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1. Introduction

In 1960, Matsaev [1] proved the following Theorem.
Theorem 1.1: Suppose an entire function f (z) in complex plane C has a lower bound

|f (z)| ≥ exp
{
−Mrρ

1
| sin α|k

}
, z = reiα ∈ C, (1)

r > 0, ρ > 1, k ≥ 0.

Then the function f (z) is of order ρ and finite type.
Note: Throughout,M stands for various values which may depend on ρ or k, but not on z
or f (z), not necessarily the same on any two occurrences.

The Matsaev Theorem has been found various applications in mathematics.[2–7] The
inequalities like (1) are crucial in many problems, since they are intrinsically connected
with the estimates of the Cauchy-type integrals.[8] A special attention of the related studies
has been paid to dealing with the Matsaev theorem on subharmonic functions in the half
space of R

n.[8,9]
The proof of Matsaev theorem consists of two steps, each having an independent

interest. In the first step, a certain upper bound is significantly improved from the lower
bound by using Carleman’s and R.Nevanlinna’s formulas studied in [10]. Then in the
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second step, the theorem is derived from this upper bound. This two-step procedure has
also applied to many related studies by others.

Matseav proved the following result of subharmonic functions on the upper bound in
the plane which plays a basic role in proving Matsaev’s theorem ([11, p.212, Theorem 3]),
which can be viewed as a far-reaching generalization of the well-known Liouville theorem
on bounded entire functions.[8]
Theorem 1.2: Let u(z) be a subharmonic function in the complex plane C which satisfies
the estimate

u(z) ≤ M
1 + rρ

| sin α|l , z = reiα ∈ C, ρ > 1, l ≥ 0. (2)

Then u(z) is of order ρ and finite type.
Other results of this type can be seen in [11]. Govorrov and Zhuravleva [5] generalized

Theorem 1.2 to analytic functions in the upper half-plane. One form of related estimates
are seen in [6], where Rashkovskii proved a version ofMatsaev’s theorem for subharmonic
functions u(z) in the complex plane C and his assumptions were imposed on an integral
norm of the negative part u− = u+ − u with u+(z) = max{u(z), 0}.

Most recently Kheyfits [8] extended Rashkovskii’s result to subharmonic functions
(Theorem1.3)with respect to the stationary Schrodinger operatorLc, i.e. theweak solutions
of the inequality

−Lcu ≡ �u − c(x)u ≥ 0,

where� is the Laplace operator. Subsolutions of this inequality are called c-subharmonic
functions. Correspondingly, solutions of the equation

�u − c(x)u = 0

are called c-harmonic functions. Kheyfits’s result on the upper bound is stated as follows.
Theorem 1.3: Let u be a c-harmonic function in H ∪ −H, c-subharmonic or continuous
in R

n, such that
u(x) ≤ M

1 + rρ

| cos θ1|l , ρ > ρk, l ≥ 0, (3)

in which ρk is a constant with respect to n and k < ∞. Then

u(x) ≤ M(1 + rρ), x ∈ R
n, (4)

where the spherical coordinates in R
n are defined by

x = (x1, x2, . . . , xn−1, xn) = (r, θ), θ = (θ1, θ2, . . . , θn−1),

such that
cos θ1 = xn/r, 0 < θ1 < π.

Here H = {x = (x1, x2, . . . , xn) ∈ R
n, xn > 0} is the upper half space of Rn.

By using Theorem 1.3, Kheyfits obtained an interesting version of Matsaev theorem
on c-harmonic functions. Let B(r) be the open ball of radius r centred at the point 0 ∈
R
n, S(r) = ∂B(r) and B+(r) = B(r) ∩ H. Set

