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_ Abstract—This paper aims at proposing a novel 2D non- trend, together with the interests on non-linear phase and
linear phase decomposition of images, which performs the positive instantaneous frequency (IF) of signals, has motivated
image processing tasks better than the traditional Fourier a type of signal representations phrased as adaptive Fourier

transformation (linear phase decomposition), but further, it o . : u .
has additional mathematical properties allowing more effective decomposition (AFD). In this terminology the word “Fourier

image analysis, including adaptive decomposition components refers to its connections with square-integrable analytic signals
and positive instantaneous phase derivatives. 1D unwinding and positive IFs, indeed, FT is a special case of AFD when

Blaschke decomposition has recently been proposed and studied.particular parameters are chosen; while the word “adaptive”
Through factorization it expresses arbitrary 1D signal into an efers to sparse and fast representation, which is, in particular,

infinite linear combination of Blaschke products. It offers fast dl hether th ding basic functi titut
converging positive frequency decomposition in the form of regardiess whether the expanding basic functions constitute a

rational approximation. However, in the multi-dimensional cases basis. There are two main types of 1D-AFD of which one
the usual factorization mechanism does not work. As a conse- is the maximal selection type (MST) AFD (see, for instance,
gquence, there is no genuine unwinding decomposition for multi- [12], [13]); and the other is the unwinding type AFD (called
dimensions. In this study a 2D partial unwinding decomposition ;yinding Blaschke decomposition (UBD) first by Coifman
based on algebraic transforms reducing multi-dimensions to t al 141-1161). Th imal selection t 1D-AED
the 1D case is proposed and analyzed. The result shows that,e al,, see [ ]_.[ D). The maX|.ma selection type .
the fast convergence offers efficient image reconstruction. The iN €ach context is based on a Riemann-Lebesgue type lemma
tensor type decomposing terms are mutually orthogonal, giving affiliated to the context; while unwinding Blaschke expansion,
rise to 2D positive frequency decomposition. The comparison pased on the factorization operation, consecutively extracts
results show that the proposed method outperforms the standard 5 rier frequencies and hence achieves a fast converging and
greedy algorithm and the most commonly used methods in the itive f d it In 1171th h
Fourier category. An application in watermarking is presented positive _requency ecomp05| ion. In [17] the author proposgs
to demonstrate its potential in applications. an algorithm that combines the two separated processes, i.e.,
) maximal selection and factorization, together. In summary,
Index Terms—Fourier transform, Hardy space, greedy al- 12117 1D algorith for 1D si | . on th
gorithm, adaptive Fourier decomposition, unwinding Blaschke [12]-{17] are - algorn _ms or _Slgna processmg. n " e
decomposition, Nevanlinna factorization. other hand, this paper is 2D algorithm for image processing.
This paper is the second such type 2D non-linear phase
decomposition in the literature. The first one is [18], in which

|. INTRODUCTION the approach is not based on unwinding but on some maximal

HE theories and methods of the one-dimension)( Selection principle. To our knowledge the present paper is the
T and multi-dimensionakD) Fourier transformation (FT) first 2D non-linear phase unwinding approach in the literature.
stand as traditional and powerful tools in both pure and applied!n the 1D cases, both the processes on maximal selec-
mathematics. They are used for image processing with a wigh and factorization are fully developed and analyzed with
range of particular tasks, including image analysis [1]-[4flemonstrative applications [12]-[17], [19]-[23]. In higher
filtering [5], [6], reconstruction [7], [8], and compression [9]dimensions, one can proceed maximal selection type AFD
etc. Due to the fact that trigonometrical functions are eigeHlat mainly results in fast converging rational approxima-
functions of the Dirac (the simplest first order differentialfions. Then he can further extend such sparse representation
operators, and due to its wide and deep connections with @¢thod to general reproducing kernel Hilbert spaces. The
branches of mathematics, Fourier theory has been and wMrresponding algorithms, either with the several complex
continue to have a fundamental role with great significance av@iables setting or the Clifford algebra setting have yet to be
deep involvement in both mathematics and its applicationsdeveloped. On the other hand, there does not exist a genuine

