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ABSTRACT

This paper aims to obtain decompositions of higher dimensional
Lp(Rn) functions into sums of non-tangential boundary limits of
the corresponding Hardy space functions on tubes for the index
range 0 < p < 1. In the one-dimensional case, Deng and Qian
recently obtained such a Hardy space decomposition result: for any
function f ∈ Lp(R), 0 < p < 1, there exist functions f1 and f2
such that f = f1 + f2, where f1 and f2 are, respectively, the non-
tangential boundary limits of some Hardy space functions in the
upper-half and lower-half planes. In the present paper, we generalize
the one-dimensional Hardy space decomposition result to the higher
dimensions and discuss the uniqueness issue of such decomposition.
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1. Introduction

We begin with a survey on the case of one-dimensional Hardy spaces Hp(C±) for 0 <
p ≤ ∞. For the classical case p = 2, the famous Paley–Wiener Theorem states that, for an
L2(R) function f , it is the non-tangential boundary limit of a function in H2(C+) if and
only if suppf̂ ⊂ [0,∞), the latter being equivalent with

f̂ = χ[0,∞) f̂ , (1)

where χ[0,∞) is the characteristic function of [0,∞). Similarly, f ∈ H2(C−) is equivalent
with

f̂ = χ(−∞,0] f̂ . (2)

From the relations (1) and (2), a canonical decomposition result is obtained as

f = f + + f −,

for f ∈ L2(R), where f + = (χ[0,∞) f̂ )∨ and f − = (χ(−∞,0] f̂ )∨ belong to, respectively, the
Hardy spaces H2(C+) and H2(C−). In the present paper, we call such decomposition as
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Hardy space decomposition. It can be alternatively obtained through the Hilbert transfor-
mation in view of the Plemelj formula in relation to the Cauchy integral transform. For
the relevant knowledge, we refer the reader to, for instance, [1] and [2].

In principle, the purpose of Hardy spaces decomposition is to express functions of
bad behavior into functions with much better analysis properties. Precisely, Lebesgue Lp

spaces are constituted by equivalent classes of a.e. equivalent functions: one therefore
cannot talk about smoothness. On the other hand, Hardy space functions are constituted
by holomorphic functions defined in the respective domains that are functions of best
properties. There is complex analysis methodology, or Cauchy’s theory, available in study-
ing Hardy space functions (see [1,3,4]). This decomposition, in particular, gives rise to
rational approximations, the latter being the source of various applications. For instance,
some recent studies promote positive frequency decomposition of signals [5,6].

It is a striking fact that lifting-up of certainHp, p < 1, functions are HardyH2 functions
(this fact is crucial in the proofs of the main results of this study) . For the latter, there
exists well developed frequency decomposition theory. Incidentally, in the recent signal
sparse representation, studies in conjunction with neural network and learning theory
researchers use L1/2 spaces which is in the scope of the present study as well.

There have been studies on Hardy space decomposition for extended index range of
p. Both the above mentioned Paley–Wiener Theorem related Fourier spectrum charac-
terization and the Plemelj formula can be extended to Hardy Hp(R) spaces with p �= 2.
Systematic studies on the spectrum properties as well as the Lp decomposition are carried
out in the works of Qian et al. [2] among others. Their work is summarized as f ∈ Hp(C+)

if and only if f ∈ Lp(R) and in the distributional sense suppf̂ ⊂ [0,∞) for all 1 ≤
p ≤ ∞. Comparatively the Plemelj formula approach is more applicable than Fourier
transformation, for on the Lp(R), p > 2, spaces Fourier transforms are distributions. As a
consequence, the Hardy space decomposition results also hold for f ∈ Lp(R), 1 < p < ∞.

There also exists an analogous theory on the unit circle for 1 < p ≤ ∞. The latter context
corresponds to Fourier series other than Fourier transforms [1,7].

Turning to the case of 0 < p ≤ 1, due to loss of integrability neither on the real line,
nor on the unit circle, the Plemelj formula, or the Hilbert transformation, is available.
The references [7] and [8] study the Hardy space decomposition of Lp(R) for 0 < p < 1.
There is no Fourier transformation theory for functions in such Lp(R) as they are even not
distributions. One, however, can still have the Hardy space decompositions. The reference
[7] uses the real analysis methods of harmonic analysis, making use of a dense subclass
of the Lp(R)-functions with vanishing moment conditions and the Hilbert transforms.
In contrast, [8] uses the complex analysis methods, and, in particular, rational functions
approximation to achieve Hardy space decompositions. The methods in [8] are direct and
constructive. The following Theorem A is obtained by Deng and Qian in [8].

Theorem A [8]: Suppose that 0 < p < 1 and f ∈ Lp(R). Then, there exist a positive
constant Ap and two sequences of rational functions {Pk} and {Qk} such that Pk ∈ Hp(C+),
Qk ∈ Hp(C−) and

∞∑
k=1

(
‖Pk‖pHp

+
+ ‖Qk‖pHp

−

)
≤ Ap‖f ‖pp,
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lim
n→∞ ||f −

n∑
k=1

(Pk + Qk)||p = 0.

Moreover,

g(z) =
∞∑
k=1

Pk(z) ∈ Hp(C+), h(z) =
∞∑
k=1

Qk(z) ∈ Hp(C−),

and g(x) and h(x) are the non-tangential boundary limits of functions for g ∈ Hp(C+) and
h ∈ Hp(C−), respectively, f (x) = g(x) + h(x) almost everywhere, and

‖f ‖pp ≤ ‖g‖pp + ‖h‖pp ≤ Ap‖f ‖pp.
That is, in the sense of Lp(R),

Lp(R) = Hp
+(R) + Hp

−(R),

where H+(R) and H−(R) denote the set of non-tangential boundary limits of functions in
the Hardy spaces Hp(C+) and Hp(C−), respectively.

Recently we, in [9], obtain the Hardy space decomposition of Lp for 0 < p ≤ 1 on the
unite circle ∂D using polynomial approximation other than general rational approxima-
tion. The result is stated as follows. Denoting by LpI (∂D) and LpO(∂D) the closed subspaces
of Lp(∂D), consisting of respectively, the non-tangential boundary limits of the functions
of Hp(D) and Hp(DO), then we have

Lp(∂D) = LpI (∂D) + LpO(∂D),

where the right-hand side is not a direct sum. As a matter of fact, the intersection LpI (∂D)

and LpO(∂D) contains non zero functions. Thework on the unit circle exposes the particular
features adaptable to higher dimensions.

All the Hardy space results mentioned above for dimension one can be generalized
to dimension n in the setting of Hardy spaces on tubes with correspondingly the right
notions. In fact, [10] already contain some basic results, mostly for p = 2, while [11]
gives a systematic treatment for general indices p ∈ [1,∞], including Fourier spectrum
characterization of Hardy spaces on tubes, the Cauchy integral and Poisson integral
representation of the Hardy space functions, the Plemelj formulas in relation to Hilbert
transforms, and the Hardy space decompositions of functions in the Lp(Rn) spaces. The
purpose of this article is to prove the Hardy space decomposition of the Lp(Rn) space
functions for p ∈ (0, 1). In doing so neither the Cauchy integral formula nor the Fourier
transformation canbedirectly used, for the functions definedonR

n are lackof integrability.
They are even not distributions.

In the present paper, inspired by the idea of [8],with the rational approximationmethod,
we obtain decompositions of functions in Lp(R) for 0 < p < 1 into sums of boundary
limits of the corresponding Hardy space functions on tubes, Hp(T�σj

) (j = 1, 2, . . . , 2n),
through the rational functions approximation. The idea of using rational approximation
is motivated by the studies [12] of Takenaka–Malmquist systems.