K(r) = ∂H\S(r), 1 ≤ r < ∞, and K(1, r) = K(r)\K(1).
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Kheyfits’s version of Matsaev theorem is the following result.
Theorem 1.4: Let c belong to C(H), and u(x) be a c-harmonic function in H, which is
continuous up to the boundary ∂H. Suppose

|u(x)| ≤ M

in the unit half-ball B+. Also suppose that the negative part of u has an integral estimate∫
S+

u−(r, θ) cos θ1dσ(θ) ≤ M(1 + rρ), (5)

with ρ > ρk = 2−n+χk
2 , and its boundary values satisfy

V1(r)
∫
K(1,r)

u−(y′)W1(|y′|)
|y′| dy′ ≤ M(1 + rρ), (6)

in which

V1(r) = Mr(2−n+χk)/2(1 + o(1)), r → ∞,

and

W1(r) = Mr(2−n−χk)/2(1 + o(1)), r → ∞,

are two solutions of

−y′′ − (n − 1)r−1y′ + λr−2 + q(r)y(r) = 0, 0 < r < ∞, λ = n − 1,

where χk = √
n2 + 4k. Then for all x in H

max
θ∈S u(x) ≤ M(1 + |x|ρ),

that is, u has the growth of at most order ρ and normal type in H.

In this paper, we present generalized Matsaev results on growth of subharmonic func-
tions admitting a lower bound in R

n. Different from all the others, my approach is based
on techniques developed in papers.[10,12–14]

The generalization in this paper not only includes Theorem 1.1 as a special case, but
also generalizes the half space result in Theorem 1.4 to the entire space. The work in this
paper is a continuation of the study on the growth of harmonic functions and subharmonic
functions in theupperhalf-space conducted in [8,10,12–16]. It is also a further development
of the study of the Maximum Principle (e.g. [8,10,17]) and operator theory (e.g. [2,4]).

The paper is organized as follows. In Section 2, we introduce some basic concepts
to be used throughout the paper. The refinement of the upper bound for a subharmonic
function inHwill be presented and proved in Section 3. This is a high-dimensional version
of Theorem 1.2.

The statement and proof of the generalizedMatsaev theorem of subharmonic functions
admitting a lower bound for ρ > 1 and ρ ≤ 1 are provided in Sections 4 and 5, respectively.
Both Sections 4 and 5 generalize the results in Theorems 1.1 and 1.4.
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2. Preliminaries

This section introduces some notations, please refer to [10,18] for more details.
For n ≥ 2, the hyperplane R

n−1 × {0} = R
n−1 is the boundary of H, which is also

denoted by ∂H. One can define the lower half-space by

−H = {x = (x1, x2, . . . , xn), xn < 0}.

Taking
x′ = (x1, x2, . . . , xn−1)

into account, set
x = (x1, x2, . . . , xn) = (x′, xn).

In the sense of Lebesgue measure

dx′ = dx1 · · · dxn−1, dx = dx′dxn.

Let |x| denote the Euclidean norm. Then

|x′|2 = x21 + x22 + · · · + x2n−1, |x|2 = |x′|2 + x2n.

The unit vector based on x( �= 0) will be denoted by x
|x| , x �= 0. For simplicity, a point

x′ ∈ R
n−1 is often identified with (x′, 0) in R

n and is identified with the projection of x
onto the hyperplane ∂H. The notation B(xj, ρj) represents the open ball on R

n with centre
xj ∈ R

n and radius ρj > 0.
According to [19], let ϕ be the angle between x ∈ ∂H and the nth unit coordinate vector,

i.e.
xn = |x| sin ϕ, |x′| = |x| cosϕ, 0 ≤ ϕ <

π

2
.

A function u defined in H with values in [−∞,∞) is called subharmonic [20] if

(1) u is upper semicontinuous;
(2) for every compact subset K of H and every continuous function v on K which is

harmonic in the interior of K , the inequality u ≤ v is valid in K if it holds in ∂K .

Let f be a complex-valued function defined in an open set D contained in the complex
plane C, i.e. D ⊂ C.Write

f = u(x, y)+ iv(x, y),

where u and v are real valued.Wemay induce a function
−→
f from f , defined on the induced

set
−→
D ⊂ R

n, as follows:

−→
f (x) = u(|x′|, xn)+ x′

|x′|v(|x
′|, xn), x ∈ −→

D . (7)

The function
−→
f will be called the induced function from f .

Let I be a domain on the unit sphere S ⊂ R
n.We always assume that the boundary ∂H

with respect to S is not a polar set in the light of the classical potential theory. Let

KI = {x = (r, θ) ∈ R
n, 0 < r < ∞, θ ∈ I}
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be a cone generated by the domain I. Truncated cones are denoted by

KI
r = KI ∩ B(0, r).

