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In this paper we consider rational approximation of functions in the Received 19 June 2017
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1. Introduction

Rational approximation, a historical research topic, has been receiving great attention
both in theory and practice. In this paper we will focus on the study of the topic in clas-
sical Hardy spaces. The so-called Takenaka-Malmquist (TM) system is naturally invoked
when we consider rational approximation in Hardy spaces. In recent years Qian and his
collaborators have published a series of papers (see [1-3] and the references therein)
concerning adaptive rational approximations in Hardy spaces of various contexts. Among
them, the so-called adaptive Fourier decomposition (AFD) is the core, which is based on the
generalized backward shift operator leading to an adaptive TM system. It has been shown
that AFD is not only theoretical but also practical (see e.g. [4] for its applications in signal
analysis). The generalizations of AFD have been developed to the settings of Quaternionic
and Clifford analysis, and several complex variables (see e.g. [3]). In [2] the so-called Pre-
Orthogonal Greedy Algorithm (Pre-OGA) is proposed that generalizes the AFD theory
to abstract Hilbert spaces. Pre-OGA in various contexts gives better approximations than
the ordinary greedy algorithms. We note that the AFD-type expansions, equivalent with
Pre-OGA in general contexts, can be used in a wide class of function spaces. They do not
require delicate things like basis or Blaschke products, etc., to exist in the space, but give
rise to approximations with fast convergence to the projected function in terms of linear
combinations of the reproducing kernels. See for example the theory on matrix and n-torus
([2,5]). For an alternative treatment of Pre-OGA in reproducing kernel Hilbert spaces see
e.g. [3].

CONTACT Weixiong Mai 8 maiweixiong@gmail.com
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Motivated by the studies of AFD, in this paper we consider adaptive approximations
in Hardy spaces on strips H%(S,). On one hand, we observe that there exists a unique
decomposition of functions in H?(S,) and then conclude that rational approximations in
H? ((CJ_ra) and H? (C,) give rise to those in H?(S,). On the other hand, H*(S,) itself can
be indeed regarded as a reproducing kernel Hilbert space in view of the Paley—Wiener
theorem (see Section 2). Thus the theory of Pre-OGA can be directly applied to H 2(Sa),
which also yields a type of rational approximation of functions in H 2(S,). In the last section
we study rational approximation in H?(S,), 1 < p < oo. Similar to the H? case, we show
that a function in H?(S,) can be uniquely written as the sum of functions in H? (Cfa) and
HP(C7). Using the uniform boundedness of partial sum operator in H? ((C(J)r ) (see [6]),
we provide the counterpart in HP(S,;). As an application of the above result, we give a
sufficient condition on {zx} C S, for the Szegé kernels associated with {zj} being a Riesz
basis of the subspace spanned by those kernels. Consequently, we give the estimate of the
difference between F and its m-th partial sum in the H?-norm.

The present paper is organized as follows. In Section 2 we recall some fundamental
results in H2(S,). In Section 3 three kinds of rational approximation in H?(S,) are given,
which include AFD, unwinding AFD and Pre-OGA. In Section 4 rational approximation
in HP(S,), 1 < p < 00, is studied.

2. Preliminaries

Without loss of generality, we consider the Hardy spaces on S, where S; = {z = x 4 iy €
C;x e R, |y| < a} witha > 0.
Denote by H?(S,),1 < p < 00, the Hardy spaces on S,, which is defined by

x
HP(S,) = {Fis analytic in S,; ||F||I;Ip = sup/ |F(x + iy)[Pdx < oo ¢ .

lyl<aJ —o0

In particular, H?(S,) is a reproducing kernel Hilbert space which can be seen through
the Paley-Wiener Theorem. The Paley-Wiener Theorem gives a very nice characterization
of functions in H%(S,) that is stated as follows.

Theorem 2.1 (see [7]): F € H%(S,) if and only if there exists f € L2(R) such that

o0

sup If (O]2e ¥ dt < oo 2.1)
lyl<a J —o0
and
F(z) = / f(er™ = dt, (2.2)
—00

which means f is the Fourier transform of the restriction of F to R.

The generalization of Theorem 2.1 in the Hardy spaces on tubes can be found in [8].
Note that the condition (2.1) implies e274/lf (t) e L?(R). Conversely, e>™*If (t) € L*(R)
also implies the condition (2.1). Thus Theorem 2.1 can be read as
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Theorem 2.2: F € H*(S,) ifand only if f € L%(R) such that
e llf (1) € LA(R) (2.3)

and
F(z) = / f(He* #dt.

