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Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was
originated for the goal of positive frequency representations of signals. It
achieved the goal and at the same time offered fast decompositions of signals.
There then arose several types of AFDs. The AFD merged with the greedy
algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy
algorithm (pre-OGA) that was proven to be the most efficient greedy algorithm.
The cost of the advantages of the AFD-type decompositions is, however, the
high computational complexity due to the involvement of maximal selections
of the dictionary parameters. The present paper constructs one novel method to
perform the 1-D AFD algorithm. We make use of the FFT algorithm to reduce
the algorithm complexity, from the original (MN2) to (MN log2 N), where
N denotes the number of the discretization points on the unit circle and M
denotes the number of points in [0, 1). This greatly enhances the applicability
of AFD. Experiments are performed to show the high efficiency of the proposed
algorithm.
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1 INTRODUCTION

One-dimensional adaptive Fourier decomposition (abbreviated as 1-D AFD) has recently been proposed and proved to
be among the most effective greedy algorithms.1-3 The AFD is originally developed for the contexts of the unit disc and
the upper-half plane and now is formally called 1-D AFD, or Core-AFD. The reason for the last terminology is because
it becomes the constructive block of the lately developed variations of 1-D AFD, such as Unwinding AFD and Cyclic
AFD, where the former is an algorithm for more effective frequency decompositions of signals,4 and the latter is for
finding solutions of n-best rational approximations of functions in the Hardy space.5,6 Most recently, the concept of AFD is
generalized to approximations of linear combinations of the Szegö kernels and their derivatives. In the later studies, such
approximations are not necessarily obtained through greedy-type algorithms, viz, the maximal selection principle.7,8 They
can be obtained by any method, for instance, SVM in learning theory,9 the regularizations in compressed sensing,10 or the
Tikhonov regularization, etc. In this article, we focus on an AFD algorithm of the greedy type using the maximal selection
principle. The AFD-type decompositions all have promising applix cations to system identification and signal analysis11,12

with proven effectiveness. Recently, 1-D AFD has been generalized in either the Clifford (Quaternionic) algebra,13,14 or the
several complex variables settings.2 In the sequel, when we use the notion AFD, we will specify the context for clearness.

However, since 1-D AFD involves maximal selections of the parameters in the Szegö kernels, it has great computational
complexity. For instance, the algorithm in Qian et al15 is shown to be of the computational complexity (MN2), where N
is the discretization of the unit circle and M is the number of samples in the radius of the unit disc, on which the maximal
value is selected. We note that the quantity M cannot be reduced because it is independent on the discretization on the
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unit circle. On the one hand, it has the necessity to reduce the computational complexity in order to make AFD more
practical in applications. On the other hand, it is, in fact, feasible to build in FFT into the AFD algorithm. In the present
paper, we provide one such algorithm reducing the complexity to (MN log2 N) from the original (MN2), where N is
for the discretization of the unit circle and M is the number of samples in the radius of the unit disc. In Section 2, we
briefly recall 1-D AFD and its discretization scheme. In Section 3, we introduce the proposed algorithm and analyse its
computational complexity. In Section 4, we give numerical examples to compare the precisions, the selected parameters,
and the related errors between what we propose with the original 1-D AFD algorithm.

2 PRELIMINARIES

Let L2 be the Hilbert space of signals with finite energy on the closed interval [0, 2𝜋], equipped with the inner product

⟨G,F⟩ = ∫
2𝜋

0
G(eit)F(eit)dt, (1)

where G,F ∶ [0, 2𝜋] → C, and a denotes the usual complex conjugate of a ∈ C.16H2 = H2(D) denotes the Hardy space on
the unit disk D = {z ∈ C ∶ |z| < 1} of the complex plane C. {Bk}+∞k=1 is the Takenaka-Malmquist system or orthonormal
rational function system, see, eg, previous works,17-20 where

Bk(z) = Ba1,a2,… ,ak (z) =
1√
2𝜋

√
1 − |ak|2
1 − akz

k−1∏
l=1

z − al

1 − alz
, (2)

ak ∈ D, k ∈ N.
Based on {Bk}+∞k=1, the core algorithm of AFD is constructed.1,4,15 For a given analytic signal G ∈ H2, with G1 = G, there

exits the decomposition
G(z) = ⟨G1, ea1⟩ea1 + G2(z)

z − a1

1 − a1z
, (3)

where ea1 =
√

1−|a1|2
1−a1z

, a1 ∈ D, z ∈ 𝜕D,

G2(z) =
(

G1 − ⟨G1, ea1⟩ea1 (z)
) 1 − a1z

z − a1
, (4)

and a1 ∈ D is selected by according to the maximal selection principle. That is,

a1 = argmax
a∈D

{|⟨G1, ea⟩|2} , (5)

which is crucial for the core algorithm of AFD (cf., eg, Qian and Wang1). Repeating such process to the n-th step, we get

