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Rational approximation in Hardy spaces on strips

Weixiong Mai and Tao Qian

Department of Mathematics, University of Macau, Macao, China

ABSTRACT

In this paper we consider rational approximation of functions in the
Hardy spaceson the strip Sa = {z = x+iy ∈ C; x ∈ R, |y| < a}witha >
0.Observing thatH2(Sa) canbe regardedas thedirect sumofH2(C+−a)

and H2(C−
a ), we give three kinds of adaptive rational approximation

in H2(Sa) enhancing the corresponding approximations in H2(C+−a)

and H2(C−
a ), where C+,−a = {z = x + iy ∈ C; x ∈ R, y > −a} and

C−,a = {z = x + iy ∈ C; x ∈ R, y < a}. We also obtain a type of
approximation for subspaces in Hp(Sa), 1 < p < ∞ by making use of
Riesz bases in these subspaces.
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1. Introduction

Rational approximation, a historical research topic, has been receiving great attention
both in theory and practice. In this paper we will focus on the study of the topic in clas-
sical Hardy spaces. The so-called Takenaka-Malmquist (TM) system is naturally invoked
when we consider rational approximation in Hardy spaces. In recent years Qian and his
collaborators have published a series of papers (see [1–3] and the references therein)
concerning adaptive rational approximations in Hardy spaces of various contexts. Among
them, the so-called adaptive Fourier decomposition (AFD) is the core,which is based on the
generalized backward shift operator leading to an adaptive TM system. It has been shown
that AFD is not only theoretical but also practical (see e.g. [4] for its applications in signal
analysis). The generalizations of AFD have been developed to the settings of Quaternionic
and Clifford analysis, and several complex variables (see e.g. [3]). In [2] the so-called Pre-
Orthogonal Greedy Algorithm (Pre-OGA) is proposed that generalizes the AFD theory
to abstract Hilbert spaces. Pre-OGA in various contexts gives better approximations than
the ordinary greedy algorithms. We note that the AFD-type expansions, equivalent with
Pre-OGA in general contexts, can be used in a wide class of function spaces. They do not
require delicate things like basis or Blaschke products, etc., to exist in the space, but give
rise to approximations with fast convergence to the projected function in terms of linear
combinations of the reproducing kernels. See for example the theory onmatrix and n-torus
([2,5]). For an alternative treatment of Pre-OGA in reproducing kernel Hilbert spaces see
e.g. [3].
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Motivated by the studies of AFD, in this paper we consider adaptive approximations
in Hardy spaces on strips H2(Sa). On one hand, we observe that there exists a unique
decomposition of functions in H2(Sa) and then conclude that rational approximations in
H2(C+−a) and H2(C−

a ) give rise to those in H2(Sa). On the other hand, H2(Sa) itself can
be indeed regarded as a reproducing kernel Hilbert space in view of the Paley–Wiener
theorem (see Section 2). Thus the theory of Pre-OGA can be directly applied to H2(Sa),
which also yields a type of rational approximation of functions inH2(Sa). In the last section
we study rational approximation in Hp(Sa), 1 < p < ∞. Similar to the H2 case, we show
that a function inHp(Sa) can be uniquely written as the sum of functions inHp(C+−a) and
Hp(C−

a ). Using the uniform boundedness of partial sum operator in Hp(C+
0 ) (see [6]),

we provide the counterpart in Hp(Sa). As an application of the above result, we give a
sufficient condition on {zk} ⊂ Sa for the Szegö kernels associated with {zk} being a Riesz
basis of the subspace spanned by those kernels. Consequently, we give the estimate of the
difference between F and itsm-th partial sum in the Hp-norm.

The present paper is organized as follows. In Section 2 we recall some fundamental
results in H2(Sa). In Section 3 three kinds of rational approximation in H2(Sa) are given,
which include AFD, unwinding AFD and Pre-OGA. In Section 4 rational approximation
in Hp(Sa), 1 < p < ∞, is studied.

2. Preliminaries

Without loss of generality, we consider the Hardy spaces on Sa, where Sa = {z = x + iy ∈
C; x ∈ R, |y| < a} with a > 0.

Denote by Hp(Sa), 1 ≤ p < ∞, the Hardy spaces on Sa, which is defined by

Hp(Sa) =
{
F is analytic in Sa; ||F||pHp = sup

|y|<a

∫ ∞

−∞
|F(x + iy)|pdx < ∞

}
.

In particular, H2(Sa) is a reproducing kernel Hilbert space which can be seen through
the Paley-Wiener Theorem. The Paley-Wiener Theorem gives a very nice characterization
of functions in H2(Sa) that is stated as follows.

Theorem 2.1 (see [7]): F ∈ H2(Sa) if and only if there exists f ∈ L2(R) such that

sup
|y|<a

∫ ∞

−∞
|f (t)|2e−4πytdt < ∞ (2.1)

and

F(z) =
∫ ∞

−∞
f (t)e2π iztdt, (2.2)

which means f is the Fourier transform of the restriction of F to R.