By Theorem 2.2, we can consider H>(S,) as a reproducing kernel Hilbert space in the
following sense. Denote by L2(IR) the closed subspace in L?(IR) whose elements are of the
form

ga(t) = " Vlg(t) € L’(R),

whereg € L2(R). Let hy(z; t) = e~ 27l!le=27i%t Obviously, h,(z; t) € L2(R). By Theorem
2.2, H%(S,) can be regarded as the image space of functions defined by

F(2) = (fa, ha(z; )12, z € S,
This induces an inner product on H%(S,) by
(F,G) = (fasga)12» F,G € H*(S,),

where f, and g, are the correspondences of F and G in L2(RR). Then we can define the
Szego kernel for H(S,) by

Ka(w,Z) = (ha(z; t), ha(w; t)) 2.
Directly calculating K, (w, z) gives

o0
K,(w,2) =/ o 4malt] ,—2mizt 2wiwt 4y
—0oQ

00 0
— / 6747[”672”1”62”””(11‘ + [ e4nat672mzt62mwtdt
0

—00

1 1 1
T 2xi\w—Zz—2ia w—2z+2a)’

In particular, one has

F(Z) — (F, Kg(',E)) — /oo eZﬂaltlf(t)e—ZnaltleZm'ztdt

—0oQ
0
_ /-oo eZnatf(t)e—ZnatEZniztdt + / e—Zﬂatf(t)eZnuteZniztdt
0 —00
1 * F(x —ia) 1 * F(x + ia)
= —dx— — —dx,
271 ) o X —ia—2 2w J_ oo X+ ia— 2z

where the last equality is by Parseval’s formula, and F(x — ia) and F(x + ia) are the non-
tangential boundary limit functions of F(z). From the last two formulas, we have that
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K,(w,?%) (as a function of w) is a rational function with poles outside S,, and (F, K,(-,2))
coincides with the Cauchy integral.

3. Thep = 2 cases

As shown in Section 2, we have

1 1 1
Ko(w,2) = — — — .
2711 w—2z—2ia w—2z++2ia

We briefly write the Hardy spaces H> (R x (—00,a)) as H? (C.),and H?*(R x (—a,00)) as
H?*(CT,). One should note that —5L- ——1—— and 51— are respectively the Szegd

2mi w—z+2ia 27i w—z—2ia

kernels of H?(CT ) and H*(C;). Thus, for F € H%(S,), one has

F(z) =F () +F (z), F' e H*(CT)),F~ € H*(C]). 3.1)

The above decomposition is unique. In fact, if there exists H¥ € H*(C',)) and H™ €
H?(C;) such that F = H" + H-, we have G = FT — H" = H- — F . Thus G €
Hz((C;)ﬂHz((Cira). Hence, G(x+iy) € HZ(C(J{) fory € (0,00),and G(x+iy) € Hz((C(;)
for y € (— 00,0). The former means that G(x) is with support in [0, 00), and the latter
means that G(x) is with supportin (— 00, 0], which implies G(x) = 0,and hence G(z) = 0.
See Lemma 4.1 for a general discussion. Thus the induced norm of H2(S,) is actually given
by
IFFIE + ETI2 = 11FI1%,

where || ||+ is the norm osz((CJ_ra) and ||-]|- is the norm osz((C;). Note that ||F||g2 <
[|IF*||+ + ||F~||—, which is given by Minkowski’s inequality. Therefore, approximations
of functions in H? ((CJ_ra) and H? (C,) will give rise to those of functions in H 2(S,).

3.1. Upper and lower Hardy spaces decomposition and AFD on the strip

AFD was originally proposed in the classical Hardy spaces of the unit disc and the upper-
half plane (see [1]). Without any difficulty, one can easily obtain AFD in H? ((Cfa) and
H 2((Ca_). In the following we provide the related results in H 2((Cira) and H? (C,), and
accordingly give rational approximations of functions in H?(S,).