G(z) =
n∑

k=1
⟨Gk, eak⟩Ba1,… ,ak (z) + Gn+1(z)

n∏
k=1

z − ak

1 − akz
= Sn + Gn+1(z)

n∏
k=1

z − ak

1 − akz
, (6)

where the reduced reminder Gk+1 is obtained through the recursive formula

Gk+1(z) =
(

Gk(z) − ⟨Gk, eak⟩eak

) 1 − akz
z − ak

, (7)

and
ak = argmax

a∈D

{|⟨Gk, ea⟩|2} . (8)

Moreover, due to the orthogonality and the unimodular property of Blaschke products, for each n, there holds‖‖‖‖‖G −
n∑

k=1
⟨Gk, eak⟩Bk

‖‖‖‖‖
2

= ||G||2 − n∑
k=1

||⟨Gk, eak⟩||2. (9)

As a Möbius transform is of norm 1 on the unit circle, the above equation is equal to ‖Gn+1‖2. The equation ⟨Gk, eak⟩ =⟨G,Bk⟩ also holds because of the orthogonalization of {Bk}n
k=1. Then

lim
n→+∞

‖Gn+1‖2 = lim
n→+∞

‖‖‖‖‖G −
n∑

k=1
⟨Gk, eak⟩Bk

‖‖‖‖‖
2

= lim
n→+∞

‖‖‖‖‖G −
n∑

k=1
⟨G,Bk⟩Bk

‖‖‖‖‖
2

. (10)
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It has been proved that above limits convergent to zero when parameters ak is selected by (8) (cf., eg, Qian and Wang1).
Finally, we have

G =
∞∑

k=1
⟨Gk, eak⟩Bk =

∞∑
k=1

⟨G,Bk⟩Bk.

The above is called 1-D AFD or Core AFD. It can be shown that for 𝑓 (z) ∈ H2(D), as z → eit in the nontangential
manner there exists the nontangential limits f (eit) for almost all eit ∈ 𝜕D (cf., eg, Garnett17). The mapping between f(z)
and its boundary limit function f(eit) is an isometric isomorphism. Then f(eit) could be processed by the approximation
theory in H2(D). The biggest computation amount in 1-D AFD of f(eit) is to find a point ak ∈ D, k = 1, 2, · · · , satisfying||⟨Gk, eak⟩||2 = max

a∈D
|⟨Gk, ea⟩|2, where ea =

√
1−|a|2
1−az

, a ∈ D, z ∈ 𝜕D. The key step is to compute the following integral

⟨Gk, ea⟩ = 1
2𝜋 ∫

2𝜋

0
Gk(eit)

√
1 − |a|2

1 − ae−it dt,∀a ∈ D. (11)

3 FORMULATION, ALGORITHM, AND COMPLEXITY ANALYSIS

In this section, we will derive our approximation procedure of (11) incorporating FFT. We denote Gk as G for simplifying
our notation.

3.1 Formulation
We first give a discrete numerical model of (11). Suppose that the interval [0, 2𝜋) is evenly divided into 0 = t0 < · · · <
tm < · · · < t2K−1 < 2𝜋 , tm = 2𝜋m

2K with K being large. Then

⟨G, ea⟩ = 1
2𝜋 ∫

2𝜋

0
G(eit)

√
1 − |a|2

1 − ae−it dt ≈
2K−1∑
m=0

√
1 − |a|2

2K G
(

ei 2𝜋m
2K

) 1

1 − ae−i 2𝜋m
2K

. (12)

We index a ∈ D in polar coordinate. For a fixed r (0 < r < 1), the circle of radius r is evenly divided by the 2K points
ei 2𝜋

2K 𝑗
, 𝑗 = 0, 1, … ,N = 2K−1, which is the same segmentation step distance as (12). That is a𝑗 = rei 2𝜋

2K 𝑗
, 𝑗 = 0, 1, … , 2K−1.

