
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/316549643

FFT	formulations	of	adaptive	Fourier
decomposition

Article	·	April	2017

DOI:	10.1016/j.cam.2017.04.029

CITATIONS

0

READS

85

4	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

A	maximal	inequality	for	stochastic	convolutions	in	2-smooth	Banach	spaces	View	project

Dimensionality	Reduction	View	project

Gao	You

University	of	Macau

4	PUBLICATIONS			0	CITATIONS			

SEE	PROFILE

Min	Ku

Tsinghua	University

33	PUBLICATIONS			183	CITATIONS			

SEE	PROFILE

Tao	Qian

University	of	Macau

198	PUBLICATIONS			1,756	CITATIONS			

SEE	PROFILE

Jianzhong	Wang

Sam	Houston	State	University

117	PUBLICATIONS			1,420	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Gao	You	on	27	September	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/316549643_FFT_formulations_of_adaptive_Fourier_decomposition?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316549643_FFT_formulations_of_adaptive_Fourier_decomposition?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-maximal-inequality-for-stochastic-convolutions-in-2-smooth-Banach-spaces?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dimensionality-Reduction-3?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gao_You2?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gao_You2?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macau?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gao_You2?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Min_Ku?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Min_Ku?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua_University?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Min_Ku?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Qian2?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Qian2?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macau?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Qian2?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jianzhong_Wang6?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jianzhong_Wang6?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sam_Houston_State_University?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jianzhong_Wang6?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gao_You2?enrichId=rgreq-95bd92caa86478e94fbbd120cd06c2f4-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU0OTY0MztBUzo1NDMxMDIyMzk1NTk2ODBAMTUwNjQ5NzA3MjY4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Journal of Computational and Applied Mathematics 324 (2017) 204–215

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

FFT formulations of adaptive Fourier decomposition
You Gao a,∗, Min Ku b, Tao Qian a, Jianzhong Wang c

a Department of Mathematics, University of Macau, Macao
b CIDMA, Department of Mathematics, University of Aveiro, Portugal
c Department of Mathematics and Statistics, Sam Houston State University, United States

a r t i c l e i n f o

Article history:
Received 22 December 2016

MSC:
42A50
32A30
32A35
46J15

Keywords:
Fast Fourier transform
Computational complexity
Adaptive decomposition
Greedy algorithm
Reproducing kernel Hilbert space

a b s t r a c t

Adaptive Fourier decomposition (AFD) has been found to be among the most effective
greedy algorithms. AFD shows an outstanding performance in signal analysis and system
identification. As compensation of effectiveness, the computation complexity is great,
that is especially due to maximal selections of the parameters. In this paper, we explore
the discretization of the 1-D AFD integration via with discrete Fourier transform (DFT),
incorporating fast Fourier transform (FFT). We show that the new algorithm, called
FFT-AFD, reduces the computational complexity from O(MN2) to O (MN logN), the latter
being the same as FFT. Through experiments, we verify the effectiveness, accuracy, and
robustness of the proposed algorithm. The proposed FFT-based algorithm for AFD lays a
foundation for its practical applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive Fourier Decomposition, being abbreviated as AFD, has recently been developed and proved to be among the
most effective greedy algorithms [1,2]. AFD is originally developed for the contexts of the unit disc and of the upper-
half plane, being precisely called 1-D AFD, or Core-AFD. AFD was originated with the purpose of positive frequency
decomposition of signals. The method is based on complex analysis of the unit disc, and of the upper half plane, and in
particular related to Möbius transformations and Blaschke products of those contexts. A very closely related functional
approximation method, called unwinding Fourier expansion with the positive frequency nature as well, being promoted by
a recent paper of Coifman and Steinerberger based on the Nevanlinna factorization of the Hardy space functions, was found
extremely effective in signal analysis practice, see [3–8]. AFD is sometimes also called Core-AFD, being due to the reason
that it is the constructive block of the lately developed algorithms of a few variations of 1-D AFD, including Unwinding
AFD and Cyclic AFD [4,9], etc. Most recently, the concept of AFD is generalized to approximations by linear combinations
of shifted Szegö kernels and their derivatives in various contexts, including those by using methods in learning theory,
such as SVM [10], and regularization [11], etc. In the present article, we focus on the Core-AFD algorithm, with direct
applications to system identification and signal analysis [12–15], as well as being building blocks of the other types of AFD
algorithms and greedy algorithms in general. Core-AFD was lately found to correspond to Pre-OGA. In fact, Pre-OGA in the
unit disc Hardy H2 space is identical with Core-AFD. Pre-OGA has been theoretically proved to be more effective than the
other known greedy algorithms, including the general greedy and the orthogonal types [16–18]. General greedy algorithms

