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2D Partial Unwinding - A Novel Non-linear Phase
Decomposition of Images

Yanting Li, Liming Zhang, Member, IEEE, and Tao Qian

Abstract—This paper aims at proposing a novel 2D non-
linear phase decomposition of images, which performs the
image processing tasks better than the traditional Fourier
transformation (linear phase decomposition), but further, it
has additional mathematical properties allowing more effective
image analysis, including adaptive decomposition components
and positive instantaneous phase derivatives. 1D unwinding
Blaschke decomposition has recently been proposed and studied.
Through factorization it expresses arbitrary 1D signal into an
infinite linear combination of Blaschke products. It offers fast
converging positive frequency decomposition in the form of
rational approximation. However, in the multi-dimensional cases
the usual factorization mechanism does not work. As a conse-
quence, there is no genuine unwinding decomposition for multi-
dimensions. In this study a 2D partial unwinding decomposition
based on algebraic transforms reducing multi-dimensions to
the 1D case is proposed and analyzed. The result shows that
the fast convergence offers efficient image reconstruction. The
tensor type decomposing terms are mutually orthogonal, giving
rise to 2D positive frequency decomposition. The comparison
results show that the proposed method outperforms the standard
greedy algorithm and the most commonly used methods in the
Fourier category. An application in watermarking is presented
to demonstrate its potential in applications.

Index Terms—Fourier transform, Hardy space, greedy al-
gorithm, adaptive Fourier decomposition, unwinding Blaschke
decomposition, Nevanlinna factorization.

I. I NTRODUCTION

T HE theories and methods of the one-dimensional (1D)
and multi-dimensional (mD) Fourier transformation (FT)

stand as traditional and powerful tools in both pure and applied
mathematics. They are used for image processing with a wide
range of particular tasks, including image analysis [1]–[4],
filtering [5], [6], reconstruction [7], [8], and compression [9],
etc. Due to the fact that trigonometrical functions are eigen-
functions of the Dirac (the simplest first order differential)
operators, and due to its wide and deep connections with all
branches of mathematics, Fourier theory has been and will
continue to have a fundamental role with great significance and
deep involvement in both mathematics and its applications.

Non-linear phenomenon [10], [11] has been a great impetus
for the development of sparse representations of signals. This
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trend, together with the interests on non-linear phase and
positive instantaneous frequency (IF) of signals, has motivated
a type of signal representations phrased as adaptive Fourier
decomposition (AFD). In this terminology the word “Fourier”
refers to its connections with square-integrable analytic signals
and positive IFs, indeed, FT is a special case of AFD when
particular parameters are chosen; while the word “adaptive”
refers to sparse and fast representation, which is, in particular,
regardless whether the expanding basic functions constitute a
basis. There are two main types of 1D-AFD of which one
is the maximal selection type (MST) AFD (see, for instance,
[12], [13]); and the other is the unwinding type AFD (called
unwinding Blaschke decomposition (UBD) first by Coifman
et al., see [14]–[16]). The maximal selection type 1D-AFD
in each context is based on a Riemann-Lebesgue type lemma
affiliated to the context; while unwinding Blaschke expansion,
based on the factorization operation, consecutively extracts
carrier frequencies and hence achieves a fast converging and
positive frequency decomposition. In [17] the author proposes
an algorithm that combines the two separated processes, i.e.,
maximal selection and factorization, together. In summary,
[12]–[17] are 1D algorithms for 1D signal processing. On the
other hand, this paper is 2D algorithm for image processing.
This paper is the second such type 2D non-linear phase
decomposition in the literature. The first one is [18], in which
the approach is not based on unwinding but on some maximal
selection principle. To our knowledge the present paper is the
first 2D non-linear phase unwinding approach in the literature.

In the 1D cases, both the processes on maximal selec-
tion and factorization are fully developed and analyzed with
demonstrative applications [12]–[17], [19]–[23]. In higher
dimensions, one can proceed maximal selection type AFD
that mainly results in fast converging rational approxima-
tions. Then he can further extend such sparse representation
method to general reproducing kernel Hilbert spaces. The
corresponding algorithms, either with the several complex
variables setting or the Clifford algebra setting have yet to be
developed. On the other hand, there does not exist a genuine
mD unwinding AFD being analogous to the 1D cases. This
defeat is due to the following reason. In one complex variable,
if f is analytic at a and f(a) = 0, then there exists a
function g, being analytic ata, and f(z) = (z − a)g(z).
In higher dimensions, no matter with the several complex
variables setting or the Clifford algebra setting, there does not
exist analogous factorization result. There exist matrix-valued
Blaschke products [24], [25], however, the unwinding process
cannot proceed without an analogous factorization result.

The purpose of the present study is to develop what we
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Fig. 1. The relationships among different AFDs inmD cases (m ≥ 1).

call “2D partial unwinding decomposition”, abbreviated as 2D-
PUD, that adopts the 1D unwinding Blaschke decomposition
(1D-UBD), through elementary algebraic operations, to the
2D case. It turns out that the type of expansion has fast
convergence with excellent image reconstruction effect. Be-
sides, 2D-PUD gives rise to non-linear phase decompositions
with positive partial instantaneous frequency, which has never
been studied in the literature and is expected to lead to
a new research area in the image processing. The related
theory and applications of this aspect will be developed in
our forthcoming work. The relationships among the above
mentioned AFD algorithms are illustrated in Fig. 1.

In this paper, the convergence of the proposed 2D-PUD
and orthogonality of the decomposing components are proved.
The computational complexity is provided. To demonstrate the
effectiveness and efficiency of the proposed algorithm, two
sets of the experiments are conducted. The first one compares
the efficiency of the image decomposition and reconstruc-
tion among 2D Fourier series (2D-FS), 2D greedy algorithm
(2D-GA) (or match pursuit) [26]–[31] on the product-Szegö
dictionary, slice-1D-AFD, slice-1D-UBD, and our proposed
2D-PUD. The results show that 2D-PUD has the best re-
construction effect. The second experiment demonstrates the
effectiveness of our proposed algorithm on an application in
watermarking by comparing it with the popular discrete cosine
transform (DCT) based watermarking technique. The results
show that the embedded watermarks can be better protected
by our proposed approach. Besides, the embedded image size
can be as large as the original image. The experiments exhibit
great potential of the proposed approach in the future.