The relation (12), therefore, can be rewritten by approximating a by aj on a fixed circle as

⟨G, ea𝑗
⟩ ≈ 2K−1∑

m=0

√
1 − r2

2K G
(

ei 2𝜋m
2K

) 1

1 − a𝑗e−i 2𝜋m
2K

, 𝑗 = 0, 1, 2, … , 2K − 1. (13)

To further reduce (12), we define the notation for the right side of (13) as

⟨G, ea𝑗
⟩% =

2K−1∑
m=0

√
1 − r2

2K G
(

ei 2𝜋m
2K

) 1

1 − a𝑗e−i 2𝜋m
2K

, 𝑗 = 0, 1, 2, … , 2K − 1. (14)

Then a simple computation gives

⟨G, ea𝑗
⟩% =

2K−1∑
l=0

√
1 − r2

2𝜋
al
𝑗

1 − a2K

𝑗

cl, 𝑗 = 0, 1, 2, … , 2K − 1, (15)

where the coefficients

cl =
2K−1∑
m=0

G
(

ei 2𝜋m
2K

)
e−il 2𝜋m

2K , l ∈ N ∪ {0}. (16)
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In fact, observing that function e−i 2𝜋
2K has a period 2K, then coefficient cl is a periodic function of 2K, ie, cl = cl+n2K ,n ∈ N.

Indeed, noticing |||a𝑗e−i 2𝜋m
2K ||| < 1, a𝑗 ∈ D. This allows us to get another form of (14) as follows:

⟨G, ea𝑗
⟩̃ = 2K−1∑

m=0

+∞∑
l=0

√
1 − r2

2K al
𝑗
G
(

ei 2𝜋m
2K

)
e−il 2𝜋m

2K =
+∞∑
l=0

√
1 − r2

2K al
𝑗

2K−1∑
m=0

G
(

ei 2𝜋m
2K

)
e−il 2𝜋m

2K

=
+∞∑
s=0

(s+1)2K−1∑
l=s2K

√
1 − r2

2K al
𝑗
cl =

2K−1∑
l=0

√
1 − r2

2𝜋
al
𝑗

1 − a2K

𝑗

cl, a𝑗 ∈ D.

Substituting a𝑗 = rei 2𝜋
2K 𝑗 ∈ D in (15), we have

⟨G, ea𝑗
⟩̃ = √

1 − r2

2𝜋
(

1 − a2K

𝑗

) 2K−1∑
l=0

al
𝑗
cl =

√
1 − r2

2𝜋
(

1 −
(

rei 2𝜋
2K 𝑗

)2K) 2K−1∑
l=0

(
rei 2𝜋

2K 𝑗
)l

cl

=
√

1 − r2

2𝜋
(

1 − r2K ei 2𝜋
2K 𝑗2K

) 2K−1∑
l=0

rlei 2𝜋
2K 𝑗lcl =

√
1 − r2

2𝜋
(
1 − r2K) 2K−1∑

l=0
rlclei 2𝜋

2K 𝑗l
, 𝑗 = 0, 1, … , 2K − 1.

(17)

To compute (17), we divide it into two steps. First, applying the FFT to all of cl, l = 0, 1, 2, … , 2K−1. In fact, for arbitrary
0 ≤ l ≤ 2K − 1, l ∈ N ∪ {0}, starting with (16), we have

cl =
2K−1∑
m=0

G
(

ei 2𝜋m
2K

)
e−il 2𝜋m

2K =
2K−2∑
2m=0

G
(

ei 2𝜋(2m)
2K

)
e−il 2𝜋(2m)

2K +
2K−1∑

2m+1=1
G
(

ei 2𝜋(2m+1)
2K

)
e−il 2𝜋(2m+1)

2K

=
2K−1−1∑

m=0
G
(

ei 2𝜋(2m)
2K

)
e−i 2𝜋(2m)

2K l +
2K−1−1∑

m=0
G
(

ei 2𝜋(2m+1)
2K

)
e−i 2𝜋(2m+1)

2K l
.

(18)

Let W2K = e−i 2𝜋
2K , we get

⎧⎪⎪⎨⎪⎪⎩
cl =

2K−1−1∑
m=0

G
(

W−2m
2K

)
W 2ml

2K +
2K−1−1∑

m=0
G
(

W−(2m+1)
2K

)
W 2ml

2K W l
2K ,

cl+2K−1 =
2K−1−1∑

m=0
G
(

W−2m
2K

)
W 2ml

2K −
2K−1−1∑

m=0
G
(

W−(2m+1)
2K

)
W 2ml

2K W l
2K .

