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sampling approximation
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ABSTRACT
Based on dual framelets, we construct the sampling approximation for the
whole Sobolev space Hs(R) where s > 1/2. In particular, the sampling
system has adjustable shift parameters. By the B-spline sampling system,
we construct the approximation of Hilbert transform of any function of
Hs(R). Combining the approximation of the function Hs(R) and that of its
Hilbert transform, we establish a reconstruction method for the analytic
signal. Particularly, the reconstruction series converges exponentially with
respect to the scale level. Moreover, the numerical singularity emerging
in computation of Hilbert transform can be removed by adjusting the
shift parameters. That is, the method of reconstruction of analytic signal
is numerically and L2-stable. Several numerical experiments are carried out
to check the efficiency of our reconstruction method.
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1. Introduction

For a real function f ∈ L2(R), its analytic signal is defined to be f + iHf , where i is the imaginary
unit, and Hf is the Hilbert transform (HT) of f , defined by the Cauchy principal value integral as
follow:

Hf (t) = p.v.
1
π

∫
R

f (x)
t − x

dx.

By analytic signal, many mathematical manipulations in signal processing can be facilitated. For
example, when the negative frequency components of the Fourier transform of f are superfluous,
then it can be discarded by analytic signal without any loss of information since

̂f + iHf (ξ) = f̂ (ξ)χ[0,∞)(ξ),

where χI is the characteristic function of the set I , and the Fourier transform ĝ of any tempered
distribution g is defined by ĝ( · ) = ∫

R
g(x)e−ix·dx. In addition to the discard of negative frequency,

analytic signal is a commonly accepted tool of defining instantaneous features such as instantaneous
amplitude (IA), instantaneous phase (IP) and instantaneous frequency (IF).[1,2] Specifically,

f + iHf = ρ( · )eiθ(·),

where ρ, θ and its derivative θ ′ are referred to as IA, IP and IF, respectively.

CONTACT Youfa Li youfalee@hotmail.com
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On the other hand, the data we acquire in practice are usually the samples of f on R. Then,
we naturally ask how to reconstruct the analytic signal f + iHf by the samples. The problem
is important for discarding negative frequency components or extracting instantaneous features
mentioned previously.[2] Sobolev spaceHs(R), s > 1/2, defined by

Hs(R) =
{
f :

∫
R

|̂f (ξ)|2(1 + ξ 2)sdξ < ∞
}
, (1.1)

has a lot of applications in signal analysis.[3–7] But to the best of our knowledge, it has not been
solved: how to reconstruct the analytic signal in Hs(R). In this paper, we will solve the problem by
the framelet sampling method. From the definition of analytic signal, this problem can be split into
the reconstructions of f and its Hilbert transform. Before proceeding further, let us introduce some
related developments on this topic.

Sampling theorem is a key tool for the conversion between an analogue signal and its digital form
(A/D). The most classical sampling theorem in Hs(R) is the Shannon sampling,[8,9] by which a
bandlimited signal f can be perfectly reconstructed. Since the space of bandlimited signals is just
a subspace of Hs(R), Shannon sampling theory has been extended to other subspaces.[10–13] In
[14], using a special pair of dual framelets in Sobolev space, Li and Yang established the sampling
theorem holding for all functions in Hs(R). Based on [14], Li constructed the framelet sampling
approximation for the functions in Hs(R), of which the Fourier transforms pointwisely decay at the
exponential rate.[15] An unsolved problem is how to establish the sampling approximation for all
the functions in Hs(R). We shall continue the work in [14–16] and construct the framelet sampling
approximation holding for the whole Hs(R). Using the isometry of HT in L2(R), a reconstruction
method of HT will be developed.

Our method of reconstructing the functions inHs(R) has its roots in the theory of dual framelets
in the Sobolev space. Before proceeding further, we shall give necessary background knowledge on
framelets in Sobolev space. Readers are referred to [3,4,10,14–18] for more details and developments
on this topic.

Sobolev space Hs(R) for any s ∈ R is defined by (1.1). Hs(R) is equipped with the inner product
〈·, ·〉Hs(R) defined by

〈f , g〉Hs(R) = 1
2π

∫
R

f̂ (ξ )̂g(ξ)(1 + ξ 2)sdξ , ∀f , g ∈ Hs(R).

Straightforward observation on (1.1) gives thatHs1(R) ⊇ Hs2(R) if and only if s1 ≤ s2. When s = 0,
H0(R) = L2(R) and

√
〈f , f 〉H0(R) = ||f ||2. For any f ∈ L2(R), define

ν2(f ) := sup{s : f ∈ Hs(R)}, (1.2)

referred to as the Sobolev smoothness exponent of f . Define the bracket product [·, ·]γ with respect
to exponent γ ∈ R, for f , g : R −→ C, by

[f , g]γ (ξ) =
∑
k∈Z

f̂ (ξ + 2kπ)̂g(ξ + 2kπ)(1 + |ξ + 2kπ |2)γ ,∀ξ ∈ R.