Non-linear phenomenon [10], [11] has been a great impetﬁ@ unwinding AFD being analogous to the 1D cases. This

for the development of sparse representations of signals. THgfeat is due to the following reason. In one complex variable,
if f is analytic ate and f(a) = 0, then there exists a
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ID-UBD and MST combined the relationship between the Hardy spaces and the Lebesgue

L? spaces.
1D cases MST
\D-UBD A. From 1D Fourier series to 1D Unwinding Blaschke De-
AFD composition
mD-PUD based on 1D-UBD o . . .
(proposed algorithm) Denote byD the unit disc,T its boundary, i.e., the unit
MD cases circle, andC the complex plane. Any complex-valued function
(m=2) MST in several complex variables of finite energy on the circlef(e®), in L*(T) is expressible
or Clifford algebra settings

as an energy converging series. The latter is further split into
two pieces, being in the Hardy spaces of, respectively , the
interior and the exterior unit disc, i.ef,= f* + f~, as

e’} o] —1

fleity = Z cpett = Z%eikt i Z cpett
call “2D partial unwinding decomposition”, abbreviated as 2D- k=—00 k=0 k=—o0
PUD, that adopts the 1D unwinding Blaschke de_composition = [T+ f(e"). (1)
(1D-UBD), through elementary algebraic operations, to the . ) . .
2D case. It turns out that the type of expansion has feLL,tf is, practically, a real-valued function, due to the relation
convergence with excellent image reconstruction effect. Be=k = there holds
sides, 2D-PUD gives rise to non-linear phase decompositions f=2Reft — ¢, )

with positive partial instantaneous frequency, which has never

been studied in the literature and is expected to lead {§'€re Re+means_ taking the real part of the complex-valued
a new research area in the image processing. The relafifgction /™. The finite energy property is equivalent with the

theory and applications of this aspect will be developed mondition > |cx|?> < oo. The relation (2) shows that the

our forthcoming work. The relationships among the above k=—oc0 .
mentioned AFD algorithms are illustrated in Fig. 1. study of f is reduced to the study gft, the latter being called

In this paper, the convergence of the proposed 2D-PL}Be an_alyt_ic signal a$0ci§ted V\.'ith f. It wrns out.that the
Halytlc signals are identical with the non-tangential boundary

and orthogonality of the decomposing components are provﬁl ite of th viic functi in th lex Hard
The computational complexity is provided. To demonstrate t IS Of the analylic Tunctions in the complex mardy space
the interior unit disc. Among various definitions of the

effectiveness and efficiency of the proposed algorithm, lex Hard " the interi it di i
sets of the experiments are conducted. The first one compacr%g]p ex Hardy spaces in the interior unit disc we will use

(algorithms to be developed)

Fig. 1. The relationships among different AFDs»tD cases . > 1).

the efficiency of the image decomposition and reconstruc- H?*(D) = {f(2) : [ is analytic in D, and

tion among 2D Fourier series (2D-FS), 2D greedy algorithm o0 o0 3)
(2D-GA) (or match pursuit) [26]-[31] on the product-Szegd f(z) = chzk,z |ek]? < oo}
dictionary, slice-1D-AFD, slice-1D-UBD, and our proposed k=0 k=0

2D-PUD. The results show that 2D-PUD has the best re-There exists a natural isometric isomorphism between the
construction effect. The second experiment demonstrates #tpyve defined Hardy space in the disc and the so called
effectiveness of our proposed algorithm on an application byundary Hardy space, defined as

watermarking by comparing it with the popular discrete cosine oo -

transform (DCT) based watermarking technique. The resultg;2 T) = {f(et) : f(e) = cheikt7 Z lex|? < oo}

show that the embedded watermarks can be better protected =

k=0
by our proposed approach. Besides, the embedded image size (4)
can be as large as the original image. The experiments exhibi¢ therefore consider the two function spaces as the same
great potential of the proposed approach in the future. [32].