We will discuss the non-uniqueness of the Hardy space decomposition via rational
approximation method. We conclude that the sum is not a direct sum. In fact, there
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is a non-trivial intersection of all those summed spaces. The intersection of those spaces
Hp

σj(R
n) (j = 1, 2, . . . , 2n) is identical with the Lp closure of the set of functions f ∈ Lp(Rn)

of the following form

f (x1, x2, . . . , xn) = P(x1, . . . , xn)∏n
k=1

∏m
j=1 (xk − akj)

,

where P(x1, . . . , xn) = ∑
(s) a(s)xs11 · · · xsnn , l = max{l1, . . . , ln}, (m − l)p > 1, and akj �=

akm ∈ R as j �= m for k = 1, 2, . . . , n, moreover, the notations
∑

(k) and a(s) mean that∑
(s) = ∑ln

sn=0 · · ·∑l1
s1=0, and a(s) = as1...sn , the same as in the following of the present

paper.
The writing plan of this paper is as follows: In Section 2, some basic definitions and

notations are given. In Section 3, we devote to establishing the higher dimensional Hardy
space decomposition of Lp(Rn), 0 < p < 1. The decomposition is a sum of boundary limit
functions of Hardy spaces on tubes, Hp(T�σk

), for all k = 1, 2, . . . , 2n. In Section 4, we
discuss the uniqueness of such Hardy space decomposition.

2. Preliminary knowledge

In this section, we introduce some useful basic definitions and notions. For more infor-
mation, see e.g. [1] and [10]. The classical Hardy spaces Hp(Ck), 0 < p < +∞, k = ±1,
consists of the functions f analytic in the half plane Ck = {z = x + iy : ky > 0}. They are
Banach spaces for 1 ≤ p < ∞ under the norms

‖f ‖Hp
k

= sup
ky>0

(∫ ∞

−∞
|f (x + iy)|pdx

) 1
p ;

and complete metric spaces for 0 < p < 1 under the metric functions

d(f , g) = sup
ky>0

∫ ∞

−∞
|f (x + iy)|pdx.

Let B be an open subset of R
n. Then the tube TB with base B ⊂ R

n is the set

TB = {z = x + iy ∈ C
n : x ∈ R

n, y ∈ B}.

For example, when n = 1, the classical upper-half complex plane C
+ and lower-half

complex plane C
− are the tubes in C with the base B+ = {y ∈ R : y > 0} and the base

B− = {y ∈ R : y < 0}, respectively. That is, C+ = TB+ = {z = x + iy : x ∈ R, y > 0}
and C

− = TB− = {z = x + iy : x ∈ R, y < 0}. Obviously, the tube TB are generalizations
of C

+ and C
−.

It is known that n-dimensional real Euclidean space R
n has 2n octants. To denote the

octants, we adopt the following notations.
First, we define and fix σ1(j) = 1 for all j = 1, 2, . . . , n, and denote by �σ1 as the first

octant of R
n, that is

�σ1 = {y = (y1, y2, . . . , yn) ∈ R
n : yj > 0, j = 1, 2, . . . , n}.
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Similarly, we define σk(j) = +1 or − 1 for all j = 1, 2, . . . , n, and k = 1, 2, . . . , 2n, and
let σk = (σk(1), σk(2), . . . , σk(n)).

Then 2n octants of R
n are denoted by �σk , k = 1, 2, . . . , 2n, where

�σk = {y = (y1, y2, . . . , yn) ∈ R
n : σk(j)yj > 0, j = 1, 2, . . . , n}.

Correspondingly, Cn can be decomposed into 2n tubes, denoted by T�σk
, k = 1, 2, . . . ,

2n. That is
T�σk

= {z = x + iy ∈ C
n : x ∈ R

n, y ∈ �σk}.
A function F(z) is said to belong to the space Hp(TB), 0 < p < ∞, if it is holomorphic

in the tube TB, and satisfies

‖F‖Hp = sup

{(∫
Rn

|F(x + iy)|pdx
) 1

p : y ∈ B

}
< ∞.

Hence,
Hp(TB) = {F : F holomorphic on TB and ‖F‖Hp < ∞}.

The spaces Hp(T�σk
) are defined through replacing B by �σk , k = 1, . . . , 2n.

Let � be one of the �σj , a function, f , defined in tube T� , is said to have non-tangential
boundary limit (NTBL) l in each component of the variable at x0 ∈ R

n if f (z) = f (x+iy) =
f (x1 + iy1, . . . , xn + iyn) tends to l as the point z = (x1, y1; x2, y2; . . . ; xn, yn) tends to
x0 = (x(1)

0 , 0; x(2)
0 , 0; . . . ; x(n)

0 , 0) within the Cartesian product

γα(x0) = �α1(x
(1)
0 ) × �α2(x

(2)
0 ) × · · · × �αn(x

(n)
0 ) ⊂ T� ,

for all n-tuples α = (α1,α2, . . . ,αn) of positive real numbers, where

�αj(x
(j)
0 ) =

{
(xj, yj) ∈ C

+ : |xj − x(j)
0 | < αjyj

}
, j = 1, 2, . . . , n.

As an important property of the Hardy spaces, it is shown that if f is a function in a Hardy
space Hp, 0 < p < ∞, then for almost all x0, f has NTBL [10].

Since the mapping that maps the functions in the Hardy spaces to their NTBLs is an
isometric isomorphism, we denote by Hp

σk(R
n) for 0 < p < 1 the NTBLs of the functions

in Hp(T�σk
), that is

Hp
σk(R

n) = {f : f is the NTBL of a function in Hp(T�σk
)}

for all k = 1, 2, . . . , 2n. The non-tangential boundary limit of F(z) ∈ Hp(T�σk
) as y → 0

in the tube are denoted by

Fσk(x) = lim
y∈�σk ,y→0

F(x + iy) = lim
σk(1)y1→0+,...,σk(n)yn→0+ F(x1 + iy1, . . . , xn + iyn). (3)

3. Hardy space decomposition of Lp(Rn)

As previously mentioned in the introduction, for one dimension, in [8], the authors use
the rational approximation method to obtain the Hardy space decomposition for the

610 G.-T. DENG ET AL.



range 0 < p < 1. As is well known, rational approximation has a long history, and is
naturally related to complex approximation [12]. As obtained in [8] through a rational
approximation method, for a given real-valued function f ∈ Lp(R), 0 < p < 1, there exists
the relation f = f1 + f2, where f+ and f− are the non-tangential boundary limit functions
of some analytic Hp functions in, respectively, the upper-half and the lower-half complex
planes [8]. Precisely, the analytic Hardy space function f+ ∈ Hp

+, and thus, its boundary
limit function as well, are defined through a sequence of rational functions whose poles are
in the lower-half plane, and f− ∈ Hp

−, through a sequence of rational functions whose poles
are in the upper-half plane.We note that theHardy spaces decompositions for functions in
Lp(R), 0 < p < 1, are not unique. This amounts to saying that the intersection Hp

+
⋂

Hp
−

a non-empty set.
In this section, using a higher dimensional rational approximation method, we will

generalize the above type of Hardy space decomposition of Lp(R) to higher dimensional
Lp(Rn), 0 < p < 1, and obtain Theorem 3.1. Specifically, for any real-valued function
f ∈ Lp(Rn), 0 < p < 1, it is proved to have the Hardy space decomposition f (x) =∑2n

j=1 fσj(x), where for each j, fσj(x) (j = 1, 2, . . . , 2n) is the non-tangential boundary
limit of some Hp(T�σj

