
Annali di Matematica pura ed applicata 
(IV), Vol. CLXV (1993), pp. 369-394 

A Martingale Proof of L2 Boundedness 
of Clifford-Valued Singular Integrals (*). 

G. I. GAUDRY(**) - R. LONG(**)(***) - T. QIAN(***) 

S u m m a r y .  - This paper presents a theory of Clifford algebra-valued martingales on a v-finte 
measure space, with respect to a pseudoaccretive weight. A novel dual pair system of Haar 
functions associated with the Clifford martingale is constructed, and Littlewood-Paley esti- 
mates are established. The dual pair system of Clifford Haar functions is used to give a new 
proof of the boundedness of the Cauchy principal value integral on Lipschitz surfaces, and of 
the Clifford-valued T(b) theorem. 

0. - I n t r o d u c t i o n .  

In this paper we present a martingale proof of the L2-boundedness of the Cauchy 
integral operator on Lipschitz surfaces. We then indicate how one proves the Clifford 
T(b) theorem by using the same method. The method is in the spirit of [3]. Neverthe- 
less, there are new features. One defines a suitable sequence of atomic o-fields on R d; 
since the Clifford algebra is noncommutative, it is necessary to associate with each 
atom a pair  of Clifford-valued ~,Haar>~ functions. Thus, the appropriate ~Haar- sys- 
tem is in fact a system of pairs of Clifford-valued functions. We use only martingale 
techniques to prove the L2-norm equivalence between the function f and its Little- 
wood-Paley function S( f ) .  The first part of the paper is devoted to developing the rel- 
evant martingale theory and Littlewood-Paley estimates for Clifford-valued func- 
tions. 

Versions of the T(b) theorem have been formulated by a number of other authors 
([3], [6], [8], [16] for instance). It will be clear to the reader familiar with [6] that our 
proof borrows a number of important ideas from that paper. Nevertheless, our ap- 
proach stands on its own merits and offers a novel and unified treatment of the 
themes in question. 
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The idea of using Clifford algebras in connection with singular integral operators 
is due to R. COIFMAN. References [11]-[14] and [17] provide ample evidence of the 
fruitfulness of this idea. 

Thanks are due to ALAN MCINTOSH and M I C H A E L  C O W L I N G  for encouraging us to 
pursue a Clifford-martingale approach to these problems and for helpful conversa- 
tions on the subject of this paper. The second author would like to express his grati- 
tude to NEIL TRUDINGER for his kind invitation to visit the Centre for Mathematical 
Analysis, where part of this work was carried out. 

1. - P r e p a r a t i o n .  

1.1. Cli f ford  algebras .  

For the convenience of the reader, we include a brief overview of the basic ideas of 
Clifford algebras. For more detailed accounts see [1], [2] and [17]. 

Let d be a nonnegative integer, and e0, el, ..., e~ the standard basis of F~ l+d. 

DEFINITION. - The Clifford algebra Ad is the noncommutative algebra over F~ gen- 
erated by e0, el, ..., ed subject to the relations 

(i) e0 = 1; 

(ii) e ] = - l f o r  l~<j~<d; 

(iii) ei ek = - ek ej for 1 ~< j < k ~< d. 

If S is a nonempty subset of {1, ..., d}, define the element es of A~ as follows. 
Write S in increasing order, say S = {jl <J2 < ... <J~}, and let es = ejl % ... ei~. For 
completeness, we write % = eo = 1. The elements es ,  S c {1 .... , d} form a basis of Ad. 
The algebra Ad is given an inner-product structure by declaring the basis 

{es}s~_{1 ..... d} to be orthonormal. Thus, i f  x = ~ X s e s ,  then Ixl = t~Csl 2 . Note 
S 

tha~ A~ is a normed algebra, since there exists a constant C, depending on the dimen- 
sion, such that 

(1) I xy l  <~ C l x l  lyl 

for all x, y e A~. 
When d = 0, 1, 2, A~ is isomorphic to F~, C, and the space of quaternions, respect- 

ively. Although Ad is not a skew field when d > 2, it is nevertheless the case that 
every  n o n z e r o  e l e m e n t  o f  Rl+d(c Ad) has a multiplicative inverse. In fact, if x = 
= xoeo + x l e i  + ... + Xded e ]R l+d, then x -~ = 51x1-2, where the c o n j u g a t e  vec tor  is 

X = x o e o  - -  x l  e l  - -  . . .  - -  X d e d .  Note also the elementary identity 

(2) a -1 - b - i  = a - l ( b  - a ) b  -1 = b - l ( b  - a ) a  -1 
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for all nonzero elements a, b �9 ~ l + d  The group generated by the set of nonzero ele- 
ments of R l+d is called the Clifford group. If x and y are two elements of the Clifford 
group, then [xy[ = ix[ [y[: see [1]. 

Let t2 denote an open subset of R l+d and f a  CLfunction on t2 with values in Ad. 
The operator 

acts on f =  ~ f se s  as follows: 
s 

d 

D1 ~ a ~- - - e j  
j=O ~gCj 

d 

j= S ~jXj e j e s"  

DEFINITION. - The function f is said to be lefl-monogenic if D1 f = O. 

If we let 

d 
D ~ f :  E E afs esej, 

j = o s ~jxj 

we can similarly define a right-monogenic function to be one for which D~ f = 0. When 
f is both left- and right-monogenic, we say it is monogenic. 

The most basic monogenic functions are obtained by fLxing a point y �9 t~ and 
letting 

y- -gC 

gy(x) = IY - x J  d + l  ' X ~ y. 

Further examples can be constructed from the basic ones as follows. Let Z be a 
smooth d-dimensional oriented submanifold of R l+d, the unit normal to the manifold 
at the point y consistent with the orientation being denoted n(y). I f f  is an A:valued 
function that is absolutely integrable with respect to surface measure dz, and x ~ 2:, 
we define 

(3) 1 ~ y _ - x  n(y)f(y)dcr(y), 
T~f(x) = ~ JY-  xjd+ 1 

where ~ is the volume of the unit d-sphere. Monogenicity of T~ f follows by differen- 
tiating under the integral sign. 

It turns out that T~ f = f o n  t~ i f f i s  monogenic on a neighbourhood of~,  where t~ is 
an open bounded set with smooth boundary, t~ _c R l+d, 2: is the boundary of t~, t~ lies 
on one side of 2:, and n(y) is the unit exterior normal to 2: = at~ at y. See [2]. For this 
reason, the operator (3) is called the Cauchy operator associated to Z (for say inte- 
grable functions f).  
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This paper deals not with (3) but with the corresponding singular integral opera- 
tors on 2;. Define the Cauchy singular integral operator to be T~ where 

2 f y ~  x_ 
(4) (T~f)(x) = ~ p . v .  J lY - xl d+l n(y) f (y)  da( y ) 

Z 

for x e 22, whenever the principal value integral exists. The principal value is taken to 

be lim [ . . . .  The question is whether the Cauchy singular integral operator 
$----> 0 J 

y e Z :  I x - y l  >5 

f ~  T~ f given by (4) is bounded on some function space carried by 2;, for a given class 
of surfaces. 