Let {2} be a sequence of points in Cy . It is known that the TM system associated with
{zx} is defined as

B1(2) = Biz)(2)

Jzk z =z
B B R )
= B = By = Z_Zkl_lz_z] 42

where z € C{f. Accordingly, TM systems in H>(CY ) and H?(Cy) are respectively given

by
Sz + a i — =3z
B = !B
{By (2)} (1) (&) = z — Zk + 2ia H z —Zj + 2ia

j=1
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where {z;} ¢ C*,,z € CT,, and

— . k—1
- B [a — Sz —i 2%
B, (z)} = {B zZ) =
{ k( )} {z1,..0s Zk}() T Z—Ek—21a] IZ—Ej_2ia

where {z} C C,z € C.

The main idea of AFD is the adaptive procedure of selecting zj for each k according to
a function or an approximation remainder. Precisely, given m points {z;}; , in C™*, (resp.
C; ), we are to select the (1 + 1)-th point in Cfa (resp. C) such that

Zm4+1 = arg max |(F, B{tl ..... Zm’z})+| (resp. z;my1 = arg max |(F, B{;l Zm’z})_l), (3.3)

zeCt, zeC;, 7

where F is a given function in H? (C* o) (resp. H 2 (C;)). Wecall (3.3) the maximal selection
principle. The existence of such z,.; follows from the so-called ‘Boundary Vanishing
Condition (BVC)’ (see [9], and see also Lemmas 3.1 and 3.2). Then, by the general theory
of AFD, we have

Theorem 3.1:  Suppose that F € H? (Cfa) (resp. H? (C,)), and{zy} is a sequence of points
in (Ci'a (resp. C ), where each zj is selected according to (3.3). Then we have

m m

N _ + + _ . _ f— - _
lim |[F = (F,B{)1Bf |l =0 (resp. lim_[|F > (F,By) B |- =0).

m— 00
k=1 k=1

Consequently, we have

Corollary 3.2: For F € H?(S,), let F* be, respectively, components of F in H*(C* ) and
Hz((Ca_). Assume that {z,j} and {z;_} are, respectively, in Ci‘a and C, where each zki is
selected by the maximal selection principle according to F*. Then we have

m m
Tim |IF — () (F"BD)+Bf + ) (F7,B;)-B)I| =0.
k=1 k=1

3.2. Upper and lower Hardy spaces decomposition and Unwinding AFD

Unwinding AFD is a variation of AFD that is more efficient (in practice) than AFD. The
main difference between unwinding AFD and the original AFD is the factorization of inner
function at each step. It is known that for F € H? ((C(;r ), one has

F(2) = Br(2)Sr(2) O (2),

where Br, Sp and Op are respectively the Blaschke product part, the singular inner function
part and the outer function part of F (see e.g. [10,11]). Usually, Ir(z) = Br(z)Sr(z) denotes
the inner function part of F. For F € H? ((CO+), one proceeds the following procedure:

Ox(2) — (O, ezk>H2(C5r)ezk (2)

z—2k
Z—Zk

Gi(2) = F(2), Gik(2) = Ik(2)O(2),  Gry1 = , (34)
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then

m

F(2) = ) (O ez) iV @Bi(@) + In(@) G (2) | |
k=1 k=1

Z—Z
L)
zZ—Zk

where Ii(z) and Ok (z) are the inner and outer parts of Gi(2), e, (z) is the normalized
Szego kernel for H? (C(')F), I®(2) =1,(2) - - - I(2), and each zj is selected according to

zr = arg max | (O, €z) 12,0+ | (3.6)
gze({io+ “HC)

Generally, an approximating function given by the unwinding AFD is not rational, but we
can give a rational one if replacing the factorization of I in (3.5) by a finite Blaschke prod-
uct. The existence of z in (3.6) also follows from the BVC in H? (C(']Ir ). The convergence
of such a decomposition can be found in [4].
Now applying the above idea to H*(C* ) and H*(C;), one has

Theorem 3.3: For F € H%(S,), let F* be respectively the components of F in H? (Cfa)
and H? (C,). Assume that {z,j} and {z,_} are respectively in (Cfa and C, where each zic is
selected by the maximal selection principle according to F£. Then we have

m m
Jim IIF = (D (08 ) eI "OB{ +3 (0 e0) -1 VBp)lI =0,
k=1 k=1

where Of, e, and 1% are correspondingly defined as (3.4) and (3.5).
k

3.3. H2(S,) treated as a RKHS and Pre-OGA

In the previous parts we obtain approximations in H?(S,;) from those in H 2((CJ_ra) and
H? (C,), but we can directly apply Pre-OGA to H 2(S,). The Pre-OGA essentially gener-
alizes the sprit of AFD to reproducing kernel Hilbert spaces based on the fact that a TM
system on the unit disc is generated by Szego kernels. In the following we give a brief
introduction to Pre-OGA in H?(S,). Suppose that {z;} is a sequence of points in S,. Let I
be the cardinality of the set {j : zj = z, j < k}. Define Iz',,(w,ik) as

