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Abstract. This paper is devoted to studying uncertainty principle of
Heisenberg type for signals on the unit sphere in the Clifford algebra set-
ting. In the Clifford algebra setting we propose two forms of uncertainty
principle for spherical signals, of which both correspond to the strongest
form of uncertainty principle for periodic signals. The lower-bounds of
the proven uncertainty principles are in terms of a scalar-valued phase
derivative.
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1. Introduction

The Heisenberg uncertainty principle originated in quantum mechanics. In
time–frequency analysis, the classical uncertainty principle states that a func-
tion and its Fourier transform cannot be simultaneously well localized, where
the function is always assumed to live on the real axis, being phrased as non-
periodic signals. There exists an ample amount of literature that focus on
uncertainty principles for non-periodic signals (for example, [4–6,8,13,14,16,
17,19,20]). There will be different forms of uncertainty principles when we
study the subject for signals in different function spaces. Recently, a number
of authors deal with uncertainty principles for periodic and spherical signals.

Breitenberger studies uncertainty principles for periodic functions in
[3] from the physics point of view. For detailed information on periodic un-
certainty principles we refer the interested readers to [23,25,26,29,30]. The
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cited references give the earliest uncertainty principles for periodic signals
s(eit) = ρ(t)eiϕ(t) ∈ L2([0, 2π)), and those are essentially of the form

σ2
t σ2

k ≥ 1
4
|t0|2, (1.1)

where σ2
t , σ2

k and t0 are, respectively, the circular variance, the variance of
Fourier frequency and the mean angle of t, with the definitions

σ2
t �

∫ 2π

0

|(eit − t0)s(eit)|2dt, (1.2)

σ2
k �

∞∑
k=−∞

(k − k0)2|ck|2, (1.3)

and

t0 �
∫ 2π

0

eit|s(eit)|2dt, (1.4)

where k0 is the mean of Fourier frequency k, given by

k0 �
∞∑

k=−∞
k|ck|2, (1.5)

and ck’s are the Fourier coefficients,

ck =
1√
2π

∫ 2π

0

s(eit)e−iktdt, k = 0,±1,±2, . . . . (1.6)

Recently, [11] proposes two uncertainty principles for periodic signals,
both being stronger than (1.1), read as

σ2
t σ2

k ≥ 1
4
|t0|2 + |Covp|2, (1.7)

and

σ2
t σ2

k ≥ 1
4
|t0|2 + COVp

2, (1.8)

where Covp is the covariance defined by

Covp =
∫ 2π

0

eitϕ′(t)|s(eit)|2dt − t0k0

=
∫ 2π

0

[ϕ′(t) − k0]
(
eit − t0

) |s(eit)|2dt, (1.9)

and COVp is the absolute covariance defined by

COVp =
∫ 2π

0

|ϕ′(t) − k0||eit − t0||s(eit)|2dt, (1.10)

where ϕ′(t) is the classical phase derivative, or otherwise suitably defined
(see [11]). It is easy to see that the lower-bound of (1.8) is larger than that
of (1.7), that is, (1.8) is stronger than (1.7).
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Recently, there arises some interest in uncertainty principles of spherical
signals [7,21,24,28,29]. Those uncertainty principles are in the form of a lower
bound on the product of variances that are defined as follows:

Vx,ψVΩ,ψ ≥ ‖τψ‖2, (1.11)

where Vx,ψ,VΩ,ψ, τψ are given in Definition 1.1. ‖ · ‖ denotes the Euclidean
norm in R3. The uncertainty principle (1.11) is proved in the vector space
setting.

Definition 1.1. If ψ(x) is a twice-continuously differentiable complex-valued
function, and

∫
S2

|ψ(x)|2dσ(x) = 1, then the spherical mean, or mean of the
space vector variable x, is defined to be

τψ �
∫
S2

x|ψ(x)|2dσ(x). (1.12)

We note that τψ is a vector. The variance of x is defined to be

Vx,ψ �
∫
S2

‖x − τψ‖2|ψ(x)|2dσ(x) = 1 − ‖τψ‖2. (1.13)

The mean of frequency is defined as

a(ψ) �
∫
S2

Ωψ(x)ψ(x)dσ(x), (1.14)

and the variance of frequency is defined as

VΩ,ψ �
∫
S2

‖[Ω − a(ψ)]ψ‖2dσ(x) =
∫
S2

(−Δ∗
S2)ψ · ψdσ(x) − ‖a(ψ)‖2,

(1.15)

where S
2 is the unit sphere embedded in R3, the surface variable x ∈ S

2

is regarded as position operator and the angular momentum operator Ω =
−iL∗ = −ix × �∗ as momentum operator, where �∗ denotes the surface
gradient and L∗ the surface curl gradient. Note that both of them are roots
of the Laplace–Beltrami operator of the unit sphere in the sense

Δ∗
S2 = L∗ · L∗ = �∗ · �∗.

More details are referred to [18].

Uncertainty principle for signals on sphere S
2 can be regarded as a

generalization of that for periodic signals, or signals on circle S
1. Based on

the lower bound of uncertainty principle, up to now the development of un-
certainty principle for periodic signals can be essentially represented by the
three inequalities (1.1), (1.7) and (1.8). From the lower bound of (1.11), we
can conclude that the uncertainty principle (1.11) for the sphere case, in fact,
corresponds to (1.1) for periodic signals. It is natural to think whether uncer-
tainty principles for spherical signals have forms that correspond to (1.7) and
(1.8). In the study, we will pursue those forms of uncertainty principle for
signals on the sphere. We are to study uncertainty principles on the sphere in
the Clifford algebra setting not in the vector space setting. Indeed, Clifford
algebra offers a complex structure with Cauchy’s theory that brings a precise
analogy of the unit circle context to the unit sphere: a Fourier–Laplace series
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on the sphere can be further decomposed into a Laurent-wise Fourier series
consisting of two parts of which one corresponds to the Hardy space inside
the sphere and the other corresponds to the Hardy space outside the sphere.

It is noticeable that besides phase derivatives the proof of (1.8) also
involves amplitude derivatives of signals [11]. To obtain counterpart results,
right definitions of phase and amplitude derivatives of spherical signals are
crucial. In [33] the authors propose a scalar-valued phase derivative in the
Clifford algebra setting that is shown in the paper as a right replacement of
the 1-D phase derivative in higher dimensions. In the Clifford algebra setting
there are formally more than one formulation of phase or amplitude derivative
as discussed in Sect. 2.3. In the one complex variable setting, corresponding
to the lowest degree of Clifford algebras, the different ways defining phase
and amplitude derivative reduce to the classical one. The higher dimensions
are different. The two ways of defining the amplitude derivatives in higher
dimensions, in particular, lead to two alternative ways to define variance of
frequency for spherical signals, viz., vark and var∗

k, as given in Definition
3.3. Based on the two alternative ways we obtain two forms of uncertainty
principles, both correspond to the strongest form of uncertainty principles
for periodic signals, (1.8).

For applications of uncertainty principles of the classical and the gener-
alized types we refer the readers to [10] and [31].

The writing of the paper is organized as follows. In Sect. 2, we recall
some basic knowledge in Clifford algebra, define and analyze phase and am-
plitude derivatives of spherical signals in the Clifford algebra setting. Section
3 is devoted to studying the spherical means and variance of “time” and “fre-
quency” in both the Clifford algebra and the vector space settings. Section 4
discusses uncertainty principles on the sphere in the Clifford algebra setting
and deduces two different types of uncertainty principles.

2. Preliminaries

2.1. Some Basic Knowledge of Clifford Algebra

We review some basic knowledge of Clifford algebra (see [1,12]). Let e1, . . . , em

be basic elements satisfying eiej + ejei = −2δij , where δij = 1 if i = j and
δij = 0 otherwise, i, j = 1, 2, . . . , m. Let

Rm = {x = x1e1 + · · · + xmem : xj ∈ R, j = 1, 2, . . . ,m}
be identical with the usual m-dimensional Euclidean space. We similarly de-
fine

Cm = {x = x1e1 + · · · + xmem : xj ∈ C, j = 1, 2, . . . , m}.