(19)

The second step is to use FFT formulation and to derive the following theorem.

Theorem 3.1. The right-hand side of (14) is equal to the cases

⎧⎪⎪⎨⎪⎪⎩
⟨G, ea𝑗

⟩̃ = √
1−r2

2K(1−r2K )

(2K−1−1∑
l=0

r2lc2lW−2𝑗l
2K +

2K−1−1∑
l=0

r2l+1c2l+1W−2𝑗l
2K W−𝑗

2K

)
,

⟨G, ea𝑗+2K−1 ⟩̃ = √
1−r2

2𝜋(1−r2K )

(2K−1−1∑
l=0

r2lc2lW−2𝑗l
2K −

2K−1−1∑
l=0

r2l+1c2l+1W−2𝑗l
2K W−𝑗

2K

)
,

(20)

where j = 0, 1, 2, … , 2K−1 − 1 and cl, l = 0, 1, 2, … , 2K−1 − 1, is given by (19).

Proof. Observing from (14), one gets

⟨G, ea𝑗
⟩̃ = √

1 − r2

2K
(

1 − a2K

𝑗

) 2K−1∑
l=0

al
𝑗
cl =

√
1 − r2

2K
(

1 −
(

rW−𝑗
2K

)2K) 2K−1∑
l=0

(
rW−𝑗

2K

)lcl (21)
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=
√

1 − r2

2K
(

1 − r2K W−𝑗2K

2K

) 2K−1∑
l=0

rlW−𝑗l
2K cl =

√
1 − r2

2K
(
1 − r2K) 2K−1∑

l=0
rlclW−𝑗l

2K

=
√

1 − r2

2K
(
1 − r2K) 2K−2∑

2l=0
r2lW−2l𝑗

2K c2l +
√

1 − r2

2K
(
1 − r2K) 2K−1∑

2l+1=1
r2l+1W−2l𝑗

2K W−𝑗
2K c2l+1

=
√

1 − r2

2K
(
1 − r2K)

(2K−1−1∑
l=0

r2lW−2l𝑗
2K c2l +

2K−1−1∑
l=0

r2l+1W−2l𝑗
2K W−𝑗

2K c2l+1

)
, 𝑗 = 0, 1, … , 2K − 1.

(22)

Hence, we get

⟨G, ea𝑗+2K−1 ⟩̃ = √
1 − r2

2K
(
1 − r2K)

(2K−1−1∑
l=0

r2lc2lW
−2(𝑗+2K−1)l
2K +

2K−1−1∑
l=0

r2l+1c2l+1W−2(𝑗+2K−1)l
2K W−(𝑗+2K−1)

2K

)

=
√

1 − r2

2K
(
1 − r2K)

(2K−1−1∑
l=0

r2lc2lW−2𝑗l
2K −

2K−1−1∑
l=0

r2l+1c2l+1W−2𝑗l
2K W−𝑗

2K

)
.

(23)

Therefore, for 0 ≤ j < 2K−1 − 1, we have⎧⎪⎪⎨⎪⎪⎩
⟨G, ea𝑗

⟩̃ = √
1−r2

2K(1−r2K )

(2K−1−1∑
l=0

r2lc2lW−2𝑗l
2K +

2K−1−1∑
l=0

r2l+1c2l+1W−2𝑗l
2K W−𝑗

2K

)
,

⟨G, ea𝑗+2K−1 ⟩̃ = √
1−r2

2K(1−r2K )

(2K−1−1∑
l=0

r2lc2lW−2𝑗l
2K −

2K−1−1∑
l=0

r2l+1c2l+1W−2𝑗l
2K W−𝑗

2K

)
.

(24)

Remark 3.2. Since the computational complexity of directly computing (14) is (N2), it is unacceptable especially
when N takes a large positive integer. Thus, what is the key point is to reduce the computational complexity of (14)
from (N2) to (N log2 N). We achieve this by constructively changing (14) into (15) with coefficients cl given by
(16), and then transferring (15) into (20). This is because through the technical observation, we can make full use of
the FFT algorithm to compute (20) and coefficients cl given by (16), whose computational complexity is (N log2 N).
These ideas are the starting of the following algorithm.