The rest of the paper is organized as follows. In Section
II, the mathematical foundation of 2D-PUD with the Hardy
H2 space setting is introduced. In Section III, the proposed
2D-PUD in theL2 setting is presented in detail. Experimental
results are shown in Section IV. Conclusions and prospects of
the future work are drawn in Section V.

II. PRELIMINARIES

As the proposed 2D-PUD is through the 1D-UBD, we
will briefly introduce the fundamental knowledge of 1D-UBD.
Since the unwinding decompositions are for complex analytic
functions belonging to appropriate complex Hardy spacesH2,
while the real world signals are assumed to be of finite energy,
or belong to the LebesgueL2 spaces, this section also clarifies

the relationship between the Hardy spaces and the Lebesgue
L2 spaces.

A. From 1D Fourier series to 1D Unwinding Blaschke De-
composition

Denote byD the unit disc,T its boundary, i.e., the unit
circle, andC the complex plane. Any complex-valued function
of finite energy on the circle,f(eit), in L2(T) is expressible
as an energy converging series. The latter is further split into
two pieces, being in the Hardy spaces of, respectively , the
interior and the exterior unit disc, i.e.,f = f+ + f−, as

f(eit) =

∞∑

k=−∞

cke
ikt =

∞∑

k=0

cke
ikt +

−1∑

k=−∞

cke
ikt

= f+(eit) + f−(eit). (1)

If f is, practically, a real-valued function, due to the relation
c−k = ck, there holds

f = 2Ref+ − c0, (2)

where Re means taking the real part of the complex-valued
functionf+. The finite energy property is equivalent with the

condition
∞∑

k=−∞

|ck|2 < ∞. The relation (2) shows that the

study off is reduced to the study off+, the latter being called
the analytic signal associated with f . It turns out that the
analytic signals are identical with the non-tangential boundary
limits of the analytic functions in the complex Hardy space
of the interior unit disc. Among various definitions of the
complex Hardy spaces in the interior unit disc we will use

H2(D) = {f(z) : f is analytic in D, and

f(z) =

∞∑

k=0

ckz
k,

∞∑

k=0

|ck|2 < ∞}. (3)

There exists a natural isometric isomorphism between the
above defined Hardy space in the disc and the so called
boundary Hardy space, defined as

H2(T) = {f(eit) : f(eit) =

+∞∑

k=0

cke
ikt,

∞∑

k=0

|ck|2 < ∞}.

(4)
We therefore consider the two function spaces as the same
[32].

From the Nevanlinna factorization theorem [32],f+(z) can
be decomposed into a product of an inner functionI(z) and
an outer functionO(z). The outer function is given by

O(z) = exp
{ 1

2π

∫ π

−π

eit + z

eit − z
log |f+(eit)|dt

}
. (5)

The inner functionI(z) can be further decomposed into
I(z) = B(z)S(z), where

B(z) = zm
∏

zk 6=0

|zk|
zk

zk − z

1− zkz
(6)

is the Blaschke product part, collecting all the zeros off+(z);
andS(z) is the singular inner function part given by a regular
Borel measure on the circle singular to the Lebesgue measure.
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Notice thatO(z) andS(z) are non-vanishing in the unit disc,
and each ofB(z), S(z), andO(z) is unique up to a unimod-
ular constant. Accordingly, we can writef+(z) = B(z)G(z),
where G(z) = S(z)O(z). The 1D-UBD is given by the
iterative process

f+ = B1G1

= B1

[
G1(0) +

(
G1(z)−G1(0)

)]

= B1

[
G1(0) +B2G2

]

= a1B1 +B1B2

[
G2(0) +

(
G2(z)−G2(0)

)]
(7)

· · ·
= a1B1 + a2B1B2 + · · ·+B1B2 · · ·BNGN ,

where ak = Gk(0), k ≥ 1, and eachBk, k ≥ 2, is
the Blaschke product generated by the zeros of the function
Gk(z)−Gk(0) in H2(D). It was proved in [17] and [15] that
lim

N→∞
‖B1B2 · · ·BNGN‖ = 0. Hence, in theL2-norm sense,

f+(z) =

∞∑

k=1

akB1B2 · · ·Bk. (8)

If the analytic signalf+ is analytically extendable to an open
neighborhood of the closed unit disc, then the exponential
decay rate is attained [17]. Note that if eachBk only factorizes
the factorz, which can be practically done, then the decom-
position (7) reduces to 1D-FS. Thus the 1D-FS is a particular
case of 1D-UBD. Due to the positive instantaneous frequency
property of Blaschke products [33], 1D-UBD gives rise to fast
converging positive instantaneous frequency decomposition of
signals.

In practice,f+ is usually supposed to have only a trivial
singular inner functionS(z), namelyG(z) = O(z). In other
words, the analytical signalf+ can be factorized into the
product of a Blaschke product and an outer function. In the
algorithm design, a natural method is to first compute the outer
functionG and then obtain the Blaschke productB with the
relation B = f+/G. Indeed, computing the boundary limit
functionG(eit) is reduced to computing the Hilbert transform
of log |f+(eit)|. Practically, the non-tangential limit function
f+(eit) may be close to zero, and as a consequence, the
computation ofG(eit) become unstable. For this reason, a
number of computative algorithms have been developed to
compute Hilbert transforms. A method in [14] is to smooth
log |f+(eit)| by adding a small positive constant and another
method in [34] is to add a small pure sinusoid tolog |f+(eit)|.
However, adding a small positive constant or a small pure
sinusoid in each iteration may induce a big error after it-
erations. To avoid this defect Mai et al. [35] proposes to
first factorize out a finite Blaschke product through finding
a finite number of zeros off+ and then obtainG(z) with the
relationG(z) = f+(z)/B(z). [35] shows that the method of
only unwinding a finite Blaschke product part can guarantee
applicability of the algorithm.