)-function. In fact, each analytic Hardy space function fσj(x) ∈ Hp
σj ,

and thus, its boundary limit function as well, may be approximated by a sequence of
rational Lp(Rn)-functions whose poles are not in the octant T�σj

. We will call such rational
functions rational atoms.
Theorem 3.1: Suppose that f ∈ Lp(Rn), 0 < p < 1. Then there exist 2n sequences of
rational functions {Rkσ j(z)} ∈ Hp(T�σj

), and fσj(z) ∈ Hp(T�σj
), j = 1, 2, . . . , 2n, such that

the following properties hold

(i)
∞∑
k=1

2n∑
j=1

||Rkσ j ||pHp
σj

≤ Anp‖f ‖pp, (4)

where Anp is a constant only depending on (n, p);
(ii)

f =
∞∑
k=1

2n∑
j=1

Rkσj (5)

in Lp(Rn).
(iii)

fσj =
∞∑
k=1

Rkσ j , (6)

in Lp(Rn) for all j = 1, 2, . . . , 2n;
(iv) fσj(x) are the non-tangential boundary limits of functions fσj(z), and

f (x) =
2n∑
j=1

fσj(x), a.e. x ∈ R
n,

in Lp(Rn);
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(v)

‖f ‖pp ≤
2n∑
j=1

‖fσj‖pp ≤ Anp‖f ‖pp.

(vi) In summary, in the sense of Lp(Rn), we have

Lp(Rn) =
2n∑
j=1

Hp
σj(R

n).

Remark 3.1: For the non-uniqueness issue of the Hardy space decomposition, we will
show that

⋂2n
j=1H

p
σj(R

n) is a non-empty set. We will prove it in Section 4.
In order to prove Theorem 3.1, we need the following lemmas. We note that the proof

of Theorem 3.1 is at the end of this section.
Lemma 3.1: Let �σ1 be the first octant of R

n. Suppose that 0 < p < 1 and R is a rational
function with the form

R(z) = P(z)
Q(z)

,

where P(z) is a polynomial of z, andQ(z) = Q1(z1)Q2(z2) · · ·Qn(zn), Q(zk) is a polynomial
of zk, k = 1, 2, . . . , n. If R ∈ Lp(Rn)andR(z) is holomorphic inT�σ1

, thenR(z) ∈ Hp(T�σ1
).

Deng–Qian [8] proved the special case n = 1 of Lemma 3.1 and obtained the following
Lemma 3.1-1, which is needed for the proof of Lemma 3.1.

Lemma 3.1-1 [8]: Suppose that 0 < p < 1 and R is a rational function with R ∈ Lp(R). For
k = ±1, if R(z) is analytic in the half plane Ck, then R ∈ Hp(Ck).

In order to prove Lemma 3.1, we need the following Lemma 3.1-2 which is obtained in
our recently work [13]:

Lemma 3.1-2 [13]: If f (z) ∈ Hp(T�σj
), 0 < p < ∞, j = 1, 2, . . . , 2n, and f (x) is the

boundary limit of f (z). Then ϕ(y) is continuous convex and bounded in �σj , moreover,

‖f ‖p
Hp

σj
= sup

y∈�σj

ϕ(y) = ϕ(0, . . . , 0) = ‖f ‖pp,

where ϕ(y) = ∫
Rn |f (x + iy)|pdx, y ∈ �σj , j = 1, 2, . . . , 2n.

Proof of Lemma 3.1: We are to prove Lemma 3.1 by mathematical induction.
When n = 1, Lemma 3.1 is just Lemma 3.1-1.
Next, when n > 1, we assume that Lemma 3.1 holds for n− 1. Take n1 = n− 1, and fix

tn ∈ R\Z0(Qn), where Z0(Qn) = {zn : Qn(zn) = 0}. We consider the function r of n − 1
real variables defined by

r(x1, x2 . . . , xn−1) = R(x1, . . . , xn−1, tn),

where (x1, x2 . . . , xn−1) ∈ R
n−1. The Fubini Theorem ensures that r(x1, x2 . . . , xn−1)

belongs to Lp(Rn−1) for almost all tn ∈ R\Z0(Qn). Moreover, it is easy to see that the
rational function r(z1, . . . , zn−1) satisfies the assumptions of Lemma 3.1.
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Therefore, by the induction hypothesis, we obtain that r(z1, . . . , zn−1) ∈ Hp(T
�n−1

σ1
),

where T
�n−1

σ1
denotes the tube with the first octant of R

n−1 as base.
By Lemma 3.1-2,∫

Rn−1
|r(x1 + iy1, . . . , xn−1 + iyn−1)|p dx1 · · · dxn−1

≤
∫

Rn−1
|r(x1, . . . , xn−1)|p dx1 · · · dxn−1.

That is ∫
Rn−1

|R(x1 + iy1, . . . , xn−1 + iyn−1, xn)|p dx1 · · · dxn−1

≤
∫

Rn−1
|R(x1, . . . , xn−1, xn)|p dx1 · · · dxn−1. (7)

Integrating both sides of the last inequality with respect to xn, we have∫
Rn

|R(x1 + iy1, . . . , xn−1 + iyn−1, xn)|p dx1 · · · dxn ≤
∫

Rn
|R(x1, . . . , xn)|p dx1 · · · dxn.

(8)
By the Fubini Theorem,∫

Rn−1

(∫
R

|R(x1 + iy1, . . . , xn−1 + iyn−1, xn)|p dxn
)
dx1 · · · dxn−1 ≤

∫
Rn

|R(x)|p dx.
(9)

So, fix (y1, . . . , yn−1), for almost all (x1, . . . , xn−1) ∈ R
n−1, we have∫

R

|R(x1 + iy1, . . . , xn−1 + iyn−1, xn)|p dxn < ∞.

That is, rational function R(x1 + iy1, . . . , xn−1 + iyn−1, xn) as a function of xn belongs
to Lp(R). Moreover, since R(z1, . . . , zn) is holomorphic in T�σ1

, R(z1, . . . , zn) as a func-
tion of zn is also holomorphic in upper-half plane C

+. Due to the result for n = 1,
R(z1, . . . , zn−1, zn) as a function of zn is a member of Hp(C+). By Lemma 3.1-2 again,∫

R

R(z1, . . . , zn−1, xn + iyn)|p dxn ≤
∫

R

|R(z1, . . . , zn−1, xn)|p dxn.

Integrating both sides of the last inequality with respect to x1, . . . , xn−1, we have∫
Rn−1

(∫
R

|R(x1 + iy1, . . . , xn−1 + iyn−1, xn + iyn)|p dxn
)
dx1 · · · dxn−1

=
∫

Rn
|R(x + iy)|p dx

≤
∫

Rn−1

(∫
R

|R(x1 + iy1, . . . , xn−1 + iyn−1, xn)|p dxn
)
dx1 · · · dxn−1. (10)

COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 613



Together with (9) and (10), we obtain∫
Rn

|R(x + iy)|p dx ≤
∫

Rn
|R(x)|p dx.

Due to the analyticity of the rational function R(z) in T�σ1
, we get R(z) ∈ Hp(T�σ1

). The
proofs for the other octants are similar. So the proof of Lemma 3.1 is complete. �

Similarly to Lemma 3.1, we also can get the analogous results about the other octants as
follows.
Corollary 3.1: Let �σj (j = 1, 2, . . . , 2n) be all the octants of R

n. Suppose that 0 < p < 1
and R is a rational function with the form

R(z) = P(z)
Q(z)

,

where P(z) is a polynomial of z, and Q(z) = Q1(z1)Q2(z2) · · ·Qn(zn), where for each k,
Qk(zk) is a polynomial of zk, k = 1, 2, . . . , n. If R ∈ Lp(Rn) and R(z) is holomorphic in
T�σj

, then R(z) ∈ Hp(T�σj
), j = 1, 2, . . . , 2n.