The rest of the paper is organized as follows. In Section From the Nevanlinna factorization theorem [32],(z) can
I, the mathematical foundation of 2D-PUD with the Hardye decomposed into a product of an inner functign) and
H? space setting is introduced. In Section 1lI, the proposexh outer functiorO(z). The outer function is given by

2D-PUD in theL? setting is presented in detail. Experimental 1 /7\' it 4 o

results are shown in Section IV. Conclusions and prospects of ~ O(z) = exp {—

o log |f*(c ™)t} (5)

a et —z

the future work are drawn in Section V.
The inner functionI(z) can be further decomposed into

Il. PRELIMINARIES I(z) = B(2)S(z), where
_As _the _proposed 2D-PUD is through the 1D-UBD, we B(z) = 2" H @ 2y — 2 ©)
will briefly introduce the fundamental knowledge of 1D-UBD. - 2k 1—Zpz
Since the unwinding decompositions are for complex analytic 2170

functions belonging to appropriate complex Hardy spdéés is the Blaschke product part, collecting all the zerog ofz);
while the real world signals are assumed to be of finite energnd.S(z) is the singular inner function part given by a regular
or belong to the Lebesgue® spaces, this section also clarifiedBorel measure on the circle singular to the Lebesgue measure.
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Notice thatO(z) and .S(z) are non-vanishing in the unit disc,of convergence. Ever since the breaking through study of [14],
and each ofB(z), S(z), andO(z) is unique up to a unimod- the algorithm of 1D-UBD has been being optimized, and has
ular constant. Accordingly, we can write" (z) = B(z)G(z), been attracting a lot of interests and studies [35], [37].
where G(z) = S(2)O(z). The 1D-UBD is given by the

iterative process

B. The Relationship between Spaces H?(D?) and L?(T?)

f+ = BlGl
_ As in the 1D case, practical 2D images are real-valued and
= B1[G1(0) + (G1(2) = G1(0))] defined in the 2DL? spaces. In this subsection, we provide
= B1[G1(0) + B2G5] a brief review of the relationship between the 2[$ and L2
= a1B1 + B1B3[G2(0) + (G2(z) — G2(0))]  (7) spaces. Based on the relationship, we reduce the analysis of
o L? to that of H2. For the materials presented in this part, refer

_ to [18].
— 1By +asB1By+ -+ BBy - - BNG, Let D? := D x D = {(z,w) : |z| < 1,|w| <1} and
where a;, = G(0), k& > 1, and eachBy, k > 2, is L*(T?) denote the space of complex-valued functions on the

the Blaschke product generated by the zeros of the functidriorus with finite energy, where the energy is defined via the

Gr(z) — Gr(0) in H3(D). It was proved in [17] and [15] that inner product

]\/h—l;noo |B1Bs - - ByG x|l = 0. Hence, in theL?-norm sense, Lo

o (f,g9) = m/ fle™, e*)g(e™, e*)dtds.  (9)

fH(z) =) axBiBa--- By. (8) T
k=1 By the Plancherel theorem of the contekte L?(T?) if and

If the analytic signalf* is analytically extendable to an operPnly if in the L?-norm sense,

neighborhood of the closed unit disc, then the exponential it sy i(ket-41s)

decay rate is attained [17]. Note that if ea8h only factorizes fle®,e®) = Z Cki€ (10)

the factorz, which can be practically done, then the decom- —oo<k,l<eo

position (7) reduces to 1D-FS. T_hps 'Fhe 1D-FS is a particulgrq 12 = ) lenl? < oo, where ¢ =

case of 1D-UBD. Due to the positive instantaneous frequency o<k <00

property of Blaschke products [33], 1D-UBD gives rise to fastf, ex), ew(t,s) = e’**e’s. The functions inL?(T?) with

converging positive instantaneous frequency decompositionagf = 0 for £ < 0 or I < 0 constitute a closed subspace of

signals. L?(T?), denoted

In practice, f is usually supposed to have only a trivial

singular inner functions(z), namelyG(z) = O(z). In other  H?*(T?) = {f € L*(T%) | f(e™ ™) = ) cklei(k”“)}.