In summary, the 1D-UBD (7) and its variations generate
adaptive orthonormal systems by factorizing out all or part
of the zero-factors in each decomposition iteration. Among
various kinds of Fourier type positive-frequency expansions
[12], [17], [19], [36], the 1D-UBD exhibits the fastest speed

of convergence. Ever since the breaking through study of [14],
the algorithm of 1D-UBD has been being optimized, and has
been attracting a lot of interests and studies [35], [37].

B. The Relationship between Spaces H2(D2) and L2(T2)

As in the 1D case, practical 2D images are real-valued and
defined in the 2DL2 spaces. In this subsection, we provide
a brief review of the relationship between the 2DH2 andL2

spaces. Based on the relationship, we reduce the analysis of
L2 to that ofH2. For the materials presented in this part, refer
to [18].

Let D2 := D × D =
{
(z, w) : |z| < 1, |w| < 1

}
and

L2(T2) denote the space of complex-valued functions on the
2-torus with finite energy, where the energy is defined via the
inner product

〈f, g〉 = 1

4π2

∫ π

−π

∫ π

−π

f(eit, eis)g(eit, eis)dtds. (9)

By the Plancherel theorem of the context,f ∈ L2(T2) if and
only if in the L2-norm sense,

f(eit, eis) =
∑

−∞<k,l<∞

ckle
i(kt+ls) (10)

and ‖f‖2 =
∑

−∞<k,l<∞

|ckl|2 < ∞, where ckl =

〈f, ekl〉, ekl(t, s) = eikteils. The functions inL2(T2) with
ckl = 0 for k < 0 or l < 0 constitute a closed subspace of
L2(T2), denoted

H2(T2) =
{
f ∈ L2(T2)

∣∣ f(eit, eis) =
∑

k,l≥0

ckle
i(kt+ls)

}
.

(11)
Let H2(D2) be the class of complex holomorphic functions
in the poly-discD× D satisfying

sup
0≤r1,r2<1

∫ π

−π

∫ π

−π

|f(r1eit, r2eis)|2dtds < ∞. (12)

It is shown in [18] that there exists an isometric isomorphic
mapping betweenH2(D2) and H2(T2). For f ∈ L2(T2),
denote

f+,+(eit, eis) =
∑

k,l≥0

ckle
i(kt+ls),

f+,−(eit, eis) =
∑

k,−l≥0

ckle
i(kt+ls),

f−,+(eit, eis) =
∑

−k,l≥0

ckle
i(kt+ls),

f−,−(eit, eis) =
∑

−k,−l≥0

ckle
i(kt+ls);

(13)

and

F (eit) =
1

2π

∫ π

−π

f(eit, eis)ds,

G(eis) =
1

2π

∫ π

−π

f(eit, eis)dt.

(14)
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The partial Hilbert transforms off ∈ L2(T2) are defined as

H(1)f(e
it, eis) =

∑

−∞<k,l<∞

(−isgnk)ckle
i(kt+ls),

H(2)f(e
it, eis) =

∑

−∞<k,l<∞

(−isgn l)cklei(kt+ls),
(15)

whereH(1)f is the Hilbert transform off with respect to the
first variable andH(2)f is the Hilbert transform off with
respect to the second variable.

From now on, we assume thatf ∈ L2(T2) is real-valued.
In the casef+,+ and f−,− are mutually conjugate to each
other andf−,+ and f+,− are as well. Taking the notations
(13) and (14) into account, denote

h(eit, eis) , f(eit, eis)− F (eit)−G(eis) + c00. (16)

We note that the Fourier coefficientsckl of h are equal to zero
whenk = 0 or l = 0. The following relations can be verified
directly

h+,+(eit, eis) =
1

4
(I + iH(2))(I + iH(1))h (17)

and

h−,+(eit, eis) =
1

4
(I + iH(2))(I − iH(1))h. (18)

There then follows

h(eit, eis) =
{
h+,+(eit, eis)

}
+
{
h−,+(eit, eis)

}

+
{
h+,−(eit, eis)

}
+
{
h−,−(eit, eis)

}
. (19)

We further have

h(eit, eis) = 2Re
{
h+,+(eit, eis)

}
+ 2Re

{
h−,+(eit, eis)

}
.

(20)
From (16) and (20) we finally obtain

f(eit, eis) = 2Re
{
h+,+(eit, eis)

}
+ 2Re

{
h−,+(eit, eis)

}

+F (eit) +G(eis)− c00, (21)

where
[
h(e−it, eis)

]+,+
(eit, eis) = h−,+(eit, eis).

The 2D-PUD algorithm for a general real-valued2D image
f of finite energy can be outlined as follows. First apply the
2D-PUD algorithm to the Hardy space signalh+,+ andh−,+.
Then apply the 1D-UBD to the 1D signalsF andG. Finally
take the real parts of all the obtained decomposing terms and
add them together using (21). The described algorithm shows
that 2D-PUD for the 2D Hardy space functions is crucial.

III. THE 2D PARTIAL UNWINDING
DECOMPOSITION (2D-PUD) FOR THE HARDY

SPACE FUNCTIONS

The analysis in the last section shows that the 2D-PUD of
2D L2 functions is reduced to that of the related 2D Hardy
space functions, and to the related 1D-UBD of some 1D
functions.

