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Schwarz Problems for Poly-Hardy Space
on the Unit Ball
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Abstract. In this paper we study the Schwarz boundary value problems(
for short BVP

)
for the poly-Hardy space defined on the unit ball of

higher dimensional Euclidean space R
n. We first discuss the boundary

behavior of functions belonging to the poly-Hardy class. Then we con-
struct the Schwarz kernel function, and describe the boundary properties
of the Schwarz-type integrable operator. Finally, we study the Schwarz
BVPs for the Hardy class and the poly-Hardy class on the unit ball of
higher dimensional Euclidean space R

n, and obtain the expressions of so-
lutions, explicitly. As an application, the monogenic signals considered for
the Hardy spaces defined on the unit sphere are reconstructed when the
scalar- and sub-algebra-valued data are given, which is the extension of
the analytic signals for the Hardy spaces on the unit circle of the complex
plane.
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1. Introduction

One of the fundamental boundary value problems in the classical complex
analysis is the Schwarz boundary value problem, for short, the Schwarz prob-
lem. When a real valued continuous function on the unit circle of the complex
plane is given, an analytic function is found on the unit disc, satisfying that

This work was supported by Portuguese funds through the CIDMA-Center for Research
and Development in Mathematics and Applications, and the Portuguese Foundation for
Science and Technology (“FCT-Fundação para a Ciência e a Tecnologia”), within project
UID/MAT/0416/2013, by University of Macau MYRG115(Y1-L4)-FST13-QT, and by the
Postdoctoral Foundation from FCT (Portugal) under Grant No. SFRH/BPD/74581/2010.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-016-0575-2&domain=pdf


802 U. Kähler et al. Results Math

the boundary value of the real part of it on the unit circle coincides with
the prescribed function. This problem is as a particular and simplest case
of the Riemann–Hilbert problem first proposed by Riemann in 1851, where
an analytic function is sought on the unit disc of the complex plane obtain-
ing a given linear combination of its real and imaginary parts on the bound-
ary. In 1872, Schwarz solved this particular problem long before the general
Riemann–Hilbert problem was successfully dealt with, see Refs. e.g. [1,2]. He
made a modification of the classical Cauchy kernel, and the real part of his
kernel, nowadays known as the Schwarz kernel, turns out to coincide with the
classical Poisson kernel for the harmonic functions [3–5]. Later on, Refs. [6,7]
studied the Schwarz problems for the Hardy spaces and the poly-Hardy spaces
on the unit disc of the complex plane, and got the explicit integrable solu-
tions. Hereby, what interests us lies in the observation that the solutions to
the Schwarz BVPs in the case of the Hardy spaces on the unit disc or on the
half plane is equivalent to the reconstruction of the analytic signals

(
The an-

alytic signals are regarded as the non-tangential boundary values of functions
belonging to the Hardy spaces on the unit disc or on the real line [8,9].

)
for

the Hardy spaces on the unit circle or on the real line.
The Riemann–Hilbert BVPs including the Schwarz problem as a special

case, for the monogenic functions and the poly-monogenic functions defined in
the sub-domains of higher dimensional Euclidean space were discussed in Refs.
e.g. [10–12], making full use of Clifford analysis, which is an elegant general-
ization of the theory of complex analysis into higher dimensional Euclidean
space

(
seen in Refs. e.g. [13–15]

)
. However, no study of the Riemann–Hilbert

BVPs has been done to link to the monogenic signals defined on the sphere of
higher dimensional Euclidean space R

n
(
Here, the monogenic signals could be

regarded as the non-tangential limits of monogenic functions on the bound-
ary [8,9].

)
. On the other hand, although the monogenic signals in three di-

mensions were studied in Refs. [16–18], utilizing the Clifford algebra valued
Hilbert transforms

(
see Refs. e.g. [8,13,15,19]

)
, to the authors’ knowledge,

only special ones have been explicitly presented. Thus, the natural questions
arise as what the expressions of all of them would look like and how they link
to the Riemann–Hilbert BVPs for the poly-Hardy spaces in higher dimensional
Euclidean space R

n. These will be not only purely theoretical questions, since
such problems are closely linked to physical applications like signal processing
[8,16] or problems in fluid mechanics [14,15]. Furthermore, to solve these ques-
tions gives impetus to consider respective discrete problems [20,21]. Moreover,
in Refs. [8,22], the unique vector-valued monogenic signal in four dimensions
was constructed under the additional Cauchy-type harmonic conjugate condi-
tion. Motivated by these considerations, we will extend the connection between
analytic signals and the Schwarz BVPs for Hardy spaces to the case of higher
dimensional Euclidean space R

n, and use them to reconstruct all of the mono-
genic signals considered on the unit sphere of higher dimensional Euclidean
space R

n in explicit form. Referring to the case of Hilbert-type BVPs for the
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poly-Hardy spaces on the unit circle [7], we will mainly study the Schwarz
BVPs for the poly-Hardy spaces defined on the unit ball of higher dimensional
Euclidean space R

n. We first introduce the poly-Hardy class on the unit ball
of higher dimensional Euclidean space R

n, characterize the boundary behavior
of functions in the poly-Hardy class, construct the Schwarz kernel function in
the higher dimensions, and describe the boundary properties of the Schwarz
integrable operator. Then making full use of them, we solve the Schwarz BVPs
for the Hardy class on the unit ball and for the poly-Hardy class on the unit
ball, of higher dimensional Euclidean space R

n, respectively. Finally, we get
the explicit expressions of solutions. As an application, all of the monogenic
signals considered on the unit sphere of higher dimensional Euclidean space
R

n are reconstructed when the scalar- and sub-algebra-valued boundary data
are given.

The paper is organized as follows. In Sect. 2 we simply recall some basic
facts about Clifford analysis which will be needed in the sequel. In Sect. 3,
we will introduce the poly-Hardy space on the unit ball of higher dimensional
Euclidean space R

n, derive the decomposition theorem and characterize the
boundary behavior of the functions in the poly-Hardy class. In Sect. 4, we intro-
duce the theory of the Schwarz boundary value problem for the Hardy class on
the unit ball of higher dimensional Euclidean space R

n with Lp

(
1 < p < +∞)

-
integrable boundary data, and construct the Schwarz kernel function to solve
it. In the last section we will discuss the Schwarz boundary value problems for
the poly-Hardy class on the unit ball of higher dimensional Euclidean space
R

n with boundary data belonging to Lp

(
1 < p < +∞)

space. For this class
of Schwarz boundary value problem, based on the decomposition theorem, we
get the explicit expressions of their solutions.

2. Preliminaries

In this section we simply review some basic facts about Clifford algebras which
will be needed in the sequel. More details could be seen in Refs. e.g. [13–15]
or monographs elsewhere.