The generalization of Theorem 2.1 in the Hardy spaces on tubes can be found in [8].
Note that the condition (2.1) implies e2πa|t|f (t) ∈ L2(R). Conversely, e2πa|t|f (t) ∈ L2(R)

also implies the condition (2.1). Thus Theorem 2.1 can be read as
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Theorem 2.2: F ∈ H2(Sa) if and only if f ∈ L2(R) such that

e2πa|t|f (t) ∈ L2(R) (2.3)

and

F(z) =
∫ ∞

−∞
f (t)e2π iztdt.

By Theorem 2.2, we can consider H2(Sa) as a reproducing kernel Hilbert space in the
following sense. Denote by L2a(R) the closed subspace in L2(R) whose elements are of the
form

ga(t) = e2πa|t|g(t) ∈ L2(R),

where g ∈ L2(R). Let ha(z; t) = e−2πa|t|e−2π izt .Obviously, ha(z; t) ∈ L2a(R).ByTheorem
2.2, H2(Sa) can be regarded as the image space of functions defined by

F(z) = 〈fa, ha(z; ·)〉L2 , z ∈ Sa.

This induces an inner product on H2(Sa) by

〈F,G〉 = 〈fa, ga〉L2 , F,G ∈ H2(Sa),

where fa and ga are the correspondences of F and G in L2a(R). Then we can define the
Szegö kernel for H2(Sa) by

Ka(w, z) = 〈ha(z; t), ha(w; t)〉L2 .

Directly calculating Ka(w, z) gives

Ka(w, z) =
∫ ∞

−∞
e−4πa|t|e−2π izte2π iwtdt

=
∫ ∞

0
e−4πate−2π izte2π iwtdt +

∫ 0

−∞
e4πate−2π izte2π iwtdt

= 1
2π i

(
1

w − z − 2ia
− 1

w − z + 2ia

)
.

In particular, one has

F(z) = 〈F,Ka(·, z)〉 =
∫ ∞

−∞
e2πa|t|f (t)e−2πa|t|e2π iztdt

=
∫ ∞

0
e2πat f (t)e−2πate2π iztdt +

∫ 0

−∞
e−2πat f (t)e2πate2π iztdt

= 1
2π i

∫ ∞

−∞
F(x − ia)
x − ia − z

dx − 1
2π i

∫ ∞

−∞
F(x + ia)
x + ia − z

dx,

where the last equality is by Parseval’s formula, and F(x − ia) and F(x + ia) are the non-
tangential boundary limit functions of F(z). From the last two formulas, we have that
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Ka(w, z) (as a function of w) is a rational function with poles outside Sa, and 〈F,Ka(·, z)〉
coincides with the Cauchy integral.

3. The p = 2 cases

As shown in Section 2, we have

Ka(w, z) = 1
2π i

(
1

w − z − 2ia
− 1

w − z + 2ia

)
.

We briefly write the Hardy spacesH2(R×(−∞, a)) asH2(C−
a ), andH2(R×(−a,∞)) as

H2(C+−a). One should note that − 1
2π i

1
w−z+2ia and 1

2π i
1

w−z−2ia are respectively the Szegö
kernels of H2(C+−a) and H2(C−

a ). Thus, for F ∈ H2(Sa), one has

F(z) = F+(z) + F−(z), F+ ∈ H2(C+−a), F
− ∈ H2(C−

a ). (3.1)

The above decomposition is unique. In fact, if there exists H+ ∈ H2(C+−a) and H− ∈
H2(C−

a ) such that F = H+ + H−, we have G = F+ − H+ = H− − F−. Thus G ∈
H2(C−

a )∩H2(C+−a).Hence,G(x+ iy) ∈ H2(C+
0 ) for y ∈ (0,∞), andG(x+ iy) ∈ H2(C−

0 )

for y ∈ ( − ∞, 0). The former means that Ĝ(x) is with support in [0,∞), and the latter
means that Ĝ(x) is with support in (−∞, 0], which implies Ĝ(x) ≡ 0, and henceG(z) ≡ 0.
See Lemma 4.1 for a general discussion. Thus the induced norm ofH2(Sa) is actually given
by

||F+||2+ + ||F−||2− = ||F||2,
where || · ||+ is the norm ofH2(C+−a) and || · ||− is the norm ofH2(C−

a ).Note that ||F||H2 ≤
||F+||+ + ||F−||−, which is given by Minkowski’s inequality. Therefore, approximations
of functions in H2(C+−a) and H2(C−

a ) will give rise to those of functions in H2(Sa).

3.1. Upper and lower Hardy spaces decomposition and AFD on the strip

AFD was originally proposed in the classical Hardy spaces of the unit disc and the upper-
half plane (see [1]). Without any difficulty, one can easily obtain AFD in H2(C+−a) and
H2(C−

a ). In the following we provide the related results in H2(C+−a) and H2(C−
a ), and

accordingly give rational approximations of functions in H2(Sa).
Let {zk} be a sequence of points in C

+
0 . It is known that the TM system associated with

{zk} is defined as

B1(z) = B{z1}(z)

=
√
z1

π

i
z − z1

, . . . ,Bk(z) = B{z1,...,zk}(z) =
√
zk

π

i
z − zk

k−1∏
j=1

z − zj
z − zj

, . . . (3.2)

where z ∈ C
+
0 . Accordingly, TM systems in H2(C+−a) and H2(C−

a ) are respectively given
by

{B+
k (z)} =

⎧⎨⎩B+
{z1,...,zk}(z) =

√
zk + a
π

i
z − zk + 2ia

k−1∏
j=1

z − zj
z − zj + 2ia

⎫⎬⎭ ,
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where {zk} ⊂ C
+−a, z ∈ C

+−a, and

{B−
k (z)} =

⎧⎨⎩B−
{z1,...,zk}(z) =

√
a − 
zk

π

−i
z − zk − 2ia

k−1∏
j=1

z − zj
z − zj − 2ia

⎫⎬⎭ ,

where {zk} ⊂ C
−
a , z ∈ C

−
a .

