂Ω) ⊂ Cl+α(∂Ω) by using (3.5) we get ϕ ∈ Cl+α(∂Ω) and the
sufficiency condition (3.3) is fulfilled and also we obtain that u(r) ∈ Cl+α(Ω). �

Theorem 3.2. Let Ω ∈ R3 be a bounded simply connected arbitrary domain with
the boundary ∂Ω ∈ C2+α, 0 < α < 1; ϕ ∈ C2+α(Ω) be a given harmonic scalar
function. Then in the domain Ω there exists a regular function f such that f0 = ϕ
and the vector part of the function f is reconstructed in the next form

f(r) = ∇×A+∇ψ, r ∈ Ω, (3.6)

where

A(r) = − 1

4π

∫
Ω

∇�h(�)

|r− �| dV�; (3.7)

h is a scalar harmonic function in Ω and its boundary value on a ∂Ω coincides
with the density of a double-layer potential in Ω for the function 4πϕ; ψ is an
arbitrary harmonic function in Ω.

Proof. According to Theorem 3.1 the function 4πϕ can be represented as a double
layer potential:

ϕ(r) =
1

4π
W [g](r), (3.8)

where a density function g ∈ C2+α(∂Ω) is uniquely defined by ϕ and Ω. Let us
consider the next Dirichlet problem:

 h = 0, in Ω, h = g on ∂Ω.

It is known that the solution of this problem is unique and h ∈ C2+α(Ω). For the
Newtonian potential (3.7) we have A ∈ C3(Ω) [25]. Because of ∇h ∈ C1+α(Ω) we
have the Poisson equation

 A(r) = ∇h(r), r ∈ Ω. (3.9)

Using the property of Newtonian potential to admit the differentiation under the
integral sign and harmonicity of the function h(r) we have

∇ ·A =
1

4π

∫
Ω

r− �

|r− �|3 · ∇�h(�)dV�, r ∈ ΩK . (3.10)

Using the harmonicity of the function h(r) we have

∇� ·
[
∇�h(�)

|r− �|

]
=

r− �

|r− �|3 · ∇�h(�)

and we can use the Gauss theorem in (3.10)

∇ ·A =
1

4π

∫
Ω

∇� ·
[
∇�h(�)

|r− �|

]
dV�

=
1

4π

∮
∂Ω

∇�h(�)

|r− �| · dS� =
1

4π

∮
∂Ω

1

|r− �|
∂h(�)

∂n
dS�, r ∈ ΩK .

(3.11)
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As is known, there exists the next integral representation for the harmonic func-
tion h(r)

h(r) =
1

4π

∮
∂Ω

[
1

|r− �|
∂h(�)

∂n
− h(�)

∂

∂n

1

|r− �|

]
dS�. (3.12)

After substituting expressions from (3.11) and (3.8) with the equality g = h on
∂ΩK into the formula (3.12) we obtain

h(r) = ∇ ·A+ϕ(r)

and
∇[∇ ·A] = ∇h(r) −∇ϕ(r), r ∈ ΩK . (3.13)

Now let us introduce the vector function f1(r) ≡ ∇×A(r). In view of (3.9),
(3.13) and using the identity ∇× (∇×A) ≡ ∇(∇ ·A)− A one can see that the
function f1 is a particular solution of the next system on K

∇ · f1 = 0, ∇× f1 = −∇ϕ, (3.14)

and the function ϕ+ f1 is a regular function. Let f be an arbitrary solution of the
system (3.14). Then for the difference F ≡ f1 − f we have the homogenous system
on K

∇ · F = 0, ∇× F = 0. (3.15)

As is well known [13], the general solution of this system in the simply con-
nected domain is a function F = −∇ψ, where ψ is an arbitrary harmonic function
on Ω. Thus we have the formula (3.6) for the vector part f of the regular function
on Ω. Conversely, if the function f is to be determined by the formula (3.6), where
ψ is an arbitrary harmonic function, then by the straightforward differentiation
one can check that the function f is a solution of the system (3.14). �
Remark 3.3. Some results of this section were announced in [19]. The requirement
of simple connectivity for the domain Ω is necessary because the Riesz system
(3.15) can be solvable as a gradient of a harmonic function only in such domains.
In the case of multiply connected domain solutions of the Riesz system exist in
other forms (see [2]). Some properties of the inhomogeneous Riesz system were
investigated in [12] by means of a quaternionic treatment.

4. Three-dimensional analogue of Kolosov–Muskhelishvili Formulae

4.1. Representation for elastic displacement vector

For the case of star-shaped domains Ω∗ ∈ R3 the three-dimensional analogue of
the Kolosov–Muskhelishvili formulae for displacements is proved in papers [17, 22]
as the next theorem:

Theorem 4.1. The general solution of the Lame equation (2.4) in Ω∗ is expressed
in terms of two regular in Ω∗ functions ϕ, ψ in the form

2μu(r) = κΦ(r) − rϕ̃(r) − ψ̃(r), κ = −3λ+ 7μ

λ+ μ
= −7 + 8ν, (4.1)
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where as Φ one can take any primitive of function ϕ, having subordinated ψ to the
condition κΦ0 = r · ϕ+ ψ0.

Here ν is Poisson’s ratio. Thus, the vector of elastic displacement is repre-
sented in terms of two arbitrary regular functions ϕ, ψ and a harmonic primitive Φ
of a function ϕ. It can be shown that from (4.1) the expressions for the divergence
and circle have the next forms

(λ+ 2μ)∇ · u = 4(1− ν)ϕ0,

−μ∇× u = (5− 4ν)ϕ+ (r · ∇)ϕ− r×∇ϕ0 +∇ψ0.
(4.2)

But in [17, 22] expressions for stresses were not established. In this section we
show that the representation (4.1) remains faithful on any compact in the arbitrary
simply connected domains not only star-shaped and expressions for components
of a stress tensor are obtained.

Indeed, let a vector field u be in the form of (4.1) then by the straightforward
differentiation one can check that we have a solution of the Lamé equation (2.4).

Now let Ω ∈ R3 be a bounded simply connected arbitrary domain with the
boundary ∂Ω ∈ C2+α, 0 < α < 1; a vector function u ∈ C3+α(Ω) be a solution
of the Lamé equation (2.4) in the domain Ω. We will show that there exist such
regular functions ϕ, ψ and a harmonic primitive Φ that the vector function u is
represented in the form of (4.1) in the domain Ω. Let us introduce the harmonic
scalar function ϕ0

4(1− ν)ϕ0 = (λ+ 2μ)∇ · u, (4.3)

for this function we have ϕ0 ∈ C2+α(Ω). Thus according to Theorem 3.2 we can
introduce a regular function ϕ = ϕ0 + ϕ in the domain Ω. Then let us introduce
a vector function A:

A = −μ∇× u− (5− 4ν)ϕ− (r · ∇)ϕ+ r×∇ϕ0. (4.4)

By the direct differentiation we have the Riesz system for A: ∇·A = 0, ∇×A = 0.
In such the case it is known [13] that in a simply connected domain there exists
a harmonic function ψ0 such that the vector function A can be represented as
a gradient of this function: A = ∇ψ0. Then according to Theorem 3.2 we can
introduce a regular function ψ = ψ0 + ψ. And now let us introduce a function
Φ = Φ0 +Φ:

κΦ0 = r ·ϕ+ ψ0,

κΦ = 2μu+ rϕ0 − r×ϕ−ψ.
(4.5)

By the straightforward differentiation one can check that

∇ ·Φ = −ϕ0, ∇Φ0 +∇×Φ = ϕ, (4.6)

thus ∇Φ = ϕ and the function Φ is a harmonic primitive for the function ϕ and we
proved Theorem 4.1 in the arbitrary simply connected domain with the smooth
boundary.
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4.2. Expressions for components of stress tensor

In this section for the quaternionic representation (4.1) using ideas similar [5, 6]
we will construct the expressions for the stress tensor components in terms of two
arbitrary regular functions. Let us write Hooke’s Law (2.7) when we have elastic
displacements in the form of (4.1):

σxx = κΦx,x − (1− 4ν)ϕ0 − xϕ0,x + yϕz,x − zϕy,x + ψx,x,

σyy = κΦy,y − (1 − 4ν)ϕ0 − yϕ0,y + zϕx,y − xϕz,y + ψy,y,

σzz = κΦz,z − (1− 4ν)ϕ0 − xϕ0,z + xϕy,z − yϕx,z + ψz,z,

2σxy = κ(Φx,y +Φy,x)− xϕ0,y − yϕ0,x + yϕz,y − zϕy,y + zϕx,x

− xϕz,x + ψx,y + ψy,x,

2σyz = κ(Φy,z +Φz,y)− yϕ0,z − zϕ0,y + zϕx,z − xϕz,z + xϕy,y

− yϕx,y + ψy,z + ψz,y,

2σzx = κ(Φz,x +Φx,z)− zϕ0,x − xϕ0,z + xϕy,x − yϕx,x + yϕz,z

− zϕy,z + ψz,x + ψx,z.

(4.7)

4.2.1. First Kolosov–Muskhelishvili formula for stresses. If we will follow the ideas
of the complex case the first Kolosov–Muskhelishvili formula for the stresses in-
cludes only the normal stress components. From Hooke’s Law (2.7) the next for-
mula can be obtained:

σxx + σyy + σzz = 3λ∇ · u+ 2μ∇ · u = (3λ+ 2μ)∇ · u.
Then using the formula (4.2) we obtain the first Kolosov–Muskhelishvili formula
for the stresses:

σxx + σyy + σzz = 4(1− ν)ϕ0. (4.8)

4.2.2. Second Kolosov–Muskhelishvili formula for stresses. Analogically to [5, 6]
we start the construction by

i(−σxx + σyy + σzz)− j2σxy − k2σxz,

by substitution of expressions from (4.7) into the above formula and using the
regularity of the function ϕ after some calculations we obtain the desired expression
and in a similar way the other two:

i(−σxx + σyy + σzz)− j2σxy − k2σxz

= i6(1− 2ν)ϕ0 −∇(κΦx + ψx)− κΦ,x −ψ,x

+ x∇ϕ0 + rϕ0,x − y∇ϕz + z∇ϕy +ϕ,x × r,

j(σxx − σyy + σzz)− k2σyz − i2σyx

= j6(1− 2ν)ϕ0 −∇(κΦy + ψy)− κΦ,y −ψ,y

+ y∇ϕ0 + rϕ0,y − z∇ϕx + x∇ϕz +ϕ,y × r,

k(σxx = σyy − σzz)− i2σzx − j2σzy
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= k6(1− 2ν)ϕ0 −∇(κΦz + ψz)− κΦ,z −ψ,z

+ z∇ϕ0 + rϕ0,z − x∇ϕy + y∇ϕx +ϕ,z × r. (4.9)

The obtained three formulas (4.9) can be called as the second Kolosov–Muskhelish-
vili formula for the stresses.

4.2.3. Second Kolosov–Muskhelishvili formula for stresses in tensor notations.
The second Kolosov–Muskhelishvili formula (4.9) for the stresses can written in
a compact form by using the tensor notations for the Cartesian coordinates xi

(i = 1, 2, 3). Let ei be unit vectors of the Cartesian coordinates and Ti be a stress
vector on the plane with normal ei (i = 1, 2, 3). It is known from the basis of
elasticity theory that

Ti =

3∑
l=1

eiσli, i = 1, 2, 3. (4.10)

By using (4.8) and (4.10) the left side expression of the first formula in (4.9) can
be transformed into the next form

i(σxx + σyy + σzz)− i2σxx − j2σxy − k2σxz

= i4(1− ν)ϕ0 − 2Tx,

here Tx ≡ T1. Thus, for Tx we have the formula

2Tx = i2(1− 4ν)ϕ0 +∇(κΦx + ψx) + κΦ,x +ψ,x − x∇ϕ0 − rϕ0,x

+ y∇ϕz − z∇ϕy − r×ϕ,x.

One can obtain in an analogical way formulas forTy andTy . In the tensor notation
these three formulas can be written as the next second Kolosov–Muskhelishvili
formula for the stresses

2Ti = ei2(1− 4ν)ϕ0 +∇(κΦi + ψi) + κΦ,i +ψ,i − xi∇ϕ0 − rϕ0,x

+
3∑

k,l=1

εiklxk∇ϕl + r×ϕ,i, i = 1, 2, 3;
(4.11)

here εikl is the completely antisymmetric Levi-Civita tensor.

5. Conclusion

In this paper the theory of Moisil–Theodoresco system in terms of regular quater-
nionic functions of reduced quaternion variable is used. We obtain the generalized
Kolosov–Muskhelishvili formulae in the three-dimensional linear elasticity where
displacements and stresses are expressed in terms of two regular quaternion func-
tions in arbitrary domains not only star-shaped but with some restrictions for the
smoothness of the boundary and functions. For this result the theorem about the
reconstruction of a regular function from the given scalar part is proved in such
domains. The restrictions on the domain boundary and used functions are caused
by the used methods of the potential theory.
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Quaternionenvariablen. Com. Math. Helv., 4 (1932), 9–20.

[15] Yu.M. Grigor’ev and V.V. Naumov, Approximation theorems for the Moisil–
Theodorescu system. Siberian Mathematical Journal September–October, 25, Issue
5 (1984), 693–701. DOI 10.1007/BF00968681.

[16] Yu.M. Grigor’ev, Solution of a problem for an elastic sphere in a closed form. Dy-
namics of Continuous Medium [in Russian], No. 71 (1985), Inst. Gidrodin. Sib. Otd.
Akad. Nauk SSSR, Novosibirsk, 50–54.



214 Y. Grigor’ev

[17] Yu.M. Grigor’ev, Solution of spatial problems of an elasticity theory by means of a
quaternionic functions theory. Candidat dissertation (PhD) [in Russian], Lavrent’ev
Institute of Hydrodynamics, Novosibirsk (1985), 131 pp.

[18] Yu.M. Grigor’ev and V.V. Naumov, Solution of third and fourth main problems of an
equilibrium of an elastic sphere in a closed form. Dynamics of Continuous Medium
[in Russian], No. 87 (1988), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibirsk,
54–66.

[19] Yu.M. Grigor’ev and V.V. Naumov, Erratum in: Approximation theorems for the
Moisil–Theodorescu system. Siberian Mathematical Journal, September–October, 25,
Issue 5 (1984), 693–701. Deposited in VINITI 11.05.89, N 5739-B89 [in Russian].

[20] Yu.M. Grigor’ev and V.V. Alekhin, A quaternionic boundary element method. Sib.
jurn. industr. matem. [in Russian], Vol. 2, No. 1 (1999), Inst. Matem. Sib. Otd. Akad.
Nauk SSSR, Novosibirsk, 47–52.

[21] Yu.M. Grigor’ev, A spatial analogue of the integral equation of Mushelishvili. Dy-
namics of Continuous Medium [in Russian], No. 114 (1999), Inst. Gidrodin. Sib.
Otd. Akad. Nauk SSSR, Novosibirsk, 161–165.

[22] Yu. Grigor’ev, Three-dimensional Quaternionic Analogue of the Kolosov–Muskhe-
lishvili Formulae. Hypercomplex Analysis: New perspectives and applications,
Trends in Mathematics, (eds. S. Bernstein, U. Kaehler, I. Sabadini, F. Sommen),
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On Some Properties of
Pseudo-complex Polynomials

Klaus Gürlebeck and Dmitrii Legatiuk

Abstract. Monogenic functions are typically approximated by help of mono-
genic polynomials. Different systems of monogenic polynomials have been
developed by several authors in the last years. One of available constructions
are the so-called system of Pseudo-Complex Polynomials (PCP). PCP are 3D
monogenic polynomials which have a structure similar to integer powers of
one complex variable. In this paper we present an algorithm allowing us to
find clear relations between different sets of PCP, which has not been studied
before.
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1. Introduction

With the development of hypercomplex analysis monogenic functions become more
and more popular in different fields of applications. Typically, to describe a mono-
genic function one uses its series expansion with respect to a system of monogenic
polynomials. In recent years several different systems of monogenic polynomials
were proposed by many authors, see for example [1, 2, 3, 10] and the references
therein. To simplify applications of polynomial systems it is helpful to discover
their properties.

In 1970 a special type of monogenic polynomials the so-called totally regular
variables defined in Rn have been introduced in [7]. In this work the main intention
was to introduce monogenic functions, such that their integer powers are also
monogenic. To assure that, some specific sufficient conditions were formulated.
The detailed study with necessary and sufficient conditions for totally regular
variables with values in R4 was done in [9].

The research of the second author is supported by the German Research Foundation (DFG) and
the Russian Foundation of Basic Research (RFBR).
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Recently, another system of monogenic polynomials was proposed in [4, 5, 6],
where the so-called Pseudo-Complex Polynomials (PCP) have been introduced.
This system has a direct relation to works [7, 9]. PCP have a structure which is
similar to integer powers of one complex variable, and they share some of very use-
ful properties of complex powers. Due to this simple structure it is very attractive
to use PCP in different fields of applications, e.g., interpolation of monogenic func-
tions (Lagrange-type, Newton-type), etc., but to gain more benefit of the simple
structure one has to study PCP in more detail.

In previous works the question of a construction of PCP has been studied in
detail. But some related structural questions have not been discussed neither for
PCP, nor for totally regular variables. Therefore in this paper we present basic
results summarizing some interesting properties of PCP. We start with prelimi-
naries from hypercomplex analysis followed by an introduction of PCP. After that
we present a theorem stating that PCP can be obtained from a complex monomial
by using an invertible multiplicative extension. As the main part of this paper we
discuss in details a construction of one specific set of parameters defining PCP.

2. Preliminaries and notations

Let 1, e1, e2, e3 be an orthonormal basis of the Euclidean vector space R4. As usual
we identify the basis vector e0 with 1. We introduce an associative multiplication
of the basis vectors subject to the multiplication rules:

e21 = e22 = e23 = −1, e1e2 = −e2e1 = e3.

This non-commutative product generates the algebra of real quaternions denoted
by H. The real vector space R4 will be embedded in H by identifying the element
a = (a0, a1, a2, a3) ∈ R4 with the element

a = a0 + a1e1 + a2e2 + a3e3 ∈ H.

The real number Sc a := a0 is called the scalar part of a and Veca := a1e1+
a2e2+a3e3 is the vector part of a. Analogous to the complex case, the conjugate of
a := a0+a1e1+a2e2+a3e3 ∈ H is the quaternion ā := a0−a1e1−a2e2−a3e3. The
norm of a is given by |a| =

√
aā and coincides with the corresponding Euclidean

norm of a, as a vector in R4.
Additionally we introduce the subset

A := spanR {1, e1, e2} ⊂ H.

The real vector space R3 can be embedded in A by the identification of each
element x = (x0, x1, x2)

T ∈ R3 with the reduced quaternion or paravector

x = x0 + x1e1 + x2e2 ∈ A.
As a consequence, we will often use the same symbol x to represent a point in R3

as well as to represent the corresponding reduced quaternion. For the coordinate
axes x, y, z we will use the notation x0, x1, x2.
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Let Ω be an open subset of R3 with a piecewise smooth boundary. An H-
valued function is a mapping

f : Ω→ H

such that

f(x) =
3∑

i=0

f i(x)ei, x ∈ Ω.

The coordinates f i are real-valued functions defined in Ω, i.e.,

f i : Ω→ R, i = 0, 1, 2, 3.

Continuity, differentiability or integrability of f are defined coordinate-wisely.
For continuously real-differentiable functions f : Ω ⊂ R3 → H, which we will
denote for simplicity by f ∈ C1(Ω,H), the operator

∂̄ =
1

2

(
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2

)
is called generalized Cauchy–Riemann operator. The corresponding conjugate gen-
eralized Cauchy–Riemann operator is defined as

∂ =
1

2

(
∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2

)
.

We define and denote the Cauchy–Riemann operators analogous to the complex
one-dimensional case. Here, we follow the notation used in [8], which is opposed
to the commonly used notation in the Clifford analysis, but analogues to complex
function theory.

Definition 2.1. A function f ∈ C1(Ω,H) is called left (resp. right) monogenic in Ω if

∂̄f = 0 in Ω (resp., f ∂̄ = 0 in Ω).

Finally we introduce special reduced quaternions, usually called Fueter vari-
ables, defined by

zk = xk − x0ek, x0, xk ∈ R, k = 1, 2.

2.1. Pseudo-complex polynomials

In this section we are going to introduce a set of polynomials of the form

Zk
s (x) = (x0 + ysis)

k
, (2.1)

where

ys = αsx1 + βsx2

and

is = αse1 + βse2,

with parameters αs and βs. It is easy to verify that if the parameters satisfy the
condition

α2
s + β2

s = 1,
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then it follows immediately that i2s = −1, and therefore one can prove that the
above polynomials are monogenic polynomials which are isomorphic to the com-
plex powers with respect to a chosen parameter set. To underline this fact these
polynomials are called pseudo-complex polynomials (PCP). We would like to re-
mark that sometimes in literature one can find another name for PCP – Pseudo-
Complex Powers, but we will not mix these names and we will follow only the
name pseudo-complex polynomials.

The original idea of such polynomials is going back to 1970 where in [7] the
so-called totally regular variables defined in Rn with values in Clifford algebra
C�0,n were introduced. Later, in 1982, a detailed study of totally regular variables
in the case of quaternions has been done in [9]. These variables are defined as
follows:

Definition 2.2. A linear hypercomplex holomorphic function of the form

g = x0d0 + x1d1 + x2d2 + x3d3,

whose integer powers are also holomorphic is called totally regular variable, where
dk = ak0e0 + ak1e1 + ak2e2 + ak3e1e2 ∈ H, ajk ∈ R j, k = 0, 1, 2, 3.

Recently PCP have been considered by several authors in different contexts.
In [2] it was proved that homogeneous monogenic polynomials of the form

Hk
(ai,bi)

= (aiz1 + biz2)
k , ai, bi ∈ R, i = 0, . . . , k

form a basis of theH-linear space of homogeneous monogenicH-valued polynomials
of degree k if and only if a2i +b2i = 1 and aibj−ajbi �= 0, i, j = 0, . . . , k, i �= j. These
two conditions provide an explicit relation between these polynomials and PCP.
In [3], a complete set of pseudo-complex polynomials, having prescribed properties
was constructed. Later on, aspects of combinatorial nature were considered in [5],
and some computational aspects related to the explicit constructions of PCP were
already discussed in [4]. In [6] numerical properties of the implementation of PCP
have been studied in details.

According to [5] the parameters αs and βs form the so-called parameter set
A = {(αs, βs) , s = 0, . . . , k} which can be associated with unit vectors in R2.

To finish the introduction of PCP we recall from [5] the following theorem:

Theorem 2.3. The set of polynomials
{
Zk

s

}k

s=0
of the form (2.1) is a basis for the

space of homogeneous monogenic paravector-valued polynomials of degree k in R3,
provided that the k + 1 unit vectors γk

s = (αs, βs) ∈ R2, with s = 0, . . . , k, are
pairwise noncollinear.

The lower triangular part of Table 1 represents the basis generated by pseudo-
complex polynomials (2.1). Sometimes it will be useful to identify unit vectors γs
as complex numbers γs = αs + iβs, and we will use the same notation. Moreover,
we will typically work only with the PCP Z1

s and to shorter the notations we omit
the upper index 1.
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s = 0 s = 1 s = 2 s = 3 · · ·
k = 0 1 1 1 1 · · ·
k = 1 Z0 Z1 Z2 Z3 · · ·
k = 2 Z2

0 Z2
1 Z2

2 Z2
3 · · ·

k = 3 Z3
0 Z3

1 Z3
2 Z3

3 · · ·
...

...
...

...
...

. . .

Table 1. Pseudo-Complex Polynomials: columns correspond to differ-
ent parameters αs and βs, rows correspond to the degree of a polyno-
mial.

2.2. Representation of pseudo-complex polynomials

Theorem 2.4. The pseudo-complex polynomial Zs can be obtained from the com-
plex mononial z = x0 + x1e1 by an action of a family of invertible multiplicative
extensions as follows

Zs = Ps z = z P̄s,

where the functions Ps and P̄s are given by

Ps =
x2
0 + αsysx1

x2
0 + x2

1

+
αsysx0 − x0x1

x2
0 + x2

1

e1 +
x0βsys
x2
0 + x2

1

e2 +
x1βsys
x2
0 + x2

1

e3,

P̄s =
x2
0 + αsysx1

x2
0 + x2

1

+
αsysx0 − x0x1

x2
0 + x2

1

e1 +
x0βsys
x2
0 + x2

1

e2 −
x1βsys
x2
0 + x2

1

e3,

with
ys = αsx1 + βsx2.

Proof. The theorem can be proved by straightforward calculations. �
Since the multiplicative extensions Ps and P̄s are invertible we have an ob-

vious corollary:

Corollary 2.5. The complex monomial z = x0+x1e1 can be obtained from pseudo-
complex polynomials by an action of a family of multiplicative restrictions as fol-
lows

z = P−1
s Zs = ZsP̄−1

s ,

where the functions P−1
s and P̄−1

s are given by

P−1
s =

x2
0 + αsysx1

x2
0 + y2s

− αsysx0 − x0x1

x2
0 + y2s

e1 −
x0βsys
x2
0 + y2s

e2 −
x1βsys
x2
0 + y2s

e3,

P̄−1
s =

x2
0 + αsysx1

x2
0 + y2s

− αsysx0 − x0x1

x2
0 + y2s

e1 −
x0βsys
x2
0 + y2s

e2 +
x1βsys
x2
0 + y2s

e3,

with
ys = αsx1 + βsx2.
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Since multiplicative restrictions and extensions are invertible, we get

(i) Ps P−1
s = P−1

s Ps = I,
(ii) P̄s P̄−1

s = P̄−1
s P̄s = I,

where I is the identity.

Remark 2.6. The multiplicative extensions Ps and P̄s can also be written in a
more compact form as follows

Ps = 1 +
αsys − x1

x2
0 + x2

1

z̄e1 +
βsys

x2
0 + x2

1

ze2,

P̄s = 1 +
αsys − x1

x2
0 + x2

1

z̄e1 +
βsys

x2
0 + x2

1

z̄e2.