∗ Corresponding author.
E-mail addresses:map2gao@gmail.com (Y. Gao), kumin0844@163.com (M. Ku), fsttq@umac.mo (T. Qian), jzwang@shsu.edu (J. Wang).

http://dx.doi.org/10.1016/j.cam.2017.04.029
0377-0427/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2017.04.029
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2017.04.029&domain=pdf
mailto:map2gao@gmail.com
mailto:kumin0844@163.com
mailto:fsttq@umac.mo
mailto:jzwang@shsu.edu
http://dx.doi.org/10.1016/j.cam.2017.04.029

Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215 205

are approximations by linear combinations of dictionary elements that are reproducing kernels of the underlying Hilbert
space [19]. In contrast, AFDs, ormore generally Pre-OGAs, are approximations by linear combinations of reproducing kernels
aswell as their directional derivatives of arbitrary order, constituting the so-called complete dictionary. It is the restriction of
using only an incomplete dictionary that causes the low efficiency of ordinary greedy algorithms. In fact, many functions in
the Hardy space havemultiple poles, corresponding to directional directives of certain orders, and thus AFD, more generally
Pre-OGA, provides more promising approximations.

AFD involves maximal selections of the parameters that cause great computational complexity. In [20] it is shown that
the computational complexity of 1-D AFD is O(MN2), where N is the number of the discretization points on the unit circle
and M is the number of points in [0, 1), on which maximal values are selected. The quantity M cannot be reduced as it is
related to the accuracy of the method. It is, however, of a great practical value to have an algorithmwith low computational
complexity in relation to N , the discretization scale, for AFD. The computation encounters a similar situation as to DFT in
the discretization of the integral. As the result of this paper, FFT, as a fast and effective method for DFT, is built into AFD
to significantly reduce the computational complexity of 1-D AFD to O (MN logN), which is as the same as that of FFT to
DFT, indicating that the complexity cannot be further reduced. The same strategy is applicable to Pre-OGA, for general
reproducing kernel Hilbert spaces with a mild boundary condition. In particular, in the 1-D classical Hardy spaces case,
Pre-OGA reduces to AFD.

This paper is organized as follows. In Section 2, we briefly introduce 1-D AFD and propose the discretization scheme.
In Section 3, we perform a FFT formulation for 1-D AFD. The FFT-based algorithm for 1-D AFD is described in this part
as well as the computational complexity analysis of the proposed algorithm. In Section 4, applicability and efficiency
of our method are illustrated by numerical experiments with comparisons with 1-D AFD without FFT formulation. For
simplification of notation and terminology we call the initial and direct algorithm of AFD without FFT formulation
[20,21] as Direct-AFD; and the proposed one adopting an FFT formulation as FFT-AFD.

2. Preliminaries

In this section, we will recall the basic theory of 1-D AFD.
Denote by H2

= H2(D) the Hardy space of holomorphic functions on the unit disc D = {z ∈ C : |z| < 1}:

H2(D) =


f : D → C|f is holomorphic in D and sup

0≤r<1

1
2π


|f (reit)|2dt < ∞


. (1)

Note that there holds the following relation:

H2(D) =


f : D → C|f (z) =

∞
k=0

ckzk,
∞
k=0

|ck|2 < ∞


.

Since Hardy space functions have boundary limits [5], for all f , g ∈ H2, the inner product of H2 is defined as

⟨f , g⟩ =
1
2π

 2π

0
f (eit)g(eit)dt,

where a denotes the complex conjugate of a ∈ C.
We will use the Szegö dictionary of the Hardy space H2 that consists of the normalized Szegö kernels:

D =


ea :=


1 − |a|2

1 − āz
, a ∈ D


.

1-D AFD, or Core-AFD, is formulated as follows (cf. [1,4,20]). Let G be an arbitrary function in the Hardy space H2. With
G1 = G, we first have

G(z) =

G1, ea1


ea1(z) + G2(z)

z − a1
1 − a1z

,

where

G2(z) =

G1(z) −


G1, ea1


ea1(z)

 1 − a1z
z − a1

and

a1 = argmax
a∈D


|⟨G1, ea⟩|2


.