words, the analytical signaft can be factorized into the k,1>0

product of a Blaschke product and an outer function. In the ) (11_)

algorithm design, a natural method is to first compute the outeft 7°(D?) be the class of complex holomorphic functions

function G and then obtain the Blaschke produgtwith the N the poly-discD x D satisfying

relation B = f*/G. Indeed, computing the boundary limit T _ _

functionG(e*) is reduced to computing the Hilbert transform sup / / |f(rie', ree™)Pdtds < oo. (12)

of log |+ (¢')|. Practically, the non-tangential limit function =~ <"r2<t/=m /=

f*(e’*) may be close to zero, and as a consequence, s shown in [18] that there exists an isometric isomorphic

computation ofG(e*) become unstable. For this reason, fhapping betweerH?(D?) and H?(T?). For f € L*(T?),
number of computative algorithms have been developed denote

compute Hilbert transforms. A method in [14] is to smooth

log |f*(e®)| by adding a small positive constant and another FEREt €)= Y e’ ),
method in [34] is to add a small pure sinusoiddg | £+ (e®)]. k,1>0
However, adding a small positive constant or a small pure fH=(e", ) = Z et Fttis)
sinusoid in each iteration may induce a big error after it- k—1>0
erations. To avoid this defect Mai et al. [35] proposes to St sy i(kt+1s) (13)
first factorize out a finite Blaschke product through finding Foren en) = Z Che ’
a finite number of zeros of * and then obtair(z) with the o “hl20 ,
relationG(z) = f*(z)/B(z). [35] shows that the method of ForEh ey = Y et
only unwinding a finite Blaschke product part can guarantee —k,—1>0
applicability of the algorithm. and
In summary, the 1D-UBD (7) and its variations generate
adaptive orthonormal systems by factorizing out all or part Fe') = 1 " F(e™, e ds
of the zero-factors in each decomposition iteration. Among 2w J_ ’ ’
various kinds of Fourier type positive-frequency expansions i 1 [ i s (14)
[12], [17], [19], [36], the 1D-UBD exhibits the fastest speed G(e) = %/ﬂf(e ,e'*)dt.
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The partial Hilbert transforms of € L?(T?) are defined as

2.

—oo<k,l<c0

2.

—oo<k,l<0

Hayf(e'",e™) = (—isgnk)cye FH)

(15)

H(Q)f(eit, e’is) - (_Z'Sgnl)cklei(kt-i-ls),

where H ;) f is the Hilbert transform off with respect to the
first variable andH 5 f is the Hilbert transform off with
respect to the second variable.

From now on, we assume th#te L?(T?) is real-valued.

In the casef™* and f—~ are mutually conjugate to each

http://dx.doi.org/10.1109/TTP.2019.2914000

A 2D-PUD on H2(D?)
Let f(z,w) € H?*D?). Then fH*(z,w) = f(z,w)

> cwzful, where Y Jew|? < oo. The algorithm
k>0,1>0 . ] k>0,1>0
given in this section does not assumag = 0 for £ = 0

orl=0. Setf; = f. Denote

g(z,w) = fl(zaw) - fl(Z,O) - fl(o’w) +f1(0a0)'

Notice that ifz = 0, theng(z,w) = 0 for anyw € D, and if
w =0, theng(z,w) = 0 for any z € D. These imply

(22)

g(sz) :waQ(va)v (23)

other andf~* and f*~ are as well. Taking the notationswhere f, is an H2(D?) function. Thus we obtain