One may expect that by applying the same idea to the multiplicative restric-
tions P−1

s and P̄−1
s one gets a similar more compact structure. However, this is

not the case, and the multiplicative restrictions are written as follows

P−1
s = 1 +

αsx1 − ys
x2
0 + y2s

(ys − x0e1)−
βsys

x2
0 + y2s

ze2,

P̄−1
s = 1 +

αsx1 − ys
x2
0 + y2s

(ys − x0e1)−
βsys

x2
0 + y2s

z̄e2.

Remark 2.7. We would like to underline the fact, that we call PCP as monogenic
polynomials which are parameter-set isomorphic to the complex powers. In the
beginning, when PCP were introduced, they were called simply isomorphic to the
complex powers. We would like to draw attention to it particularly in the context
of Theorem 2.4. If we represent the complex monomial and PCP as sets, then
it becomes clear that we cannot speak about a bijection between these sets. But
if we fix the parameters αs and βs, then we get a unique bijection. In this case
we get that each column in Table 1 is isomorphic to the complex powers. This
fact is clearly underlined in Theorem 2.4. Thus, to avoid any misunderstanding
it is better to refer to PCP as monogenic polynomials which are parameter-set
isomorphic to the complex powers.

3. Study of a specific parameter set

In [5] it was discussed, that conditions which are formulated in Theorem 2.3 allow a

wide choice of parameter-vectors, leading to different sets of polynomials
{
Zk

s

}k

s=0
.

Such freedom has positive and negative aspects:

• on one hand, from the theoretical point of view it is convenient to have such
a flexible structure, because depending on a specific task one can construct
a system of polynomials which is more suitable in a given situation;

• on the other hand, it is not completely satisfying to have different sets of
PCP without clear relations between them.

The question of a relation between different PCP is of particular importance for
the task of approximation of an arbitrary monogenic function by PCP. The most
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essential result in this case would be to find what kind of monogenic functions
correspond to different columns in Table 1, or, at least, to find a possibility to
express some columns in terms of the others. Therefore in this section we formalise
a construction of one parameter set, which supports the idea of finding relations
between different PCP.

We represent the parameters αs and βs in the following form

γs =
(
αs βs

)
=
(
cosϕs sinϕs

)
, (3.1)

where ϕs are real numbers describing the argument of the complex numbers γs
taken to be equidistant on the unit circle. Figure 1 shows distribution of the first γs
in terms of the arc length of

�
ϕ1ϕi. In this case the parameter set {ϕ0, ϕ1, . . . , ϕk}

defines completely the set of unit vectors {γ0, γ1, . . . , γk}, where k is the polyno-
mial degree.

x1

x2

O

ϕ0

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

ϕ9

ϕ10

ϕ11

ϕ12

ϕ13

ϕ14

ϕ15

Figure 1. Distribution of γs on the unit disk

The construction of such a parameter set was discussed in [5], where in Ta-
bles I and II it was shown that such set of parameters satisfies the conditions
of Theorem 2.3 and the corresponding basis functions are explicitly constructed.
But the question of a relation between different PCP has not been studied there.
Therefore in this paper we propose another approach to the construction of this
parameter set which allows us finally to connect different PCP.

We construct the parameter set A as follows

A = {A1, A2, A3, . . .} ,
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where Ai, i = 0, 1, . . . are parameter sets for certain collections of PCP. According
to that idea and taking into account Figure 1 we have the following subsets in the
parameter set A

A1 := {ϕ0} ,
A2 := {ϕ1} ,
A3 := {ϕ2, ϕ3} ,
A4 := {ϕ4, ϕ5, ϕ6, ϕ7}
A5 := {ϕ8, ϕ9, ϕ10, ϕ11, ϕ12, ϕ13, ϕ14, ϕ15} ,

...

and it is easy to verify that the exact number of elements in each subset is given by

card(Ai) = 2i−2, i = 2, 3, . . . .

From now on we consider the subsets Ai, i = 0, 1, . . . as ordered subsets according
to the construction described above. Thus, one obtains the following formulae for
the elements of the subsets Ai, denoted by Ai(j):⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ai(j) =
A1(1) +

[
1
2card(Ai)− j

]
π

card(Ai)
,

Ai

(
j +

1

2
card(Ai)

)
= −Ai(j),

with j = 1, 2, . . . , 1
2card(Ai), i = 3, 4, . . ., and A1 =

{
π
2

}
, A2 = {0} are two

basic sets. Finally, to construct a basis for the space of homogeneous monogenic
paravector-valued polynomials of degree k in R3 one needs to take k + 1 elements
of the parameter set A1 ∪A2 ∪ · · · .

Based on the proposed construction of the parameter set A and by using
formula (3.1) we can introduce the following formula

Zs(x) = x0 +

{([
αs−1βs−1

] [cosϑs − sinϑs

sinϑs cosϑs

])[
x1

x2

]}
×
{([

αs−1βs−1

] [cosϑs − sinϑs

sinϑs cosϑs

])[
e1
e2

]}
,

(3.2)

with s = 1, 2, . . ., and the rotation angle ϑs is defined by

ϑs =

⎧⎪⎪⎨⎪⎪⎩
A1(1)

card(Ai)
, if ϕs = Ai(1),

2A1(1)

card(Ai)
, if ϕs ∈ Ai, ϕs �= Ai(1).

Formula (3.2) implies that next column in Table 1, i.e., PCP from that col-
umn, is obtained by a rotation of the vector (cosϕs, sinϕs) of the previous PCP
around x0-axis. Let us illustrate it on first few PCP:
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• to obtain the PCP Z1 corresponding to the subset A2 we need to rotate the
parameter set of Z0 by angle π

2 ;
• to obtain the PCP Z2 corresponding to the element A3(1) we need to rotate
the parameter set of Z1 by angle π

4 ;
• to obtain the PCP Z3 corresponding to the element A3(2) we need to rotate

the parameter set of Z2 by angle π
2 .

Finally we see that by the proposed construction of the parameter set A we can
easily calculate the rotation angle. Thus we obtained a clear relation between
different PCP.

Remark 3.1. We would like to notice that PCP Zϕ0 and Zϕ1 can be obtained by
rotations of the Fueter variables z1 and z2 as follows

Zϕ0 = Rx1

(π
2

)
· z2, Zϕ1 = Rx2

(
−π

2

)
· z1,

where Rx1(ϑ) and Rx2(ϑ) are elements of SO(3) representing rotations around axis
x1 and x2, respectively.

We would like to notice that we have presented the detailed study of one
specific parameter set which allows us finally to describe relations between different
columns in the PCP basis. But of course, any other choice of parameters satisfying
conditions α2

s + β2
s = 1 is allowed, like for instance dyadic fractions 0, π

2 , ±
2k+1
2m π

for integers m ≥ 2 and k ≥ 0 such that 2k + 1 < 2m−1. Therefore it is natural to
ask a question if one choice of the parameter set is “better” than the others. But of
course the meaning of “better” depends on a specific situation. For example, one
can expect that different parameter sets would provide different approximation
properties of the resulting system of PCP. This question has to be studied in
future work.

4. Summary and outlook

In this paper we have presented a study of some interesting properties of pseudo-
complex polynomials. Particularly, it was shown that by using multiplicative ex-
tensions and restrictions with chosen parameters αs and βs one can obtain PCP
from the complex monomial and vice versa. By this construction it becomes clear
that these polynomials are parameter-set isomorphic to the classical complex pow-
ers. Finally, by formalizing a construction of a specific parameter set we have ob-
tained an explicit representation of PCP from each column in Table 1 in terms
of the previous column. This construction is based on the idea of a rotation of
PCP around x0-axis. In future work the studied properties have to be checked in
different applications.
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Slice Regular Functions on Regular Quadratic
Cones of Real Alternative Algebras

Guangbin Ren, Xieping Wang and Zhenghua Xu

Abstract. The theory of slice regular functions is a natural generalization
of that of holomorphic functions of one complex variable to the setting of
quaternions, octonions, paravectors in Clifford algebras, and more generally
quadratic cones of real alternative algebras, in virtue of a slight modification
of a well-known Fueter construction. In this paper, we focus on slice regular
functions on the so-called regular quadratic cones, which are generally smaller
than quadratic cones introduced by Ghiloni–Perotti and turn out to be the
appropriate sets on which some nice properties of slice regular functions can
be considered, including particularly the growth and distortion theorems for
slice regular extensions of univalent holomorphic functions on the unit disc
D ⊂ C, the Erdős–Lax inequality and the Turan inequality for a subclass of
slice regular polynomials with all the coefficients in a same complex plane. It
is noteworthy that the notion of regular quadratic cones also provides addi-
tionally an effective approach to unifying the theory of slice regular functions
on quaternions, octonions, and paravectors in Clifford algebras.

Mathematics Subject Classification (2010). 30G35, 32A30.

Keywords. Slice regular functions; real alternative algebras; growth and dis-
tortion theorems; Erdős–Lax inequality; Turan inequality.

1. Introduction

A theory of slice regular functions on the so-called quadratic cones of real alter-
native algebras was recently initiated by Ghiloni and Perotti [24]. It contains and
generalizes the theory of slice regular functions introduced initially by Gentili and
Struppa in [20,21] for quaternions H, and subsequently by Colombo, Sabadini and
Struppa [7,8] in the real Clifford algebra Rn, and later also by Gentili and Struppa
in [22] for octonions O. This new slice regular theory involves a notion of slice reg-
ularity, which goes back to a work of Cullen [10] and is significantly different from

This work was supported by Chinese NSF grant No. 11371337.
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that of Cauchy–Fueter (see [2] for example). It also has elegant applications to
the functional calculus for noncommutative operators [9], Schur analysis [1], and
the construction and classification of orthogonal complex structures on dense open
subsets of R4 [18].

The strategy proposed by Ghiloni and Perotti [24] is motivated by a well-
known Fueter construction, which provides an effective way to generate quater-
nionic regular functions (in the sense of Cauchy–Fueter) starting from complex
holomorphic functions (cf. [15,40]) and has been generalized by Sce [37], Qian [31],
and Sommen [39] to the setting of Clifford algebras. Many variants have been given
since then in Clifford analysis [6, 13, 30, 32] and Dunkl–Clifford analysis [14]. The
approach introduced by Ghiloni and Perotti in [24] for an alternative algebra A
over R makes use of the complexified algebra A ⊗R C, denoted by AC. It turns
out that for each holomorphic function F on an open set D ⊂ C invariant under
the complex conjugate, there exists a unique slice regular function f : [D] −→ A
on [D] := {α + βJ : α + βi ∈ D, J ∈ SA} ⊆ QA such that the following diagram
commutes for every J ∈ SA:

[D]
f �� A

D

ΦJ





F �� AC

Φ̃J





The construction above depends heavily on the so-called slice complex nature
of QA, the so-called quadratic cone in A (see Section 2 below for the precise
definition), i.e.,

QA =
⋃

J∈SA

CJ ,

and
CI ∩CJ = R, ∀ I, J ∈ SA with I �= ±J.

Here SA denotes the set of square roots of −1 in the algebra A, defined by

SA := {J ∈ QA | J2 = −1},
and for every J ∈ SA, ΦJ : C −→ QA and Φ̃J : AC −→ A are two maps defined
respectively by

ΦJ(a+ ib) = a+ Jb, ∀ a, b ∈ R,

and

Φ̃J(α+ iβ) = α+ Jβ, ∀ α, β ∈ A.

As shown in [24], when D ⊂ C is a domain invariant under the complex
conjugate and A is the quaternions H, the set of slice regular functions f on [D]
obtained by the construction above from holomorphic functions F on D coincides
exactly with the one studied in [3] on the symmetric slice domain [D], a notion
first introduced in [5] (as pointed out by the referee). As one easily sees, this is also
the case when A is the octonions O, even though the reference [22] dealt only with
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slice regular functions on the open balls centered at the origin, i.e., power series of
one octonionic variable with octonionic coefficients on the right. Now slice regular
functions on symmetric slice domains in O have been studied deeply in [42].

Now a rather natural question arises in the theory of slice regularity:
To what extent can one extend nice properties of holomorphic functions to

the non-commutative setting for slice regular functions?
This paper attempts to answer this question. It turns out that the quadratic

cones introduced by Ghiloni and Perotti is too big for the extensions in general
and the suitable set should be the so-called regular quadratic conesH ⊆ QA, which
will be introduced in the next section, and guarantee the existence of an element
I ∈ SA satisfying that

T (IJ) ∈ R, ∀ J ∈ SA ∩H, (1.1)

where T denotes a trace operator in the alternative algebraA (see Lemma 3.4). The
importance of the trace condition (1.1) lies at its resulting fundamental identity
for norms of slice functions. Condition (1.1) is known to be abided by each regular
quadratic cone, while may fail for quadratic cone in general (see Remark 3.3 below
for an explicit counterexample). This predicates that properties of stem functions
may fail to extend to the biggest quadratic cone and also explains the reason
why slice analysis should be resided in the regular quadratic cones. Moreover, it
should be remarked that as already observed in the setting of quaternions for the
study of slice Bergman spaces [4], for regular compositions [35] and for Bieberbach
conjecture [16], a sufficient condition of preserving one slice is quite useful. Such
a condition is even suspected to be necessary by Gal, González-Cervantes, and
Sabadini for the Bieberbach conjecture in quaternions [16]. We also find that such
a condition is best possible when generalizing the classical Erdős–Lax inequality
to the setting of real alternative algebras.

The point of slice analysis on a regular quadratic cone is that it provides an
effective approach to unifying the theory of slice regular functions on quaternions,
octonions, and paravectors in Clifford algebras. It also fulfils the natural idea
of extending nice properties of holomorphic functions to noncommutative case, at
least for slice regular functions preserving one slice defined in the regular quadratic
cones. We shall establish the sharp growth and distortion theorems, the Erdős–Lax
inequality, and the Turan inequality for slice regular functions on regular quadratic
cones as well as the structure theorem of the zero set for slice regular functions
on the strong regular quadratic cones of real alternative algebras. In particular,
we provide a systematic approach to the study of zeros of octonionic slice regular
functions. For a series of studies on zeros of polynomials or power series over
noncommutative algebra, we refer the interested readers to [23, 26, 28, 29, 44] and
the references therein.

This paper is arranged as follows. In Section 2, we recall some basic defini-
tions about real alternative algebras and introduce the notion of regular quadratic
cones in real alternative algebras. We then establish the representation formula for
the norm of slice functions on a real alternative algebra in Section 3, and extend
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the growth and distortion theorems, the Erdős–Lax inequality and the Turan in-
equality to the setting of real alternative algebras in Section 4. Finally, Section 5
comes the structure theorem of zeros of slice regular functions on strong regular
quadratic cones of real alternative algebras.

2. Real alternative algebras and quadratic cones

In this section, we recall some definitions and results about real alternative algebras
(see [12, 24, 25, 38]).

2.1. Real alternative algebras

Let A be a finite-dimensional real alternative algebra with a unity. We assume that
A has dimension d > 1 as a real vector space, and identify the field of real numbers
with the subalgebra of A generated by the unity. Recall that an real algebra A is
alternative if the associator (x, y, z) := (xy)z − x(yz) of three elements of A is an
alternating function in its arguments. Artin’s theorem (cf. [38]) asserts that the
subalgebra generated by two elements of A is associative. Therefore there hold the
following Moufang identities:

a(x(ay)) = (axa)y, ((xa)y)a = x(aya), (ax)(ya) = a(xy)a

for all x, y, a ∈ A.

Assumption 2.1. In what follows, we will assume that an anti-involution is fixed on
the real alternative algebra A. It is a linear map x �→ xc of A into itself satisfying
the following properties:

(xc)c = x, ∀ x ∈ A,

(xy)c = ycxc, ∀ x, y ∈ A,

xc = x, ∀ x ∈ R.

2.2. The quadratic cone of a real alternative algebra

For each element x of A, the trace of x is

T (x) := x+ xc ∈ A

and the (squared) norm of x is

N (x) := xxc ∈ A.

Definition 2.2. (see [24]) The quadratic cone QA of A is by definition a real cone
given by

QA := R ∪
{
x ∈ A | T (x) ∈ R, N (x) ∈ R, 4N (x) > T (x)2

}
.

For every x ∈ QA, we also write
√
N (x) as |x|.

The set of square roots of −1 in the algebra A is defined by

SA := {J ∈ QA | J2 = −1}.
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For each J ∈ SA, we will denote by

CJ := 〈1, J〉 ∼= C,

the subalgebra of A generated by J . Observe that for every J ∈ SA the restriction
of the anti-involution to CJ becomes

x = α+ βJ �→ xc = α− βJ (α, β ∈ R).

Assumption 2.3. We shall always assume that QA �= R, or equivalently SA �= ∅.

Under the preceding assumption, the quadratic cone QA has two fundamental
properties [24]:

QA =
⋃

J∈SA

CJ ;

CI

⋂
CJ = R, ∀ I, J ∈ SA, I �= ±J.

Therefore, each non-zero element x ∈ QA \{0} has an multiplicative inverse x−1 =
N (x)−1xc ∈ QA \ {0} and its nth power xn also lies in QA for each n ∈ N. It is
worth remarking here that in general the quadratic cone QA is strictly contained
in A and QA = A if and only if A is isomorphic to one of the division algebras C,
H and O, in virtue of the well-known Hurwitz theorem.

2.3. Slice functions and slice regular functions

Given an open set D of C, invariant under the complex conjugate. Let [D] be its
associated set, given by

[D] =
⋃
x∈D

[x],

where [x] = α+ βSA for any x = α+ iβ ∈ D.

It is known that [D] is a relatively open subset of QA. Such a set [D] is a
natural domains of definition for slice functions, which is called circular domains
of A as it keeps invariant under the action of the square roots of −1.

Definition 2.4. (see [24]) A function F : D −→ A ⊗R C on an open set D ⊆ C
invariant under the complex conjugate is called a stem function if the A-valued
components F1, F2 of F = F1 + iF2 satisfy

F1(z̄) = F1(z), F2(z̄) = −F2(z), ∀ z ∈ D.

Each stem function F : D −→ A⊗R C induces a (left) slice function

f = I(F ) : [D] −→ A

via

f(x) := F1(z) + JF2(z), ∀ x ∈ [z] ∩ CJ .
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Each slice function f is induced by a unique stem function F since F1 and F2

can be obtained starting from f . We will denote the set of all such induced slice
functions on [D] by

S([D]) :=
{
f = I(F ) : [D] −→ A | F : D −→ A⊗R C is a stem function

}
.

Also, we will denote by

S1([D]) :=
{
f = I(F ) ∈ S([D]) : F ∈ C1(D)

}
the set of slice functions with stem functions of class C1. Let f = I(F ) ∈ S1([D])
and z = α+ iβ ∈ D. Then the partial derivatives ∂F/∂α and i∂F/∂β are contin-
uous stem functions on D. The same property holds for their linear combinations

∂F

∂z
=

1

2

(
∂F

∂α
− i

∂F

∂β

)
and

∂F

∂z̄
=

1

2

(
∂F

∂α
+ i

∂F

∂β

)
.

Definition 2.5. (see [24]) Let f = I(F ) ∈ S1([D]). We set

∂f

∂x
:= I

(
∂F

∂z

)
,

∂f

∂xc
:= I

(
∂F

∂z̄

)
.

These functions are continuous slice functions on [D].

Definition 2.6. (see [24]) A slice function f = I(F ) ∈ S1([D]) is slice regular if its
stem function F is holomorphic. We will denote the vector space of slice regular
functions on [D] by

SR([D]) :=
{
f = I(F ) ∈ S1([D]) : F is holomorphic

}
.

For each slice regular function f ∈ SR([D]), we define its slice derivative f ′ to be
the slice regular function on [D] given by

f ′ :=
∂f

∂x
= I

(
∂F

∂z

)
.

In general, the pointwise product of two slice functions is not a slice function.
However, the pointwise product in the algebra A⊗R C induces a natural product
on slice functions.

Definition 2.7. (see [24]) Let f = I(F ) and g = I(G) be two slice functions on
[D]. The slice product of f and g is the slice function on [D] given by

f ∗ g := I(FG).

If f, g are slice regular, then also f ∗ g is slice regular. In general, (f ∗ g)(x) �=
f(x)g(x). If the components F1, F2 of the first stem function F are real-valued, or
if F and G are both A-valued, then (f ∗ g)(x) = f(x)g(x) for every x ∈ [D]. In
this case, we will use also the notation fg in place of f ∗ g.
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2.4. Regular Quadratic cones

Note that under Assumption 2.3, the quadratic cone QA contains at least one
2-dimensional real subspace CI ⊆ A, where I is an element of SA. This trivial
observation motivates us to introduce the following

Definition 2.8. A regular quadratic cone H is a subset of QA for which there exist
a real subspace M ⊂ A and an I ∈ SA ∩M such that H = QA ∩M and

I − J ∈ QA, ∀ J ∈ SA ∩M.

Notice that in a regular quadratic cone H, we have

SA ∩M = SA ∩H.

For clarity, we sometimes write H as HI or HI,A with I an arbitrarily fixed
element of SA satisfying the desired property in the definition of H.

Example. The typical examples of the regular quadratic cone HI,A are given by

H =

⎧⎪⎨⎪⎩
H, A = H, QA = H = M,

O, A = O, QA = O = M,

Rn+1, A = Cl0,n, QA ⊃ Rn+1 = M.

This enables us to unify the theory of slice regular functions on quaternions, octo-
nions, and paravectors in Clifford algebras. Moreover, the above typical examples
are also strong regular quadratic cones (see Definition 5.1 below).

3. Representation formula for the norm of slice functions

In this section, a representation formula for the norm of slice functions is estab-
lished, which states that the norm of every slice function is uniquely determined
by its value on a plane CI . The corresponding result in the setting of quaternions
or Clifford algebras was obtained in [33] in order to achieve the sharp growth and
distortion theorems for slice regular extensions of univalent holomorphic functions
on the open unit disc D ⊂ C. It has found many applications in the theory of slice
regular functions (see [34–36,42]).

As usual, our starting point is still the following fundamental representation
formula for slice functions.

Lemma 3.1. (see [24]) Let f ∈ S([D]) and I ∈ SA. Then the following formula
holds true:

f(x) =
1

2

(
f(α+ βI) + f(α− βI)

)
+

J

2

(
I(f(α− βI) − f(α+ βI))

)
(3.1)

for every J ∈ SA and every x = α+ βJ ∈ DJ := [D] ∩ CJ .
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Theorem 3.2. Let f ∈ S([D]) be such that f(DI) ⊆ CI for some I ∈ SA. Then
there holds the identity:

N (f(α + βJ)) =
2− T (JI)

4
N (f(α + βI)) +

2 + T (JI)
4

N (f(α− βI))

for every α+ βJ ∈ [D].

Proof. Denote x = α + βJ , z = α + βI and z̄ = α − βI. By the representation
formula (Lemma 3.1), we have

2f(x) = a+ b

with

a := f(z) + f(z), b := J
(
I
(
f(z)− f(z)

))
.

Noticing that

N (a+ b) = (a+ b)(a+ b)c = N (a) +N (b) + T (abc),

we can rewrite the norm N (f) as

4N (f(x)) = N (a) +N (b) + T (abc). (3.2)

Since f(DI) ⊆ CI , we have

N (a) = N (f(z) + f(z)) ∈ R

and

N
(
f(z)− f(z)

)
, N

(
f(z)

)
, N

(
f(z)

)
∈ R.

By Moufang identities in Section 2, we thus have

N (b) =
(
JI

(
f(z)− f(z)

))((
f(z)− f(z)

)c
IJ

)
= J

(
I
(
f(z)− f(z)

)(
f(z)− f(z)

)c
I
)
J

= J
(
IN

(
f(z)− f(z)

)
I
)
J

= N
(
f(z)− f(z)

)
and

T (abc) = T
((

f(z) + f(z)
)(
f(z)− f(z)

)c
IJ

)
=
(
N
(
f(z)

)
−N

(
f(z)

))
T (IJ).

Inserting the above two formulas into (3.2) yields that

N
(
f(α+ βJ)

)
=

1

4

(
2− T (JI)

)
N
(
f(α+ βI)

)
+

1

4

(
2 + T (JI)

)
N
(
f(α− βI)

)
. �
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Remark 3.3. We point out that in the Clifford algebra Rn it may fail that

T (IJ) ∈ R

for all I, J ∈ SA. In contrast, if A is one of the division algebras C, H or O, then
T (IJ) ∈ R for all I, J ∈ SA.

For simplicity we consider the case of R3. An element x ∈ R3 can be repre-
sented uniquely as a sum

x = x0 +

3∑
i=1

xiei +
∑

1≤j<k≤3

xjkejek + x123e1e2e3

with real coefficients x0, xi, xjk, x123. It is known [24] that the quadratic cone in
R3 is the six-dimensional real algebraic set

QR3 =
{
x ∈ R3 | x123 = 0, x1x23 − x2x13 + x3x12 = 0

}
and SR3 is a four-dimensional sphere in R3:

SR3 =
{
x ∈ QR3 | x0 = 0,

∑
i

x2
i +

∑
j<k

x2
jk = 1

}
.

Now we take

I = x1e1 + x2e2 + x3e3 + x12e12 + x13e13 + x23e23 ∈ SR3 ,

J = y1e1 + y2e2 + y3e3 + y12e12 + y13e13 + y23e23 ∈ SR3 .

By a direct calculation, we have

T (IJ) = −2〈I, J〉+ 2
(
x1y23 − x2y13 + x3y12 + y1x23 − y2x13 + y3x12

)
e123.

It is evident that T (IJ) /∈ R in general. This means that it may fail that

T (IJ) ∈ R

for all I, J ∈ QR3 .
Consequently, QR3 is a quadratic cone but not a regular quadratic cone as

shown by the following lemma.

Lemma 3.4. In each regular quadratic cone HI ⊆ A, we always have

T (IJ) ∈ R and |T (IJ)| ≤ 2

for all J ∈ SA ∩HI .