Let the Euclidean space R
n (n ∈ N, n ≥ 2) possess an orthogonal basis{

e1, e2, . . . , en

}
satisfying e2

i = −1 for i = 1, 2, . . . , n, eiej + ejei = 0 for 1 ≤
i < j ≤ n, and eh1eh2 . . . ehr

= eh1h2...hr
for 1 ≤ h1 < h2 < · · · < hr ≤ n. Thus

leads to the 2n-dimensional real Clifford algebra Rn, having the basis {eA : A =
{h1, . . . , hr} ∈ PN}, where N stands for the set

{
1, 2, . . . , n

}
and PN denotes

the family of all order-preserving subsets of N . In particular, we denote e∅ as
e0, which is the identity element now written as 1. All of the scalars, 1-vectors
and 2-vectors in Rn are denoted by R0,R1(∼= R

n) and R2, respectively. An
arbitrary element of R1 is denoted by x =

∑n
j=1 xjej � x+xnen, xj ∈ R0

(
j =

1, 2, . . . , n
)
. Let Rn−1 be a sub-algebra of Rn constructed by

{
e1, e2, . . . , en−1

}
,

then Rn = Rn−1 ⊕ enRn−1. Given a λ = λ1 + enλ2 ∈ Rn with λ1, λ2 ∈
Rn−1, we define X(n)(λ) = λ1 and Y (n)(λ) = λ2, and Sc(λ) = λ0, λ0 ∈ R0



804 U. Kähler et al. Results Math

being the scalar part of λ. The conjugation is defined by ā =
∑

A aAēA, ēA =
(−1)

k(k+1)
2 eA, N(A) = k, aA ∈ R0. The inner product 〈·, ·〉 in Rn is defined by

putting
〈
a, b̄

〉
= [ab]0 for arbitrary a, b ∈ Rn. The Clifford product of x, y ∈ R1

is defined by xy = −〈x, y〉 + x ∧ y, x ∧ y =
∑

1≤i<j≤n eiej (xiyj − xjyi). It is

easy to derive the norm on Rn by |a| = (
∑

A
∣
∣aA

∣
∣2)

1
2 =

√〈a, a〉. Especially, we

have |x|2 = (
n∑

j=1

x2
j )

1
2 = 〈x, x〉 , x =

∑n
j=1 ejxj ∈ R1. Moreover, x−1 � x|x|−2

is the inverse of x ∈ R1\{0}, i.e., xx−1 = x−1x = 1. Up to the conjugation it
corresponds to the Kelvin inverse in real analysis.

We introduce the Dirac operator D =
∑n

j=1 ej∂xj
, where ∂xj

, j = 1, 2, . . . ,

n, denotes the partial differential operator ∂
∂xj

. It results in the decomposition

of the negative Laplacian in R1, i.e., D2 = −∑n
j=1 ∂2

xj
.

Let B = {x ∈ R1 : |x| < 1} be the unit ball centered at the origin with
its boundary ∂B = {x ∈ R1 : |x| = 1}. The Lp

(
1 < p < +∞)

-integrability,
continuity, differentiability, and so on of a function φ(x) =

∑
A φA(x)eA : B →

Rn, are ascribed to each component φA(x) : B → R0, which is continuous,
differentiable, and so on, respectively. Let Ck

(
B,Rn

)(
k ≥ 1, k ∈ N

)
denote

the space of all k-times continuously differentiable functions defined in B. The
null solutions to the higher order Dirac operator Dk, i.e., Dkφ(x) = 0, are the
so-called poly-monogenic functions, particularly monogenic when k = 1. The
set of all these functions is denoted by Hk(B) =

{
φ : B → Rn

∣
∣Dkφ = 0

}
.

3. Poly-Hardy Spaces

In this section we will introduce the poly-Hardy space on the unit ball of
higher dimensional Euclidean space R

n, get a decomposition theorem for it,
and study its boundary behavior.

Let φ be a function defined on the unit ball B of higher dimensional
Euclidean space R

n, the monogenic Hardy space on the unit ball is defined as

H
p(B) =

{
φ ∈ H1(B) : |φ|1,p < +∞

}
(1)

where |φ|1,p = sup0≤r<1 |φr|p, with

|φr|p =
(∫

∂B

∣
∣φr(η)

∣
∣pdSη

) 1
p

, φr(η) = φ (rη) , 0 ≤ r < 1, η ∈ ∂B, 1 < p < +∞.

(2)

Then the space H
p(B) is a Banach space under the norm of (2). In the

special case of p = 2, H2(B) is a Hilbert space under the inner product
(
f, g

)
=∫

∂B
f(η)g(η)dSη, f, g ∈ H

2(B).
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Let Hk(B)
(
k ≥ 1, k ∈ N

)
be as in Sect. 2. For arbitrary function φ ∈

Hk(B), we define functions as follows

φj = Djφ, x ∈ B, j = 0, 1, 2, . . . , k − 1, (3)

and, hereby, φ0 = φ, x ∈ B.

Definition 3.1. For arbitrary 1 < p < +∞ and k ≥ 1, k ∈ N, the set of all
functions defined on the unit ball B of higher dimensional Euclidean space R

n,
satisfying

{
φ ∈ Hk(B) :

∣
∣φj

∣
∣
1,p

< +∞, j = 0, 1, 2, . . . , k − 1
}

, (4)

is the so-called poly-Hardy space of order k defined on the unit ball, where the
norm |.|1,p is defined as (2) and φj

(
j = 0, 1, 2, . . . , k − 1

)
given in (3). There-

fore, such a poly-Hardy space defined on the unit ball of higher dimensional
Euclidean space R

n will be denoted as H
p
k(B).

It is obvious that the space H
p
k(B)

(
1 < p < +∞)

is linear. Define

|φ|k,p =
k−1∑

j=0

∣
∣φj

∣
∣
1,p

, φ ∈ H
p
k(B), (5)

where the norm |.|1,p is given in (2). In the following context we assume
H

p
1(B) = H

p(B) without confusion and for brevity. In particular, when k = 1,
the norm |.|k,p in (5) reduces to the case of (2). When k = 2, the space
H

p
2(B)

(
1 < p < +∞)

is actually the harmonic Hardy space defined on the
unit ball B of higher dimensional Euclidean space R

n. Generally, when k =
2m,m ∈ N, the space H

p
k(B)

(
1 < p < +∞)

is the poly-harmonic Hardy space
defined on the unit ball B of higher dimensional Euclidean space R

n. From
Definition 4.1, we get H

p
k(B) = {φ ∈ Hk(B) : |φ|k,p < +∞}. In order to avoid

the trivial case, we assume k > 1, k ∈ N without explanation.
Before characterizing the boundary behavior of the poly-Hardy space

H
p
k(B), we need several lemmas as follows.

Lemma 3.2 (see Refs. [23–27]). The shifted Euler operator defined on the space
C1
(
B,Rn

)
is given by

Es = sI +
n∑

j=1

xj∂xj

(
s > 0

)
, (6)

with I being the identity operator defined on the space C1
(
B,Rn

)
. The operator

Is : C(B,Rn

) → C(B,Rn

)
is defined by



806 U. Kähler et al. Results Math

Isφ =
∫ 1

0

φ
(
tx
)
ts−1dt

(
s > 0

)
, x ∈ B. (7)

Then on the space C1
(
B,Rn

)
we have

(i) EsIs = IsEs = I,

(ii) DEsφ = Es+1Dφ and Esxφ = xEs+1φ.