K,(w,z) = EK:;(W: 2)| 7=z

Denote by {Bx = Bjz,2,,....z}} the orthogonal system generated by applying the Gram-
Schmidt orthonormal process to {K,(z,zk)} (see [2] for details). By the Gram-Schmidt
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orthonormal process, we have

1 Ka(z,71)

Bl = B{Z]} = y = ~a — 5

Il [IKa(z,Z1)]|

k—1

Vi = Ka(z,21) — Y (Ka(-,21), B)) B;,
j=1

Bi = Biz,,..00) = l, k>2kelZ.
Il

Suppose that {z;};_, are m given points in ;. We are to choose the (m + 1)-th point in S,
according to the following criterion

Zm41 = arg rzr'le%x [(F, Biz,,...zmz)) |- (3.7)

The next lemma gives a set of sufficient conditions so that z,,1 in (3.7) exists.

Lemma 3.4:  Suppose that {zk}Z‘:ll are m + 1 points in S,. Let {zk}}L, be fixed. If

|(F, Ka(s Zm+1))|

—_—— =0, z =x +1i , (3.8)
e (| RaCZm ) T e e
holds uniformly for x,u11 € R, then
m—+1 m
lim |[F — Y (F,B)Bil| = |[F = > _(F, Bu)Bl|.
mt1l—>a — P
If
im I ~ a(_ m41))| =0, Zm+1 = Xm+1 + Y+l (3.9)
Pemi1l=o00 ||Ka (s Zm+1)
holds uniformly for |ym+1| < a, then
m+1 m
lim ||F = ) (F,B)Bll = [|IF — Y _(F, Bi)Bill.
[%m41]—00 =1 =1
Proof: See e.g. [2,9] for details. O

Under the assumption that (3.8) and (3.9) hold, the above lemma implies the existence
of zy41 in (3.7). As in [9], we call (3.8) and (3.9) the ‘Boundary Vanishing Condition’
(BVC) in H?(S,). Note that since {zk};L, are previously fixed, (3.8) and (3.9) are reduced
to

[F(Zm+1)]

—————— =0, Zmt1 = Xmt1 + Ymi1s (3.10)
mil=a 1Ka (> Zmp1)] el = St T D
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and

F(Zms1)] .
NIl 0, it = Xt - Yt (3.11)
st o0 [[Ka( Zma D] el = AL T

which is called the weak BVC in H2(S,).
Under the assumption that z,,1 in (3.7) exists for each m, the convergent result follows
from the theory of Pre-OGA.

Theorem 3.5:  Suppose that F H?(S,), and {z;} is a sequence of points in S,, where each
element is selected according to (3.7). Then we have

m

lim [[F — "(F, Bi)Byl| = 0.
k=1

The weak BVC in H%(S,) is shown in the next lemmas.
Lemma 3.6: For F € H*(S,), we have
lim |F(2)]
|)’|—>“ Y Ka(z> E)
holds uniformly for x € R.

=0, z=x+4iyeS, (3.12)

Proof: First note that K,(z,2) = |[Ka(-2)|]> = = (yﬁ - ﬁ) = s (@may) > 0

for |y| < a. Using Theorem 2.2, we have

F(z) = (fa, ha(z; -)).

Since f; € Lﬁ (R), we can find a function g € L*(R) N LP(R),1 < p < 2, such that for any
given € > 0,

Hfa _gHL2 < €.
Then

F@|  _ I{fa =& halz; )12 N (g, ha(z; )2l

VKi(z,z) VK,(z,2) VK,(z,2) (3.13)
[1ha(z, )| La )

VK.(z,2) '

where g = p%l Calculating ||h,(z, -)|| 14, we have

<e+|lgll

x
. 1
ha(elly = [ e e i = K,z
oo q
Therefore, when |y| tends to a,

1 1_1
(3.13) < € + gl T Ka(2,2)1 72 < Ce,
qq

where C is a constant. O
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Next we show
Lemma 3.7: For F € H*(S,), we have that
I |F(2)]
m ————
lx|—>00 4/Kq(2,Z)
holds uniformly for |y| < a.