Lemma 3.2: If 0 < p < 1, f ∈ Lp(Rn), then, for ε > 0, there exist a sequence of rational
functions {Rk(x)}, Rk ∈ A, such that

∞∑
k=1

||Rk||pp ≤ (1 + ε)‖f ‖pp, (11)

and

f =
∞∑
k=1

Rk, (12)

in Lp(Rn), where

A =
{
R(x) = P(x)

(1 + x21)l1 · · · (1 + x2n)ln
: 2lj > degjP, j = 1, 2, . . . , n

}
,

P(x) = ∑
(k) α(k)x

k1
1 · · · xknn is a polynomial of x = (x1, x2, . . . , xn) ∈ R

n, αk are constants,
k = (k1, k2, . . . , kn), and degjP = sj, j = 1, 2, . . . , n.

Proof: We assume that f ∈ L∞
c (Rn), and let

C0(R
n) =

{
f : f is continuous in R

n, lim|x|→∞ f (x) = 0
}

.

It is obviously that A is a subalgebra of C0(R
n) and A separates points. Since R

n is a
local compact Hausdorff space, C0(R

n) is a Banach algebra with the supremum norm
‖f ‖ = sup{f (x) : x ∈ R

n}. The Stone–Weierstrass theorem assures that A is dense in
C0(R

n).
Suppose that 0 < p < ∞, and f ∈ Lp(Rn). Let

fN (x) = f (x)X{x:|x|≤N;|f (x)|≤N}(x).
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It is clear to see that, |fN (x)| ≤ N , and

suppfN ⊂ B(0,N) = {x : |x| ≤ N}.

Moreover, |fN (x) − f (x)| ≤ 2|f (x)| ∈ Lp(Rn), and, limN→∞ |fN (x) − f (x)|p = 0. Thus,
by the Lebesgue dominated convergence theorem, we have

lim
N→∞

∫
Rn

|fN (x) − f (x)|pdx =
∫

Rn
lim

N→∞ |fN (x) − f (x)|pdx = 0.

Therefore, for ε0 > 0, there exists an integer N > 1, such that

||fN − f ||pp < ε0/3. (13)

Because fN (x) is a measurable function, according Lusin Theorem, there exists a function
g0 ∈ C0(R

n), such that

suppg0 ⊂ B(0,N), |g0(x)| ≤ N , m(EN ) < ε0/3(2N)p,

where EN = {x : g0(x) �= fN (x)}. Therefore,∫
Rn

|g0(x) − fN (x)|pdx =
∫
B(0,N)

|g0(x) − fN (x)|pdx

≤ (2N)p
∫
EN

dx < ε0/3. (14)

Thus, we obtain

‖g0 − f ‖pp = ‖g0 − fN + fN − f ‖pp ≤ ‖g0 − fN‖pp +‖fN − f ‖pp < ε0/3+ ε0/3 = 2ε0/3. (15)

Taking integers l̃k such that p̃lk > 1, k = 1, 2, . . . , n, the fact suppg0 ⊂ B(0,N) implies

g0(x)
n∏

k=1

(1 + x2k )̃
lk ∈ C0(R

n).

Since A is dense in C0(R
n), there exists rational functions r(x) ∈ A, such that∣∣∣∣∣r(x) − g0(x)

n∏
k=1

(1 + x2k )̃
lk

∣∣∣∣∣ < (ε0/3)1/p. (16)

In fact, r(x) can be written as

r(x) = P(x)∏n
k=1 (1 + x2k)

lk
,
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where P(x) = ∑
(k) αkx

k1
1 · · · xknn , degjP < 2lj, j = 1, 2, . . . , n. Then, by (16),∣∣∣∣∣ P(x)∏n
k=1 (1 + x2k)

lk
− g0(x)

n∏
k=1

(1 + x2k )̃
lk

∣∣∣∣∣ < ε0

3πn ,

or ∣∣∣∣∣ P(x)∏n
k=1 (1 + x2k)

lk+̃lk
− g0(x)

∣∣∣∣∣ < (ε0/3)
1
p

πn∏n
k=1 (1 + x2k )̃

lk
.

Obviously, Q(x) = P(x)∏n
k=1 (1+x2k)

lk+̃lk
∈ A. Thus,

∫
Rn

|Q(x) − g0(x)|pdx <
1

πn

∫
Rn

(ε0/3)∏n
k=1 (1 + x2k)

p̃lk
dx < ε0/3.

Therefore, for any ε0 > 0, there exists Q(x) ∈ A such that

‖Q − f ‖pp = ‖Q − g0 + g0 − f ‖pp ≤ ‖Q − g0‖pp + ‖g0 − f ‖pp < ε0.

Thus, for any ε > 0, taking εk = ‖f ‖ppε0
4k+3 , k = 1, 2, . . . , there exist Qk(x) ∈ A, such that

‖Qk − f ‖pp < εk.

Moreover, the function Qk(z) is a rational function satisfying

‖Qk‖pp = ‖Qk − f + f ‖pp ≤ ‖Qk − f ‖pp + ‖f ‖pp < εk + ‖f ‖pp =
(
1 + ε

4k+3

)
‖f ‖pp.

Thus, the sequence of rational functions Qk(z) can be chosen such that

‖Qk−Qk−1‖pp = ‖Qk− f + f −Qk−1‖pp ≤ ‖Qk− f ‖pp+‖f −Qk−1‖pp < 2εk, (k = 2, 3, . . . ).

Let
R1(z) = Q1(z), Rk(z) = Qk(z) − Qk−1(z), (k = 2, 3, . . . ).

Then {Rk(z)} is a sequence of rational functions satisfying (11) and (12). This completes
the proof of Lemma 3.2.

Lemma 3.3: Suppose that 0 < p < 1 and R ∈ Lp(Rn)
⋂A is a rational function, where

A is the same as the A in Lemma 3.2. Then, there exist 2n rational functions Rσj(z) ∈
Hp(T�σj

), j = 1, 2, . . . , 2n, such that

R(z) =
2n∑
j=1

Rσj(z),

and
2n∑
j=1

‖Rσj‖pp ≤ Cnp‖R‖pp, (17)
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where Cnp = 2n
(
21−pπ
1−p

)n
.

In order to prove Lemma 3.3, we need the following result, denoted by Lemma 3.3-1.
Lemma 3.3-1: If σj(k) is defined as in introduction part, then there is

2n∑
j=1

∏n
k=1 β(zk)mkσj(k)∏n

k=1 (β(zk)mkσj(k) − eiϕkσj(k))
= 1,

where ϕ = (ϕ1,ϕ2, . . . ,ϕn) ∈ R
n and

β(ξ) = i − ξ

i + ξ
, ξ ∈ C.