DEFINITION. - The surface 22 c ~ l + d  is a Lipschitz graph if 

={A(u) e0+u :  u E R  d} 

where A is a real-valued function which is differentiable a.e. and for which 
sup IIOA/ax ll  < + 

J 

DEFINITION. - The space L2 (2;; Ad) is the space of equivalence classes of measur- 
able functions f on 2; with values in Ad: 

f(x) = • fs  (x) es 
S 

such that 

tl )1. Ilfll, = X Ifs(x)12da(x) < + oo. 
s 

One of the principal aims of this paper is to prove the following result. 

THEOREM 1. - I f  Z is a Lipschitz graph, then the Cauchy singular integral opera- 
tor is bounded from L2(2;; Ad) to L2(2;; Ad). 

Notice that, if f is a real-valued L2-function on 2;, then T~ is Ad-valued, and that  
its scalar part (Tz f)o, viz. the e0-component of T~ f, is the singular double-layer po- 
tential operator 

2 [ (y - x, n(y)} 
(5) (T~f)o(x) = ~dp.v. J ly:xld§ T f (y)da(y) .  

z 

Theorem 1 therefore, has the following consequence. 

COROLLARY. - If2; is a Lipschitz graph, the singular double-layer potential oper- 
ator (5) is  bounded from L2(2;) to L2(Z). 
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Both Theorem 1 and its Corollary are already known [4], [14], but with different 
proofs. 

1.2. Clifford-valued martingales. 

Let X be a set, ~ a ~-field in X, v be a non negative measure on $, and {~}_~ ~ a 
non-decreasing family of ~-fields in X satisfying the following conditions: 

(i) 0 ~ generates 8~; 
- - o o  

(ii) [7 ~ = { 0 ,  X}; 
- - o o  

(iii) the measure v is ~-finite on ~ and on each ~ .  

Let ~be  a sub-~-field of ~ such that v is ~-finite on ~ Since (X, ~) is e-finite, X can 

be written X = U uj. where Uj �9 Hand v(Uj) < + m. I f f i s  a locally integrable, scalar- 
a 

valued function on (X, ~, v), i.e. a ~-measurable function whose integral is finite on 
every set of finite v-measure, its conditional expectation E( f [  5 ~) is well-defined by 
specifying that, on each Uj, E( f ]  5 ~) is equal to the conditional expectation offlu~ with 
respect to (~uj, Viva). It then follows that, if A is any set in ~7 of finite v-measure, 
then 

A A 

If f is integrable, then (6) also holds for every A �9 ~,, whether of finite v-measure or 
not. 

The definition of conditional expectation can be extended to locally integrable Ad- 
valued functions, by specifying that, if f =  ~ f s e s ,  then 

S 

E( f l  ~)  = y" F,(fs]~) es. 
s 

The characteristic martingale property (6) holds also for Ad-valued functions f. 
We write L p ( ~ , ,  dr; flkd) , or simply L; (dr; Aa), 1 ~< p ~< oo, for the Lebesgue spaces 

of A~-valued ~-measurable functions on X. The space L~oe (dr; Ag) has the obvious 
interpretation. 

Suppose that ~b is an L ~ function on X with values in F~ l+d. 

DEF~MTION. - Suppose that E(~bl#) * 0 a.e., and let f � 9  L~oc (dr; Ad). The left- and 
right-conditional expectations E l and E ~ of f with respect to # are given by the 
formulas 

(7) EZ(f)  = EZ(fl  5 ~) = E(~I ff~)-lE(~fl if) 

(8) E ~ ( f )  = E ~ ( f [  ~ )  = E(fq~] ~ )  E(qJ ] ~ )  -~ 
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The conditional expectations with respect to ~ are denoted E l ( f l  ~ )  or E~ (f),  and 
E r ( f l ~ )  or E~(f) .  

The mapping properties of E ~ and E r are good only under further assumptions on 
the function ~b. 

PROPOSITION 1. - Suppose 1 <. p <. ~. The operator E t (resp. E ~) is bounded on L p 
i f  and only i f  there exists a constant Co > 0 such that 

(9) CO --1~'~ Co for a . e . x .  

PROOF. - This follows by modifying the corresponding argument in [5]. �9 

A function ~ e L ~ (X; R l+d) that satisfies (9) is said to be pseudoaccretive with re- 
spect to ~. We take as a standing assumption from now on that the condition (9) is sat- 
isfied for the generic ~ a n d  for all ~ ,  the constant in (9) being independent of n. That 
being so, it follows that, f i f e  L~oe(dv; Ad), then E t ( f )  and E~( f )  are locally inte- 
grable also. 

The main elementary properties of E t and E ~ are as follows. 

PROPOSITION 2. - Let the notation be as above. Then 

(a) I f  g e L ~ (~  dr; Ad), then 

Et(fg) = E t ( f ) g .  

Similarly, the right-conditional expectation E r commutes with multiplication on 
the left by g. 

(b) Et(1) = E~(1) = 1. 

(c) I f  f e L~or l~kd), and A is of finite measure (resp. f e  L 1 (dr; Ad), and A is 
measurable), then 

(10) f = f 
A A 

(11) f Er(f)+d,, = ff+d,,. 
A A 

(d) For n ~ m, we have 

(12) E~ (Era (f))  = E~ ( f )  

where E~ denotes the left- (or right-) conditional expectation with respect to ~ .  

(e) Writing Atn = E~ - E~_ ~, and A~ = E~ - En-1, and 

(fig)+ = f fq~g dr, 
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we have 

(~  f, ~g)~ = o, for all n ;~ m, and f, g e L 2 (dr; Ad).  

PROOF. - Statements (a) and (b) are obvious. To prove (c), suppose that  A e 
Then 

A X X X A 

since E l f  and A are ~measurable .  Similarly for E r. 

Par t  (d) is proved as follows: for the left-conditional expectation, for 
example, 

En(Z,~(f)) E~ (~b)-: E~ (~bEm (~b)-: Em (~bf)) = 

= ~ (+)-IE~ (Era [+~ (~)-1 ~ (~f)]) = En (~)•  (+f) = En ~ (f) .  

The argument  for the right-conditional expectation is similar. 
Finally we prove (e). For  n > m, 

= = (~f~A,~g)dv = f E n - l ( ~ f r  = 

= IE~_:(A~fqJ)E~_l(r IZ~- l (L l~ f )En- l (~) ,~gdv=O,  

where the last step used (12). For  m > n, the proof is similar. �9 

DEFINITION. - L e t f e  Llor (dr; Ad). The left-martingale with respect to {~n}-~ ~ gen- 
l r162 erated by f is the sequence {fn~}_~ = {E~( f )} -  ~ ~. The left-Littlewood-Paley square 

function is 

1" 

if the limit ft_ ~ = lim E~(f )  exists pointwise a.e.. 
n - - >  - ov 

The right-martingale and right-Littlewood-Paley square functions are defined 
similarly. Note that  if f ~  [J LP(dv;Ad), and ~(X)= +r162 then fz_~ =0 .  
See [13]. ~ > p ~> 1 

I f  f e  L~oc (d~; Ad), the BMO-norm of f is def'med to be 

(13) [[f[[BMO = sup liEn ([ f - -  ~'n-1 f [  2)][1/2. 
n 
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We shall need to use the fact that, if ~b e L ~ (dr; RI+d), then ~b e BMO, and 

) (14) E~ k ~  I]k(~)12 ~< CII~II~MO ~< CIl~ll~ 

for every n. (As usual, ,,tilde, refers to the  ordinary conditional expectation.) By the 
John-Nirenberg inequality, the right-hand side of (13) is equivalent to sup I IE~( I f -  
- E~ fl)l]~. See [9] and [10]. 