The main idea of AFD is the adaptive procedure of selecting zk for each k according to
a function or an approximation remainder. Precisely, givenm points {zk}mk=1 inC

+−a (resp.
C

−
a ), we are to select the (m + 1)-th point in C

+−a (resp. C−
a ) such that

zm+1 = arg max
z∈C

+−a

|〈F,B+
{z1,...,zm,z}〉+| (resp. zm+1 = arg max

z∈C
−
a

|〈F,B−
{z1,...,zm,z}〉−|), (3.3)

where F is a given function inH2(C+−a) (resp.H2(C−
a )).We call (3.3) themaximal selection

principle. The existence of such zm+1 follows from the so-called ‘Boundary Vanishing
Condition (BVC)’ (see [9], and see also Lemmas 3.1 and 3.2). Then, by the general theory
of AFD, we have
Theorem 3.1: Suppose that F ∈ H2(C+−a) (resp. H2(C−

a ) ), and {zk} is a sequence of points
in C

+−a (resp. C−
a ), where each zk is selected according to (3.3). Then we have

lim
m→∞ ||F −

m∑
k=1

〈F,B+
k 〉+B+

k ||+ = 0 (resp. lim
m→∞ ||F −

m∑
k=1

〈F,B−
k 〉−B−

k ||− = 0).

Consequently, we have
Corollary 3.2: For F ∈ H2(Sa), let F± be, respectively, components of F in H2(C+−a) and
H2(C−

a ). Assume that {z+
k } and {z−

k } are, respectively, in C
+−a and C

−
a , where each z±

k is
selected by the maximal selection principle according to F±. Then we have

lim
m→∞ ||F − (

m∑
k=1

〈F+,B+
k 〉+B+

k +
m∑
k=1

〈F−,B−
k 〉−B−

k )|| = 0.

3.2. Upper and lower Hardy spaces decomposition and Unwinding AFD

Unwinding AFD is a variation of AFD that is more efficient (in practice) than AFD. The
main difference between unwindingAFD and the original AFD is the factorization of inner
function at each step. It is known that for F ∈ H2(C+

0 ), one has

F(z) = BF(z)SF(z)OF(z),

where BF , SF andOF are respectively the Blaschke product part, the singular inner function
part and the outer function part of F (see e.g. [10,11]). Usually, IF(z) = BF(z)SF(z) denotes
the inner function part of F. For F ∈ H2(C+

0 ), one proceeds the following procedure:

G1(z) = F(z), Gk(z) = Ik(z)Ok(z), Gk+1 =
Ok(z) − 〈Ok, ezk〉H2(C+

0 )ezk(z)
z−zk
z−zk

, (3.4)
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then

F(z) =
m∑
k=1

〈Ok, ezk〉H2(C+
0 )I

(k)(z)Bk(z) + Im(z)Gm+1(z)
m∏
k=1

z − zk
z − zk

, (3.5)

where Ik(z) and Ok(z) are the inner and outer parts of Gk(z), ezk(z) is the normalized
Szegö kernel for H2(C+

0 ), I(k)(z) = I1(z) · · · Ik(z), and each zk is selected according to

zk = arg max
z∈C

+
0

|〈Ok, ez〉H2(C+
0 )|. (3.6)

Generally, an approximating function given by the unwinding AFD is not rational, but we
can give a rational one if replacing the factorization of Ik in (3.5) by a finite Blaschke prod-
uct. The existence of zk in (3.6) also follows from the BVC in H2(C+

0 ). The convergence
of such a decomposition can be found in [4].

Now applying the above idea to H2(C+−a) and H2(C−
a ), one has

Theorem 3.3: For F ∈ H2(Sa), let F± be respectively the components of F in H2(C+−a)

and H2(C−
a ). Assume that {z+

k } and {z−
k } are respectively in C

+−a and C
−
a , where each z

±
k is

selected by the maximal selection principle according to F±. Then we have

lim
m→∞ ||F − (

m∑
k=1

〈O+
k , ez+

k
〉+I+,(k)B+

k +
m∑
k=1

〈O−
k , ez−

k
〉−I−,(k)B−

k )|| = 0,

where O±
k , ezjk±

and I±,(k), are correspondingly defined as (3.4) and (3.5).

3.3. H2(Sa) treated as a RKHS and Pre-OGA

In the previous parts we obtain approximations in H2(Sa) from those in H2(C+−a) and
H2(C−

a ), but we can directly apply Pre-OGA to H2(Sa). The Pre-OGA essentially gener-
alizes the sprit of AFD to reproducing kernel Hilbert spaces based on the fact that a TM
system on the unit disc is generated by Szegö kernels. In the following we give a brief
introduction to Pre-OGA inH2(Sa). Suppose that {zk} is a sequence of points in Sa. Let lk
be the cardinality of the set {j : zj = zk, j < k}. Define K̃a(w, zk) as

K̃a(w, zk) = dlk

dzlk
Ka(w, z)|z=zk .