A function f ∈ L2(R) has κ vanishing moments if f̂ (j)(0) = 0 where κ ∈ N and j = 0, 1, . . . , κ − 1.
Let a 2-refinable function φ ∈ Hs(R), s ∈ R, be given by

φ = 2
∑
k∈Z

a[k]φ(2 · −k) (1.3)
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for a finitely supported sequence a := {a[k]}k∈Z, referred to as the mask of φ. Implementing the
Fourier transform to both sides of (1.3) leads to

φ̂(2 · ) = â( · )̂φ( · ), (1.4)

where â( · ) := ∑
k∈Z

a[k]eik· is the mask symbol of a. We say that φ has κ + 1 sum rules if there
exists a 2π-periodic trigonometric polynomial Ŷ with Ŷ(0) �= 0 such that â satisfies

Ŷ(2 · )̂a( · +2πγ ) = �γ Ŷ( · )+ O(| · |κ+1), ∀γ ∈ {0, 1/2},

where {�j} is the Dirac sequence, i.e.�0 = 1 and�j = 0 for j �= 0. {ψ}L=1 is assumed to be a set of
wavelet functions defined by

ψ̂(2 · ) = b̂( · )̂φ( · ), (1.5)

for a 2πZ-periodic trigonometric polynomial b̂( · ). Now a wavelet system Xs(φ; ψ1, . . . ,ψL) in
Hs(R) is defined as

Xs(φ;ψ1, . . . ,ψL) := {φ0,k : k ∈ Z}
∪{ψ,sj,k : k ∈ Z, j ∈ N0,  = 1, . . . , L}, (1.6)

where φ0,k = φ( · −k), ψ,sj,k = 2j(1/2−s)ψ(2j · −k) and N0 := N ∪ {0}. If, for any f ∈ Hs(R), there
exist two positive constants C1 and C2 such that

C1||f ||2Hs(R) ≤
∑
k∈Z

|〈f ,φ0,k〉Hs(R)|2 +
L∑
=1

∑
j∈N0

∑
k∈Z

|〈f ,ψ,sj,k 〉Hs(R)|2

≤ C2||f ||2Hs(R),

(1.7)

then we say that Xs(φ;ψ1, . . . ,ψL) is a 2-framelet in Hs(R). Furthermore, if there exists another
2-framelet X−s (̃φ; ψ̃1, . . . , ψ̃L) in H−s(R), which is related to a 2-refinable function φ̃ ∈ H−s(R)
and a set of wavelet function {ψ̃}L=1 given by

̂̃φ(2 · ) = ̂̃a( · )̂̃φ( · ), ̂̃ψ(2 · ) = ̂̃b( · )̂̃φ( · ), (1.8)

such that for any f ∈ Hs(R) and g ∈ H−s(R), there holds

〈f , g〉 =
∑
k∈Z

〈φ0,k, g〉〈f , φ̃0,k〉 +
L∑
=1

∑
j∈N0

∑
k∈Z

〈ψ,sj,k , g〉〈f , ψ̃,−s
j,k 〉, (1.9)

then we say that Xs(φ;ψ1, . . . ,ψL) and X−s (̃φ; ψ̃1, . . . , ψ̃L) are a pair of dual 2-framelets in
(Hs(R),H−s(R)). It follows directly from (1.9) that

f =
∑
k∈Z

〈f , φ̃0,k〉φ0,k +
L∑
=1

∑
j∈N0

∑
k∈Z

〈f , ψ̃,−s
j,k 〉ψ,sj,k (1.10)

and
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g =
∑
k∈Z

〈g ,φ0,k 〉̃φ0,k +
L∑
=1

∑
j∈N0

∑
k∈Z

〈g ,ψ,sj,k 〉ψ̃,−s
j,k .

2. Adjustable B-spline sampling system in Sobolev space

It will be witnessed in (3.2) that the HT of a spline can be expressed explicitly. As such, the B-spline
framelet sampling system will be used to reconstruct the HT of any function in Hs(R). We shall
prove that the reconstruction is L2-stable. However, it will follow from (3.1) and (3.2) that the HT
of B-spline has numerical singularity at the knots. Recall that if a function is α-Hölder continuous
with 0 < α < 1, then its HT is continuous on R [19, Chapter 6]. Thus, in addition to being
L2-stable, the reconstruction method of reconstructing HT should be numerically stable as well.
The multiscale cardinal B-spline sampling system to be established is adjustable, and therefore the
deduced reconstruction of HT satisfies the two requirements above.

2.1. Two lemmas on convergence of framelet series in Sobolev space

Lemma 2.1: Let φ̃ ∈ H−t(R), t > 0, be 2-refinable. Construct a wavelet function ψ̃ by

̂̃ψ(2 · ) = ̂̃b( · )̂̃φ( · )

such that ψ̃ has κ + 1 vanishing moments, wherễb is a 2π-periodic trigonometric polynomial, κ ∈ N0
and κ + 1 > t. Then, there exists a positive constant C(κ , s, s∗) such that for any N ∈ N and any
f ∈ Hs(R) with s ∈ (t, κ + 1), it holds

∞∑
j=N

∑
k∈Z

|〈f , ψ̃ s∗
j,k〉|2 ≤ C(κ , s, s∗)2−2Nηκ+1(s,s∗)||f ||2Hs , (2.1)

where s∗ is any fixed number in the interval (t, s), and

ηκ+1(s, s∗) := (κ + 1 − s∗)(s − s∗)/(κ + 1 − s∗ + s). (2.2)

Proof: See Appendix section.

Given a pair of dual framelets Xs(φ;ψ1, . . . ,ψL) and X−s (̃φ; ψ̃1, . . . , ψ̃L) in (Hs(R), H−s(R)),
any f ∈ Hs(R) can be reconstructed by (1.10). Clearly, the scale level j in (1.10) goes from 0 to infinite.
It is necessary to truncate it for practical computation. Now we define the multiscale operator SN

φ , a
truncation form of (1.10), by

SN
φ f =

∑
k∈Z

〈f , φ̃0,k〉φ0,k +
L∑
=1

N−1∑
j=0

∑
k∈Z

〈f , ψ̃,−s
j,k 〉ψ,sj,k , (2.3)

where N ∈ N. The truncation error ||(I − SN
φ )f || will be estimated in the following Lemma 2.2,

where I is the identity operator. Straightforward observation gives us that for any s∗ ∈ (0, s) and
φ̃ ∈ H−s∗(R), every term of the second part of the series in (2.3) satisfies

〈f , ψ̃,−s
j,k 〉ψ,sj,k = 〈f , ψ̃,−s∗

j,k 〉ψ,s∗j,k .

