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In this paper we first prove an important formula for the fractional Laplacian, and 
then we use it to invert the Fueter mapping theorem for axially monogenic functions 
of degree k. In fact, we prove that for every axially monogenic function of degree k

f(x) = [A(x0, |x|) +
x

|x|
B(x0, |x|)]Pk(x), x ∈ Rn+1,

there exists a holomorphic intrinsic function fk in C such that

f(x) = τk(fk)(x) := (−Δ)k+(n−1)/2
(
�fk(x)Pk(x)

)
,

where n can be any positive integer, k can be any non-negative integer, �fk is the 
slice monogenic function induced by fk, and Pk(x) is an inner spherical monogenic 
polynomial of degree k. Using the maps τk, k = 0, 1, 2, . . ., we obtain a decomposition 
of a monogenic function for any value of the dimension n.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The original version of the Fueter theorem provides a way to generate quaternionic valued monogenic 
functions from holomorphic functions defined in the upper half complex plane C+, see [7]. Later, the Fueter 
theorem was generalized to Euclidean space. In details, let f0(z) = u(s, t) +iv(s, t) be a holomorphic function 
defined on O ⊂ C+, where u(s, t) and v(s, t) are real-valued. Let
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�f0(x) := u(x0, |x|) + x

|x|v(x0, |x|), (1.1)

where

�O := {x = x0 + x ∈ Rn+1 | (x0, |x|) ∈ O}, (1.2)

x ∈ �O, and x0, x := x1e1 + x2e2 + · · · + xnen denote the scalar and the 1-vector part of x, respectively. 
Here, �f0 is said to be the function induced by f0, and �O the set induced by O. Then, in �O, the function 
Δ(n−1)/2 �f0 is both left and right monogenic with respect to the generalized Cauchy-Riemann operator 
D = ∂x0 + ∂x1e1 + ∂x2e2 + · · ·+ ∂xn

en, where Δ(n−1)/2 denotes the fractional Laplace operator in the n + 1
real variables x0, x1, x2, · · · , xn.

When n is an odd positive integer, the Fueter theorem was proved by Sce in 1957 ([13]). The proof of 
Sce’s result is based on the computation of the pointwise differential operator Δ(n−1)/2, thus if n is an even 
positive integer Sce’s method of proof does not work.

Motivated by his study on the H∞-functional calculus of the Dirac operator on the sphere in general 
Euclidean spaces, Qian extended Fueter’s theorem to all positive integers n and, for an odd n, his result 
coincides with Sce’s, see [9–11]. In [9] Qian realized that it is not necessary to consider holomorphic functions 
defined in an open set of the upper half complex plane. Instead, one can consider open sets in C which 
are symmetric with respect to the real line and holomorphic intrinsic functions defined on this set. These 
holomorphic functions f0 are such that the induced function �f0, defined as in (1.1), is what in modern terms 
is called a slice hyperholomorphic (or slice monogenic) function. If f0 is intrinsic also �f0 is intrinsic and f0
and �f0 are in one-to-one correspondence.

After that, a further generalization of Fueter’s theorem appeared in [8,15], but see also the more recent 
[12] for an updated state-of-the-art of the theory. In the two papers [8,15] it is proved that

(−Δ)k+n−1
2

(
�f0(x)Pk(x)

)
is monogenic, where n can be any positive integer, k can be any non-negative integer and Pk(x) is an inner 
spherical monogenic polynomial of degree k.

Thus, we introduce the so-called generalized Fueter mapping τk. Let f0 be a holomorphic intrinsic function 
defined in C. We define the generalized Fueter mapping τk by

τk(f0) := (−Δ)k+n−1
2

(
�f0(x)Pk(x)

)
.

When k is a positive integer, the mapping τk can be written in two steps:

f0(z) = u(s, t) + iv(s, t) −→ �f0(x) = u(x0, |x|) + x

|x|v(x0, |x|)

−→ (−Δ)k+n−1
2

(
�f0(x)Pk(x)

)
,

where �f0 is induced by f0 and it is slice hyperholomorphic.
The generalized Fueter mapping τk maps a holomorphic intrinsic function defined in C to a monogenic 

function in Rn+1.
It is natural to consider the inverse problem, i.e., whether is it is possible to relate a monogenic function f

with its so-called Fueter primitive, namely with a holomorphic intrinsic function which gives f via Fueter’s 
theorem. This problem was studied in [2,3] in the case n ∈ N being odd; and in [6] for any n ∈ N and f
being axially monogenic of degree k = 0.
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Purpose of this paper is to generalize [3], to the case when n is any natural number and when f is any 
axially monogenic function of degree k defined on Rn+1. We will show that there exists a holomorphic 
intrinsic function fk in C such that τk(fk) = f . In other words, we shall prove that, for every axially 
monogenic function f of degree k, there exists a holomorphic intrinsic function fk such that

fk(z) −→ (−Δ)k+n−1
2

(
�fk(x)Pk(x)

)
= f(x), z ∈ C, x ∈ Rn+1,

for any n ∈ N and Pk(x) is an inner spherical monogenic polynomial of degree k ≥ 0. In [3], the authors 
prove that there exists a slice hyperholomorphic intrinsic function �fk such that Δk+n−1

2

(
�fk(x)Pk(x)

)
is 

monogenic, where n is any odd positive integer, k is any non-negative integer. Since there is a one-to-one 
correspondence between the holomorphic intrinsic function fk and the induced slice hyperholomorphic 
intrinsic function �fk, it is also immediate to show that the result in this paper generalizes the one proved 
in [3] for n odd.