Recall that a subharmonic function h(x) belongs to Cartwright’s class C, if

|h(x)| < (σ + ε)|x|, x > M, (8)

in which 0 < σ < +∞ is a constant, and∫
∂H

h+(x′)
1 + |x′|n dx

′ < ∞. (9)

The following two lemmas [14] will be used in this paper.
Lemma 2.1: For a Cartwright’s class C function h(x),

h(x) = σ+xn + o(|x|), xn ≥ 0;
h(x) = σ−xn + o(|x|), xn ≤ 0,

hold inH\G and−H\G, respectively, where 0 < σ± < +∞,G = ⋃∞
j=1 B(xj, ρj), and ρj > 0

such that ∞∑
j=1

ρj

|xj| ≤ ρj, j = 1, 2, . . . .

Lemma 2.2: For a subharmonic function h(x) in R
n to belong to the Cartwright’s class C

it is sufficient and necessary that the function h(x) have positive harmonic majorants in the
upper and lower half-space H and −H, respectively, here −H is the lower half space defined
as above.

3. Refinement of the upper bound

We now investigate the refinement of the upper bound for subharmonic functions in H.

To begin, we cite the following Phrágmen–Lindelöf theorem [21] for the subharmonic
functions.
Theorem 3.1: Let u(x) be a subharmonic function in a cone KI , where I is a regular
domain on R

n and
M(r, u) = sup

{
u(x) : x ∈ KI

r
}
.

If
lim inf
r→∞ r−μ+

M(r, u) ≤ 0 and sup
x∈∂KI

r

u(x) ≤ M,

Then
u(x) ≤ M, x ∈ KI .

The positive solution μ+ of the quadratic equation

μ(μ+ n − 2) = λ0
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is called the characteristics constants of the domain I , here λ0 is the least positive eigenvalue
of the Beltrami operator in cone KI ∩ {|x| = 1} for functions vanishing at the boundary of
this region.

By Theorem 3.1 and the methods of [8,11], we will be able to prove the following
theorem, which is similar to Theorem 1.3.
Theorem 3.2: Let u(x) be a subharmonic function in R

n which satisfies the estimate

u(x) ≤ M
1 + |x|ρ
| sin ϕ|l , ρ > 1, l > 0, x ∈ R

n, (10)

|x′| = |x| cosϕ, xn = |x| sin ϕ, 0 < ϕ < π.

Then
u(x) ≤ M

(
1 + r2ρ

)
, x ∈ R

n. (11)

Proof: Without loss of generality, we assume l > 1
4 .Then

π

8l
<
π

2
.Weconsider the triangle

abc having the vertices

a =
(
2 csc

π

8l
, 0, . . . , 0

)
,

b =
(
0, 0, . . . , 2 sec

π

8l

)
,

c =
(
−2 csc

π

8l
, 0, . . . , 0

)
,

and a point
d =

(
0, 0, . . . ,−2 sec

π

8l

)
,

denote by 
 the boundary of the rhombus with vertices at the points a, b, c, d.
Similar to [8], we set

h(x) = 1
|x + a|2l|x − a|2l

for x on side ab.
If l ≤ n

2 , h(x) is subharmonic within 
, and the following can be shown:

h(x) ≥ M
| sin θ |2l (12)

on 
.
In fact, we first apply the Sine Rule in �oax to obtain

|x − a|
sin θ

= |x|
sin π

8l
,

θ is the angle between vectors −→ox and −→oa. Applying the Sine Rule again in �axc, we get

|x + a|
sin π

8l
= |x − a|

sinψ
,

where ψ is the angle between vectors −→ox + −→oa and −→oa. Then we have
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h(x) = 1
|x + a|2l|x − a|2l

= ( sin π
8l )

2l( sinψ)2l

|x|2l| sin2l θ | .

Letting

M = ( sin π
8l )

2l( sinψ)2l

|x|2l , −π
8l

≤ ψ ≤ π

8l
.