That is, the operator SN
φ is independent of Sobolev smoothness, which will be affirmed by (2.9) that

Sobolev smoothness does not affect sampling data. However, as will be witnessed in Theorem 2.1 and
Note 2.1, Sobolev smoothness is useful for estimating the approximation error.
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We turn to an equivalent but more concise form of (2.3). Suppose that Xs(φ;ψ1, . . . ,ψL) and
X−s (̃φ; ψ̃1, . . . , ψ̃L) are constructed by the mixed extension principle (MEP), namely: the mask
symbols â, b̂1, . . . , b̂L and̂̃a, ̂̃b1, . . . , ̂̃bL in (1.4), (1.5) and (1.8) satisfy

[
b̂1( · ) b̂2( · ) . . . b̂L( · )

b̂1( · +π) b̂2( · +π) . . . b̂L( · +π)

]⎡⎢⎢⎢⎢⎣
̂̃b1( · )̂̃b2( · )
...̂̃bL( · )

⎤⎥⎥⎥⎥⎦
=

[
1 − â( · )̂̃a( · )
−̂a( · +π)̂̃a( · )

]
.

(2.4)

Then, by [14, (4.5)], the multiscale operator SN
φ in (2.3) can be equivalently written by

SN
φ f =

∑
k∈Z

〈f , φ̃−s
N ,k〉φsN ,k, (2.5)

depending only on the refinable functions φ and φ̃.
Lemma 2.2: Let s, t ∈ R+ and κ ∈ N0 such that t < min{κ + 1, s}. Assume that φ ∈ Hs(R), φ̃ ∈
H−t(R) : R −→ Cbe the pair of 2-refinable functions defined in (1.4)and (1.8), respectively.Moreover,
φ has κ + 1 sum rules. Let s∗ be any fixed number in (t, min{κ + 1, s}). Then, for any f ∈ Hs(R), there
exists a positive number g(s, s∗, t) such that

||(I − SN
φ )f ||Hs∗ ≤ g(s, s∗, t)||f ||Hs2−Nηκ+1(s∗,s), (2.6)

where ηκ+1 is defined in (2.2).

Proof: See Appendix section.

2.2. Adjustablemultiscale sampling system in Sobolev space

2.2.1. Multiscale sampling approximation and its iterative sampling form
Based on the approximation accuracy given in (2.6), we are ready to establish themultiscale sampling
approximation and its iterative form for Hs(R), where s > 1/2. The following multiscale sampling
operator to be defined in (2.7) is the special form of SN

φ in (2.5). As such, from now on, we use the
same denotation SN

φ to mean the multiscale sampling operator in (2.7).
Theorem 2.1: Suppose that φ ∈ Hs(R) : R −→ C is a 2-refinable function defined in (1.4) and has
κ+1 sum rules, where s > 1/2 and κ ∈ N0. Let t and s∗ be any two fixed numbers such that 1/2 < t < s
and t < s∗ < min{s, κ + 1}. Then, for any scale level N, any f ∈ Hs(R) can be approximated by

SN
φ f :=

∑
k∈Z

f (2−Nk)φ(2N · −k) (2.7)

with the approximation error ||(I − SN
φ )f ||2 estimated by

||(I − SN
φ )f ||2 ≤ ||(I − SN

φ )f ||Hs∗ ≤ g(s, s∗, t)||f ||Hs2−Nηκ+1(s, s∗), (2.8)

where ηκ+1 is defined in (2.2), and g(s, s∗, t) is as in Lemma 2.2.

Proof: Let φ̃ in Lemma 2.2 be δ, the Delta distribution onR. It follows from δ̂ ≡ 1 that φ̃ is 2-refinable
and ν2(̃φ) = −1/2. By (2.5) and the integral property 〈f , δ〉 = f (0), the operator SN

φ acting on f
substantially takes the form of N-scale sampling approximation due to that
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SN
φ f =

∑
k∈Z

〈f , 2N(1/2+s)δ(2N · −k)〉2N(1/2−s)φ(2N · −k)

=
∑
k∈Z

f (2−Nk)φ(2N · −k).
(2.9)

Now it followsdirectly from (2.9) and (2.6) that any f ∈ Hs(R) canbe approximatedby
∑

k∈Z
f (2−Nk)

φ(2N ·−k), of which the approximation error is estimated by (2.8) and the quantity g(s, s∗, t) is given
in (A12) with φ̃ being replaced by δ.

Note 2.1: The upper bound in (2.8) implies that the approximation scheme in (2.7) is L2-stable.
Specifically, the series in (2.7) converges exponentially to f when N tends to ∞. For fixed t( > 1/2), s∗
is a free variable in the interval (t, min{s, κ + 1}). On the upper bound g(s∗, t)2−Nηκ+1(s, s∗) in (2.8), a
problem is its optimal (minimum) value. It follows from

ηκ+1(s, s∗) = (κ+1−s∗)(s−s∗)
(κ+1−s∗+s)

= (s−s∗)
1+s/(κ+1−s∗)

(2.10)

that ηκ+1(s, s∗) increases when s∗ tends to t. Consequently, 2−Nηκ+1(s,s∗) ≥ 2−Nηκ+1(s,t) > 0. On the
other hand, from (A11) and (A12), we arrive at lims∗→t g(s, s∗, t) = ∞. Therefore,

sop := args∗∈(t,min{s,κ+1})min g(s, s∗, t)2−Nηκ+1(s, s∗) (2.11)

exists, and satisfies

d
ds∗

[
g(s, s∗, t)2−Nηκ+1(s, s∗)