Since, as it is well known, see Lemma 5.1, or [5], all monogenic functions can be decomposed as a 
convergent series of axially monogenic functions of degree k, we shall also generalize the analog result in [3]
by providing an inversion type theorem for general monogenic functions.

The structure of the paper is as follows. Section 2 contains some preliminary material on holomorphic 
intrinsic functions, Clifford analysis, and Fourier multipliers. Section 3 contains the proof of an important 
formula for the fractional Laplacian. In Section 4, we prove the inverse Fueter mapping theorem for axially 
monogenic functions of degree k: we consider an axially monogenic function f of degree k defined on Rn+1, 
and we prove that there exists a holomorphic intrinsic function fk defined in C such that τk(fk) = f . Finally, 
in Section 5, we prove an inversion type theorem for every monogenic function by using its decomposition
into axially monogenic functions of degree k.

2. Preliminary results

In this section we review some notations and basic facts useful in the sequel. We start by recalling the 
definition of Clifford algebra. Let {e1, e2, · · · , en} be an orthonormal basis of Euclidean space Rn, satisfying 
the relations e2

i = −1 for i = 1, 2, · · · , n and eiej + ejei = 0 for 1 ≤ i �= j ≤ n. Then, the real Clifford 
algebra R0,n is the real algebra generated by these elements, i.e.,

R0,n :=
{
a =

∑
S

aSeS : aS ∈ R, eS = ej1ej2 · · · ejk

}
,

where S := {j1, j2, · · · , jk} ⊆ {1, 2, · · · , n} with 1 ≤ j1 < j2 < · · · < jk ≤ n, or S = ∅, and e∅ := 1. As 
a real vector space R0,n is 2n dimensional. The set of elements of the form x = x0 + x = x0 +

∑n
j=1, the 

so-called paravectors, can be identified with the Euclidean space R ⊕Rn via the map x �→ (x0, x1, . . . , xn).
In the sequel, we will make use of the conjugate x of a paravector x = x0 + x which is defined by 

x = x0 − x. For any x ∈ Rn+1, its norm in Rn+1 is the Euclidean norm |x| :=
(
x2

0 + x2
1 + · · · + x2

n

)1/2. 
Moreover, if x ∈ Rn+1\{0}, then the inverse x−1 exists and x−1 := x · |x|−2.

Finally, we recall that the Clifford algebra C0,n is the complex algebra generated by {e1, e2, · · · , en}, i.e.

C0,n := C ⊗R0,n = R0,n ⊕ iR0,n,

where i is the imaginary unit of C.
All the concepts introduced for R0,n can be reformulated in the complex Clifford algebra, in particular 

for a paravector x = x0 +
∑n

xjej , xj ∈ C we have x = x0 −
∑n

xjej .
j=1 j=1
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We now turn to the concept of monogenic function which is crucial in Clifford analysis. By Cl0,n we 
mean either R0,n or C0,n, and C1(Ω, Cl0,n) (resp. C1(Ω, Cl0,n) denotes the set of continuously differentiable 
functions defined on an open set Ω ⊂ Rn+1 (resp. Ω ⊂ Rn) and take values in the Clifford algebra Cl0,n. 
Any f ∈ C1(Ω, Cl0,n) can be written in the form f =

∑
S fSeS , where the functions fS are R-valued or 

C-valued. Let N denote the set of all positive integers and N0 := N ∪ {0}. Sometimes, for simplicity, we 
denote by ∂k the derivative with respect to xk, i.e., ∂k := ∂xk

, where xk is the k-th variable of x ∈ Rn+1.
The generalized Cauchy-Riemann operator is defined by

D := ∂x0 + Dx = ∂x0 + ∂x1e1 + ∂x2e2 + · · · + ∂xn
en.

We now introduce the definition of monogenic function:

Definition 2.1 (Monogenic function). Let f(x) ∈ C1(Ω, Cl0,n) (resp. f(x) ∈ C1(Ω, Cl0,n). Then f(x) (resp. 
f(x)) is called a (left) monogenic function if and only if

Df(x) = 0 (resp. Dxf(x) = 0).

We note that the Cauchy kernel

E(x) := x

ωn|x|n+1 , x ∈ Rn+1\{0},

plays a key role in Clifford analysis, where ωn := 2π(n+1)/2/Γ[(n + 1)/2] is the surface area of the 
n-dimensional unit sphere in Rn+1. Let S be a region of Rn+1, S ⊂ Ω, and ∂S be compact differentiable 
and oriented. If f is left monogenic in Ω, then its Cauchy integral formula is

∫
∂S

E(y − x)dσ(y)f(y) =
{
f(x), x ∈ So,

0, x ∈ Ω\S,

where So denotes the interior of S, and the differential form dσ(y) is given by dσ(y) := η(y)dS(y), η(y) is 
the outer unit normal to ∂S at the point y and dS(y) is the surface measure of ∂S. For more details, one 
can see [1] and the references therein.