=0, z=x+1iyeS,

Proof: By Lemma 3.6, we only need to show
L F@L
x| =00 /Ky(2,2)
holds uniformly for |y| < b < a. Since K,;(z, z) is independent of x, it suffices to show that

m |F(z)| =0

li
|x]—00

holds uniformly for |y| < b. Let d = a — b. From the definition of H 2(S,) we have that

/| | d/ |F(¢ + in)|>d&dn < oo.
n—yl=3 J—00

Thus, for any given ¢, there exists a large N > 0 such that

/ d[ |F(€ + in)|>dédn < e.
m—yl<5 JIEI>N

Then using the mean value theorem, for x| > N + %, we have

4
F NP < — F in)|>ded
[F(x +iy)| ¥l §| (§ +in)|"dédn

lw—z|<
4
=5 [ iFe e
A% Jip—yl<4 Jlx-51<4

<e€

where the last inequality is due to the fact |x| — % <& < x|+ % O

From next section we will deal with the H? theory.

4. General p € (1, 00) cases via upper and lower Hardy spaces decomposition

Motivated by the H%(S,) case, in this section we show that functions in H”(S,), 1 < p < 00,
can also be written as sums of functions in H?(C* ) and H?(C; ). Subsequently, we obtain
that functions in HP(S,) can be approximated by sums of rational function in, respectively,
HP(CT,) and HP(C}).

First, we show that
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Lemma4.1: Foranya >0,b >0,and0 < p < oo, H*(C* ) N HP(C,) = {0}.

Proof: Suppose that G € H?(C*)) N H? (C,). In our proof we mainly use the following
property, which follows from subharmonicity of |G?, i.e.

G+ ip)] < — 2 (/OO G — ia>|Pds>P (4.1)
wly +alp -

fory € (—a,00), and

. Cp o . P
IG(x +iy)| £ ———— </ |G(& + 1b)|Pd§) (4.2)
mly = blp =

for y € (— 00, b), where C,, is a constant depending on p.

The proofis based on the Fourier spectrum characterization of H* functions proved in
[12]. The inequality (4.1) implies that G(x), x € R, can be considered as the nontangential
boundary limit function of a function in H*® (Cg ). Using the result in [12], we have that
G is a distribution with support in [0, 50). Similarly, G is also a distribution with support
in ( — 00,0]. Thus G is either 0 or a finite linear combination of the Dirac delta function
and its derivatives (see e.g. [13]). However, the latter implies that G(x) has to be a finite
degree polynomial of x in the distribution sense, which contradicts with the fact that G(x)
is LP-integrable. Thus G =0, and hence G(z) = 0.

L

Remark:

(1) In fact, we can give another proof by using Liouville’s theorem. Using (4.1) and
(4.2) again, we know that G(z) is entire and |G(z)| is bounded in the whole complex
plane. Hence, G(z) is a constant by Liouville’s theorem. By (4.1) and (4.2) again, we
have that |G(x + iy)| — 0 as |y| — oo, which 1mphes G(z) = 0.

(2) For p = oo, we consider HOO((C+ )y = H®(CT 2)/C and H°°((C ) = H>*(,)/C
instead of H*(C* 2 and H*(C,). Then we still have H® ((CJr ) ﬂHOO((C ) = {0}.

(3) We also note that when 1 < p < oo, H?(CT ) N HP(C,) C HP((C+) n HP((C ) =
{0}, which is essentially implied by the properties of the Hilbert transform (see e.g.
[10]). In fact, by the Plemelj formula (see e.g. [10]), we have that for F € HP((C(J{)
and G € HP(C,)), there exist real-valued functions f, g € L (R) such that

F(x) = f(x) + iH(f)(x)

and

G(x) = gx) — iH(g)(x),

where F(x) and G(x) are, respectively, nontangential boundary limit functions of F
and G, and H is the Hilbert transform. Therefore, for F € H? ((C(J)r ) NHP(C), we
have H(f) = 0. Then, combining with the fact that H>(f) = —f, we have f = 0,
and hence F = 0.
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(4) When 0 < p < 1, the conclusion, H?(C* ) N HP(C,) = {0}, cannot be obtained
from the inclusion in (3) since H? ((C(J)r ) N HP(C,) contains nonzero elements (see
e.g. [14]).
Consequently, one has
Theorem 4.2: For F € HP(S,),1 < p < oo, there exist F; € HP(CT,) and F, € HP(C}))
such that
F(z) = Fi(z) + Fa(2),

and the above decomposition is unique.