]
|s∗= sop= 0. (2.12)

It follows fromTheorem2.1 that the sampling operatorSN
φ defined in (2.7)mapsHs(R) toHs∗(R),

and the error or residue (I − SN
φ )f is estimated in (2.8). The following theorem is on the iterative

sampling scheme. It will be witnessed in the numerical experiments of Subsection 4.2 that the iterative
sampling may perform better than (2.9), a non-iterative form.
Theorem 2.2: Let a 2-refinable function φ ∈ Hs(R) satisfy (1.4) and have κ + 1 sum rules, where
s > 1/2 and κ ∈ N0. Then, for any L ∈ N and any function f ∈ Hs(R), there exists a sequence
{cN ,L[k]}k∈Z, depending only on N-scale samples {f (2−Nk)}k∈Z, such that

[I − (I − SN
φ )

L]f =
∑
k∈Z

cN ,L[k]φ(2N · −k). (2.13)

Proof: What we need to prove is that the expression in (2.13) can be completed only by the
N-scale samples {f (2−Nk)}k∈Z. For this, direct computation leads to a decomposition of the operator
[I − (I − SN

φ )
L] as

[I − (I − SN
φ )

L] = PL + PL−1 + . . .+ P1 (2.14)

where PL = SN
φ and PL−j = PL(I −∑j−1

k=0 PL−k) for j = 1, 2, . . . , L− 1. Recalling that (2.9) implies
PL acting on any function f ∈ Hs(R) just requires the samples {f (2−Nk)}k∈Z. Hence, the induction
method gives us that there exists a sequence {cN ,L[k]}k∈Z, depending on {f (2−Nk)}k∈Z only, such
that (2.13) holds.

The following proposition, which can be proved by (2.14), is on the computation of {cN ,L[k]}k∈Z

in (2.13).
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Proposition 2.1: The sequence {cN ,L[k]}k∈Z in (2.13) can be iteratively computed by

cN ,1[k] := f (2−Nk), cN ,L[k] := cN ,L−1[k] + cN ,1[k] −
∑
∈Z

cN ,L−1[]φ(k − ), (2.15)

where L ≥ 2.
For any L ∈ N and any strictly increasing sequence {s∗k}Lk=0 in (t, s), it can be proved by the

mathematical induction method that the approximation error ||f − [I − (I − SN
φ )

L]f ||2 = ||
(I − SN

φ )
Lf ||2 can be estimated by

||(I − SN
φ )

Lf ||2 ≤ ||f ||Hs

( L∏
k=0

g(s, s∗k+1, s
∗
k)

)
2−N(ηκ+1(s,s∗L)+

∑L−1
j=0 ηκ+1(s∗j+1,s

∗
j )). (2.16)

An application of [16, Theorem 3.2] and (2.15) leads to that the sequence {cN ,L[k]}k∈Z belongs to
2(Z) for any L ∈ N. Recalling that φ has κ + 1 sum rules, then it has approximation order κ + 1,
namely:

||f − PNf ||2 = O(2−N(κ+1))

where PNf is the best approximation of f in the shift-invariant space{∑
k∈Z

ckφ(2N − k) :
∑
k∈Z

|ck|2 < ∞
}
.

Therefore, there exists the optimal L, denoted by Lop, such that

||f − [I − (I − SN
φ )

Lop ]f ||2 = ||(I − SN
φ )

Lop f ||2 = min
L∈N

||(I − SN
φ )

Lf ||2. (2.17)

In practical computation, Lop can be estimated by solving the problem above on a finite subset of R.

2.2.2. Adjustable cardinal B-splinemultiscale sampling approximation
The cardinal B-spline of orderm( ∈ N) is defined by

Bm :=
m copies︷ ︸︸ ︷

χ[0,1) ∗ . . . ∗ χ[0,1), (2.18)

where χI is the characteristic function of an interval I , and ∗ the convolution operation. A useful fact
about Bm is that B̂m( · ) = e−im·/2( sin ·/2

·/2 )m and thus ν2(Bm) = m−1/2. Bm is 2-refinable, concretely,

B̂m(2 · ) =
(1 + ei·

2

)m
B̂m( · ),

which also implies that Bm hasm sum rules.
As to be pointed in Lemma 3.1, HBm has numerical singularity on [0,m]. As such, to remove

the numerical singularity arising in reconstruction of analytic signal, it is necessary to construct
an adjustable sampling system. The following definition is necessary for the adjustable multiscale
sampling system.
Definition 2.1: Let φ ∈ Hs(R) be 2-refinable. The set of functions XN ,θ (φ) defined by

XN ,θ (φ) := {φ(2N · −k − θk)}k∈Z (2.19)
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is referred to as anN-scale adjustable function system (AFS) ofφ, where the shift parameter sequence
θ := {θk} ⊆ (− 1, 1). Following (2.13), define the adjustable sampling operator (ASO) AN ,L

φ,θ by

AN ,L
φ,θ (f ) =

∑
k∈Z

cN ,L[k]φ(2N · −k − θk),∀f ∈ Hs(R), (2.20)

where the coefficient sequence {cN ,L[k]}k∈Z can be computed by (2.15). By straightforward observa-
tion, AN ,L

φ,θ is substantially the shift perturbation of I − (I − SN
φ )

L in (2.13).

As I − (I − SN
Bm)

L, the following theorem asserts that AN ,L
Bm,θ is L

2-stable as well.