A. 2D-PUD on H2(D2)

Let f(z, w) ∈ H2(D2). Then f+,+(z, w) = f(z, w) =∑
k≥0,l≥0

cklz
kwl, where

∑
k≥0,l≥0

|ckl|2 < ∞. The algorithm

given in this section does not assumeckl = 0 for k = 0
or l = 0. Setf1 = f . Denote

g(z, w) = f1(z, w)− f1(z, 0)− f1(0, w) + f1(0, 0). (22)

Notice that if z = 0, theng(z, w) = 0 for anyw ∈ D, and if
w = 0, theng(z, w) = 0 for any z ∈ D. These imply

g(z, w) = zwf2(z, w), (23)

wheref2 is anH2(D2) function. Thus we obtain

f(z, w) = zwf2(z, w) + f1(z, 0)+ f1(0, w)− f1(0, 0), (24)

where

f2(z, w) =
f1(z, w)− f1(z, 0)− f1(0, w) + f1(0, 0)

zw
. (25)

Repeating the same procedure forf2(z, w), we get

f(z, w) =(zw)2f3(z, w) + zw
[
f2(z, 0) + f2(0, w)− f2(0, 0)

]

+ f1(z, 0) + f1(0, w) − f1(0, 0), (26)

where

f3(z, w) =
f2(z, w)− f2(z, 0)− f2(0, w) + f2(0, 0)

zw
. (27)

Repeating this process up to N-times, we have

f(z, w) =

N∑

m=1

(zw)m−1
[
fm(z, 0) + fm(0, w)− fm(0, 0)

]

+ (zw)NfN+1(z, w), (28)

where

fm+1(z, w) =
fm(z, w)− fm(z, 0)− fm(0, w) + fm(0, 0)

zw
.

(29)
By denoting

SN (f)(z, w) =

N∑

m=1

(zw)m−1
[
fm(z, 0)+fm(0, w)−fm(0, 0)

]

(30)
and

RN (f)(z, w) = (zw)NfN+1(z, w), (31)

wherefN+1 is anH2(D2) function, we obtain

f(z, w) = SN (f)(z, w) +RN (f)(z, w). (32)

Denote the 2D classical Fourier series(N − 1)-partial sum
decomposition by

f(z, w) = S̃N (f)(z, w) + R̃N (f)(z, w), (33)

where S̃N (f)(z, w) =
∑

0≤k,l≤N−1

cklz
kwl. It is well known

that ‖R̃N(f)‖2 =
∑

k or l≥N

|ckl|2 → 0. Fig. 2 shows that

R̃N (f) spreads over the region I∪ II ∪ III; while RN (f)
spreads over only the region II. In below, we show thatSN (f)
rapidly converges tof in theL2-norm. Furthermore, iff can
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Fig. 2. The energy distribution regions ofRN (f) and R̃N (f).

be holomorphically extended to outside of the closed unit poly-
disc, then the exponential decay rate can be attained.

Theorem 1. If f(z, w) ∈ H2(D2). Then

‖f − SN (f)‖ → 0, N → ∞. (34)

Moreover, if f can be holomorphically continued to (1+δ1)D×
(1 + δ2)D =

{
(z, w)

∣∣ |z| < 1 + δ1 and |w| < 1 + δ2
}

, δi >
0, i = 1, 2, then the L2-norm of the remainder RN (f) decays
exponentially.

Proof: Due to the uniqueness of power series expansion
of a holomorphic function,RN (f) is equal to the sum of the
power series entriescklzkwl with bothk ≥ N andl ≥ N . The
energy ofRN (f) is the square sum of the norms of the Fourier
coefficients indexed by the integer pairs in the region II in Fig.
2, that is,‖f − SN (f)‖2 =

∑
k≥N,l≥N

|ckl|2 → 0, N → ∞. In

addition, letf(z, w) ∈ H2(D2) be holomorphically continued
to (1+δ1)D×(1+δ2)D, δi > 0, i = 1, 2. Lettingβ1 = 1+ δ1

2

and β2 = 1 + δ2
2 , we havecklβk

1β
l
2 → 0 for either k → ∞

or l → ∞. So there existsM1 > 0 such that|ckl| < M1

βk
1
βl
2

for any k ≥ 0 and l ≥ 0. This induces‖f − SN (f)‖2 ≤∑
k≥N,l≥N

M2

1

β2k
1

β2l
2

= M2
1

1
β2N
1

β2N
2

β2

2

β2

2
−1

β2

1

β2

1
−1

. Thus

‖f − SN (f)‖ ≤ C1a
N
1 , (35)

whereC1 = M1β1β2√
(β2

1
−1)(β2

2
−1)

anda1 = 1
β1β2

< 1, as desired.

From the iterative process of the functionf in H2(D2),
fm(z, w) belongs toH2(D2) for everym ≥ 1. This implies
that the univariate complex functionsfm(z, 0) and fm(0, w)
belong toH2(D), respectively. By using the 1D-UBD, each
fm(z, 0) and fm(0, w) can be approximated by an infi-
nite linear combination of Blaschke products. In summary,
for an arbitrary function inH2(D2), we obtain the 1D-
UBD based 2D-PUD. Combining the iterative processes (7)
and (28), we get the 2D partial unwinding system con-

sisting of
{
(zw)m−1

}∞

m=1
,
{
(zw)l−1z

∞∏
k=1

z−akl

1−aklz

}∞

l=1
and

{
(zw)j−1w

∞∏
k=1

w−bkj

1−bkjw

}∞

j=1
. Due to the adaptivity of the 1D-

UBD, the 2D partial unwinding system is adaptive. In fact,
different elements in the system are mutually orthogonal.

Theorem 2. If f(z, w) ∈ H2(D2). Then its 2D partial
unwinding system is orthornormal.

Proof: Without loss of generality, setl ≥ j. Let B1(z) =
∞∏
k=1

z−akl

1−aklz
, B2(w) =

∞∏
k=1

w−bkj

1−bkjw
. Then

〈
(zw)l−1z

∞∏

k=1

z − akl
1− aklz

, (zw)j−1w

∞∏

k=1

w − bkj

1− bkjw

〉

=
1

4π2

∫ π

−π

∫ π

−π

(eit)l−j+1B1(e
it)(eis)j−l+1B2(eis)dtds

=
1

2π

∫ π

−π

(eit)l−j+1B1(e
it)dt · 1

2π

∫ π

−π

(eis)j−l+1B2(eis)ds.