Proof of Lemma 3.3-1: Since σj(k) = 1 or−1 for all k = 1, 2, . . . , nwhen j = 1, 2, . . . , 2n,
we have the following formula∏n

k=1 β(zk)mkσj(k)∏n
k=1 (β(zk)mkσj(k) − eiϕkσj(k))

=
∏

σj(k)=+1

β(zk)mk

β(zk)mk − eiϕk
∏

σj(k)=−1

β(zk)−mk

β(zk)−mk − e−iϕk

=
∏

σj(k)=+1

β(zk)mk

β(zk)mk − eiϕk
∏

σj(k)=−1

eiϕkβ(zk)mk

(eiϕk − β(zk)mk)β(zk)mk

=
∏

σj(k)=+1

β(zk)mk

β(zk)mk − eiϕk
∏

σj(k)=−1

β(zk)mk

β(zk)mk − eiϕk
∏

σj(k)=−1

−eiϕk

β(zk)mk

=
n∏

k=1

β(zk)mk

β(zk)mk − eiϕk
∏

σj(k)=−1

−eiϕk

β(zk)mk

=
∏

σj(k)=−1
−eiϕk

β(zk)mk∏n
k=1

(
1 − eiϕk

β(zk)mk

) .

Therefore,

2n∑
j=1

∏n
k=1 β(zk)mkσj(k)∏n

k=1 (β(zk)mkσj(k) − eiϕkσj(k))
=

2n∑
j=1

∏
σj(k)=−1

−eiϕk
β(zk)mk∏n

k=1

(
1 − eiϕk

β(zk)mk

) = 1.

Thus, the proof of Lemma 3.3-1 is complete. �
Proof of Lemma 3.3: Let R(x) ∈ Lp(Rn)

⋂A be a rational function, so that R(z) can be
written as

R(z) = P(z)∏n
j=1 (1 + z2j )

lj
=
∑

(k) α(k)z
k1
1 · · · zknn∏n

j=1 (1 + z2j )
lj

,
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where p(2lj − degjP) > 1 for all j = 1, 2, . . . , n. Let

β(ξ) = i − ξ

i + ξ
, ξ ∈ C,

as in Lemma 3.3-1. It is easy to know that β(x) = eiθ(x), where θ(x) = arg (i−x)−arg (i+
x) ∈ ( − π ,π) for x ∈ R.

For each ϕ = (ϕ1,ϕ2, . . . ,ϕn) ∈ R
n, z ∈ T�σj

. The rational functions Rσj(z,ϕ) (j =
1, 2, . . . , 2n) are defined as follows.

Rσj(z,ϕ) =
∏n

k=1 β(zk)mkσj(k)∏n
k=1 (β(zk)mkσj(k) − eiϕkσj(k))

R(z),

wheremk > lk + n (k = 1, 2, . . . , n) are positive integers .
Then by Lemma 3.3-1, we have

R(z) =
2n∑
j=1

Rσj(z,ϕ).

Next we are to prove that Rσj(z,ϕ) ∈ Hp(T�σj
), for all j = 1, 2, . . . , 2n.

Now we only consider the case that the base is the first octant of R
n, because proofs of

the other octants are similar. For any z ∈ T�σ1
,

Rσ1(z,ϕ) =
∏n

k=1 β(zk)mk∏n
k=1 (β(zk)mk − eiϕk)

R(z)

=
∏n

k=1 (
i−zk
i+zk

)mk∏n
k=1 (β(zk)mk − eiϕk)

P(z)∏n
k=1 (zk − i)lk(zk + i)lk

= P(z)
n∏

j=1

( − 1)mj(zj − i)mj−lj

(zj + i)lj+mj(β(zj)mj − eiϕj)
. (18)

Since mk > lk, and |β(zk)| < 1, |eiϕk | = 1, for all k = 1, 2, . . . , n, the function Rσ1(z) is a
rational function which is holomorphic in the tube T�σ1

.
Moreover, set

Iσ1 =
∫

Rn

∫
(−π ,π)n

|Rσ1(x,ϕ)|p dϕdx.

Then,

Iσ1 =
∫

Rn

∫
(−π ,π)n

∣∣∣∣∣
∏n

k=1 β(xk)mkσ1(k)∏n
k=1 (β(xk)mkσ1(k) − eiϕkσ1(k))

R(x)

∣∣∣∣∣
p

dϕ1 · · · dϕndx

=
∫

Rn

∫ π

−π

· · ·
∫ π

−π

n∏
k=1

|R(x)|p
|1 − eiϕkσ1(k)−imkθ(xk)|p dϕ1 · · · dϕndx. (19)
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Observe that ∫ π

−π

1
|1 − eiϕkσj(k)−imkθ(wk)|p dϕk

=
∫ π

−π

1
|1 − eiθσj(k)|p dθ

=
∫ π

−π

dθ

2p| sinp ( θ
2 )|

≤ 4
2p

∫ π
2

0

dθ

( 2θ
π

)p
= 21−pπ

1 − p
. (20)

By (19) and (20),

Iσ1 ≤
(
21−pπ

1 − p

)n ∫
Rn

|R(x)|p dx =
(
21−pπ

1 − p

)n

‖R‖pp.

Similarly,

Iσk ≤
(
21−pπ

1 − p

)n

‖R‖pp
for k = 2, 3, . . . , 2n.

Therefore,

2n∑
k=1

Iσk =
∫

(−π ,π)n

2n∑
k=1

∫
Rn

|Rσk(x,ϕ)|p dxdϕ ≤ 2n
(
21−pπ

1 − p

)n

‖R‖pp.

Thus, there exists a ϕ = (ϕ1, . . . ,ϕn) ∈ ( − π ,π)n, such that

2n∑
k=1

‖Rσk‖pp ≤ 2n
(
21−pπ

1 − p

)n

‖R‖pp,

where Rσk(x) = Rσk(x,ϕ), k = 1, 2, . . . , 2n. This shows that the inequality (17) holds. It is
easy to know that

‖Rσk‖pp ≤ 2n
(
21−pπ

1 − p

)n

‖R‖pp,
for all k = 1, 2, . . . , 2n. So rational functions Rσk(x) ∈ Lp(Rn). By Lemma 3.1, and that
Rσk(z) is holomorphic in T�σk

, we have

Rσk(z) ∈ Hp(T�σk
)

for all k = 1, 2, . . . , 2n.
Thus, the proof of Lemma 3.3 is complete. �
We still need the following lemmas.

Lemma 3.4 [10]: Let B be an open cone in R
n. Suppose F ∈ Hp(TB), p > 0, and B0 ⊂ B

satisfies d(B0,Bc) = inf {|y1 − y2|; y1 ∈ B0, y2 ∈ Bc} ≥ ε > 0, then there exists a constant
Cp(ε), depending on ε and p but not on F, such that

sup
z∈TB0

|F(z)| ≤ Cp(ε)‖F‖Hp .
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Given below offers a more precise estimation than that obtained in above Lemma 3.4.
Lemma 3.5: Suppose that f ∈ Hp(T�), p > 0, and T� is the tube with its base� as the first
octant of Rn. If let fδ(z) = f (z + iδ), for any z = x + iy ∈ T� and δ = (δ1, δ2, . . . , δn) ∈ �,
then there holds

sup
z∈T�

|fδ(z)| ≤ Cp‖f ‖Hp(δ1 · · · δn)−
1
p ,

where Cp = ( 2
π
)
n
p .

We note that the proof of Lemma 3.5 is obtained in our recent work [13].