3.2 Algorithm
In this section, we propose our fast algorithm for the 1-D AFD, making use of the FFT mechanism. Parameters are
expressed in polar coordinate. Radius is sampled evenly by M points as 0 < r1 < r2 < … < rs < … < rM−1 < rM < 1,
where rs = s

M+1
, s = 1, 2, … ,M. Denote the grid mesh on the circle of radius rs is

Cs,2K = {a𝑗 = rsW−𝑗
2K , 𝑗 = 0, 1, 2, … , 2K − 1}.

This set is in particular involved in the FFT formulation of the Section 3.1.

3.2.1 Algorithm description
Step 1. Compute ⟨G, ea𝑗

⟩%, 𝑗 = 0, 1, 2, … , 2K − 1 for all of a𝑗 ∈ Cs,2K , s = 1, 2, … ,M.Applying (19), we compute all
of rl

s, cl, l = 0, 1, 2, … , 2K − 1, s = 1, 2, … ,M, and store them.Next, starting from the recursive relation (20) with a
fixed rs, we need to work backward K times to obtain the expression of the input data. Set the input of the recursive
relation to be 𝑓 (l) = rl

scl, l = 1, 2, … , 2K − 1. Then the twiddle factor of (20) is W l
2K , while that of FFT is W−l

2K . Because
f is output in the order of l, the bit-reversal permutation of m is necessary. Similarly, we need to input f in the order
of the bit-reversal permutation of l to obtain ⟨G, ea𝑗

⟩%, 𝑗 = 0, 1, 2, … , 2K − 1. We repeat the above procedure to obtain⟨G, ea𝑗
⟩% for all s = 1, 2, … ,M.

Step 2. Find a point as′,𝑗′ ∈ ∪M
s=1Cs,2K satisfying |||⟨G, eas′ ,𝑗′ ⟩%|||2 = max

a𝑗∈Cs,2K
s=1,2,… ,M

|||⟨G, ea𝑗
⟩%|||2.We compare all ⟨G, ea𝑗

⟩%, j =

0, 1, 2, … , 2K − 1, s = 1, 2, … ,M, to find the maximum value and the corresponding parameter as′,𝑗′ = rs′W−𝑗′
2K .
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Remark 3.3. In our algorithm proposed in Section 3.1, we select evenly the sampling. While the nonuni-
form/nonevenly sampling is allowed, our algorithm still holds by applying the nonuniform discrete Fourier trans-
forms developed in, eg, Frigo21

3.3 Computational complexity
In this section, we will analyse the computation complexity of the proposed algorithm in Section 3.2. Here let N = 2K.

In Step 1, applying the argument of the classical FFT, the computational complexity of (19) is (N log2 N). The compu-
tational complexity of the input signal f(l) = rlcl, l = 0, 1, 2, … ,N − 1 is (N + N log2 N), which is also  (

N log2 N
)
. For

s = 1, 2, … ,M, the total computational complexity of ⟨G, ea𝑗
⟩%, 𝑗 = 0, 1, … , 2K − 1, s = 1, 2, … ,M, is  (

MN log2 N
)
.

In Step 2, in order to find a point as′,𝑗′ ∈ ∪M
s=1Cs,2K , satisfying |||⟨G, eas′ ,𝑗′ ⟩%|||2 = max

a𝑗∈Cs,2K
s=1,2,… ,M

|||⟨G, ea𝑗
⟩%|||2, we compare the

absolute value of all ⟨G, ea𝑗
⟩% obtained from step 1 one by one. As the length of the above absolute values is MN, the

computational complexity to find the maximum is (MN).
Totally, the computational complexity of Algorithm 1 is  (

MN log2 N
)
.

Remark 3.4. For a fixed r ∶ 0 < r < 1, ⟨G, ea𝑗
⟩ ̃ , |a𝑗| = r, 𝑗 = 0, 1, 2, … , 2K − 1, could be computed directly

from (14), the computational complexity is (N2), being considerably higher than that of (19). But if we do not chose
evenly 2K−m (0 < m < K,m ∈ N) on the circle of radius r, the argument of the classical FFT cannot play a role in the
computation of 1-D AFD. In such a case, ⟨G, ea𝑗

⟩% can be obtained from (14) with the computational complexity(N2).