Proof: Using the Cauchy integral formula in contour (e.g. a rectangular Oy = {z =
X+ iy € Sg; x| < x9,—a+ € <y <a—e}with 0 < € < a), we have, for F € HP(S,;) and
VRS on,e,

Flz) = L/ F(§) de
anO,e

2mi E—z

1 X F(t+i(— 1 a=€ F ]
- (.—1—1( a+6))dt+_/ (x().—l—zs)ds

2wi J gy t+i(—a+e)—z 21 J _gqre X0+ is—z

1 ¥ F(t+4i(a—e€)) 1 [%€ F(—xp+is)

2wi J g t+ila—€)—z 27 J_gye —X0 +is— 2z

=L+L+1+14
By suitably taking xo — oo and € — 0, one can show that [, — 0 and Iy — 0, and

1 ® F(t —ia
Il—>—. —( )dt
271 J_ ot —ia—2z

and

1 ® F(t+ia
PR L (P
271 J_o t+ia—2z

For the detailed proof of the result, we refer to [7] Paley and Wiener’s original proof for
p = 2,and [15] Li and Deng’s proof for 1 < p < oo in a similar way.
Therefore, we have the Cauchy integral formula for F € HP(S,), i.e.

F(z) = FT(z2) + F (2),
where

1 ® F(t—i
Frz) = — f Fe—i g, es, (4.3)
271 J ot —ia—2z

and

» Z €S, 44
270 J_ ot +ia—z ¢ (44)

where F(t + ia) and F(t — ia) are the nontangential boundary limit functions of F.
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Since 1 < p < 00, one can easily conclude that F* € HP(C*,) and F~ € H?(C,) by
the LP-boundedness of Hardy projection (see e.g. [10]).

As in Section 3, if F has another decomposition, then one must have a function G €
HP(CT,) N HP(C,). By Lemma 4.1, G = 0. Thus the decomposition is unique. O

Note that for p = 1, the decomposition F(z) = F'(z) + F~ () is still valid although we
cannot conclude that F* € H! ((Cfa) and F~ € H! C)).

Motivated by the H 2 case, we give the induced norm on H?(S,;),1 < p < 0o, which is
defined as

IFIE o = NE Wy et )+ IE W s (4.5)

where F' and F™ are, respectively, the components of F in H? ((Cfa) and HP(C;). When
there is no confusion, we still denote the norms of H? ((Cira) and HP(C;) by || - ||+ and
[| - ||= for simplicity, and accordingly, the dual pair of H? ((Cfa) and H1? ((Cfa) by (-, )+,
and the dual pair of H?(C;) and H1(C) by (-,-)_, where g = P%l

The convergence in this induced norm gives rise to the convergence in || - ||f» since we
have, by Minkowski’s inequality,

1 1 1
o) ‘ 5 o) . ‘ 3 o ‘ 5
sup |F(x +iy)|P )] < sup IF*(x+ip)|P ) + sup |F~ (x +iy)|P

lyl<a \J—o0 lyl<a \J—o0 lyl<a \J—o00

1 1

o " ) ‘B o _ ) ‘E

< sup [Ff(x+iy)P ) + sup IF-(x+inf) .

y>—a \J—o0 y<a \J—o0

By Theorem 4.2, H?(S,) can be regarded as the direct sum of H?(C*,) and H?(C}), i.e.
HP(S,) = HP(CY) @, HF(C}).

Due to the Schauder-property of the TM system we have the following [6]

Theorem 4.3 ([6]): Suppose that {z;} is a sequence of points in C; . Let span’ denote the
HP closure. Then, for F € span’ {By}, we have

||Sm(F)||HP((Cg) = K“F“HP((CO*)’

and
Tim {1$(F) = Fllgo sy = 0

where S, (F) = Y}, (F,B)Bx, (-,-) is the dual pair of H? and H1,q = Ll (B} is the
TM system associated with {zy} defined as (3.2), and K is a constant.