In the sequel we also need the following notations and definitions. By Sn−1 we denote the n −1 dimensional 
unit sphere in Rn

Sn−1 := {x ∈ Rn : |x|2 = 1}.

Since for every ω ∈ Sn−1 we have that ω2 = −1, we can consider

Cω := R + ωR := {u + ωv : u, v ∈ R, ω ∈ Sn−1}. (2.1)

We note any x ∈ Rn+1, which is no real corresponds ωx = x
|x| . It is immediate that x ∈ Cωx

and x =
x0 + ωx|x|. The notation

[x] := {y ∈ Rn+1 | y = Re(x) + ω|x|, ∀ ω ∈ Sn−1},

where Re(x) denotes the real part of x denotes the n − 1 dimensional sphere in Rn+1 with radius |x| and 
centered at Re(x), see [4].



B. Dong et al. / J. Math. Anal. Appl. 476 (2019) 819–835 823
Definition 2.2 (Axially symmetric open set). An open set Ω ⊂ Rn+1 is said to be axially symmetric if the 
(n − 1)-sphere [u + ωv] is contained in Ω whenever u + ωv ∈ Ω for some u, v ∈ R, ω ∈ Sn−1.

Definition 2.3 (Axially monogenic function of degree k). Let k ∈ N0 and Ω be an axially symmetric open 
set. A function f(x) ∈ C1(Ω, Cl0,n) is said to be axially monogenic of degree k if it is monogenic and has 
the form

f(x) =
(
A(x0, |x|) + x

|x|B(x0, |x|)
)
Pk(x)

where A(x0, |x|), B(x0, |x|) are real valued functions and Pk(x) is an inner left spherical monogenic polyno-
mial of degree k, namely a monogenic polynomial, homogeneous of degree k.

Precisely speaking, let C be the complex plane and C+ be the upper half complex plane, i.e.,

C+ := {z ∈ C | z = x0 + iy0, y0 > 0}.

Let O a non-empty open set in C+ and let f0(z) = u(x0, y0) + iv(x0, y0) be a holomorphic function in O, 
where u(x0, y0) and v(x0, y0) are real valued functions. Then the set O induces the axially symmetric open 
set �O ⊆ Rn+1 in 1.2 and for x ∈ �O, we can define the induced function

�f0(x)Pk(x) :=
(
u(x0, |x|) + x

|x|v(x0, |x|)
)
Pk(x).

Let k ∈ N0 and let n ∈ N be odd. The generalization of Fueter’s theorem in [15] asserts that the function 

Δk+n−1
2

(
�f0(x)Pk(x)

)
, x ∈ �O is monogenic.

The Fourier multiplier method used by Kou, Qian, Sommen in [8] is method used also in the present 
paper.

We recall that an open set O ⊂ C is said to be intrinsic if it is symmetric with respect to the real axis, i.e. 
if z ∈ O then z̄ ∈ O. A holomorphic function f0(z) is called a holomorphic intrinsic function if it is defined 
in an intrinsic set O and it satisfies f0(z) = f0(z). This last condition is equivalent to u(x0, y0) = u(x0, −y0)
and v(x0, y0) = −v(x0, −y0). In particular, v(x0, 0) = 0, i.e., f0 is real valued if restricted to the real line in 
its domain. So, a characterization of a holomorphic intrinsic function is that the coefficients of its Laurent 
series expansion in any annulus centered at a real point and in its domain are all real. We note that the 
induced function �f0(x) is slice monogenic and intrinsic.

Finally, we denote by S(Rn+1) the Schwarz space and by S∗(Rn+1) the dual space of S(Rn+1). For any 
φ ∈ S(Rn+1), the Fourier transform of φ is defined by

φ̂(ξ) =
∫

Rn+1

φ(x)e−2πi〈x,ξ〉dx,

and the inverse Fourier transform of φ is defined by

φ̌(x) =
∫

Rn+1

φ(ξ)e2πi〈ξ,x〉dξ.

Then for every f ∈ S∗(Rn+1), its Fourier transform and inverse Fourier transform are defined by
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〈F(f), φ〉 := 〈f, φ̂〉, ∀ φ ∈ S(Rn+1),

〈F−1(f), φ〉 := 〈f, φ̌〉, ∀ φ ∈ S(Rn+1),

respectively.
We will use the Fourier multiplier operator induced by g:

Mg(f) := F−1[gF(f)],

where the equality is in the tempered distribution sense. In particular, for n ∈ N, k ∈ N0 and x ∈ Rn+1, the 
fractional Laplace operator (−Δ)k+(n−1)/2 is defined via the Fourier multiplier operator Mg with g(x) :=
(2π|x|)2k+n−1. For more details about (−Δ)k+(n−1)/2, the reader may refer to page 117 in [16].

3. A important formula of the fractional Laplacian

In this section we prove an important formula for the fractional Laplacian, see Theorem 3.5. The fol-
lowing preliminary lemmas are needed. We start by recalling Lemma 3.1, which is crucial in the proof of 
Theorem 3.5:

Lemma 3.1. (See [8, Lemma 2]) Let β ∈ N, −β < α < β + n + 1 and Pβ(x) be a homogeneous harmonic 
polynomial of degree β. Then∫

Rn+1

Pβ(x)
|x|β+n+1−α

F(ϕ)(x)dx = γβ,α

∫
Rn+1

Pβ(x)
|x|β+α

ϕ(x)dx (3.1)

for every ϕ which is sufficiently rapidly decreasing at infinity and

γβ,α := iβπ(n+1)/2−αΓ(β/2 + α/2)/Γ(β/2 + (n + 1)/2 − α/2), (3.2)

where i is an imaginary unit in the complex plane C and Γ is the standard gamma function.