The following Littlewood-Paley result is one of the essential ingredients of this 
paper. In the proof of Lemma 1, and elsewhere in this paper, C will denote a constant 
which may vary from line to line. 

LEMMA 1. - There exists a constant c > 0, depending only on co and  d, such 
that 

(15) c -111S(f)llL. ~ IIfllL~ ~ cllS(f)llL2, 

for all f e L~o~(dv; Ad), where S denotes either S ~ or S ~. 

P R O O F .  - We consider the left-martingale case only. The other case is treated simi- 
larly. Let no be fLxed, and consider the sequence {5~}~ >~ so and the corresponding part 

of the square function: ( ~ 0 + l , ~ f l ~ f / 2 " I f n > ~ n ~  

(16) 3 ~ f :  E ( ~ l ~ n ) - l E ( ~ f l f f n )  - E ( ~ l J : n _ l ) - l E ( ~ f ] f f n _ l ) .  = 

= [/~(~b[ ~n) -1 - E(~b[~n-x)-l]E(~bfl~n) + E ( r  -1 [E(~bf[ ~n) - E(~bf[~- l ) ] .  

Therefore, 

(17) IAt~(f)l 2 ~< c ( l ~ ( ~ ) l  2 IE (~ f l~ ) l  2 + I~(~f)12), 

by (1), (2) and (9). Since v is ~-finite on 5~o, we may write X = U Uj, where 
j = l  

U1 _c Ue c ... ' and the sets Uj are in ~o and of finite measure. Fix M >~ 1. Then 
by (17), 

( ~: '~(~g3'2dv) < (18) f J :fl  c f J~(~fJ~n)J~l~l~d~§ f~o+l n~no+l n~>no+l 
UM UM UM 
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by the standard Littlewood-Paley estimates [9], where 

E n ( f )  sup IE(f[ ~)[ .  
no + l <<.j <~ n . 

Let T n ---- ~ ]dk ~b[ 2 for n I> no + 1, and s e t  Tno -- 0. If N > no, we have 
k = n  

(19) 
N �84 N 

E ~:~(f~f) l]~(t~)] ~= E ~:~(t~f)(~'~-Tn+~)= 
n = n o + l  n = n 0 + l  

N - 1  

Z 
n = n  o 

T n + l  (~ :+21  ( ~ f )  _ ~ : 2  ( ~ f ) )  _ ~ 2  ( ~ f )  T N + I  " 

It follows from (14) and (19) that 

(20) 
n~>no+l 

UM UM 

'l 

I~k r (E~+i (~f) _ ~ . 2  (~f)) d~ = ) 

n = n o  -- 2 ~ , 2  

UM 

~< I]~ll~Mo ] [~fl *2dr <~ Cll~l]~ ~ Ifl 2dr. 
UM UM 

In the last step, boundedness of the maximal function on Le(U~) is used. The con- 
stant does not depend on M nor on no. 

Using (18) and (20), we conclude that 

(21) E fl d . cl IfC d  
n ~ > n o + l  

UM UM 

The left-hand inequality of (15) follows by letting M--~ + co and then no--* - ~ in 
(21). 

In proving the right-hand inequality in (15), we need to use the following facts. I f  
g e L e (dr; Ad), then 

(a) lim Elng = g  = lira E~g in the LLsense. 

(b) lira Et~g = 0 = lira E~g in the L2-sense. 
n--~ - : o  n o  - ~  

- c r  - c a  

These results can be established in much the same way as the corresponding scalar- 
valued results are proved in [9], Chapter 5. Of course the condition (9) is crucial in t he  
proofs. 
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Suppose that f i g  �9 L 2 (dr; Ad). Then 

_ A~ Zll 

by Proposition 2(e), (9) and the right-hand inequality in (15). 
The proof is completed by taking the supremum in (22) over g such that Ilgl12 ~< 1 

and using condition (9) again. " 

REMARK. - See also [13] for further results about Clifford-valued martingales. 

1.3. A fami ly  of z-fields and an associated pair-basis-system. 

The development in w 1.2 deals with general z-fields and martingales. We now 
construct the particular example, and associated ,,Haar, functions appropriate to the 
analysis of the Cauchy integral. 

Let X = R ~ , t~ the Borel z-field, and let dv be Lebesgue measure, also denoted dx. 
The Lebesgue measure of a measurable set U will be denoted I UI. Let ~o be the z- 
field generated by the family ~0 of cubes of side length 1, whose corners lie at the 
points of the integer lattice. Divide each cube I �9 50 equally by the hyperplane that bi- 
sects the edges parallel to the xl-axis, and let 5~ be the family of ,,dyadic-quasi-cubes, 
so produced. Let ~ be the a-field generated by Zl. Now subdivide each dyadic-quasi- 
cube of ~ into two dyadic-quasi-cubes by the hyperplane that bisects the edges paral- 
lel to the x2-axis, and let ~ be the a-field generated by the new family of dyadic- 
quasi-cubes. Continue in this manner, at each stage bisecting each dyadic-quasi-cube 
of the previous family by the hyperplane perpendicular to the next coordinate axis. 
This produces the sequence { n}~=o. The a-fields ~ ,  n < 0, are produced by the re- 
verse procedure to the one just described-successive doubling in the coordinate di- 
rections. Note that each dyadic-quasi-cube (i.e. atom) in ~d,  k �9 Z is actually a start- 

dard dyadic cube, of side length 2 -k . Finally, let ~ = ~ U ~ ~ .  Note that every I �9 ~ is 

a dyadic-quasi-cube, say I �9 5n-1, and so can be written 
are dyadic-quasi-cubes in ~ .  

From now on, we work only with left-martingales, 
writting E~, ~ ,  fn, etc. in place of E~, ~ ,  fn t , etc. The 

I = I1 U Ie, where I~ and Ie 

so we simplify notation by 
function ~ �9 L ~ (X: R 1 + d) = 

= L ~ (R~; ~l+d) is still assumed to satisfy (9), but with respect to the particular se- 
quence {~}_~ of z-fields just constructed. The folowing lemma is another essential 
ingredient of this paper. 

LEMMA 2. - For each I �9 5~_ 1, I = 11 [_J 1 2 ,  where I1 ,  I2 �9 ~ , there is a pair of A~- 
valued functions ~1, ~I on R d and a positive constant C such that 

(i) ~I = alzi~ + a~z12 (aj �9 Ad) ; 

flI = bl Z11 + b2 z12 (bj �9 A a ) ;  
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(ii) for  all f � 9  L~o~(F~d; A~), 

(iii) C-Sl I]  -W2<< . I~s(x)l <<.C]II -1/2 and 
all x �9 I and all I; 

(iv) 

(x �9 I) ,  

C-Sl I[  -We<<. I~1(x)l <<-CII1-1/2 for  

I T'<~s dx = I i~s 7' dx = O. 