3.1. Proof of Theorem 3.1

Based on the above lemmas, we are now to prove Theorem 3.1.
Proof of Theorem 3.1: When 0 < p < 1, by Lemma 3.2, for any f (x) ∈ Lp(Rn), and ε > 0,
there exists a sequence of rational functions {Rk(x)}, such that

∞∑
k=1

||Rk||pp ≤ (1 + ε)‖f ‖pp, (21)

and

f =
∞∑
k=1

Rk, (22)

in Lp(Rn). For each k = 1, 2, . . ., by Lemma 3.3, there exist 2n rational functions Rkσj(z) ∈
Hp(T�σj

) (j = 1, 2, . . . , 2n), such that

Rk(z) =
2n∑
j=1

Rkσj(z), (23)

and
2n∑
j=1

‖Rkσj‖pp ≤ Cnp‖Rk‖pp. (24)

Therefore,

∞∑
k=1

2n∑
j=1

||Rkσj ||pp ≤
∞∑
k=1

Cnp‖Rk‖pp ≤ (1 + ε)Cnp‖f ‖pp,

f =
∞∑
k=1

2n∑
j=1

Rkσj ,

in Lp(Rn). By Lemma 3.1-2,

‖Rkσj‖Hp
σj

= ‖Rkσj‖p, j = 1, 2, . . . , 2n,

which imply that the properties (4) and (5) hold.
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Moreover, for any δ = (δ1, δ2, . . . , δn) ∈ �σj , and j = 1, 2, . . . , 2n, by Lemmas 3.4 and
3.5, there exists a positive constantMδ < ∞ such that∣∣∣Rkσj(z + iδ)

∣∣∣ ≤ Mδ‖Rkσj‖p.

Hence, ∣∣∣∣∣
m∑
k=1

Rkσj(z + iδ)

∣∣∣∣∣
p

≤
m∑
k=1

|Rkσj(z + iδ)|p ≤ Mδ

m∑
k=1

‖Rσj‖pp,

for z ∈ T�σj
. This implies that the series

∑∞
k=1 Rkσj(z) uniformly converges to a function

fσj(z) in the tube domain T�δ
σj

= {z = x + iy ∈ C
n : x ∈ R

n, σj(l)yl > σj(l)δl , l =
1, 2, . . . , n} for any δ = (δ1, δ2, . . . , δn) ∈ �σj .

As a consequence, the function fσj(z) is holomorphic in T�σj
. Property (4) implies that

property (6) holds. By properties of Hardy spaces on tubes, the non-tangential boundary
limit fσj(x) of function fσj(z) ∈ Hp(T�σj

) exists for every j = 1, 2, . . . , 2n.
Therefore, property (5) implies that

f (x) =
2n∑
j=1

fσj(x)

holds almost everywhere, and moreover,

‖f ‖pp ≤
2n∑
j=1

‖fσj‖pp ≤ Ap‖f ‖pp.

Thus, the proof of Theorem 3.1 is complete. �

4. Non-uniqueness of Hardy space decomposition

In this section, we are to answer the questions asked in Remark 3.1 of Theorem 3.1. For
the one dimension, A.B. Aleksandrov [7,14] obtained the following theorem.

Theorem B [7,14]: Let 0 < p < 1 and Xp denote the Lp closure of the set of f ∈ Lp(R)

which can be written in the form

f (x) =
N∑
j=1

cj
x − aj

, aj ∈ R, cj ∈ C.

Then
Xp = Hp

+(R) ∩ Hp
−(R).

We note that, A.B. Aleksandrov’s proof of Theorem M [7,14] is rather long involving
vanishing moments and the Hilbert transformation. Deng and Qian [8] present a more
straightforward proof for Theorem M. In this section, our aim is to extend Theorem M
to higher dimensions. In order to do this, we need first to extend the following Theorem
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C obtained by J.B. Garnett ([1]) and Theorem D obtained by Deng–Qian [8] to higher
dimensions.

Theorem C [1]: Let N be a positive integer. For 0 < p < ∞, Np > 1, the class wN is dense
in Hp(C+), where wN is the family of Hp(C+) functions satisfying

(i) f (z) is infinitely differentiable in C+,
(ii) |z|Nf (z) → 0 as z → ∞.

Theorem D [8]: Let N be a positive integer. For 0 < p < ∞, Np > 1, the class RN (i) is
dense in Hp(C+), and the class RN ( − i) is dense in Hp(C−). Where α ∈ C and RN (α) is
the family of rational functions f (z) = (z + α)−N−1P( 1

z+α
), P(w) are polynomials.

We obtain the following three theorems for higher dimensions.

Theorem 4.1: Let N be a positive integer. For 0 < p < ∞, pN > 1, the class wN is dense
in Hp(T�), where wN is the family of Hp(T�) functions satisfying

(i) f (z) is infinitely differentiable in T� ,
(ii) |z|Nf (z) → 0 as |z| → ∞, where |z| → ∞ means that zj → ∞, 1 ≤ j ≤ n, z =

(z1, z2, . . . , zn) ∈ T�.

Proof: We can approximate f (z) ∈ Hp(T�) by the smooth function f (z + i/m) = f (z1 +
i/m, . . . , zn+ i/m). In fact, the property that the existence of the boundary limits functions
of Hardy space functions assures that

‖fm − f ‖Hp → 0, m → ∞.

We will construct the special functions gk(z) such that

(a) gk(z) ∈ wN ,
(b) |gk(z)| ≤ 1, z ∈ T� ,
(c) |gk(z)| → 1, z ∈ T� , as k → ∞.

Before we construct the above functions gk(z), we note that the functions

fm(z) = gm(z)f (z + i/m)

in wN and then obtain the desired approximation.
That is to say, if there exist the special functions gk(z), we can complete the proof of

Theorem 4.1.
As the heart of the proof, we are to construct the functions gk(z) in the following. Let

(w1,w2, . . . ,wn) ∈ T� , (αk,αk, . . . ,αk) ∈ R
n, 0 < αk < 1, and αk → 1 as k → ∞.

Consider the function

hk(w) =
n∏

j=1

ϕj(wj),

where ϕj(wj) =
(

wj+αk
1+αkwj

)N+1
, j = 1, 2, . . . , n has infinite (N + 1)−fold zero at −αk.

Then,

|hk(w)| =
∣∣∣∣∣∣
n∏

j=1

ϕj(wj)

∣∣∣∣∣∣ =
n∏

j=1

∣∣∣∣ wj + αk

1 + αkwj

∣∣∣∣N+1
< 1. (25)
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Fixing N , hk(w) converges to 1 uniformly on the compact set D \
n⋃

k=1
Ek, where

D = D1 × D2 × · · · × Dn, Dk = |z| < 1, k = 1, 2, . . . , n,

and
Ek = {(w1, . . . ,wj−1,−αk,wj, . . . ,wn) : wj ∈ Dk, k �= j}.

Then, for w = (w1,w2, . . . ,wn) =
(
i−z1
i+z1 , . . . ,

i−zn
i+zn

)
and α = (αk,αk, . . . ,αk), we define

the functions
gk(z) = hk(αkw).

Below we verify that the function gk(z) satisfies the three conditions (a), (b), and (c).
In fact, for condition (a),

gk(z) = hk(αkw) =
n∏

j=1

(
αkwj + αk

1 + α2
kwj

)N+1

=
n∏

j=1

αN+1
k

(
wj + 1

1 + α2
kwj

)N+1

=
n∏

j=1

αN+1
k

⎛⎝ i−zj
i+zj + 1

1 + α2
k
i−zj
i+zj

⎞⎠N+1

=
n∏

j=1

αN+1
k

(
2i

(1 + α2
k)i + (1 − α2

k)zj

)N+1

.

It is clearly that gk(z) satisfies the first condition (i) of the class wN . Moreover, there holds
|z|Ngk(z) → 0 as |z| → ∞. This implies that gk(z) satisfies the second condition (ii) of
the class wN . Therefore, gk(z) ∈ wN , which shows that gk(z) satisfies the condition (a).

For condition (b), from (25), we can get that

|gk(w)| = |hk(αkw)| < 1.