An element in Rm (or in Cm) is called a vector. The real (complex) Clif-
ford algebra generated by e1, e2, . . . , em, denoted as Rm (Cm), is the non-
commutative algebra generated by e1, e2, . . . , em, over the real (complex) field
R (C). A general element in Rm, therefore, is of the form x =

∑
T xTeT ,
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where xT ∈ R, and eT = ei1ei2 . . . eil
, being called induced products, where

T runs over all the ordered subsets of {1, . . . , m}, namely,

T = {(i1, ..., il) : 1 ≤ i1 < · · · < il ≤ m, 1 ≤ l ≤ m}.

When T = ø, we set eø = e0 = 1. We denote |T | = l where l is the number of
the indices involved. A general Clifford number x may be decomposed into

x =
m∑

l=0

x(l), x(l) =
∑

|T |=l

xTeT .

A Clifford number of the form x(l) is called an l-form Clifford number. A
2-form Clifford number is also called a bi-vector.

Let

Rm
1 (or Cm

1 ) = {x = x0 + x : x0 ∈ R (or C), x ∈ Rm (or Cm)}.

Elements in Rm
1 or Cm

1 are called para-vectors. A sum of a 0-form and a
2-form is called a para-bivector.

The natural inner product between x = ΣT xTeT and y =
∑

T yTeT in
Cm, denoted by 〈x, y〉, is the complex number ΣT xT yT . The norm associated
with this inner product is

|x| = 〈x, x〉 1
2 =

(
ΣT |xT |2) 1

2 .

The multiplication of two vectors x =
∑m

j=1 xjej ∈ Rm and y =∑m
j=1 yjej ∈ Rm is given by

xy = −〈x, y〉 + x ∧ y

where −〈x, y〉, being the negative value of the usual inner product, is a scalar,
denoted by Sc(xy) and given by

−〈x, y〉 = −
m∑

j=1

xjyj =
1
2
(xy + yx),

and x ∧ y is the non-scalar part of xy, denoted by NSc(xy) and given by

x ∧ y =
∑
i<j

eij(xiyj − xjyi) =
1
2
(xy − yx),

that is a bi-vector, also denoted as Bi(xy).
The Clifford conjugation and reversion of eT = ei1 . . . eil

are ēT =
ēil

. . . ēi1 , ēj = −ej and ẽT = eil
. . . ei1 . The Clifford conjugation of a vector

x ∈ Rm is x = −x.
It is easy to verify that 0 
= x ∈ Rm implies

x−1 =
x

|x|2 .

The open ball with center 0 and radius 1 in Rm is denoted by Bm. The unit
sphere in Rm is denoted by S

m−1, whose surface area, denoted by σm−1, is
of value 2π

m
2 /Γ(m

2 ).
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Let f(x) be defined on Rm taking values in Rm and thus of the form
ΣT fT (x)eT , where fT are real-valued functions. We will use the homogeneous
Dirac operator, D, where

D =
∂

∂x1
e1 + · · · +

∂

∂xm
em.

We define the “left” and “right” role of the operators D, respectively, as

Df =
m∑

i=1

∑
T

∂fT

∂xi
eieT and fD =

m∑
i=1

∑
T

∂fT

∂xi
eTei.

If f has all continuous first order partial derivatives and Df = 0 in a (con-
nected and open) domain Ω, then we say that f is left-monogenic in Ω; and,
if fD = 0 in Ω, we say that f is right-monogenic in Ω. If f is both left- and
right-monogenic, then we say that f is monogenic.

We call

E(x) =
x

|x|m
the Cauchy kernel in Rm. It is easy to verify that E(x) is a monogenic
function in Rm\{0}.

For x = |x|ξ = rξ, the Dirac operator can be represented by the spher-
ical form

D = ξ∂r +
1
r
∂ξ = ξ∂r +

1
r
ξ ξ∂ξ =

1
r
ξ(r∂r + ξ∂ξ) =

1
r
ξ(r∂r + Γξ),

where Γξ is the bi-vector-valued spherical Dirac operator

Γξ = ξ∂ξ = −
∑
i<j

eij(xi∂xj
− xj∂xi

).

We will need the following properties.

Lemma 2.1. Let xBi = x1e1e2 + x2e2e3 + x3e3e1, yBi = y1e1e2 + y2e2e3 +
y3e3e1, x = x0+xBi, y = y0+yBi and z = z1e1+z2e2+z3e3 with x0, y0, xi, yi

and zi, i = 1, 2, 3 ∈ R. Then

|x|2|y|2 = |xy|2, (2.1)
|xBi|2|z|2 = |xBiz|2, (2.2)

xBixBi = |xBi|2 =
3∑

i=1

x2
i , (2.3)

xx = |x|2 =
3∑

i=0

x2
i , (2.4)

xBiyBi + yBixBi = −2〈xBi, yBi〉 = −2
3∑

i=1

xiyi. (2.5)

Proof of Lemma 2.1. (2.1) is by direct computation or by invoking existing
knowledge on the Clifford group. (2.2) and (2.4) are by direct computation.
To prove (2.3) and (2.5) we let f1 = e1e2, f2 = e2e3, f3 = e3e1. It is easy to
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verify that fifj + fjfi = −2δij . Then (2.3) and (2.5) follow from the same
properties for vectors. �

2.2. Fourier Expansion and Spherical Hilbert Transforms

We use the notation L2(Sm−1) to denote the square-integrable function space
on the unit sphere S

m−1 embedded in Rm. For f ∈ L2(Sm−1), we have the
Fourier expansion

f(ξ) =
∞∑

k=0

Pk(f)(ξ) + Qk−1(f)(ξ), (2.6)

where P0(f) is a constant, Q−1 = 0, and

Pk(f)(ξ) =
1

σm−1

∫
Sm−1

C+
m,k(ξ, y)f(y)dσ(y),

and

Qk−1(f)(ξ) =
1

σm−1

∫
Sm−1

C−
m,k−1(ξ, y)f(y)dσ(y)

where

C+
m,k(ξ, y) =

1
2 − m

[
−(m + k − 2)C

m−2
2

k (〈ξ, y〉)

+(2 − m)C
m
2

k−1(〈ξ, y〉)(ξ ∧ y)
]
,

and

C−
m,k−1(ξ, y) =

1
m − 2

[
kC

m−2
2

k (〈ξ, y〉)

+(2 − m)C
m
2

k−1(〈ξ, y〉)(ξ ∧ y)
]
, k ≥ 1,

Cν
k is the Gegenbauer polynomial of degree k associated with ν (see [12,33]).

The component Pk(f)(ξ) is an inner spherical monogenic of degree
k, which is the restriction to the unit sphere of the k-homogeneous left-
monogenic function Pk(f)(rξ) in Rm. The component Qk−1(f)(ξ) is an outer
spherical monogenic of degree k−1, which is the restriction to the unit sphere
of the −(m + k − 2)-homogeneous left-monogenic function Qk−1(f)(rξ) in
Rm\{0}. Therefore, Pk(f)(ξ) ∈ H+

2 (Sm−1) and Qk−1(f)(ξ) ∈ H−
2 (Sm−1),

where H+
2 (Sm−1) and H−

2 (Sm−1) are the non-tangential boundary values of
the Hardy spaces functions on Bm and Bmc

. Moreover, we have

−ΓξPk(f)(ξ) = kPk(f)(ξ) and − ΓξQk−1(f)(ξ) = −(k + m − 2)Qk−1(f)(ξ).