Furthermore, if φ ∈ Ck
(
B,Rn

)
, k ∈ N, is a solution to Dkφ = 0, then Esφ and

Isφ are both solutions to Dkφ = 0, where Dkφ � Dk−1
(Dφ

)
.

Lemma 3.3 (see Refs. [23,26,27]). Let j ∈ N be arbitrary. If φ ∈ C1
(
B,Rn

)
is

monogenic, then

D (
xjφ

)
=
{−2mx2m−1φ, if j = 2m,

−2x2(m−1)En+1
2 +[ j

2 ]−1φ, if j = 2m − 1,
x ∈ B,

where m ∈ N. Moreover, for l, p ∈ N and 2 ≤ l ≤ j, one gets

Dlxjφ = Cl,jx
j−lEn+1

2 +[ j−l
2 ] . . . En+1

2 +[ j
2 ]−1φ, (8)

with

Cl,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2lm
(
m − 1

)
. . .

(
m − p + 1

)
, if j = 2m, l = 2p,

−2lm
(
m − 1

)
. . .

(
m − p

)
, if j = 2m, l = 2p + 1,

2l
(
m − 1

)
. . .

(
m − p

)
, if j = 2m − 1, l = 2p,

−2l
(
m − 1

)
. . .

(
m − p + 1

)
, if j = 2m − 1, l = 2p − 1.

Particularly, for l = j, we derive

Djxjφ=Cj,jE n+1
2

. . . E n+1
2 +m−1φ with Cj,j =

{
2jm!, if j = 2m,

−2j
(
m − 1

)
!, if j = 2m − 1.

Lemma 3.4. (i) If φ ∈ H
p(B), and Es (s > 0) defined by (6), then Esφ ∈ H

p(B).
(ii) If φ ∈ H

p(B), and Is (s > 1) defined by (7), then Isφ ∈ H
p(B).

Proof. (i) Since φ ∈ H
p(B), due to Lemma 3.2, then DEsφ = 0, x ∈ B. From

(5), |φ|1,p < +∞. Therefore, using the Minkowski’s inequality, we get Esφ ∈
H

p(B).
(ii) Since φ ∈ H

p(B), then |φ|1,p < +∞, that is, sup0≤r<1

(∫
∂B

|φ(rη)|p
dη)

1
p < +∞.
As Isφ(x) =

∫ 1

0
φ(tx)ts−1dt (s > 1) , x ∈ B, then applying the Hölder

inequality, we have
∫

∂B

|Isφ(x)|p dx ≤
∫

∂B

∫ 1

0

|φ(tx)|p tp(s−1)dtdx =
∫ 1

0

∫

t∂B

|φ(u)|p dutp(s−1)−1dt

≤ |φ|p1,p

∫ 1

0

tp(s−1)−1dt =
1

p(s − 1)
|φ|p1,p < +∞. (9)

Therefore, |Isφ(x)|1,p < +∞, that is, Isφ ∈ H
p(B). �

Now, let us derive the following theorem for the poly-Hardy space H
p
k(B).
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Theorem 3.5. Let Hp
k(B), 1 < p < +∞, be the poly-Hardy space of order k

(
k >

1
)
defined on the unit ball of higher dimensional Euclidean space R

n, then

H
p
k(B) = H

p
1(B) ⊕ xHp

1(B) ⊕ · · · ⊕ xk−1
H

p
1(B), (10)

where xj
H

p
1(B) = {xjφ(x) : φ ∈ H

p
1(B)}, j = 0, 1, 2, . . . , k − 1.

Proof. First of all, there needs to prove that

H
p
k(B) ⊂ H

p
1(B) ⊕ xHp

1(B) ⊕ · · · ⊕ xk−1
H

p
1(B). (11)

In fact, if φ ∈ H
p
k(B), applying Definition 4.1 and Lemma 3.3 in [23] or [27],

one has the unique decomposition

φ =
k−1∑

j=0

xjφj , x ∈ B, (12)

where each φj is monogenic in B
(
j = 0, 1, 2, . . . , k − 1

)
and given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ0 =
(
I − xQ1D

)(
I − x2Q2D2

)
. . .

(
I − xk−1Qk−1Dk−1

)
φ,

φ1 = Q1D
(
I − x2Q2D2

)
. . .

(
I − xk−1Qk−1Dk−1

)
φ,

...
...

φk−2 = Qk−2Dk−2
(
I − xk−1Qk−1Dk−1

)
φ,

φk−1 = Qk−1Dk−1φ,

with Qj = 1
aj

In
2
In

2 +1 . . . In
2 +[ j−1

2 ], aj = (−2)k[ j
2 ]! for j = 1, 2, . . . , k − 1, and

[s] =
{

q, if q ∈ N,
q + 1, if s = q + t, q ∈ N, 0 < t < 1.

Moreover, by Lemma 3.3, we get

Dφ =
k−1∑

j=1

D (
xjφj

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
k−1∑

j=1

2mxj−1φj , if j = 2m,

−
k−1∑

j=1

2xj−1En+1
2 +[ j

2 ]−1φj , if j = 2m − 1,

(13)

and for l ∈ N and 2 ≤ l ≤ j,

Dlφ=
k−1∑

j=1

Dl
(
xjφj

)
=

k−1∑

j=1

Cl,jx
j−lEn+1

2 +[ j−l
2 ] . . . En+1

2 +[ j
2 ]−1φj , x∈B. (14)

This implies

φk−1 = C−1
k−1,k−1In+1

2 +m−1 . . . In+1
2

φk−1, x ∈ B with

Ck−1,k−1 =

{
2k−1m!, if k − 1 = 2m,

−2k−1
(
m − 1

)
!, if k − 1 = 2m − 1.
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Since φ ∈ H
p
k(B), then

∣
∣φk−1

∣
∣
1,p

< +∞. Therefore, associating with Lemma
3.4, we have |φk−1|1,p < +∞. Secondly, we also get

φk−2 = C−1
k−2,k−2In+1

2 +m−1 . . . In+1
2

×
(
φk−2 − Ck−2,k−1xEn+1

2 +[ 12 ] . . . En+1
2 +[ k−2

2 ]−1φk−1

)
, x ∈ B. (15)

From (12), we know D(φk−2 − Ck−2,k−1xEn+1
2 +[ 12 ] . . . En+1

2 +[ k−2
2 ]−1φk−1) =

0, x ∈ B. Making full use of Lemmas 3.2 and 3.4, we have
|xEn+1

2 +[ 12 ] . . . En+1
2 +[ k−2

2 ]−1φk−1|1,p < +∞. Associating with |φk−1|1,p < +∞
and |φk−2|1,p < +∞, we get |φk−2|1,p < +∞.

Applying (14) and Lemma 3.4, by iteration of the same procedure, one
has |φj |1,p < +∞, j = 0, 1, . . . , k − 3.