Remark 3.2. Formula (3.1) implies, in the tempered distribution sense,

F
[

Pβ(x)
|x|β+n+1−α

]
(ξ) = γβ,α

Pβ(ξ)
|ξ|β+α

or

Pβ(x)
|x|β+n+1−α

= γβ,αF−1
[
Pβ(ξ)
|ξ|β+α

]
(x),

where γα,β is as in (3.2).

Let k ∈ N0 and n ∈ N, the following lemma states that the partial derivative ∂x0 commutes with the 
fractional Laplace operator (−Δ)k+(n−1)/2.

Lemma 3.3. Let k ∈ N0, n ∈ N and f be in the Schwarz class, then

∂x0

[
(−Δ)k+n−1

2 f(x)
]

= (−Δ)k+n−1
2 [∂x0f(x)] .

Proof. The proof of this lemma follows exactly the lines of the proof of Lemma 4.3 in [6], to which we refer 
the reader, so we do not repeat it here. �
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Remark 3.4. The proof of Lemma 4.3 in [6] shows that the result is also true for the generalized Cauchy-
Riemann operator D = ∂x0 + ∂x, i.e.

D
[
(−Δ)k+n−1

2 f(x)
]

= (−Δ)k+n−1
2 [Df(x)] .

Now we prove the main theorem of the section.

Theorem 3.5. Let n, l ∈ N, k ∈ N0 and x ∈ Rn+1\{0}. Then

(−Δ)k+n−1
2
[
x−lPk(x)

]
= (−1)l−1λk,n

(l − 1)!
(
(∂0)l−1E2k

)
(x)Pk (x) ,

where

λk,n := (2π)n−1 γk+1,k+n

γk+1,k+1
, E2k(x) := x

|x|2k+n+1 .

Proof. From the relation

x−l =
(

x

|x|2
)l

= (−1)l−1

(l − 1)! (∂x0)l−1
(

x

|x|2
)
,

and Lemma 3.3, we have

(−Δ)k+n−1
2
[
x−lPk(x)

]
= (−1)l−1

(l − 1)! (∂x0)l−1
[
(−Δ)k+n−1

2

(
xPk(x)
|x|2

)]
= (−1)l−1

(l − 1)! (∂x0)l−1
{
F−1

[
(2π|ξ|)2k+n−1F

(
xPk(x)
|x|2

)
(ξ)
]

(x)
}

= (−1)l−1(2π)2k+n−1

(l − 1)! (∂x0)l−1
{
F−1

[
|ξ|2k+n−1F

(
xPk(x)
|x|2

)
(ξ)
]

(x)
}
.

We now apply Lemma 3.1 with β = k + 1, α = k + n, and we get

(−Δ)k+n−1
2
[
x−lPk(x)

]
= (−1)l−1(2π)2k+n−1

(l − 1)! (∂x0)l−1
[
F−1

(
γk+1,k+n|ξ|2k+n−1 ξ

|ξ|2k+n+1Pk

(
ξ
))

(x)
]

= (−1)l−1(2π)2k+n−1γk+1,k+n

(l − 1)! (∂x0)l−1

[
F−1

(
ξPk(ξ)
|ξ|2

)
(x)
]
.

Using Lemma 3.1 for β = k + 1, α = 1 − k, we obtain

(−Δ)k+n−1
2
[
x−lPk(x)

]
= (−1)l−1(2π)2k+n−1γk+1,k+n

(l − 1)!γk+1,k+1
(∂x0)l−1

(
xPk(x)

|x|2k+n+1

)
.

Thus we have

(−Δ)k+n−1
2
[
x−lPk(x)

]
= (−1)l−1λk,n

(l − 1)!
(
(∂0)l−1E2k

)
(x)Pk (x) ,

where E2k(x) = x/|x|2k+n+1 and λk,n := (2π)2k+n−1γk+1,k+n/γk+1,k+1, and this concludes the proof. �
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4. The inverse Fueter mapping theorem

As we mentioned in Section 2, if a holomorphic intrinsic function f0(z) is expanded at z = 0, its Laurent 
series expansion has the form f0(z) =

∑
l∈Z alz

l, where al ∈ R. Then we have

τk(f0(z)) =
∑
l∈Z

alτk(zl) =
∑
l∈Z

al(−Δ)k+n−1
2
(
xlPk (x)

)
, x ∈ Rn+1.

We know that (−Δ)k+(n−1)/2 (xlPk (x)
)

are monogenic functions for n ∈ N and l ∈ Z. Indeed, for odd values 
of n, the generalization of Fueter’s theorem proved by Sommen in [15] shows that (−Δ)k+(n−1)/2 (xlPk (x)

)
is 

axially monogenic. Later, Qian and his co-authors showed in [8] that (−Δ)k+(n−1)/2 (xlPk (x)
)

is monogenic 
also for even indices n. Moreover, Theorem 3.5 gives the explicit expression of (−Δ)k+(n−1)/2 (xlPk (x)

)
for 

n ∈ N and l ∈ Z\N0. Thus τk maps a holomorphic intrinsic function to a monogenic function. When k = 0, 
the mapping τ0 is the original Fueter mapping, so we would like to call the mapping τk the generalized 
Fueter mapping.