In [27], Hilbert transform on the sphere is studied. Below we review some
knowledge about it. We take Ω+ = Bm and Ω− = Bmc

. For a scalar-valued
function f in L2(Sm−1), the two Cauchy integrals are given by
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M±f(x) =
1

σm−1

∫
Sm−1

E(y − x)(±y)f(y)dσ(y)

=
1

σm−1

∫
Sm−1

〈E(y − x),±y〉f(y)dσ(y)

+
1

σm−1

∫
Sm−1

[E(y − x) ∧ ±y〉]f(y)dσ(y)

= U± + V ±, x ∈ Ω±. (2.7)

Due to the Plemelj formula in the context there exist the non-tangential
boundary limits of M±f(x), denoted by f±, given by

f±(ξ) =
1
2
[f(ξ) ± Cf(ξ)], a.e. ξ ∈ S

m−1, (2.8)

where

f+(ξ) =
∞∑

k=0

Pk(f)(ξ), f−(ξ) =
∞∑

k=0

Qk−1(f)(ξ) (2.9)

and C is the principle value Cauchy singular integral operator on the sphere
given by

Cf(ξ) =
2

σm−1
lim
ε→0

∫
|y−ξ|>ε,y∈Sm−1

E(y − ξ)yf(y)dσ(y)

=
2

σm−1
p.v.

∫
Sm−1

〈E(y − ξ), y〉f(y)dσ(y)

+
2

σm−1
p.v.

∫
Sm−1

[E(y − ξ) ∧ y〉]f(y)dσ(y), a.e. ξ ∈ S
m−1,

(2.10)

showing that Cf(ξ) is divided into its scalar and bi-vector parts, and f± is a
para-bivector-valued function.

For any Clifford valued function g we will use the mappings Sc: g → Sc[g]
and NSc: g → NSc[g], where Sc[g] and NSc[g] denote the scalar and non-scalar
parts of g, that is,

Sc[g] =
1
2
[g + g], NSc[g] =

1
2
[g − g].

Using this notation, for scalar-valued function f, we can rewrite the relation
(2.8) as

f±(ξ) =
1
2
{f(ξ) ± Sc[Cf ] ± NSc[Cf ]} = u± + v±, (2.11)

where u± and v± are, respectively, non-tangential boundary values of U± and
its Cauchy-type harmonic conjugation V ±, ± refers to “inner” or “outer” part
of the sphere, respectively. With Sc[C]f = Sc[Cf ] and NSc[C]f = NSc[Cf ], we
have the operator equations

u± =
1
2
(I ± Sc[C])f, v± = ±1

2
NSc[C]f, (2.12)
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and, therefore, at least formally,

v± = H±u± = ±NSc[C](I ± Sc[C])−1u±,

being the Hilbert transforms of u±, respectively.
The inner spherical Hilbert transform of f is given by

Hf(ξ) = lim
r→1−

∫
Sm−1

Q(rξ, ω)f(ω)dσ(ω),

where

Q(rξ, ω) =
1

σm−1

(
2

|rξ − ω|m − m − 2
rm−1

∫ r

0

ρm−2

|ρξ − ω|m dρ

)
rξ ∧ ω,

where ξ, ω ∈ S
m−1, 0 ≤ r < 1.

The Fourier series form of the inner spherical Hilbert transform is given
by (see [2,27])

Hf(ξ) =
∞∑

k=1

k

k + m − 2
Pk(f)(ξ) − Qk−1(f)(ξ).

2.3. Phase and Amplitude Derivatives of Spherical Signals

To define amplitude and phase derivatives of spherical signals we first review
some related knowledge in the periodic signal case. Let s be a complex-valued
signal on the circle. Assume that the classical sense derivatives s′(eit), ρ′

s(t)
and ϕ′(t) of the given signal s(eit) = ρs(t)eiϕ(t) all exist at all points. Take
derivative with respect to t and divide the both sides of [s(eit)]′ = [ρs(t)eiϕ(t)]′

by s(eit). By separating the real and the imaginary parts, we have

ρ′
s(t) = −ρs(t)Im

[
eits′(eit)

s(eit)

]
, (2.13)

and

ϕ′(t) = Re
[
eits′(eit)

s(eit)

]
. (2.14)

For real-valued function f ∈ L2(Sm−1), as stated in Sect. 2.2, there exist
functions u± ∈ L2(Sm−1) such that

f+(ξ) = u+(ξ) + H+u+(ξ) ∈ H+
2 (Sm−1) and f−(ξ)

= u−(ξ) + H−u−(ξ) ∈ H−
2 (Sm−1),

being the non-tangential boundary limits of some left-monogenic functions
respectively inside and outside the unit ball. We call f+(ξ) the monogenic
signal associated with f (see [33]). Instead of defining phase and amplitude
derivatives of f directly, we, instead, define those of f± as what is defined in
[33]. In the process of defining the phase and amplitude derivatives the prop-
erty f+(ξ)f+(ξ) = |f+(ξ)|2 for the para-bivecter function f+(ξ) is crucial.
The required relation, however, is only valid for m ≤ 3. In the rest of the
paper we restrict ourselves to the case m = 3, that is f ∈ L2(S2).

To define the phase and amplitude derivatives of f±(ξ), we represent
f±(ξ) in the amplitude-phase form [33]. We take f+ as example and the
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case for f− is similar. For simplicity, we use the notations u and H for,
respectively, u+ and H+, and have

f+(ξ) = u(ξ) + Hu(ξ)

= ρ(ξ)
[
u(ξ)
ρ(ξ)

+
Hu(ξ)
ρ(ξ)

]

= ρ(ξ)
[
u(ξ)
ρ(ξ)

+
Hu(ξ)
|Hu(ξ)|

|Hu(ξ)|
ρ(ξ)

]

= ρ(ξ)
[
cos θ(ξ) +

Hu(ξ)
|Hu(ξ)| sin θ(ξ)

]

= ρ(ξ)e
Hu(ξ)
|Hu(ξ)| θ(ξ)

, (2.15)

where ρ(ξ) =
√

(u)2(ξ) + |Hu(ξ)|2 is called the amplitude of f+, θ(ξ) =

arctan |Hu(ξ)|
u(ξ) the phase of f+,

Hu(ξ)

|Hu(ξ)|θ(ξ) the phase vector, and e
Hu(ξ)
|Hu(ξ)| θ(ξ)

the phase direction. We note that when m = 3, Hu is a bivector, thus by

(2.3) we have
{

Hu(ξ)

|Hu(ξ)|
}2

= −1, that is, Hu(ξ)

|Hu(ξ)| plays the same role as the
imaginary unit i in the case m = 2. In the Euler formula the imaginary unit
can be substituted by Hu(ξ)

|Hu(ξ)| , that is why we have the last line in the formula
(2.15) (see [15,33]).

The definitions of phase and amplitude derivatives of f+(ξ) are as fol-
lows. Those of f−(ξ) are similar.

Definition 2.2. Let f(ξ) ∈ L2(S2) be scalar-valued and f+ the Hardy space
projection of f into H2(S2) with the expression

f+(ξ) = ρ(ξ)e
Hu(ξ)
|Hu(ξ)| θ(ξ)

,

where ρ and θ are defined through (2.15), u is given by (2.12). Then a phase
derivative can be defined in one of the following two ways:

θ′
1(ξ) � Sc

{[
−Γξf

+(ξ)
] [

f+(ξ)
]−1

}
(2.16)

and

θ′
2(ξ) � Sc

{
[−Γξθ(ξ)]

Hu(ξ)
|Hu(ξ)|

}
. (2.17)

The amplitude derivative ρ′(ξ) is also defined through two ways

ρ′
1(ξ) �

Hu(ξ)
|Hu(ξ)| [−Γξρ(ξ)], (2.18)

and

ρ′
2(ξ) �

Hu(ξ)
|Hu(ξ)|ρNsc

{[
−Γξf

+(ξ)
]
[f+(ξ)]−1

}
. (2.19)
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We note that the phase derivatives θ′
1(ξ) and θ′

2(ξ) are defined first in
[33]. In [33], the authors give the detailed reason why the phase derivatives
are defined as θ′

1(ξ) and θ′
2(ξ). Simply speaking, the definitions of θ′

1(ξ) and
θ′
2(ξ) are in analogy with the left-hand and right-hand sides of (2.14). By the

same method, we define amplitude derivative ρ′
1(ξ) and ρ′

2(ξ) in this paper
based on the left-hand and right-hand sides of (2.13).