Denote by {Bk = B{z1,z2,...,zk}} the orthogonal system generated by applying the Gram–
Schmidt orthonormal process to {K̃a(z, zk)} (see [2] for details). By the Gram–Schmidt
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orthonormal process, we have

B1 = B{z1} = γ1

||γ1|| = K̃a(z, z1)
||K̃a(z, z1)|| ;

γk = K̃a(z, zk) −
k−1∑
j=1

〈K̃a(·, zk),Bj〉Bj,

Bk = B{z1,...,zk} = γk

||γk|| , k ≥ 2, k ∈ Z.

Suppose that {zk}mk=1 arem given points in Sa.We are to choose the (m+ 1)-th point in Sa
according to the following criterion

zm+1 = argmax
z∈Sa

|〈F,B{z1,...,zm,z}〉|. (3.7)

The next lemma gives a set of sufficient conditions so that zm+1 in (3.7) exists.
Lemma 3.4: Suppose that {zk}m+1

k=1 are m + 1 points in Sa. Let {zk}mk=1 be fixed. If

lim|ym+1|→a

|〈F, K̃a(·, zm+1)〉|
||K̃a(·, zm+1)|| = 0, zm+1 = xm+1 + iym+1, (3.8)

holds uniformly for xm+1 ∈ R, then

lim|ym+1|→a
||F −

m+1∑
k=1

〈F,Bk〉Bk|| = ||F −
m∑
k=1

〈F,Bk〉Bk||.

If

lim|xm+1|→∞
|〈F, K̃a(·, zm+1)〉|
||K̃a(·, zm+1)|| = 0, zm+1 = xm+1 + iym+1, (3.9)

holds uniformly for |ym+1| < a, then

lim|xm+1|→∞ ||F −
m+1∑
k=1

〈F,Bk〉Bk|| = ||F −
m∑
k=1

〈F,Bk〉Bk||.

Proof: See e.g. [2,9] for details.

Under the assumption that (3.8) and (3.9) hold, the above lemma implies the existence
of zm+1 in (3.7). As in [9], we call (3.8) and (3.9) the ‘Boundary Vanishing Condition’
(BVC) in H2(Sa). Note that since {zk}mk=1 are previously fixed, (3.8) and (3.9) are reduced
to

lim|ym+1|→a

|F(zm+1)|
||Ka(·, zm+1)|| = 0, zm+1 = xm+1 + iym+1, (3.10)
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and

lim|xm+1|→∞
|F(zm+1)|

||Ka(·, zm+1)|| = 0, zm+1 = xm+1 + iym+1, (3.11)

which is called the weak BVC in H2(Sa).
Under the assumption that zm+1 in (3.7) exists for eachm, the convergent result follows

from the theory of Pre-OGA.
Theorem 3.5: Suppose that F ∈ H2(Sa), and {zk} is a sequence of points in Sa, where each
element is selected according to (3.7). Then we have

lim
m→∞ ||F −

m∑
k=1

〈F,Bk〉Bk|| = 0.

The weak BVC in H2(Sa) is shown in the next lemmas.
Lemma 3.6: For F ∈ H2(Sa), we have

lim|y|→a

|F(z)|√
Ka(z, z)

= 0, z = x + iy ∈ Sa, (3.12)

holds uniformly for x ∈ R.

Proof: First note that Ka(z, z) = ||Ka(·, z)||2 = 1
4π

(
1

y+a − 1
y−a

)
= a

2π ( 1
(a+y)(a−y) ) > 0

for |y| < a. Using Theorem 2.2, we have

F(z) = 〈fa, ha(z; ·)〉.

Since fa ∈ L2a(R), we can find a function g ∈ L2(R) ∩ Lp(R), 1 < p < 2, such that for any
given ε > 0,

||fa − g ||L2 < ε.

Then

|F(z)|√
Ka(z, z)

≤ |〈fa − g , ha(z; ·)〉L2 |√
Ka(z, z)

+ |〈g , ha(z; ·)〉L2 |√
Ka(z, z)

≤ ε + ||g ||Lp ||ha(z, ·)||Lq√
Ka(z, z)

,
(3.13)

where q = p
p−1 . Calculating ||ha(z, ·)||Lq , we have

||ha(z, ·)||qLq =
∫ ∞

−∞
|e−2πa|t|e2π izt |qdt = 1

q
Ka(z, z).

Therefore, when |y| tends to a,

(3.13) ≤ ε + ||g ||Lp 1

q
1
q
Ka(z, z)

1
q− 1

2 < Cε,

where C is a constant.
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Next we show
Lemma 3.7: For F ∈ H2(Sa), we have that

lim|x|→∞
|F(z)|√
Ka(z, z)

= 0, z = x + iy ∈ Sa,

holds uniformly for |y| < a.