We see that (12) is proved.
Noting that 
 contains the projection of unit sphere to the plane of rhombus and

applying the maximum principle to the function

u(rx)− h(x),

we see u(x) is bounded above inside 
 and

u(x) ≤ max|x|=1
h(x)+ max

x∈
 [u(rx)− h(x)]

≤ M + max
0≤θ≤π

(
Mrρ

| sin θ |l − M
| sin θ |2l

)
.

Since
max
0≤θ≤π

(
Mrρ

| sin θ |l − M
| sin θ |2l

)
= Mr2ρ ,

applying Theorem 3.1within coneKI , we obtain the desired inequality in the theorem.

4. Growth of subharmonic functions for ρ > 1

In this section, we present the generalized Matsaev theorem of subharmonic functions
admitting a lower bound for ρ > 1.To prove the result, we need the following theorem [10]
that provides a lower bound derived from an upper one for harmonic functions in H.

Theorem 4.1: Let u(x) be a harmonic function in the half space H with continuous
boundary values on the boundary hyperplane R

n−1. Suppose

u(x) ≤ Krρ , x ∈ R
n, r = |x| ≥ 1, ρ > n − 1, (13)

and
|u(x)| ≤ K , |x| ≤ 1, xn > 0. (14)

Then
u(x) ≥ −CK

(1 + rρ)
| sin ϕ|n−1 , (15)

where
xn = |x| sin ϕ, |x′| = |x| cosϕ, 0 < ϕ <

π

2
.

The estimate provided by the above theorem is important for studying harmonic
functions and their growth properties since the assumption of the theorem is weaker
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than that of the Maximum Principle. Note that the theorem reduces to the well-known
theorem in [11] when n = 2.

The following is the generalized Matsaev theorem on growth of subharmonic functions
admitting a lower for ρ > 1.
Theorem 4.2: Suppose a subharmonic function u(x) has the lower bound

u(x) ≥ −Mrρ 1
| sin ϕ|k , ρ > 1, k ≥ 0, x ∈ R

n, (16)
xn = |x| sin ϕ.

Then u has the growth of order ρ and normal type in R
n.

Proof: Let u(x) be a subharmonic function satisfying (16). Without loss of generality, we
assume that u(x) �= 0 for |x| ≤ 1, and hence

|u(x)| ≥ M, |x| ≤ 1. (17)

We choose γ and ϕ such that

1 < γ < min (2, ρ), 0 < ϕ < π
(
1 − 1

γ

)
,

and consider the function
uγ ,ϕ(y) = u

(
y

1
γ ω

)
,

in which y = (y′, yn) ∈ H with

y′ = |y| cos θ and yn = |y| sin θ , y
1
γ =

(
y

1
γ

1 , . . . , y
1
γ
n

)
,

and ω = (ω′,ωn) ∈ H with

|ω| = 1, |ω′| = cos
ϕ

2
, and ωn = sin

ϕ

2
,

here θ and ϕ
2 are the angles between y and ên,ω and ên, respectively. y

1
γ ω is the induced

function from ζ
1
γ ei

ϕ
2 , ζ = reiθ ∈ C.

Note thatuγ ,ϕ(y) is a harmonic function in the closed upper half-spaceH, which satisfies
the following

|u(x)| ≤ M|x|ρ
| sin ϕ|k ≤ M

| sin ϕ|k , |x| = |y 1
γ ω| ≤ 1.

Recall that y and ω are in the induced space of H,

|u(x)| ≤ M

| sin
(
θ
γ

+ ϕ
2

)
|k

≤ M
| csc ϕ2 |k = K .

Therefore uγ ,ϕ(y) satisfies the following estimate

uγ ,ϕ(y) ≥ −|y| ργ | csc
(
ϕ

2
+ θ

γ

)
|k ≥ −M|y| ργ | csc

(ϕ
2

)
|k. (18)
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By Theorem 4.1 and −uγ ,ϕ(y), the estimates (17) and (18) yield the upper bound

uγ ,ϕ(y) ≤ M|y| ργ | csc
(ϕ
2

)
|k csc θ.