The following explanation is necessary. In the above definition we apply
the spherical Dirac differential operator to various functions related to the
non-tangential boundary limit function on the sphere of the Hardy space
function f+. The boundary limit function, however, is not necessarily smooth,
and, as consequence, may not have the required partial derivatives. The right
understanding of the application of the spherical Dirac differential operator
to f+ is as follows (see [9]): we apply Γξ to f+(rξ), 0 < r < 1, that, as a
monogenic function inside the unit ball, is smooth. Once we have defined
Γξf

+(rξ), we take non-tangential boundary limit to obtain Γξf
+(ξ). The

definitions of Γξθ(ξ) and Γξρ(ξ) are similar. The existence of each involved
boundary limit is guaranteed by the assumption that f belongs to the relevant
Sobolev space.

Below through directed calculation we obtain the other representation
of ρ′

1(ξ) and the relationship between ρ′
1(ξ) and ρ′

2(ξ).

Since f+(ξ) is a para-bivector, by using (2.4), we have

f+(ξ)f+(ξ) = |f+(ξ)|2 and [f+(ξ)]−1 =
f+(ξ)

|f+(ξ)|2 =
1

ρ(ξ)
e

− Hu(ξ)
|Hu(ξ)| θ(ξ)

.

Through direct computation we have

−Γξf
+(ξ) = −Γξ

[
ρ(ξ)e

Hu(ξ)
|Hu(ξ)| θ(ξ)

]

=
[
−Γξρ(ξ)

]
e

Hu(ξ)
|Hu(ξ)| θ(ξ) + ρ(ξ)

[
−Γξe

Hu(ξ)
|Hu(ξ)| θ(ξ)

]
.

Then,

[
−Γξf

+(ξ)
] [

f+(ξ)
]−1 =

−Γξρ(ξ)
ρ(ξ)

+
[
−Γξe

Hu(ξ)
|Hu(ξ)| θ(ξ)

]
e

− Hu(ξ)
|Hu(ξ)| θ(ξ)

.

(2.20)

Based on (2.20), we have

− Γξρ(ξ) = ρ(ξ)
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1

−
[
−Γξe

Hu(ξ)
|Hu(ξ)| θ(ξ)

]
e

− Hu(ξ)
|Hu(ξ)| θ(ξ)

}
. (2.21)
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Since −Γξρ(ξ) is bi-vector-valued, (2.18) can be further represented as

ρ′
1(ξ)

=
Hu(ξ)
|Hu(ξ)| [−Γξρ(ξ)]

=
Hu(ξ)
|Hu(ξ)|ρ(ξ)

{
Nsc

{
[−Γξf

+(ξ)][f+(ξ)]−1
}

−Nsc
{[

−Γξe
Hu(ξ)
|Hu(ξ)| θ(ξ)

]
e

− Hu(ξ)
|Hu(ξ)| θ(ξ)

}}
(2.22)

= ρ′
2(ξ) − Hu(ξ)

|Hu(ξ)|ρ(ξ)Nsc
{[

−Γξe
Hu(ξ)
|Hu(ξ)| θ(ξ)

]
e

− Hu(ξ)
|Hu(ξ)| θ(ξ)

}
.

3. Means and Variances of Time and Frequency for Spherical
Signals

In this section, we aim to give appropriate definitions of means of time and
frequency for signals on S

2. We first review the related knowledge for periodic
signals in Sect. 3.1. Then in Sect. 3.2 we give our definitions of the means
and variances of time and frequency for signals on S

2 in the Clifford algebra
setting. In the vector space settings [24] propose certain definitions of the
means and variances of time and frequency for signals on the sphere. In Sect.
3.3 we make comparisons between the definitions given in [24] and those in
the Clifford algebra setting.

3.1. Mean and Variance of Time and Frequency for Periodic Signals

Expanding s(eit) ∈ L2([0, 2π)) into its
Fourier series, we have, in the L2-convergence sense,

s(eit) =
1√
2π

∞∑
k=−∞

ckeikt,

where ck’s are the Fourier coefficients,

ck =
1√
2π

∫ 2π

0

s(eit)e−iktdt, k = 0,±1,±2, . . . . (3.1)

There exist different definitions for means and variances of time and frequency
for periodic square-integrable functions (see [3,11,25,26,29,30]). We adopt
the method used in [11] to define means and variances of time and frequency,
that are t0, σ

2
t , k0 and σ2

k, given in the introduction section.
In [11], the author represents k0 and σ2

k in the time domain. The re-
sults in [11] give reasons for the means, as well as the phase and amplitude
derivatives, as defined in formulas (2.14) and (2.13). For the self containing
purpose we include the results here.
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Lemma 3.1. Assume s(eit) = ρs(t)eiϕ(t) ∈ L2([0, 2π)) and ‖s‖2 = 1. Assume
that the classical derivatives ρ′

s(t), ϕ
′(t), s′(eit) exist at all points, and s′(eit)

is in L2([0, 2π)). Then there hold

k0 =
∫ 2π

0

ϕ′(t)ρ2
s(t)dt, (3.2)

and

σ2
k =

∫ 2π

0

[ϕ′(t) − k0]|s(eit)|2dt +
∫ 2π

0

ρ′
s
2(t)dt. (3.3)

3.2. Mean and Variance for Spherical Signals in the Clifford Algebra Setting

In the classical one dimensional cases we study time–frequency analysis. In
higher dimensions the counterpart concepts for time and frequency are space
and suitably defined frequency concepts. We will adopt similar notation and
terminology. As an example, when we say “mean of time”, we mean “mean
of space”.

We first proceed to define the mean of frequency of f. As for the clas-
sical real-valued signal case we will show that for any real-valued signal on
the sphere the mean of its frequency is identical to zero. As discussed in [33],
the Fourier frequencies k for a periodic signal s(eit) are the phase derivatives
of eikt, and the mean of Fourier frequency of a periodic signal s(eit) is de-
fined by (1.5). The formula (3.2) exhibits the relation between the Fourier
frequency and the phase derivative of signal. To define the mean of frequency
of f on the sphere, we need the Fourier frequencies of f and the energy dis-
tributions on the respective frequencies. The phase derivatives of Pk(f)(ξ)
and Qk−1(f)(ξ), obtained through the formula (2.16), are respectively k and
−(k + m − 2)|m=3 = −(k + 1), and k and −(k + 1), k = 0, 1, . . . are regarded
as the Fourier frequencies of f+ and f−, respectively. The mean of frequency
of a real-valued signal f(ξ) ∈ L2(S2) is defined as

〈k〉f �
∞∑

k=0

k‖Pk(f)(ξ)‖2 +
∞∑

k=0

[−(k + 1)]‖Qk−1(f)(ξ)‖2, (3.4)

where Pk(f)(ξ) and Qk−1(f)(ξ) are defined in (2.6). We have the following
significant fact.

Proposition 3.2. Let f(ξ) ∈ L2(S2) be any real-valued signal with ‖f‖2 = 1.
Then there holds

〈k〉f = 0.