From Cauchy’s theorem, we have
∫

|ξ|=r

ξl−jB1(ξ)dξ = 0, i. e.,
∫ π

−π

(eit)l−j+1B1(re
it)dt = 0,

where0 < r < 1. As the modulus of a Blaschke product in the
unit disc is less than1, it is seen from Lebesgue’s dominated
convergence theorem that

lim
r→1−

∫ π

−π

(eit)l−j+1B1(re
it)dt =

∫ π

−π

(eit)l−j+1B1(e
it)dt = 0.

This gives the zero value to the above inner product. The
orthogonality between the other different functions in the 2D
partial unwinding system can be similarly proved. Moreover,
due to the unit modulus property of Blaschke products on the
unit circle [32], the norm of each function in the system is 1.
The proof of the theorem is thus complete.

B. 2D-PUD on L2(T2) Images

The principle of the 2D-PUD algorithm forL2 image
functions is studied in Subsection II-B through reducing
the L2 to the H2 cases. In this subsection we aim at the
implementation of the algorithm. Any image denoted as I(x, y)
(x = 1, 2, · · · ,m, y = 1, 2, · · · , n with sizem × n) can be
considered as discrete values of a real functionf(eit, eis) in
L2(T2). Preprocessf to obtainh by throwing away the terms
ckl of f for k = 0 or l = 0, and then find the boundary limits
of the functionsh+,+ and h−,+ through the partial Hilbert
transforms (15). The Nevenlinna decompositions ofh+,+ and
h−,+ and the consecutive ones pursuing the 1D-UBD are all
done on the boundaries{|z| = 1} or {|w| = 1}, and adopt
the finite Blaschke decomposition method given in [35]. As
proved in the previous section, the obtained 2D-PUD generates
an adaptive fast converging orthonormal system.

The flowchart of the 2D-PUD is shown in Fig. 3. First, an
input 2D imagef is preprocessed to obtainh from (16). Next,
the respective 1D-UBD results of 1D signalsF and G are
computed. Then,h is decomposed to geth+,+ andh−,+ from
(17) and (18), respectively. After that, we apply Algorithm 1
and Algorithm 2 to get the approximation resultsuN andvN

of h+,+ andh−,+, respectively. Finally, taking the equations
(16) and (21) into consideration, we get the approximation
resultfN . Thus, the 2D-PUD algorithm is achieved.

The computational complexity of 2D-PUD is calculated as
follows. Assume that the image size isL× L.

• Since the calculation of Hilbert transform is obtained by
fast Fourier transform (FFT) [38], the complexities of
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Fig. 3. The flowchart of 2D-PUD on image decomposition with level N .

Algorithm 1 2D-PUD of u
Input: 2D signalu and decomposition levelN .
Output: approximation resultuN .

1: Initialize u1 = u anduN = 0.
2: for k = 1 to N do
3: Get uk(e

it, 0), uk(0, e
is) anduk(0, 0) from (14);

4: Get Tk = (eiteis)k−1 and choose 1D unwinding
decomposition leveln;

5: Get the 1D unwinding decompositionun
k (e

it, 0) of
uk(e

it, 0) andun
k (0, e

is) of uk(0, e
is) from reference [35];

6: GetuN = uN +Tk[u
n
k(e

it, 0)+ un
k (0, e

is)− uk(0, 0)]
from (30);

7: Get uk+1 = [uk − uk(e
it, 0) − uk(0, e

is) +
uk(0, 0)]/(e

iteis) from (29);

8: end for
9: return uN .

the projection signalsf+,+ and f−,+ are O(L2logL),
respectively.

• The respective complexities of computing the zeros of
finite Blaschke product of step 5 in both Algorithm 1
and Algorithm 2 areO(ML) [39], respectively, where
M is the number of discrete points in the unit discD.

• The computational complexities of step 6 in both Algo-
rithm 1 and Algorithm 2 areO(L2), respectively.

Therefore, the computational complexity of the 2D-PUD al-
gorithm is O(L2logL), which is the same as that of two-

Algorithm 2 2D-PUD of v
Input: 2D signalv and decomposition levelN .
Output: approximation resultvN .

1: Initialize v1 = v andvN = 0.
2: for k = 1 to N do
3: Get vk(e−it, 0), vk(0, eis), andvk(0, 0) from (14);
4: Get Ik = (e−iteis)k−1 and select 1D unwinding

decomposition leveln;
5: Get the 1D unwinding decompositionvnk (e

it, 0) of
vk(e−it, 0) and vnk (0, e

is) of vk(0, e
is) from reference

[35];
6: Get vN = vN + Ik[vnk (e

it, 0) + vnk (0, e
is)− vk(0, 0)];

7: Get vk+1 = [vk − vk(e
−it, 0) − vk(0, e

is) +
vk(0, 0)]/(e

−iteis);

8: end for
9: return vN .

dimensional fast Fourier transform (2D-FFT).

IV. EXPERIMENTAL RESULTS

Two sets of the experiments are conducted to demonstrate
the effectiveness and efficiency of the proposed approach. We
use the following naming pattern: slice-1D-AFD and slice-
1D-UBD represent that the image is processed row-by-row by
applying 1D-UBD and 1D-AFD, respectively. 2D-GA stands
2D greedy algorithm (or match pursuit) [26]–[31] on the
product-Szegö dictionary. 2D-FS and 2D-PUD denotes 2D
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(a) (b) (c) (d) (e) (f)

Fig. 4. Comparison of the different algorithms with decomposition levelN = 5. (a) Original image, (b) slice-1D-AFD, (c) slice-1D-UBD, (d) 2D-GA, (e)
2D-FS, and (f) 2D-PUD.