For (c), it is clear that

gk(w) = hk(αkw) → 1, k → ∞, z ∈ T�.

Thus, the proof is complete.

We shall notice that the condition Np > 1 implies that the above class wN is contained
in Hp(T�). Let α = (α1,α2, . . . ,αn) ∈ C

n and let RN (α) be the family of the rational
functions

f (z) = (z1 + α1)
−N−1(z2 + α2)

−N−1 · · · (zn + αn)
−N−1P

(
1

z1 + α1
, . . . ,

1
zn + αn

)
,

where z = (z1, z2, . . . , zn) ∈ C
n and P(w) are polynomials.We notice that the classRN (α)

is contained in the class wN for Imαj > 0, j = 1, 2, . . . , n. Thus, we obtain the following
results.
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Theorem 4.2: Let N be a positive integer. For 0 < p < ∞ and Np > 1, the class
RN (i, i, . . . , i) is dense in Hp(T�).

Corollary 4.1: Let N be a positive integer. For 0 < p < ∞ and Np > 1, the class
RN (σj(1)i, . . . , σj(n)i) is dense in Hp(T�σj

), j = 1, 2, . . . , 2n.
The proof of Corollary 4.1 is similar to the proof of Theorem 4.2, so we only prove

Theorem 4.2.
Proof of Theorem 4.2: If f (z) ∈ Hp(T�), Np > 1, then, for any ε > 0, by Theorem 4.1,
there exists function fN in Hp(T�)

⋂
C∞(T�) such that

lim|z|→∞,z∈T�

|z|N+1fN (z) = 0,

and
‖fN − f ‖Hp < ε.

The fractional linear mapping

zj = α(wj) = i
1 − wj

1 + wj
, j = 1, 2, . . . , n,

is a conformal mapping from the n-tuple unit disc

D = D1 × D2 × · · · Dn = {
(w1,w2, . . . ,wn) ∈ C

n : |wj| < 1, j = 1, 2, . . . , n
}

to the first octant of C
n, T� = {(z1, z2, . . . , zn) ∈ C

n : Imzj > 0, j = 1, 2, . . . , n}.
Its inverse mapping is

wj = β(zj) = i − zj
i + zj

, j = 1, 2, . . . , n.

Let
hN (w) = fN (α(w1), . . . ,α(wn))

and hN (w1, . . . ,wj,−1,wj+1, . . . ,wn) = 0, j = 1, 2, . . . , n.
Then hN (w) is continuous in the closed disc D, and

hN (w)

∣∣∣∣i1 − w1

1 + w1

∣∣∣∣N+1
· · ·
∣∣∣∣i1 − wn

1 + wn

∣∣∣∣N+1
→ 0,

aswj → w0 ∈ F, |w−w0| → 0, for j = 1, 2, . . . , n andw ∈ D\F, whereF = ⋃n
j=1 Fj, Fj =

{(w1, . . . ,wj,−1,wj+1, . . . ,wn) : |wj| ≤ 1, j = 1, 2, . . . , n}.
Therefore, for w0 ∈ F,

hN (w)∏n
j=1 (1 + wj)N+1 → 0,

as wj → w0, |wj| ≤ 1, j = 1, 2, . . . , n.
Let

h̃N (w) =
{ hN (w)∏n

j=1 (1+wj)N+1 w ∈ D\F
0 w ∈ F

(26)
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Then h̃N (w) is holomorphic in the n-tuple D and continues in the closed set D.
By the Stone–Weierstrass Theorem, there exists a polynomial PN (w) = PN (w1, . . . ,wn)

such that ∣∣̃hN (w) − PN (w + 1)
∣∣ < ε, |wj| ≤ 1, wj �= −1, j = 1, 2, . . . , n,

that is∣∣∣∣∣∣hN (w)/

n∏
j=1

(1 + wj)
N+1 − PN (w + 1)

∣∣∣∣∣∣ < ε, |wj| ≤ 1, wj �= −1, j = 1, 2, . . . , n.

Thus, ∣∣∣∣∣∣fN (α(w1), . . . ,α(wn)) −
n∏

j=1

(1 + wj)
N+1PN (w + 1)

∣∣∣∣∣∣ ≤ ε

n∏
j=1

|1 + wj|N+1,

where |wj| ≤ 1, wj �= 1, j = 1, 2, . . . , n.
Since zj = α(wj) = i 1−wj

1+wj
and wj = β(zj) = i−zj

i+zj for all j = 1, 2, . . . , n, the last
inequality becomes∣∣∣∣∣∣fN (z) −

n∏
j=1

(
2i

i + zj

)N+1
PN
(

2i
i + zn

, . . . ,
2i

i + zn

)∣∣∣∣∣∣ ≤ ε

n∏
j=1

∣∣∣∣ 2i
i + zj

∣∣∣∣N+1
,

for z ∈ T� , Imzj > 0, j = 1, 2, . . . , n. Therefore, we can obtain that

∫
Rn

|fN (x + iy) − R(x + iy)|p dx < εp2(N+1)p
n∏

j=1

∫ +∞

−∞

∣∣∣(1 + x2j )
∣∣∣−(N+1)p

dxj < ∞,

where z = (z1, z2, . . . , zn) ∈ T� and

R(x + iy) =
n∏

j=1

(
2i

i + zj

)N+1
PN
(

2i
i + zn

, . . . ,
2i

i + zn

)
∈ RN (i, i, . . . , i).

This concludes that the class RN (i, i, . . . , i) is dense in Hp(T�). Therefore, the proof of
Theorem 4.2 is complete. �

The following result shows that the Hardy space decomposition of Lp(Rn) for 0 < p < 1
is not unique and the intersection space

⋂2n
j=1H

p
σj(R

n) is a non-empty set.
Theorem 4.3: Let 0 < p < 1 and let Xp denote the Lp closure of the set of Lp(Rn)-functions
of the form

f (x1, x2, . . . , xn) = P(x1, . . . , xn)∏n
k=1

∏m
j=1 (xk − akj)

,

where P(x1, . . . , xn) = ∑
(s) a(s)xs11 · · · xsnn , l = max{l1, . . . , ln}, (m − l)p > 1, and akj �=

akm ∈ R for j �= m and k = 1, 2, . . . , n.
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Then

Xp =
2n⋂
j=1

Hp
σj(R

n) �= ∅.

Proof: Firstly, we will show that Xp ⊆ ⋂2n
j=1H

p
σj(R

n). Let

f (z1, z2, . . . , zn) =
∑

(s) a(s)zs11 · · · zsnn∏n
k=1

∏m
j=1 (zk − akj)

,

ak = (ak1, . . . , akm) ∈ R
n, k = 1, 2, . . . , n.

Then f (z) is a rational function with singular part being contained in
⋃n

l=1 Gl , where
Gl = {(z1, . . . , zn) : Imzl = 0, zk ∈ C, k �= l}. It is clear that the set Gj is not in the octant
T�σj

and
⋃n

l=1 Gl ⊆ ⋂2n
j=1 ∂T�σj

. So f (z) is holomorphic in T�σj
, for all j = 1, 2, . . . , 2n.