Proof of Proposition. Since Pk(f)(ξ) and Qk−1(f)(ξ) are para-bivectors, by
using (2.4), we have

|Pk(f)(ξ)|2 = Pk(f)(ξ)Pk(f)(ξ) and |Qk−1(f)(ξ)|2 = Qk−1(f)(ξ)Qk−1(f)(ξ).
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Then

〈k〉f =
∞∑

k=0

k‖Pk(f)(ξ)‖2 +
∞∑

k=0

[−(k + 1)]‖Qk−1(f)(ξ)‖2

=
∞∑

k=1

k

∫
S2

|Pk(f)(ξ)|2dσ(ξ) +
∞∑

k=1

[−(k + 1)]
∫
S2

|Qk−1(f)(ξ)|2dσ(ξ)

=
∫
S2

∞∑
k=1

kPk(f)(ξ)Pk(f)(ξ)dσ(ξ)

+
∫
S2

∞∑
k=1

[−(k + 1)]Qk−1(f)(ξ)Qk−1(f)(ξ)dσ(ξ)

=
∫
S2

∞∑
k=1

[−ΓξPk(f)(ξ)]Pk(f)(ξ)dσ(ξ)

+
∫
S2

∞∑
k=1

[−ΓξQk−1(f)(ξ)]Qk−1(f)(ξ)dσ(ξ)

=
∫
S2

∞∑
k=1

{−Γξ[Pk(f)(ξ) + Qk−1(f)(ξ)]}[Pk(f)(ξ) + Qk−1(f)(ξ)]dσ(ξ)

=
∫
S2

[−Γξf(ξ)]f(ξ)dσ(ξ)

= 0,

where since [−Γξf(ξ)]f(ξ) is bi-vector-valued, and 〈k〉f should be a real num-
ber, so the integral

∫
S2

[−Γξf(ξ)]f(ξ)dσ(ξ) must be zero. The proof is com-
pleted. �

In signal analysis, no matter in the classical one dimensional cases [4,9]
or the higher dimensional cases [32], one studies the analytic signal f+ instead
of studying the original real-valued signal f. There are at least two good rea-
sons for this. The first is that for any real-valued signal its mean of frequency
is zero. The basic fact is that for a real-valued signal its Fourier coefficients,
or the Fourier transform values, at a positive and corresponding the negative
spectrum are conjugate to each other. As a result, in the expression of the
mean of frequency the positive part and the negative part are cancelled out.
The celebrating Proposition 3.2 shows that on the sphere the same result
holds. Due to the zero mean property of frequency the quantity of deviation
of the frequencies of a real valued function does not reflect the true derivation
of the frequencies. But the derivation of f+ does [4]. The second reason of
working with f+ is that f+ is defined through the analytic function theory
that deals with functions whose Fourier coefficients or Fourier transform val-
ues are non-zero only at the non-negative Fourier spectra (the positive Fourier
spectrum property). Operations of analytic functions preserve the analyticity
property and thus preserve the positive Fourier spectrum property.
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Definition 3.3. Let f(ξ) ∈ L2(S2) be real-valued and ‖f+‖2 = 1. Then the
spherical mean, or mean of time ξ, is defined to be

〈ξ〉 �
∫
S2

ξ|f+(ξ)|2dσ(ξ). (3.5)

The spherical variance, or variance of time ξ, is

varξ �
∫
S2

|ξ − 〈ξ〉|2|f+(ξ)|2dσ(ξ). (3.6)

The mean of frequency is defined by

〈k〉 �
∞∑

k=0

k‖Pk(f)(ξ)‖2, (3.7)

where f+ =
∑∞

k=0 Pk(f) as given in (2.9).
The variance of frequency has two formulations, defined respectively by the
following two formulas

var∗
k �

∞∑
k=0

(k − 〈k〉)2‖Pk(f)(ξ)‖2, (3.8)

and

vark �
∫
S2

[θ′
1(ξ) − 〈k〉]2|f+(ξ)|2dσ(ξ) +

∫
S2

|ρ′
1(ξ)|2dσ(ξ). (3.9)

The covariance is defined by

Cov =
∫
S2

(ξ − 〈ξ〉)[θ′
1(ξ) − 〈k〉]|f+(ξ)|2dσ(ξ). (3.10)

Finally, the absolute covariance is defined by (see [8])

COV =
∫
S2

|ξ − 〈ξ〉||θ′
1(ξ) − 〈k〉||f+(ξ)|2dσ(ξ). (3.11)

Remark 3.4. Although we have two ways to define phase derivatives, we
choose to use θ′

1(ξ) but not θ′
2(ξ) (see Definition 3.3). For periodic signals,

from (3.2), we can see that the mean of phase derivative ϕ′(t) against |s(eit)|2
is equal to the mean of Fourier frequency. For spherical signals, we obtain
the same result, that is (3.14), only when we adopt θ′

1(ξ). For this reason we
use θ′

1(ξ) but not θ′
2(ξ), too, when we further study variance and covariance.

Remark 3.5. In Definition 3.3, we use two methods to define the variance of
frequency. Those two definitions are both inspired by the periodic signal case.

The variance of frequency var∗
k can be regarded as a counterpart of (1.3)

in the frequency domain. By Theorem 3.8, var∗
k has a representation in the

time domain given by

var∗
k =

∫
S2

[θ′
1(ξ) − 〈k〉]2|f+(ξ)|2dσ(ξ) +

∫
S2

|ρ′
2(ξ)|2dσ(ξ), (3.12)
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that is a counterpart of (3.3). This gives support to use ρ′
2(ξ). Replacing ρ′

2(ξ)
with ρ′

1(ξ) in (3.12) we have an alternative counterpart of (3.3), namely,
∫
S2

[θ′
1(ξ) − 〈k〉]2|f+(ξ)|2dσ(ξ) +

∫
S2

|ρ′
1(ξ)|2dσ(ξ).

That is just the definition of vark. When m = 2, σ2
k, var∗

k and vark coincide.
When m > 2 they are, unfortunately, not. In the following we will consider
both formulations vark and var∗

k in relation to uncertainty principle.

The following lemma is an application of Minkovski’s inequality.

Lemma 3.6. Let g(x) = g0(x) +
∑m

|T |=1 gT (x)eT ∈ L1(Rm;Rm). Then for
any positive measure dμ(x) there holds

∫
Rm

|g(x)|dμ(x) ≥ |
∫
Rm

g(x)dμ(x)|. (3.13)

Remark 3.7. By using Lemma 3.6, we immediately obtian

COV2 =
{∫

S2
|ξ − 〈ξ〉||Sc

{[
−Γξf

+(ξ)
]
[f+(ξ)]−1

}
− 〈k〉||f+(ξ)|2dσ(ξ)

}2

≥
∣∣∣∣∣
∫
S2

(ξ − 〈ξ〉)
{

Sc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1

}
− 〈k〉

}
|f+(ξ)|2dσ(ξ)

∣∣∣∣∣
2

= |Cov|2,
that is

COV2 ≥ |Cov|2.
This result will be used to obtain Corollary 4.5.

Theorem 3.8. Let f(ξ) ∈ L2(S2) be real-valued, Γξf
+(ξ) ∈ L2(S2) and ‖f+‖2

= 1. Then there hold

〈k〉 =
∫
S2

θ′
1(ξ)|f+(ξ)|2dσ(ξ) (3.14)

and

var∗
k =

∫
S2

[
θ′
1(ξ) − 〈k〉]2 |f+(ξ)|2dσ(ξ) +

∫
S2

|ρ′
2(ξ)|2dσ(ξ). (3.15)

Proof of Theorem. We are to represent the mean and variance of frequency,
〈k〉 and var∗

k, in the time domain. In the following computations we will
use the property −ΓξPk(f)(ξ) = kPk(f)(ξ). Since Pk(f)(ξ) and f+(ξ) are
para-bivector-valued, by using (2.4), we have

|Pk(f)(ξ)|2 = Pk(f)(ξ)Pk(f)(ξ) and |f+(ξ)|2 = f+(ξ)f+(ξ).
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Then

〈k〉 =
∞∑

k=0

k

∫
S2

|Pk(f)(ξ)|2dσ(ξ)

=
∫
S2

∞∑
k=0

kPk(f)(ξ)Pk(f)(ξ)dσ(ξ)

=
∫
S2

∞∑
k=0

[−ΓξPk(f)(ξ)]Pk(f)(ξ)dσ(ξ)

=
∫
S2

[−Γξf
+(ξ)]f+(ξ)dσ(ξ) (3.16)

=
∫
S2

[
−Γξf

+(ξ)
] [

f+(ξ)
]−1

f+(ξ)f+(ξ)dσ(ξ)

= Sc
{∫

S2

[
−Γξf

+(ξ)
]
[f+(ξ)]−1|f+(ξ)|2dσ(ξ)

}

=
∫
S2

Sc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1

}
|f+(ξ)|2dσ(ξ).