Theorem 2.3: Let m ≥ 2. Suppose thatXN ,θ (Bm) andAN ,L
Bm,θ are defined by (2.19) and (2.20) with φ

being replaced by Bm, respectively. Moreover, let the shift parameter sequence θ satisfy ||θ ||∞ < 1
4 , and

J0 = �||θ ||−
1

m+1∞ �. Then, for any function f ∈ Hs(R), s > 1/2, there exists a positive number C(N , L, J0)
such that

||(I − AN ,L
Bm,θ )f ||2 ≤ ||(I − SN

Bm)
Lf ||2 + C(N , L, J0)||θ ||

2m−1
2m+2∞ . (2.21)

Proof: Triangle inequality gives us that

||AN ,L
Bm,θ f − f ||2 ≤ ||(I − SN

Bm)
Lf ||2 + ||AN ,L

Bm,θ f − [I − (I − SN
Bm)

L](f )||2. (2.22)

Next, we compute the second term of the inequality above as follows,

||AN ,L
Bm,θ f − [I − (I − SN

Bm)
L](f )||22

=
∫

R

|
∑
k∈Z

cN ,L[k](Bm(2Nt − k − θk)− Bm(2Nt − k))|2dt

= 2−N
∫

R

|
∑
k∈Z

cN ,L[k](Bm(x − k − θk)− Bm(x − k))|2dx

= 2−N

2π

∫
R

|B̂m(ξ)|2|
∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθkξ )|2dξ

= 2−N

2π

∞∑
j=−∞

∫ 2(j+1)π

2jπ
|B̂m(ξ)|2|

∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθkξ )|2dξ

= 2−N

2π

∫ 2π

0

∞∑
j=−∞

|B̂m(ξ + 2jπ)|2|
∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθk(ξ+2jπ))|2dξ

= I1(J)+ I2(J),

(2.23)

where

I1(J) = 2−N

2π

∫ 2π

0

∑
|j|≥J+1

|B̂m(ξ + 2jπ)|2|
∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθk(ξ+2jπ))|2dξ

and

I2(J) = 2−N

2π

∫ 2π

0

J∑
j=−J

|B̂m(ξ + 2jπ)|2|
∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθk(ξ+2jπ))|2dξ

with J( ∈ N) to be optimally selected. The two terms I1(J) and I2(J) are estimated as follows,
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I1(J) ≤ 2−N+2

2π
||{cN ,L[k]}||22

∫ 2π

0

∑
|j|≥J+1

|B̂m(ξ + 2jπ)|2dξ

≤ 2−N+2(2π)−2m||{cN ,L[k]}||22
∑

|j|≥J+1

1
(j − 1)2m

≤ 2−N+2(2π)−2m||{cN ,L[k]}||22
∫ ∞

J

1
x2m

dx

= 2−N+2(2π)−2m||{cN ,L[k]}||22(2m + 1)−1J1−2m

(2.24)

and

I2(J) ≤ 2−N

2π
||B̂m||2L∞(R)

J∑
j=−J

∫ 2π

0
|
∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθk(ξ+2jπ))|2dξ

≤ 2−N+1

2π

J∑
j=−J

∫ 2π

0
|
∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθkξ )|2

+|
∑
k∈Z

cN ,L[k](1 − e−i2θkjπ )e−i(k+θk)ξ |2dξ.

(2.25)

By Kadec’s 1
4 -Theorem [20, Theorem 14], we have∫ 2π

0
|
∑
k∈Z

cN ,L[k]e−ikξ (1 − e−iθkξ )|2dξ ≤ ||{cN ,L[k]}||22(1 − cosπ ||θ ||∞ + sinπ ||θ ||∞)2

≤ 2π2||{cN ,L[k]}||22||θ ||2∞.
(2.26)

On the other hand,∫ 2π

0
|
∑
k∈Z

cN ,L[k](1 − e−i2θkjπ )e−i(k+θk)ξ |2dξ

≤ 2
∫ 2π

0
|
∑
k∈Z

cN ,L[k](1 − e−i2θkjπ )e−ikξ |2dξ

+2
∫ 2π

0
|
∑
k∈Z

cN ,L[k](1 − e−i2θkjπ )e−ikξ (1 − e−iθkξ )|2dξ
≤ 4π ||{cN ,L[k](1 − e−i2θkjπ )}||22 + 4π2||{cN ,L[k](1 − e−i2θkjπ )}||22||θ ||2∞
≤ 16πμ+1||θ ||μ∞|j|μ||{cN ,L[k]}||22 + 16π2||{cN ,L[k]}||22||θ ||2∞,

(2.27)

where the parameter μ ∈ (0, 2] will be determined optimally. From (2.25), (2.26) and (2.27), we
arrive at

I2(J) ≤ 2−N+1

π
(2J + 1)||B̂m||2L∞(R)||{cN ,L[k]}||22||θ ||μ∞Jμ

[
8πμ+1 + 9π2||θ ||2−μ∞

]
≤ 2−N+2

π
(J + 1)μ+1||{cN ,L[k]}||22||θ ||μ∞

[
8πμ+1 + 9π2||θ ||2−μ∞

]
≤ 2−N+3+μ

π
Jμ+1||{cN ,L[k]}||22||θ ||μ∞

[
8πμ+1 + 9π2||θ ||2−μ∞

]
.

(2.28)

It is easy to check that when μ = 2 and J = �||θ ||−
1

m+1∞ �, the order of the bound of I1(J) + I2(J) is
optimal. Specifically,

I1(J)+ I2(J) = O
(
||θ ||

2m−1
m+1∞

)
.
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Now we select

C(N , L, J0) = ||{cN ,L[k]}||2
[
2−N+2(2π)−2m(2m + 1)−1 + 2−N+5

π
(8π3 + 9)

]1/2
to conclude the proof.