Proof. By definition, we have I − J ∈ QA so that N (I − J) ∈ R. On the other
hand, we have

N (I − J) = (I − J)(I − J)c = 2 + T (IJ)
so that T (IJ) ∈ R. Since T (IJ) = IJ + JI, it implies that |T (IJ)| ≤ 2. �

With this lemma, the identity in Theorem 3.2 thus becomes exactly a convex
combination identity in each regular quadratic cone HI :
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Theorem 3.5. Let HI ⊆ QA be a regular quadratic cone and f ∈ S([D] ∩ HI) be
such that f(DI) ⊆ CI . Then for each J ∈ SA ∩ HI there exists a real number
λI,J ∈ [0, 1] such that

N
(
f(α+ βJ)

)
= λIJN

(
f(α+ βI)

)
+ (1− λIJ )N

(
f(α− βI)

)
.

4. Some consequences of Theorem 3.5

Throughout this section, we denote by HI a regular quadratic cone in a real
alternative algebra A, where I is an arbitrarily fixed element of SA satisfying the
desired property in the definition of HI (see Definition 2.8). Set

B = {x ∈ HI : |x| < 1}, BI = B ∩ CI .

As a direct consequence of Theorem 3.5, we conclude that the maximum as
well as the minimum modulus of f is actually attained on the preserved slice.

Theorem 4.1. Let f ∈ S([D] ∩ HI) be such that f(DI) ⊆ CI . Then for each
α+ βi ∈ D, we have the following equalities:

max
J∈SA∩HI

N
(
f(α+ βJ)

)
= max

{∣∣f(α+ βI)
∣∣2, ∣∣f(α− βI)

∣∣2},
and

min
J∈SA∩HI

N
(
f(α+ βJ)

)
= min

{∣∣f(α+ βI)
∣∣2, ∣∣f(α− βI)

∣∣2}.
The preceding theorem in turn results in the growth and distortion theorems

for slice regular functions on a regular quadratic cone in an alternative algebra A,
which were first proved in [33] in the settings of quaternions and Clifford algebras.

Theorem 4.2 (Growth and Distortion Theorems). Let f be a slice regular function
on HI such that its restriction fI to BI is injective and f(BI) ⊆ CI . If f(0) = 0
and f ′(0) = 1, then for all x ∈ B, the following inequalities hold:

|x|
(1 + |x|)2 ≤ N

(
f(x)

)1/2 ≤ |x|
(1− |x|)2 ; (4.1)

1− |x|
(1 + |x|)3 ≤ N

(
f ′(x)

)1/2 ≤ 1 + |x|
(1− |x)3 ; (4.2)

1− |x|
1 + |x| ≤ N

(
xf ′(x) ∗ f−∗(x)

)1/2 ≤ 1 + |x|
1− |x| , (4.3)

where f−∗ : B\{0} −→ A is the slice regular extension to B\{0} of the holomorphic
function 1/fI : BI \ {0} −→ CI . Moreover, equality holds for one of these six
inequalities at some point x0 �= 0 if and only if f is of the form

f(x) = x(1 − xeIθ)−∗2, ∀ x ∈ B,

for some θ ∈ R.
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Proof. The result easily follows from Theorem 4.1 and a similar argument as that
in the proof of [33, Theorem 3.5], together with the classical growth and distortion
theorems (cf. [11]) for univalent holomorphic functions on the open unit disc of C.

�

The same argument can be used to proved the Erdős–Lax and the Turan
inequalities for a subclass of slice regular polynomials on HI . Recall first that the
classical Erdős–Lax inequality (cf. [27]) states that

max
|z|≤1

|p′(z)| ≤ n

2
max
|z|≤1

|p(z)| (4.4)

for those complex polynomials p of degree n that have no zeros in the open unit
disk of C.

As pointed out in [17], this result fails in the quaternionic setting in general,
but holds true for a subclass of slice regular quaternionic polynomials of degree n.
Following the idea in [43], we now extend this result to slice regular polynomials
on HI ⊆ A.

Theorem 4.3. Let p : HI −→ A be a slice regular polynomial of degree n with
p(x) =

∑n
j=0 x

jaj and all coefficients aj ∈ CI . If the restriction pI has no zeros
on BI , then

max
x∈B

N (p′(x)) ≤ n2

4
max
x∈B

N (p(x)).

Proof. The classical result applied to pI yields that

max
|z|≤1

|p′I(z)| ≤
n

2
max
|z|≤1

|pI(z)|.

Note that T (IJ) ∈ R for all J ∈ SA, in view of Lemma 3.4. By the convex
combination identity in Theorem 3.5 we have, for all α+ βJ ∈ BJ ,

N (p′(α + βJ)) =
1

4
(2− T (JI))|p′(α+ βI)|2 + 1

4
(2 + T (JI))|p′(α− βI)|2

≤ n2

4
max
|z|≤1

|pI(z)|2,

i.e.,

N (p′(α + βJ)) ≤ n2

4
max
x∈B

N (p(x)), ∀α+ βJ ∈ BJ , J ∈ SA ∩HI ,

as desired. �

Example. The result in the preceding theorem may fail after removing the re-
striction of preserving one slice. A counterexample is provided in [17]. Let p(q) =
q2 − q(i+ j) + ij be a slice regular quaternionic polynomial. The only zero of this
polynomial is q = i. However,

max
|z|≤1

|p′(z)| > (6 + 4
√
2)

1
2 > (4 + 4

√
2)

1
2 ≥ 2

2
max
|z|≤1

|p(z)|.
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An inverse inequality analogous to (4.4) was proved by Turan [41], which
states that

max
|z|≤1

|p′(z)| ≥ n

2
max
|z|≤1

|p(z)| (4.5)

for complex polynomials of degree n with all zeros in {z ∈ C : |z| ≤ 1}.

Theorem 4.4. Let p : HI −→ A be a slice regular polynomial of degree n with
p(x) =

∑n
j=0 x

jaj and all coefficients aj ∈ CI . If the restriction pI has all its

zeros in BI , then

max
x∈B

N (p′(x)) ≥ n2

4
max
x∈B

N (p(x)).

Proof. The proof is completely similar as that of Theorem 4.3. �

5. Structure of zeros

In this section, we discuss the properties of the zeros of slice regular functions on
the so-called strong regular quadratic cones in real alternative algebras A.

5.1. Strong regular quadratic cones

Definition 5.1. We say a regular quadratic cone HI in A is strong if for each
J ∈ SA ∩HI ,

I+J
2 ∈ SA if and only if J = I.

It is easy to see that quaternions H and octonions O are respectively the
strong regular quadratic cones contained in themselves, and the space of paravec-
tors Rn+1 is a strong regular quadratic cone in the Clifford algebras Rn.

Lemma 5.2. Let HI be a strong regular quadratic cone in A. Then for every J ∈
SA ∩HI with J �= I, I − J is always invertible.

Proof. Let J be an element of SA ∩HI such that J �= I. Then

(I − J)2 = −2− T (IJ) =: μ

is a real number, in view of Lemma 3.4. We claim that μ �= 0, so that I−J admits
an inverse

(I − J)−1 =
1

μ
(I − J).

Indeed, if μ = 0, then T (IJ) = −2 so that(
I + J

2

)2

=
−2 + T (IJ)

4
= −1.

This means that (I + J)/2 ∈ SA ∩ HI and hence J = I, contradicting the choice
of J . �
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5.2. Representation formula and splitting lemma for slice regular functions

In what follows, we always denote by H = HI a strong regular quadratic cone in
a real alternative algebra A and by SH the intersection SA ∩H.

Definition 5.3. A domain Ω in H is called an (axially) symmetric slice domain if
there exists a domain D ⊆ C intersected with R and invariant under the complex
conjugate such that Ω = [D].

For each symmetric slice domain Ω ⊆ H and each J ∈ SH, we denote by ΩJ

the intersection Ω ∩ CJ .

Theorem 5.4 (Representation formula). Let f : Ω −→ A be a slice regular function
on a symmetric slice domain Ω ⊆ HI and let α + βI ∈ Ω. Then the following
equality

f(α+ βJ) = (J −K)
(
(I −K)−1f(α+ βI)

)
+ (I − J)

(
(I −K)−1f(α+ βK)

)
.

holds for all J ∈ SH \ {I} and all K ∈ SH.

Proof. Lemma 5.2 guarantees that for eachK ∈ SH\{I}, (I−K)−1 is well defined.
The result follows immediately from the fact that the restriction of f to the sphere
α+βSH ∈ Ω is affine in the imaginary unit; see [24, Proposition 6] for details. �

As a direct consequence of the preceding theorem, we have the following
properties of zeros of slice regular functions.

Proposition 5.5. Let f : Ω −→ A be a slice regular function on a symmetric slice
domain Ω ⊆ HI . If f vanishes at a point α+ βI, then either f : Ω −→ A vanishes
identically in α+ βSHI or f does not have other zero in α+ βSHI .

We next digress to the splitting lemma for slice regular functions on symmet-
ric slice domains Ω ⊆ H. Recall that each real alternative algebra A has a complex
structure induced by the left multiplication of an element from SA so that its real
dimension is even. We denote

h :=
1

2
dimR A− 1 ∈ N ∪ {0}.

The following splitting lemma clarifies the relation between slice regularity and
complex holomorphy (cf. [25, Lemma 2.4]).

Lemma 5.6 (Splitting lemma). Let f : Ω −→ A be a slice regular function on a
symmetric slice domain Ω ⊆ H. Then for each J ∈ SH, there exist K1, . . . ,Kh ∈ SA
and holomorphic functions F0, F1, . . . , Fh : ΩJ −→ CJ such that{

K0 := 1,K1, . . . ,Kh, J, JK1, . . . , JKh

}
forms a real vector basis for A and

fJ(z) =

h∑
j=0

Fj(z)Kj, ∀ z ∈ ΩJ .
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5.3. Auxiliary functions associated with slice regular functions

Suppose that Ω = [D] ⊆ H is a symmetric slice domain, where D is a domain of
C intersected with R and invariant under the complex conjugate. The preceding
splitting lemma enables us to introduce for each slice regular function f on Ω
an auxiliary function fσ, which is crucial to study the structure of zeros of slice
regular functions. For each J ∈ SH, we split the restriction fJ into

fJ =
h∑

j=0

FjKj

with K1, . . . ,Kh ∈ SA and holomorphic functions F0, F1, . . . , Fh : ΩJ −→ CJ as
described in Lemma 5.6. We then define the holomorphic function fσ

J : ΩJ −→
CJ by

fσ
J (z) =

h∑
j=0

Fj(z)Fj(z̄).

It induces a slice regular function fσ defined on Ω via equality (3.1). The function
fσ has two main properties:

(i) fσ vanishes on the zeros of f ;

(ii) fσ preserves each slice, i.e., fσ(ΩJ ) ⊂ CJ for all J ∈ SH.

From now on, we denote by Zf the zeros of the function f .

Lemma 5.7. Let f : Ω −→ A be a non-identically vanishing slice regular function
on a symmetric slice domain Ω ⊂ H. Then for each J ∈ SH, the intersection
Zf ∩ CJ is closed and discrete in ΩJ .

Proof. For each J ∈ SH, the closeness of Zf ∩ CJ in ΩJ is obvious and the dis-
creteness can be proved as follows. By Lemma 5.6, for each J ∈ SH, there exist
K1, . . . ,Kh ∈ SA and holomorphic functions F0, F1, . . . , Fh : ΩJ −→ CJ such that{
K0 := 1,K1, . . . ,Kh, J, JK1, . . . , JKh

}
forms a real vector basis for A and

fJ(z) =

h∑
j=0

Fj(z)Kj, ∀ z ∈ ΩJ .

Since f �≡ 0, it follows from the representation formula (Lemma 3.1) that the
restriction fJ does not vanish identically, and so does some Fj0 with 0 ≤ j0 ≤ h.
Therefore, Zf ∩CJ ⊆ ZFj0

∩ CJ is discrete in ΩJ . �

Lemma 5.8. Let f : Ω −→ A be a slice regular function on a symmetric slice
domain Ω ⊂ H. Then f vanishes identically on Ω if and only if so does fσ.

Proof. We only need to prove the sufficiency. As above, we write the restriction
fJ as

fJ(z) =

h∑
j=0

Fj(z)Kj ,
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where Fj : ΩJ −→ CJ are holomorphic functions. Take y0 ∈ ΩJ ∩ R and consider
the series expansion

Fj(z) =
+∞∑
m=0

(z − y0)
maj,m, aj,m ∈ CJ ,

which holds in a suitable disc Δ(y0, R) ⊆ ΩJ of radius R and centered at y0 ∈ R.
Then, on Δ(y0, R), we have

Fj(z) =

+∞∑
m=0

(z − y0)
maj,m, aj,m ∈ CJ .

Moreover on Δ(y0, R) we can write

fσ
J (z) =

h∑
j=0

Fj(z)Fj(z) =

+∞∑
m=0

(z − y0)
m

h∑
j=0

cj,m,

where

cj,m =

m∑
i=0

aj,iaj,m−i.

By assumption, we have fσ ≡ 0 so that fσ
J ≡ 0 in the disc Δ(y0, R). Hence,

h∑
j=0

cj,0 =
h∑

j=0

|aj,0|2 = 0

so aj,0 = 0 for all multi-indices j. Now, by induction, assume that

aj,i = 0, i = 0, 1, . . . , k − 1, k ≥ 1, j = 0, 1, . . . , h.

Consider the coefficient
h∑

j=0

cj,2k =
h∑

j=0

2k∑
i=0

aj,iaj,2k−i

which is zero because fσ
J ≡ 0. Thus,

h∑
j=0

cj,2k =

h∑
j=0

|ajk|2

is zero if and only if ajk = 0 for all multi-indices j. We conclude that fσ
J ≡

0 in the disc Δ(y0, R) implies that all the coefficients aji vanish, thus also fJ
vanishes identically on ΩJ . By the representation formula in Lemma 3.1, f vanishes
identically. �

The zeros of slice regular functions fσ is described in the following result:

Lemma 5.9. Let f : Ω −→ A be a non-identically vanishing slice regular function
on a symmetric slice domain Ω ⊂ H. If there exists one point x ∈ Ω for which
fσ(x) = 0, then fσ(y) = 0 for all y ∈ [x]∩H. Moreover, the zero set of fσ consists
of isolated spheres (which might reduce to points on the real axis).
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Proof. The first part of the statement is trivial. The second part follows from an
argument by contradiction: if the spheres of zeros were not isolated, on each plane
we would get accumulation points of zeros and thus fσ would be identically zero
by the identity principle for holomorphic functions and thus it follows from Lemma
5.8 that f ≡ 0, giving a contradiction. �
Lemma 5.10. Let Ω ⊂ H be a symmetric slice domain and f : Ω −→ A a slice
regular function. Then every zero of f is also a zero of fσ.

Proof. Assume that f(α+ βJ) = 0. By the splitting lemma,

fJ(z) =

h∑
j=0

Fj(z)Kj.

Therefore, Fj(α+ βJ) = 0 for all j. By definition,

fσ
J (z) =

h∑
j=0

Fj(z)Fj(z),

we thus have fσ
J (α+ βJ) = 0 and the result follows. �

5.4. Structure of zeros

We now state the topological property of the zeros of slice regular functions; see [19,
Theorem 3.12] for the quaternionic case and [9, Theorem 2.5.14] for the Clifford
algebra case.

Please replace it by the following sentences:

Theorem 5.11 (Structure of zeros). Let H ⊆ A be a strong regular quadratic cone
such that for each pair of distinct elements I, J ∈ SH, I − J is invertible, and
f : Ω −→ A a non-identically vanishing slice regular function on a symmetric slice
domain Ω ⊂ H. Then the zero set Zf of f consists of isolated points or isolated
spheres of the form α+ βSH with α, β ∈ R.

Proof. Note that under our assumption, we can deduce from Theorem 5.4 that
each sphere of the form α + βSH with α, β ∈ R, either is contained in Zf or
contains only one point of Zf . We proceed with an argument by contradiction and
suppose that the conclusion asserted in the theorem were incorrect. Then there
would be a sequence {xn} ⊆ Zf satisfying that for any j, k ∈ N with j �= k,
[xj ] ∩ [xk] = ∅, and converging to some point x∞ ∈ α+ βSH with α, β ∈ R. This
together with Lemma 5.10 implies that the zero set of fσ consists of non-isolated
spheres. However, this is impossible in view of Lemmas 5.8 and 5.9. �

If we weaken the assumption in the preceding theorem, we can only obtain
the following

Theorem 5.12. Let H ⊆ A be a strong regular quadratic cone and f : Ω −→ A
a non-identically vanishing slice regular function on a symmetric slice domain
Ω ⊂ H. Then if some sphere α + βSH with α, β ∈ R is contained Zf , it must be
isolated in Zf .
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Abstract. In this paper we use a calculus of differential forms which is defined
using an axiomatic approach. We then define integration of differential forms
over chains in a new way and we present a short proof of Stokes’ formula
using distributional techniques. We also consider differential forms in Clifford
analysis, vector differentials and their powers. This framework enables an
easy proof for a Cauchy formula on a k-surface. Finally, we discuss how to
compute winding numbers in terms of the monogenic Cauchy kernel and the
vector differentials with a new approach which does not involve cohomology
of differential forms.
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1. Introduction

This paper is a continuation of our former papers [9, 10, 11, 12] in which the
calculus of differential forms has been combined with the Clifford algebra. Using
Clifford analysis techniques, and monogenic functions in particular, we were able
to establish a Cauchy-type formula for the Dirac operator on surfaces (see [10]), a
theory of monogenic differential forms allowing a cohomology theory (see [9, 12])
and a formula for the winding number of a k-cycle and a (m− k− 1)-cycle in Rm

(see [9]). This extends the work of Hodge [7] in which the homology of a domain
is measured in terms of integrals over cycles of harmonic differential forms. To
understand these ideas, one has to recall that the theory of monogenic functions
in Clifford analysis deals with nullsolutions of the Dirac operator ∂x in Rm, which
is a higher-dimensional generalization of the theory of holomorphic functions in
the plane. Consider a point p in the plane (or a number of points) and a closed
Jordan curve (a 1-cycle) Γ ⊂ C \ {p}; then the winding number of Γ around p is
given by the Cauchy integral

1

2πi

∫
Γ

dz

z − p
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which is a special case of the residue formula

1

2πi

∫
Γ

f(z) dz

z − p
.

The analog Cauchy formula for monogenic functions has the form (see [1])

f(x) =

∫
∂C

E(u− x)σ(du) f(u)

where C is an open bounded set in Rm, x ∈ C, E(u− x) is the Cauchy kernel and
σ(du) is a suitable (m− 1)-form with values in a Clifford algebra that represents
the oriented surface measure. Using this Cauchy formula in special cases, one can
establish a formula for the winding number of an (m − 1)-cycle around one or
several points.

However, in Rm one can also consider k-cycles Ck and (m − k − 1)-cycles
Cm−k−1 in Rm \ Ck for which there is a winding number that can be defined in
terms of the intersection number; it cannot be measured in terms of monogenic
functions right away. This makes it necessary to combine a calculus of differential
forms with the theory of monogenic functions, as we do in this work.

The paper consists of 5 sections, besides this introduction. In Section 2, we
define the calculus of differential forms from scratch using an axiomatic approach
which is inspired by the use of differential forms in analysis. In Section 3 we define
integration of differential forms over chains in a novel way which also includes
partial integration operators that are anti-commuting. In Section 4 we present a
short proof of Stokes’ formula using distributional techniques. Section 5 is devoted
to differential forms in Clifford analysis, starting with a short introduction to Clif-
ford algebras and monogenic functions. Then we introduce the vector differential
dx =

∑m
j=1 ej dxj , that generalizes the complex differential dz = dx+ idy, and its

powers dxk represent the oriented k-dimensional surface measure. This enables an
easy proof for a Cauchy formula on a k-surface. The final Section 6 is devoted to
the calculation of the winding number in terms of the monogenic Cauchy kernel
and the vector differentials dx, du, etc. The formulas thus obtained are easier to
present and understand than the ones presented in [9], moreover the approach is
new and does not involve cohomology of differential forms.

2. Differential forms

Let Ω ⊆ Rn be an open set, and let C∞(Ω) be the ring of real (or complex)-valued
smooth functions on Ω. We begin by defining the algebra of differential forms:

Definition 2.1. The algebra Λ(C∞(Ω)) of smooth differential forms on Ω is defined
as the smallest associative algebra over C∞(Ω) satisfying the following axioms:

(A−1) C∞(Ω) ⊂ Λ(C∞(Ω));

and there is a map d : Λ(C∞(Ω))→ Λ(C∞(Ω)) such that

(A0) d1 = 0;
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(A1) for ϕ ∈ C∞(Ω), F ∈ Λ(C∞(Ω))

d(ϕF ) = dϕF + ϕdF ;

(A2) for ϕ ∈ C∞(Ω), F ∈ Λ(C∞(Ω))

d(dϕF ) = −dϕdF.

Let P = Alg{x1, . . . , xm} be the algebra of polynomials in x1, . . . , xm with
real (or complex) coefficients. Then the generators x1, . . . , xm, interpreted as co-
ordinate functions, give rise to the differential dx1, . . . , dxm. We can then give the
following:

Definition 2.2. The subalgebra Λ(P) of Λ(C∞(Ω)) is generated by P and satisfies,
for any F ∈ Λ(P), the axioms

(A′
1) for F ∈ Λ(P) d(xjF ) = dxj F + xjdF ;

(A′
2) for F ∈ Λ(P) d(dxj F ) = −dxj dF.

Proposition 2.3. The following properties hold:

(i) d(xk dxj) = dxk dxj ;
(ii) d(dxj xk) = −dxjdxk;
(iii) dxj dxk = −dxj dxk.

Proof. Property (i) follows from

d(xk dxj) = dxk dxj + xkd
2xj = dxk dxj ,

since, by (A0) and (A2)

d2ϕ = d(dϕ 1) = −dϕd1 = 0

for ϕ ∈ C∞(Ω).

As a special case of (A′
2), we also have

d(dxj xk) = −dxjdxk,

so (ii) follows. As a consequence of (i) and (ii) we obtain dxjdxk = −dxjdxk. �

Remark 2.4. The previous result implies that dx1, . . . , dxm generate a Grassmann
algebra of dimension 2m.

From the definition of Λ(P) it follows that every F ∈ Λ(P) has the form

F =
∑
A⊂M

FA(x)dxA, FA(x) ∈ P ,

where M = {1, . . . ,m}, dxA = dxα1 . . . dxαk
for A = {α1, . . . , αk} and with α1 <

· · · < αk. It follows that

dF =
∑
A⊂M

dFA(x)dxA,
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so it suffices to calculate dϕ for ϕ ∈ P . By using iteratively the axiom (A′
1) one

can prove by induction on the degree of ϕ ∈ P that

dϕ =

m∑
j=1

dxj ∂xjϕ.

Now note that P is dense in C∞(Ω) and Λ(P) is dense in Λ(C∞(Ω)). So, it
follows that every F ∈ Λ(C∞(Ω)) is of the form

F =
∑
A⊂M

FA(x) dxA, FA ∈ C∞(Ω),

and, in general,

dF =

m∑
j=1

dxj

∑
A⊂M

∂xj FA(x) dxA =

m∑
j=1

dxj ∂xjF.

However, the definition of Λ(C∞(Ω)) and of d are independent of any coor-
dinate system. Hence, if (y1, . . . , ym) is another C∞-coordinate system on Ω, then
we have that

d =

m∑
j=1

dxj ∂xj =

m∑
j=1

dyj ∂yj ,

so that we also have the chain rule

dxj =

m∑
�=1

∂xj

∂y�
dy�

and for A = {α1, . . . , αk} ⊆M with α1 < · · · < αk we have

dxA =
∑

�1...�k

∂xα1

∂y�1
. . .

∂xαk

∂y�k
dy�1 . . . dy�k

=
∑

|B|=k

⎛⎝ ∑
π∈Sym(k)

sgnπ
∂xα1

∂yβπ(1)

. . .
∂xαk

∂yβπ(k)

⎞⎠ dyB

=
∑

|B|=k

JAB dyB, B = {β1, . . . , βk}, β1 < · · · < βk,

where

JAB =
∑

π∈Sym(k)

sgnπ
∂xα1

∂yβπ(1)

. . .
∂xαk

∂yβπ(k)

are the generalized Jacobians. So, in the coordinates (y1, . . . , ym) we have

F =
∑
A⊆M

FA(x) dxA =
∑
B⊆M

⎛⎝ ∑
|A|=|B|

FA(x(y))JAB

⎞⎠ dyB.

Hence, the chain rule and Jacobians are an automatic consequence of the axioms.
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3. Integration of differential forms

We extend the notion of differential form to the case where the components FA(x)
are generalized functions or distributions in Ω. Let

F = FM (x1, . . . , xm) dx1 . . . dxm

be a distributional form of maximum degree with supp(FM ) = K ⊂ Ω compact.
Then, the integral ∫

Ω

F =

∫ ∞

−∞
. . .

∫ ∞

−∞
FM (x)dx1 . . . dxm

is well defined (note that this is a formal way of writing: we are using the density
of D(Ω) in E ′(Ω) and thus the integrals are meant in the sense of functionals,
see, e.g., [5]). Denote by Λk(C∞(Ω)) the subspace of k-forms, namely of elements
F =

∑
|A|=k FA(x) dxA, where FA ∈ C∞(Ω) and denote by Λk(C∞(Ω)) its closure

in the distributions, namely the subspace of the k-forms F =
∑

|A|=k FA(x) dxA,

with FA ∈ D′(Ω). Let Σ be an infinitely differentiable k-surface in Rm defined as
the image of a C∞-map:

x(·) : (u1, . . . , uk)→ x(u1, . . . , uk),

where u = (u1, . . . , uk) ∈ Ω′ ⊂ Rk, i.e., Σ = x(Ω′). Next, let F ∈ Λk(C∞(Rm))
with supp(F ) ∩ Σ compact. Then we can define∫

Σ

F :=

∫
Ω′

∑
A

FA(x(u1, . . . , uk))JA(u) du1 . . . duk

where

JA(u) =
∑
π

sgnπ
∂xα1

∂uπ(1)
. . .