Now we explain the last two lines of the above aligned formula. From the
definition of 〈k〉, we know 〈k〉 is scalar-valued, thus the non-scalar part of∫
S2

[−Γξf
+(ξ)][f+(ξ)]−1f+(ξ)f+(ξ)dσ(ξ) must be zero, then the sixth equal-

ity in the above aligned formula holds. Since |f+(ξ)|2 is scalar-valued, we get
the last equality.

Next we prove (3.15). In fact,

var∗
k =

∞∑
k=0

(k − 〈k〉)2
∫
S2

|Pk(f)(ξ)|2dσ(ξ)

=
∫
S2

∞∑
k=0

(k − 〈k〉)2Pk(f)(ξ)Pk(f)(ξ)dσ(ξ)

=
∫
S2

∞∑
k=0

(k − 〈k〉)Pk(f)(ξ)(k − 〈k〉)Pk(f)(ξ)dσ(ξ)

=
∫
S2

∞∑
k=0

[−ΓξPk(f)(ξ) − 〈k〉Pk(f)][−ΓξPk(f)(ξ)] − 〈k〉Pk(f)dσ(ξ)

=
∫
S2

[−Γξf
+(ξ) − 〈k〉f+(ξ)]−Γξf+(ξ) − 〈k〉f+(ξ)dσ(ξ)

(2.4)
=====

∫
S2

| − Γξf
+(ξ) − 〈k〉f+(ξ)|2dσ(ξ).

Since f+(ξ) is para-vector, we have |[f+(ξ)]−1|2 = 1
|f+(ξ)|2 , thus

| − Γξf
+(ξ) − 〈k〉f+(ξ)|2 = | − Γξf

+(ξ) − 〈k〉f+(ξ)|2|[f+(ξ)]−1|2|f+(ξ)|2.
By the Property (2.1), we have

| − Γξf
+(ξ) − 〈k〉f+(ξ)|2 = |[−Γξf

+(ξ) − 〈k〉f+(ξ)][f+(ξ)]−1|2|f+(ξ)|2.
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Now we proceed to calculate var∗
k.

var∗
k =

∫
S2

| − Γξf
+(ξ) − 〈k〉f+(ξ)|2dσ(ξ)

=
∫
S2

|[−Γξf
+(ξ) − 〈k〉f+(ξ)][f+(ξ)]−1|2|f+(ξ)|2dσ(ξ)

=
∫
S2

|[−Γξf
+(ξ)][f+(ξ)]−1 − 〈k〉|2|f+(ξ)|2dσ(ξ)

(2.3)
=====
(2.4)

∫
S2

{
Sc{[−Γξf

+(ξ)][f+(ξ)]−1} − 〈k〉
}2

|f+(ξ)|2dσ(ξ)

+
∫
S2

|Nsc{[−Γξf
+(ξ)][f+(ξ)]−1}|2|f+(ξ)|2dσ(ξ)

=
∫
S2

[θ′
1(ξ) − 〈k〉]2|f+(ξ)|2dσ(ξ) +

∫
S2

|ρ′
2(ξ)|2dσ(ξ).

The proof is completed. �

We note that in [33], the authors already consider the mean of frequency
〈k〉 and obtain formula (3.14). The reason we include the proof of (3.14) is
that we will recall the relation (3.16) in the proof of Theorem 4.4, and, there
is a mistake with the definition of 〈k〉 in the paper [33].

3.3. Mean and Variance for Spherical Signals in the Vector Space Setting

In the introduction part we have reviewed the definition of means and vari-
ances of time and frequency for signals on S

2 proposed in [24,28,29]. In what
follows we will compare the definition of means and variances of time and fre-
quency for signals on S

2 in the vector space setting with that in the Clifford
algebra setting.

An x ∈ S
2 can be represented by the polar coordinate form, that is

x = εr =

⎡
⎣

√
1 − t2 cos θ2√
1 − t2 sin θ2

t

⎤
⎦ t=cos θ1=======

⎡
⎣ sin θ1 cos θ2

sin θ1 sin θ2

cos θ1

⎤
⎦ , (3.17)

where θ2 ∈ [0, 2π] is the longitude, t ∈ [−1, 1] is the polar distance, θ1 ∈ [0, π]
is the latitude (see P86, [22], for details).

In [22], the local coordinate expression of the surface curl gradient L∗

is given by

L∗ = −εθ2
√

1 − t2
∂

∂t
+ εt 1√

1 − t2
∂

∂θ2
,

where

εθ2 =

⎡
⎣− sin θ2

cos θ2

0

⎤
⎦ , εt =

⎡
⎣−t cos θ2

−t sin θ2√
1 − t2

⎤
⎦ t=cos θ1=======

⎡
⎣− cos θ1 cos θ2

− cos θ1 sin θ2

sin θ1

⎤
⎦ .
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It can be calculated that

L∗ =

⎡
⎢⎣

− cos θ1 cos θ2
sin θ1

∂
∂θ2

− sin θ2
∂

∂θ1

− cos θ1 sin θ2
sin θ1

∂
∂θ2

+ cos θ2
∂

∂θ1
∂

∂θ2

⎤
⎥⎦ ,

and

Δ∗
S2 = L∗ · L∗ =

∂2

∂θ2
1

+
cos θ1

sin θ1

∂

∂θ1
+

1
sin2 θ1

∂2

∂θ2
2

.

The vector x corresponds to the Clifford number cos θ1e1+sin θ1 cos θ2e2

+sin θ1 sin θ2e3 ∈ S
2, denoted by x = cos θ1e1+sin θ1 cos θ2e2+sin θ1 sin θ2e3

∈ S
2. Now we write Γx in the Clifford algebra setting into the polar coordinate

form (see [1]). Through direct computation we obtain

Γx = x∂x =
(

cos θ1 sin θ2

sin θ1

∂

∂θ2
− cos θ2

∂

∂θ1

)
e1e2 − ∂

∂θ2
e2e3

+
(

cos θ1 cos θ2

sin θ1

∂

∂θ2
+ sin θ2

∂

∂θ1

)
e3e1,

and

ΓxΓx = −
(

cos θ1

sin θ1

∂

∂θ1
+

∂2

∂θ2
1

+
1

sin2 θ1

∂2

∂θ2
2

)

+
(

cos θ1 sin θ2

sin θ1

∂

∂θ2
− cos θ2

∂

∂θ1

)
e1e2

− ∂

∂θ2
e2e3 +

(
cos θ1 cos θ2

sin θ1

∂

∂θ2
+ sin θ2

∂

∂θ1

)
e3e1

= −
(

cos θ1

sin θ1

∂

∂θ1
+

∂2

∂θ2
1

+
1

sin2 θ1

∂2

∂θ2
2

)
+ Γx.

Then we have

Γx − Γ2
x = (I − Γx)Γx =

cos θ1

sin θ1

∂

∂θ1
+

∂2

∂θ2
1

+
1

sin2 θ1

∂2

∂θ2
2

= Δ∗
S2 .

If x is written as a Clifford number x, ψ(x) can also be written as a
Clifford-valued function. To compare the means and variances of time and
frequency given in Definitions 1.1 and 3.3, we write the mean and variance
of time and frequency in Definition 1.1 in the Clifford algebra setting, and
let ψ(x) = f+(x).