Proof: By Lemma 3.6, we only need to show

lim|x|→∞
|F(z)|√
Ka(z, z)

= 0

holds uniformly for |y| ≤ b < a. Since Ka(z, z) is independent of x, it suffices to show that

lim|x|→∞ |F(z)| = 0

holds uniformly for |y| ≤ b. Let d = a − b. From the definition of H2(Sa) we have that∫
|η−y|≤ d

2

∫ ∞

−∞
|F(ξ + iη)|2dξdη < ∞.

Thus, for any given ε, there exists a large N > 0 such that∫
|η−y|≤ d

2

∫
|ξ |>N

|F(ξ + iη)|2dξdη < ε.

Then using the mean value theorem, for |x| > N + d
2 , we have

|F(x + iy)|2 ≤ 4
πd2

∫
|w−z|≤ d

2

|F(ξ + iη)|2dξdη

≤ 4
πd2

∫
|η−y|≤ d

2

∫
|x−ξ |≤ d

2

|F(ξ + iη)|2dξdη

< ε,

where the last inequality is due to the fact |x| − d
2 ≤ |ξ | ≤ |x| + d

2 .

From next section we will deal with the Hp theory.

4. General p ∈ (1,∞) cases via upper and lower Hardy spaces decomposition

Motivated by theH2(Sa) case, in this section we show that functions inHp(Sa), 1 < p < ∞,
can also be written as sums of functions inHp(C+−a) andHp(C−

a ). Subsequently, we obtain
that functions inHp(Sa) can be approximated by sums of rational function in, respectively,
Hp(C+−a) and Hp(C−

a ).
First, we show that
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Lemma 4.1: For any a > 0, b > 0, and 0 < p < ∞, Hp(C+−a) ∩ Hp(C−
b ) = {0}.

Proof: Suppose that G ∈ Hp(C+−a) ∩ Hp(C−
b ). In our proof we mainly use the following

property, which follows from subharmonicity of |G|p, i.e.

|G(x + iy)| ≤ Cp

π |y + a| 1p
(∫ ∞

−∞
|G(ξ − ia)|pdξ

) 1
p

(4.1)

for y ∈ ( − a,∞), and

|G(x + iy)| ≤ Cp

π |y − b| 1p
(∫ ∞

−∞
|G(ξ + ib)|pdξ

) 1
p

(4.2)

for y ∈ ( − ∞, b), where Cp is a constant depending on p.
The proof is based on the Fourier spectrum characterization ofH∞ functions proved in

[12]. The inequality (4.1) implies that G(x), x ∈ R, can be considered as the nontangential
boundary limit function of a function in H∞(C+

0 ). Using the result in [12], we have that
Ĝ is a distribution with support in [0,∞). Similarly, Ĝ is also a distribution with support
in ( − ∞, 0]. Thus Ĝ is either 0 or a finite linear combination of the Dirac delta function
and its derivatives (see e.g. [13]). However, the latter implies that G(x) has to be a finite
degree polynomial of x in the distribution sense, which contradicts with the fact that G(x)
is Lp-integrable. Thus Ĝ ≡ 0, and hence G(z) ≡ 0.

Remark:

(1) In fact, we can give another proof by using Liouville’s theorem. Using (4.1) and
(4.2) again, we know thatG(z) is entire and |G(z)| is bounded in the whole complex
plane. Hence, G(z) is a constant by Liouville’s theorem. By (4.1) and (4.2) again, we
have that |G(x + iy)| → 0 as |y| → ∞, which implies G(z) ≡ 0.

(2) For p = ∞, we consider H̃∞(C+−a) = H∞(C+−a)/C and H̃∞(C−
b ) = H∞(C−

b )/C

instead ofH∞(C+−a) andH∞(C−
b ).Thenwe still have H̃∞(C+−a)∩H̃∞(C−

b ) = {0}.
(3) We also note that when 1 < p < ∞, Hp(C+−a) ∩ Hp(C−

b ) ⊂ Hp(C+
0 ) ∩ Hp(C−

0 ) =
{0}, which is essentially implied by the properties of the Hilbert transform (see e.g.
[10]). In fact, by the Plemelj formula (see e.g. [10]), we have that for F ∈ Hp(C+

0 )

and G ∈ Hp(C−
0 ), there exist real-valued functions f , g ∈ Lp(R) such that

F(x) = f (x) + iH(f )(x)

and

G(x) = g(x) − iH(g)(x),

where F(x) and G(x) are, respectively, nontangential boundary limit functions of F
and G, and H is the Hilbert transform. Therefore, for F ∈ Hp(C+

0 ) ∩ Hp(C−
0 ), we

have H(f ) = 0. Then, combining with the fact that H2(f ) = −f , we have f = 0,
and hence F = 0.
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(4) When 0 < p < 1, the conclusion, Hp(C+−a) ∩ Hp(C−
b ) = {0}, cannot be obtained

from the inclusion in (3) since Hp(C+
0 ) ∩ Hp(C−

0 ) contains nonzero elements (see
e.g. [14]).

Consequently, one has
Theorem 4.2: For F ∈ Hp(Sa), 1 < p < ∞, there exist F1 ∈ Hp(C+−a) and F2 ∈ Hp(C−

a )

such that
F(z) = F1(z) + F2(z),

and the above decomposition is unique.