∂xαk

∂uπ(k)

is the Jacobian that appears from the chain rule. This also implies that the above
definition will not depend on the coordinate system in use. Indeed, if we use
another coordinate system (y1, . . . , yk) that locally has the same orientation as
(u1, . . . , uk), then for any ϕ ∈ C∞(Ω′)∫

Ω′
ϕ(u) du1 . . . duk =

∫
Ω′′

ϕ(u(y))

∣∣∣∣∂ku1 . . . uk

∂y1 . . . ∂yk

∣∣∣∣ dy1 . . . dyk
=

∫
Ω′′

ϕ(u(y))
∂ku1 . . . uk

∂y1 . . . ∂yk
dy1 . . . dyk,

but we also have that

JA(u(y)) = JA(u) ·
∂ku1 . . . uk

∂y1 . . . ∂yk
.

In other words, the calculus with differential forms automatically keeps track of
Jacobians.
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In the sequel we also need partial integration of differential forms. For a form
F (y) dy1 . . . dy� with compact support, this is defined as the operator∫

yj

F (y) dy1 . . . dy� := (−1)j−1

(∫ +∞

−∞
F (y) dyj

)
dy1 . . . dyj−1dyj+1dy�

that transforms differential forms into differential forms. From this definition, it is
clear that, as operators: ∫

yj

∫
y�

· = −
∫
y�

∫
yj

·

and also

dyj

∫
y�

· = −
∫
y�

· dyj ,

while the integral of k-forms may now be defined as∫
Σ

F =

∫
Ω′

∑
A

FA(x(u))JA(u) du1 . . . duk

=

∫
uk

. . .

(∫
u1

∑
A

FA(x(u))JA(u) du1

)
. . . duk.

In other words, variables of integration have to be moved to the left side of
a differential form. It is important to note that the above definition of integral
automatically keeps track of the orientation on Σ: it is determined by the order of
the coordinates u1, . . . , uk.

4. Stokes’ formula

Let F ∈ Λk−1(C∞(Ω)) with suppF ∩Σ compact and Σ is as above. Then we have
that (where x̂ means that x is suppressed):∫

Σ

dF =

∫
Rk

k∑
j=1

duj ∂uj

∑
A

FA(x(u))
∂k−1xα1 . . . xαk−1

∂u1 . . . ∂̂uj . . . ∂uk

du1 . . . d̂uj . . . dum

=

∫
Rk

k∑
j=1

∂ujgj(u)du1 . . . duk = 0,

since suppF ∩ Σ is compact, with

gj(u) =
∑
A

FA(x(u))
∂k−1xα1 . . . xαk−1

∂u1 . . . ∂̂uj . . . ∂uk

.

Let C be a compact set in Rm with nonempty interior and C∞ boundary.
Let ϕ ∈ C∞(Rm) be a defining function for C, i.e., ϕ < 0 in int(C), ϕ > 0 in
Rm \C and ϕ = 0, ∇ϕ �= 0 on ∂C. Then, if Y denotes the Heaviside function, we
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have that Y (−ϕ) = χC where χC is the characteristic function of C. Moreover,
for F ∈ Λk−1(C∞(Ω)) with C ⊂ Ω we would have that∫

Σ

d(χC(x)F ) = 0,

where

d(χCF ) = dY (−ϕ)F + χCdF, dY (−ϕ) = −δ(ϕ) dϕ,
where δ is the Dirac distribution on the real line. This leads to

Theorem 4.1 (Stokes’ formula). With the above notations, the following formula
holds: ∫

Σ

δ(ϕ) dϕF =

∫
Σ

Y (−ϕ) dF.

The formula can be also written in the more familiar form∫
∂C∩Σ

F =

∫
C∩Σ

dF.

Here one has to choose local coordinates (v1, . . . , vk−1) on ∂C ∩Σ such that
the orientation of the system of coordinates (ϕ, v1, . . . , vk−1) is the same as the
orientation of (u1, . . . , uk).
Indeed, we have that∫

Σ

δ(ϕ) dϕF =

∫
vk−1

. . .

∫
v1

∫
ϕ

δ(ϕ) dϕF =

∫
vk−1

. . .

∫
v1

F|ϕ=0 =

∫
∂C∩Σ

F.

5. Clifford differential forms

The complex Clifford algebra Cm is the complex associative algebra with gener-
ators e1, . . . , em together with the defining relations ejek + ekej = −2δjk. Every
element a ∈ Cm can be written in the form

a =
∑
A⊂M

aAeA, aA ∈ C,

where, as before, M = {1, . . . ,m} and for any multi-index A = {α1, . . . , αk} ⊆M ,
with α1 < · · · < αk we put eA = eα1 · · · eαk

.
Every a ∈ Cm admits a multivector decomposition

a =

m∑
k=0

[a]k, where [a]k =
∑
|A|=k

aAeA,

so [·]k : Cm → Ck
m denotes the canonical projection of Cm onto the space Ck

m of
k-vectors. Note that C0

m = C, the set of scalars while C1
m is the space of 1-vectors

v =
∑m

j=1 vjej. So the map

(v1, . . . , vm)→ v =

m∑
j=1

vjej
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leads to the identification of Cm with C1
m. For any v, w ∈ C1

m we have

v w = v · w + v ∧ w,

v · w = −〈v, w〉 = −
m∑
j=1

vjwj ,

v ∧ w =
∑
j<�

ej�(vjw� − v�wj) ∈ C2
m.

More in general, for v1, . . . , vk ∈ C1
m we define the wedge (or Grassmann)

product in terms of the Clifford product by

v1 ∧ · · · ∧ vk =
1

k!

∑
π∈Sym(k)

sgnπ vπ(1) · · · vπ(k) ∈ Ck
m.

We also call v1 ∧ · · · ∧ vk a k-blade. The k-blades span Ck
m, but not every element

in Ck
m is a k-blade.
For v ∈ C1

m and a ∈ Ck
m we set

va = [va]k−1 + [va]k+1 = v · a+ v ∧ a

where

v · a =
1

2
(va+ (−1)k−1av), v ∧ a =

1

2
(va+ (−1)kav).

More in general, for a ∈ Ck
m, b ∈ C�

m, k ≥ � we have

ab = [ab]k−� + [ab]k−�+2 + · · ·+ [ab]k+�

and we define the wedge product as

[ab]k+� = a ∧ b.

So we have the Grassmann product in terms of the Clifford product. The
variable (x1, . . . , xm) ∈ Rm is identified with the vector variable x =

∑m
j=1 xjej

and Cm-valued functions in Rm are denoted by f(x) =
∑

A fA(x)eA, fA are C-
valued functions.

Definition 5.1. A function f : Ω ⊆ Rm → Cm real differentiable will be called left
monogenic in Ω if it satisfies ∂xf(x) = 0 for x ∈ Ω, where ∂x =

∑m
j=1 ej∂xj is the

Dirac operator (or vector derivative).

We have the following formulas

x∂x = x · ∂x + x ∧ ∂x = −Ex − Γx

where Ex = −x · ∂x =
∑m

j=1 xj∂xj is the Euler operator and Γx = −x ∧ ∂x =

−
∑m

j<k ejkLjk, Ljk = xj∂xk
−xk∂xj , are the angular momentum operators. More-

over we have the overdot notation introduced by Hestenes

∂x(x f) = −mf + ∂̇x(xḟ)

where
∂̇x(xḟ) = −x∂xf − 2Exf.
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Remark 5.2. The elements dx1, . . . , dxm generate a Grassmann algebra and also
e1, . . . , em form a Grassmann algebra with respect to the wedge product. Yet, we
do not identify dxj with ej as some authors do. The elements ej are imaginary
units and so symbolic constants, while the elements dxj are the differentials of
the real coordinates x1, . . . , xm. The wedge notation will be used only for Clifford
numbers, not for the differential forms dx1, . . . , dxm. However, we may use it for
vector differentials (see below and the last section).

The vector variable x =
∑m

j=1 xjej can be seen as a R1
m-valued function. Its

differential, called vector differential is given by dx =
∑m

j=1 ejdxj . Combining the
Clifford product and the differential form product, we have that

(dx)2 =

m∑
j,�

dxjejdx�e� = 2

m∑
j<�

dxjdx�eje� = dx ∧ dx = [dx2]2,

and, more in general,

(dx)k = k!
∑
|A|=k

dxAeA = dx ∧ · · · ∧ dx = [dxk]k.

In particular

dxm

m!
= dx1 . . . dxme1 . . . em = V (dx)eM ,

dxm−1

(m− 1)!
=

m∑
j=1

dxM\{j}eM\{j} = −
m∑
j=1

ej(−1)j−1dxM\{j}eM = −σ(dx)eM

where V (dx) denotes the Euclidean volume form and

σ(dx) =

m∑
j=1

(−1)j−1ej dx1 . . . d̂xj . . . dxm

is called σ-form.

Let f, g : Ω→ Cm, then

d(f σ g) =

m∑
j=1

∂xj (f ej g) dx1 . . . dxm

= (ḟ ∂̇xg + f ∂̇xġ)V (dx).

Hence, for a compact subset C ⊂ Ω with nonempty interior and with smooth
boundary, we have (see [1, 10]):

Theorem 5.3 (Cauchy–Borel–Pompeiu). Let Ω ⊆ Rm be an open set and f, g :
Ω→ Cm. Let C ⊂ Ω with nonempty interior and with smooth boundary. Then∫

∂C

d(f σ g) =

∫
C

(ḟ ∂̇xg + f ∂̇xġ)V (dx).
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We are now going to generalize this result to smooth k-surfaces C ∩Σ where,
as before, Σ is the infinitely differentiable image of a map u = (u1, . . . , um) →
x(u) ∈ Σ.

First of all, we have that for x ∈ Σ:

dx =

k∑
j=1

duj ∂uj (x) = ∂ujx duj ,

dx2 =
∑
j<�

(∂ujx∂u�
x− ∂u�

x∂ujx)duj du�

= 2
∑
j<�

∂x

∂uj
∧ ∂x

∂u�
dujdu�

dx�

�!
=

∑
|A|=�

∂x

∂uj1

∧ · · · ∧ ∂x

∂uj�

duj1 . . . duj� (5.1)

and eventually

dxk

k!
=

∂x

∂u1
∧ · · · ∧ ∂x

∂uk
du1 . . . duk (5.2)

is the oriented k-vector-valued surface element on Σ. All these surface forms are
coordinate-independent.

We now prove the following crucial result, see also [10]:

Lemma 5.4. We have the formal identity

d
dxk−1

(k − 1)!
= −∂x ·

dxk

k!
.

Proof. We have the following chain of equalities

−∂x ·
dxk

k!
= − 1

2

(
∂x

dxk

k!
+ (−1)k−1 dx

k

k!
∂x

)
= − 1

2

(
{∂x, dx}

dxk−1

k!
− dx{∂x, dx}

dxk−2

k!
+ · · ·

· · ·+ (−1)k−1 dx
k−1

k!
{∂x, dx} )

= − 1

2
{∂x, dx}

dxk−1

(k − 1)!

and clearly {∂x, dx} = −2d. �
Theorem 5.5 (Stokes). Let Σ be a smooth k-surface, let C be a compact set with
non empty interior whose boundary ∂C is a smooth (n− 1)-surface, (so C ∩ Σ is
a compact set). Let f, g be Cm-valued smooth functions on Σ. Then∫

∂C∩Σ

f
dxk−1

(k − 1)!
g = −

∫
C∩Σ

(
ḟ ∂̇x ·

dxk

k!
g + f ∂̇x ·

dxk

k!
ġ

)
.
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Now we have to characterize the restriction to Σ of ∂x · dx
k

k! . We already know,
see (5.2), that

dxk

k!
= T(x)V (du1, . . . , duk),

where T(x) is the unit k-blade tangent to Σ at the point x and V (du1, . . . , duk) is
the Euclidean volume form. Let p ∈ Σ and consider an orthonormal basis ε1, . . . , εk
of k-planes tangent to Σ at the point p. Assume that the orthonormal basis has
the same orientation as the coordinate frame u1, . . . , uk. Then

T = ε1 . . . εk = ω
∂x

∂u1
∧ . . . ∧ ∂x

∂uk

where ω is a positive weight, namely a function with strictly positive real values.
Let ν1, . . . , νm−k be the remaining (m− k) unit vectors such that

(ε1, . . . , εk; ν1, . . . , νm−k)

is an orthonormal basis of Rm. Then

∂x = ∂x‖ + ∂x⊥

∂x‖ =

k∑
j=1

εj〈εj , ∂x〉

∂x⊥ =

m−k∑
j=1

νj〈νj , ∂x〉

so that after restriction to Σ we have

∂x ·
dxk

k!
= ∂x‖

dxk

k!
= (−1)k−1 dx

k

k!
∂x‖.

We then have (compare with [10]):

Theorem 5.6 (Cauchy). Let Σ be a smooth k-surface, let C be a compact set with
non empty interior whose boundary ∂C is a smooth (n − 1)-surface. Let f, g be
Cm-valued smooth functions on Σ. Then∫

∂C∩Σ

f
dxk−1

(k − 1)!
g = −

∫
C∩Σ

(f∂x‖)
dxk

k!
g + (−1)k

∫
C∩Σ

f
dxk

k!
(∂x‖g).

6. Winding numbers from monogenic functions

Let us recall that the Cauchy kernel for monogenic functions is

E(x) = − 1

Am

x

|x|m , Am =
2πn/2

Γ(n/2)

The function E(x) is both left and right monogenic in Rm \ {0} and takes values
in the space of 1-vectors R1

m. We also have the validity of the following equalities

∂xE(x) = E(x)∂x = δ(x) = δ(x1) . . . δ(xm)
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which hold in the distributional sense, see also [3]. Hence, we also have that, in
view of Lemma 5.4:

d

(
E(x)

dxm−1

(m− 1)!

)
= −Ė(x)∂̇x ·

dxm

m!

= −(E(x)∂x)
dxm

m!

= −δ(x)dx
m

m!
,

whereby as before dxm

m! = dx1 . . . dxmeM . We are now going to consider two sets of
coordinates x1, . . . , xm, and u1, . . . , um and the corresponding differentials. Then,
by translation, we have that

∂xE(x − u) = E(x− u)∂x = δ(x− u)

= δ(x1 − u1) . . . δ(xm − um)

= −∂uE(x− u) = −E(x− u)∂u.

Now, by replacing also the vector differential

dx→ dy = d(x− u) = dx− du, where y = x− u,

we still have that

dyE(y)
dym−1

(m− 1)!
= −δ(y)

dym

m!
,

where dy =
∑m

j=1 dyj∂yj =
∑m

j=1(dxj − duj)∂yj and also

∂yjE(y) = ∂xjE(x − u) = −∂ujE(x− u).

Hence dy = dx + du and the above identity may be rewritten as

(dx + du)E(x − u)
(dx − du)m−1

(m− 1)!
= −δ(x− u)

(dx − du)m

m!
(6.1)

where

(dx− du)m

m!
= (dx1 − du1) . . . (dxm − dum)eM =

m∑
k=0

Vk(dx, du)eM

and (see also [11])

Vk(dx, du) = (−1)k
∑
|A|=k

sgnAduA dxM\A,

duA = duα1 . . . duαk
, A = {α1 . . . αk}, α1 < · · · < αk

dxM\A = dxβ1 . . . dxβm−k
, M \A = {β1 . . . βm−k}, β1 < · · · < βm−k
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and sgnA denotes the signature of the permutation (α1, . . . , αk, β1, . . . , βm−k) with
respect to (1, . . . ,m). This can also be obtained as follows:

dx · du = [dx du]0 = −
m∑
j=1

dxj duj

dx ∧ du = [dx du]2 =
1

2
(dx du+ du dx) = du ∧ dx.

So, in general, we have that

(dx− du)k

k!
=

[(dx− du)k]k
k!

=
(dx− du) ∧ · · · ∧ (dx− du)

k!

=

k∑
�=0

(−1)�
(
k

�

)
[du� dxk−�]k

k!

=

k∑
�=0

(−1)� du
�

�!
∧ dxk−�

(k − �)!

is a k-vector. In particular:

Vk(dx, du)eM = (−1)k du
k

k!
∧ dxm−k

(m− k)!

while also

(dx− du)m−1

(m− 1)!
= −σ(dx− du)eM = −

m−1∑
k=0

σk(dx, du)

with

σk(dx, du) = (−1)k+1 du
k

k!
∧ dxm−k−1

(m− k − 1)!
.

Thus we arrive at the fundamental identity contained in the following result:

Theorem 6.1. For every k = 0, . . . ,m the following identity holds:

dx

[
E(x− u)

duk

k!
∧ dxm−k−1

(m− k − 1)!

]
= du

[
E(x− u)

duk−1

(k − 1)!
∧ dxm−k

(m− k)!

]
− δ(x− u)

duk

k!
∧ dxm−k

(m− k)!
.

Proof. The result follows by identifying differential forms with same degree in
du1, . . . , dum within the formula (6.1). �

Let Ck be a k-chain in Rm that can be realized as a compact subset Ck with
nonempty interior of an oriented infinitely differentiable surface of dimension k
(with respect to the relative topology).
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Definition 6.2. The indicatrix I(Ck)(x) of the k-chain Ck in Rm is the (m−k−1)-
form

I(Ck)(x) =

∫
u∈Ck

E(x − u)
duk

k!
∧ dxm−k−1

(m− k − 1)!
.

The indicatrix is an (m − k − 1)-form with left monogenic component. The
above theorem clearly leads to the following result (compare with the result in [9]):

Theorem 6.3. Let ∂Ck be the boundary of Ck with proper orientation, then

(−1)kdI(Ck)(x) = I(∂Ck)(x)−
∫
u∈Ck

δ(x− u)
duk

k!
∧ dxm−k

(m− k)!
.

Proof. The result follows from Theorem 6.1 by integrating with respect to∫
u∈Ck

·

The factor (−1)k in front arises because of the anti-commutativity:∫
vj

· dxj = −dxj

∫
vj

·

between integral operators and differentials. �

Remark 6.4. The second term is a distributional (m− k)-form given by

−
[
Δ(Ck)(x)

dxm−k

(m− k)!

]
m

= (−1)k(m−k)+1

[
dxm−k

(m− k)!
Δ(Ck)(x)

]
m

where Δ(Ck)(x) denotes the distribution supported by Ck defined as

Δ(Ck)(x) =

∫
u∈Ck

δ(x− u)
duk

k!
.

Corollary 6.5. Let ∂Ck = 0, i.e., let Ck be a k-cycle. Then

(−1)kdI(Ck)(x) = −(−1)k(m−k) dxm−k

(m− k)!
∧Δ(Ck)(x),

which vanishes in Rm \ Ck.

Now consider a k-cycle Ck and let Cm−k be an infinitely differentiable (m−k)-
chain with infinitely differentiable boundary ∂Cm−k ⊂ Rm \Ck. We choose Cm−k

such that it intersect generically Ck in finitely many points. Then, in view of
Stokes’ formula and using the previous corollary, we have∫

∂Cm−k

I(Ck)(x) =

∫
Cm−k

dI(Ck)(x)

= −(−1)k(m−k−1)

∫
Cm−k

dxm−k

(m− k)!
∧Δ(Ck)(x).
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Theorem 6.6. Under the above assumptions∫
Cm−k

I(Ck)(x) = −(−1)kInt(Ck, Cm−k)eM ,

where Int(Ck, Cm−k) is the intersection number of Ck with respect to Cm−k in-
side Rm.

We will show the result just in one case. The general result follows from
homological arguments. First we note that all the above results extend to the
case where Ck is an unbounded chain or cycle, as long as all the needed integrals
converge. Let us consider the case where Ck = Wk, Wk being the oriented k-space
with coordinates u1, . . . , uk. In this case we have

I(Wk) =

∫
um∈R

. . .

∫
u1∈R

E(x− u)dui . . . duk

(
e1 . . . ek ∧

dxm−k−1

(m− k − 1)!

)
= − 1

Am

x⊥
|x⊥|m−k

(
e1 . . . ek ∧

dxm−k−1
⊥

(m− k − 1)!

)
where x⊥ =

∑m
j=k+1 xjej , dx⊥ =

∑m
j=k+1 dxjej , and therefore by Lemma 5.4

dI(Wk)(x) =
1

Am−k

ẋ⊥
|x⊥|m−k

e1 . . . ek

(
∂̇x⊥dxk+1 . . . dxmek+1 . . . em

)
= −(−1)kδ(x⊥)dxk+1 . . . dxmeM .

So if Cm−k = B(1) ∩ Wm−k, Wm−k being the (m − k)-space with coordinates
xk+1, . . . , xm, we obtain that ∂Cm−k = Sm−k−1, the unit sphere in Wm−k and∫

Sm−k−1

I(Wk) =

∫
|x⊥|<1

−(−1)kδ(x⊥)dxk+1 . . . dxmeM

= −(−1)keM
= −(−1)kInt(Wk,Wm−k)eM .

In general, we have the following:

Definition 6.7. The intersection number Int(Ck, Cm−k) is defined as∑
p∈Ck∩Cm−k

Int(TpCk, TpCm−k),

where TpCk, TpCm−k denote the oriented tangent spaces to Ck and Cm−k at the
point p, respectively, and where

Int(TpCk, TpCm−k) = sgndetG,

where G ∈ GL(m,R) is the matrix of a linear transformation mappingWk → TpCk

and Wm−k → TpCm−k.

Definition 6.8. The intersection number Int(TpCk, TpCm−k) is also called the wind-
ing number of ∂Cm−k around Ck.
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Remark 6.9. At a given point p, the number Int(TpCk, TpCm−k) gives the signature
of the orientation. The sum

∑
p∈Ck∩Cm−k

Int(TpCk, TpCm−k) is equal to the total

intersection number between Ck and Cm−k; it is also equal to the number of times
that ∂Cm−k rotates around Ck.

Proof of the theorem. As I(Ck) is closed in Rm \Ck, we have that whenever C
′
m−k

is an (m− k)-chain for which ∂C′
m−k is homologous to ∂Cm−k in Rm \ Ck, then∫

∂C′
m−k

I(Ck)(x) =

∫
∂Cm−k

I(Ck)(x).

Moreover, C′
m−k may be chosen to be a sum of unit discs. Due to the symmetry,

one may also change Ck to a homologous cycle C′
k inside Rm \ ∂C′

m−k and choose
C′

k to be a sum of spheres (or even oriented k-spaces). This reduces to the general
case to a k-space Wk and a disc B(1) ∩Wm−k for which we have the result. �

Remark 6.10. For the indicatrix of Ck we have the expressions

I(Ck)(x) =

∫
u∈Ck

E(x− u)
duk

k!
∧ dxm−k−1

(m− k − 1)!

from which we get∫
x∈∂Cm−k

I(Ck)(x) =

[∫
x∈∂Cm−k

∫
u∈Ck

E(x− u)
duk

k!

dxm−k−1

(m− k − 1)!

]
m

= (−1)(k+1)(m−k−1)

[∫
x∈∂Cm−k

dxm−k−1

(m− k − 1)!

∫
u∈Ck

E(x − u)
duk

k!

]
m

= ±
[∫

∂Cm−k

dxm−k−1

(m− k − 1)!
M(Ck)(x)

]
m

whereby M(Ck) is a left monogenic function in Rm \ Ck given by

M(Ck)(x) =

∫
u∈Ck

E(x− u)
duk

k!
= [M(Ck)]k+1 + [M(Ck)]k−1

and in fact∫
x∈∂Cm−k

I(Ck)(x) = (−1)(k+1)(m−k−1)

∫
x∈Cm−k

dxm−k−1

(m− k − 1)!
∧ [M(Ck)]k+1.
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1. Introduction

Morphological calculus in an extension of the calculus of natural numbers 1, 2, 3 etc.
whereby all sorts of geometrical objects are seen as generalized natural numbers.
To make a list, we have

• the natural numbers 1, 2, 3, . . .
• the real line R
• the set of natural numbers N
• Cartesian spaces R2,R3, . . .
• projective spaces RPn,CPn, . . .
• spheres Sn−1,CSn−1

• groups like SO(n), U(n), GL(n,R), . . .
• Graßmann manifold Gn,k(R)

and other groups and homogeneous spaces. In fact any kind of geometrical objects
can be added to the list.

The rules for morphological calculus extend the rules for calculating with
natural numbers. We have

1. The addition t1 + t2 + · · ·+ tk

The terms t1, . . . , tk are supposed to represent morphological objects and the ad-
dition represents any object that can be formed by making a disjoint union of the
objects t1, . . . , tk and glueing them together when possible. This glueing process
is itself not part of the calculus so there in no unique way to do it and one also
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needn’t do it; one can simply put the objects t1, . . . , tk in a list, as the language
of calculus suggests.

For example 1 + 2 + 3 + 4 can be visualized as a triangle of 10 points: 1 +
(1 + 1) + (1 + 1 + 1) + (1 + 1 + 1 + 1).

The terms t1, . . . , tk in an addition may simply be names for morphological
objects but, they also could be expressions between brackets like in:

5 + (3 + 1) + 2 + (1 + 2 + 7).

The material between brackets is interpreted as a single morphological object.

2. The subtraction t1 − t2

This means that the object t2 is deleted from the object t1. For example 3 − 2
means to delete 2 points from a set of 3 points or R − 1 means to delete a point
from a line. The subtraction represents a problem: we have to look for an object
such that t1 − t2 = c or such that t1 can be written as c+ t2. There may not be a
morphologically acceptable solution for this. For example

0 = 1− 1

means to create a point 1 and then to wipe if off.
Also negative numbers like −1,−2, . . . are no objects of morphological calcu-

lus although they may be meaningful as actions: −1 = to delete one point, −2 =
to delete two points, etc.

The subtraction is presented as a binary operation t1− t2 here, but of course
one may also consider an extended expression like 7 − 3 − 2 + 4 − 1, as long as
things add up to a morphological object.

3. The multiplication v ·w
For the natural numbers, the multiplication is a notation for repeated addition, so
for example

• 1 · a = a
• 2 · a = a+ a
• 3 · a = a+ a+ a

etc. In other words, the meaning of multiplication is in fact determined by the rule
of distributivity

(t1 + t2 + · · ·+ tk) · w = t1 · w + t2 · w + · · ·+ tk · w.
In morphological calculus, the product v · w means that every point of the object
v is replaced by a copy of w and then all those copies of w are possibly glued
together in some way that is not specified by the language of calculus.

Typical examples are: the Cartesian product v×w, a fibre bundle E = M ·F
with base space M and fibre F.