PROOF. - Define ~s and/~t as in (i). I t  is then a mat te r  of choosing a l ,  a2, bs, and b2 
so that  (ii)-(iv) hold. 

Consider (ii). Since ~ and ~ - 1  are atomic, we have 

I, with similar formulas for ~',~(f), etc. Le t  u = ~r uj = ~ ( t ) d t  (3 = 1, 2). o n  

Then on I, s ij 
J J 

Anf=  E ( ~ b l ~ n )  ' E ( ~ f l ~ , )  - E ( ~ l ~ - l ) - l / ~ ' ( ~ f l ~ - s )  = 

=((ul-l-u-S)fdzfdx-u-lfd/fdX)Zll+((u2S-u-S)I@fdx-u-lI~fdxlzI2"li ~ I2 I 1 ] 

On the other  hand, 

~I(~I ' f)+=(aSbll!dtfdx§ . 72 i, 

Comparing these last two expressions, we see that  we should choose ai, b~ (i = 1, 2) so 
that  

a l b s = u ~ S - u  -s , a 2 b 2 = u ~ l - u  -s , asb2= - - U - 1  = a 2 b l  . 

Keeping in mind that  u = us + u2, and applying (2), we see that  this system of equa- 
tions can be expressed more simply as 

(23) al bl = u -1  u z u i - i ,  a2b2 = U -lusu2-S , alb2 = - u - s ,  a2bx = - u - i  

The solutions of (23) are of the form 

(24) a s = u - l u 2 c ,  a2 = - u - l u l c ,  bs = c- lu1-1 ,  be = - c - ~ u ;  s 

where c is an arb i t rary  invertible element of Ad. We now wish to choose c so that  (iii) 
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holds. In fact, it is apparent from (i) and (24) that (iii) holds if c is taken to be 

It remains tO check (iv). From (i) and (24) we have 

I ~aldx = I ~(a~x1~ + a2212)dx = u~al + ueae = 

= (u~u-~u2 - u 2 u - l u ~ ) c  = u l u - ~ ( u  - u~)c - (u - u l ) u - ~ u l c  = O. 

From (24), we have f ~ d x  = O. �9 

2. - P r o o f  o f  T h e o r e m  1. 

In what follows, we suppress the fact that  the Cauchy (singular) integral is a prin- 
cipal value by writing our operators in terms of ordinary integrals. It  is of course 
necessary to attend to the question of existence of these (principal value) integrals at 
appropriate places. Most of the analysis is carried out on F~ ~ rather than on Z. The 
principal values are to be interpreted as the ones obtained by projecting the Eu- 
clidean balls in Z onto R d and integrating over their complements. 

Let r = A(v) eo + v (v e Rd) be the coordinate system on Z defined by A. Then 

the unit normal vector to ~ is n(r = (co - VA(v))/~/1 + IVA(v) l 2. In terms of these 
coordinates, we have 

r - r n(r h(r ~ / i  + I VA(v) I ~dv = 

R d 

r - r 
J 

R d 

say, where r  e 0 -  VA(v). Since I.VA(v)[ <~ C, we see that Tx is bounded on 
L2 (2:; Ad) if and only if the operator 

(25) T: f ~  I r  r 

is bounded from L2(FJ; A~) into L2(Rd; A~). 
We note that, if I is a dyadic-quasi-cube, then the principal value integral 

f r - r 

R d 

exists and defines a locally integrable function. The existence and local integrabflity 
of T(~zt)(u) on the set R ~ \ I  are straightforward. Moreover, the singularity of 
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T(r as u --) ~I in R ~ \ I is O(log (dist (u, 81))). To treat the case where u �9 I, it 
suffices to consider 

y - x n (y )F(y )dz (y )  T~F(x) = p.v. l Y -  xl 1+~ 
z 

where F vanishes off r and satisfies a uniform Lipschitz condition. Write 

J y - x -F(x)} dz(y) + p.v. I TzF(x)=p.v  ly_x[l+d n(y){F(y)  y - x n(y)  F(x) dz(y)  
ly__xll+d 

The Lipschitz condition on F gives an appropriate control on the first integral, whilst 
the monogenicity and cancellation properties of the kernel ~ - - : - ~ / l Y - x l  l+d, com- 
bined with Cauchy's theorem, give a suitable control on the second integral. 

Write the operator in (25) in the form 

Tf(u) = [ K(u, v) f(v) dv. 
R d 

The essential properties of the kernel K are contained in the following lemma. 

LEMMA 3. - The kernel K satisfies the inequalities 

(26) ]K(x, Y) I <<- C I x -  Y l -d (x ~ y) 

(27) I K(x, y) - K(x ', y) [ <<. C 
I~ -- X~I 

Ix - Yl 1+~ 

and 

(28) IK(y, x) - K(y,  x ' ) l  <~ C 
Ix-x'l 

i x - y l  l+d 

for  all x ~ y, Ix - x '  I < 1~2Ix - Yl. 

Let 8 denote the span over A~ of the set of characteristic functions of dyadic- 
quasi-cubes. The space ~b8 of pointwise products with the function r is a right-linear 
space over Ad. Similarly, 8~b is a left-linear space over Ad. Using the ideas of [7], it is 
possible to define Tr as a Clifford-left linear functional on the subspace (8~b) 0 of 8r con- 
sisting of functions having integral 0: fix gr �9 (8r and choose N so large that the ball 
By  of radius N about 0 contains the support of g. Then define 

dx dy = I~ + I~ . Tr162 = T(r r + ~ g ( x )  r y) - K(O, y)}{1 - ZBN(Y)} r (1) (2) 

This definition is meaningful because of the properties (27) and (28) of the kernel K. It 
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is an important fact that 

(29) (fiz, T~)+ = T~(fls~) = O. 

This can be proved by taking account of the following observations. (a) I(~)~-> 0 as 
N--~ ~.  (b) By using the monogenicity of the Cauchy kernel, along with Cauchy's 
theorem [2], it can be shown that lira T(~ZBN)(x) exists and is independent of 

N---) r162 

x e suppflj. Since flj~b has integral 0, it follows that lim T(~ZBN)(~j~) = 0. In estab/ 
N---~ ~ 

lishing (b), one works on the surface Z. 
We note that, ff T t is the operator f ~  I f ( y ) K ( y ,  x)dy,  then 

<Tt(zt~b), Z+)+ = <Z,, T(r 

for all dyadic-quasi-cubes I, J. Just as for the operator T, we have 

(30) (Tt  +, fl+)+ = Tt~b(~fl+) = O. 

By Lemma 2, ff f e  L~ (Rd; Ad), we have 

- ~  I 

and formally, 

T(+f) = E T(r 
J e ~  J, I I J 

Let uij  = (fli, T(~ztj))+. By Lemmas 1 and 2, it suffices to show that the linear trans- 
formation on 12 (~; Aa) defined by the matrix (uzj) is bounded. We shall do so by using 
the following variant of Schur's lemma. 