(13) and (14) into account, denote

Be',e%) & f(e", €)= F(e) = G(e"*) + coo. (16

We note that the Fourier coefficientg of h are equal to zero

f(z,w) = wa2(zaw) +f1(270) + fl(oaw) - fl(Ovo)a (24)

where

when’ = 0 or I = 0. The following relations can be verified f, (., ) = filz,w) = f1(2,0) = f1(0,w) + £1(0,0) (25)

directly

T (e, e') (I 4+ iH))(I 4+ iH))h (17)

1
4
and

thr(ezt’ezs) = Z(I + zH(Q))(I — ZH(l))h. (18)

There then follows
pet ey ={nt et ey b4 {h et e}
+{nteten )+ (et e} @)
We further have

h(e®, e'®) = 2Re{h+’+(eit, ei‘g)} + 2Re{h_’+(e”7 eis)}.
20)

From (16) and (20) we finally obtain

2Re{h+’+(e“, e”)} + 2Re{h*’+(e“, eis)}

+F(€it) -+ G(6i8> — €00, (21)

f(eit’ eis)

where [h(e*“, e”)] +’+(e“, e’®) = h— T (e, e®).
The 2D-PUD algorithm for a general real-valu2B image

f of finite energy can be outlined as follows. First apply the

2D-PUD algorithm to the Hardy space sigiat-+ andh=7.
Then apply the 1D-UBD to the 1D signals and G. Finally

take the real parts of all the obtained decomposing terms and

zZw
Repeating the same procedure oKz, w), we get

f(z,w) =(zw)? f3(z,w) + zw [fg(z, 0) + f2(0,w) — f2(0, O)}

+ f1(2,0) + f1(0, w) — f1(0,0), (26)
where
f3(2,w) _ f2(27w) - fQ(Z’ O)Z;}fQ(Oa w) + fQ(Oa O) (27)
Repeating this process up to N-times, we have
N
Fzyw) = 3 ()" fnl2,0) + fin (0,0) = fn(0,0)]
m=1
+ (zw) faga(z,w), (28)
where
ferl(Z; w) _ fm(zv U}) B fm(za O)Z:Ufm(ov U}) + fm(Ov 0) )
(29)
By denoting
N
Sw(F)(zw) = 3 ()™ f (2, 0)4fm (0, )= Fn(0,0)
m=1 (30)
and
RN(f)(va) = (Zw)NfN-i-l(Zaw)a (31)
where fx 11 is an H?(D?) function, we obtain
f(zaw>:SN(f)(Zaw>+RN(f>(va)' (32)

add them together using (21). The described algorithm shows

that 2D-PUD for the 2D Hardy space functions is crucial.

I1l. THE 2D PARTIAL UNWINDING
DECOMPOSITION (2D-PUD) FOR THE HARDY
SPACE FUNCTIONS

The analysis in the last section shows that the 2D-PUD of

Denote the 2D classical Fourier serie¥ — 1)-partial sum
decomposition by

Flz,w) = Sn(f)(z,w) + Ry(f)(z,0),
where Sy (f)(z,w) = 30

0<k,I<N—1
S>> ew|? — 0. Fig. 2 shows that
Oor i>N

(33)
crzFwt. It is well known

that || R (f)||?

2D L? functions is reduced to that of the related 2D HardﬁN(f) spreads over the regionU Il U lll; while Ry(f)
space functions, and to the related 1D-UBD of some 1§preads over only the region Il. In below, we show tBat( f)

functions.

rapidly converges tg in the L2-norm. Furthermore, iff can
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Fig. 2. The energy distribution regions & (f) and EN(f).

be holomorphically extended to outside of the closed unit poly,

disc, then the exponential decay rate can be attained.
Theorem 1. If f(z,w) € H?(D?). Then

If = Sn(f) (34)

Moreover, if f can be holomorphically continued to (1+4d;)Dx
(1+62)D = {(z,w) ‘ |z2| <1406y and |w| <1462}, &; >
0, i = 1,2, then the L?-norm of the remainder Ry (f) decays
exponentially.

| =0, N— occ.

http://dx.doi.org/10.1109/TTP.2019.2914000

Proof: Without loss of generality, sét> j. Let B1(z) =

oS o - be
z— akl J
k];[1 i , Ba(w) = k];[l T . Then
ot o 2
1—aklz 1—ka

:4_2/ / (") By(e) (%) T By (e dtds
™ J-rd—m

1 ™ p P X 1 E - -
= % (ett)l—J-&-lBl(ezt)dt, %/ (ezs)g—l+132(615>ds.