One can also consider long multiplication like v1·v2 · · · vk that may correspond
to iterated fibre bundles. Note that the fibre bundle interpretation is only an
option; it isn’t a must and it will not always be available.
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4. The division v/w

Like the subtraction, also the division is seen as a problem: to find a morphological
object c for which v = c · w. Any good solution to this will be denoted as v/w
and again there may not always be a solution. For example rational numbers
like 1/2, 1/3, 4/7 etc., are no morphological objects even though one may write
7/3 = 6/3 + 1/3 = 2 + 1/3.

Hence the language of morphological calculus is similar to that of natural
numbers. There are however some aspects of language of calculus that cause dilem-
mas and also need more explanation

1. Names, definitions, substitutions

Every morphological object has a name attached to it. For example 1, 2, 3, . . . the
natural members, R the real line and so on. Then every name is given a definition
or several definitions of the form

Name = Expression

the first main examples being the definitions of the natural numbers

2 = 1 + 1, 3 = 1 + 1 + 1, 4 = 1 + 1 + 1 + 1

and so on.

Such definitions may come from geometry, but they are algebraic expression
of some geometrical decomposition of an object, i.e., geometrical knowledge can
only enter the calculus via algebraic relations of the form Name = Expression.

When a name N appears somewhere in an expression E, i.e., E = E(N)
and when one has a definition N = Expr.; then one may perform the substitution
E(N) = E((Expr.)), i.e., replacing the name N by the expression (Expr.) between
brackets. Later on one may investigate how and when brackets may be removed.
We do not use brackets in a redundant manner like, e.g., (7) is not used, (Name)
is not used, ((Expr.)) is not used, Name = (Expr.) is not used.

Example (The Fibonacci trees). These morphological structures are defined by

f1, f2 = 1, fn = fn−1 + fn−2

leading to the solutions

f2 = 1 + 1

f3 = (1 + 1) + 1

f4 = ((1 + 1) + 1) + (1 + 1)

f5 = (((1 + 1) + 1) + (1 + 1)) + ((1 + 1) + 1),

so what appears here are not just the Fibonacci numbers 2, 3, 5, 8, but the tree-
like structures that give rise to these numbers if one removes the brackets. This
tree-like structure is a typical example of a morphological object.
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2. Commutativity, associativity

In morphological calculus the addition t1 + · · ·+ tk is in the first place a listing of
objects; it is not commutative. Also within an addition one may consider expres-
sions between brackets and since brackets refer to morphological objects one can’t
just ignore them; the addition is not just associative. On the other hand, for the
natural numbers the addition also refers to the total quantity or sum. For example
the total quantity of 5 + (3 + 1) + 2 may be evaluated as:

5 + (3 + 1) + 2 = (1 + 1 + 1 + 1 + 1) + ((1 + 1 + 1) + 1) + (1 + 1)

= (1 + 1 + 1 + 1 + 1) + (1 + 1 + 1 + 1) + (1 + 1)

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= 11,

so it requires substitutions 5→ (1 + 1 + 1 + 1 + 1) etc. and deleting the brackets.
So the total quantity is evaluated within the language of calculus and not in some
outside theory. It corresponds to a morphological process in which the morpho-
logical structure is constantly changed to the extent that in the final evaluation
of the quantity, the identity of the numbers 5, 3, . . . as well as their place in the
context is lost. Commutativity, substitutions and putting and deleting brackets
are guaranteed in so far that the total quantity is preserved, but they are also
mutations. For more general morphological objects, such as the line R the notion
of quantity is not defined and we will illustrate that, if it were defined it wouldn’t
correspond to the cardinality of a set.

Yet we calculate as if these objects would have a form of quantity and so, in
particular, terms in an addition may be commuted, substituted and brackets may
be put or deleted.

For the multiplication v · w, commutativity v · w = w · v is even less obvious
especially if one thinks of a fibre bundle E = M · F . But again these geometrical
interpretations happen outside morphological calculus and the total quantity of
v · w is the same as that of w · v. Moreover, to be able to calculate one has to be
able to commute factors in a product, even though this deforms the morphological
structure. Also the law of distributivity

(t1 + · · ·+ tk) · w = t1 · w + · · ·+ tk · w
is essential to give a meaning to the product while as the same time it is a defor-
mation.

So, to conclude, the morphological universe consists of the totality of all
meaningful algebraic expressions based on a set of names for morphological objects
together with their definitions within calculus. The calculus rules, leading to the
relations A = B are the same as for the natural numbers and the relations A = B
are interpreted at the same time as morphological deformation and as preservation
of quantity, whatever meaning this may have.
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2. The real line

The real line R is in mathematics defined as the set of all real numbers, represented
as points on that line. It is hence an infinite point set and its cardinality c is called
the continuum; it is larger than the cardinality ℵ0 of the natural numbers.

The real line decomposes as

R = R− ∪ {0} ∪ R+

with

R− = ]−∞, 0[ : the half-line of negative numbers.

R+ = ]0,+∞[ : the half-line of positive numbers.

So R+ and R− are open intervals that are closed off and glued together by the
point {0} to form the real line.

Morphologically we write this disjoint union as

R = R− + 1 + R+

whereby “1” represents the middle point {0}.
Both R+ and R− are half-lines having “the same shape”, so we identify

R− = R+, leading to the first definition

R = R+ + 1 + R+,

which, after commuting terms, leads to

R = 2R+ + 1.

Next one may argue that all open intervals ]a, b[ have “the same shape”, so
they are all copies of R and, in particular, we may identify

R+ = R,

leading to the relations

R = R+ 1 + R = 2R+ 1.

This may be interpreted as the way to produce an open interval or curve ]a, c[
by taking an open interval ]a, b[, glue to it a point {b} and then glue to the next
open interval or curve ]b, c[.

The question now is: what is the quantity of R?
If it is the cardinality “c” then one should identify R + 1 with R but R + 1

would be a semi-interval like ]0, 1], open from one side and closed from the other,
which is not the same as ]0, 1[.

Next, the relation R = R+ 1 + R indicates the fact that R contains at least
one point and, by iteration

R = R+ 1 + R = (R+ 1 + R) + 1 + (R+ 1 + R) = · · ·
we obtain 3 points, 7 points, 15 points etc., any finite number of points. So the
morphological version of R seems to house infinity many points.
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Now let us consider the relation

R = R+ 1 + R = 2R+ 1

as an equation. Then by subtracting R from both sides we get

R+ 1 = 0

and by subtracting 1 we get

R = 0− 1 = −1,
so that the total quantity of R should be −1.

This clearly conflicts with the idea of R being a set of points; the morpho-
logical line is hence not merely a set of points but rather a brand new object that
doesn’t quantify as a pointset. Of course one could argue that also

infinity = 2infinity + 1,

but infinity is a too trivial and vague number to work with for it absorbs everything.
There is an interesting interpretation for R = −1.
Every manifold or surface of finite dimension may be represented by a cell

complex, which we may represent by a polynomial

aoR
n + a1R

n−1 + · · ·+ an, a0 ∈ N, a1, . . . , an ∈ N ∪ {0}.
By making the identification R = −1 we obtain

e{M} = a0(−1)n + a1(−1)n−1 + · · ·+ an,

which is the Euler characteristic e{M} of manifold M .
The Euler number e{M} is a topological invariant and for a given manifold

M it is independent of the cell decomposition of that manifold. To see this, note
that for any two cell decompositions of M there exists a kind cell decomposition
that refines both of them and so it suffices to consider the caseM = Rn. Moreover,
every cell decomposition of Rn may be obtained from simple cell decompositions of
the form Rj = 2Rj +Rj−1, which proves the invariance of e{M} morphologically.

The fact that morphological calculus respects the Euler characteristic is like
a corner stone (it is the final invariant that is preserved!). But as it is now, mor-
phological calculus is reduced to the calculus of the integers Z and a point 1 is
identified with a closed interval R+ 2, a plane R2 is identified with a point 1.

Hence, the idea of a line as an infinite point set is completely lost and also
the dimension of an object is not preserved. As a result we have the identification
R + 1 = 0 between a semi-interval (or circle) R + 1 and the number zero and, in
fact R = −1 between a line R and the number −1, while numbers 0 and −1 are
no point sets and hence no objects.

To overcome this collapse of the notion of dimension we are going to introduce
the following assumption.

Axiom 2.1. Morphological calculations are only granted if all the algebraic expres-
sions and operations make sense in terms of geometrical objects.
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Hence, in particular, number zero 0 and negative numbers −1,−2, etc. are
hereby excluded or at least pushed to the background. Moreover, a relation like

R = R+ 1 + R = 2R+ 1

does not automatically allow one to solve it like an equation; one could also simply
interpret it by stating that one is allowed to replace R by 2R+1 or vice-versa within
calculations and nothing more. Hence, it does not automatically imply, e.g., that
R + 1 = 0 or even R − 1 ≡ 2R, although this last relation R − 1 = 2R makes
morphological sense. This now leads to the following result.

Theorem 2.2 (Morphological Stability). Under the assumption of the relation R =
2R+ 1, every cell complex a0Rn + a1Rn−1 + · · ·+ a0 is equivalent to either

aRn, a ∈ N or Rn + bRn−1, b ∈ N,

no further identifications being possible.

Proof. The statement holds trivially for n = 0. For n = 1, a > 1 and b > 0 we
clearly have

aR+ b = (a− 2)R+ 2R+ (b− 1) + 1 = (a− 1)R+ b− 1

so we are reduced to either b = 0 or a = 1.

Next, assuming the property for n− 1, n > 1, we may reduce any cell com-
plex to

aRn + bRn−1 + cRn−2.

If c = 0 we may reason as in the case n = 1 to arrive at the final form aRn

or Rn + bRn−1. If c > 0 we may write aRn + bRn−1 + cRn−2 = (a − 1)Rn +(
2Rn + Rn−1

)
+ bRn−1 + cRn−2 = (a + 1)Rn + (b + 1)Rn−1 + cRn−2 and repeat

this idea until b > 1. Then one may reduce using 2R+1 = R : aRn+bRn−1+cRn =
aRn + (b− 1)Rn−1 + (c− 1)Rn−2 and so on, until the final form is reached. �

Note that this theorem guarantees us that in the worst case, at least the

dimension = n

as well as the

Euler characteristic = (−1)na or (−1)n + (−1)n−1b

are being preserved during morphological calculations; it is a second approximation
for any possible notion of morphological quantity (the first one being just the Euler
characteristic).

But this calculus is still too poor and to be able to evaluate the quantity of R
we have to ignore the distinction between a line R and a half-line R+. This is again
a dilemma, similar the once mentioned in introduction concerning commutativity
and use of brackets. There are two options:
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1. The “canonical” option. Hereby we assume as definition for R the relation

R = R+ + 1 + R+ = 2R+ + 1

and consider the identification R+ = R as a form of decay. So the relation
R = 2R+ 1 is suspended in what we regard as “the canonical style”.

This style of calculating is on the other hand flexible with respect to
commutativity and the use of brackets. Its main purpose is (not exclusively):
Morphological analysis: to analyse geometrical objects (surfaces, manifolds)
by decomposing them into parts (or other ways) and to express this knowledge
in calculus language in order to arrive at morphological definitions.

2. The “formal” option. Hereby we consider morphological calculus as a formed
language in which the order of terms in an addition and the use of brackets
is not ignored. For the morphological line we have two definitions:

R = R+ 1 + R or R = R+ (R+ 1).

Its main purpose is (not exclusively):
Morphological synthesis: to construct a geometrical interpretation for

an algebraic expression in morphological calculus.

In this paper we mostly use the canonical style. Our main interest is to study
manifolds and try to understand their morphological quantity, whatever that may
mean. The formal style will be discussed briefly in the last section.

3. Cartesian space, spheres, projective spaces

The Cartesian plane is defined as the product R2 = R · R, using the relation
R = 2R+ + 1 we thus arrive at

R2 = (2R+ + 1)2 = 4R2
+ + 4R+ + 1,

decomposing the plane into 4 quadrants R2
+, 4 half-planes R+ and one point 1 (the

origin).
Similarly the Cartesian n-space is defined as product

Rn = R · · · · ·R = R · Rn−1

and we have its decomposition into “octants”:

Rn = (2R+ + 1)
n
=

n∑
j=0

(
n

j

)
2jRj

+.

To define the sphere Sn−1 we make the following analysis: for a vector x ∈ Rn with

x �= 0 we have the polar decomposition x = rω, r = |x| ∈ R+, ω =
x

|x| ∈ Sn−1.

In morphological calculus language we write

Rn − 1 = Sn−1R+,
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leading to the morphological definition of Sn−1:

Sn−1 =
Rn − 1

R+
.

Now from R = 2R+ + 1 we obtain that

R+ =
R− 1

2
,

a line without a point indeed gives 2 half-lines.
Hence we obtain a quantity formula for Sn−1:

Sn−1 = 2
Rn − 1

R− 1
= 2Rn−1 + 2Rn−2 + · · ·+ 2R+ 2.

In particular, a circle is given by

S1 = 2R+ 2: two semi-circles and two points and a 2-sphere is given by

S2 = 2R2 + 2R+ 2 = 2R2 + S1,

two hemi-spheres and a circle (equator). Also

S2 = S1R+ 2, a “cylinder S1R” and two poles “2”.

Using here R = 2R+ + 1 we obtain

S2 = 2 (2R+ + 1)
2
+ 2(2R+ + 1) + 2 = 8R2

+ + 12R+ + 6,

which may be interpreted as an octahedron whereby

R2
+ translates as a triangle,

R+ translates as a quarter circle or short interval.

Other regular polyhedra are harder to obtain, yet they are obtainable by transfor-
mations of the form R = 2R+1, R2 = 2R2+R, which as we know are questionable.
In fact, every cell complex aR2 + bR + c that corresponds to an embedded con-
nected 2-manifold in R3 has Euler characteristic a− b+ c = 2(1− g), g being the
genus or number of holes, a number which characterizes the manifold. Hence, for
2-manifolds the relation R = 2R+ 1 is not such a destructive deformation.

However, this also means that, e.g., a dodecahedron will be identified with
12R2 + 30R + 20 and hence a solid pentagon is identified with a square R2, an
identification which is only topologically true.

For general spheres we have the recursion formula

Sn−1 = 2Rn−1 + Sn−2: two hemi-spheres and an equator,

as well as the “polar coordinate” formula

Sn−1 = Sn−2R+ 2: a cylinder and 2 poles.

These formula are special cases of the following general method for introducing
polar coordinates on Sn−1.

Let ω ∈ Sn−1 and consider the decomposition Rn = Rp×Rq, p+q = n. Then
we may write

ω = cos θω1 + sin θω2, θ =
[
0,

π

2

]
, ω1 ∈ Sp−1, ω2 ∈ Sq−1.
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There are three cases:

θ = 0 : ω = ω1 ∈ Sp−1, θ =
π

2
: ω = ω2 ∈ Sq−1,

θ ∈
]
0,

π

2

[
: ω = cos θω1 + sin θω2 ∼ (ω1, ω2) ∈ Sp−1 × Sq−1.

In morphological calculus this situation is expressed as follows:

Rn − 1 = (Rp − 1) (Rq − 1) + (Rp − 1) + (Rq − 1)

or

Sn−1R+ =
(
Sp−1R+

) (
Sq−1R+

)
+
(
Sp−1R+

)
+
(
Sq−1R+

)
leading to the addition formula for spheres:

Sn−1 = Sp−1 · Sq−1 · R+ + Sp−1 + Sq−1.

Notice that also here R+ is interpreted as the quarter circle (small interval)
θ ∈

]
0, π

2

[
, while the full line R would rather correspond to a semi-circle θ ∈ ]0, π[.

The addition formula also leads to:

Sn−1 = Sp−1
(
Sq−1R+ + 1

)
+ Sq−1

= Sp−1Rq + Sq−1,

which generalizes the recursion formula and the “polar coordinate” formula men-
tioned earlier.

Of particular interest is the odd-dimensional sphere S2n−1 where we can take
p = q = n.

This leads to the “Hopf factorization formula”

S2n−1 = Sn−1Rn + Sn−1 or S2n−1 = (Rn + 1)Sn−1.

In particular we have the Hopf fibrations

S3 = S2S1, S7 = S4S3

that are well known and follow from complex resp. quaternionic projective geom-
etry. They can be seen as interpretations of the Hopf factorization

S3 =
(
R2 + 1

)
S1, S7 =

(
R4 + 1

)
S3,

whereby the spheres S2 resp. S4 are identified with
(
R2 + 1

)
resp.

(
R4 + 1

)
. But of

course the Hopf fibrations are by no means proved or even implied by morphological
calculus.

In general, the sphere Sn−1 can be mapped onto Rn−1 by stereographic pro-
jection. Hereby one takes line from the south pole w = (0, . . . , 0,−1) to general
point w, denoted by L(w) and the stereographic projection st(w) is the intersection
of L(w) with plane xn = 1 (the tangent plane to the north pole (0, . . . , 0,+1)).

This leads to the identification between Sn−1 and Rn−1 ∪ {∞}. In morpho-
logical calculus one might hence think of identification Sn−1 = Rn−1+1. But that
would lead to the unwanted identification

2R2 + 2R+ 2 = R2 + 1,
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that would again correspond to R = 2R+ 1 via:

R2 + 1 = (2R+ 1)R+ 1 = 2R2 + R+ 1 = 2R2 + (2R+ 1) + 1 = 2R2 + 2R+ 2.

In morphological calculus we introduce a kind of stereographic sphere or
“Poincaré sphere” by

Sn = Rn + 1,

leading to the recursion formula

Sn = (2R+ + 1)Rn−1 + 1 = 2Rn−1R+ + Sn−1

and leading to the total quantity (whatever that may mean)

Sn = 2Rn−1R+ + 2Rn−2R+ + · · ·+ 2R+ + 2.

Notice hence that the identification R+ = R would lead to Sn = Sn or
S2 = R2 +1 (a point and a square is a sphere). It is true that the only 2-manifold
interpretation for R2 + 1 is indeed a sphere. Also the Poincaré polynomial of the
sphere Sn is given by tn + 1, which corresponds to Rn + 1.

Recall that the Poincaré polynomial of a manifold M is defined as ant
n +

· · ·+ a0 with aj = dimHj , Hj leading the jth homology space of M .
It turns out that the Poincaré polynomial often appears as the morphological

quantity of an object, in particular for Rn itself and the sphere Sn. But for the
sphere Sn we obtain a “higher” morphological quantity: 2Rn + · · ·+ 2R+ 2 that
does not correspond to the Poincaré polynomial. The real projective space RPn

corresponds to the set of 1D subspaces of Rn+1, also defined as the set of vectors
(x1, . . . , xn+1) ∼ (λx1, . . . , λxn+1), λ �= 0.

In mathematics we write it as the quotient structure

RPn =
Rn+1\{0}
R\{0} .

This leads to the morphological definition

RPn =
Rn+1 − 1

R− 1
.

and to the formula for the quantity of RPn :

RPn = Rn + Rn−1 + · · ·+ R+ 1.

In this case the quantity polynomial corresponds to the Poincaré polynomial
for RPn : tn + · · ·+ t+ 1. It also leads to the recursion formula

RPn = Rn + RPn−1

in which “Rn” symbolizes the Affine subspace consisting of the points (x1, . . .,
xn, 1) while “RPn−1” stands for the plane at infinity: xn+1 = 0.

Of course we also have that

RPn =
Sn

S0
=

Sn

2

whereby S0 in the multiplicative group S0 = {−1, 1}.
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In particular the projective line is given by

RP1 = R+ 1

symbolizing R ∪ {∞} and it also represents the Poincaré circle

S1 = R+ 1 = S1/2,

S1 = 2R+ 2 being the standard circle.
The projective plane is given by

RP2 = R2 + R+ 1 = R2 + RP1 = (R+ 1)R+ 1,

whereby the object (R+ 1)R in this context corresponds to a Moebius band.
Just seen by itself, (R + 1)R could correspond to several things, including

any line bundle over the circle R + 1, i.e., either a cylinder or a Moebius band.
In geometry the Moebius band can be recognized by cutting it in half along the
center circle; if it was a cylinder, then the cut object would give 2 cylinders and if
it was a Moebius band then the cut object would be a single cylinder. Now, this
cutting procedure can be translated into morphological calculus as the subtraction

(R+ 1)R− (R+ 1) = (R+ 1)(R− 1) = R2 − 1

and R2 − 1 symbolizes a plane minus a point but also a single cylinder

R2 − 1 = S1R+ = (2R+ 2)R+,

here represented as a product of a circle 2R+2 (which has two glueing points and
twice the length of the original circle) with a half-line R+ (stretching from the
cutting point {0} to the boundary {∞}).

So this simple calculation symbolizes quite well the whole cutting experiment
and it illustrates us the object (R + 1)R as being a Moebius band. In general,
morphological objects are merely organized quantities that can have a number of
meanings called morphological synthesis. This synthesis takes place outside the
calculus but it can be guided by calculations that give the object an intrinsic
meaning. In the Moebius experiment we also see that the circle 2R + 2 and the
Poincaré circle R + 1 clearly play different roles like also the line R and the half-
line R+.

If we apply a similar experiment to the cylinders

(2R+ 2)R− (2R+ 2) = (2R+ 2)(R− 1) = 2S1R+

we obtain two cylinders. Of course one always calculates in a certain way and
that may force a certain interpretation; the language of calculus can be used as
an illustration but not as a real proof. In fact the language of calculus also has
to remain flexible enough but this flexibility is at the cost of the stability of the
morphological synthesis. For example we have

R2 − 1 = S1R+ = (2R+ 2)R+ = 2(R+ 1)R+ = 2S1R+

showing that distributivity results in the cutting and reglueing of one cylinder
S1R+ into two cylinders S1R+, half the size and with one single cutting edge R+.
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For the general projective space we have a kind of “Moebius factorization”

RPn = RPn−1 · R+ 1

whereby the Moebius cutting experiment is represented as

RPn−1 · R− RPn−1 = RPn−1(R− 1) = Rn − 1 = Sn−1R+,

also a kind of cylinder.

We now turn to complex projective spaces.
The complex numbers C are morphologically given by

C = R2

and this is all. Anything concerning
√
−1 = i exists outside the calculus. We also

have that
Cn =

(
R2

)n
= R2n.

Complex projective space CPn is defined as the set of equivalence classes of
relation

(z1, . . . , zn+1) ∈ Cn+1 \ {0} ∼ (λz1, . . . , λzn+1), λ ∈ C \ {0},
i.e., the quotient structure

CPn = Cn+1 \ {0}/C \ {0}.
Hence, in morphological calculus we have the definition

CPn =
Cn+1 − 1

C− 1

which immediately leads to the quantity

CPn = Cn + Cn+1 + · · ·+ 1 = R2n + R2n−2 + · · ·+ 1

that also corresponds to the Poincaré polynomial. The Euler number of CPn

equals n.
We also have that in real terms:

CPn−1 =
R2n − 1

R2 − 1
=

S2n−1

S1
,

leading to the CPn-factorization of S2n−1

S2n−1 = CPn−1 · S1,

which is the fibration obtained from the group structure (z1, . . . , zn) ∈ S2n−1 →(
eiθz1, . . . , e

iθzn
)
.

In particular we have that

CP1 = C+ 1 = R2 + 1 = S2

and the above fibration leads to the first Hopf fibration

S3 = S2 · S1.

Like in the real case one has the recursion formula

CPn = Cn + CPn−1



278 F. Sommen

and also the Moebius factorization

CPn = CPn−1 · C+ 1.

Hereby the complex line bundle CPn−1 · C reduces for n = 2 to

CP2 = S2 · C = (C+ 1)C

and it is a non-trivial plane bundle over the 2-sphere.
In fact also here we have “Moebius cutting experiment”

CP1 · C− CP1 = (C+ 1)(C− 1)) = C2 − 1 = R4 − 1 = S3R+.

showing that fibration S2(C− 1) is non-trivial: S3R+.
This remains true in general:

CPn−1 · C− CPn−1 = CPn−1(C− 1) = Cn − 1 = R2n − 1 = S2n−1 · R+.

The above may be repeated for the quaternions; we present the morphological
headlines:

We have

H = R4, Hn = (R4)n = R4n,

HPn =
Hn+1 − 1

H− 1
= Hn +Hn−1 + · · ·+ 1

= R4n + R4n−4 + · · ·+ 1 = Hn +HPn−1.

Also

HPn−1 =
R4n − 1

R4 − 1
=

S4n−1

S3

leading to the HPn-factorization (fibration)

S4n−1 = HPn−1 · S3,

which in particular for n = 2 leads to the second Hopf fibration

S7 = HP1 · S3 = (H+ 1)S3 = (R4 + 1)S3 = S4S3.

The Moebius factorization is given by

HPn − 1 = HPn−1 ·H
while we also have the Moebius cutting experiment:

HPn−1 ·H−HPn−1 = HPn−1 · (H − 1) = Hn − 1 = R4n − 1 = S4n−1 · R+.

But not every interesting quotient in calculus leads to a morphological synthe-
sis that produces a nice manifold. Yet these quotients are also interesting because
they say a lot about the meaning of morphological calculus and we call them
“phantom geometrical objects”.

Example (RP2n
h ).

RP2n
h =

R2n+1 + 1

R+ 1
= R2n − R2n−1 + · · · − R+ 1,

which we call the phantom (real) projective space of dimension 2n.
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The simplest case is
RP2

h = R2 − R+ 1,

with Euler characteristic 3. This would be one too high for a connected 2-manifold
and R2 − R + 1 corresponds to: take plane R2, delete line R and add point 1; it
makes sense as a weird object but not as a 2-manifold.

In fact one could say

R2 − R+ 1 = (2R+ + 1)R− R+ 1 = 2R+R+ 1,

two half-planes (or half-discs or triangles) glued together by a single point (a
butterfly).

Note that we also have that

RP2
h =

S3

S1
.

If we would now use R = 2R + 1 we could make the identification S3 = S3,
S1 = S1 and arrive at

S3

S1
=

S3

S1
= S2 = R2 + 1 (Hopf fibration)

and therefore
R2 − R+ 1 = R2 + 1.

This is total nonsense because this identification is even wrong on the level of
Euler numbers: 3 = 2.