This implies φj ∈ H
p
1(B), j = 0, 1, 2, . . . , k − 1, which gives the validity of

(11). Thus, we get

H
p
k(B) = H

p
1(B) + xHp

1(B) + · · · + xk−1
H

p
1(B). (16)

Finally, let 0 =
∑k−1

j=0 xjφj(x) with φj ∈ H
p
1(B), j = 0, 1, 2, . . . , k − 1. Starting

with (3), one gets that φj ≡ 0, j = 0, 1, 2, . . . , k − 1, x ∈ B. The proof of the
result is completed. �

Due to Theorem 3.5, we might characterize the boundary behavior of functions
belonging to the poly-Hardy space H

p
k(B).

Theorem 3.6. If φ ∈ H
p
k(B)

(
1 < p < +∞)

, then φ has the non-tangential limit
φ+ almost everywhere on the sphere ∂B under the | · |p-norm given by (2), and

lim
r→1

∣
∣φ+ − φr

∣
∣
p

= 0, (17)

where φr is same with (2).

Proof. Since φ ∈ H
p
k(B)

(
1 < p < +∞)

, making full use of Theorem 3.5, we
have

φ(x) =
k−1∑

j=0

xjφj(x), φj ∈ H
p
1(B), j = 0, 1, 2, . . . , k − 1. (18)

Applying the boundary behavior of the monogenic Hardy space H
p
1(B)

(
see

Theorem 7.9 of Chapter 2 in Ref. [15]
)
, φj

(
j = 0, 1, 2, . . . , k − 1

)
has non-

tangential limit φ+
j (t) almost everywhere on the sphere ∂B, and

lim
r→1

∣
∣φ+

j − (φj)r

∣
∣
p

= 0, (19)
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where (φj)r

(
j = 0, 1, 2, . . . , k−1

)
is defined similarly to (2). Hence, associating

with the decomposition (18), we obtain

φ+(t) =
k−1∑

j=0

tjφ+
j (t), a.e. t ∈ ∂B. (20)

This implies that φ has non-tangential limit φ+ almost everywhere on the
sphere ∂B. Applying (19) and (20), one has

∣
∣φ+ − φr

∣
∣
p

≤
k−1∑

j=0

[∣
∣
∣φ+

j − (φj)r

∣
∣
∣
p

+
(
1 − rj

)∣∣
∣(φj)r

∣
∣
∣
p

]
, (21)

which leads to the validity of (17) by (19). It follows the result. �

Corollary 3.7. If φ ∈ H
p
k(B)

(
1 < p < +∞)

, then Djφ have the non-tangential
limit

(Djφ
)+

, j = 1, 2, . . . , k − 1, almost everywhere on the sphere ∂B under
the | · |p-norm given by (2). This implies that the non-tangential limits of the
right-hand sides of (13) and (14) all exit under the | · |p-norm given by (2).

Proof. Since φ ∈ H
p
k(B)

(
1 < p < +∞)

, associating with (5), then Djφ ∈
H

p
k−j(B)

(
1 < p < +∞)

, j = 1, 2, . . . , k − 1. According to Theorem 3.6, it
follows the result. �

Remark 3.8. Theorem 3.6 gives the characterization of boundary behavior of
the poly-Hardy space H

p
k(B)

(
1 < p < +∞)

. The boundary value φ+ seen in
(20) is the so-called non-tangential boundary value of φ. In what follows, the
symbol φ+ will be understood as the non-tangential boundary value of φ if no
explanation. Moreover, if k = 1, when the dimension of the space considered
is n = 4, it reduces to that in [8]. When the dimension of the space considered
is n = 2, it reduces to that in [7].

4. Schwarz BVPs for Hardy Space

In this section, we study the non-homogeneous Schwarz BVPs for the Hardy
class on the unit ball of higher dimensional Euclidean space R

n with
Lp (1 < p < +∞)-integrable boundary data. For this kind of Schwarz BVPs,
we obtain the explicit expressions of the solutions.
First, let us give a theorem about the harmonic conjugate of a monogenic
function defined on the unit ball of higher dimensional Euclidean space R

n.

Definition 4.1. Let Ω be a sub-domain of Rn (Rn ∼= R1), and φ, ψ∈C2 (Ω,Rn−1)
are harmonic. If the function φ + enψ is monogenic in Ω, then φ is called
harmonic conjugate to ψ.
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Obviously, then also ψ is harmonic conjugate to φ. According to Defini-
tion 4.1, for the function

P
(
x, y

)
=

1 − |x|2
ωn|y − x|n

(
n ≥ 2, n ∈ N

)
, x ∈ B, y ∈ ∂B, (22)

where ωn denotes the area of unit sphere ∂B, a harmonic conjugate function
Q
(
x, y

)
of P

(
x, y

)
could be given by

Q
(
x, y

)
=

1
ωn

[
(2 − n)

(
x − y

)

∣
∣y − x

∣
∣n−1 +

(n − 1) (x − y)
〈
x − y, 2x

〉

∣
∣y − x

∣
∣n+1

− 2x
∣
∣y − x

∣
∣n−1 F

(
n

2
,
xn − yn∣
∣y − x

∣
∣n

)

+
2
(
x − y

)

∣
∣y − x

∣
∣n

(
(xn − yn)

〈
x − y, x

〉

∣
∣y − x

∣
∣2

− xn

)]

, (23)

where

F
(
α, t

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2α−1

t
(1+t2)α−1 + 2α−3

2α−2F
(
α − 1, t

)
, 2α ∈ N + 2, α �= 1,

1
2α−2

t
(1+t2)α−1 F

(
3
2 − α, 1; 2 − α; 1 + t2

)
, α ∈ N + 3

2 ,

1
2α−2

t
(1+t2)α−1

(
α−2∑

k=0

( 3
2−α)

k

(2−α)k

(
1 + t2

)k
)

α ∈ N + 1,

+ 1
2α−2

( 3
2−α)α−2

(2−α)α−2
arctan t,

(24)
with

(a)k �
{

1, k = 0,
a(a + 1) . . . (a + k − 1), k ∈ N,

(25)

and F
(
a, b; c; t

)
stands for the hyper-geometric function, see Refs. e.g. [12,28].

Similar results could be also seen in Refs. e.g. [28–33].

Theorem 4.2. Let P
(
x, y

)
, Q

(
x, y

)
be as (22) and (23), respectively. Introduce

the function

K
(
x, y

)
= P

(
x, y

)
+ enQ

(
x, y

)
, x ∈ B, y ∈ ∂B. (26)

If f ∈ Lp

(
∂B,Rn−1

)
, then

p.v.
∫

∂B

Q (x, y) f(y)dSy, x ∈ ∂B (27)

is well defined, where p.v. is short for the Cauchy principle value. Moreover,

Qf(x) � p.v.
∫

∂B

Q (x, y) f(y)dSy ∈ Lp

(
∂B,Rn−1

)
. (28)
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Proof. Observing that Q (x, y) of the singular integrable operator (27) behaves
like the Cauchy kernel G1 (y − x), which is given by

G1 (y − x) =
1

ωn

y − x

|y − x|n , y �= x, (29)

at the singular point when we consider the Cauchy principle value of the
singular integrable operator (27), we get (28). �

Furthermore, Theorem 4.2 leads to

p.v.
∫

∂B

K (x, y) f(y)dSy ∈ Lp

(
∂B,Rn

)
, (30)

and

lim
B�x→y∈∂B

∫

∂B

K (x, y) f(y)dSy

= f(y) + en p.v.
∫

∂B

Q (x, y) f(y)dSy ∈ Lp

(
∂B,Rn

)
. (31)

Remark 4.3. Also, we could give the definition of the harmonic conjugate,
starting with a scalar-valued function. Let Ω be a sub-domain of Rn (Rn ∼= R1)
with Lipschitz boundary ∂Ω. If φ ∈ C2 (Ω,Rn) is a scalar-valued harmonic, and
ψ ∈ C2 (Ω,Rn) is also harmonic whose scalar part is zero, satisfying

φ+ψ=
1

ωn

∫

∂Ω

G1 (y − x) dσyf(y) for a scalar-valued f, x ∈ R
n\∂Ω, (32)

where ωn is the area of unit sphere of Rn (Rn ∼= R1) and G1 (y − x) is given
by (29), then φ is so-called to be the Cauchy-type harmonic conjugate of ψ.
In particular, for the function

P (x, y) =
1

ωn

1 − |x|2
|y − x|n , (33)

its unique Cauchy-type harmonic conjugate is

Q̃ (x, y) =
1

ωn

(
2

|y − x|n − m − 2
rm−1

∫ r

0

ρm−1

|ρζ − y|n dρ

)
x ∧ y, (34)

where x = rζ, y, ζ ∈ ∂B, 0 ≤ r < 1. Results similar to Theorem 4.2 could be
seen in Ref. [22]. Both of Theorem 4.2 and Remark 4.3 allow us to define a
Hilbert transform H(f) = Qf on the sphere ∂B.

Next, let us consider our Schwarz boundary value problem for Hardy space.

Problem I. Given the boundary data f ∈ Lp

(
∂B,Rn−1

)
, find a function φ ∈

H
p(B), satisfying the Schwarz boundary value condition

X(n)
{
λφ

}
= f, a.e. x ∈ ∂B, (35)

where λ ∈ Rn−1 is an arbitrary invertible constant with its inverse λ−1.
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Theorem 4.4. For the given function f ∈ Lp

(
∂B,Rn−1

)
, Problem (35) has the

general solution and its explicit form is given by

φ(x) =
∫

∂B

K
(
x, y

)
λ−1f(y)dSy + λ−1en

+∞∑

s=0

Vl1,...,ls(x)al1,...,ls , x ∈ B, (36)

where K
(
x, y

)
is given by (26), and

Vl1,...,ls(x) =
1
s!

∑

π(l1,...,ls)

zl1zl2 . . . zls

with zs = xse0 − x1e1es (s = 1, 2, . . . , n − 1) , al1,...,ls ∈ Rn−1 being constants,
respectively.

Proof. From Theorem 4.2, we know that

ψ1(x) =
∫

∂B

K
(
x, y

)
λ−1f(y)dSy ∈ H

p(B) (37)

satisfies the condition of Problem (35). Hence, we only need to consider the
homogeneous Schwarz problem

X(n)
{
Φ
}

= 0, a.e. x ∈ ∂B. (38)

In what follows, we will first prove that if there exists a solution to the homo-
geneous case of Problem (38), then it could be given explicitly.

In fact, Let Φ is a solution to the homogeneous case of Problem (35),
then we have DΦ = 0, x ∈ B and

{
Δ
(
X(n)Φ

)
= 0, x ∈ B,(

X(n)Φ
)

= 0, a.e. x ∈ ∂B.
(39)

Therefore, X(n)Φ ≡ 0, x ∈ B, that is, Φ = enY (n)Φ, x ∈ B.
Secondly, beginning with Definition 4.1, we get that the solution to Prob-

lem (38) is presented by

Y (n)Φ(x) =
+∞∑

s=0

Vl1,...,ls(x)al1,...,ls , al1,...,ls ∈ Rn−1, (40)

where Vl1,...,ls(x) = 1
s!

∑
π(l1,...,ls) zl1zl2 . . . zls , zs = xse0−x1e1es (s = 1, 2, . . . ,

n − 1) , al1,...,ls ∈ Rn−1.

Thus the result follows. �

Remark 4.5. When p = 2, λ = 1, Problem (35) changes into the case
{

φ ∈ H
2(B),

X(n)
{
φ
}

= f, a.e. x ∈ ∂B,
(41)

where f ∈ L2

(
∂B,Rn−1

)
. Its solving actually corresponds to reconstruct the

real algebra Rn-valued monogenic signals of the Hardy space defined on B
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when a real sub-algebra valued Rn−1 boundary datum is given on the sphere
∂B.

Similarly, when a scalar-valued initial datum is given on the sphere ∂B,
to find a paravector valued monogenic signal is equivalent to solve a Schwarz
BVP as follows.

Problem II. Find a function φ : B → R0 ⊕ R2, satisfying
{

φ ∈ H
2 (B) ,

Sc
{
φ
}

= f, a.e. x ∈ ∂B,
(42)

where f ∈ L2

(
∂B,R0

)
. Its unique solution is presented by

φ(x) =
∫

∂B

K̃
(
x, y

)
f(y)dSy, x ∈ B, (43)

where

K̃
(
x, y

)
= P (x, y) + Q̃ (x, y) , x ∈ B, y ∈ ∂B, (44)

with Q̃ (x, y) seen in (34).

Remark 4.6. When the dimension of the considered space is equal to 2, Prob-
lems (35) and (42) are both changed into the classical Schwarz BVP [7]: to
find a function φ : D → C, where C ∼= {x0 + e1x1 : x0, x1 ∈ R0} or R2, D =
{|x| < 1 : x = x0 + e1x1, x0, x1 ∈ R0} or D = {|x| < 1 : x = x1e1 + e2x2, x1,
x2 ∈ R0} with its boundary ∂D, satisfying

{
φ ∈ H

p (D,C) ,
Re

{
φ
}

= f, a.e. x ∈ ∂D,
(45)

where Re(x) = x0 or x1, x ∈ C with C as above, which corresponds to the real
part of a complex number in the planar complex analysis. After direct obser-
vation, K

(
x, y

)
and K̃

(
x, y

)
defined by (26) and (44) play the role analogous

to the classical Schwarz kernel function in Problems (35) and (42), respec-
tively. Therefore, hereby, they are the so-called Schwarz kernel functions in the
higher dimensions, for short, still the Schwarz kernel functions. Thus, Theo-
rem 4.2 gives the characterization of the boundary properties of the Schwarz
integrable operator, which corresponds to the Plemelj–Sokhotsky formula in
complex analysis.

5. Schwarz BVPs for Poly-Hardy Space

In this section, we extend the results obtained in the previous section. We study
the Schwarz BVP for the poly-Hardy class on the unit ball with
Lp (1 < p < +∞)-integrable boundary data, and derive the explicit expres-
sions of the solutions.
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Problem III. Given the boundary data fj ∈ Lp

(
∂B,Rn−1

)
, j = 0, 1, 2, . . . , k−1,

find a function φ : B → Rn satisfying the Schwarz boundary value conditions
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ ∈ H
p
k(B), 1 < p < +∞,

X(n)
{
λφ

}
= f0, a.e. x ∈ ∂B,

...
...