(a) (c)

(b) (d)

Fig. 5. Experimental results on image reconstruction. (a). 20 original images from ORL face database. (b). 20 original images from Yale face database. (c).
Image reconstruction results of (a) by 2D-PUD with N=5. (d). Image reconstruction results of (b) by 2D-PUD with N=5.
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Fourier series and our proposed approach, respectively. We
implement the 2D decompositions by adopting overlapping
block methods. The first set of our experiments compares
the efficiency of the image decomposition and reconstruction
among slice-1D-AFD, slice-1D-UBD, 2D-GA, 2D-FS, and
our proposed 2D-PUD on 6 popular test images and two
large databases - The ORL Database of Faces and Yale Face
Database, including 240 grayscale images from ORL and 1026
grayscale images from Yale, respectively. The second set of
experiments illustrates the effectiveness of our proposed algo-
rithm by the application in watermarking through comparing
it with the popular discrete cosine transform (DCT) based
watermarking technique. Some commonly used attacks are
also tested, including Gaussian filtering, salt and pepper noise,
and image cutting.

A. Image Decomposition and Reconstruction

We use the following measurements to evaluate the recon-
struction quality of images: peak signal-to-noise rate (PSNR),
structural similarity index (SSIM), edge intensity (EI), and
figure definition (FD).

PSNR is defined as

PSNR= 10 log
2552

MSE
, (36)

where

MSE=
1

m× n

m∑

x=1

n∑

y=1

[I(x, y)− J(x, y)]2, (37)

m× n is the size of grayscale image I. J is the reconstructed
image of I.

SSIM [40] measures the structural similarity between the
original image I and the reconstructed image J. Based on the
calculation of the luminance, the contrast and the structural
correlation of images, SSIM is computed by

SSIM(I, J) = [l(I, J)]α[c(I, J)]β [s(I, J)]γ , (38)

wherel(I, J) = (2µIµJ+ C1)/(µ
2
I + µ2

J+ C1) represents the
luminance of images.c(I, J) = (2σIσJ+C2)/(σ

2
I + σ2

J+C2)
compares the contrast of images.s(I, J) = (σIJ+C3)/(σIσJ+
C3) measures the structural correlation of images, where
µI , µJ, σI , σJ, and σIJ are the local means, standard
deviations, and cross-covariance for the images I and J. In
this article,α = β = γ = 1 andC3 = C2/2. Larger PSNR
and SSIM values usually correspond to better reconstruction
quality.

EI [41] is the average sum of the absolute value of the image
edges.

FD [41] reflects the clarity of an image, computed as

FD =

m−1∑
x=1

n−1∑
y=1

[
[I(x+1,y)−I(x,y)]2+[I(x,y+1)−I(x,y)]2

2

] 1

2

(m− 1)× (n− 1)
,

(39)
wherem×n is the size of image I. The difference of the EI and
FD values between the original image and the reconstructed
image also represent the reconstruction quality. The smaller
the difference is, the higher the reconstruction quality will be.

The above criteria, namely, PSNR, SSIM, EI, and FD, can
be directly used for evaluating the grayscale images. For color
images, we calculate the average of the respective PSNR,
SSIM, EI, and FD values of three different color channels.
Regardless of color or grayscale images, better reconstruction
qualities are indicated by larger values of PSNR and SSIM,
and smaller difference of EI and FD.

TABLE I
THE EI AND FD VALUES OF THE ORIGINAL IMAGES.

Criteria Lena Cameraman Baboon Peppers Barbara Monarch ORL Yale
EI 0.2579 0.3186 0.4267 0.2688 0.3586 0.3653 0.4755 0.3597
FD 0.0305 0.0464 0.0667 0.0297 0.0469 0.0418 0.0545 0.0190

TABLE II
COMPARISON RESULTS AMONG FIVE DECOMPOSITION APPROACHES ON
PSNR, SSIM, EI,AND FD VALUES OF THE SELECTED SIX IMAGES AND

RESPECTIVE AVERAGES OFORL AND YALE DATABASES. THE

DECOMPOSITION LEVEL ISN = 5.

Images Methods PSNR SSIM EI FD

Lena

Slice-1D-AFD 20.6606 0.5331 0.1799 0.0195
Slice-1D-UBD 23.7143 0.6731 0.2440 0.0298

2D-GA 30.5142 0.9221 0.2538 0.0309
2D-FS 34.4962 0.9549 0.2562 0.0313

2D-PUD 52.1189 0.9985 0.2580 0.0307

Cameraman

Slice-1D-AFD 20.1428 0.5844 0.2296 0.0279
Slice-1D-UBD 19.4296 0.5720 0.2533 0.0331

2D-GA 26.2435 0.8839 0.3222 0.0446
2D-FS 28.8802 0.9232 0.3200 0.0631

2D-PUD 48.4741 0.9966 0.3198 0.0467

Baboon

Slice-1D-AFD 20.4109 0.3910 0.2392 0.0307
Slice-1D-UBD 22.4272 0.5862 0.3100 0.0412

2D-GA 26.5681 0.8474 0.3938 0.0565
2D-FS 29.6990 0.9278 0.4150 0.0817

2D-PUD 49.1860 0.9987 0.4273 0.0668

Peppers

Slice-1D-AFD 21.4408 0.5932 0.2356 0.0259
Slice-1D-UBD 22.5868 0.6364 0.2577 0.0305

2D-GA 31.0335 0.9285 0.2719 0.0317
2D-FS 34.7850 0.9566 0.2683 0.0347

2D-PUD 47.9617 0.9970 0.2701 0.0301

Barbara

Slice-1D-AFD 19.4638 0.4295 0.2468 0.0281
Slice-1D-UBD 22.7953 0.6222 0.3059 0.0365