The reason why such bad identification happens is because the Euler numbers
of S3, S3, S1, S1 are all equal to zero, so, on the level of Euler numbers:

S3

S1
=

0

0
&

S3

S1
=

0

0
,

so one would not even be allowed to consider the quotients S3/S1, S3/S1. But
that would also exclude CPn from the picture as well as the Hopf fibration, an
unpermitable exclusion. This is a sound reason why the relations R = 2R + 1 or
R+ = R or Sn = Sn must be forbidden: they simply spoil the calculus.

The general phantom projective space

RP2n
h = R2n − R2n−1 + · · · − R+ 1

surely makes sense as a geometrical object, but the corresponding quantity R2n−
R2n−1 + · · · −R+1 still has negative numbers as coefficients, so it is not yet fully
evaluated. This can be done by replacing R = 2R+ + 1 at suitable places, giving
rise to

R2n − R2n−1 + · · · − R+ 1 = 2R+R
2n−1 + 2R+R

2n−3 + · · ·+ 2R+R+ 1,

which also provides a synthesis for RP2n
h . Comparing R2n − R2n−1 + · · · − R + 1

with the Poincaré polynomial also suggests that some of the homology spaces of
RP2n

h would have negative dimension. But we also have that phenomena with the
object

R2 − 1 = (R− 1)(R+ 1) = 2R+R+ 2R+.
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Quantity simply doesn’t always have a positive evaluation as an addition of
powers Rs. This leads to

Definition 3.1. A morphological object is called integrable if it has an evaluation
of the form

F = a0R
n + a1R

n−1 + · · ·+ an, a0 ∈ N, a1, . . . , an ∈ N ∪ {0};
this polynomial is then called the “total quantity” or “integral”. The object F is
called semi-integrable if it has an evaluation as an addition of terms of the form
Rj

+R
k. Such an expression is not unique unless we require the power “j” of R+ to

be minimal, in which case the obtained expression is also called “total quantity”
or “integral”.

Note that not every object is semi-integrable; for example F = R − 2 is an
object and hence it has certain hidden quantity, but it cannot be evaluated as an
addition in terms of R and R+. One option would be to introduce new type of
line, e.g.,

R+ = 2R++ + 1,

but that would not lead to be more interesting calculus.

Notice that the phantom projective plane can also be interpreted as the result
of the cutting experiment

RP2n
h = R2n − R2n−1 + · · · − R+ 1

=
(
R2n + R2n−2 + · · ·+ 1

)
−
(
R2n−2 + · · ·+ 1

)
R

= CPn − CPn−1 · R.
We also have the phantom Moebius strip

RP2n
h − 1 = (R− 1)CPn−1 · R

and this time we have a Moebius “glueing experiment”

(R− 1)CPn−1 · R+ (R− 1)CPn−1

= CPn−1(R2 − 1) = R2n − 1 = S2n−1 · R+,

the same cylinder as we had earlier on.
Of course one may also consider complex and quaternionic phantom projec-

tive spaces:

CP2n
h =

C2n+1 + 1

C+ 1
= C2n − C2n−1 + · · · − C+ 1 = · · · ,

HP2n
h =

H2n+1 + 1

H + 1
= H2n −H2n−1 + · · · −H+ 1 = · · · .

The fact that the corresponding synthesis for phantom projective spaces does
not add up to a manifold implies that these quotients do not correspond to a
group action (or else the quotients would be homogeneous spaces). Indeed, the
denominators in the definition of the projective spaces are the multiplicative groups
R− 1,C− 1,H− 1 while for the phantom spaces we have the spheres S1 = R+ 1,
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S2 = C+1, S3 = H+1 which are non-groups leading to non-group actions. In fact
group actions can not be recognized within morphological calculus itself, only by
the outside interpretations. The consideration of phantom geometry also leads to
the next definition.

Definition 3.2. A morphological object is said to be of “integer type” if it has an
evaluation of the form

F = a0R
n + a1R

n−1 + · · ·+ an, a0 ∈ N, a1, . . . , an ∈ Z.

A semi-integrable object that is not of integer type is to said to be of “half-integer
type”. Other objects are “just another type”.

Notice that R−2 is of integer type but not semi-integrable while the building
blocks Rj

+R
k, j > 0 are semi integrable but not integer type: they are half-integer

type.
The cylinder (2R + 2)R+ = R2 − 1 is clearly of integer type but only semi-

integrable while the small cylinder (R + 1)R+ is only of half-integer type. This
example confirms that it is a good idea to keep two circles S1 = 2R+2, S1 = R+1
in use rather than deciding that 2R+2 = 2(R+1) is always a pair of circles. Note
that the object R+ − 1 is just another type while 1 − R isn’t even an object. So
we have a kind of hierarchy that is quantity based.

Example (Phantom fibrations). We already discussed the Hopf factorization

S2n−1 = (Rn + 1)Sn−1

which only for n = 2 and n = 4 leads to a true fibration: the Hopf fibrations

S3 = S2S1, S7 = S4S3.

These fibrations in fact correspond to projective geometry and the factors S1

and S3 are group actions.
In the other cases like, e.g.,

S5 = S3S2

we don’t have this. However also the product

S3S2 = (R3 + 1)S2 = R3S2 + S2

does lead to a synthesis of S5 and it is like a fibration still, but an irregular
fibration that would not locally correspond to a Cartesian product, whence the
name “phantom fibration”.

For the spheres S2n−1 we also have repeated factorizations

S7 =
(
R4 + 1

)
S3 =

(
R4 + 1

) (
R2 + 1

)
(R+ 1) 2,

S15 =
(
R8 + 1

) (
R4 + 1

) (
R2 + 1

)
(R+ 1) 2,

and so on. If we apply non-associativity we get

S7 =
((
R4 + 1

) (
R2 + 1

))
S1 = CP3S1,

S7 =
(
R4 + 1

) ((
R2 + 1

)
(R+ 1) 2

)
=
(
R4 + 1

)
S3 = S4S3,
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two fibrations of S7 that follow from complex and quaternion geometry and that
are unrelated.

There are also more Hopf factorizations, the simplest one being

S8 =
(
R6 + R3 + 1

)
S2.

In general they follow from products of the form(
Rs·k + R(s−1)·k + · · ·+ Rk + 1

) (
2Rk−1 + 2Rk−2 + · · ·+ 2

)
leading to

S(s+1)k−1 =
(
Rs·k + · · ·+ Rk + 1

)
Sk−1

and they play a crucial role in the “Graßmann division problem”.
Needless to say that there are repeated factorizations of this type.
Also the addition formula for spheres may be generalized.

For p+ q + r = m we have

Rm − 1 = (Rp − 1) (Rq − 1) (Rr − 1) + (Rp − 1) (Rq − 1)

+ (Rp − 1) (Rr − 1) + (Rq − 1) (Rr − 1) + (Rp − 1)

+ (Rq − 1) + (Rr − 1) ,

from which we obtain:

Sm−1 = Sp−1Sq−1Sr−1R2
+ + Sp−1Sq−1R+

+ Sp−1Sr−1R+ + Sq−1Sr−1R+ + Sp−1 + Sq−1 + Sr−1.

Needless to say also that our list of interesting manifolds and geometries is far
from complete.

Let us take the Klein bottle as an example, we have the following morpho-
logical analysis. A Klein bottle can be obtained from a Moebius band by properly
glueing a circle to the edge, thus closing it up into a compact 2-manifold. As we
know, a Moebius band may be obtained by removing a point from RP2 : RP2 − 1.
Then one blow up the hole to a small disc and one glues a circle S1 = 2R + 2
to that, giving 2-manifold with boundary. Finally one identifies every point on
this S1 with its anti-podal point: S1/Z2 which leads to a continuation across the
boundary and to the Klein bottle. In morphological language we have:(

RP2 − 1
)
+ S1/Z2 =

(
RP2 − 1

)
+ (R+ 1)

=
((
R2 + R+ 1

)
− 1

)
+ (R+ 1)

=
(
R2 + R

)
+ (R+ 1)

= (R+ 1)R+ (R+ 1) = (R+ 1) (R+ 1) ,

so we end up with a circle S1-bundle over S1. But S1 ·S1 may also simply represent
a torus: there is no way one can tell from the quantity (R+1)2 alone whether this
represents a torus or a Klein bottle. Only in the initial formula

(
RP2 − 1

)
+(R+ 1)

one can specify a Klein bottle but as one starts calculating, this specification is
lost.



Examples of Morphological Calculus 283

Higher-dimensional Klein bottles may be introduced as the “blow up” exper-
iment:

(RPn − 1) + Sn−1/Z2 = (RPn − 1) + RPn−1

= RPn−1 · R+ RPn−1 = RPn−1 · S1,

an S1-bundle over RPn−1.
Similarly, complex and quaternionic Klein bottles may be introduced as (ex-

ercise) the “blow up experiment”:

(CPn − 1) + S2n−1/S1 = CPn−1 · (C+ 1) ,

(HPn − 1) + S4n−1/S3 = HPn−1 · (H+ 1) .

To summarize this section, we notice that there is no one to one corre-
spondence between morphological calculus and geometry. This may be seen as
a drawback but it is also a stronghold because it means that there exists another
perspective that reveals a hidden aspect of geometry: the quantity of an object.

4. Groups and homogeneous spaces

Groups enter morphological calculus via a proper morphological analysis; the group
structure will be lost and the organized quantity remains.

We begin with the groups

O(n), SO(n), GL(n,R), GL(n,R), SL(n,R).

The orthogonal group O(n) is the group of all orthogonal matrices (aij). If
we represent such a matrix as a row (a1, . . . , an) of column vectors it simply means
that a1, . . . , an are orthogonal unit vectors. This means that one can start off by
choosing

a1 ∈ Sn−1

followed by choosing

a2 ∈ Sn−1 ∩ {λa1, λ ∈ R}⊥ = Sn−2

and then

a3 ∈ Sn−1 ∩ {λ1a1 + λ2a2, λj ∈ R}⊥ = Sn−3

and so on, until for an there are just 2 choices

an ∈ Sn−1 ∩ span{a1, . . . , an−1}⊥ = S0.

This immediately leads to the morphological definition

O(n) = Sn−1 · Sn−2 · · ·S0,

as well as to the recursion formula

O(n) = Sn−1 ·O(n− 1), O(0) = 1.
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For the group SO(n) everything remains the same except that for the last
vector an there is just one choice, determined by det(aij) = 1 condition. We thus
have the definition

SO(n) = Sn−1Sn−2 · · ·S1 = O(n)/Z2.

Clearly O(n), SO(n) are integrable and the integral is obtained by substituting
Sj−1 = 2Rj−1 + · · ·+ 2 and working out the product.

The general linear group GL(n,R) is obtained similarly by writing the matrix
(aij) as (a1, . . . , an) whereby

a1 ∈ Rn \ {0},
a2 ∈ Rn \ span{a1},

...

an ∈ Rn \ span{a1, . . . , an−1}
which leads to the morphological definition

GL(n,R) = (Rn − 1) (Rn − R) · · ·
(
Rn − Rn−1

)
.

We readily obtain the quotient formula

GL(n,R)

O(n)
=

(Rn − 1) (Rn − R) · · ·
(
Rn − Rn−1

)
Sn−1 · Sn−2 · · ·S0

=

(
Rn − 1

Sn−1

)(
Rn − R

Sn−2

)
· · ·

(
Rn − Rn−1

)
S0

= R+ · (R · R+) · · ·
(
Rn−1 · R+

)
,

which symbolizes the GRAMM–SCHMIDT orthogonalization procedure. Here we
applied commutativity of the product but that doesn’t matter too much; in fact
one can also write

GL(n,R) =
(
Sn−1R+

) (
RSn−2R+

)
· · ·

(
Rn−1S0R+

)
.

For the group SL(n,R) we have the extra condition det (aij) = 1, which
readily leads to

SL(n,R) =
GL(n,R)

R− 1
,

and so also
SL(n,R)

SO(n)
= R+ · (R · R+) · · ·

(
Rn−2 · R+

)
Rn−1.

Now let us look some homogeneous spaces.

The Stiefel manifold Vn,k(R) is by definition the manifold of orthonormal
k-frames (v1, . . . , vk) in Rn. We hence have that for k < n:

Vn,k(R) =
SO(n)

SO(n− k)
= Sn−1 · · ·Sn−k =

O(n)

O(n− k)
.
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The Stiefel manifold Vn,k(R) is the manifold of k-frames (v1, . . . , vk) that are
linearly independent and hence span a k-plane. We have for k < n:

V Ln,k(R) =
GL(n,R)

Rn−k ·GL(n− k,R)
= (Rn − 1) (Rn − R) · · ·

(
Rn − Rk−1

)
.

The Graßmann manifold Gn,k(R) is the manifold of k-dimensional subspaces
of Rn. Now, each k-dimensional subspace has an orthogonal frame and that can
be chosen in O(k) in different ways. This leads to the combinatorial formula:

Gn,k(R) =
V Ln,k(R)

O(k)
=

O(n)

O(k) ·O(n− k)
=

Sn−1 · Sn−2 · · ·Sn−k

Sk−1 · · ·S0
.

The Graßmann manifold may also be constructed starting from the general
linear group:

Gn,k(R) =
Vn,k(R)

GL(k,R)
=

(Rn − 1) (Rn − R) · · ·
(
Rn − Rk−1

)
(Rk − 1) · · · (Rk − Rk−1)

and the equivalence of both definitions readily follows from the Gramm–Schmidt
factorization.

By G̃n,k(R) we denote the manifold of all ORIENTED k-dimensional sub-
spaces of Rn, i.e.,

G̃n,k(R) =
Vn,k(R)

SO(k)
=

SO(n)

SO(k) · SO(n− k)
=

Sn−1 · Sn−2 · · ·Sn−k

Sk−1 · · ·S1
.

Now, for the Stiefel manifolds everything is clear, but for the Graßmann
manifolds we have one major problem.

Problem 4.1 (Graßmann division problem). Can one work out the polynomial

division Sn−1·Sn−2···Sn−k

Sk−1···S0 , and does it result in an integral (polynomial in “R” with
natural number coefficients).

To solve the problem we will work with the quotient V Ln,k(R)/GL(k,R) that
is equivalent and easier to work with. For the case of simplicity take k = 3. Every
3D-subspace V of Rn is spanned by 3 linearly independent vectors v1, v2, v3 that
may be chosen in GL(3,R) different ways. For each V there is a unique triple
(v1, v2, v3) that may be written as a matrix of the form⎡⎣v1v2
v3

⎤⎦=
⎡⎣c11 · · · c1j3 0 c1j3+2 · · · c1j2 0 c1j2+2 · · · c1j1 1 0 · · · 0
c21 · · · c2j3 0 c2j3+2 · · · c2j2 1 0 · · · 0 0 0 · · · 0
c31 · · · c3j3 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0

⎤⎦
and any other frame in V may be obtained by a unique GL(3,R)-action from this,
so in fact the division is carried out by looking to matrices of the above special
form. As the coefficients cij vary the matrices of the above form constitute a cell
of Gn,3(R) that is a copy of a certain Rj and it is called a Schubert cell. We thus
have proved the following results.
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Theorem 4.2 (Schubert cells). The object Gn,k(R) = Rd+c1Rd−1+· · ·+cd whereby
c : j ∈ N is the number of Schubert cells of dimension d− j.

Apart from this there are typical morphological questions such as:

Q1: To decompose Gn,k(R) = O1 · · ·Os as a (e.g., maximal) product of morpho-
logical objects Oj of integer type (that are irreducible, e.g.).

Q2: To look for Gn,k(R)-factorization O1 · · ·Ot in terms of objects Oj that are
integrable.

Let us consider a few examples of such Graßmann factorizations.
Of course we readily have Gn,k(R) = RPn−1 and the Hopf factorizations

provide further ways of factorizing this.
Next for k = 2 we have:

G2n,2(R) =
S2n−1 · S2n−2

S1 · S0
= CPn−1 · RP2n−2

G2n+1,2(R) =
S2n · S2n−1

S0 · S1
= RP2n · CPn−1,

showing a clear 2-periodicity.

For k = 3 the first interesting case is

G6,3(R) =
S5 · S4 · S3

S2 · S1 · S0
,

which, using the Hopf factorizations

S5 =
(
R3 + 1

)
S2 = S3S2, S3 =

(
R2 + 1

)
S1 = S2S1

may be evaluated as

G6,3(R) =
(
R3 + 1

)
· RP4 ·

(
R2 + 1

)
= RP4 · S3 · S2.

Note here that it is forbidden to divide S2/S2 = 1.
More interesting still is the next case

G7,3(R) =
S6 · S5 · S4

S2 · S1 · S0
,

which, using the Hopf factorization S5 = (R3 + 1)S2 yields.

G7,3(R) =
RP6 ·

(
R3 + 1

)
RP4

(R+ 1)
.

Now RP4 and RP6 cannot be divided by (R + 1); in fact these objects are
irreducible in morphological sense. So, the division that works here is:

RP2
h =

R3 + 1

R+ 1
= R2 − R+ 1,

the phantom projective plane, leading to the following maximal factorization

G7,3(R) = RP6 · RP4 · RP2
h

in terms of irreducible objects of integer type.



Examples of Morphological Calculus 287

But now the factors are no longer integrable, which also shows that the
integrability of Graßmann manifolds is in fact not so trivial. But we have:(

R3 + 1
)

R+ 1
RP4 =

(
R3 + 1

)
R+ 1

(
R2

(
R3 − 1

)
R− 1

+ (R+ 1)

)

= R2

(
R6 − 1

)
R2 − 1

+
(
R3 + 1

)
= CP2 · R2 + S3,

so that in fact we have integrable factorization

G7,3 = RP6 ·
(
CP2 · R2 + S3

)
.

The next case is again simpler:

G8,3(R) =
S7 · S6 · S5

S2 · S1 · S0
=
(
CP3 · RP6

) (
R3 + 1

)
.

For the next case

G9,3(R) =
S8 · S7 · S6

S2 · S1 · S0
,

we have to use the next Hopf factorization

S8 =
(
R6 + R3 + 1

)
S2,

which gives us:
G9,3(R) =

(
R6 + R3 + 1

)
CP3 · RP6.

The next cases are:

G10,3(R) =
S9 · S8 · S7

S2 · S1 · S0
= CP4 ·

(
R6 + R3 + 1

)
· RP7,

the first appearance of an odd-dimensional RPn, and

G11,3(R) =
S10 · S9 · S8

S2 · S1 · S0
= RP10 · CP4 ·

(
R6 + R3 + 1

)
.

In the next case we again have 2 odd spheres and the Hopf factorization

S11 =
(
R6 + 1

) (
R3 + 1

)
S2 = S6 · S3 · S2,

giving rise to

G12,3(R) =
S11 · S10 · S9

S2 · S1 · S0
= RP10 · CP4 · S6 · S3.

and finally in the next case we again have two irreducible spheres S12, S10, leading
to

G13,3(R) =
S12 · S11 · S10

S2 · S1 · S0
= RP12 · RP10 · S6

(
R3 + 1

)
R+ 1

.

where once again, the phantom projective plane appears

R3 + 1

R+ 1
= R2 − R+ 1 = RP2

h.

There is clearly a 6-periodicity in the factorization of Graßmann manifolds
for k = 3. The formulas obtained here lead to a classification but they do not
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correspond to the fibre bundles of any kind. Besides, we used repeatedly the fact
that quantity is commutative. Another interesting homogeneous space is the flag
manifold Fn;k,�(R), k < � < n whereby W is subspace of Rn of dimension 1 and
V ⊂W is a subspace of dimension k. This clearly leads to the fibration

Fn;k,�(R) = Gn,�(R) ·G�,k(R)

=
O(n)

O(n − �)O(�)
· O(�)

O(� − k) ·O(k)
=

O(n)

O(k)O(� − k) · O(n− �)
.

The flag manifold Fn;k,�(R) may also be seen as manifold (V, V ′) with V ⊂ Rn

a subspace of dimension k and V ⊥ V ′ of dimension � − k. The link with the
previous definition simply follows from W = V ⊕ V ′ and we have the fibration

Fn;k,�(R) = Gn,k(R) ·Gn−k,�−k(R)

=
O(n)

O(k)O(n − k)
· O(n− k)

O(� − k) ·O(n − �)
=

O(n)

O(k)O(� − k) ·O(n− �)
.

More in general for 0 < k1 < · · · < ks < n we may define the flag manifold
Fn;k1,...,ks(R) as the manifold of flags (V1, . . . , Vs) with V1 ⊂ V2 ⊂ · · · ⊂ Vs ⊂ Rn

subspaces of dimension dimVj = kj . We clearly have the iterated fibration

Fn;k1,...,ks(R) = Gn,ks(R) ·Gks,ks−1(R) · · ·Gk2,k1(R)

=
O(n)

O(n− ks)O(ks)
· O(ks)

O(ks − ks−1) ·O(ks−1)
· · · O(k2)

O(k2 − k1) ·O(k1)

=
O(n)

O(n− ks)O(ks − ks−1) · · ·O(k2 − k1)O(k1)
.

Using orthogonal subspaces, we have:

Fn;k1,...,ks(R) = Gn,k1(R) ·Gn−k1,k2−k1(R) · · ·Gn−ks−1,ks−ks−1(R).

Orthogonal groups may also be defined for the spaces Rp,q with pseudo-
Euclidean inner product

〈x, y〉 = x1y1 + · · ·+ xpyq − xp+1yp+1 − · · · − xp+qyp+q.

The corresponding groups are O(p, q) and SO(p, q). The group SO(p, q), e.g., is
determined as the manifold of frames of signature (p, q) :(

v1, . . . , vp; vp+1, . . . , vp+q

)
whereby v1 ∈ Sp−1 · Rq is the first spacelike vector v2 ⊥ v1 ∈ Sp−2 · Rq up to
vp ⊥ span

(
v1, . . . , vp−1

)
∈ S0 · Rq and the remaining vectors

(
vp+1, . . . , vp+q

)
form a right oriented time-like q-frame, i.e., vp+1 ∈ Sq−1, vp+2 ∈ Sq−2 and vp+q

is fixed by the fact that the determinant of the whole frame equals +1.
In total, the morphological bill adds up to:

SO(p, q) =
(
Sp−1 · Rq

)
· · ·

(
S0 · Rq

)
Sq−1 · · ·S1

= O(p) · SO(q) · Rp·q,

and it is a two component group still.
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All of the above may be generalized to the complex Hermitian case. Let us
start with Cn provided with the Hermitian inner product:

(z,w) = z1w1 + · · ·+ znwn.

Then by U(n) we denote the unitary group of matrices learning the Hermit-
ian form invariant; its matrices may be written as Hermitian orthonormal frames
v1, . . . , vn whereby |vj | = 1, (vj , vk) = 0 for j �= k.

This leads to the following morphological analysis:

v1 ∈ S2n−1 is the unit vector in Cn = R2n,
v2 ⊥ v1 in the Hermitian sense, i.e., v2 ∈ v⊥1 ∩ S2n−1 = S2n−3

up to

vn ⊥ v1, . . . , vn−1, i.e., vn ∈ S1

and, therefore,

U(n) = S2n−1 · S2n−3 · · ·S1.

In the above, please note that 〈v,w〉 = Re(v,w) is the orthogonal inner
product in R2n and so

(v,w) = 0 iff 〈v,w〉 = 0 and 〈iv,w〉 = 0.

Clearly U(n)is a subgroup of SO(2n) and for the quotient we have:

SO(2n)

U(n)
= S2n−2Ṡ2n−4 · · ·S2,

which actually is a manifold, namely the manifold of all complex structures on
R2n (Exercise).

The special unitary group SU(n) is the subgroup of matrices in U(n) with
determinant = 1, i.e.,

SU(n) = S2n−1 · · ·S3,

and in particular SU(2) = S3.
The definition of the complex general and special linear groups is obvious;

they are denoted by GL(n,C), SL(n,C). Like for the orthogonal groups also for
the complex group U(n) we have the associated homogeneous spaces, in particular
Graßmann manifolds

Gn,k(C) =
U(n)

U(k) · U(n− k)
=

S2n−1 · · ·S2n−2k+1

S2k−1 · S2k−3 · · ·S1
,

so for example

G4,2(C) =
S7 · S5

S3 · S1
= (R4 + 1)CP2 = S4CP2 = HP1 · CP2.

G5,2(C) =
S9 · S7

S3 · S1
= CP4 · (R4 + 1) = CP4 ·HP1.

G6,2(C) =
S11 · S9

S3 · S1
= HP2 · CP4.

and so we have again a clear 2-periodicity.
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We leave the discussion of Gn,3(C) as an exercise.
Unitary groups may also be constructed over spaces Cp,q with pseudo-Her-

mitian form

(z, w) = z1w1 + · · ·+ zpwp − zp+1wp+1 − · · · − zp+qwp+q

and the corresponding invariance groups are denoted by U(p, q) and SU(p, q) in
case det = 1.

The corresponding frames now have to be chosen on the pseudo-Hermitian
unit sphere:

|z1|2 + · · ·+ |zp|2 − |zp+1|2 − · · · − |zp+q|2 = 1

which leads to the morphological formula

U(p, q) = (S2p−1 · Cq) · (S2p−3 · Cq) · · · (S1 · Cq) · S2q−1 · S2q−3 · · ·S1.

Of course we also have the complexified versions O(n,C) and SO(n,C) of O(n)
and SO(n); it is another story which we will leave out for the moment.

To finish the list of matrix groups leading to morphological analysis, we
mention the compact symplectic groups Sp(n); they follow from the quaternionic
Hermitian form

(q, r) = q1r1 + · · ·+ qnrn,

whereby qj = qj0 + iqj1 +jqj2 +kqj3 is a quaternion and qj = qj0− iqj1−jqj2−kqj3
its quaternion conjugate.