The rest of the section is devoted to prove that for every axially monogenic function f of degree k, there 
exists a holomorphic intrinsic function fk such that τk(fk) = f . To this end, we need the functions defined 
below.

Definition 4.1. Let n ∈ N, k ∈ N0 and Pk(x) be an inner spherical monogenic polynomial of degree k. For 
any x ∈ Rn+1\Sn−1, denote the kernels

K+
k,n(x) :=

∫
Sn−1

E(x− ω)Pk(ω)dS(ω)

and

K−
k,n(x) :=

∫
Sn−1

E(x− ω)ωPk(ω)dS(ω)

where E(x) is the Cauchy kernel and dS(ω) is the surface measure on Sn−1.

These two functions as well as the next two lemmas will play an important role in the proof of Theorem 4.7. 
Below, we denote by Mk the set of all solid inner spherical monogenics of degree k.

Lemma 4.2 (see [14, Theorem 2.1]). Let n ∈ N, Pk(x) ∈ Mk be fixed, and let W0(x0) be a real analytic 
function in Ω̃ ⊂ R. Then there exists a unique sequence of analytic functions, {Ws(x0)}s>0, such that the 
series

f(x0, x) =
∞∑
s=0

xsWs(x0)Pk(x)

is convergent in an open set Ω in Rn+1 containing the set Ω̃, and its sum f is monogenic in Ω. The function 
W0(x0) is determined by the relation

Pk(ω)W0(x0) = lim
|x|→0

1
|x|k f(x0, x), ω = x

|x| ∈ Sn−1.

The series f(x0, x) is the generalized axial CK-extension of the function W0(x0).
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Lemma 4.3 (see [3, Theorem 3.6]). Let n ∈ N and k ∈ N0. For the given functions K+
k,n(x) and K−

k,n(x), 
there exist two functions S+

k,n(x) and S−
k,n(x) independent of Pk(x) such that

K+
k,n(x) = S+

k,n(x)Pk(x), K−
k,n(x) = S−

k,n(x)Pk(x).

Furthermore, for any x0 ∈ R we have

lim
|x|→0

S+
k,n(x) = Ck,n

x0

(1 + x2
0)k+(n+1)/2 ,

lim
|x|→0

S−
k,n(x) = −Ck,n

1
(1 + x2

0)k+(n+1)/2 ,

where

Ck,n := (−1)kΓ[k + (n + 1)/2]√
πΓ(k + n/2)

.

With the restrictions of S+
k,n(x) and S−

k,n(x) to the real line, i.e. x = x0, we can construct two important 
holomorphic intrinsic functions denoted by P+

k,n(z) and P−
k,n(z), respectively. First, let z ∈ C\{i, −i}, 

replacing x0 by z in the restrictions of S+
k,n(x) and S−

k,n(x) to the real line we have the functions

Ck,n
z

(1 + z2)k+(n+1)/2 and − Ck,n
1

(1 + z2)k+(n+1)/2 .

Then, let

P+
k,n(z) := Ck,n

λ′
k,n

·D−(2k+n−1)
z

{
z

(1 + z2)k+(n+1)/2

}
,

P−
k,n(z) := −Ck,n

λ′
k,n

·D−(2k+n−1)
z

{
1

(1 + z2)k+(n+1)/2

}
,

where λ′
k,n = (−1)n−1λk,n/(2k + n − 1)! and D−(2k+n−1)

z stands for the (2k + n − 1)-fold antiderivative 
operation with respect to variable z.

It is immediate to see that P+
k,n(z) and P−

k,n(z) are holomorphic intrinsic functions on C\{i, −i}. Further 
more, we have

Lemma 4.4. Let n ∈ N and k ∈ N0. Suppose that P+
k,n(z) and P−

k,n(z) are defined on C\{i, −i}. Then the 
power series expressings P+

k,n(z) and P−
k,n(z) converge absolutely and uniformly on the set ∈ {z : |z| ≥

ρ, ρ > 1}.

Proof. We only prove the case P+
k,n(z), since P−

k,n(z) can be proved with a similar method. Let |z| > 1, we 
have

P+
k,n(z) :=Ck,n

λ′
k,n

·D−(2k+n−1)
z

{
z

(1 + z2)k+(n+1)/2

}

=Ck,n

λ′
k,n

·D−(2k+n−1)
z

⎧⎨⎩zz−(2k+n+1)
∞∑
j=0

(
−2k+n+1

2
j

)
z−2j

⎫⎬⎭
=Ck,n

λ′
k,n

·D−(2k+n−1)
x0

⎧⎨⎩
∞∑(

−2k+n+1
2
j

)
z−(2j+2k+n)

⎫⎬⎭

j=0
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=Ck,n

λ′
k,n

·
∞∑
j=0

(
−2k+n+1

2
j

)
(−1)n−1(2j)!

(2j + 2k + n− 1)!z
−(2j+1).