The selection and thepossibility of the selection of such a1 ∈ D are called themaximal selectionprinciple (in Szegödictionary
D). It is shown in [1] that such a1, at which themaximal value exists and is attained, can only exist inside the open unit disc.
We note that G2 is again in the Hardy space H2. This fact is crucial for the following recursive steps.

206 Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215

The above backward shift procedure for defining a newHardy space function G2 from G1 can be repeated. After n iterative
steps, we get

G(z) = Sn(z) + Gn+1(z)
n

k=1

z − ak
1 − akz

, (2)

where

Sn(z) =

n
k=1


Gk, eak


eak(z)

k−1
j=1

z − aj
1 − ajz

, (3)

the reduced reminder Gk+1 is obtained through the recursive formula

Gk+1(z) =

Gk(z) −


Gk, eak


eak(z)

 1 − akz
z − ak

,

and

ak = argmax
a∈D


|⟨Gk, ea⟩|2


.

Write

Bk(z) = eak(z)
k−1
j=1

z − aj
1 − ajz

=


1 − |ak|2

1 − akz

k−1
j=1

z − aj
1 − ajz

.

Each Bk is the product of a dictionary element, as normalized Szegö kernel, and a Blaschke product with a1, a2, . . . , ak−1 as
its zeros. Then {Bn}

+∞

n=1 is a rational orthonormal system, also called Takenaka–Malmquist system [6].
Furthermore, due to the orthogonality, for each n there holdsG −

n
k=1

⟨Gk, eak⟩Bk


2

= ∥G∥
2
−

n
k=1

|⟨Gk, eak⟩|
2

= ∥Gn+1∥
2. (4)

The last equality relation is due to the unimodule property of Blaschke products. In [1] we show

lim
k→∞

∥Gk+1∥ = 0,

that implies the convergence and

G =

∞
k=1

⟨Gk, eak⟩Bk. (5)

The above is called 1-D AFD or Core AFD. Cyclic AFD and unwinding AFD are further developments of Core AFD. Under Cyclic
AFD, for a fixed n, one seeks a simultaneous selection of all n parameters a1, . . . , an that gives rise to the minimal remainder
in the TM-system expansion [9]. It gives a partial solution of the long open problem of best rational approximations to
a Hardy space function. With Unwinding AFD, at each recursive step, one first performs the Nevanlinna factorization to
factorize out the inner function part and then uses Core AFD to decompose the outer function part [4].

3. FFT formulation

In our case, the Hilbert space is H2(D). As the non-tangential boundary limit of f (z) ∈ H2(D) is f (eit) ∈ H2(∂D), where
∂D is the unit circle, it is an isometric map from H2(D) to H2(∂D). 1-D AFDmentioned in Section 1 is applied to functions in
H2(∂D).

The main computation step is to compute the coefficients in (5). At the kth step, the kth coefficient is of the maximum
absolute value among the absolute value of the inner product, which is the integration of the product of the reduced
remainder and the normalized Szegö kernel in D . Due to the similarity between a Szegö kernel and a general monomial
term in the Fourier system, the integration is analogous to the Fourier transform of a periodic function. In what follows, we
apply the polar coordinate and use the grid mesh

CM,N =


al,j = rlei

2j
2N , 0 < r1 < · · · < rM < 1, l = 1, 2, . . . , M, j = 0, 1, 2, . . . , 2N − 1


in searching over D, instead of the usual rectangular grid. This is the starting point of our algorithm proposed in the context.

Specially the grid points on the circle of radius rl constitute a subset of CM,N as

Cl,N =


al,j = rlei

2j
2N , 0 < rl < 1,M, j = 0, 1, 2, . . . , 2N − 1


,

which is our FFT formulation involved.

Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215 207

3.1. FFT formulation of 1-D AFD

In 1-D AFD, the kth coefficient in (5) is the inner product of the kth reduced remainder Gk and the Szegö kernel in D . As
mentioned, due to the similarity between a Szegö kernel and a monomial, the discretization of the integral for computing
the inner product gives rise to a DFT like series that can incorporate the FFT idea.

To simplify the notation we denote Gk as G in this part. Under the maximal selection principle (MSP), it needs to find the
parameter ak ∈ D that satisfiesG, eak

2 = max
a∈D

|⟨G, ea⟩|2 .