Proof: Using the Cauchy integral formula in contour (e.g. a rectangular �x0,ε = {z =
x + iy ∈ Sa; |x| < x0,−a + ε < y < a − ε} with 0 < ε < a), we have, for F ∈ Hp(Sa) and
z ∈ �x0,ε ,

F(z) = 1
2π i

∫
∂�x0,ε

F(ξ)

ξ − z
dξ

= 1
2π i

∫ x0

−x0

F(t + i( − a + ε))

t + i( − a + ε) − z
dt + 1

2π

∫ a−ε

−a+ε

F(x0 + is)
x0 + is − z

ds

− 1
2π i

∫ x0

−x0

F(t + i(a − ε))

t + i(a − ε) − z
dt − 1

2π

∫ a−ε

−a+ε

F( − x0 + is)
−x0 + is − z

ds

= I1 + I2 + I3 + I4.

By suitably taking x0 → ∞ and ε → 0, one can show that I2 → 0 and I4 → 0, and

I1 → 1
2π i

∫ ∞

−∞
F(t − ia)
t − ia − z

dt

and

I3 → − 1
2π i

∫ ∞

−∞
F(t + ia)
t + ia − z

dt.

For the detailed proof of the result, we refer to [7] Paley and Wiener’s original proof for
p = 2, and [15] Li and Deng’s proof for 1 < p < ∞ in a similar way.

Therefore, we have the Cauchy integral formula for F ∈ Hp(Sa), i.e.

F(z) = F+(z) + F−(z),

where

F+(z) = 1
2π i

∫ ∞

−∞
F(t − ia)
t − ia − z

dt, z ∈ Sa, (4.3)

and

F−(z) = − 1
2π i

∫ ∞

−∞
F(t + ia)
t + ia − z

dt, z ∈ Sa, (4.4)

where F(t + ia) and F(t − ia) are the nontangential boundary limit functions of F.
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Since 1 < p < ∞, one can easily conclude that F+ ∈ Hp(C+−a) and F− ∈ Hp(C−
a ) by

the Lp-boundedness of Hardy projection (see e.g. [10]).
As in Section 3, if F has another decomposition, then one must have a function G ∈

Hp(C+−a) ∩ Hp(C−
a ). By Lemma 4.1, G ≡ 0. Thus the decomposition is unique.

Note that for p = 1, the decomposition F(z) = F+(z)+ F−(z) is still valid although we
cannot conclude that F+ ∈ H1(C+−a) and F− ∈ H1(C−

a ).

Motivated by the H2 case, we give the induced norm on Hp(Sa), 1 < p < ∞, which is
defined as

||F||p∗,Hp = ||F+||p
Hp(C+−a)

+ ||F−||p
Hp(C−

a )
, (4.5)

where F+ and F− are, respectively, the components of F in Hp(C+−a) and Hp(C−
a ). When

there is no confusion, we still denote the norms of Hp(C+−a) and Hp(C−
a ) by || · ||+ and

|| · ||− for simplicity, and accordingly, the dual pair of Hp(C+−a) and Hq(C+−a) by 〈·, ·〉+,
and the dual pair of Hp(C−

a ) and Hq(C−
a ) by 〈·, ·〉−, where q = p

p−1 .

The convergence in this induced norm gives rise to the convergence in || · ||Hp since we
have, by Minkowski’s inequality,

sup
|y|<a

(∫ ∞

−∞
|F(x + iy)|p

) 1
p ≤ sup

|y|<a

(∫ ∞

−∞
|F+(x + iy)|p

) 1
p + sup

|y|<a

(∫ ∞

−∞
|F−(x + iy)|p

) 1
p

≤ sup
y>−a

(∫ ∞

−∞
|F+(x + iy)|p

) 1
p + sup

y<a

(∫ ∞

−∞
|F−(x + iy)|p

) 1
p
.

By Theorem 4.2, Hp(Sa) can be regarded as the direct sum of Hp(C+−a) and Hp(C−
a ), i.e.

Hp(Sa) = Hp(C+−a) ⊕p Hp(C−
a ).

Due to the Schauder-property of the TM system we have the following [6]

Theorem 4.3 ([6]): Suppose that {zk} is a sequence of points in C
+
0 . Let spanp denote the

Hp closure. Then, for F ∈ spanp{Bk}, we have

||Sm(F)||Hp(C+
0 ) ≤ K ||F||Hp(C+

0 ),

and
lim

m→∞ ||Sm(F) − F||Hp(C+
0 ) = 0,

where Sm(F) = ∑m
k=1〈F,Bk〉Bk, 〈·, ·〉 is the dual pair of Hp and Hq, q = p

p−1 , {Bk} is the
TM system associated with {zk} defined as (3.2), and K is a constant.

If {zk} satisfies the non-separable condition
∞∑
k=1

√
zk
1 + |zk|2 = ∞,

Theorem 4.3 implies that {Bk} is a Schauder basis for Hp(C+
0 ).
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Consequently, we have
Theorem 4.4: Suppose that {z+

k } and {z−
k } are, respectively, sequences of points in C

+−a
and C

−
a . Then, for F ∈ spanp{B+

j } ⊕p spanp{B−
k }, we have

||Sm(F)||∗,Hp ≤ K ||F||∗,Hp ,

and

lim
m→∞ ||Sm(F) − F||∗,Hp = 0,

where Sm(F) = S+
m(F+) + S−

m(F−) = ∑m
k=1〈F+,B+

k 〉+B+
k +∑m

k=1〈F−,B−
k 〉−B−

k , F
+ and

F− are, respectively, the components of F in Hp(C+−a) and Hp(C−
a ), and K is a constant.