Sp(n) is by definition the group of quaternion n × n matrices leaving this
form invariant and its matrix elements may be regarded as quaternionic frames
q1, . . . , qn whereby qr ∈ Hn with |q1| = 1, i.e., q1 ∈ S4n−1, q2 ∈ Hn with |q2| = 1
and (q1, q2) = 0, i.e., q2 ∈ S4n−5, and so on. This leads to the morphological bill:

Sp(n) = S4n−1 · S4n−5 · S3,

in particular Sp(1) = S3 and Sp(2) = S7 · S3.
Also here may be investigated quaternionic Graßmannians.
The groups Sp(n) should not be confused with the non-compact groups

Sp(2n,R) of matrices A ∈ GL(2n,R) leaving the maximal 2-form invariant.
For Sp(2n,R) we did not find a morphological evaluation yet.
To finish this section we discuss the Spin groups Spin(m).
We start by considering the real 2m-dimensional Clifford algebra Rm with

generators e1, . . . , em and relations ej ek + ek ej = −2δjk.
The space of bivectors

Rm,2 =

⎧⎨⎩∑
i,j

bijei ej : bij ∈ R

⎫⎬⎭
forms a Lie algebra for the commutation product and the corresponding group is
the Spin group:

Spin(m) = exp(Rm,2).
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Its elements may be written into the form s = w1 · · ·w2s, wj =
∑

wjkek ∈ Rm

with w2
j = −1, i.e., wj ∈ Sm−1.

We have the following Spin(m) representation

h : Spin(m)→ SO(m)

whereby

h : s→ h(s) : x→ sxs

whereby for a ∈ Rm, a is the conjugation with properties ab = b a & ej = −ej.
In this way Spin(m) is a 2-fold covering group of SO(m), i.e.,

SO(m) = Spin(m)/Z2

and also Spin(m) is simply connected.
This might suggest the morphological evaluation

Spin(m) = SO(m) · Z2 = Sm−1 · · ·S1 · S0 = O(m),

which, through not entirely wrong in the sense of quantity, is somewhat uninter-
esting.

But there is a more interesting evaluation of Spin(m).
Let us start with

Spin(3) = {q0 + q1e23 + q2e31 + q3e12 : qq = 1}
= S3 = S2 · S1 = SU(2) = Sp(1)

with differs rather substantially from

O(3) = S2 · S1 · S0.

So in fact, the rotation group SO(3) has two different representations in
morphological calculus:

one as the matrix group

SO(3) = S2 · S1

and one in terms of the Spin group (quaternion S3):

SO(3) = Spin(3)/Z2 = S3/2

= S2S1/2 = S2S1 = (R2 + 1)(R+ 1) = RP3.

In general we got

SO(m) = Spin(m)/2,

which is another morphological version of the rotation group.
For m = 4 we consider the pseudoscalar e1234 with e21234 = +1 and e1234 is

central in the even subalgebra

R+
4 = Alg{ejk : j < k} ∼= R3

∼= H⊕H.

Putting

E± =
1

2
(1± e1234)
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we have
E+ + E− = 1, E2

± = E±, E+E− = 0,

so every a ∈ R+
4 may be written uniquely as:

a = a+E+ + a−E−, a± ∈ H = span{1, e23, e31, e12}
and in particular

s ∈ Spin(4) : s+E+ + s−E−, s± ∈ S3.

So we have the morphological analysis

Spin(4) = Spin(3)× Spin(3)

= S3 · S3 = S3 · S2 · S1.

For m = 5, we use the fact that

Spin(5) = {s ∈ R+
5 : ss = 1},

together with the isomorphisms

R+
5 = R4

∼= H(2),

i.e., the set of 2× 2 quaternionic matrices

a =

(
a11 a12
a21 a22

)
, aij ∈ H

and under this isomorphism we also have

a =

(
a11 a21
a12 a22

)
.

This shows that in fact

Spin(5) = Sp(2) = S7 · S3 = S4 · S3 · S3 = S4 · S3 · S2 · S1.

For m = 6, the pseudoscalar e123456 satisfies e2123456 = −1 and it is central in
even subalgebra R+

6 = R5, so it may identified with complex number i, leading to

R+
6
∼= C⊗ R+

5
∼= C⊗H(2) ∼= C(4),

and under this map R+
6 → C(4), the conjugate a of a ∈ R+

6 corresponds to the
Hermitian conjugate (a)+ of matrix (a) ∈ C(4).

Hence the group G = {a : aa = 1, a ∈ R+
6 } corresponds to U(4). But for

m > 5, the group G no longer corresponds to Spin(m) and for m = 6

G = exp
{∑

bijeij + e123456

}
= exp

{∑
bijeij

}
× exp {e123456} = Spin(6)× U(1)

which shows that really

Spin(6) = SU(4) = S7 · S5 · S3 = S5 · S4 · S3 · S2 · S1.

For m = 7 on the situation is much more complicated. Could it be that

Spin(7) = S6 · S5 · S4 · S3 · S2 · S1?
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5. Nullcones and things

The nullcone NCn−1 of complex dimension n− 1 in the locus of points

(z1, . . . , zn) ∈ Cn

that satisfy z21 + · · ·+ z2n = 0.
The complex (n − 1)-sphere CSn−1 consists of the solutions (z1, . . . , zn) of

the equation z21 + · · ·+ z2n = 1.
It is a non-compact manifold that admits a canonical compactification

CS
n−1 ⊂ CPn given by the equation in homogeneous coordinates z1, . . . , zn+1 :

z21 + · · ·+ z2n = z2n+1

that is equivalent to z21 + · · · + z2n + z2n+1 = 0 if we replace zn+1 → izn+1. The
submanifold CSn−1 corresponds to the intersection with the region zn+1 �= 0
while the “points at infinity” corresponds to the intersection with plane zn+1 = 0,
leading to:

CS
n−2

: z21 + · · ·+ z2n = 0.

Hence we have the disjoint union

CS
n−1

= CSn−1 ∪ CS
n−2

.

We are going to perform the morphological calculus of those objects in two
different ways, leading to two different formulas for the quantity (once again). The
first method could be called the real geometry approach.

Let us write z = x + iy, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn; then the

equation for NCn−1 may be rewritten as

|x|2 = |y|2 & 〈x, y〉 = 0

with |x|2 = x2
1 + · · ·+ x2

n, 〈x, y〉 = x1y1 + · · ·+ xnyn.
First solution is the point z = 0 with quantity 1.
For z �= 0 we may write x = ρω, y = ρν, ρ ∈ R+ and ω, ν ∈ Sn−1 such that

ω ⊥ ν, i.e., (ω, ν) ∈ Vn,2(R). Hence we have

NCn−1 = 1 + Vn,2(R) · R+ = 1 + Sn−1 · Sn−2 · R+.

The complex sphere CSn−1 written in real coordinates would lead to:

|x|2 = 1 + |y|2, 〈x, y〉 = 0.

First we have the case |y| = 0, |x| = 1 leading to the quantity Sn−1. Next

for |y| ∈ R+ we again may put x = rω, y = ρν whereby r2 = 1 + ρ2, ρ ∈ R+ and

ω, ν ∈ Sn−1 with ω ⊥ ν. This leads to the morphological bill

CSn−1 = Sn−1 + Vn,2(R) · R+

= Sn−1 + Sn−1 · Sn−2 · R+ = Sn−1 ·
(
1 + Sn−2 · R+

)
= Sn−1 ·

(
1 +

(
Rn−1 − 1

))
= Sn−1 · Rn−1,
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which represents the tangent bundle to Sn−1. Once again remark that Sn−1 ·Rn−1

might represent any (n−1)-dimensional vector bundles over Sn−1 or more general
stuff, so it only represents the quantity of the tangent bundle.

For CS
n−1

we have two approaches.
First it is the set of points (z1, . . . , zn+1) ∈ CPn solving the equation z21 +

· · ·+ z2n+1 = 0, which means that the homogeneous coordinates (z1, . . . , zn+1) �= 0
belong to NCn \ {0} and they are determined up to a homogeneity factor λ ∈
C \ {0}. This leads to

CS
n−1

=
NCn − 1

C− 1
=

Vn+1,2(R) · R+

S1 · R+
=

Vn+1,2(R)

S1

= G̃n+1,2(R) =
Sn · Sn−1

S1
.

Secondly we also have that

CS
n−1

= CSn−1 + CS
n−2

Sn−1 · Rn−1 + Sn−2 · Rn−2 + · · ·+ S1 · R + 2

giving the total quantity, while also

CSn−1 + CS
n−2

= Sn−1 ·
(
Rn−1 +

Sn−2

S1

)
Sn−1 ·

(
(2R+ 2)Rn−1 + Sn−2

)
S1

= Sn−1 · S
n

S1
,

as expected.
Note also that there is a 2-periodicity expressed by

CS
2n−1

=
S2n · S2n−1

S1
= S2n · CPn−1,

CS
2n

=
S2n+1 · S2n

S1
= CPn · S2n.

Note that we also have the identity

NCn−1 = 1 + CS
n−2 · (C− 1)

that often turns out useful in calculations.
We now use a purely complex method to compute the complexified sphere;

we use a different notation CS
n
.

For CS
0
we have the equation

z21 + z22 = 0 ⇔ uv = 0, u = z1 + iz2, v = z1 − iz2.

Up to a factor λ �= 0 there are solutions (u, v) namely (1, 0) and (0, 1), leading to

the quantity CS
0
= 2.

For CS
1
we have the equation

uv = z23
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including for z23 = 0, uv = 0, i.e., CS
0
and for z3 �= 0 we normalise z3 = 1, so we

have the equation for CS
1
: uv = 1, i.e., u ∈ C \ {0}, v = 1/u. This leads to

CS1 = C− 1 & CS
1
= CS1 + CS0 = (C− 1) + 2 = C+ 1

so in fact CS
1
= CP1 = S2.

For CS
2
we again have the splitting

CS
2
= CS2 + CS

1

whereby CS
2
is given by the equation

uv = z24 − z23 = 1− z23 ,

with normalization z4 = 1. There are two cases of this: z23 �= 1, giving z3 ∈
C \ {1,−1} and z3 ∈ {+1,−1}. So, morphologically, we have a factor

z3 ∈ C− 2 or z3 ∈ 2.

In the case z3 ∈ C− 2 we have the equation

uv = cte �= 0

to solve, which gives us u ∈ C− 1, v = cte/u, leading to the quantity:

(C− 1)(C− 2).

For z3 ∈ 2 we have equation uv = 0 to be solved, which gives us (u, v) = (0, 0)
or v = 0 and u ∈ C− 1 or u = 0 and u ∈ C− 1. So the total quantity is

1 + 2(C− 1),

with an extra factor 2, which gives the total

CS2 = (C− 1)(C− 2) + 4(C− 1) + 2

= (C− 1)(C+ 2) + 2 = C2 + C = (C+ 1)C.

Hence, we arrive at

CS
2
= (C+ 1)C+ (C+ 1) = (C+ 1)2 = S2CP1 =

S3S2

S1
.

For CS3 we have the equation

u1v1 = 1− u2v2

leading to the cases u2v2 = 1 and u2v2 �= 1 for which we have the morphological
factors C − 1 and C2 − C + 1 (the phantom complex projective plane). In case
1−u2v2 = c �= 0 the remaining equation u1v1 = c yields the factor C− 1 while for
1 = u2v2 we have u1v1 = 0, i.e., 1 + 2(C− 1). In total this gives

CS3 = (C− 1)(C2 − C+ 1) + (1 + 2(C− 1))(C− 1)

= (C− 1)(C2 + C) = (C2 − 1)C,
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which is also clear from the fact that u1v1 + u2v2 = 1 is basically the equation
ad− bc = 1 for

SL(2,C) =
(
C2 − 1

)
C.

This leads to

CS
3
= CS3 + CS

2
=
(
C2 − 1

)
C+ (C+ 1)2

= (C+ 1) ((C− 1)C+ C+ 1) = (C+ 1)(C2 + 1)

=
S4S3

S1
= S4 · CP1 = CP3.

For CS4 we have the equation

u1v1 + u2v2 = 1− z25

leading to the factors C− 2 for z25 �= 1 and 2 for z25 = 1.

For 1 − z25 = c �= 0 the remaining equation gives the factor SL(2,C) =
(C2 − 1)C while for c = 0 we have the equation u1v1 + u2v2 = 0, which is the
nullcone

NC3 = 1 + CS
2 · (C− 1) = 1 + (C2 − 1)(C+ 1).

In total we get

CS4 = (C2 − 1)C(C− 2) + 2(C2 − 1)(C+ 1) + 2

= (C2 − 1)(C2 + 2) + 2 = C4 + C2 = C2(C2 + 1)

so that

CS
4
= CS4 + CS

3
=
(
C2 + 1

) (
C2 + C+ 1

)
= CP2 · S4 =

S5S4

S1
.

It seems that in general we will have

CS
2n

=
S2n+1

S1
S2n = CPn · S2n,

CS
2n−1

= S2n
S2n−1

S1
= S2n · CPn−1 = CP2n−1.

To prove this recursively we begin with CS2n given by the equation

u1v1 + · · ·+ unvn = 1− z22n+1.

For the right-hand side we have the factor C−2 for z22n+1 �= 1 and the factor 2
for z22n+1 = 1. The equation c = 1−z22n+1 �= 0 gives the factor u1v1+· · ·+unvn = c,

which is in fact CS2n−1 while for c = 0 we have the equation u1v1+ · · ·+unvn = 0,
which is

NC2n−1 = 1 + CS
2n−2 · (C− 1).
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So in total we have

CS2n = CS2n−1 · (C− 2) + 2 + 2CS
2n−2 · (C− 1)

= CS
2n−1 · (C− 2)− CS

2n−2 · (C− 2) + 2CS
2n−2 · (C− 1) + 2

= CS
2n−1 · (C− 2) + CS

2n−2 · C+ 2

and, therefore,

CS
2n

= CS2n + CS
2n−1

= CS
2n−1 · (C− 1) + CS

2n−2 · C+ 2.

Using the induction hypothesis

CS
2n−1

= CP2n−1 and CS
2n−2

= CPn−1 · S2n−2,

this gives rise to

CS
2n

= C2n − 1 + (Cn−1 + 1)(Cn + Cn−1 + · · ·+ C) + 2

= (C2n + C2n−1 + · · ·+ Cn) + (Cn + Cn−1 + · · ·+ C+ 1)

= (Cn + 1)CPn = CPn · S2n.

For the other case CS
2n+1

we note that CS2n+1 is given by the equation
u1v1 + · · · + unvn = 1 − un+1vn+1 giving the factor (phantom projective plane)
C2−C+1 for c = 1− un+1vn+1 �= 0 and C− 1 for un+1vn+1 = 1. Again for c �= 0
we have the equation u1v1 + · · ·+ unvn = c �= 0, leading to the factor CS2n−1 and
for c = 0 we get factor NC2n−1 as before. This leads to

CS2n+1 = CS2n−1 · (C2 − C+ 1) + (1 + CS
2n−2 · (C− 1)) · (C− 1)

= CS
2n−1 · (C2 − C+ 1)− CS

2n−2 · C+ C− 1,

which, using the formulae for CS
2n−1

and CS
2n−2

yields

CS2n+1 = Cn · (Cn+1 − 1)

= S2n+1 · R2n · R+

and so we finally get

CS
2n+1

= CS2n+1 + CS
2n

= Cn · (Cn+1 − 1) + (Cn + 1) (Cn + · · ·+ 1)

= C2n+1 + C2n + · · ·+ Cn − Cn + Cn + · · ·+ 1 = CP2n+1

= S2n+2 · CPn = S2n+2 · S
2n+1

S1
.

These calculations show a certain consistency in which the Poincaré sphere
S2n and complex projective spaces CPn play a central role. Also the phantom
complex projective plane C2−C+1 reappears here as the set of points (u, v) ∈ C2

which lie outside the hyperbola uv = 1; it is the new geometric interpretation for
strange phantom plane that arises from the morphological analysis.
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Finally also the “bipolar plane” C− 2 arises naturally within the discussion.
Of course one could always consider C− n, but in morphological calculus we are
not interested in generality, only in canonical objects.

Our next investigation concerns “Null Graßmannians”.

By NGn,k(C) we denote the manifold of all k-dimensional subspaces of the

nullcone NCn−1 in Cn. Hence in particular NGn,1(C) = CS
n−2

. Let us make the
morphological analysis; once again there are two ways.

Let V ⊂ NCn−1 be a k-dimensional complex subspace spanned by k-vectors
τ1, . . . , τk. Which are of course linearly independent and satisfy:

τ2j = (tj + isj)
2 = 0, i.e., tj ⊥ sj & |tj | = |sj |

〈τ j , τk〉 = 〈tj , tk〉 − 〈sj , sk〉+ i(〈tj , sk〉+ 〈tk, sj〉) = 0.

Next consider on Cn the Hermitian inner product (z, w) =
∑n

j=1 zjwj ; then

we can normalize vector τ1, i.e., (τ1, τ1) = 〈t1, t1〉 + 〈s1, s1〉 = 2, which together
with t1 ⊥ s1 |t1| = |s1| means that the pair (t1, s1) ∈ Vn,2(R) is the manifold of
orthonormal 2-frames.

Next one may choose τ2 such that (τ2, τ1) = 0 & |τ2|2 = 2 with τ2 = t2+ is2.
This automatically implies that

〈τ2, τ1〉 = 〈τ2, τ1〉 = 0, i.e., 〈t2, τ1〉 = 〈s2, τ1〉 = 0

so that the pair (t2, s2) is an orthonormal 2-frame that is also orthogonal to
spanR{t1, s1}, i.e., (t1, s1, t2, s2) ∈ Vn,4(R).

Continuing the reasoning, we may choose tj , sj in such a way that

(t1, s1, t2, s2, . . . , tk, sk) ∈ Vn,2k(R) =
SO(n)

SO(n− 2k)
;

a necessary condition for this is n ≥ 2k.

Now let (τ ′1, . . . , τ
′
k) be another k-tuple for which

span{τ ′1, . . . , τ ′k} = V & |τ ′j |2 = 2, (τ ′j , τ
′
k) = 0, j �= k;

then there exists the unique matrix A ∈ U(k) such that τ ′j =
∑k

�=1 Aj�τ �. Hence
we obtain the identity in terms of homogeneous spaces and in morphological sense

NGn,k(C) =
SO(n)

U(k)× SO(n− 2k)
=

Sn−1 · Sn−2 · · ·Sn−2k

S2k−1 · S2k−3 · · ·S1
.

So, in the case n = 2m is even, we have that

NGn,k(C) =
S2m−1 · · ·S2m−2k

S2k−1 · · ·S1
= Gm,k(C) · S2m−2 · · ·S2m−2k

while for n = 2m+ 1, odd, we have

NGn,k(C) =
S2m · S2m−1 · · ·S2m−2k+1

S2k−1 · · ·S1
= Gm,k(C) · S2m · · ·S2m−2k+2.

This also implies that NGm,k(C) is integrable.
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Another way of calculating the quantity makes use of the complex compact

spheres CS
n−2

that were obtained in terms of complex analysis. Using the notation
NGn,k(C) for the corresponding null Graßmannians we have:

NGn,1(C) = CS
n−2

,

NGn,2(C) = {(τ1, τ2) ∈ CS
n−2 · S1 × CS

n−4 · S1}modU(2)

=
CS

n−2 · S1 · CSn−4 · S1

S3 · S1
=

CS
n−2 · CSn−4

CP1
,

and in general

NGn,k(C) =
CS

n−2 · · ·CSn−2k

CPk−1 · · ·CP1
.

Hence, in case n = 2m we obtain

NG2m,k(C) =
CS

2m−2 · · ·CS2m−2k

CPk−1 · · ·CP1

=
CPm−1 · S2m−2 · · ·CPm−k · S2m−2k

CPk−1 · · ·CP1

=
CPm−1 · · ·CPm−k

CPk−1 · · ·CP1
S2m−2 · · · S2m−2k

= Gm,k(C) · S2m−2 · · · S2m−2k

and similarly for n = 2m+ 1 we get

NG2m+1,k(C) = Gm,k(C) · S2m · · · S2m−2k+2,

and so these objects are also integrable. The calculus of nullcones and things can
also be done in real variables. Let Rp,q be the space Rp,q = Rp+q with quadratic
form

|x|2 − |y|2 =

p∑
j=1

x2
j −

q∑
j=1

y2j , (x, y) ∈ Rp,q.

Then the nullcone NCp,q is the set of solutions (x, y) of equation |x|2 = |y|2;
it contains of course (0, 0) and for |x| ∈ R+ we have (x, y) = ρ(ω, ν) with ρ > 0

and (x, y) ∈ Sp−1 × Sq−1. Hence, we have relation

NCp,q = Sp−1 · Sq−1 · R+ + 1.

By Sp−1,q−1 we denote the set of 1D subspaces of NCp,q; it may be rep-
resented by the equivalence classes (ω, ν) ∼ (−ω,−ν), (ω, ν) ∈ Sp−1 × Sq−1. In
morphological notation we have:

Sp−1,q−1 =
NCp,q − 1

R− 1
=

Sp−1 · Sq−1 · R+

R− 1
=

Sp−1 · Sq−1

2
= Sp−1 · RPq−1.
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For example for q = 2 we may put ν = (cos θ, sin θ) and Sp−1,1 may be
identified with the equivalent pairs (ω, cos θ, sin θ) ∼ (−ω,− cos θ,− sin θ), which
is equivalent with the Lie sphere

Sp−1,1 ∼= LSp = {eiθω : ω ∈ Sp−1, θ ∈ [0, π[}.

But there is also another calculation of this manifold that leads to another
quantity Sp−1,q−1 and it corresponds to the “conformal compactification” R

p−1,q−1

of Rp−1,q−1. To find this, let (x, y) = (x′, xp; y
′, yq) with (x′, y′) ∈ Rp−1,q−1. Then

first we may intersect the nullcone with the plane xp − yq = 1, i.e., we put

xp =
1

2
(1− ρ), yq = −1

2
(1 + ρ).

The equation |x|2 = |y|2 for the manifold Sp−1,q−1 gives us ρ = |x′|2−|y′|2 so

that (x′, y′) ∈ Rp−1,q−1 freely and then (xp, yq) are fixed. So this part of Sp−1,q−1

is equivalent to Rp+q−2. The remaining part of Sp−1,q−1 is represented by the
nonzero vectors λ(x, y), λ ∈ R \ {0} for which xp = yq; there are two cases:

• If xp = yq �= 0 we may normalize xp = yq = 1 and we have (x, y) = (x′, 1, y′, 1)
together with the equation |x′|2− |y′|2 = 0. So this part of Sp−1,q−1 is equiv-
alent to the modified nullcone

NCp−1,q−1 = 2Sp−2,q−2 · R+ + 1.

• If xp = yq = 0 we have λ(x′, 0, y′, 0) with λ ∈ R \ {0} and |x′| �= 0 and

|x′| = |y′|, which is the definition of Sp−2,q−2.

So the total morphological calculation becomes

Sp−1,q−1 = Rp+q−2 + Sp−2,q−2(2R+ + 1) + 1,

= Rp+q−2 + Sp−2,q−2 · R+ 1,

or, in terms of compactification of Rp,q:

R
p,q

= Rp+q + R
p−1,q−1 · R+ 1.

Case 1: for q = 0 we simply obtain

R
p,0

= R
p
= Rp + 1 = Sp.

Case 2: compactified Minkowski space-time

R
p,1

= Rp+1 + R
p−1,0 · R+ 1,

= Rp+1 + (Rp−1 + 1) · R+ 1 = (Rp + 1)(R+ 1)

= Sp · RP1.
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More in general we obtain for p ≥ q

R
p,2

= Rp+2 + R
p−1,1 · R+ 1,

= Rp+2 + (Rp + Rp−1 + R+ 1) · R+ 1 = (Rp + 1)(R+ 1)

= Rp+2 + Rp+1 + Rp + R2 + R+ 1

= (Rp + 1)(R2 + R+ 1) = Sp · RP2,

and, continuing in this way we obtain for p ≥ q :

R
p,q

= (Rp + 1)(Rq + · · ·+ R2 + R+ 1) = Sp · RPq,

as expected from the similar (but different) formula Sp,q = Sp · RPq.

So once again we have two different quantities that are obtained in two dif-
ferent canonical ways from what is mathematically considered to be one manifold.

Note that in particular (and this is weird)

R
m,m

= (Rm + 1)(Rm + · · ·+ R+ 1)

= R2m + · · ·+ Rm+1 + 2Rm + Rm−1 + · · ·+ 1

= (Rm + 1)2 + R · (Rm + 1)(Rm−2 + · · ·+ 1).

For the classical Minkowski space-time we get

R
3,1

= (R3 + 1)(R+ 1),

and this is indeed projective line bundle over 3-sphere.

Compactified complexified Minkowski space-time is given by

CS
4
= (C2 + 1)(C2 + C+ 1) = C4 + C3 + 2C2 + C+ 1

= C4 + C · (C+ 1)2 + 1 = C4 +NC3,

with NC3 = C · CS2 + 1, so it is not just replacing “R” by “C” in R
3,1

.

We must still calculate the null Graßmannians NGp,q;k; they are defined as
manifold of k-dimensional subspaces of the nullcone NCp,q = Sp−1 ·Sq−1 ·R++1.

Let V be such a k-dimensional plane; then V is spanned by the basis of the
form:

e1 + ε1, e2 + ε2, . . . , ek + εk; e1, . . . , ek ∈ Sp−1; ε1, . . . , εk ∈ Sq−1;

orthonormal frames, so these bases belong to:

e1 + ε1 ∈ Sp−1 · Sq−1 = 2
NCp,q − 1

R− 1
= 2Sp−1,q−1,

up to

ek + εk ∈ Sp−k · Sq−k = 2Sp−k,q−k,
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and within V the total quantity of such bases is given by O(k) = Sk−1 ·Sk−2 · · ·S0.
We thus have the morphological representation (with p ≥ q, q ≥ k)

NGp,q;k =

(
2Sp−1,q−1

)
· · ·

(
2Sp−k,q−k

)
Sk−1 · Sk−2 · · ·S0

=
Sp−1,q−1 · · ·Sp−k,q−k

RPk−1 · · ·RP1

=
Sp−1 · Sp−2 · · ·Sp−k

Sk−1 · · ·S0
Sq−1 · · ·Sq−k

= Gp,k(R) · Sq−1 · · ·Sq−k.