So, the power series expressing P+
k,n(z) converges absolutely and uniformly on the set {z : |z| ≥ ρ, ρ >

1}. �
We now prove the following lemma.

Lemma 4.5. Let n ∈ N and k ∈ N0. Suppose that P+
k,n(z) and P−

k,n(z) are defined on C\{i, −i}. Then, for 
each x ∈ Rn+1\Sn−1,

τk

(
P+
k,n

)
(x) = K+

k,n(x),

τk

(
P−
k,n

)
(x) = K−

k,n(x).

Proof. We only prove

τk

(
P+
k,n

)
(x) = K+

k,n(x), x ∈ Rn+1\Sn−1,

since the equality

τk

(
P−
k,n

)
(x) = K−

k,n(x), x ∈ Rn+1\Sn−1

can be proved with a similar method. The generalized Fueter mapping theorem states that τk
(
P+
k,n

)
(x) is 

monogenic in x ∈ Rn+1\Sn−1. So the lemma is proved if we can show

τk

(
P+
k,n

)
(x) = K+

k,n(x),

for |x| > 1, in fact the equality would hold in Rn+1\Sn−1 by the identity principle (see Corollary 10.7 in 
[1]).

By Lemma 4.4, we know the power series expressing P+
k,n(z) converges absolutely and uniformly on the 

set {z : |z| ≥ ρ, ρ > 1}. Applying the operator τk to both sides of the power series expressing P+
k,n(z), we 

obtain

τk

(
P+
k,n

)
(x) =Ck,n

λ′
k,n

·
∞∑
j=0

(
−2k+n+1

2
j

)
(−1)n−1(2j)!

(2j + 2k + n− 1)!τk
(
(·)−(2j+1)

)
(x).

Theorem 3.5 allows to compute τk
(
(·)−(2k+1)) (x):

τk

(
(·)−(2j+1)

)
(x) = (−Δ)k+n−1

2

(
�(·)−(2j+1)

)
(x)

= λk,n

(2j)! ·
(
(∂0)2jE2k

)
(x)Pk (x) .

Thus, we obtain

1
|x|k τk

(
P+
k,n

)
(x) =Ck,n

λ′
k,n

·
∞∑
j=0

(
−2k+n+1

2
j

)
(−1)n−1λk,n

(2j + 2k + n− 1)!
(
(∂0)2jE2k

)
(x)Pk (ω)

= : R+
2,k,n(x)Pk (ω) .
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To prove the equality τk
(
P+
k,n

)
(x) = K+

k,n(x), by Lemma 4.2 we just need to prove that

lim
|x|→0

R+
2,k,n(x) = lim

|x|→0
S+
k,n(x)

= Ck,n
x0

(1 + x2
0)k+(n+1)/2 .

By taking the limit |x| → 0 on 
(
(∂0)2jE2k

)
(x) we have

lim
|x|→0

(
(∂0)2jE2k

)
(x) =

(
(∂0)2jE2k

)
(x0)

= (2j + 2k + n− 1)!
(2k + n− 1)! x

−(2j+2k+n)
0 ,

where the first equality follows from the fact that E2k is a continuously differentiable function and the 
second equality is obtained by computing the partial derivative.

Setting λ′
k,n = (−1)n−1λk,n/(2k + n − 1)!, we have

lim
|x|→0

R+
2,k,n(x) = Ck,n

λ′
k,n

·
∞∑
j=0

(
−2k+n+1

2
j

)
(−1)n−1λk,n

(2j + 2k + n− 1)! lim
|x|→0

(
(∂0)2jE2k

)
(x)

= Ck,n

λ′
k,n

·
∞∑
j=0

(
−2k+n+1

2
j

)
(−1)n−1λk,n

(2k + n− 1)!x
−(2j+2k+n)
0

= Ck,nx
−(2k+n)
0 ·

∞∑
j=0

(
−2k+n+1

2
j

)
x−2j

0

= Ck,n · x0

(1 + x2
0)k+(n+1)/2

= lim
|x|→0

S+
k,n(x).

So, we have

τk

(
P+
k,n

)
(x) = K+

k,n(x), |x| > 1,

and this concludes the proof. �
Lemma 4.6. Let n ∈ N, y0 ∈ R and r ∈ R\{0}. Then

|r|2k+n−1τk

(
P+
k,n

(
· − y0

r

))
(x) = τk

(
P+
k,n

)
(x′),

|r|2k+n−1τk

(
P−
k,n

(
· − y0

r

))
(x) = τk

(
P−
k,n

)
(x′),

where x′ ∈ Rn+1\Sn−1 and x′ = (x − y0)/r.

Proof. The proof of this result follows by direct computations and is similar to the proof of Theorem 3.5, 
so we omit it. �
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The following theorem is the main theorem of the section. The proof follows the lines of the proof of 
Theorem 4.2 in [2] adapted as in the proof of Theorem 4.15 in [6]. Provided the importance of the result we 
repeat the proof here for the sake of completeness.

Note that we build the connection between the given axially monogenic function of degree k with the 
corresponding holomorphic intrinsic function, while in [3] the author provide, in a basically equivalent way, 
the corresponding slice hyperholomorphic function but in the case when n is odd.