2D-GA 28.9639 0.8973 0.3459 0.0427
2D-FS 32.2859 0.9458 0.3542 0.0560

2D-PUD 44.7746 0.9962 0.3621 0.0477

Monarch

Slice-1D-AFD 19.7792 0.5743 0.2408 0.0296
Slice-1D-UBD 21.5031 0.6821 0.2944 0.0356

2D-GA 26.5390 0.9211 0.3552 0.0445
2D-FS 32.2859 0.9559 0.3599 0.0486

2D-PUD 50.8838 0.9983 0.3659 0.0421

ORL

Slice-1D-AFD 18.1445 0.2945 0.3679 0.0156
Slice-1D-UBD 18.7004 0.3633 0.3988 0.0334

2D-GA 27.8298 0.8871 0.4703 0.0679
2D-FS 30.1065 0.9224 0.4648 0.0728

2D-PUD 41.8766 0.9944 0.4772 0.0597

Yale

Slice-1D-AFD 17.0724 0.3356 0.2859 0.0421
Slice-1D-UBD 17.4353 0.3796 0.3042 0.0454

2D-GA 30.2005 0.9259 0.3614 0.0407
2D-FS 34.1292 0.9593 0.3568 0.0418

2D-PUD 45.0382 0.9935 0.3600 0.0385

To show the efficiency of the proposed algorithm, we
conduct a number of experiments. First, six popular test
images, including two grayscale and four color images of size
256× 256, are selected as original images. Fig. 4(a) lists the
six original images that are respectively “lena”, “cameraman”,
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(a) (b)
Fig. 6. Comparison results of (a) EI and (b) FD differences on six test images
and respective averages of ORL and Yale databases among five methods with
the decomposition levelN = 5.

“baboon”, “peppers”, “barbara”, and “monarch”. The recon-
structed images through the tested five algorithms withN = 5
are displayed in Fig. 4(b)-(f). In Fig. 4 we can see that our
proposed approach demonstrates best visual performance on
the six test images. Then, we conduct the experiments on
two face databases. These face images are shot at different
times, with different lighting, expressions and facial details.
We compare separately the average PSNR, SSIM, EI, and
FD values for each database. To demonstrate the construction
quality visually, 20 images from each of above two databases
and their corresponding reconstruction images through our
proposed approach are illustrated in Fig. 5. The results show
that the reconstructed images are visually indistinguishable
from the corresponding original images.

Table I lists the EI and FD values of the six original
images and the average EI and FD values of the ORL and
Yale databases, respectively. Tables II gives the comparison
results of the PSNR, SSIM, EI, and FD values of the six
images and respective averages of the ORL and Yale databases
among the five methods withN = 5. Fig. 6 compares the EI
and FD differences of the six images and respective averages
of the ORL and Yale databases among the five approaches
with N = 5. Table II illustrates that our proposed approach
outperforms other approaches on all test images. Fig. 6 shows
that 2D-PUD has the smallest differences of EI and FD among
the five methods.

To further show the effect of the decomposition level, the
comparison results of the PSNR, SSIM, EI, and FD values of
the reconstructed “lena” with different decomposition levels
among five tested algorithms are shown in Fig. 7. In Fig. 7(c)
and (d), black dotted lines represent the EI and FD values
of the original image. Clearly, as the decomposition levelN
increases, the PSNR and SSIM values of the reconstructed
image become larger, and the differences of the EI and FD
values between the original image and the reconstructed image
become smaller. According to Fig. 7(a), the PSNR and SSIM
values of the 2D-PUD withN = 1 are already larger than the
respective PSNR and SSIM values of the slice-1D-AFD and
slice-1D-UBD withN = 5. Besides, whenN increases, the
PSNR value of the 2D-PUD is remarkably larger than those
of the 2D-GA and 2D-FS.

(a) (b)

(c) (d)
Fig. 7. Comparison results of the proposed 2D-PUD with different decom-
position levels on (a) PSNR, (b) SSIM, (c) EI, and (d) FD for image “lena”.

B. Application in Digital Watermarking

There are various schemes to embed and extract the water-
mark. They can be divided into two categories. One is that the
watermark is embedded in the spatial domain and the other
is that it is embedded in the transform domain. In the spatial
domain, the watermark is directly embedded into a host image
by modifying the pixel values [42]–[45]. In the transform
domain, the coefficients of the transformed host image are
modified [46]–[49]. The popular transform domain techniques
include two-dimensional discrete cosine transform (2D-DCT),
two-dimensional discrete Fourier transform, etc. Spatial do-
main techniques have lower computational complexity, but are
less robust than the transform domain techniques [46]. 2D-
PUD generates an adaptive orthonormal system that can offer
a more secure watermark embedding in the transform domain,
as the decomposing components of the watermarked image are
different from those of the original image due to the adaptivity.
We outline the specific approach as follows.

Assume that the pixels of a host image and a watermark are
discrete values of functionsf andg in L2(T2), respectively.
Thenf+,+ andf−,+, as well asg+,+ andg−,+, can be easily
obtained through the partial Hilbert transforms described in
Subsection II-B. From Theorem 2,f+,+ produces an adaptive
orthonormal system. Due to the orthogonality of the 2D partial
unwinding system,g+,+ can be projected into the system.
Similarly, g−,+ can also be projected into the 2D partial
unwinding orthonormal system off−,+. As a result, taking
the relations amongg+,+, g−,+, andg into consideration, the
original watermark is scrambled by the 2D partial unwinding
orthonormal system of the host image to obtain a new water-
mark. There is a difference between the original watermark
g and the projected watermarkg. This difference will be
recorded separately and added back to the extracted projected
watermark during the final extraction.

Algorithm 3 illustrates how 2D-PUD is applied to the
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Algorithm 3 The watermark embedding and extraction pro-
cesses using 2D-PUD method
Input: An original host imageI of sizem× n, an original

watermarkA of size p × q (p ≤ m, q ≤ n), a small positive
embedding factorc.
Output: The watermarked imageJ and extracted watermark
A.