From Cauchy’s theorem, we have

¢IB(€)dE =0, i. e., /

-7

(eit)l_j+1Bl (Te”)dt =0,

|§]=r
where0 < r < 1. As the modulus of a Blaschke productin the
unit disc is less than, it is seen from Lebesgue’s dominated
convergence theorem that

(eit)l_j'HBl (re')dt = /

—T

lim ()= By (e™)dt = 0.
ro1- ) .

This gives the zero value to the above inner product. The
orthogonality between the other different functions in the 2D

Proof: Due to the uniqueness of power series expansiartial unwinding system can be similarly proved. Moreover,
of a holomorphic functionRx(f) is equal to the sum of the due to the unit modulus property of Blaschke products on the

power series entries,; z*w' with bothk > N andl > N. The

unit circle [32], the norm of each function in the system is 1.

energy ofRy (f) is the square sum of the norms of the FourieThe proof of the theorem is thus complete. m
coefficients indexed by the integer pairs in the region Il in Fig.

2, thatis,||f — Sn(f)|I* = lexi|? =0, N — oco. In

2
>N,I>N

B. 2D-PUD on L?(T?) Images

addition, letf(z,w) € H*(D?) be holomorphically contlnued The principle of the 2D-PUD algorithm fof.2 image

to (1+61)]I))><(1+62)D 6 >0, i=1,2. Letting 3; = 1+ %
and 3, =1 + , we havecy,;3rp5 — 0 for eitherk — oo

orl — co. So there exists\/; > 0 such that|cy| < ﬁ”él
1 2

for anyk > 0 andl > 0 This mduceSHf Sn(f)|I? <

M} g2 £z Th
k>NZ;>N 2% g3t 1 521\7521\7 BI-1 52 1 us
If = Sn()] < Cral, (35)
whereC; = % anda; = 54 < 1, as desired.
1 2 .

From the iterative process of the functighin H?(D?),
fm(z,w) belongs toH?(D?) for everym > 1. This implies
that the univariate complex functionf$,(z,0) and f,,, (0, w)

functions is studied in Subsection II-B through reducing
the L? to the H? cases. In this subsection we aim at the
implementation of the algorithm. Any image denoted(@s¥)
(x=1,2,---,m,y =1,2,--- ,n with sizem x n) can be
considered as discrete values of a real functfger?, ¢**) in
L?(T?). Preprocesg to obtainh by throwing away the terms
¢y Of f for k =0 orl =0, and then find the boundary limits
of the functionsh™* and h=* through the partial Hilbert
transforms (15). The Nevenlinna decompositiongdft and
h™T and the consecutive ones pursuing the 1D-UBD are all
done on the boundarie§z| = 1} or {|w| = 1}, and adopt
the finite Blaschke decomposition method given in [35]. As
proved in the previous section, the obtained 2D-PUD generates

belong to H2(D), respectively. By using the 1D-UBD, eachan adaptive fast converging orthonormal system.

fm(z,0) and f,,(0,w) can be approximated by an infi-

The flowchart of the 2D-PUD is shown in Fig. 3. First, an

nite linear combination of Blaschke products. In summaripput 2D imagef is preprocessed to obtainfrom (16). Next,
for an arbitrary function inH?(D?), we obtain the 1D- the respective 1D-UBD results of 1D signals and G are
UBD based 2D-PUD. Combining the iterative processes (Zpmputed. Then, is decomposed to gét™+ andh " from
and (28), we get the 2D partial unwmdmg system cor(d7) and (18), respectively. After that, we apply Algonthm 1

o0
l—aklz =1

sisting Of{( w)™” 1}00_1’ {(Zw)l 12;}31
{Gup—rw T 50

1— bkjw

}OO Due to the adaptivity of the 1D-
=1

and Algorithm 2 to get the approximation result§ and v

of htT andh— 7, respectively. Finally, taking the equations
(16) and (21) into consideration, we get the approximation
result fV. Thus, the 2D-PUD algorithm is achieved.