The kth coefficients of 1-D AFD is then given by ⟨G, eak⟩ and

⟨G, ea⟩ =
1
2π

 2π

0
G(eit)

√
1 − r2

1 − ae−it
dt. (6)

Numerical model is established as follows. Suppose the interval [0, 2π) is evenly divided into 0 = t0 < · · · < t2N−1 <
t2K = t2N = 2π with a large integer K . Then the inner product (6) can be discretized as

⟨G, ea⟩ ≈

2N−1
m=0


1 − |a|2

2N
G


ei

2πm
2N

 1

1 − ae−i 2πm
2N

. (7)

Under the maximal selection principle, by adopting grid mesh CM,N the proposed algorithm works on finding a point
al′,j′ ∈ CM,N satisfyingG, eal′,j′

2 ≈ max
al,j∈CM,N

G, eal,j
2 .

Let Wm
2N denote the exponential term Wm

2N = e−i 2π2N m. Then for discrete data G

W−m

2N


and al,j in the polar coordinate form

al,j = rlei
2π
2N j, (7) can be approximated by a series

⟨G, ea⟩ ≈

2N−1
m=0


1 − r2l
2N

G

W−m

2N


1 − rlW

m−j
2N

def
= ⟨G, eal,j⟩

˜. (8)

When j = 1, 2, . . . , 2N −1, it is clear that (8) is a DFT like series. It is feasible that the computation of these series is realized
on the principle of FFT.

Theorem 3.1. For fixed l0, 0 < rl0 < 1, aj = rl0e
i 2π2N j, the right side of (8) is equivalent to the case

⟨G, eal0,j⟩
˜
= H(1)

j + rl0W
−j
2NG

(1)
j ,

⟨G, eal0,j+N ⟩
˜
= H(1)

j − rl0W
−j
2NG

(1)
j ,

j = 0, 1, 2, . . . ,N − 1, (9)

where

H(1)
j =


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2

 ,

G(1)
j =


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

 . (10)

Proof. Noticing that for a fixed 0 < rl0 < 1, it is sufficient for us to turn the expression (8) of length 2N into a summation
of two expressions of length N as

⟨G, eal0,j⟩
˜
=

2N−1
m=0


1 − r2l0
2N

G

W−m

2N


1 − rl0W

m−j
2N

=

2N−2
2m=0


1 − r2l0
2N

G

W−2m

2N


1 − rl0W

2m−j
2N

+

2N−1
2m+1=1


1 − r2l0
2N

G

W−(2m+1)

2N


1 − rl0W

2m−j
2N W2N

=


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 − rl0W

2m−j
2N

+

N−1
m=0

G

W−(2m+1)

2N


1 − rl0W

2m−j
2N W2N

 , j = 0, 1, 2, . . . , 2N − 1,

208 Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215

which can be simplified as:

⟨G, eal0,j⟩
˜
= Hj + Gj, (11)

by denoting

Hj =


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 − rl0W

2m−j
2N

, Gj =


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


1 − rl0W

2m+1−j
2N

.

Observing that ei
2π
2N N

= −1, associating with (11), we get

⟨G, eal0,j+N ⟩
˜
= Hj+N + Gj+N , (12)

where

Hj+N =


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 + rl0W

2m−j
2N

, Gj+N =


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


1 + rl0W

2m+1−j
2N

, j = 0, 1, 2, . . . ,N − 1.

It is clear that the denominators of Hj and Hj+N are different, while the situation is the same to Gj and Gj+N . Following the
idea of FFT, generating two common terms of length N by the periodicity of (8) is the key point to reducing computation.
Meanwhile these two common terms should be in a similar form of (8) for the following recursive steps. Then we rearrange
(11) and (12) to a common denominator and factor the common twiddle factor rl0W

−j
2N out. Namely we have

⟨G, eal0,j⟩
˜
=


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 −


rl0W

2m−j
2N

2 + rl0W
−j
2N

√
1 − r2

2N

N−1
m=0

G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2

+


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2 + rl0W
−j
2N


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

=


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 −


rl0W

2m−j
2N

2 +


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2

+ rl0W
−j
2N


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2 +

N−1
m=0

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

 ,

and

⟨G, eal0,j+N ⟩
˜
=


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 + rl0W

2m−j
2N

+


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


1 + rl0W

2m+1−j
2N

,

=


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 −


rl0W

2m−j
2N

2 − rl0W
−j
2N


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2

+


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2 − rl0W
−j
2N


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

=


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 −


rl0W

2m−j
2N

2 +


1 − r2l0
2N

N−1
m=0

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2

− rl0W
−j
2N


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2 +

N−1
m=0

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

 .

Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215 209

So, to compute (11) and (12) is equivalent to calculate both of (13) and (14) as follows

⟨G, eal0,j⟩
˜
=


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2


+ rl0W

−j
2N


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

 , (13)

and

⟨G, eal0,j+N ⟩
˜
=


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2


− rl0W

−j
2N

√
1 − r2

2N

N−1
m=0

 G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

 . (14)

Denote two common terms respectively as

H(1)
j =


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


1 −


rl0W

2m+1−j
2N

2

 ,

G(1)
j =


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


W 2m

2N

1 −


rl0W

2m−j
2N

2 +

G

W−(2m+1)

2N


W 2m+1

2N

1 −


rl0W

2m+1−j
2N

2

 . (15)

Then we get the recursive relationship
⟨G, eal0,j⟩

˜
= H(1)

j + rl0W
−j
2NG

(1)
j ,

⟨G, eal0,j+N ⟩
˜
= H(1)

j − rl0W
−j
2NG

(1)
j ,

j = 0, 1, 2, . . . ,N − 1. � (16)

3.2. Numerical method

Here we describe our FFT formulation to the inner product of the given function and the normalized Szegö kernel in
detail. The computation of the inner product part contributes the major part of the total computation algorithm. The rest
computations in 1-D AFD aremainly discretization of the corresponding algebraic expressions. The computation complexity
of our method will be shown in next part.
Step 1. Compute


G, ea1,j


for a1,j ∈ C1,N .

We have to compute and store the quantities as follows

Wm
2N , rlW−m

2N ,G(W−m
2N)Wm

2N , m = 0, 1, 2, . . . , 2N − 1, l = 1, 2, . . . ,M. (17)

Next, compute ⟨G, ea1,j⟩
˜, j = 0, 1, 2, . . . , 2N − 1 with r1. First of all, it is necessary for us to have the values of the input

components to obtain {⟨G, ea1,j⟩
˜
}
2N−1
j=0 . Note that the integral variable here ism, with the binary representation as

m = 2K−1mK−1 + · · · + 22m2 + 21m1 + m0 =: (mK−1, . . . ,m2,m1,m0) , mi = 0, 1. i = 0, 1, . . . , K − 1.
By adopting Theorem 3.1 into binary representation, the input components f (hK−1, . . . , h1, h0) can be written as

f (hK−1, . . . , h1, h0) =

1
m0=0

1
m1=0

· · ·

1
mK−1=0

G(W (m0,m1,...,mK−1)
2N)W (m0,m1,...,mK−1)(hK−1,...,h1,h0)

2N

1 − r2N
. (18)

For m = (mK−1, . . . ,m1,m0), denote the bit-reversal permutations of size 2N = 2K as s =: (m0,m1, . . . ,mK−1) and
h =: (hK−1, . . . , h1, h0). Then (18) becomes

f (h) =
1

1 − r2N

2N−1
s=0

G(W s
2N)W hs

2N , (19)

the DFT of G(W s
2N) multiplied by a constant, which can be directly obtained by FFT.

210 Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215

Fig. 1. Obtain the inner product from the original input components.

Secondly, making full use of (9), it is sufficient to compute Hj,Gj, j = 0, 1, 2, . . . ,N − 1. Finally, repeating the same
procedure, we get all the values ⟨G, ea1,j⟩

˜, j = 0, 1, 2, . . . , 2N − 1.
To explain in detail how to compute ⟨G, ea1,j⟩

˜, j = 0, 1, 2, . . . , 2N − 1, we set an example for 2N = 8. We denote the

elements in f (h) as f (h) =


H(3)

j ,H(3)′
j ,H(3)′′

j ,H(3)′′′
j ,G(3)

j ,G(3)′
j ,G(3)′′

j ,G(3)′′′
j


. The detailed data flow diagram for 2N = 8 is

shown in Fig. 1.

Step 2. Find a point al′,j′ ∈ D, satisfying
⟨G, eal′,j′ ⟩

̃2 = maxal,j∈CM,N

G, eal,j
2.

First, for all rl, l = 1, 2, . . . ,M , we get all of the values of ⟨G, eal,j⟩
˜ by repeating Step 1, where |al,j| = rl, j =

0, 1, 2, . . . , 2N − 1.
Second, apply the search method for all of ⟨G, eal,j⟩

˜, al,j = rlei
2π
2N j, j = 0, 1, 2, . . . , 2N − 1, l = 1, 2, . . . ,M to find a point

al′,j′ ∈ D, satisfying
⟨G, eal′,j′ ⟩

̃2 = maxal,j∈CM,N

⟨G, eal,j⟩
̃2.