Moreover,

∫
Rn

|f (x + iy)|p dx =
∫

Rn

∣∣∣∑(s) a(s)zs11 · · · zsnn
∣∣∣p∣∣∣∏n

k=1
∏m

j=1 (zk − akj)
∣∣∣p dx

≤
∑
s

|a(s)|p
n∏

k=1

∫ +∞

−∞

∣∣zskk ∣∣p∣∣∣∏m
j=1 (zk − akj)

∣∣∣p dxk. (27)

Observe that, the function

Rk(zk) = zskk∏m
j=1 (zk − akj)

,

is holomorphic in the upper-half and the lower-half complex planes. Moreover, we can
prove that Rk(xk) ∈ Lp(R). In fact,

∫ +∞

−∞
|Rk(xk)|p dxk =

∫ +∞

−∞

∣∣xskk ∣∣p∣∣∣∏m
j=1 (xk − akj)

∣∣∣p dxk

=
∫

|xk|≤M

∣∣xskk ∣∣p∣∣∣∏m
j=1 (xk − akj)

∣∣∣p dxk +
∫

|xk|>M

∣∣xskk ∣∣p∣∣∣∏m
j=1 (xk − akj)

∣∣∣p dxk.

whereM is sufficiently large so that the interval (−M, M) contains all the poles of Rk(xk).
Then, for the first integral in the right hand of the last inequality,

∫
|xk|≤M

∣∣xskk ∣∣p∣∣∣∏m
j=1 (xk − akj)

∣∣∣p dxk ≤ Mskp
∫

|xk|≤M

dxk∏m
j=1 |xk − akj|p ,

which is finite since 0 < p < 1.
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For the other integral, we have∫
|xk|>M

∣∣xskk ∣∣p∣∣∣∏m
j=1 (xk − akj)

∣∣∣p dxk =
∫

|xk|>M

∣∣xskk ∣∣p∣∣∣xmk ∏m
j=1 (1 − akj/xk)

∣∣∣p dxk

≤
∫

|xk|>M
dxk∏m

j=1 |1 − akj/xk|p|x|(m−sk)p
k

≤
m∏
j=1

∣∣M − akj
∣∣p

|M|p
∫

|xk|>M
dxk

|x|(m−sk)p
k

,

which is also finite since (m − sk)p > 1. Therefore, Rk(xk) ∈ Lp(R).

By Lemma 3.1, together with Rk(xk) ∈ Lp(R) and the analyticity of Rk(xk), we get that
Rk(zk) ∈ Hp(C±). Thus, ‖R‖Hp ≤ ‖R‖Lp; and the relation (27) becomes∫

Rn
|f (x + iy)|p dx ≤

∑
s

|a(s)|p‖R‖npLp < ∞.

Hence, we have

f (z) ∈
2n⋂
j=1

Hp(T�σj
), j = 1, 2, . . . , 2n.

This shows that

f (x) ∈
2n⋂
j=1

Hp
σj(R

n).

Hence Xp ⊆ ⋂2n
j=1H

p
σj(R

n) as desired.
Next, we will show Xp ⊇ ⋂2n

j=1H
p
σj(R

n).

Let there exist fσj(z) ∈ Hp(T�σj
), j = 1, 2, . . . , 2n, such that

f (x) = fσj(x) = fσl (x),

for all 1 ≤ j, l ≤ 2n, a.e. x ∈ R
n.

By Theorem 4.2 and Corollary 4.1, for any ε > 1, there exist

Rσj ∈ RN (σji)

such that
‖fσj − Rσj‖pHp

σj
= ‖f − Rσj‖pp <

ε

4
,

for j = 1, 2, . . . , 2n.
The fact Rσj ∈ RN (σji) implies that there exist polynomials Pσj , j = 1, 2, . . . , 2n, such

that for β(zk) = i−zk
i+zk

, k = 1, 2, . . . , n,

Rσj(z) = Pσj((β(z1))σj(1) + 1, . . . , (β(zn))σj(n) + 1)
n∏

k=1

(
βσj(k)(zk) + 1

)N+1
,
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where (N + 1)p > 1, N + 1 > max{degPσj : j = 1, 2, . . . , 2n}.
It is easy to see that the singular part of Rσj(z) are contained in

⋃n
k=1Hk which is not in

T�σj
, whereHk = {(z1, . . . , zn) : zk = −σj(k)i, zl ∈ C, k �= l}. So Rσj(z) is a holomorphic

rational function in T�σj
, j = 1, 2, . . . , 2.

Let

R(z,ϕ) = Rσ1(z) +
∑2n

j=1
∏n

k=1 ( − eiϕk)
1+σj(k)

2
∏n

k=1 β(zk)
1−σj(k)

2 m(Rσj(z) − Rσ1(z))∏n
k=1 (β(zk)m − eiϕk)

,

where (m − max{degPσj : j = 1, 2, . . . , 2n} − N − 1)p > 1, and ϕ = (ϕ1, . . . ,ϕn) ∈ R
n.

We thus are aware that the singular part of the rational function R(z,ϕ) is contained in⋂2n
j=1 ∂T�σj

= R
n. So R(z,ϕ) is holomorphic in

⋃2n
j=1 T�σj

.
Note that β(xk) = eiθ(xk), where θ(xk) = arg (ik − xk) − arg (ik + xk) ∈ [−π ,π] for

xk ∈ R. Moreover, set

J =
∫

Rn

∫
[−π ,π]n

|R(x,ϕ) − Rσ1(x)|p dϕdx.

Then

J =
∫

Rn

∫
[−π ,π]n

∣∣∣∣∑2n
j=1

∏n
k=1 ( − eiϕk)

1+σj(k)
2

∏n
k=1 β(zk)

1−σj(k)
2 m(Rσj(x) − Rσ1(x))

∣∣∣∣p∣∣∏n
k=1 (β(zk)m − eiϕk)

∣∣p dϕdx

≤
2n∑
j=1

∫
Rn

∫
[−π ,π]n

|Rσj(x) − Rσ1(x)|p
n∏

k=1

∣∣∣∣∣∣ β(zk)
1−σj(k)

2 m

β(zk)m − eiϕk

∣∣∣∣∣∣
p

dϕdx

=
2n∑
j=1

∫
Rn

∫
[−π ,π]n

|Rσj(x) − Rσ1(x)|pdϕdx∏
σj(k)=1 |eimθ(xk) − eiϕk |p∏σj(k)=−1 |1 − eiϕk−imθ(xk)|p .

Observe that ∫ π

−π

1
|1 − eiϕk−imθ(wk)|p dϕk

=
∫ π

−π

1
|1 − eiθ |p dθ

=
∫ π

−π

dθ

2p| sinp ( θ
2 )|

≤ 4
2p

∫ π
2

0

dθ

( 2θ
π

)p
≤ 21−pπ

1 − p
, (28)

and similarly, ∫ π

−π

1
|eimθ(xk) − eiϕk |p dϕk

=
∫ π

−π

dθ

2p| sinp ( θ
2 )|

≤ 4
2p

∫ π
2

0

dθ

( 2θ
π

)p
≤ 21−pπ

1 − p
. (29)

628 G.-T. DENG ET AL.



From the above relations, we obtain

J ≤
(
21−pπ

1 − p

)n ∫
Rn

|Rσj(x) − Rσ1(x)|p dx.

Therefore, there is a real vector ϕ ∈ R
n such that

J ≤
(
21−pπ

1 − p

)n

(‖Rσj − f ‖pp + ‖f − Rσ1‖pp) ≤
(

2π
1 − p

)n
ε.

Thus, we have ∫
Rn

|R(x,ϕ) − f (x)|p dx

≤
∫

Rn
|R(x,ϕ) − Rσj(x)|p dx +

∫
Rn

|Rσj(x) − f (x)|p dx

≤
(

2π
1 − p

)n
ε + ε

4
. (30)

Hence, R(x,ϕ) ∈ Lp(Rn). This, together with the definition of R(x,ϕ), implies that
R(x,ϕ) ∈ Xp. Therefore, f (x) ∈ Xp. The proof is complete.
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