3. Stable reconstruction of Hilbert transform by adjustable cardinal B-spline
sampling system

By the adjustable cardinal B-spline sampling system, we shall establish a numerically and L2-stable
reconstruction method of the HT.

3.1. Stable cardinal B-splinemethod for Hilbert transform

It is not difficult to prove that

HB1( · ) = 1
π
ln | ·

· − 1
|. (3.1)

Clearly, 0 and 1 are the two singular points of HB1. For m ≥ 2, the value of HBm at x ∈ R can be
recursively computed by

HBm(x) = x
m − 1

HBm−1(x)+ m − x
m − 1

HBm−1(x − 1). (3.2)

On the numerical singularity of HBm, the following lemma can be proved by the implementing
mathematical induction on (3.2).
Lemma 3.1: For any m ∈ N, the singular points of HBm( · ) are 0, 1, . . . ,m.

Now with the multiscale sampling approximation (2.21) at hand, we shall give an approximation
of the HT. The approximation error, induced by truncating the scale level, will imply that the
approximation of HT is L2-stable.
Theorem 3.1: Let XN ,θ (Bm) and AN ,L

Bm,θ be referred to in Theorem 2.3 where m ≥ 2. Then, for any
function f ∈ Hs(R), s > 1/2, there holds

||HAN ,L
Bm,θ f − Hf ||2 ≤ ||(I − SN

Bm)
Lf ||2 + C(N , L, J0)J

−(2m−1)/2
0 , (3.3)

where J0 and C(N , L, J0) are defined in Theorem 2.3.

Proof: Theorem 2.3, together with the isometry property of the HT, namely: ||Hf ||2 = ||f ||2 for any
f ∈ L2(R), leads to (3.3).

The following theorem is on the approximation error induced by truncating the shift ofHAN ,L
Bm,θ f

in (3.3). It asserts that for any function in Hs(R), s > 1/2, even if it is not compactly supported, its
HT can be approximated by a finite series, provided that the scale level N and the amount of sample
are sufficiently large.
Theorem 3.2: For any f ∈ Hs(R), s > 1/2, define the coefficient sequence {cN ,L[k]}k∈Z by (2.15).
Then, for any fixed K ∈ N, it holds that∥∥∥∥ K∑

k=−K
cN ,L[k]HBm(2N · −k − θk)− Hf

∥∥∥∥
2

=
√∥∥∥∥ K∑

k=−K
cN ,L[k]Bm,I1(2N · −k − θk)− fI1

∥∥∥∥2
2
+

∥∥∥∥fI2

∥∥∥∥2
2
,

(3.4)
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where gIi denotes the restriction of g on Ii, i = 1, 2,

I1 :=
[−K − 1

2N
,
m + K + 1

2N

]
, and I2 := R \ I1. (3.5)

Moreover, ∥∥∥∥ K∑
k=−K

cN ,L[k]HBm(2N · −k − θk)− Hf
∥∥∥∥
2

≤
√
(‖(I − SN

Bm)
Lf ‖2 + C(N , L, J0)‖θ‖

2m−1
2m+2∞ )2 + ‖fI2‖22,

(3.6)

where C and J0 are as in Theorem 2.3.

Proof: By the isometry property of the HT and support(Bm) = [0,m], it is easy to check that∥∥∥∥ K∑
k=−K

cN ,L[k]HBm(2N · −k − θk)− Hf ||2

=
∥∥∥∥ K∑
k=−K

cN ,L[k]Bm(2N · −k − θk)− f
∥∥∥∥
2

=
√∥∥∥∥ K∑

k=−K
cN ,L[k]Bm,I1(2N · −k − θk)− fI1

∥∥∥∥2
2
+ ||fI2 ||22.

Since
∑K

k=−K cN ,L[k]Bm,I1(2N · −k − θk)− fI1 is the restriction of (I − SN
Bm)

Lf on I1, we have∥∥∥∥∥∥
K∑

k=−K
cN ,L[k]Bm,I1(2

N · −k − θk)− fI1

∥∥∥∥∥∥
2

≤ ||(I − SN
Bm)

Lf ||2 + C(N , L, J0)||θ ||
2m−1
2m+2∞ .

Then, the proof of (3.6) is concluded.

Remark 3.1: A direct observation on (3.5) leads to that I2 has nothing to do with L, and therefore
fI2 is independent of L. Therefore, for fixed N and K, the error given in (3.4) actually gives us a
strategy for choosing L. Specifically, the smaller∥∥∥∥∥∥

K∑
k=−K

cN ,L[k]Bm,I1(2
N · −k − θk)− fI1

∥∥∥∥∥∥
2

(3.7)

is, the better L is. On the other hand, ||fI2 ||2 in (3.4) tends to 0 when K → ∞. Therefore, by (3.6),
Hf can be well approximated by

K∑
k=−K

cN ,L[k]HBm(2N · −k − θk) (3.8)

when the scale level N is sufficiently large and the sample amount (2K + 1) � 2N . Note that, for
any k ∈ Z, directly utilising Lemma 3.1 gives us that the set of singular points of HBm(2N · −k) is
{ k+j
2N : j = 0, 1, 2, . . . ,m}. Therefore, when making use of (3.4) to compute Hf (x), it is necessary to

adaptively select a sequence θx := {θk,x} such that

{2Nx − k − θk,x : k = −K, . . . ,K} ∩ {0, 1, 2, . . . ,m} = ∅. (3.9)
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To avoid destroying approximation accuracy, it follows from Theorem 3.2 that ||θx||∞ should be
sufficiently small. As a result of (3.9), the numerical singularity is adaptively removed when using
(3.8) to compute HT of f at the point x. On the other hand, the approximation errors induced by
scale truncation and shift truncation can be estimated by (3.3) and (3.6). Above all, our method of
computing the HT is L2-stable and numerically stable, and the numerical singularity can be removed.