3.3. Computational complexity

In what follows, we refer to the argument of the classical FFT to derive the computational complexity of our method. Let
us start with

⟨G, eal0,j⟩
˜
= Hj + Gj =


1 − r2l0
2N

N−1
m=0

G

W−2m

2N


1 − rl0W

2m−j
2N

+

N−1
m=0

G

W−(2m+1)

2N


1 − rl0W

2m+1−j
2N


=


1 − r2l0
2N

N−1
m=0

 G

W−2m

2N


1 − rl0W

2m−j
2N

+

G

W−(2m+1)

2N


1 − rl0W

2m+1−j
2N

 , j = 0, 1, 2, . . . , 2N − 1. (20)

Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215 211

Table 1
Running time (s) in Case 1.

FFT-AFD 0.2145 0.2150 0.2138 0.2143 0.2136 0.2257
Direct-AFD 4.6202 4.6896 4.6081 4.5976 4.7307 4.7403

Hereby, for convenience, we do not consider the coefficient of


1−r2l0
2N because it does not influence the computational

complexity of ⟨G, eal0,j⟩
˜, j = 0, 1, 2, . . . , 2N − 1, and the rest is still denoted by ⟨G, eal0,j⟩

˜, j = 0, 1, 2, . . . , 2N − 1 without
confusion.

In Step 1, the computational complexity of the three terms of (17) is O(N). Under this setting, the computational
complexity of getting H(1)

j and G(1)
j , j = 0, 1, 2, . . . ,N − 1, respectively, is the same, denoted by F(N). Associating (11)

with (13), (14), in order to obtain ⟨G, eal0,j⟩
˜, j = 0, 1, 2, . . . , 2N − 1, it is sufficient to compute ⟨G, eal0,j⟩

˜, ⟨G, eal0,j+N ⟩
˜, j =

0, 1, 2, . . . ,N − 1, whose computational complexity is denoted by F(2N). Observing the recursive relationship (9), which
reduces 2N computation of ⟨G, eal0,j⟩

˜, j = 0, 1, . . . , 2N − 1 to N computation of ⟨G, eal0,j⟩
˜, j = 0, 1, . . . ,N − 1. Following

the argument of the classical FFT, we derive

F(2N) = 2F(N) + N, (21)

which leads to the computational complexity O (N logN) to compute all of ⟨G, ea1,j⟩
˜, j = 0, 1, 2, . . . , 2N − 1.

So the total computational complexity of Step 1 is O (N logN).
In Step 2, for different r1, r2, . . . , rM , we need to repeat the procedure of Step 1 M times. The computational complexity

of this sub-step is O (MN logN). In the second sub-step of Step 2, there at most are MN points to be searched. This leads to
the computational complexity O (MN).

Summarizing, the total computational complexity of Step 1 and 2 is O (MN logN).

Remark 3.2. For a fixed rl0 : 0 < rl0 < 1, all ⟨G, eal0,j⟩
˜ for |al0,j| = rl0 , j = 0, 1, 2, . . . , 2N − 1 could be computed directly,

starting with (8). It can be found that its computational complexity is O

N2


. Hence the computational complexity of the

direct computation is higher than that of Step 1.

4. Numerical experiments

In Ref. [20], although the realizable method was proposed, the computational complexity is O

MN2


. However, this is

not a fast method to realize Core-AFD. In this context, following the fundamental principal of the classical FFT, the proposed
method is of the computational complexity O (MN logN). This results in that the proposed method should be much more
efficient and practical than that in [20]. In this section, we give the numerical experiment results by using our method
FFT-AFD and one of the Direct-AFD, the method in [20].

The analysis of our methods is given from three different aspects, corresponding to three subsections respectively [22].
The first one is to list the approximated results, the running time results, the parameters ak and relative errors in two cases,
while original functions sampled by 2048 points. The second one is to make the running time comparison for the functions
sampled by the different sample rates. The last one is to conduct the experiments on the original signals with a 20 dB
Gaussian noise. The numerical experiments show that FFT-AFD obtains almost the same results of the Direct-AFD in less
time.

In all of the following experiments, the radius of the unit disc r = 0, 0.1, 0.2, . . . , 0.8 will be considered. Let G, Sn be
defined as in (2). We define relative error by δ =

∥G−Sn∥2

∥G∥2
. It must be noted that we set a1 = 0 in every experiment to obtain

a mono-components decomposition [1]. All codes in experiments are programmed in Matlab R2012b.