4 NUMERICAL EXPERIMENTS

In this section, we temporarily call the proposed algorithm FFT-AFD. We also call the direct computation of AFD without
FFT mechanism as direct-AFD. The efficiency of the proposed algorithm is analysed from two different aspects. The first
one is to list the output of the proposed algorithm: the running times, the approximation results, the parameters ak, and
relative errors. The second one is to make a running time comparison when the original signal is discretized by a different
length of samples. The comparisons are presented between the output of the proposed algorithm and the ones of the
Direct-AFD algorithm in Qian et al.15

We define the relative error by

𝛿 = ||G − Sn||2||G||2 , (25)

where G is the original signal and Sn is the summation of n terms, ie, Sn =
n∑

k=1
⟨G,Bk⟩Bk.

In all of the following experiments, the radius of the unit disc r = 0, 0.1, 0.2, ...0.8 will be considered. The CPU of the
used computer is the Intel G540 under the default setting of a single thread. All experiments are conducted in Matlab
2012b.

4.1 Basic experiments
All original functions are sampled by the 1024 points in this part.

Case 1. The original function is chosen as

𝑓1 = (0.0247ei3t + 0.355ei2t)
(1 − 0.3679eit)

∈ H2.

The time-consuming to run 10 steps is shown in Table 1 below. The experiments are repeated 6 times.
The real part of approximation results is shown in Table 2.
The ak's and the relative errors obtained from 1-D AFD with our proposed algorithm are shown in the following Tables 3
and 4.
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TABLE 1 Running time, s

FFT-AFD 0.2617 0.2609 0.2613 0.2610 0.2609 0.2614
Direct-AFD 1.3315 1.3297 1.3294 1.3323 1.3294 1.3329

Abbreviations: AFD, adaptive Fourier decomposition; FFT, fast Fourier transform.

TABLE 2 Comparison between the approximation results in case 1

S2 S4 S6 S8 S10

TABLE 3 Parameters ak in case 1

TABLE 4 Relative error, dB

N FFT-AFD Direct-AFD

1 1.0000 1.0000
2 0.5790 0.5790
3 0.2092 0.2093
4 0.0553 0.0553
5 0.0189 0.0189
6 0.0052 0.0052
7 0.0017 0.0017
8 0.0005 0.0005
9 0.0002 0.0002
10 0.0000 0.0001

Abbreviations: AFD, adaptive Fourier decom-
position; FFT, fast Fourier transform.

Analysis 1. From Table 1, it is clear that the numerical computation is significantly accelerated. From Table 3, the
difference of the parameters ak and that of the relative error are limited in 0.0001. These data indicate that our proposed
algorithm actually achieves the effects of 1-D AFD in less time.
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Case 2. f1 is a rational function being of good smoothness. Then f2 is given as an example of the step functions as

𝑓2 = sgn(sin t).

The running time, ak, and the relative error are given in Table 5 as follows.
The approximation results are shown in Table 6.
The ak's and the relative errors obtained from our proposed algorithm are shown in Tables 7 and 8.
Analysis 2. The running time of our proposed algorithm keeps a stable acceleration. The parameters ak's have a
little difference from those of the Direct-AFD, in which the value of the integral (inner product) is yielded by the
Newton-Cotes rules. It does not cause any influence on the relative errors in this example.

TABLE 5 Running time, s

FFT-AFD 0.2618 0.2616 0.2593 0.2598 0.2598 0.2598
Direct-AFD 1.3110 1.3157 1.3294 1.3099 1.3150 1.3079

Abbreviations: AFD, adaptive Fourier decomposition; FFT, fast Fourier transform.

TABLE 6 Comparison between the approximation results in case 2

S2 S4 S6 S8 S10

TABLE 7 Parameters ak in
case 1

TABLE 8 Relative error, dB

N FFT-AFD Direct-AFD

1 1.0000 1.0000
2 0.1895 0.1895
3 0.1260 0.1260
4 0.0266 0.0266
5 0.0247 0.0247
6 0.0199 0.0199
7 0.0183 0.0183
8 0.0129 0.0129
9 0.0120 0.0120
10 0.0106 0.0105

Abbreviations: AFD, adaptive Fourier decom-
position; FFT, fast Fourier transform.
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TABLE 9 Running time, s

The Length of Samples 128 256 512 1024 2048 4096

FFT-AFD 0.0331 0.0634 0.1325 0.2662 0.5416 1.1243
Direct-AFD 0.0369 0.1049 0.3530 1.3087 5.1891 24.3431

Abbreviations: AFD, adaptive Fourier decomposition; FFT, fast Fourier transform.