LEMMA 4 (Schur). - Suppose there exists a f ami l y  (o)i) of  positive numbers  and a 
constant C such that 

(31) (i) 

and 

(32) (ii) 

I0)zuisl <. c0)i (1 ~ ~) 
J 

] 0)I ui j  ] <~ C0)s (I �9 3). 
I 

Then the matr ix  (uis) defines a bounded operator on l 2 (5; Ad). 

PROOF. - This is a natural modification of the proof of the scalar ver- 
sion. �9 

We shall apply Lemma 4 by taking o)i = ]I] t for an appropriate positive number t. 
(Recall that I II denotes the Lebesgue measure of I.) We begin with some basic facts 
relevant to the estimation of the terms I(fll, T(r 
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NOTATION. - Suppose that I and J are atoms in ~ and #m respectively, and that 
n >t m. An atom A e ~ is said to be contiguous to J (resp. contiguous to J~) i fA is not 
contained in J (resp. JC), but has part of its boundary in common with the boundary of 
J. Using a certain licence in notation, we denote by I + J the union of J and the atoms 
A, in the same z-field as I, that are contiguous to J. In particular, 2J denotes the 
union of J with all of the atoms in 5~n that are contiguous to J. The bottom-left corner 
xj of J is the vertex of J having minimal coordinates. 

LEMMA 5. - Let I and J be atoms, in ~ and 5~ respectively, with n >I m. There is a 
constant C, independent of m and n, such that, i f  I ~ 2 J \ J ,  then 

f I x - Y l - d d x d y ~ C l I l ( l o g ~ i l l  +1 ). 
I x J  

P R O O F .  - This is an elementary calculation. 
r162 

LEMMA 6 .  - Let I and J be atoms in U 
j =  - ~  

(i) for all x r 2J, 

(33) I T@ j) I -< CIJI  1/2+1/d Ix - xjI  ; 

(34) 

~.  Then 

(ii) if  I c_ (2J) c , then 

(iii) for all x ~t J, 

<<- clII- /  I - 
I 

IT(r <~ CIJI-1/21 Ix - Yl-ddy; 
J 

(iv) if  I c 2 J \ J ,  then 

'(fll, T@aJ)}r <~ C ~ ( l o g  ~i~ +1 ). 

(In all of the statements, the constant C is independent of I and J). 

P R O O F .  - (i) This derives from the cancellation properties of the Haar function aj .  
Thus, 

T@az) = ~ K(x, y) ~(y) aj (y) dy = [[K(x, y) - K(x, xfi] ~(y) ~j(y) dy. 
J 
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So it follows from (28) that if x ~ 2J, then 

I T(r <~ cIJ1-1/2 rl ~y--- Xj ! dy <. jJ I~ - xjI  l+d 

< C I J I  1/2 Ix - x j 1 - 1 - d  sup lY -- xJI <~ C I J I  '/2+u~ Ix - xz[  -1-~ 
y~J 

(ii) This is clear from (i) and Lemma 2 (iii). 

(iii) This follows from (26). 

(iv) This is clear from (iii) and Lemma 5. 

The estimation of ~ III t I (~i, T(~baj))~ I will be divided into three parts, each with 
i a number of separate cases, depending on the relative sizes and disposition of the 

atoms I and J. 

Case 1. The sum with respect to atoms I larger than J. 

Fix J e 5~ and consider the set 2J. Let xj be the bottom-left corner of J. Consider 
atoms I e 4 ,  n < m .  

(a) If  I lies outside 2J, then, by Lemma 6(ii) and Lemma 2(iii), 

I</~, T(+~j)>, I ~< C I I I  - '/~ I J I  '/~ + TM I Ix - x j  1-1-d dx. 
I 

Consequently, the estimate of the part of the Schur sum corresponding to this case 
is 

1.E U ~, Ic_(gff 
n < m  

fl,,T(~j))~l <~C 2 (2klJI) t-I/2 ~ cIJl~/2+~/d( lx-xjl-1-gdx<~ 
k= l Ie~m_k, Ic_(2J) J I 

C 2 2k(t-1/2) ljIt+l/d I Ix -- XJ I - I -ddx  ~ C s 2k(t-1/2) l j I t  ~ ClJI t 
k = l  k=l 

(2J) c 

if t <  1/2. 

(b) For a fixed n < m, the dyadic-quasi-cubes that meet 2J are of two kinds: 
those that lie in 2 J \ J ,  and one that contains J. If I lies in 2 J \ J ,  then it follows from 
Lemma 6(iv) that 

I i l : l (z , ,  T(+a+))+l <~ C {j[1/-----T log + 1 ~ C lJI t 
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since the ratio of the measures of I and J is bounded above and away from 0, indepen- 
dently of I and J. Since the number of such terms is bounded, independently of I and 
J, the corresponding part of the Schur sum is O(IJl t )  

If I contains J and is larger than J, then I can be written I = I1 (2/2, where I1 and 
I2 are atoms in ~ + 1. Suppose that J c I1, and write ~i = 31XI~ + 32XI~. Then (see (29) 
and (30)), 

(~1,~I1, T(~baj)}+ = - (31XI~, T(r 

Now If  contains part of the region 2 J \ J ,  on which we can use Lemma 6(iii), and part 
of (2J) c, on which we can use Lemma 6(i). Specifically, 

(35) (~1~I1, T(+~j)}r [ : I ~ I I V(x) T(+=J)(x)dx I 4 
if 

~< 

<ClIl-~/21J1-1/2 ~ dxf Ix-yl-~dy +ClIl-i/2lJI 1/2+~/d f Ix-x+l-i-edx<~ 
�9 1 \ J J (23) c 

c{ I.,"1-1/~ IJI _1/9 + IX1-1/~ iJi1/~} <. c IJl~/~ 
ixli/~, 

the second-last step by Lemma 5. As for (3~ZI2, T(+a+))+, we have tha t /2  is disjoint 
from J; so the same kind of estimate as in (35) can be established. 

The estimate of the part of the Schur sum corresponding to dyadic-quasi-cubes 
I ~ J (n varying) is 

E {I1:1(#,, T(+~j))+ I ~ c F= (2 ~ I J I)'- 1/: i Jl~/: ~ C IJl' 
I~ LJ ~ , I~J  k=l 

n < m  

provided t < 1/2. 

Case 2. 

T t , 

The sum with respect to atoms I smaller than J. 

In this case, we are dealing with atoms J e ~m and I e 5:~ with n > m. 

(a) If I lies outside 2J, then J lies outside of 2I. So by Lemma 6(i) applied to 

I Tt(~I~)(x)l ~ C III 1/2 + l /d l x -  x I I - l -d  
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and so 

I(Tt(/~;~), :<.,)+ I ~ cI1112§ IJ1-1/21 Ix - x;1-1-ddx <<- 
J 

CII1112+11<~ IJ1112 Ix; - x . , , 1 - 1 - d  ~ Cliilld-,12 iJill2 f Ix - xxl -1-d dx, 
I 

the middle step because I c (2J) ~. The corresponding Schur sum estimate is 

E III t+11<~-112 IJ i l /2 f Ix - x . ,1-1-ddx <~ 
le U ~n,ID2J=O I 

n > m  

<~C ~ (2-klJI)t+lld-ll21JI li2 f 
k = l  

(2J)  c 

IX -- XjI-1-ddx ~ C ~ (2-k) t+1/~-1/2 IJI ~ < C I J I  ~ 
k = l  

provided t > 1/2 - 1/cl. 