If {zx} satisfies the non-separable condition

(o.¢]

> S
5 =

-1+ |Zk|

Theorem 4.3 implies that {B} is a Schauder basis for H? ((Car).
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Consequently, we have

Theorem 4.4:  Suppose that {z;} and {2z, } are, respectively, sequences of points in ct,
and C . Then, for F € spanp{Bj } ®p spanp{Bk_}, we have

Sm ) ls,zp < KIIF|ls,1105

and

lim [|Sy(F) — Fll,mr =0,
m— 00

where Sy (F) = SE(FY) + S, (F7) = Y j_ (F*, Bl )1 B + Y} (F,B;)_B;, F" and
F~ are, respectively, the components of F in H?(CT ) and HP(C), and K is a constant.

As an application of Theorem 4.4, we give a sufficient condition on {zx} C S, for
the Szego kernels associated with {zx} being a Riesz basis of the subspace spanned by
those kernels. Specifically, in the following we combine Theorem 4.4 with the result of the
Calerson interpolation problem. The main result in this part is stated as follows.

Assume that {z;} is a sequence of points in S, satisfying the §-uniformly separated
condition (see e.g. [10]), i.e.

1nf H

j#k,j=1

%k — %
>48>0. (4.6)

>8>0, d
an 1r]2f 1_[
JjF#k,j=1

k—z]+21a zx —zj — 2ia
The next theorem is analogous to the result in [16].

Theorem 4.5:  Suppose that {zx} is a sequence of points in S, satisfying (4.6). Then, for
F e spanP{BjJr} ®p spanp{Bk_}, there exist two positive constants A and B such that

o0

ANFIP 1 <3 (a—Sz)(a+ Szl F(z) P < BIIFIE (4.7)
k=1

where A and B only depend on p.
Before proving Theorem 4.5, we first give an application of it.

Corollary 4.6:  Suppose that all conditions in Theorem 4.5 are satisfied. Then, we have

Al|F — Sm(F)H*Hp < Z (a — Szi)(a + 3z1) |F(zk) — Sm(F) (zi) P
k=m+1

< B|IF = SuP)I 1,

where S, (F) = S(FT) + S,,(F7) = Y 0L ((F", B} ) 1B} + >} \(F,B; )_B,, F' and
F~ are respectively the components of F in HP(CT ) and HP (C).

Proof: We first replace F by (F — S,,(F)) in (4.7). We also note that

Sm(F)(zr) = F(z), k=1,2,...,m.
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In fact, using the process given in [1], we have

m

Fr2) = Y (FO BB + Fho) [] —
kX; ,l_! — z] + 2ia

and .
F~(z) =Y (F7,B;)_By +F, (z)l_[ —21a

k=1

where F;“l € HP ((CJ_ra) and F,, € HP(C7). Hence we have the interpolation properties
STENY () = Fr(z), k=1,2,...,m,

and

Su(F )Nz) =F (zr), k=12,...,m
Using these properties, we can eliminate the first m term of ) | (a—Szx) (a+3zk)|F(zk) —
S (F)(z)|P, and then obtain the result. O

In the following we will prove Theorem 4.5. We first need two results for preparation.
The first one is the solution to Calerson’s interpolation problem.

Proposition 4.7 ([17]): Suppose that {zy} is a sequence of points in (C(J)r. In HP((C(J{), 1<
p < 00, the following statements are equivalent:

(1) {zx} is uniformly separated;

(2)  {zx} is an interpolating sequence (i.e. for any {(3J zk)P wi} € IP, there exists a function
F € HP(C{) such that F(zx) = wi, k = 1,2,...);
3) u = Z,fil (3z)8; (2) is a Carleson measure, i.e.

oo
> GalF@)l < CIIFIIHP(C+) all F € HP(Cy),
k=1

where C a constant that is independent of F.
One can accordingly have Proposition 4.7 in HP ((Ci'a) and HP(C)).
The second result we will need is Lemma 4.8. We will prove it by using the techniques in
[18, p.12] (see also [16]). Define

m
~ zZ—z
B;(z)zal_[ S —
]

1z zZj + 2ia
and ”
~ zZ—z
— ]
B (2) = | |—,
@ =F Wz —z —2ia
j=1 I
where |a| = | 8| = 1. Moreover, we let
n Zx — zj
B+ _ | l 9

—Z;i + 2ia
]#k,]:l Zk Z] +
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and
B =8 [] 5

—Zi —2ia
jkj=1 kT

1 1
Lemma 4.8: Suppose that {zy} satisfies (4.6), and {(a — Jzx)? (a+ Jzx)Pwy} € P,1 < p <
00. Then there exists a function G, € spanp{Bf} @, span’ {B,_} defined as

Go(2) = Xm: i(a — Jzi)(a + Szr) ( B, (2) ~ Bt (2) )
e a (z —20Bw’ () (2 — 2B (@)
such that
Gu(zi) =wi,k=1,2,...,m
and
DIIGpll? 1y < Z(a — 3z) (@ + Sz wi (4.8)
k=1

where D is a positive constant that is independent of m.