4.2 The influence of the length of samples
The proposed algorithm in Section 3 is of  (

MN log2 N
)

computation complexity. Compared to Direct-AFD with the
computational complexity  (

MN2), the running time should be obviously improved with an increased length of sam-
ples of the original function. Hereby, the original signal f1 is sampled by 128, 256, 512, 1024, 2048 points respectively. We
observe the running times of the proposed algorithm approximating 10 steps with the sampled signals. The running time
can be found in Table 9.

The parameters have a little difference from those from Direct-AFD, when N = 27, 28, 29, 210, 211, 212, respectively.
Moreover, it does not cause any influence on the relative errors in this example.

Remark 4.1. Compared to the ideas contained in Gao et al,3 our algorithm is much feasible and efficient to occupy
much less ram and to cost much less time. This is because our algorithm can be executed by directly calling arbitrary
software packages, which integrate FFT while they are being continuously updated and optimized in engineering.

Remark 4.2. In our algorithm presented in Section 3.2 and the numerical experiments in Section 4, we have consid-
ered the case of the dynamic parameter choice N = 2K. Moreover, following the argument contained in Rader,22 our
algorithm is still valid when the dynamic parameter choice N = pK with p being an arbitrary prime is considered.

ACKNOWLEDGEMENTS

This work was supported in part by the Macao Government FDCT 079/2016/A2, by Multi-Year Research Grant (MYRG)
MYRG2016-00053-FST, and by Macao Government FDCT 099/2014/A2. The authors cordially thank two anonymous
referees for their valuable comments that lead to the improvement of this paper.

ORCID

You Gao http://orcid.org/0000-0001-6548-6433
Min Ku http://orcid.org/0000-0002-5580-8248

REFERENCES
1. Qian T, Wang YB. Adaptive Fourier series—a variation of greedy method. Adv Comput Math. 2010;34(3):279-293.
2. Qian T. Two-dimensional adaptive Fourier decomposition. Math Methods Appl Sci. 2015;39(10):2431-2448.
3. Gao Y, Ku M, Qian T, Wang JZ. FFT Formulations of adaptive Fourier decomposition. J Comput Appl Math. 2017;324:204-215.
4. Qian T. Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math Methods Appl Sci. 2010;33:880-891.
5. Qian T, Wegert E. Optimal approximation by Blaschke forms. Complex Var Elliptic Eq. 2013;58:123-133.
6. Qian T. Cyclic AFD algorithm for best approximation by rational functions of given order. Math Methods Appl Sci. 2013;37(6):846-859.
7. Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations. Constr Approx. 1997;13(1):57-98.
8. Devore RA, Temlyakov VN. Some remarks on greedy algorithm. Adv Comput Math. 1996;5:173-187.
9. Mo Y, Qian T. Support vector machine adapted Tikhonov regularization method to solve Dirichlet problem. Appl Math Comput.

2014;245:509-519.
10. Li S, Qian T, Mai WX. Sparse reconstruction of Hardy signal and applications to time-frequency distribution. Int J Wavelets Multiresolution

Inf Process. 2013;11:1350031.
11. Mi W, Qian T. Frequency-domain identification: an method based on an adaptive rational orthogonal system. Automatica.

2012;48(6):1154-1162.
12. Dang P, Qian T. Transient time-frequency distribution based on mono-component decomposition. Int J Wavelets Multiresolution Inf

Process. 2013;11:1-24.
13. Qian T, Sprössig W, Wang JX. Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Math Methods Appl Sci.

2012;35:43-64.

http://orcid.org/0000-0001-6548-6433
http://orcid.org/0000-0001-6548-6433
http://orcid.org/0000-0002-5580-8248
http://orcid.org/0000-0002-5580-8248


GAO ET AL. 2663

14. Qian T, Wang JX, Yang Y. Matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. Acta Math Sci.
2014;34(3):660-672.

15. Qian T, Zhang L, Li Z. Algorithms of adaptive Fourier decomposition. IEEE Trans Signal Process. 2011;59(12):5899-5906.
16. Gabor D. Theory of communication. Part 1: the analysis of information. J Inst Electr Eng - Part III: Radio Commun Eng. 1946;93(26):429-441.
17. Garnett J. Bounded analytic functions, Graduate Texts in Mathematics 236. San Francisco: Academic Press, New York; 1981.
18. Bultheel A, Carrette P. Takenaka-Malmquist basis and general Toeplitz matrices. In: IEEE Proceedings of the 42nd CDC Conference,

Vol. 1; 2003; Maui, Hawaii. 486-491.
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