X(n)
{
λDk−1φ

}
= fk−1, a.e. x ∈ ∂B,

(46)

where λ ∈ Rn−1 is a constant with its inverse λ−1.

Theorem 5.1. For the given function fj ∈ Lp

(
∂B,Rn−1

)
, j = 0, 1, 2, . . . , k − 1,

Problem (46) has the general solution and its explicit form is given by

φ(x) =
k−1∑

j=0

xjφj(x), x ∈ B, (47)

with

φj(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂B

K
(
x, y

)
λ−1f̃0(y)dSy + λ−1en

+∞∑
s=0

Vl1,...,ls (x)a
(0)
l1,...,ls

, if j = 0,

C−1
1,1I n+1

2

(
∫
∂B

K
(
x, y

)
λ−1f̃1(y)dSy + λ−1en

+∞∑
s=0

Vl1,...,ls (x)a
(1)
l1,...,ls

)

, if j = 1,

C−1
j,j I n+1

2 +[ j
2 ]−1

. . . I n+1
2

(
∫
∂B

K
(
x, y

)
λ−1f̃j(y)dSy + λ−1en

+∞∑
s=0

Vl1,...,ls (x)a
(j)
l1,...,ls

)

,

if 2 ≤ j ≤ k − 1,

(48)

where K
(
x, y

)
as (26), a

(j)
l1,...,ls

∈ Rn−1, j = 0, 1, 2, . . . , k − 1 are all constants,
and for arbitrary x ∈ ∂B,

f̃j(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x) −
k−1∑

l=1
C−1

l,l
X(n)

{
xl

(
∫

∂B
K

(
x, y

)
λ−1f̃l(y)dSy + λ−1en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
, if j = 0,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l

X(n)
{

xlI n+1
2

+[ l

2
]−1 . . . I n+1

2

(
∫

∂B
K

(
x, y

)
λ−1f̃l(y)dSy

+ λ−1en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
, if j = 1, k odd,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l

X(n)
{

xlI n+1
2

+[ l

2
] . . . I n+1

2

(
∫

∂B
K

(
x, y

)
λ−1f̃l(y)dSy

+ λ−1en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
, if j = 1, k even,

fj(x) −
k−1∑

l=j+1
Ck−1,lC

−1
l,l

X(n)
{

xlI n+1
2

+[ l−j

2
] . . . I n+1

2

(
∫

∂B
K

(
x, y

)
λ−1f̃l(y)dSy

+ λ−1en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
, if 2 ≤ j ≤ k − 1.

(49)

Proof. Since φ ∈ H
p
k(B), 1 < p < +∞, in virtue of Theorem 3.5, there exists

unique functions φj satisfying φj ∈ H
p(B), j = 0, 1, 2, . . . , k − 1 and φ =

∑k−1
j=0 xjφj .

Using Lemma 3.2 for arbitrary l ∈ N, l ≤ j, we have

Dlφ =
k−1∑

j=0

Dl
(
xjφj

)
=

k−1∑

j=l

Cl,jx
j−l

(
En+1

2 +[ j−l
2 ] . . . En+1

2 +[ j
2 ]−1φj

)
. (50)
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Then, making use of Theorem 3.6 and Corollary 3.7, Problem (46) is equivalent
to the case
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φj ∈ H
p(B), j = 0, 1, 2, . . . , k − 1,

X(n)
{
λxjφj

}
= f0, x ∈ ∂B,

X(n)

{

λ
k−1∑

j=1

C1,jxj−1E n+1
2 +[ j−1

2 ] . . . E n+1
2 +[ j

2 ]−1φj

}

= f1, x ∈ ∂B,

...
...

X(n)

{

λ
k−1∑

j=l

Cl,jxj−lE n+1
2 +[ j−l

2 ] . . . E n+1
2 +[ j

2 ]−1φj

}

= fl, x ∈ ∂B,

...
...

X(n)
{

λCk−1,k−1E n+1
2

. . . E n+1
2 +[ k−1

2 ]−1φk−1

}
= fk−1, x ∈ ∂B.

(51)

We now proceed by induction. First, we consider
{

φk−1 ∈ H
p(B),

X(n)
{

λCk−1,k−1En+1
2

. . . En+1
2 +[ k−1

2 ]−1φk−1

}
= fk−1, x ∈ ∂B.

(52)

By Theorem 4.4, Problem (52) has the explicit solution

φk−1(x) = C−1
k−1,k−1In+1

2 +[ k−1
2 ]−1 . . . In+1

2

×
(∫

∂B

K
(
x, y

)
λ−1fk−1(y)dSy + λ−1en

+∞∑

s=0

Vl1,...,ls(x)a(k−1)
l1,...,ls

)

, x ∈ B.

(53)

Applying Lemma 3.4, and (37), we get that

I n+1
2 +[ k−1

2 ]−1
. . . I n+1

2

(∫

∂B

K
(
t, y

)
λ−1fk−1(y)dSy + λ−1en

+∞∑

s=0

Vl1,...,ls(t)a
(k−1)
l1,...,ls

)

= lim
B�x→t∈∂B

{

I n+1
2 +[ k−1

2 ]−1
. . . I n+1

2

(∫

∂B

K
(
x, y

)
λ−1fk−1(y)dSy

+ λ−1en

+∞∑

s=0

Vl1,...,ls(x)a
(k−1)
l1,...,ls

)}

,

belongs to Lp

(
∂B,Rn

)
. Therefore, φk−1 ∈ Lp

(
∂B,Rn

)
, thus leading to tφk−1 ∈

Lp

(
∂B,Rn

)
.

Then, we solve the second boundary value problem
{

φk−2 ∈ H
p(B),

X(n)
{

λCk−2,k−2

(
En+1

2
. . . En+1

2 +[ k−2
2 ]−1φk−2

)}
= f̃k−2, x ∈ ∂B.

(54)
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where

f̃k−2(x) = fk−2(x) − Ck−1,k−2C
−1
k−1,k−1X

(n)

{

xI n+1
2

(∫

∂B

K
(
x, y

)
λ−1fk−1(y)dSy

+ λ−1en

+∞∑

s=0

Vl1,...,ls(x)a
(k−1)
l1,...,ls

)}

(55)

on ∂B. Hence, Problem (54) has the explicit solution

φk−2(x) = C−1
k−2,k−2In+1

2 +[ k−2
2 ]−1 . . . In+1

2

×
(∫

∂B

K
(
x, y

)
λ−1f̃k−2(y)dSy + λ−1en

+∞∑

s=0

Vl1,...,ls(x)a(k−2)
l1,...,ls

)

, x ∈ B.