Theorem 4.7. Let k ∈ N0 and n ∈ N. Let Ω ⊂ Rn+1 be an axially symmetric open set and f(y) =
f(y0 +ωr) = [A(y0, r) + ωB(y0, r)]Pk(y) be an axially monogenic function of degree k defined on Ω. Let Γω

be the boundary of an open bounded set Vω ⊂ R +ωR+ and V := ∪ω∈Sn−1Vω ⊂ Ω. Furthermore, suppose that 
Γω is a regular curve whose parametric equations in the upper complex plane C+

ω = {y0+ωr, y0 ∈ R, r ∈ R+}
are y0 = y0(s), r = r(s) and are expressed in terms of the arc-length s ∈ [0, L], L > 0. Then, for all x ∈ V , 
there exists a holomorphic intrinsic function fk(z) defined on C\{i, −i} such that

τk (fk) (x) = f(x),

where

fk(z) :=
∫
Γω

P−
k,n

(
z − y0

r

)
· r2k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

P+
k,n

(
z − y0

r

)
· r2k+n−2[dy0B(y0, r) + drA(y0, r)].

Proof. The following notations will be used in the proof.

(1) Σ is the manifold defined by

Σ := {y0 + ωr | (y0, r) ∈ Γω, ω ∈ Sn−1}.

(2) ds is the infinitesimal arc-length, dS(ω) is the infinitesimal element of surface area on Sn−1.
(3) t = d

ds (y0 + ωr) is the unit tangent vector at a point of Γω ⊂ Cω, while the normal unit vector n is 
given by

n = −ωt = d
ds [r(s) − ωy0(s)].

(4) The scalar infinitesimal element of the manifold Σ, expressed in terms of ds and dS, is given by

dΣ = rn−1dsdS(ω).

(5) The oriented infinitesimal element of manifold dσ(s, ω) is given by

dσ(s, ω) = ndΣ = d
ds [r(s) − ωy0(s)]rn−1dsdS(ω)

= [dr(s) − ωdy0(s)]rn−1dS(ω).

Because f is monogenic, its Cauchy integral formula is

f(x0 + νρ) =
∫
Γω

∫
Sn−1

E(y0 + ωr − x0 − νρ)dσ(s, ω)f(y0 + ωr), (4.1)
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where x = x0 + ντ ∈ V . We can split the formula (4.1) into two parts:

f(x0 + νρ) = −
∫
Γω

⎡⎣ ∫
Sn−1

E(y0 + ωr − x0 − νρ)ωPk(ω)dS(ω)

⎤⎦
× rk+n−1[dy0A(y0, r) − drB(y0, r)]

+
∫
Γω

⎡⎣ ∫
Sn−1

E(y0 + ωr − x0 − νρ)Pk(ω)dS(ω)

⎤⎦
× rk+n−1[dy0B(y0, r) + drA(y0, r)].

From the identity E(tx) = t−nE(x), for t > 0, we get

f(x0 + νρ) =
∫
Γω

⎡⎣ ∫
Sn−1

r−nE

(
x− y0

r
− ω

)
ωPk(ω)dS(ω)

⎤⎦
× rk+n−1[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

⎡⎣ ∫
Sn−1

r−nE

(
x− y0

r
− ω

)
Pk(ω)dS(ω)

⎤⎦
× rk+n−1[dy0B(y0, r) + drA(y0, r)].

By Definition 4.1, we can rewrite the above formula as

f(x) =
∫
Γω

K−
k,n

(
x− y0

r

)
rk−1[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

K+
k,n

(
x− y0

r

)
rk−1[dy0B(y0, r) + drA(y0, r)].

Let x′ = (x − y0)/r, due to Lemma 4.5, we have τk
(
P±
k,n

)
(x′) = K±

k,n(x′). Note that Lemma 4.5 asserts 

that τk
(
P±
k,n

)
(x′) may only be defined except the sphere Sn−1. This restriction affects the integral below 

through the fixed x but upon the related integral variable s on the curve Γω. The restriction, in fact, just 
excludes a set of Lebesgue measure zero on Γω and thus does not actually affect the value of the integral. 
So, we obtain

f(x) =
∫
Γω

τk

(
P−
k,n

)
(x′) rk−1[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

τk

(
P+
k,n

)
(x′) rk−1[dy0B(y0, r) + drA(y0, r)].

By Lemma 4.6, we have

f(x) =
∫

τk

(
P−
k,n

(
z − y0

r

))
(x)r3k+n−2[dy0A(y0, r) − drB(y0, r)]
Γω
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−
∫
Γω

τk

(
P+
k,n

(
z − y0

r

))
(x)r3k+n−2[dy0B(y0, r) + drA(y0, r)]

=
∫
Γω

(−Δ)k+n−1
2

[
P−
k,n

(
x− y0

r

)
Pk

(
x− y0

r

)]

× r3k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

(−Δ)k+n−1
2

[
P+
k,n

(
x− y0

r

)
Pk

(
x− y0

r

)]

× r3k+n−2[dy0B(y0, r) + drA(y0, r)].

Let x ∈ Rn+1. For any a ∈ R, it is immediate that the 1-vector part of x ± a and of x are the same, i.e. 
x± a = x. So we have

f(x) =
∫
Γω

(−Δ)k+n−1
2

[
P−
k,n

(
x− y0

r

)
Pk

(
r−1x

)]

× r3k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

(−Δ)k+n−1
2

[
P+
k,n

(
x− y0

r

)
Pk

(
r−1x

)]

× r3k+n−2[dy0B(y0, r) + drA(y0, r)].