(b) If  I A J = 0 and I c_ 2 J \ ( I  + J), then J c_ (2I) c . So by the analogue of Lemma 
6(ii) for T t 

(36) I(fl;, T(r I = I(Tt(/~_,-~), <~.;)+1 < CIJ1-1/2 1iIll2+11d I IX _ Xs1-1-ddx .  

J 

Let d(x, J) denote the distance of the point x from J. The atom I may have unequal 
side-lengths. Let  l(I) be its smallest side-length. Then it follows from (36) that  

(37) I(,~s, T(7,<~a))<s, I ~< CIJI-1/2 iiill~+lld _ _  
d(xs, J)  

cIJ1-1/21iil/2+1/d ISl-if dx 
' d(x,  J )  + l(I) " 

I 

Let  L and 1 be the maximal and minimal side-lengths of J. Then L ~< 21 and l d ~ IJI <~ 
<~ 2 41 d . The dyadic-quasi-cube I ~ ~m + k has minimum side-length 1(1) >I I/2 k/d+1 . I t  fol- 
lows from (37) that  the estimate of the relevant part  of the Schur sum is 
therefore 

III t 1</3;, T(~=+)>+ I 
I ~ U ~n , Ic_2J\(I+3) 

n > m  

C ~ (2-k]JI)t+l/d-1/21J] -1/2 f dx  
k = 1 d(x, J) + 12 -k/d-1 

2J\  (I + J) 

<~ 

3L 3L 21 

~ C k = l  ~ (2-klJI)t+l/a-1/21Ji-1/2 f dxl''" f dxd-1 f 
0 0 12-k/d - 1 

du  
u + 12 -k/d-1 

<~ 
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C1r 1 (2-klJI)t+l/d-1/2 IJ1-1/2 IJl(d-1)/d l o g (  21-~12 -k/dl2-k/d-1) ~ 

c ~ Z (2-~) ~+~/~-~/~ ~ lJI ~ < cIJ[ t 
t:=1 d 

provide d t > 1/2 - 1/d. 

(c) I f  I c ( I  + J ) \ J ,  we have I c 2 J \ J  and so, by Lemma 6(iv), 

(38) I(fll, T(~baj))~] <~ C ~ [ l o g  + 1 . 

In the region (I + J ) \ J ,  there are O(La-1/(12-k/d-1)e-1) atoms that belong to ~ .  
(Divide the maximal face area of J by the minimal face area of I). In other words, 
there are 0(2 k(1-1/d)) such atoms. The corresponding Schur sum estimate is, from 
(38), 

C ~ (2-klJ[) t+1/2 ]Jl-1/2k2 k(1-1/d) ~- ClJI t ~ k(2-k) t-1/2+l/d ~ CIJ] t 
k ~ l  k = l  

provided t > 1/2 - lid. 
(d) I f  I c_ J, and L is contiguous to J~, we write J = J1 tA ,/2, where J1 and J~ are 

atoms in ~ + 1. Let  ~j = ~1)O2 + ~2 Z:~, and suppose that I c J1. 

Consider first those atoms I c J1 that are contiguous to J r .  We have 

[(fli, T(~be~ Zj1))~ I = [(81, T(~lZJf))q~ 

So 

(39) 

Jf n 2I Jf \ 2/ 

1(8i, T(~lZJ~))~l -< 

~clIl-1/2]J] -1/2 ~ dx [ x - y l - a d y + C ] I ]  1/2+1/~ f I x - x i I - l - d d x  ~ 
2I \ I I (2/) c 

< Gill-1/z IJl-1/z I/[ log -~-  + 1 + CI I [J[ <- C [j[1/e 

by Lemma 5 and the analogue of Lemma 6(i) for Tt(~z~). Since J2 c_ J~, the same argu- 
ment  as in (39) shows that 

(40) [(Be, T(~ba2)/z~))~ [ <~ C [111/2 
IJ11/2 " 

There are 0(2 k(1-1/a) ) atoms in 4 .  + k that  are contiguous to J r .  See the argument  in 
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1(c) above. It  follows from (39) and (40) that the Schur sum estimate, appropriate to 
the atoms that are contiguous to Jr ,  reduces to 

C ~ (2 -k IJI) t+1/2 IJ1-1/2 IJI-~/~ 2k(1-1/d)= cIJI  ~ ~ (2-k) t-~/~§ ~ cIJI  ~ , 
k=l k=l 

which holds provided t > 1 / 2 -  lid. 

(e) If I _c J 1  and I is not contiguous to J r ,  then by the analogue of Lemma 
6(i), 

I(flx, T(~ba~Zz~)}~l = I I Tt(flI~)(x)~(x)a~ZJ~(x)dx )<~ 

4 cIJ1-1/2 I I Tt(~'~)(x)ld~ ~ CIII1/2+Va IJI-1/2 I IX - x,l ~ n x  
J f  J f  

<~ CIII 1/2+1/d IJI-~/~ 1 
d(xI, J~) 

A similar estimate holds for I(~i, T(~2ZJ2)},I. So the relevant Schur estimate is (cf. 
l(b) above) 

2k(1 - 1/d) 
2 (2-kljt)t+l/2+l/diJI -1/2 E 1 
k~l j~l  jl2-k/a 

- - < <  

<<. C 2 (2-klJl)t+l/2+l/dlJI -1/2-l/d2k log(2k(1-1/d)) <- C 2 k'(2-k)t-1/2+UdljIt[ ~ CIJI t 
k=l k=l 

provided t > 1/2 - 1/d. 

Case 3. Atoms of the same size. 

Here we need estimate only the term (/71, T(~I)}~ since the arguments for Case 1 
can be used to estimate the other parts of the Schur sum. 

According to Lemma 2, it suffices to prove that 

for all dyadic-quasi-cubes I. To do so, it is necessary to use the monogenicity of the 
Cauchy kernel. So we pass from T back to T~. Recall that the coordinate mapping is 
r = A(v)eo + v. Consider, for small e > 0 and x = r (u e I), 

I y - x  
(41) l Y - -  X l l + d  n(y) Zr (Y) da(y). 

Ix-y1 >~ 

Let P~ b e  the tangent hyperplane to ~ at x; set a(u) = dist (u, ar and b = b(x) = 
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= dist (x, ~r Write (41) as 

I 
b> I x - Y l  >~ 

say. Then 

�9 "+  f 
Ix--yl >b 

... = I~ + Ie 

( CIIl~/d I I Il <Clog a(u) ]" 

Using Cauchy's theorem [2], we can write 

(42) I~= f + f + 
Sb S~ x, yeP~,  b> I x - y l  >~ 

where Sb and St are the portions of the spheres of radii b and ~ respectively that lie be- 
tween Z and P~. The third integral in (42) is 0, since the kernel is anti-symmetric, and 
the integrals over Sb and S~ are bounded by a constant, independent of x, s and b. 
Therefore 

I ) ](xl, T(~x~)),~I <<- ClII + C log a(u) du < ClIl" 
I 

NOTE ADDED IN PROOF. - The Cases 1-3 do not exhaust all possibilities. The omit- 
ted cases can be treated by modifications of the arguments given above. 