In order to estimate the function u(x), we know that 0 < γ ϕ2 < π , and set y = (rω)γ in
(18). By the definition of uγ ,ϕ(y) we obtain the estimate

u(x) = uγ ,ϕ[(rω)γ ] ≤ Mrρ | csc
(ϕ
2

)
|k csc γϕ

2
≤ Mrρ( csc ϕ)k+1, (19)

within the cone {
x ∈ H, 0 < ϕ < π

(
1 − 1

γ

)}
.

In the same way the estimate is proved for

0 > ϕ > −π
(
1 − 1

γ

)
.

If we replace u(x) by u(− x), we find that (19) holds within the cone{
x ∈ H, |π − ϕ| < π

(
1 − 1

γ

)}
.

It remains to obtain the estimate of u(x) within the cone{
x ∈ H, |x′| = |x| cosϕ, xn = |x| sin ϕ,π

(
1 − 1

γ

)
< ϕ <

π

γ

}
.

For this purpose we set y = vγ in (18), where

v = (v′, vn) ∈ H with v′ = r cos
(
φ − ϕ

2

)
and vn = r sin

(
φ − ϕ

2

)
,

and obtain
u(y) = [uγ ,ϕ(v)]γ ≤ M(1 + rρ).

The same estimate is obviously true for

−π
γ

< π < −π
(
1 − 1

γ

)
.

Combining all the estimates, we obtain

u(x) ≤ M(1 + |x|ρ)
| sin ϕ|l ,

with l = k + 1. Then, Theorem 4.2 follows immediately from Theorem 3.2.

When n = 2, the above theorem reduces to Theorem 1.1 where u(z) = log |f (z)|. In
addition, the theorem generalizes the half space result in Theorem 1.4 to the entire space.
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5. Growth of subharmonic functions for ρ ≤ 1

As for the subharmonic functions admitting a lower bound for ρ ≤ 1, we have the
following generalized Matsaev result, whose proof utilizes an approach different from that
in the previous section.
Theorem 5.1: Suppose a subharmonic function h(x) in R

n has the lower bound

h(x) ≥ −M
1 + |x|ρ

xkn
, xn = |x| sin ϕ, 0 ≤ ρ < 1, k > 0. (20)

Then it belongs to Cartwright’s class C.

Proof: To begin with, we consider the subharmonic function −h(x) in the half-space
{x ∈ R

n, xn > 1}. By (20)

−h(x) ≤ −M(1 + |x|ρ), ρ < 1, xn ≥ 1. (21)

Hence −h(x) has a positive harmonic majorant in the upper half-space H, and then has
the following representation [20] (P128, Theorem 3.1.8′ and P186, Theorem 3.3.16)

−h(x) = − 1
(n − 2)wn

∫
H

h(y + e)
[

1
|x − −y + e|n−2 − 1

|x − ỹ + e|n−2

]
dy

−2(xn − 1)
nwn

∫
∂H

h(y′ + e)
|x − −y′ + e|n dy

′ + M(xn − 1), xn > 1,

in which
e = (0, . . . , 0, 1),

and
ỹ = (y1, . . . , yn−1,−yn)

is the reflection of y onto the hyperplane ∂H, where∫
H

h(y + e)
1 + |y|n dy < ∞, (22)

and ∫
∂H

h(y′ + e)
1 + |y′|n dy

′ < ∞. (23)

By Lemma 2.1
−h(x) < (σ + ε)|x|, σ = max (σ+, σ−),

holds for |x| > M, x ∈ R
n. Therefore,

h(x) < (σ + ε)|x|, |x| > M, (24)

in the half-space
H1 = {x = (x′, xn) ∈ R

n, xn ≥ 1}
and

{x = (x′, xn) ∈ R
n, xn ≤ −1}.
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Applying Theorem 4.1 in
{|yn| ≤ 1}

for
−h(x)− Mx′,

we have
| − h(x)| < (σ + ε)|x|.

Note that condition (23) yields the convergence of the integral

2(xn − 1)
wn

∫
∂H

h(y′ + e)
|x − −y′ + e|n dy

′, xn > 1,

which defines a positive harmonic function in H1 with boundary values on the hyperplane

{x = (x′, xn) ∈ R
n, xn = 1}

coinciding with h(y′ + e). Thus h(x) has a positive harmonic majorant in the half-space

{x = (x′, xn) ∈ R
n, xn < 1}.