4.1. Basic experiments

Case 1. The original function is chosen as f1 =
(0.07x2−0.6)(0.2x−0.9)

(x2+2)
∈ H2(D).

The time consuming to run 4 steps is shown in Table 1. The experiments are repeated 6 times.
The real part of approximation results are shown in Table 2.
The parameters ak and the relative errors are shown in Tables 3 and 4.

Analysis 1. From Table 1, it is obvious that the numerical computation significantly accelerates. From Tables 3 and 4, the
difference of the parameters ak and the relative error generated in ourmethod are limited to 0.0002. These data indicate our
method actually realize the effects of AFD in less time.
Case 2. Let f2 be given as an example of the step functions f2 = sgn(sin t).

The time consuming to run 25 steps is shown in Table 5.
The approximation results are shown in Table 6.

212 Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215

Table 2
Comparison between the real part of approximation results in Case 1.

S2 S3 S4

1-D AFD

Table 3
Parameters ak in Case 1.

Table 4
Relative error δ in Case 1.

N FFT-AFD Direct-AFD

1 0.3676 0.3676
2 0.2140 0.2140
3 0.0216 0.0214
4 0.0002 0.0002

Table 5
Running time (s) in Case 2.

FFT-AFD 1.3218 1.3042 1.3254 1.3412 1.3070 1.3363
Direct-AFD 6.5031 6.7042 6.7122 6.5361 6.6030 6.6430

Table 6
Comparison between the approximation results in Case 2.

S2 S4 S9 S16 S25

1-D AFD

Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215 213

Table 7
Parameters ak in Case 2.

Table 8
Relative error δ in Case 2.

N FFT-AFD Direct-AFD

1 1.0000 1.0000
2 0.1895 0.1895
4 0.0267 0.0267
9 0.0121 0.0121

16 0.0061 0.0061
25 0.0038 0.0038

Table 9
Running time (s).

Sampled by 512 1024 2048 4096 8192
FFT-AFD 0.0516 0.1007 0.2163 0.4641 3.5796
Direct-AFD 0.3082 1.1677 4.7843 22.7593 6067.6351

The ak and the relative errors are shown in Tables 7 and 8.
Analysis 2. The running time of our method is very stable. As shown in Table 6, the red curve from our method coincides
with the blue curve from the method in [20]. The parameters and relative errors also have exactly the same values. Namely,
FFT-AFD achieves the same effects of Direct-AFD with less computation cost.

4.2. Influence of sampling

In this part, the experiments devote to show the influence of the number of samples obtained from original signals. In
this experiment, the discretization of 1-D AFD depends on the number of samples obtained from original signals. The results
show that our method becomes more efficient when more samples are considered.

Our method in Section 3 has the O (MN logN) computational complexity, which is used to approximately compute the
inner product (7). Comparedwith the computational complexityO


MN2


of themethod [20], the running time should have

an obvious improvement while the sampling points of the original function increase greatly. Hereby, the original signal f1 is
sampled by 512, 1024, 2048, 4096, 8192 points, and the method in Section 3 is run with the sampled signals, respectively.
The running time to run 4 steps can be found in Table 9.

4.3. Precision stability under disturbance

In this part, the aim of the experiments is to observe the precision stability under disturbance of our method. Explicitly,
our method works on f1 with the 20 dB Gaussian noise.
Case 3. Let f1 with 20 dB Gaussian noise be a signal disturbed by a noise with the random amplitude at any time.
The real part of approximation results are shown in Table 10. The parameters ak and the relative error are shown in
Tables 11 and 12.

214 Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215

Table 10
Comparison between the real part of approximation results in Case 3.

S2 S3 S4

1-D AFD

Table 11
Parameters ak in Case 3.

Table 12
Relative error δ in Case 3.

N FFT-AFD Direct-AFD

1 0.4185 0.4185
2 0.2753 0.2749
3 0.0973 0.0973
4 0.0845 0.0762

Analysis 3. Additive noise causes a less than 0.5% difference of 4th relative error between ourmethod and themethod in [20].
We think that additive noise has no influence on 1D-AFD.