1: Choose the decomposition levelN to obtain the recon-
structed imageI1 by using the 2D-PUD method.

2: Get a new watermarkA1 by projecting the original
watermarkA into the 2D partial unwinding orthonormal
system ofI.

3: Randomly embed the watermarkA1 through the process
I1 + cA1 to get the watermarked imageJ and save the
embedded positions.

4: Extract the watermarkA by the processA-A1+(J-I1)/c
at the embedded positions.

(a) (b)

(c) (d) (e)

Fig. 8. Embedding and extraction of the watermark image “bird” using
2D-PUD method without attacks. (a) Original host image “monarch”, (b)
the watermarked image, (c) original watermark “bird”, (d) the projected
watermark, and (e) the extracted watermark.

watermark embedding and extraction processes. In order to
test the efficiency of our proposed watermarking technique,
PSNR and normalized correlation coefficient (NCC) [49] are
used to assess the similarity, in which PSNR is used to assess
the similarity between the host images and the watermarked
images, while NCC is used to assess the similarity between the
original watermarkA and the extracted watermarkA. NCC
is computed as follows:

NCC=

p∑
x=1

q∑
y=1

[A(x, y) × A(x, y)]

√
p∑

x=1

q∑
y=1

A(x, y)2

√
p∑

x=1

q∑
y=1

A(x, y)2

. (40)

For color images, average PSNR and NCC values are comput-
ed from three different color channels. Larger PSNR and NCC
values indicate better embedding and watermark extraction
results, respectively.

As described in the previous subsection, 2D-PUD with the
decomposition levelN = 5 has high reconstruction quality,
we chooseN = 5 in Algorithm 3. In addition, the small
positive embedding factorc in Algorithm 3 is selected as

10−1. Fig. 8 shows the embedding and extraction of the
watermark image “bird” using the 2D-PUD method. As shown
in Fig. 8 (a) and (c), the color image “monarch” (256× 256)
is used as the host image and another color image “bird”
(128 × 128) is chosen as the watermark. Fig. 8 (d), (b), and
(e) display the projected watermark, the watermarked image,
and the extracted watermark, respectively. There is no visible
differences either between the host and watermarked images,
or between the original and extracted watermark images. The
PSNR value between the watermarked and the original host
images is 34.7994, and the NCC value between the original
and the extracted watermarks is 1, which indicate both the
embedding and extraction results are promising.

TABLE III
COMPARISON OF THENCC VALUES BETWEEN 2D-DCT AND 2D-PUD

METHODS UNDER DIFFERENT ATTACKS.

Attacks 2D-DCT 2D-PUD

Gaussian filtering (3,0.3) 0.9997 0.9998
Salt and pepper noise 0.001 0.7075 0.9447

Cutting (8,8) 0.7361 0.9510

TABLE IV
COMPARISON OF THE EXTRACTED WATERMARKS BETWEEN2D-DCT AND

2D-PUDMETHODS UNDER DIFFERENT ATTACKS.

Attacks Gaussian filtering Salt and pepper noise Cutting
(3,0.3) 0.001 (8,8)

2D-DCT

2D-PUD

The robustness of our method is compared with popular
2D-DCT based watermarking technique, which algorithm is
briefly described as follows. (i) Perform 2D-DCT on the host
image I to obtain the transformed imagêI. (ii) Randomly
embed the original watermarkA by multiplying the above
same small positive numberc to obtain the imagêI + cA
and save the embedded positions. (iii) Implement 2D inverse
discrete cosine transform (2D-IDCT) on the above image to
get the watermarked imageJ=(̂I + cA)∨. (iv) Extract the
watermark through the process(Ĵ − Î)/c at the embedded
positions.

Table III compares the NCC values between 2D-DCT and
2D-PUD under three attacks, which are respectively Gaussian
filtering with 3 × 3 filter size, salt and pepper noise0.001,
and image cutting with8 × 8 block size. In Table III, we
can see that our proposed approach performs much better on
salt and pepper noise and image cutting attacks than 2D-DCT.
Comparison of the extracted watermark images between the
2D-DCT and 2D-PUD methods under the above attacks is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2019.2914000

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON IMAGE PROCESSING 11

shown in Fig. IV. Our approach also visually performs much
better under above two attacks than 2D-DCT.

The experimental results demonstrate the robustness of our
proposed approach in digital watermarking. The main reason
is that the watermark embedded by our method is the projected
watermark by the 2D partial unwinding orthonormal system
of the host image and the remaining part after the projection
is recorded separately. Since attacks are applied on the water-
marked images, that is, only part of the watermark is affected
by the attacks in our approach. On the contrary, the whole
watermark is affected by the attacks in 2D-DCT method. This
is due to the fact that our approach decomposes different
images into different decomposition components adaptively,
while the discrete cosine transform use the same basis.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, the novel 2D non-linear phase decomposition
algorithm 2D-PUD is proposed. The matlab code without
optimization (we will do the optimization soon) is provided
in the link: http://www.fst.umac.mo/en/staff/fsttq.html. The
decomposition generates an adaptive orthonormal system. Its
convergence is obviously much faster than the standard Fourier
methods. So, theoretically anywhere when the Fourier methods
can be used, this new method can be used with much more
effectiveness and efficiency. As in the 1D case, the proposed
method provides the tensor form positive instantaneous phase
derivatives that lay foundation in image signal frequency
analysis. The experiments illustrate that the proposed method
is more efficient in image reconstruction than the standard
greedy algorithm and the most commonly used methods in
the Fourier category. Apart from the non-linear phase decom-
position of images, as an application, the proposed method
is more effective in watermarking than the standard discrete
cosine transform based watermarking technique. This is due
to the fact that our approach decomposes different images
into different decomposition components adaptively, while for
all images the discrete cosine transform use the same basis.
Further applications in image analysis and positive non-linear
frequency analysis are to be explored.
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