It is easy to see, from Definitions 1.1 and 3.3,

τψ and Vx,ψ coincide with 〈x〉 and varx, respectively. (3.18)

In Definition 1.1, the mean of frequency is

a(ψ) �
∫
S2

Ωψ(x)ψ(x)dσ(x).
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We write Ω in the Clifford setting, that is,

Ω = −iL∗

= −i

[(
−cos θ1 sin θ2

sin θ1

∂

∂θ2
+ cos θ2

∂

∂θ1

)
e1e2 +

∂

∂θ2
e2e3

+
(

−cos θ1 cos θ2

sin θ1

∂

∂θ2
− sin θ2

∂

∂θ1

)
e3e1

]

= −i(−Γx).

As consequence,

a(ψ) =
∫
S2

Ωψ(x)ψ(x)dσ(x)

=
∫
S2

[−i(−Γx)]f+(x)f+(x)dσ(x)

= −i

∫
S2

[−Γxf+(x)]f+(x)dσ(x) = −i〈k〉.

The variance of frequency in the vector space setting

VΩ,ψ �
∫
S2

‖[Ω − a(ψ)]ψ‖2dσ(x)

=
∫
S2

[Ωψ − a(ψ)ψ] · [Ωψ − a(ψ)ψ]dσ(x)

=
∫
S2

[−i(−Γx)f+(x) − (−i〈k〉)f+(x)]

·[−i(−Γx)f+(x) − (−i〈k〉)f+(x)]dσ(x)

=
∫
S2

[−Γxf+(x) − 〈k〉f+(x)
] · [−Γxf+(x) − 〈k〉f+(x)]dσ(x)

= var∗
k.

Remark 3.9. From the above computation, we can see that if we write (1.12),
(1.13), (1.14) and (1.15) in the Clifford setting, then the definitions of mean
and variance of time and frequency in the vector space setting all coincide
with those defined in Definition 3.3 with the Clifford setting. Note that there
are two formulations for variance in Definition 3.3: var∗

k and vark. The vari-
ance in Definition 1.1 coincides with var∗

k, but not with vark.

4. Uncertainty Principle for Spherical Signals in the Clifford
Algebra Setting

By Lemma 3.6 and the Hölder inequality, we immediately obtain the following
lemma.
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Lemma 4.1. Let f(ξ) ∈ L2(S2) be real-valued, ξf+(ξ),Γξf
+(ξ) ∈ L2(S2) and

‖f+‖2 = 1. Then there holds

varξ ·
∫
S2

|ρ′
1(ξ)|2dσ(ξ)

≥
∣∣∣∣∣
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1 −

[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

×(ξ − 〈ξ〉)|f+(ξ)|2dσ(ξ)

∣∣∣∣∣
2

.

(4.1)

Proof of Lemma. By the Hölder inequality, we obtain the first inequality in
the following aligned formula.

varξ ·
∫
S2

|ρ′
1(ξ)|2dσ(ξ)

(2.22)
======

∫
S2

|ξ − 〈ξ〉|2|f+(ξ)|2dσ(ξ)

·
∫
S2

|Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1 −

[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

|2

×|f+(ξ)|2dσ(ξ)

≥
[∫

S2
|Nsc

{[
−Γξf

+(ξ)
]
[f+(ξ)]−1 −

[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

×||(ξ − 〈ξ〉||f+(ξ)|2dσ(ξ)
]2

(2.2)
=====

[∫
S2

|Nsc
{

[−Γξf
+(ξ)][f+(ξ)]−1 −

[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

× (ξ − 〈ξ〉)||f+(ξ)|2dσ(ξ)
]2

≥
∣∣∣∣∣
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1 −

[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

×(ξ − 〈ξ〉)|f+(ξ)|2dσ(ξ)

∣∣∣∣∣
2

,

where we use Lemma 3.6 in the last inequality. �

Lemma 4.2. Let f(ξ) ∈ L2(S2) be real-valued. Then
{[

−Γξf
+(ξ)

]
f+(ξ) − f+(ξ)

[
−Γξf+(ξ)

]}
ξ

= −Γξ[|f+(ξ)|2ξ] − |f+(ξ)|2[−Γξξ] + 2|f+(ξ)|2

×NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ.
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Proof of Lemma. Since

−Γξf
+(ξ) =

[
−Γξρ(ξ)

]
e

Hu
|Hu| θ(ξ) + ρ(ξ)

[
−Γξe

Hu
|Hu| θ(ξ)

]
and

f+(ξ) = ρ(ξ)e− Hu
|Hu| θ(ξ),

then

[−Γξf
+(ξ)]f+(ξ) = ρ(ξ)[−Γξρ(ξ)] + |f+(ξ)|2

[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ).

It is easy to see

f+(ξ)
[
−Γξf+(ξ)

]
=

[
−Γξf+(ξ)

]
f+(ξ)

= −ρ(ξ)
[
−Γξρ(ξ)

]
+ |f+(ξ)|2

[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ).

Then we have[
−Γξf

+(ξ)
]
f+(ξ) − f+(ξ)

[
−Γξf+(ξ)

]

= 2ρ(ξ)[−Γξρ(ξ)] + |f+(ξ)|2

×
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ) −
[
−Γξe

Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)

}

= 2ρ(ξ)[−Γξρ(ξ)] + 2|f+(ξ)|2NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

.

Hence,{[
−Γξf

+(ξ)
]
f+(ξ) − f+(ξ)

[
−Γξf+(ξ)

]}
ξ

= 2ρ(ξ)[−Γξρ(ξ)]ξ + 2|f+(ξ)|2NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ

= −Γξ[|f+(ξ)|2ξ] − |f+(ξ)|2[−Γξξ] + 2|f+(ξ)|2

×NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ.

�

The three formulas in Lemma 4.3 are needed in the proof of Theorem
4.4.

Lemma 4.3. Let f(ξ) ∈ L2(S2) be real-valued, Γξf
+(ξ) ∈ L2(S2) and ‖f+‖2 =

1. Then ∫
S2

Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1|f+(ξ)|2

}
〈ξ〉dσ(ξ) = 0, (4.2)

∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

〈ξ〉|f+(ξ)|2dσ(ξ) = 0, (4.3)

and∫
S2

{[
−Γξf

+(ξ)
]
f+(ξ)ξ − f+(ξ)

[
−Γξf+(ξ)

]
ξ

}
dσ(ξ)

= 2〈ξ〉 + 2
∫
S2

NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ). (4.4)
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Proof of Lemma. We first prove (4.2). We recall, by invoking (3.16), that∫
S2

[Γξf
+(ξ)]f+(ξ)dσ(ξ) = −〈k〉 is real valued. Then∫

S2
Nsc

{[
−Γξf

+(ξ)
]
[f+(ξ)]−1|f+(ξ)|2

}
〈ξ〉dσ(ξ)

= 〈ξ〉
∫
S2

Nsc
{[

Γξf
+(ξ)

]
f+(ξ)

}
dσ(ξ) = 0.

Now we prove (4.3).∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

|f+(ξ)|2dσ(ξ)

=
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)|f+(ξ)|2
}

dσ(ξ)

=
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
ρ(ξ)f+(ξ)

}
dσ(ξ)

=
∫
S2

Nsc
{{

−Γξ[ρ(ξ)e
Hu
|Hu| θ(ξ)] − [−Γξρ(ξ)]e

Hu
|Hu| θ(ξ)

}
f+(ξ)

}
dσ(ξ)

=
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
f+(ξ) − [−Γξρ(ξ)]e

Hu
|Hu| θ(ξ)f+(ξ)

}
dσ(ξ)

=
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
f+(ξ) − [−Γξρ(ξ)]ρ(ξ)

}
dσ(ξ)

=
1
2
Nsc

∫
S2

Γξ[ρ2(ξ)]dσ(ξ) = 0.