As an application of Theorem 4.4, we give a sufficient condition on {zk} ⊂ Sa for
the Szegö kernels associated with {zk} being a Riesz basis of the subspace spanned by
those kernels. Specifically, in the following we combine Theorem 4.4 with the result of the
Calerson interpolation problem. The main result in this part is stated as follows.

Assume that {zk} is a sequence of points in Sa satisfying the δ-uniformly separated
condition (see e.g. [10]), i.e.

inf
k

∞∏
j �=k,j=1

∣∣∣∣ zk − zj
zk − zj + 2ia

∣∣∣∣ > δ > 0, and inf
k

∞∏
j �=k,j=1

∣∣∣∣ zk − zj
zk − zj − 2ia

∣∣∣∣ > δ > 0. (4.6)

The next theorem is analogous to the result in [16].
Theorem 4.5: Suppose that {zk} is a sequence of points in Sa satisfying (4.6). Then, for
F ∈ spanp{B+

j } ⊕p spanp{B−
k }, there exist two positive constants A and B such that

A||F||p∗,Hp ≤
∞∑
k=1

(a − 
zk)(a + 
zk)|F(zk)|p ≤ B||F||p∗,Hp , (4.7)

where A and B only depend on p.
Before proving Theorem 4.5, we first give an application of it.

Corollary 4.6: Suppose that all conditions in Theorem 4.5 are satisfied. Then, we have

A||F − Sm(F)||p∗,Hp ≤
∞∑

k=m+1

(a − 
zk)(a + 
zk)|F(zk) − Sm(F)(zk)|p

≤ B||F − Sm(F)||p∗,Hp ,

where Sm(F) = S+
m(F+) + S−

m(F−) = ∑m
k=1〈F+,B+

k 〉+B+
k +∑m

k=1〈F−,B−
k 〉−B−

k , F
+ and

F− are respectively the components of F in Hp(C+−a) and Hp(C−
a ).

Proof: We first replace F by (F − Sm(F)) in (4.7). We also note that

Sm(F)(zk) = F(zk), k = 1, 2, . . . ,m.
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In fact, using the process given in [1], we have

F+(z) =
m∑
k=1

〈F+,B+
k 〉+B+

k + F+
m(z)

m∏
j=1

z − zj
z − zj + 2ia

and

F−(z) =
m∑
k=1

〈F−,B−
k 〉−B−

k + F−
m(z)

m∏
j=1

z − zj
z − zj − 2ia

,

where F+
m ∈ Hp(C+−a) and F−

m ∈ Hp(C−
a ). Hence we have the interpolation properties

S+
m(F+)(zk) = F+(zk), k = 1, 2, . . . ,m,

and
S−
m(F−)(zk) = F−(zk), k = 1, 2, . . . ,m.

Using these properties,we can eliminate thefirstm termof
∑∞

k=1 (a−
zk)(a+
zk)|F(zk)−
Sm(F)(zk)|p, and then obtain the result.

In the following we will prove Theorem 4.5. We first need two results for preparation.
The first one is the solution to Calerson’s interpolation problem.

Proposition 4.7 ([17]): Suppose that {zk} is a sequence of points in C
+
0 . In Hp(C+

0 ), 1 ≤
p < ∞, the following statements are equivalent:

(1) {zk} is uniformly separated;
(2) {zk} is an interpolating sequence (i.e. for any {(
zk)

1
p wk} ∈ lp, there exists a function

F ∈ Hp(C+
0 ) such that F(zk) = wk, k = 1, 2, . . .);

(3) μ(z) = ∑∞
k=1 (
zk)δzk(z) is a Carleson measure, i.e.

∞∑
k=1

(
zk)|F(zk)|p ≤ C||F||p
Hp(C+

0 )
, all F ∈ Hp(C+

0 ),

where C a constant that is independent of F.
One can accordingly have Proposition 4.7 in Hp(C+−a) and Hp(C−

a ).

The second result we will need is Lemma 4.8. We will prove it by using the techniques in
[18, p.12] (see also [16]). Define

B̃+
m(z) = α

m∏
j=1

z − zj
z − zj + 2ia

and

B̃−
m(z) = β

m∏
j=1

z − zj
z − zj − 2ia

,

where |α| = |β| = 1. Moreover, we let

B̃+,′
m (zk) = α

m∏
j �=k,j=1

zk − zj
zk − zj + 2ia
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and

B̃−,′
m (zk) = β

m∏
j �=k,j=1

zk − zj
zk − zj − 2ia

.

Lemma 4.8: Suppose that {zk} satisfies (4.6), and {(a−
zk)
1
p (a+
zk)

1
p wk} ∈ lp, 1 < p <

∞. Then there exists a function Gm ∈ spanp{B+
j } ⊕p spanp{B−

k } defined as

Gm(z) =
m∑
k=1

i(a − 
zk)(a + 
zk)
a

(
B̃−
m(z)

(z − zk )̃B−,′
m (zk)

− B̃+
m(z)

(z − zk )̃B+,′
m (zk)

)
wk,

such that
Gm(zk) = wk, k = 1, 2, . . . ,m,

and

D||Gm||p∗,Hp ≤
∞∑
k=1

(a − 
zk)(a + 
zk)|wk|p, (4.8)

where D is a positive constant that is independent of m.