Similarly, h(x) has a positive harmonic majorant in the half-space

{x = (x′, xn) ∈ R
n, xn > −1}.

Therefore, h(x) has a positive majorant in both H and −H. Applying Lemma 2.2, we
conclude that h(x) belongs to the Cartwright’s class C.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work was supported by NSFC [grant number 11501015]; NSFC [grant number 10901166];
Macau Government FDCT [grant number 099/2012/A3].

References

[1] Matsaev VI. On the growth of entire functions that admit a certain estimate from below. Dokl.
Akad. Nauk. SSSR. 1960;132:283–286. [English translate in Soviet Math. 1, 1960].

[2] Gohberg IC, Krein MG. Introduce to the theory of linear nonselfadjoint operators in
Hilbert Space. Translations of mathematical monographs. Vol. 18. Providence (RI): American
Mathematical Society; 1969.

[3] Kheyfits AI. Indicators of functions of order less than one that are analytic in an open half-plane
and have completely regular growth in interior angles. Math. USSR, Izv. 1975;9:850–860.

[4] Matsaev VI, Mogul’skii EZ. A division theorem for analytic functions with a given majorant,
and some of its applications. Investigations on linear operators and theory of functions. VI.
Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). 1976;56:73–89.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 653

[5] Govorrov NV, Zhuravleva MI. On an upper bound of the module of a function analytic in a
half-plane and in a plane with a cut. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv.
Nauk. 1973;4:102–103.

[6] Rashkovskii A. Classical and new loglog-theorems. Expo. Math. 2009;27:271–287.
[7] Sergienko EN. Growth of functions representable as the difference of subharmonic functions

and admitting a special lower bound. Teor. Funktsii Funktsional. Anal. i Prilozhen.
1982;37:116–122.

[8] Kheyfits AI. Growth of Schrödingerian subharmonic functions admitting certain bounds.
Oper. Theory: Adv. Appl. 2013;229:215–231.

[9] Yoshida H. A boundedness criterion for subharmonic functions. J. LondonMath. Soc. 1981;S2
24:148–160.

[10] Zhang YH, Deng GT, Kou KI. On the lower bound for a class of harmonic functions in the
half space. Acta Mathematica Scientia. 2012;32B:1487–1494.

[11] Levin BY. Lectures on entire functions. Providence (RI): AmericanMathematical Society; 1996.
[12] Zhang YH, Kou KI, Deng GT. Integral representation and asymptotic behavior of harmonic

functions in half space. J. Differ. Equ. 2014;257:2753–2764.
[13] Zhang YH, Deng GT, Qian T. Integral representations of a kind of harmonic functions in the

half space. J. Differ. Equ. 2016;2:923–936.
[14] Zhang YH. Phrágmen-Lindelöf theorems of subharmonic functions and their applications in

the half space. Sci. Sin. Math. 2015;45:1931–1938. Chinese.
[15] Zhang YH, Deng GT. Integral representation and asymptotic property of analytic functions

with order less than two in the half-plane. Complex Variables Elliptic Equ. 2005;50:283–297.
[16] Zhang YH, Deng GT. Growth properties for a class of subharmonic functions in half space.

Acta Mathematica Sinica. 2008;51:319–326. Chinese.
[17] Carleman T. Extension d’un théorème de Liouville [Extension of Liouville’s Theorem]. Acta

Math. 1926;48:25–61.
[18] Qian T. Fourier analysis on starlike Lipschitz surfaces. J. Funct. Anal. 2001;183:370–412.
[19] Siegel D, Talvila E. Sharp growth estimates for modified Poisson integrals in a half space.

Potential Anal. 2001;15:333–360.
[20] Hörmander L. Notions of convexity. Boston: Birkhäuser; 1994.
[21] Deny J, Lelong P. Sur une gènèralisation de I’indicatrice de Phragmén-Lindelöf [A generation

of indication of Phragmen-Lindelof]. C.R. Acad. Sci. Paris. 1947;224:1046–1048.


	1. Introduction
	2. Preliminaries
	3. Refinement of the upper bound
	4. Growth of subharmonic functions for rho1
	5. Growth of subharmonic functions for rholeq 1
	Disclosure statement
	Funding
	References