The proof of (4.4) is as follows. By Lemma 4.2, we have∫
S2

{[
−Γξf

+(ξ)
]
f+(ξ)ξ − f+(ξ)

[
−Γξf+(ξ)

]
ξ

}
dσ(ξ)

=
∫
S2

{
−Γξ[|f+(ξ)|2ξ] − |f+(ξ)|2[−Γξξ] + 2|f+(ξ)|2

× NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ
}

dσ(ξ)

=
∫
S2

{
−Γξ

[|f+(ξ)|2ξ]} dσ(ξ) −
∫
S2

[−Γξξ]|f+(ξ)|2dσ(ξ)

+2
∫
S2

NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ)

= 2
∫
S2

ξ|f+(ξ)|2dσ(ξ) + 2
∫
S2

NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

×ξ|f+(ξ)|2dσ(ξ)

= 2〈ξ〉 + 2
∫
S2

NSc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ),

where we use∫
S2

{
−Γξ

[|f+(ξ)|2ξ]} dσ(ξ) = 0 and − Γξξ = −2ξ.

�
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The following is one of our main results.

Theorem 4.4. Let f(ξ) ∈ L2(S2) be real-valued, ξf+(ξ),Γξf
+(ξ) ∈ L2(S2)

and ‖f+‖2 = 1. Then there holds

varξvark ≥ |〈ξ〉|2 + COV2. (4.5)

Proof of Theorem. To prove the inequality (4.5), due to (3.9), we just need
to prove the following two inequalities:

varξ

∫
S2

|ρ′
1(ξ)|2dσ(ξ) ≥ |〈ξ〉|2, (4.6)

and

varξ

∫
S2

[θ′
1(ξ) − 〈k〉]2|f+(ξ)|2dσ(ξ) ≥ COV2. (4.7)

Now we prove the inequality (4.6). Using Lemma 4.1, we have

varξ ·
∫
S2

|ρ′
1(ξ)|2dσ(ξ)

≥
∣∣∣∣∣
∫
S2

{
Nsc

{[
−Γξf

+(ξ)
]
[f+(ξ)]−1

}
− Nsc

×
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}}

×(ξ − 〈ξ〉)|f+(ξ)|2dσ(ξ)

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1|f+(ξ)|2

}
(ξ − 〈ξ〉)dσ(ξ)

−
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

(ξ − 〈ξ〉)|f+(ξ)|2dσ(ξ)

∣∣∣∣∣
2

(4.2)
=====
(4.3)

∣∣∣∣∣
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
f+(ξ)

}
ξdσ(ξ)

−
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ)

∣∣∣∣∣
2

=
1
4

∣∣∣∣∣
∫
S2

{[
−Γξf

+(ξ)
]
f+(ξ) − f+(ξ)

[
−Γξf+(ξ)

]}
ξdσ(ξ)

−2
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ)

∣∣∣∣∣
2

(4.4)
===== |〈ξ〉|2.
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Finally, we prove (4.7) through Hölder inequality

varξ

∫
S2

{Sc{[−Γξf
+(ξ)]

×[f+(ξ)]−1} − 〈k〉}2|f+(ξ)|2dσ(ξ)

=
∫
S2

|ξ − 〈ξ〉|2|f+(ξ)|2dσ(ξ)
∫
S2

×
{

Sc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1

}
− 〈k〉

}2

|f+(ξ)|2dσ(ξ)

≥
{∫

S2
|ξ − 〈ξ〉||Sc

{[
−Γξf

+(ξ)
]
[f+(ξ)]−1

}
− 〈k〉||f+(ξ)|2dσ(ξ)

}2

= COV2. (4.8)

�

By using Remark 3.7, we immediately have the following corollary.

Corollary 4.5. Let f(ξ) ∈ L2(S2) be real-valued, ξf+(ξ),Γξf
+(ξ) ∈ L2(S2)

and ‖f+‖2 = 1. Then there holds

varξvark ≥ |〈ξ〉|2 + |Cov|2. (4.9)

Remark 4.6. In Theorem 4.4 and Corollary 4.5 we use vark as the variance of
frequency and obtain two forms of uncertainty principle on the sphere, (4.5)
and (4.9). The lower bound of (4.5) is larger than that of (4.9). Although both
(4.5) and (4.9) have one more positive term than (1.11), we can not say (4.5)
and (4.9) are stronger uncertainty principles than (1.11). That is because the
variance of frequency used in (4.5) and (4.9) is different from what is used in
(1.11). However, we can say that, the two forms of uncertainty principle of
spherical signals, (4.5) and (4.9), essentially, correspond to (1.8) and (1.7).

If we use var∗
k as the variance of frequency, then we have

Theorem 4.7. Let f(ξ) ∈ L2(S2) be real-valued, ξf+(ξ),Γξf
+(ξ) ∈ L2(S2)

and ‖f+‖2 = 1. Then there holds

varξvar∗
k ≥ |〈ξ〉 + M |2 + COV2, (4.10)

where

M =
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ)

is a Clifford number containing terms of 1-form and 3-form.

Proof of Theorem. The proof of Theorem 4.7 is same with that of Theorem
4.4 except one point, that is, here we need to prove

varξ

∫
S2

|ρ′
2(ξ)|2dσ(ξ) ≥ |〈ξ〉 + M |2 (4.11)

instead of (4.6).
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Now we prove (4.11).

varξ

∫
S2

|ρ′
2(ξ)|2dσ(ξ)

=
∫
S2

|ξ − 〈ξ〉|2|f+(ξ)|2dσ(ξ) ·

×
∫
S2

|Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1

}
|2|f+(ξ)|2dσ(ξ)

≥ |
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1

}
(ξ − 〈ξ〉)|f+(ξ)|2dσ(ξ)|2

= |
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
[f+(ξ)]−1|f+(ξ)|2

}
(ξ − 〈ξ〉)dσ(ξ)

= |
∫
S2

Nsc
{[

−Γξf
+(ξ)

]
f+(ξ)

}
ξdσ(ξ)|2

=
1
4
|
∫
S2

{[
−Γξf

+(ξ)
]
f+(ξ) − f+(ξ)

[
−Γξf+(ξ)

]}
ξdσ(ξ)|2

=
1
4
|2〈ξ〉 + 2

∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ)|2

= |〈ξ〉 +
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ)|2. (4.12)

�

Corollary 4.8. Let f(ξ) ∈ L2(S2) be real-valued, ξf+(ξ),Γξf
+(ξ) ∈ L2(S2)

and ‖f+‖2 = 1. Then there holds

varξvar∗
k ≥ |〈ξ〉 + M |2 + |Cov|2, (4.13)

where

M =
∫
S2

Nsc
{[

−Γξe
Hu
|Hu| θ(ξ)

]
e− Hu

|Hu| θ(ξ)
}

ξ|f+(ξ)|2dσ(ξ)

is a Clifford number containing terms of 1-form and 3-form.

Remark 4.9. In Theorem 4.7 and Corollary 4.8 we obtain other two forms
of uncertainty principle of spherical signals by using var∗

k as the variance of
frequency. In Remark 3.9, we note that (1.12), (1.13), (1.14) and (1.15) in the
vector space setting coincide with (3.5), (3.6), (3.7) and (3.8). Hence the left-
hand sides of (1.11) and (4.10) are just the same. Since the term |〈ξ〉+M |2 in
(4.10) and (4.13) cannot be clearly compared with |〈ξ〉|2 in their values, the
right hand side of (4.10) and (4.13) cannot be clearly compared with |〈ξ〉|2,
either. According to (3.18), the quantity |〈ξ〉|2, however, coincides with the
right hand side of (1.11). Hence, the related uncertainty principles are all
incomparable.

Although the new proposed uncertainty principles (4.5) and (4.10) are
incomparable with the existing one (1.11), both of them correspond to the
strongest form of uncertainty principle (1.8) for periodic signals.
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