Proof: Obviously, Gm ∈ spanp{B+
j } ⊕p spanp{B−

k }, and satisfies Gm(zk) = wk, k =
1, 2, . . . ,m. To complete the proof, we need to prove (4.8). Let H( · −ia) ∈ Lq(R). We
consider G+

m and G−
m as linear functionals on Lq(R), where G+

m and G−
m are, respectively,

the components of Gm in Hp(C+−a) and Hp(C−
a ). Then we have

|〈G+
m,H〉+|

≤
m∑
k=1

|wk|(a − 
zk)(a + 
zk)
a

∣∣∣∣〈 B̃+
m( · )

( · −zk )̃B+,′
m (zk)

,H( · )〉+
∣∣∣∣

≤
m∑
k=1

|wk|(a − 
zk)(a + 
zk)
aδ

∣∣∣∣∣
∫ ∞

−∞
B̃+
m(x − ia)H(x − ia)

x − ia − zk
dx

∣∣∣∣∣
≤ 2π

m∑
k=1

|wk|(a − 
zk)(a + 
zk)
aδ

(∣∣T (̃B+
mH)(zk)

∣∣)
≤ 2π

aδ

( m∑
k=1

|wk|p(a − 
zk)(a + 
zk)
) 1

p
( m∑
k=1

(a − 
zk)(a + 
zk)
∣∣T (̃B+

mH)(zk)
∣∣q) 1

q

≤ 2π
aδ

( m∑
k=1

|wk|p(a − 
zk)(a + 
zk)
) 1

p (
(2a)

1
q C

1
q ||T (̃B+

mH)||Hq(C+−a)

)

≤ 2π
aδ

( m∑
k=1

|wk|p(a − 
zk)(a + 
zk)
) 1

p (
(2a)

1
q C

1
q E||H( · −ia)||Lq

)
,

where T projects functions in Lq(R) to functions in Hq(C+−a), and E is a constant from

||T(H)||Hq(C+−a)
≤ E||H( · −ia)||Lq ,H( · −ia) ∈ Lq(R), 1 < q < ∞.
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Then

||G+
m||p+ ≤ (2π)p(2a)

p
q C

p
q Ep

apδp

∞∑
k=1

|wk|p(a − 
zk)(a + 
zk).

Similarly,

||G−
m||p− ≤ (2π)p(2a)

p
q C

p
q Ep

apδp

∞∑
k=1

|wk|p(a − 
zk)(a + 
zk).

Therefore,

D||Gm||p∗,Hp ≤
∞∑
k=1

|wk|p(a − 
zk)(a + 
zk),

where D = apδp

2(2π)p(2a)
p
q C

p
q Ep

.

Proof of Theorem 4.5: The right-hand side of (4.7) follows from Proposition 4.7. In fact,
if {zk} satisfies (4.6), then by Proposition 4.7 we have

∞∑
k=1

(a + 
zk)|F+(zk)|p ≤ C||F+||p+

and ∞∑
k=1

(a − 
zk)|F−(zk)|p ≤ C||F−||p−,

where F+ and F− are, respectively, the components of F inHp(C+−a) andHp(C−
a ).Hence,

∞∑
k=1

(a − 
zk)(a + 
zk)|F(zk)|p ≤
∞∑
k=1

(a − 
zk)(a + 
zk)2p−1(|F1(zk)|p + |F2(zk)|p)

≤ 2pa
∞∑
k=1

(a + 
zk)|F+(zk)|p + 2pa
∞∑
k=1

(a − 
zk)|F−(zk)|p

≤ 2paC(||F+||p+ + ||F−||p−)

= B||F||p∗,Hp ,

where B = 2paC.

To prove the left-hand side of (4.7), it suffices to find a function Gm ∈ spanp{B+
j } ⊕p

spanp{B−
k } to satisfy Gm(zk) = F(zk), k = 1, 2, . . . ,m, and

D||Gm||p∗,Hp ≤
∞∑
k=1

(a − 
zk)(a + 
zk)|F(zk)|p,

where D is a positive constant. Using Lemma 4.8, we can exactly construct such Gm
according to {zk}. Finally, we can complete the proof by Theorem 4.3. By Theorem 4.3, we
have

||Sm(Gm)||∗,Hp ≤ K ||Gm||∗,Hp .
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We also have Sm(Gm)(zk) = Gm(zk) = F(zk), k = 1, 2, . . . ,m. Thus

||Sm(F)||p∗,Hp = ||Sm(Gm)||p∗,Hp ≤ Kp||Gm||p∗,Hp ≤ Kp

D

∞∑
k=1

(a − 
zk)(a + 
zk)|F(zk)|p.

Using Theorem 4.3 again, we get the desired conclusion

A||F||p∗,Hp ≤
∞∑
k=1

(a − 
zk)(a + 
zk)|F(zk)|p ≤ B||F||p∗,Hp ,

where A = D
Kp and B = 2paC. �
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