3. - T h e  T(b) t h e o r e m .  

The version of the T(b) theorem stated below is formulated for an operator T from 
(a subspace of) L2 (Rd; A~) to L2 (Rd; Ad). The proof we give can be modified in the 
obvious way to prove a more general theorem for operators from Le(Rd; Adl) into 
Le (F~ d ; A~), where dl is not necessarily the same as d. The c a s e  d l  = i was treated by 
DAVID [6]. 

Suppose that bl and b~ are two pseudoaccretive functions. The space bl Le (R~; Ad) 
is defined as the space of products of the form bl f, f e  L2 (F~ ~ ; Ad). Similarly for 
L2 (R~; Ad)be. These spaces are isomorphic to L2 (R~; Ad). Let 8 denote the space of 
finite linear combinations over Ad of characteristic functions of dyadic-quasi-cubes. 
Then bl 8 is dense in b~ Le (Ad). Denote by (862)* the space of Clifford-left-linear func- 
tionals on 8be, with values in Ad. Similarly, (b~ 8)* is the space of Clifford-right-linear 
functionals on bj 8. 

Let T be a mapping from b I 8 into (8b2)* that is Clifford-right-linear, and let A = 
= {(x, y): x = y}. As in [7], we say that T is associated with a standard CalderSn- 
Zygmund kernel if there is a C ~ function K on R ~ • F~ d \ A, with values in Ad, and a 
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number ~ such that 0 < ~ ~< 1, 

(43) I K( x, Y) I <<- C 1 (x ;~ y) 
I x - y l  

(44) IK(x, y) - K(x, yo)l + IK(y, x) - K(yo, x)l <. 

and 

(45) 

<- c ly-yol  1 
if  ly  - y01 < ly - xl 

for all f ,g  �9 8 having disjoint supports. In conformity with (45) we write, in 
general, 

T(bl f)(gb2) = (g, T(bl f)}b~ �9 

If T t is a left-linear mapping from 8b2 to (bl 8)* such that 

(g, T(bl f)}b2 = (Tt(gb2), f)bl 

for all f ig  �9 8, and T is associated with the kernel K, then T t is associated with the 
kernel K(y, x) in the sense that 

We say that T is weakly bounded with respect to bl and b2 if there is a constant C such 
that 

IT(blZQ)(ZQb2)I <<- CIQI 

for all dyadic-quasi-cubes Q. This definition is formally different from the usual one 
([7], [8]), in which the test functions are taken to be smooth. However, the two defini- 
tions are equivalent [6]. 

If h �9 L ~ (Rd; Rl+d), then Th can be defined as in [7] as a linear functional on the 
subspace (8b2)o of 8b2 consisting of functions having integral 0. In the statement of the 
Theorem below, the statement that T(bl) �9 BMO is taken to mean that there is a func- 
tion r say, that is locally integrable, belongs to BMO, and is such that (g, T(bl)}b~ = 
= (g, r for all g e (8b2)o. A similar interpretation applies to T~(b2). The space BMO is 
the one defined in (13), for the sequence of a-fields of w 2. 

THEOREM (T(b) Theorem). - Let T and T t be as above, T being associated with 
the standard CalderSn-Zygmund kernel K. Then T is extendible to a bounded linear 

T(bl f)(gb2) = I I g(x) b2 (x) K(x, y) bl (y)f(y) dx dy 
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operator f r o m  bl L2 (R d; Ad) to L2 (R d ; Ad) bz i f  and only i f  

(i) T(bl), T t ( b  2 )  �9 BMO; 

(ii) T is weakly bounded with respect to bl and be. 

PROOF. - The necessity of conditions (i)-(ii) was proved in the classical case by PE- 
TRE, SPANNE and STEIN ([18], [20] and [21]). Their proof can be adapted to the more 
general Clifford-algebra setting. 

To prove the sufficiency, we treat first the case where T(bl) = Tt(b2) = 0. To each 
of the pseudoaccretive functions b~ and b2 we associate a Haar basis, as in w 1. We de- 
note the respective pair-bases by {(a(i 1) , fl(i 1) )}i ~ z and {(al (~) , ~(i 2) )}i ~ ~. Then We have the 
formal expansion 

Let 

z., r \H , J/b~\~J , f}b~. 
1, J 

uij  = (fl(I 2) , Tbl a(j1))b 2 �9 

It suffices to show that the conditions of Lemma 4 are satisfied when ~ot is taken to be 
III t for a suitable positive number t. 

Since T(bl) = Tt(b2) = 0, and the kernel associated to T satisfies (43) and (44), the 
statement and proof of Lemma 6 hold unchanged for the present more general opera- 
tor T. An examination of the estimates in Cases 1 and 2 shows that they go through 
unchanged, thanks to the assumption that T(bl) = Tt (b2)  = 0. Cf. especially Case l(b) 
and Case 2(d). The estimates of the part of the Schur sum corresponding to Case 3 
hold by virtue of the weak boundedness assumption. (In w 2, the conditions T(bl) = 
= T t ( b 2 ) = - 0  and weak boundedness are consequences of the Cauchy integral theo- 
rem.) 

The general case: T(b~), Tt(b2) �9 BMO. This can be treated by adapting the ideas 
of DAWD[6] to the martingale setting. Let T(b l )=r  and Tt(b2)=r We de- 
fine 

(46) Ui f = ~ /IX ) E (~) . (r k -~ (b ( l f )  

i , j  = 1,2, i ~ j ,  where E(k i) and A(k i) are the left-conditional expectation operators and 
left-martingale difference with respect to the pseudoaccretive function bi. It is obvi- 
ous that Ui bi = r (i = 1, 2). The kernel Ki of the operator Ui is given formally by the 
expression 

(47) (j) Ki(x, y)-- Z z1(x) (x) (Z? ), r z,(y). 
k = - ~  IE$k-1  
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It is easy to check, using the expression (46), that 

/1(~ ) Ui f - -  d ~) (r (~/)- I (bi-i f) .  

We claim that 

(48) IIs({) (ui f )  ll~ < cIIfll~, 

S (~ denoting the Littlewood-Paley square function with respect to bi and that there- 
fore Ui is bounded on L2. To prove (48) note first that 

(49) IIs(~)(u~f) 1122 = I ~1~?(r E~ ({)- l ( b ( l f )  I e dx <~ C I ~ I~y)(r I'(E~(~3(DC ~f))'d. 