(56)

Inductively on 2 ≤ l ≤ k − 2, the following boundary value problem
{

φl ∈ H
p(B),

X(n)
{

λCl,lEn+1
2

. . . En+1
2 +[ l

2 ]−1φ
}

= f̃l, x ∈ ∂B,
(57)

where

f̃l(x) = fl(x) −
k−1∑

j=l+1

Ck−1,jC−1
j,j X(n)

{

xjI n+1
2 +[ j−l

2 ]
. . . I n+1

2

(∫

∂B

K
(
x, y

)
λ−1f̃j(y)dSy

+λ−1en

+∞∑

s=0

Vl1,...,ls (x)a
(j)
l1,...,ls

)}

(58)

on ∂B, has the explicit solution

φl(x) = C−1
l,l In+1

2 +[ l
2 ]−1 . . . In+1

2

×
(∫

∂B

K
(
x, y

)
λ−1f̃l(y)dSy + λ−1en

+∞∑

s=0

Vl1,...,ls(x)a(l)
l1,...,ls

)

, x ∈ B.

(59)

Now, the remaining two cases when l = 0, 1 are treated as follows. For l = 1,
the boundary value problem

{
φ1 ∈ H

p(B),
X(n)

{
λC1,1En+1

2
φ1

}
= f̃1, x ∈ ∂B,

where

f̃1(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) −
k−1∑

j=2
C1,jC−1

j,j X(n)
{

xjI n+1
2

+[ j

2
]−1 . . . I n+1

2

(
∫

∂B
K
(
x, y

)
λ−1f̃j(y)dSy

+ λ−1en

+∞∑

s=0
Vl1,...,ls

(x)a
(j)
l1,...,ls

)}
, if k odd,

f1(x) −
k−1∑

j=2
C1,jC−1

j,j X(n)
{

xjI n+1
2

+[ j

2
] . . . I n+1

2

(
∫

∂B
K
(
x, y

)
λ−1f̃j(y)dSy

+ λ−1en

+∞∑

s=0
Vl1,...,ls

(x)a
(j)
l1,...,ls

)}
, if k even,

x ∈ ∂B,

(60)
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has the explicit solution

φ1(x) = C−1
1,1In+1

2

(∫

∂B

K
(
x, y

)
λ−1f̃1(y)dSy + λ−1en

+∞∑

s=0

Vl1,...,ls(x)a(1)
l1,...,ls

)

,

x ∈ B. (61)

For l = 0, the boundary value problem
{

φ0 ∈ H
p(B),

X(n) {λφ0} = f̃0, x ∈ ∂B,
(62)

where

f̃0(x) = f0(x) −
k−1∑

j=1

C−1
j,j X(n)

×
{

xj

(∫

∂B

K
(
x, y

)
λ−1f̃j(y)dSy+λ−1en

+∞∑

s=0

Vl1,...,lk
(x)a

(j)
l1,...,ls

)}

, x ∈ ∂B,

(63)

has the explicit solution

φ0(x) =
∫

∂B

K
(
x, y

)
λ−1f̃0(y)dSy + λ−1en

+∞∑

s=0

Vl1,...,ls(x)a(0)
l1,...,ls

, x ∈ B.

(64)

Associating with (53)–(64), we obtain that Problem (46) has the explicit so-
lution φ(x) =

∑k−1
j=0 xjφj . It follows the result. �

Corollary 5.2. When p = 2, λj = 1, j = 0, 1, . . . , k − 1, Problem (46) reduces
into the case

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ ∈ H
2
k(B), 1 < p < +∞,

X(n)
{
φ
}

= f0, a.e. x ∈ ∂B,
X(n)

{Dφ
}

= f1, a.e. x ∈ ∂B,
...

...
X(n)

{Dk−1φ
}

= fk−1, a.e. x ∈ ∂B.

(65)

Its solutions actually correspond to reconstruct the real algebra Rn-valued
monognic signals of the Hardy space defined on B when a group of real sub-
algebra valued Rn−1 initial datum is given on the sphere ∂B of higher dimen-
sional Euclidean space R

n. Similar results also refer to [28].

Moreover, we can consider the following problem, analogous to Theorem 5.1.
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Problem IV. Given the boundary data fj ∈ Lp

(
∂B,Rn−1

)
, j = 0, 1, 2, . . . , k−1,

find a function φ : B → Rn satisfying the Schwarz boundary value conditions
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ ∈ H
p
k(B), 1 < p < +∞,

X(n)
{
λ0φ

}
= f0, a.e. x ∈ ∂B,

...
...

X(n)
{
λk−1Dk−1φ

}
= fk−1, a.e. x ∈ ∂B,

(66)

where λj ∈ Rn−1 is a constant with its inverse λ−1
j , j = 0, 1, 2, . . . k − 1.

Theorem 5.3. For the given function fj ∈ Lp

(
∂B,Rn−1

)
, j = 0, 1, 2, . . . , k − 1,

Problem (46) has the general solution and its explicit form is given by

φ(x) =
k−1∑

j=0

xjφj(x), x ∈ B, (67)

with

φj(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂B

K
(
x, y

)
λ−1

0 f̃0(y)dSy + λ−1
0 en

+∞∑

s=0
Vl1,...,ls

(x)a
(0)
l1,...,ls

, if j = 0,

C−1
1,1I n+1

2

(
∫

∂B
K
(
x, y

)
λ−1

1 f̃1(y)dSy + λ−1
1 en

+∞∑

s=0
Vl1,...,ls

(x)a
(1)
l1,...,ls

)
, if j = 1,

C−1
j,j I n+1

2
+[ j

2
]−1 . . . I n+1

2

(
∫

∂B
K
(
x, y

)
λ−1

j f̃j(y)dSy + λ−1
j en

+∞∑

s=0
Vl1,...,ls

(x)a
(j)
l1,...,ls

)
,

if 2 ≤ j ≤ k − 1,

(68)

where K
(
x, y

)
as (26), a

(j)
l1,...,ls

∈ Rn−1, j = 0, 1, 2, . . . , k − 1 are all constants,
and for arbitrary x ∈ ∂B,

f̃j(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x) −
k−1∑

l=1
C−1

l,l X(n)
{

xl

(
∫

∂B
K
(
x, y

)
λ−1

l f̃l(y)dSy + λ−1
l en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
,

if j = 0,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l X(n)

{
xlI n+1

2
+[ l

2
]−1 . . . I n+1

2

(
∫

∂B
K
(
x, y

)
λ−1

l f̃l(y)dSy

+ λ−1
l en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
, if j = 1, k odd,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l X(n)

{
xlI n+1

2
+[ l

2
] . . . I n+1

2

(
∫

∂B
K
(
x, y

)
λ−1

l f̃l(y)dSy

+ λ−1
l en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
, if j = 1, k even,

fj(x) −
k−1∑

l=j+1
Ck−1,lC

−1
l,l X(n)

{
xlI n+1

2
+[ l−j

2
] . . . I n+1

2

(
∫

∂B
K
(
x, y

)
λ−1

l f̃l(y)dSy

+ λ−1
l en

+∞∑

s=0
Vl1,...,ls

(x)a
(l)
l1,...,ls

)}
, if 2 ≤ j ≤ k − 1.

(69)

Similarly, we solve the Schwarz BVP as follows.

Problem V. Given the boundary data fj ∈ Lp (∂B,R0) , j = 0, 1, 2, . . . , k − 1,
find a function φ : B → R0 ⊕ R2, satisfying the Schwarz boundary value
conditions ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

φ ∈ H
p
k(B), 1 < p < +∞,

Sc
{
λφ

}
= f0, a.e. x ∈ ∂B,

...
...