Acknowledgments

We would like to thank Xiaoyin Wang, Weixiong Mai for comments on a previous version of the paper. This work was
supported by the Multi-Year Research Grant of the University of Macau No. MYRG2016-00053-FST, the Annual Research
Grant of the University ofMacauNo. CPG2015-00023-FST, the National Natural Science Foundation of China (No. 11571089),
the Portuguese Foundation for Science and Technology (FCT—Fundao para a Cincia e a Tecnologia) through the CIDMA—
Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013 and the
Postdoctoral Foundation from FCT (Portugal) under Grant No. SFRH/BPD/74581/2010.
Conflict of interest. The authors declare that they have no conflict of interest.

References

[1] Tao Qian, Yan-Bo Wang, Adaptive Fourier seriesa variation of greedy algorithm, Adv. Comput. Math. 34 (3) (2011) 279–293.
[2] Tao Qian, Two-dimensional adaptive fourier decomposition, Math. Methods Appl. Sci. 39 (10) (2016) 2431–2448.
[3] Ronald R. Coifman, Stefan Steinerberger, Nonlinear phase unwinding of functions, J. Fourier Anal. Appl. (2015) 1–32.
[4] Tao Qian, Intrinsic mono-component decomposition of functions: An advance of fourier theory, Math. Methods Appl. Sci. 33 (7) (2010) 880–891.
[5] John B. Garnett, Bounded Analytic Functions, Vol. 96, Academic press, 1981.

http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref1
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref2
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref3
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref4
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref5

Y. Gao et al. / Journal of Computational and Applied Mathematics 324 (2017) 204–215 215

[6] Adhemar Bultheel, Orthogonal Rational Functions, Cambridge University Press, 1999.
[7] Michel Rene Nahon, Phase Evaluation and Segmentation (Ph.D. thesis), Yale University, New Haven, CT, USA, 2000, pp. 1–162.
[8] Mary Weiss, Guido Weiss, A derivation of the main results of the theory of hp spaces, Rev. Un. Mat. Argentina 20 (1962) 63–71.
[9] T. Qian, Cyclic afd algorithm for best approximation by rational functions of given order, Math. Methods Appl. Sci. (2014).

[10] Yan Mo, Tao Qian, Support vector machine adapted tikhonov regularization method to solve dirichlet problem, Appl. Math. Comput. 245 (2014)
509–519.

[11] Tao Qian, Li-ming Zhang, Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis, Appl. Math. J. Chinese Univ. 28
(4) (2013) 505–530.

[12] Wen Mi, Tao Qian, Frequency-domain identification: An algorithm based on an adaptive rational orthogonal system, Automatica 48 (6) (2012)
1154–1162.

[13] Wen Mi, Tao Qian, On backward shift algorithm for estimating poles of systems, Automatica (2014).
[14] Pei Dang, Tao Qian, Analytic phase derivatives, all-pass filters and signals of minimum phase, IEEE Trans. Signal Process. 59 (10) (2011) 4708–4718.
[15] Pei Dang, Guan-Tie Deng, Tao Qian, A tighter uncertainty principle for linear canonical transform in terms of phase derivative, IEEE Trans. Signal

Process. 61 (21) (2013) 5153–5164.
[16] V.N. Temlyakov, Weak greedy algorithms, Adv. Comput. Math. 12 (2–3) (2000) 213–227.
[17] Stéphane G. Mallat, Zhifeng Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process. 41 (12) (1993) 3397–3415.
[18] Vladimir Temlyakov, Greedy Approximation, Vol. 20, Cambridge University Press, 2011.
[19] Geoffrey Davis, Adaptive nonlinear approximations (Ph.D. thesis), New York University, 1994.
[20] Tao Qian, Liming Zhang, Zhixiong Li, Algorithm of adaptive fourier decomposition, IEEE Trans. Signal Process. 59 (12) (2011) 5899–5906.
[21] Tao Qian, Yanbo Wang, Remarks on adaptive fourier decomposition, Int. J. Wavelets Multiresolut. Inf. Process. 11 (01) (2013).
[22] Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.

View publication statsView publication stats

http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref6
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref7
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref8
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref9
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref10
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref11
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref12
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref13
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref14
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref15
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref16
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref17
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref18
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref19
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref20
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref21
http://refhub.elsevier.com/S0377-0427(17)30200-5/sbref22
https://www.researchgate.net/publication/316549643

	FFT formulations of adaptive Fourier decomposition
	Introduction
	Preliminaries
	FFT formulation
	FFT formulation of 1-D AFD
	Numerical method
	Computational complexity

	Numerical experiments
	Basic experiments
	Influence of sampling
	Precision stability under disturbance

	Acknowledgments
	References