Proof: Obviously, G,, € span’ {B]TF} @®, span’{B, }, and satisfies Gy(zk) = wp,k =
1,2,...,m. To complete the proof, we need to prove (4.8). Let H( - —ia) € LI(R). We
consider G,\ and G, as linear functionals on LI(R), where G}, and G,, are, respectively,
the components of G,,, in H?(CT,) and HP(C; ). Then we have

(G H) 4
i |w;<|(a—tszk)(a+3z;<)‘ Bf(+)
= ~1y )H( : ))
; a (- —z0)B (z) -
. i lwil(a — Szi) (a + Jz) foo Bt(x — @mdx
P ad oo X —ia — zx
Wil (a — ozk><a 7))y
<y (|TELH) @)
k=1
2 (& » N N pfm N N i ] i
= ; |wilf (a — Jzi) (a + Jzi) ; (a — Sz)(a+ Jzi) | T(BLH) (z1) |

3
S

IA
|

2 11 ~,—
— (Z wilf (@ — Sz (a + %Zk)) (CartCiNTE D lya e, )

k=1

IA
|
3

27 P 11 .
(Z il (a — Jzi) (a + %Zk)) (Qa)chE”H( —ia)l[1s).

k=1
where T projects functions in L9(R) to functions in H1(CY ), and E is a constant from

ITEDga(ct,) < EINH(- —ia)||ze, H(- —ia) € L1(R),1 < q < 0.



1736 W. MAI AND T. QIAN

Then
Q)P (2a)i CTEP &
IGHIE < 3" lwelf (@ — Sz (@ + z).
absp P
Similarly,
(27)P(2a) 1 CIEP &
—P v a)1C1 P ~ ~
|G IIZ < 93P Z|Wk| (a — Jzi)(a + Jzx).
k=1
Therefore,
[e.e]
DIIGull 1y < Y IwilP (a — Sz1)(a + S2p),
k=1
where D = —— &% O
2(27)P(2a) 1 CIEP

Proof of Theorem 4.5: 'The right-hand side of (4.7) follows from Proposition 4.7. In fact,
if {zx} satisfies (4.6), then by Proposition 4.7 we have

o0
> @+ 3z)|FH @l < ClIFY|E
k=1

and
o0
Y (a—Szm)F (@l < ClIFT|E,
k=1

where F* and F~ are, respectively, the components of F in H? (C* ») and HP(C). Hence,

Y a—3z)@+3z0)F@l <Y (a—Szk)(a+ 32020 (P @)l + [Fa(zi)P)
k=1 k=1

o o0

<2?a) (a+SzIFT @) +2Pa) _ (a—Sz)F (@)
k=1 k=1

< 2aC(|FT | +IF7117)

= B|IFIIY s

where B = 2PaC.
To prove the left-hand side of (4.7), it suffices to find a function G, € spanp {Bf} ®p

spanp{Bk_} to satisfy Gy, (zx) = F(zx),k = 1,2,...,m, and
o0
DGl 1y < (a— Sz (@ + Sz0) | F(zo) I,
k=1

where D is a positive constant. Using Lemma 4.8, we can exactly construct such G,
according to {zx}. Finally, we can complete the proof by Theorem 4.3. By Theorem 4.3, we
have

11Sm(Gu) L, p < K||Goml |, 1p -
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We also have S,,,(G,) (zx) = Gy (zx) = F(zi), k = 1,2,...,m. Thus

o0

KP
1Sm(E)L o = 1Sm (Gl grp < KPUGILL o < - D (@ = Sz @+ Sz0)|Flz) -
k=1

Using Theorem 4.3 again, we get the desired conclusion

o0
ANFI o < ) (@ = 320(@+ S [F@O P < BIIFIL 4
k=1

where A = % and B = 2PaC. O
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