Besides, since none of the involved integrands have singularities, we can exchange the order of the inte-
gration and the mapping (−Δ)k+(n−1)/2.

f(x) =(−Δ)k+n−1
2

⎧⎪⎨⎪⎩
∫
Γω

P−
k,n

(
x− y0

r

)
Pk

(
r−1x

)
×r3k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

P+
k,n

(
x− y0

r

)
Pk

(
r−1x

)
×r3k+n−2[dy0B(y0, r) + drA(y0, r)]

}
.

Using the fact that Pk(x) is homogeneous of degree k, i.e., Pk(r−1x) = r−kPk(x), we deduce the following 
equality:

f(x) =(−Δ)k+n−1
2

⎧⎪⎨⎪⎩
∫
Γω

P−
k,n

(
x− y0

r

)
r−kPk (x)

×r3k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

P+
k,n

(
x− y0

r

)
r−kPk (x)

×r3k+n−2[dy0B(y0, r) + drA(y0, r)]
}
.
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So we have

f(x) =(−Δ)k+n−1
2

⎧⎪⎨⎪⎩
∫
Γω

P−
k,n

(
x− y0

r

)
Pk (x)

×r2k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

P+
k,n

(
x− y0

r

)
Pk (x)

×r2k+n−2[dy0B(y0, r) + drA(y0, r)]
}

=(−Δ)k+n−1
2

⎧⎪⎨⎪⎩
⎡⎢⎣∫
Γω

P−
k,n

(
x− y0

r

)
· r2k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

P+
k,n

(
x− y0

r

)
· r2k+n−2[dy0B(y0, r) + drA(y0, r)]

⎤⎥⎦Pk (x)

⎫⎪⎬⎪⎭ .

By setting

fk(z) :=
∫
Γω

P−
k,n

(
z − y0

r

)
· r2k+n−2[dy0A(y0, r) − drB(y0, r)]

−
∫
Γω

P+
k,n

(
z − y0

r

)
· r2k+n−2[dy0B(y0, r) + drA(y0, r)],

we have f = τk(fk). The statement follows because fk(z) is a holomorphic intrinsic function on C\{i, −i}. �
5. The decomposition of monogenic functions

In this section, we prove a decomposition formula of monogenic functions using Theorem 4.7. A monogenic 
function f defined on axially symmetric open set can be decomposed in terms of axially monogenic functions 
of degree k as in the following result, see Theorem 1.4 of [3], or the corresponding material on page 189 of 
[5].

Lemma 5.1. Let Ω ⊂ Rn+1 be an axially symmetric open set. Then every monogenic function f : Ω → R0,n
can be written in the form f(x) =

∑∞
k=0 fk(x) with

fk(x) =
mk∑
j=1

[Ak,j(x0, r) + ωBk,j(x0, r)]Pk,j(x),

where Pk,j(x) form a basis for the space of spherical monogenics of degree k which has dimension mk, 
Ak,j(x0, r) and Bk,j(x0, r) are suitable real-valued function.

We now give a decomposition formula for monogenic functions.

Theorem 5.2. Let n ∈ N, k ∈ N0 and Ω ⊆ Rn+1 be an axially symmetric open set. Then for every monogenic 
function f : Ω → R0,n has the following decomposition
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f(x) =
∑
k∈N0

mk∑
j=1

τk,j (fk,j) (x),

where mk is a non-negative integer number related to k and the holomorphic intrinsic function fk,j is given 
by

fk,j(z) =
∫
Γω

P−
k,n

(
z − y0

r

)
· r2k+n−2[dy0Ak,j(y0, r) − drBk,j(y0, r)]

−
∫
Γω

P+
k,n

(
z − y0

r

)
· r2k+n−2[dy0Bk,j(y0, r) + drAk,j(y0, r)].

Proof. Lemma 5.1 yields the decomposition

f(x) =
∑
k∈N0

fk(x).

Moreover, each fk(x) is monogenic and has the following form

fk(x) =
mk∑
j=1

[Ak,j(x0, r) + ωBk,j(x0, r)]Pk,j(x),

where Pk,j(x) form a basis for the space of spherical monogenic of degree k (which has dimension mk), and 
Ak,j(x0, r) and Bk,j(x0, r) are suitable real-valued function.

Then, for each fixed j ∈ N, Theorem 4.7 states that for every axially monogenic function of degree k

[Ak,j(x0, r) + ωBk,j(x0, r)]Pk,j(x)

there exists a holomorphic intrinsic function fk,j such that

τk,j(fk,j)(x) = [Ak,j(x0, r) + ωBk,j(x0, r)]Pk,j(x),

where

fk,j(z) =
∫
Γω

P−
k,n

(
z − y0

r

)
· r2k+n−2[dy0Ak,j(y0, r) − drBk,j(y0, r)]

−
∫
Γω

P+
k,n

(
z − y0

r

)
· r2k+n−2[dy0Bk,j(y0, r) + drAk,j(y0, r)].

So finally, we have

f(x) =
∑
k∈N0

mk∑
j=1

τk,j (fk,j) (x),

and the statement follows. �
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