4. Reconstruction of analytic signal

4.1. Reconstructionmethod of analytic signal

For any f ∈ Hs(R), s > 1/2, its analytic signal f + iHf can be approximated by∑
k∈Z

cN ,L[k]
(
Bm + iHBm

)
(2N · −k − θk), (4.1)

whereN is sufficiently large, the sequence {cN ,L[k]}k∈Z can be computed by (2.15) and Bm + iHBm is
the analytic signal of Bm. By Theorem 2.3 and Theorem 3.1, the approximation error is given by

||f + iHf −
∑
k∈Z

cN ,L[k]
(
Bm + iHBm

)
(2N · −k − θk)||2

≤ 2||(I − SN
Bm)

Lf ||2 + 2C(N , L, J0)J
−(2m−1)/2
0 . (4.2)

For numerical computation, the series in (4.2) needs to be truncated and (f +iHf )(x) is reconstructed
by the finite series as follows,

(f + iHf )(x) ≈
K∑

k=−K
cN ,L[k]

(
Bm + iHBm

)
(2Nx − k − θk), (4.3)

where K � 2N , and θ satisfies (3.9). By Theorem 3.2,

∥∥∥∥f + iHf −
K∑

k=−K
cN ,L[k]

(
Bm + iHBm

)
(2N · −k − θk)

∥∥∥∥
2

≤ 2

√
(||(I − SN

Bm)
Lf ||2 + C(N , L, J0)||θ ||

2m−1
2m+2∞ )2 + ||fI2 ||22, (4.4)

where C, J0 and I2 are as in Theorem 3.2.

4.2. Numerical experiments of reconstruction of analytic signal

4.2.1. The first numerical experiment
The Hilbert transform of f (x) := 1

1+x2 is
x

1+x2 . Therefore, the analytic signal of f is

1
1 + x2

+ i
x

1 + x2
.

In this experiment, we use the method in (4.3) to reconstruct the analytic signal on [−10, 10]. The
efficiency of reconstructing f + iHf is shown in Table 1. The graphs of f + iHf and its approximation
A5,3

B2,θ f + iHA5,3
B2,θ f are shown in Figure 1.
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Figure 1. The graph of f + iHf is red while that ofA5,3
B2,θ

f + iHA5,3
B2,θ

f is blue.
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Figure 2. The graph of f + iHf is red while that ofA6,3
B2,θ

f + iHA6,3
B2,θ

f is blue.

Table 1. Error=||f + iHf − ∑K
k=−K cN,L[k]

(
B2 + iHB2

)
(2N · −k − θk)||2/||f + iHf ||2.

N L θk Error K
4 2 0.000053 0.0047 1000
4 3 – 0.00088653 –
5 2 – 0.0012 –
5 3 – 0.00021091 –

Table 2. Error=||f + iHf − ∑K
k=−K cN,L[k]

(
B2 + iHB2

)
(2N · −k − θk)||2/||f + iHf ||2.

N L θk Error K
5 3 0.00153 0.00029939 1023
5 4 – 0.00021277 –
6 2 – 0.00044703 –
6 3 0.00000153 0.000051793 –
6 3 0.00000053 0.000051802 876
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4.2.2. The second numerical experiment
The Hilbert transform of f (x) := 1

1+x4 is
x(1+x2)√
2(1+x4)

; then, the analytic signal of f is

sin x
1 + x4

+ i
x(1 + x2)√
2(1 + x4)

.

In this experiment, we use (4.3) to reconstruct the analytic signal. See Table 2 for efficiency. The
graphs of f + iHf and its approximation A5,3

B2,θ f + iHA5,3
B2,θ f are shown in Figure 2.
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Appendix 1. Appendix: proofs of Lemmas 2.1 and 2.2
A.1. Proof of Lemma 2.1

Since ψ̃ has κ + 1 vanishing moments, there exists a positive constant g0 such that |̂̃b(ξ)| ≤ g0|ξ |κ+1 for any ξ ∈ R.
By the similar procedures as [16, Theorem 2.2], we have

∞∑
j=N

∑
k∈Z

|〈f , ψ̃−s∗
j,k 〉|2

≤ 1
π

||[̂̃φ,̂̃φ]−t ||L∞(R)

∫
R

|̂f (ξ)|2(1 + |ξ |2)s∗
∞∑
j=N

|̂̃b(2−j−1ξ)|222js∗ (1 + |ξ |2)−s∗ (1 + 2−2(j+1)|ξ |2)tdξ (A1)

≤ g20
π

||[̂̃φ,̂̃φ]−t ||L∞(R)

∫
R

|̂f (ξ)|2(1 + |ξ |2)s∗
∞∑
j=N

|2−j−1ξ |2κ+222js
∗ (1 + 2−2(j+1)|ξ |2)t

(1 + |ξ |2)s∗ dξ

= C1(I1 + I2),

where C1 = g20
π

||[̂̃φ,̂̃φ]−t ||L∞(R),

I1 =
∞∑
j=N

∫
|ξ |≤2jν

|̂f (ξ)|2(1 + |ξ |2)s∗ |2−j−1ξ |2κ+222js
∗ (1 + 2−2(j+1)|ξ |2)t

(1 + |ξ |2)s∗ dξ (A2)

and

I2 =
∞∑
j=N

∫
|ξ |>2jν

|̂f (ξ)|2(1 + |ξ |2)s∗
∞∑
j=N

|̂̃b(2−j−1ξ)|222js∗ (1 + |ξ |2)−s∗ (1 + 2−2(j+1)|ξ |2)tdξ (A3)

with ν ∈ R
+ to be optimally determined. I1 is estimated as follows,

I1 ≤ 2t
∞∑
j=N

2−2(j+1)(κ+1)2j2(κ+1)ν22js
∗
2−2s∗jν

∫
|ξ |≤2jν

|̂f (ξ)|2(1 + |ξ |2)s∗dξ

≤ 2t−2(κ+1)
∞∑
j=N

2−2j[(κ+1)(1−ν)−s∗]||f ||2Hs∗

≤ 2t−2(κ+1)