Again there is another way of computing this whereby in the above, Sp,q is
replaced by Sp,q = R

p,q
, leading up to the stereographic null Graßmannian:

NGp,q;k =

(
2Sp−1,q−1

)
· · ·

(
2Sp−k,q−k

)
Sk−1 · · ·S0

=
R

p−1,q−1 · · ·Rp−k,q−k

RPk−1 · · ·RP1

=
Sp−1 · · · Sp−k · RPq−1 · · ·RPq−k

RPk−1 · · ·RP1
= Gq,k(R) · Sp−1 · · · Sp−k.

All these manifolds give hence rise to integrable morphological objects.
For the Minkowski space-time we have the manifold of null-lines (light rays):

NG4,2;2 =
R

3,1 · R2,0

RP1
=

(R3 + 1)(R+ 1)(R2 + 1)

R+ 1

= (R3 + 1)(R2 + 1) = S3 · S2,
i.e., the real twistor space.

The last case we consider here is that of the space Cp,q = Cp+q provided with
the pseudo-Hermitian form

((z, u), (z′, u′)) = (z, z′)− (u, u′) =
p∑

j=1

zjz
′
j −

q∑
j=1

uju
′
j .

The nullcone ((z, u), (z, u)) = 0 is denoted by NCp,q(C) and it has real
codimension one, so its real dimension equals 2p+2q−1.The equation is |z|2 = |u|2
so:

NCp,q(C) = S2p−1 · S2q−1 · R+ + 1.

By T p,q we denote the manifold of one-dimensional complex subspaces of
NCp,q(C); it is a real submanifold of CPp+q−1 of real codimension one that hence
subdivides CPp+q−1 in 3 parts and T 2,2 ⊂ CP3 corresponds to “real twistor space”
(the manifold of light-lines in the Minkowski space). From the definition we have

T p,q =
NCp,q(C)− 1

C− 1
=

S2p−1 · S2q−1 · R+

S1 · R+
= S2p−1 · CPq−1,

so in particular T 2,2 = S3 · CP1 = S3 · S2.
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There is another approach leading to the twister space Tp,q with a different
quantity.

To that end we write (z, u) = (z′, zp, u′, up) and consider the intersection
NCp,q(C) ∩ {zp − uq = 1}, which allows us to write

zp =
1

2
(1 + ρ+ iα), uq =

1

2
(−1 + ρ+ iα).

The equation for the point (z, u) now becomes

|z′|2 − |u′|2 + 1

4

(
(1 + ρ)2 + α2

)
− 1

4

(
(1 − ρ)2 + α2

)
= 0

or

ρ = |z′|2 − |u′|2 & α ∈ R.

Hence the 1D complex subspaces of NCp,q(C) that intersect the plane zp−uq = 1
are representable by vectors of the form

(
z′, 1

2 (1 + ρ+ iα), u′, 1
2 (−1 + ρ+ iα)

)
with

(z′, u′) ∈ Cp−1,q−1 and α ∈ R. So this part of Tp,q has quantity Cp+q−2 · R. The
other points of Tp,q have the form (z′, λ, u′, λ) so there are two cases:

• λ �= 0, in this case we normalize λ = 1 and we have the equation |z′|2−|u′|2 =
0, giving a version of nullcone:

NCp−1,q−1(C) = Tp−1,q−1 · (C− 1) + 1 .

• In the case λ = 0 we have the point (z′, 0, u′, 0) with equation |z′| = |u′| and
determined up to a constant c ∈ C \ {0}, i.e., we get Tp−1,q−1.

This leads to the recursion formula for Tp,q with p ≥ q :

Tp,q = Cp+q−2 · R+ Tp−1,q−1 · C+ 1 .

So in particular we get

Tp,1 = Cp−1 · R+ 1 = R2p−1 + 1 = S2p−1,

Tp,2 = Cp · R+
(
Cp−2 · R+ 1

)
C+ 1

=
(
Cp + Cp−1

)
R+ C+ 1 =

(
Cp−1 · R+ 1

)
(C+ 1)

= S2p−1 · CP1,

Tp,3 = Cp+1 · R+
(
Cp−1 · R+ Cp−2 · R+ C+ 1

)
C+ 1

=
(
Cp−1 · R+ 1

) (
C2 + C+ 1

)
= S2p−1 · CP2

and so, continuing in this way, we obtain for p ≥ q:

Tp,q =
(
Cp−1 · R+ 1

) (
Cq−1 + · · ·+ C+ 1

)
= S2p−1 · CPq−1.

In particular we re-obtain the expected formula

T2,2 = (C · R+ 1)(C+ 1) = S3 · CP1 = S3 · S2.
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The manifold CP3 is itself called the complex twistor space; it decomposes
into real twistor space T2,2 together with two equals parts corresponding to |z| <
|u| and |z| > |u|. In morphological language we have the cutting experiment

CP3 − T2,2 = C3 + C2 + C+ 1− (CR+ 1)(C+ 1)

= (C2 − C · R)(C+ 1) = C · (C− R)(C+ 1)

= 2C · C+ · (C+ 1),

which indeed gives 2 copies of C · C+ · (C + 1) whereby we put C+ = C−R

2 =

R · R−1
2 = R · R+.

We can also calculate the null Graßmannian NGp,q;k(C) of k-dimensional
complex subspaces of NCp,q(C). Let V be a complex k-subspace; then the frames
(t1; s1), . . . , (tk; sk) may be chosen such that (tj ; tk) − (sj ; sk) = 0, of course, but
we may also choose (tj; tj) to be the Hermitian orthonormal frame, i.e., (tj ; tk) +
(sj ; sk) = 0 and |tj | = |sj | = 1.

So in fact we can choose

(t1; s1) ∈ S2p−1 × S2q−1,

(t2; s2) ∈ S2p−3 × S2q−3,

and so on. Moreover these frames per plane V can be chosen in U(k)-different
ways, leading up to the morphological formula for p ≥ q ≥ k

NGp,q;k(C) =
S2p−1 · · ·S2p−2k · S2q−1 · · ·S2q−2k

S2k−1 · · ·S3 · S1

= S2p−1 · · ·S2p−k · CP
q−1 · · ·CPq−k

CPk−1 · · ·CP1
.

A similar calculation can be made using the stereographic spheres, leading to:

NGp,q;k(C) =

(
Tp,q · (C−1)

R+

)
·
(
Tp−1,q−1 · (C−1)

R+

)
· · ·

(
Tp−k+1,q−k+1 · (C−1)

R+

)
U(k)

= S2p−1 · · · S2p−2k · CP
q−1 · · ·CPq−k

CPk−1 · · ·CP1
,

and in particular for p = q = 2, k = 2 we obtain:

NG2,2;2(C) =
S3 · S1 · CP1

CP1
= (R3 + 1)(R+ 1),

which corresponds to the real compactified Minkowski space.

The compactified complex Minkowski space corresponds to:

G4,2 =
S7 · S5

S3 · S1
= S4 · CP2 = (C2 + 1)(C2 + C+ 1) = CS

4
,

as can be shown using bivectors and Klein quadric.



Examples of Morphological Calculus 305

6. Conclusions and remarks

(i) Completeness

Morphological calculus is best compared with a museum. It consists of a lots of
special names, algebraic expressions and calculations that stand for geometrical
objects and operations on these objects.

In this paper we presented morphological calculus for the most important
classical manifolds. Like any museum, also our collection is incomplete. For exam-
ple a full morphological treatment for the spin groups Spin(m) and Spin(p, q) is
still to be done and there is a vast collection of special manifolds or objects to be
added to the catalogue.

In building up our museum we give preference to the most interesting special
manifolds (canonical manifolds) as well as to the “simplest ways of introducing
them”. So in fact the calculus is entirely based on examples of objects and exper-
iments; there is no idea of “a general manifold” and no theory behind the scene.

(ii) Correctness

Morphological calculus is correct in the sense that it takes space within the lan-
guage of calculus that is a correct language based on clear rules. This leads to the
notion of quantity, which is in fact what a manifold becomes once it is introduced
within the calculus language. This is practically done by assigning a name to an
object along with an algebraic relation that expresses the definition of the object
in calculus. The notion of quantity is somewhat comparable to the notions of car-
dinality and of volume that are used to express the contents or size of an object.
But there is no mathematical definition for it; it is an imaginary substance that
resides entirely within the calculus.

The main problem is not the calculus itself but the way of translating objects
of geometry into calculus expressions (morphological analysis); it usually happens
that one and the same object can be translated into morphological language in
many ways and that may cause confusion.

To give an example, the compactified Minkowski space is given by

R
3,4

= R4 + R(R2 + 1) + 1 = (R3 + 1)(R+ 1)

whereby R4 is the usual Minkowski space and

R(R2 + 1) + 1 = (2R+S
2 + 1) + S2

is a compactified light cone at infinity whereby we made use of stereographic sphere
S2. What would happen if we replace S2 by the usual sphere S2? Well, we would
get in total:

R4 + R(2R2 + 2R+ 2) + 1 = R4 + 2R3 + 2R2 + 2R+ 1

= (R3 + R2 + R+ 1)(R+ 1) = RP3 · S
1

2
=

S3

2

S1

2
= S2 · S1 · S1.

This is no longer Minkowski space-time, yet there exists a meaningful inter-
pretation for this object, namely the manifold of pairs (eiθω,−eiθω) in C4, with
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eiθω ∈ LS3, the Lie sphere. For this manifold the above calculation makes sense.
So the problem is not only to know what calculation to make to describe an object
correctly but also how to correctly interpret a calculation (morphological synthe-
sis). It often happens that different objects turn out to share the same quantity.

There is no way to avoid these problems; one simply has to experiment until
one finds the best fitting calculations or interpretations. This may be seen as
a drawback, but we see it as a stronghold that illustrates the richness of the
morphological language.

(iii) Consistency

Morphological calculus may be compared to making the bill of a meal in a restau-
rant; usually the bill adds up correctly but sometimes the sum of the ingredients
of the meal is more expensive than the meal.

Here is an example in morphological calculus: Consider the space R2
n of bivec-

tors in a Clifford algebra: b =
∑

i<j bijeiej.

Then R2
n is a real vector space of dimension

(
n
2

)
:

R2
n = R(

n
2),

but on the other hand, b ∈ R2
n \ {0} may be written as:

b = r1I1 + · · ·+ rsIs, 2s ≤ n,

whereby r1 ≥ r2 ≥ · · · ≥ rs > 0 is unique and Ij = ωj ∧ νj , |ωj | = |νj | = 1,
|ωj | ⊥ |νj | is a 2-blade such that IjIk = IkIj , i.e., (ω1, ν1, . . . , ωj , νs) ∈ Vn,2s(R).

This leads to a partition of R2
n into orbits of the orthogonal group O(r1, . . . , rs),

which one may calculate morphologically and add up properly.

For n = 3, b = rω ∧ ν ∈ R+ × G̃3,2(R), leading to

R2
3 − 1 = G̃3,2(R) · R+ = S2 · R+ = R3 − 1,

which adds up correctly. But already for n = 4 there is a problem. Every b ∈
R2

4 \ {0} may be written as

b = r1ω1 ∧ ν1 + r2ω2 ∧ ν2, r1 ≥ r2 ≥ 0

and there are three cases:

1. For r1 > r2 > 0 the blades ω1 ∧ ν1 and ω2 ∧ ν2 are uniquely determined in
terms of b, so we have in fact:

r2 > 0 ∈ R+, r1 > r2 ∈ R+,

ω1 ∧ ν1 ∈ G̃4,2(R) =
S3 · S2

S1
= S2 · S2

[ω2 ∧ ν2, ω1 ∧ ν1] = 0 leaves 2 possibilities: ω2 ∧ ν2 = ±ω1 ∧ ν1 · e1234.
So, in morphological terms we get:

2S2 · S2 · R+ · R+ = 2R+ · S2 · (R3 − 1).
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2. For r1 > 0, r2 = 0 we get b = rω∧ν with r ∈ R+ and ω∧ν ∈ G̃4,2(R) = S2 ·S2,
so in total S2 · S2 · R+ = S2 · (R3 − 1).

3. In the case r1 = r2 = r > 0 we get

b = r(ω1 ∧ ν1 + ω2 ∧ ν2),

whereby either ω2 ∧ ν2 = ±e1234ω1 ∧ ν1, so b = rω ∧ ν(1 ± e1234). Hereby

ω∧ν may be chosen to belong to G̃3,2(R) = S2 because in fact every bivector
b ∈ R2

4 may be decomposed uniquely into self-dual and anti-self-dual parts:

b =
1

2
(1 + e1234)b+ +

1

2
(1− e1234)b−, b± ∈ R2

3.

So in the above case, ω ∧ ν ∈ G̃3,2(R) is unique, so that the morphological
contribution is given by

2R+ · S2 = 2(R3 − 1).

Hence, adding up (1) + (2) + (3), we get a total morphological sum of

(2R+ + 1)S2 · (R3 − 1) + 2(R3 − 1)

(R · (R2 + 1) + 2) · (R3 − 1) �= (R3 + 1)(R3 − 1) = R6 − 1.

The gap in the calculation lies in the difference between R · (R2 + 1)+ 2 and
S3 = R3 + 1. If in the above we would replace R2 + 1 = S2 by 2R2 + 2R+ 2 = S2

we would get a factor R · S2 + 2 = S3 and replacing then S2 by S2 would make
the bill add up correctly.

So in fact R · (R2 + 1) + 2 may be interpreted as an oversized version of the
Poincaré sphere S3 = R3 + 1.

Also for the bivector space R2
5 we have three cases:

1. in case r1 > r2 > 0 we obtain the quantity:

R2
+ ·

S4 · S3

S1
· S

2 · S1

S1
= (R5 − 1) · S2 · (R3 − 1)

2. in case r1 > r2 = 0 we obtain:

R+ ·
S4 · S3

S1
= (R5 − 1) · S2

3. in case r1 = r2 = r > 0 we get bivectors of the form r(ω1 ∧ ν1 + ω2 ∧ ν2) in

R5; the number of choices for span{ω1, ν1, ω2, ν2} equals G̃5,1(R) =
S4

2 while

for each choice we have the quantity 2R+S
2 as before, leading to a total of

S4

2
(2R+S

2) = (R5 − 1) · S2.

So, the total bill for R2
5 reads

(R5 − 1)((1 + R2)R3 + 2R2 + 2R+ 2)

= (R5 − 1)(R5 + (R+ 1)(R2 + R+ 1) + 1),
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while we would need the second factor to be equal to R5 +1 to make the bill
add up correctly.

From n ≥ 6 on the calculation of R2
n is much more complicated so we won’t do

it here, but in any case we won’t get just R(
n
2). This may be seen as an inconsistency

which is likely to repeat itself in cases of partitions of geometrical objects. We
have no solution as even explanation of this, but it is clear that one can study
this phenomena within the language of morphological calculus, which in itself is
consistent.

(iv) Calculus styles

A calculus style is obtained by making certain restrictions on the use of the calculus
language and by a certain kind of application or focus.

In the canonical style we decided to replace the relationR = 2R+1 by its more
rigorous form R = 2R+ + 1 in order to avoid too many unwanted identifications.

This leads to the possibility to apply the rules of calculus on a free basis
(commutativity, brackets, etc.) whereby our focus is the calculation of quantity
for a large collection of manifolds and this calculation arises from a morphological
analysis of the geometrical objects (and constructions) we are interested in.

In the formal style we start off from a given quantity, a polynomial a0Rn +
· · ·+ an with a0 > 0, a1, . . . , an ∈ N say, and we consider the collection of all the
algebraic expressions that evaluate to this quantity. Since we already start with a
polynomial with positive integer coefficients, we won’t consider any subtractions
or divisions here, just addition and multiplication. Also we won’t be using R+

here and the relation R = 2R+ + 1 will be replaced by a non-commutative and
non-associative version of R = 2R+ 1 :

R = R+ 1 + R, R = R+ (R+ 1),

the use of which leads to a change in the quantity. Also other calculations involving
commuting terms or factors or placing or removing brackets are seen as morphisms
on the collection of morphological objects. So for each quantity we have basically
a category.

Parallel to this, for each polynomial a0Rn+ · · ·+an we also have the set of all
geometrical objects that can be formed by glueing together (or not) a0 copies of Rn,
a1 copies of Rn−1, . . . , an points. The focus now is to study possible correlations
between the category of algebraic expressions and geometrical objects (graphs) for
a given quantity; this is morphological synthesis.

For example for R+ 1 we have two expressions

R+ 1, 1 + R

and two geometrical objects (apart from trivial disjoint union) semi-interval [0, 1[
or circle S1 and one possible correlation is to identify R+ 1 with [0, 1[ and 1 + R
with the circle S1.

The more general case aR+ b leads to a kind of calligraphy that we’ll study
in forthcoming work. For this reason we will speak of calligraphic calculus.
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7. Outlook

It is not easy to provide complete references to the topic of morphological calculus
but certain examples of it as well as related topics are certainly available through-
out the mathematical literature. First of all there is our paper [6] in which we gave
an introduction to morphological calculus which was subdivided into an axiomatic
approach, a canonical part and a formal part based on the formal language of
calculus. In this paper we focused mainly on the canonical part by giving many
more new examples of interesting calculations. Morphological calculus can be seen
as a formal language and the task of constructing good geometrical interpretations
of calculations, called morphological synthesis, can be seen as part of a research
field called the theory of Lindenmayer systems (L-systems) for which there is a
vast literature. We only refer to [5]. Also in the book [4] by Roger Penrose the
language of calculus has been discussed, in particular the meaning of commutativ-
ity of the multiplication has been critically investigated. But the present paper is
mostly concerned with examples concerning spheres, real and complex projective
spaces, special Lie groups and homogeneous spaces including Stiefel manifolds and
Graßmannians, various types of complex spheres and real and complex nullcones.
All of this belongs to the theory of special manifolds (see, e.g., [7]).

In particular we also discussed real and complex compactified Minkowski
spaces as well as twistor spaces which have many applications in mathematical
physics and for which we refer to the pioneering work [3] of R. Penrose and W.
Rindler. Morphological calculus is of course also related to various topics in alge-
braic topology in particular Betti numbers, homology and cohomology, Poincaré
polynomials, Euler characteristics and much more that is to be found all over the
literature (use Wikipedia and see also [7]). Finally, many of our calculations also
make use of bivector spaces, Clifford algebras and Spin groups for which we refer
to the books [1] and [2].

Acknowledgement

The author wishes to thank Dr. Narciso Gomes (University of Cape Verde – Uni-
CV) for his help in the critical reading and the painstaking task of typewriting this
manuscript. We also wish to thank the referee for his valuable suggestions during
the preparation of the manuscript.

References

[1] R. Delanghe, F. Sommen, V. Soucek, Clifford algebra and spinor valued functions,
Mathematics and Its Applications 53, (Kluwer Acad. Publ., Dordrecht 1992).

[2] P. Lounesto, Clifford algebras and spinors (second edition), London Math. Soc. Lec-
ture Note Series 286, (Cambridge University Press, Cambridge 2001).

[3] R. Penrose, W. Rindler, Spinors and space-time, Volume 2, Spinor and twistor
methods in space-time geometry, Cambridge Monographs on Mathematical Physics,
(Cambridge University Press, Cambridge, 1986).



310 F. Sommen

[4] R. Penrose, The emperors new mind: concerning computers, minds, and the laws of
physics, (Oxford University Press, Oxford, 1999).

[5] G. Rozenberg, A. Salomaa, The mathematical theory of L-systems, (Academic Press,
New York, 1980).

[6] F. Sommen, A morphological calculus for geometrical objects, J. Nat. Geom. 15
(1-2), 1999, 1–64.

[7] F.W. Warner, Foundations of differentiable manifolds and Lie groups, (Springer,
New York, 1983).

Franciscus Sommen
Clifford Research Group
Department of Mathematical Analysis
Ghent University
Galglaan 2
B-9000 Gent, Belgium
e-mail: fs@cage.ugent.be

mailto:fs@cage.ugent.be

	Contents
	Preface
	Cauchy–Pompeiu Formula for Multi-metaweighted monogenic Functions of first class
	1. Actual state of theory of multi-monogenic functions
	2. Preliminaries and notations
	2.1. Clifford algebras depending on parameters

	3. Clifford-algebra-valued functions in several variables
	4. Clifford type algebra and the associated multi-meta-weighted-monogenic operator
	5. n-weighted-monogenic functions
	5.1. Green’s integral formula for Dφ
	5.2. Solution for Dφ,λ
	5.3. Cauchy–Pompeiu formula for Dφ,λ
	5.4. Example

	6. Distributional solution for the inhomogeneous meta-n-weighted-monogenic equation
	7. Concluding remarks
	Acknowledgment
	References

	Greedy Algorithms and Rational Approximation in One and Several Variables
	1. Introduction
	2. Preliminaries on Greedy algorithm in Hilbert spaces
	3. The Hardy H2(D) case
	4. Quaternionic and Clifford contexts for functions of several real variables
	5. Several complex variables
	5.1. Functions defined on n-torus
	5.2. Functions defined on Rn in the setting of Hardy spaces on tubes
	5.3. Matrix-valued signals defined in the unit disc
	5.4. Adaptive decomposition: the case of the Drury–Arveson space
	5.5. Matrix-valued signals defined on the polydisc

	6. AFD and Aveiro method in reproducing kernel Hilbert spaces
	References

	A. Kolmogorov and M. Riesz Theorems for Octonion-valued Monogenic Functions
	1. Introduction and statement of results
	2. Proofs
	Acknowledgment
	References

	Compressed Sensing with Nonlinear Fourier Atoms
	1. Introduction
	2. Non-linear Fourier atoms
	2.1. Hardy spaces
	2.2. Takenaka–Malmquist system as non-linear Fourier atoms

	3. Sparse sampling in Takenaka–Malmquist system
	3.1. Description of the main results
	3.2. Proof of the main result
	3.3. Analysis of powers of G0
	3.4. Analysis of P(Ek)

	4. Applications
	Appendix: Additional calculi
	A.1. Estimation of the term||HD-1||∞
	A.2. Expectation value of the trace of G2n0
	A.3. Proof of Lemma 3.7

	References
	Acknowledgment

	Script Geometry
	1. Introduction
	2. Brief review of simplicial topology
	3. Script geometry
	4. The discrete Dirac and Laplace operators on scripts
	5. Classic examples of scripts
	5.1. A Möbius strip
	5.2. The torus
	5.3. The Klein bottle
	5.4. The real projective plane
	5.5. Connected sum of two projective planes

	6. Outlook
	Acknowledgement
	References

	A Panorama on Quaternionic Spectral Theory and Related Functional Calculi
	1. Introduction
	2. Slice hyperholomorphic functions
	3. The spectral theorem based on the S-spectrum
	4. The spectral theorem in the finite-dimensional case
	5. The S-functional calculus
	5.1. The case of unbounded operators

	6. The H∞-functional calculus
	7. The Phillips functional calculus for quaternionic groups
	8. The W-functional calculus
	9. The F-functional calculus
	References

	Models for Some Irreducible Representations of so(m,c) in Discrete Clifford Analysis
	1. Preliminaries
	2. Orthogonal Lie algebras
	3. Decomposition of Hk in irreducible representations
	3.1. Even dimension m=2n
	3.2. Odd dimension m=2n+1

	4. Conclusion and future research
	References

	Gegenbauer Type Polynomial Solutions for the Higher Spin Laplace Operator
	1. Introduction
	2. The higher spin Laplace operator Dk
	3. Invariant polynomial solutions
	4. Branching rules
	5. Example
	6. Further research
	References

	A New Cauchy Type Integral Formula for Quaternionic K-hypermonogenic Functions
	1. Introduction
	2. Preliminaries
	3. Cauchy formula for K-hypermonogenic functions
	References

	Eigenfunctions and Fundamental Solutions of the Caputo Fractional Laplace and Dirac Operators
	1. Introduction
	2. Preliminaries
	2.1. Fractional calculus and special functions
	2.2. Clifford analysis

	3. Method of separation of variables
	3.1. Eigenfunctions and fundamental solution of the fractional Laplace operator
	3.2. Fundamental solution of the fractional Dirac operator

	Acknowledgment
	References

	Three-dimensional Analogue of Kolosov–Muskhelishvili Formulae
	1. Introduction
	2. Preliminaries and notations
	3. Reconstruction of regular function from given scalar part
	4. Three-dimensional analogue of Kolosov–Muskhelishvili Formulae
	4.1. Representation for elastic displacement vector
	4.2. Expressions for components of stress tensor
	4.2.1. First Kolosov–Muskhelishvili formula for stresses
	4.2.2. Second Kolosov–Muskhelishvili formula for stresses
	4.2.3. Second Kolosov–Muskhelishvili formula for stresses in tensor notations


	5. Conclusion
	References

	On Some Properties of Pseudo-complex Polynomials
	1. Introduction
	2. Preliminaries and notations
	2.1. Pseudo-complex polynomials
	2.2. Representation of pseudo-complex polynomials

	3. Study of a specific parameter set
	4. Summary and outlook
	Acknowledgement
	References

	Slice Regular Functions on Regular Quadratic Cones of Real Alternative Algebras
	1. Introduction
	2. Real alternative algebras and quadratic cones
	2.1. Real alternative algebras
	2.2. The quadratic cone of a real alternative algebra
	2.3. Slice functions and slice regular functions
	2.4. Regular Quadratic cones

	3. Representation formula for the norm of slice functions
	4. Some consequences of Theorem 3.5
	5. Structure of zeros
	5.1. Strong regular quadratic cones
	5.2. Representation formula and splitting lemma for slice regular functions
	5.3. Auxiliary functions associated with slice regular functions
	5.4. Structure of zeros

	Acknowledgment
	References

	Differential Forms and Clifford Analysis
	1. Introduction
	2. Differential forms
	3. Integration of differential forms
	4. Stokes’ formula
	5. Clifford differential forms
	6. Winding numbers from monogenic functions
	References

	Examples of Morphological Calculus
	1. Introduction
	1. The addition t1 + t2 + · · · + tk
	2. The subtraction t1 − t2
	3. The multiplication v · w
	4. The division v/w

	2. The real line
	3. Cartesian space, spheres, projective spaces
	4. Groups and homogeneous spaces
	5. Nullcones and things
	6. Conclusions and remarks
	(i) Completeness
	(ii) Correctness
	(iii) Consistency
	(iv) Calculus styles

	7. Outlook
	Acknowledgement
	References