Sc
{
λDk−1φ

}
= fk−1, a.e. x ∈ ∂B,

(70)
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where λ ∈ R0\{0} is a constant with its inverse λ−1.

Theorem 5.4. For the given function fj ∈ Lp (∂B,R0) , j = 0, 1, 2, . . . , k − 1,
Problem (70) has the general solution and its unique form is given by

φ(x) =
k−1∑

j=0

xjφj(x), x ∈ B, (71)

with

φj(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

∂B

K̃
(
x, y

)
λ−1f̃0(y)dSy, if j = 0,

C−1
1,1I n+1

2

(∫
∂B

K̃
(
x, y

)
λ−1f̃1(y)dSy

)
, if j = 1,

C−1
j,j I n+1

2 +[ j
2 ]−1

. . . I n+1
2

(∫
∂B

K̃
(
x, y

)
λ−1f̃j(y)dSy

)
, if 2 ≤ j ≤ k − 1,

(72)

where K̃
(
x, y

)
as (44), and for arbitrary x ∈ ∂B,

f̃j(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x) −
k−1∑

l=1
C−1

l,l Sc
{

xl
(∫

∂B
K̃
(
x, y

)
λ−1f̃l(y)dSy

)}
,

if j = 0,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l Sc

{
xlI n+1

2
+[ l

2
]−1 . . . I n+1

2

(∫
∂B

K̃
(
x, y

)
λ−1f̃l(y)dSy

)}
,

if j = 1, k odd,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l Sc

{
xlI n+1

2
+[ l

2
] . . . I n+1

2

(∫
∂B

K̃
(
x, y

)
λ−1f̃l(y)dSy

)}
,

if j = 1, k even,

fj(x) −
k−1∑

l=j+1
Ck−1,lC

−1
l,l Sc

{
xlI n+1

2
+[ l−j

2
] . . . I n+1

2

(∫
∂B

K̃
(
x, y

)
λ−1f̃l(y)dSy

)}
,

if 2 ≤ j ≤ k − 1.

(73)

Furthermore, we solve a boundary value problem as follows.

Problem VI. Given the boundary data fj ∈ Lp (∂B,R0) , j = 0, 1, 2, . . . , k − 1,
find a function φ : B → R0 ⊕ R2, satisfying the Schwarz boundary value
conditions ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ ∈ H
p
k(B), 1 < p < +∞,

Sc
{
λ0φ

}
= f0, a.e. x ∈ ∂B,

Sc
{
λ1Dφ

}
= f1, a.e. x ∈ ∂B,

...
...

Sc
{
λk−1Dk−1φ

}
= fk−1, a.e. x ∈ ∂B,

(74)

where λj ∈ R0\{0} is a constant with its inverse λ−1
j , j = 0, 1, 2, . . . , k − 1.

Theorem 5.5. For the given function fj ∈ Lp (∂B,R0) , j = 0, 1, 2, . . . , k − 1,
Problem (70) has the general solution and its unique form is given by
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φ(x) =
k−1∑

j=0

xjφj(x), x ∈ B, (75)

with

φj(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

∂B

K̃
(
x, y

)
λ−1
0 f̃0(y)dSy, if j = 0,

C−1
1,1I n+1

2

(∫

∂B

K̃
(
x, y

)
λ−1
1 f̃1(y)dSy

)
, if j = 1,

C−1
j,j I n+1

2 +[ j
2 ]−1

. . . I n+1
2

(∫

∂B

K̃
(
x, y

)
λ−1

j f̃j(y)dSy

)
, if 2 ≤ j ≤ k − 1,

(76)

where K̃
(
x, y

)
as (44), and for arbitrary x ∈ ∂B,

f̃j(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x) −
k−1∑

l=1
C−1

l,l Sc

{
xl

(∫

∂B

K̃
(
x, y

)
λ

−1
0 f̃l(y)dSy

)}
, if j = 0,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l Sc

{
xlI n+1

2 +[ l
2 ]−1

. . . I n+1
2

(∫

∂B

K̃
(
x, y

)
λ

−1
l f̃l(y)dSy

)}
,

if j = 1, k odd,

f1(x) −
k−1∑

l=2
C1,lC

−1
l,l Sc

{
xlI n+1

2 +[ l
2 ]

. . . I n+1
2

(∫

∂B

K̃
(
x, y

)
λ

−1
l f̃l(y)dSy

)}
,

if j = 1, k even,

fj(x) −
k−1∑

l=j+1
Ck−1,lC

−1
l,l Sc

{
xlI n+1

2 +[ l−j
2 ]

. . . I n+1
2

(∫

∂B

K̃
(
x, y

)
λ

−1
l f̃l(y)dSy

)}
,

if 2 ≤ j ≤ k − 1.

(77)

Proof. Applying Theorem 5.4, the proof of the result is complete. �
Remark 5.6. When p = 2, λj = 1, j = 0, 1, . . . , k − 1, Problem (74) turns into
the case ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ ∈ H
2
k(B), 1 < p < +∞,

Sc
{
φ
}

= f0, a.e. x ∈ ∂B,
Sc
{Dφ

}
= f1, a.e. x ∈ ∂B,

...
...

Sc
{Dk−1φ

}
= fk−1, a.e. x ∈ ∂B.

(78)

This could be understood as the reconstruction of the monogenic signals con-
sidered on the unit sphere when a group of scalar valued initial data is given,
which is appearing in engineering applications.

Remark 5.7. When k = 2m,m ∈ N, Problems (46), (66), (70) and (74) change
into the Schwarz BVPs for the poly-harmonic Hardy spaces defined on the unit
ball B of higher dimensional Euclidean space Rn, respectively. This means that
the solutions to Problems (46), (66), (70) and (74) derive the solutions to the
corresponding Schwarz BVPs for the poly-harmonic Hardy spaces defined on
the unit ball B of higher dimensional Euclidean space R

n. Moreover, when
the dimension of the space considered is n = 2, Problems (46), (70) and (74)
reduce to those discussed in Refs. e.g. [5,7], respectively.

Remark 5.8. In this context, when the given boundary data take Clifford sub-
algebra values and scalar values, respectively, two different kinds of Schwarz
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BVPs for the poly-Hardy spaces on the unit ball of higher dimensional Euclid-
ean space R

n are considered. Compared to the classical Schwarz problems
in complex analysis

(
see, Refs. e.g. [5,7]

)
, the explicit solutions to these two

kinds of Schwarz BVPs are gotten while the uniqueness of them are different.
One contains the Schwarz BVPs (70) and (74), and the general solutions to
it are unique. Another contains the Schwarz BVPs (35), (46) and (66). Al-
though the general solutions to it could be also presented explicitly, they are
not unique. This is because they contain infinitely many arbitrary constants
overdetermined. If one wants to determine the arbitrary constants involved in
the solutions to the Schwarz BVPs considered, there needs to impose more
constraints to the Schwarz BVPs. This is not within the scope of the present
article, and will be further discussed in a forthcoming paper.
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