1 − 2−2((κ+1)(1−ν)−s∗) 2
−2N((κ+1)(1−ν)−s∗)||f ||2Hs .

(A4)

By [16, Lemma 2.2],

∞∑
j=N

|̂̃b(2−j−1ξ)|222js∗ (1 + |ξ |2)−s∗ (1 + 2−2(j+1)|ξ |2)t ≤
||̂b(ξ)||2L∞(Rd)

2t

22(s∗−t) − 1
+ g20

1 − 2−2(κ+1−s∗) (A5)

for any ξ ∈ R. Denote the upper bound in (A5) by C2(κ , s∗, t). Then,

I2 ≤ C2(κ , s∗, t)
∞∑
j=N

∫
|ξ |>2jν

|̂f (ξ)|2(1 + |ξ |2)s(1 + |ξ |2)s∗−sdξ

≤ C2(κ , s∗, t)
1 − 2−2ν(s−s∗) 2

−2Nν(s−s∗)||f ||2Hs .

(A6)

It follows from (A1), (A4) and (A6) that

∞∑
j=N

∑
k∈Z

|〈f , ψ̃−s∗
j,k 〉|2 ≤ C1

[ 2t−2(κ+1)

1 − 2−2((κ+1)(1−ν)−s∗) 2
−2N((κ+1)(1−ν)−s∗)+

C2(κ , s∗, t)
1 − 2−2ν(s−s∗) 2

−2Nν(s−s∗)
]
||f ||2Hs . (A7)
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When selecting ν = (κ + 1 − s∗)/(κ + 1 + s − s∗), the approximation order reaches the optimal value. Specifically,

∞∑
j=N

∑
k∈Z

|〈f , ψ̃−s∗
j,k 〉|2 ≤ C(κ , s, s∗)2−2N(s−s∗)(κ+1−s∗)/(κ+1+s−s∗)||f ||2Hs , (A8)

where

C(κ , s, s∗) : = C1

[ 2t−2(κ+1)

1 − 2−2(s−s∗)(κ+1−s∗)/(κ+1+s−s∗) + C2

1 − 2−2(κ+1−s∗)(s−s∗)/(κ+1+s−s∗)

]
. (A9)

A.2. Proof of Lemma 2.2

By the mixed extension principle,[14,16] we can construct a pair of dual 2-framelets Xs∗ (φ;ψ1,ψ2) and X−s∗

(̃φ; ψ̃1, ψ̃2) in (Hs∗ (R),H−s∗ (R)) such that both ψ̃1 and ψ̃2 have κ + 1 vanishing moments. Let 2 be the space
of square summable sequences. For Xs∗ (φ;ψ1,ψ2), we define a pre-frame operator P : Hs∗ (R) −→ 2, of which the
elements of Pf are

〈f ,φ0,k〉Hs∗ (R), 〈f ,ψ,sj,k 〉Hs∗ (R), j ∈ N0, k ∈ Z,  = 1, 2,

where f is any function inHs∗ (R). By (1.7), it is evident that Pf ∈ 2. Moreover, operator norm ||P|| can be estimated
by [14, Theorem 2.2]. Specifically,

||P|| < ∞, (A10)

namely: P is bounded. By [21, p.57–58] , P∗ : 2 −→ Hs∗ (R), the adjoint operator of P is defined by

P
∗(c) =

∑
k∈Z

ckφ0,k +
2∑
=1

∑
j∈N0

∑
k∈Z

c,−s
j,k ψ

,s
j,k ,

where c ∈ 2 and its elements are cn;0,k and c,−s
j,k . Recalling ||P∗|| = ||P|| gives us

||P∗(c)||Hs∗ (R) ≤ ||P||||c||2 .

Now for X−s (̃φ; ψ̃1, ψ̃2) being a Bessel 2-wavelet sequence in H−s(R), it follows from (2.1) that∥∥∥∥∥∥
2∑
=1

∞∑
j=N

∑
k∈Z

〈f , ψ̃,−s
j,k 〉ψ,sj,k

∥∥∥∥∥∥
Hs

≤ ||P||
( 2∑
=1

∞∑
j=N

∑
k∈Z

|〈f , ψ̃,−s
j,k 〉|2

)1/2
≤ ||P||√G(s∗, t)2−ηκ+1(s∗ ,s)N ,

where

G(s∗, t) = 1
π

||[̂̃φ,̂̃φ]−t ||∞
2∑
=1

∥∥∥∥∥ ̂̃b(ξ)
ξ

∥∥∥∥∥∞

⎡⎢⎣2t+1 + 22t

⎛⎜⎝ ||̂̃b||∞
22(s∗−t) − 1

+
|| ̂̃b(ξ)
ξκ+1 ||∞

1 − 2−2(κ+1−s∗)

⎞⎟⎠
⎤⎥⎦ . (A11)

Now we select

g(s, s∗, t) = ||P||√G(s∗, t) (A12)

to conclude this proof.
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