~C I k_~_~'k_l (m~=k I'~ ) (r I 2) [(E(ki)__$1 (bi -1 f))2__ (E(ki)_,2(bi-i f))2]d x 

where Ek (i)* g = sup I E~)gl. Now 
m<~k 

~< cIlr I1~.o 

for every k. This is because, if I �9 ~k- l ,  then we can restrict the a-fields {5~}~=k_~ to 
I and conclude that, on I, 

(~= ) 1 I ~" [~)(@)[2dx= 
I 

- 1--!- ~=k~ IA~)(r162 w r  i r  --IZlU ) bjr dx= Izl 

C I I  1 I ] /~J ( I f  ) J' IZl, r ii-~ r @dy + bj r  T~ r dx <<. cIlr 
where we have used the notation Ill (j) = ~ bj dx. This establishes (50). Returning to 

(48), we have therefore that 

IIs(~) (a~ f)ll~ ~ c11r 115Mo ~(Mf) 2 dx <~ cllfll~, 

M f  denoting the usual Hardy-Littlewood maximal function. This proves (48). 
By Lemma 1, Ui is bounded on L2. The transpose operator U[ is also bounded on 

L~. If i ~ j, 

) (; Y(; 0 {U~(bj), f>b, = {bj, Ui(bi f )  } = k= - .  ,E 
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since Ib j~J )dx  =0.  So U t ( b j ) = 0  if i • j .  Now let R = T -  U1 - U t .  We have 

(51) R(bl) = R t (b2) = O. 

The operator R is also weakly bounded. We wish to show that R, and hence T, is 
bounded on L2 by applying the methods of proof of Theorem 1. This effectively re- 
duces to checking that the operators R and R t satisfy the same kind of conditions as 
those given in Lemma 6. Now the proof of Lemma 6(iii) and (iv) uses only the proper- 
ty (26) of the kernel K. Consider the kernels associated to U1 and U~. They are given 
by (47) for i = 1, 2. Now for fLxed x ~ y, and fixed k, there is at most  one I ~ ~k-~, say 
Ik-1, for which the summand in (47) is nonzero. For  such a term, 

(52) Lx - yl  -< c2-  

where C is independent of x, y, and k. Let  ko be the largest  integer for which (52) 
holds. The sum in (47) is then, in norm, at most 

ko 
II -I 1-1/2 1 ! 

] i ~ i  i/k__ ]fl~_,(y)bj(y)l }r (r -< 

k0 ko 
~< CH ][SMO k =2- ~ IIk-11 -1 ~ CIIr _2o 2 ~ --< CIIr 2dko <" CIJr IX -- Yl -~ 

by (52). 
tkS to the analogues of (i) and (ii) of Lemma 6, we note that, if J is a dyadic-quasi- 

cube, and x ca 2J, then (j)i(j ) 
UI(bl~I))(x) -~ ~ E ~i2)(X)Xl(X)(~i 2), r bl bl~(J D 

is zero. In fact, the last factor in a term of the double sumation is nonzero only when 
I _c J.  But  then X~ (x) = 0 since x r 2J. So the term is zero. A similar argument applies 
to U t.  Therefore conclusions (i) and (ii), as well as (iii) and (iv), of Lemma 6 hold for 
the operator R. The operator R t is t reated similarly. Given that R(b~) = Rt(b2) = 0, it 
follows that the proof of Theorem 1 applies mutat i s  mu tand i s  to the operator 
R. �9 

R E F E R E N C E S  

[1] L. V. AHLFORS, MSbius transforms and Clifford numbers, Differential Geometry and Com- 
plex Analysis: H. E. Rauch Memorial Volume, Springer-Verlag, Beriin-Heidelberg-New 
York (1985), pp. 65-73. 

[2] F. BRACKX - R. DELANGHE - F. SOMMEN, Clifford Analysis, Research Notes in Mathemat- 
ics, Vol. 76, Pitman Advanced Publishing Company, Boston, London, Melbourne 
(1982). 



394 G . I .  GAUDRY - R. LONG - T. QIAN: A martingale proof of L2, etc. 

[3] R. R. COIFMAN - P. W. JONES - S. SEMMES, Two elementary proofs of the L2 boundedness of 
Cauchy integrals on Lipschitz curves, J. Amer. Math.  Soc., 2 (1989), pp. 553-564. 

[4] R. R. COIFMAN - A. MCINTOSH - Y. MEYER, L'intggrale de Cauchy dgfinit un opdrateur 
bornd sur L 2 pour les courbes lipschitziennes, Ann. of Math., 116 (1982), pp. 361-387. 

[5] M. G. COWLING - G. I. GAUDRY - T. QIAN, A note on martingales with respect to complex 
measures, Miniconference on Operators in Analysis, Macquarie University, September 
1989, Proceedings of the Centre for Mathematical Analysis, Australian National University, 
24 (1989), pp. 10-27. 

[6] G. DAVID, Wavelets, Calder6n-Zygmund operators, and singular integrals on curves and 
surfaces, Proceedings of the Special Year on Harmonic Analysis at Nankai Institute of 
Mathematics, Tianjin, China, Lecture Notes in Mathematics, Springer-Verlag, Berlin, to 
appear. 

[7] G. DAVID - J.-L. JOURNI~, A boundedness criterion for generalized CalderSn-Zygmund op- 
erators, Ann. of Math., 120 (1984), pp. 371-397. 

[8] G. DAVID- J.-L. JOURNI~ - S. SEMMES, Opgrateurs de CalderSn-Zygmund sur les espaces de 
nature homog~ne, preprint. 

[9] R. E. EDWARDS - G. I. GAUDRY, Littlewood-Paley and Multiplier Theory, Springer-Verlag, 
Berlin-Heidelberg-New York (1977). 

[10] A. M. GARSIA, Martingale Inequalities, W. A. Benjamin, Inc., New York (1973). 
[11] C. LI - A. MCINTOSH - T. QIAN, Singular integral operators on Lipschitz surfaces, in 

preparation. 
[12] C. LI - A. MCINTOSH - S. SEMMES, Convolution singular integrals on Lipschitz surfaces, 

preprint. 
[13] R. LONG - T. QIAN, Clifford martingale #-equivalence betwee S(f) and fi preprint. 
[14] A. MCINTOSH, Clifford algebras and the high-dimensional Cauchy integral, Approximation 

and Function Spaces, Banach Centre Publications, Vol. 22, PwmPolish Scientific Publish- 
ers, Warsaw (1989). 

[15] A. MCINTOSH - T. QIAN, Convolution singular integral operators on Lipschitz curves, Pro- 
ceedings of the Special Year on Harmonic Analysis at Nankai Institute of Mathematics, 
Tianjin, China, to appear in Lecture Notes in Mathematics, Springer-Verlag, Berlin. 

[16] Y. MEYER, Odelettes et op~rateurs. II:  Opgrateurs de Calder6n-Zygmund, Hermann et Cie, 
Paris (1990). 

[17] M. A. M. MURRAY, The Cauchy integ~al, Calder6n commutators and conjugations of sin- 
gular integrals in F~ ~, Trans. Amer. Math. Soc., 289 (1985), pp. 497-518. 

[18] J. PEETRE, On convolution operators leaving LP, z invariant, Ann. Mat. PurL Appl., 72 
(1966), pp. 295-304. 

[19] S. SEMMES, A criterion for the boundedness of singular integrals on hypersurfaces, 
prepriat.  

[20] S. SPANNE, Sur l'interpolation entre les espaces ~r r Ann. Scuola Norm. Sup. Pisa, 20 
(1966), pp. 625-648. 

[21] E. M. STEIN, Singular integrals, harmonic functions, and differentiability properties of 
functions of several variables, Proc. Syrup. in Pure Math., 10 (1967), pp. 316-335. 