UBD, the 2D ‘partial unwinding system is adaptive. In fact The computational complexity of 2D-PUD is calculated as

different elements in the system are mutually orthogonal.

Theorem 2. If f(z,w) € H?(D?). Then its 2D partial
unwinding system is orthornormal.

follows. Assume that the image sizelisx L

« Since the calculation of Hilbert transform is obtained by
fast Fourier transform (FFT) [38], the complexities of
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‘ Input a 2D image f ‘

y

Obtain he—f—F—G+¢,, from (16)

{

Get the respective 1D-UBD results F¥andG" of F and G

|
[ L

Get ji~" from (17) and denote u <« h™" Get A " from (18) and denotev « 1~
Apply Algorithm 1 to get 2" Apply Algorithm 2 to get +*

| |
y

Output the approximation result

Y« 2Re(u") +2Re(V )+ FV +GY —cyy

End
Fig. 3. The flowchart of 2D-PUD on image decomposition withelei.
Algorithm 1 2D-PUD of u Algorithm 2 2D-PUD of v
Input: 2D signalu and decomposition leveV. Input: 2D signalv and decomposition leveV.
Output: approximation result.” . Output: approximation result? .
1: Initialize u; = w andu’y = 0. 1: Initialize v; = v andv?Y = 0.
2: for k=1to N do 2: for k=1to N do
3 Getug(e™,0), ux(0,e’) anduy(0,0) from (14); 3 Getvg(e™™,0), vk (0,e%), andwv(0,0) from (14);
4 GetT, = (e*e™)*! and choose 1D unwinding 4 Get I, = (e *e™)*~! and select 1D unwinding
decomposition leveh; decomposition leveh;
5: Get the 1D unwinding decomposition} (¢**,0) of s Get the 1D unwinding decompositios} (¢*,0) of
ur(e",0) anduf (0, e**) of u (0, e**) from reference [35]; vk(e~,0) and v (0,e*) of vg(0,e) from reference
6:  Getu" =ul + Tp[ul(e®,0) +ul(0, e*) — uk(0,0)] [35];
from (30); 6.  Geto™ =N + L [vp (e, 0) + v (0, €*) — vy (0,0)];
7 Get upr1 = [ur — ug(e®,0) — ug(0,e¥) + 7 Get vpy1 = [vr — vr(e7®0) — vp(0,e¥) +
ur(0,0)]/(e'te*®) from (29); vk (0,0)]/ (e~ et);
8: end for 8: end for
9: return u™. 9: return v!V.

the projection signalsf** and f—* are O(L?logL), dimensional fast Fourier transform (2D-FFT).
respectively.
« The respective complexities of computing the zeros of IV. EXPERIMENTAL RESULTS
finite Blaschke product of step 5 in both Algorithm 1 Two sets of the experiments are conducted to demonstrate
and Algorithm 2 areO(M L) [39], respectively, where the effectiveness and efficiency of the proposed approach. We
M is the number of discrete points in the unit dBc  use the following naming pattern: slice-1D-AFD and slice-
« The computational complexities of step 6 in both AlgoiD-UBD represent that the image is processed row-by-row by
rithm 1 and Algorithm 2 are)(L?), respectively. applying 1D-UBD and 1D-AFD, respectively. 2D-GA stands
Therefore, the computational complexity of the 2D-PUD aRD greedy algorithm (or match pursuit) [26]-[31] on the
gorithm is O(L?logL), which is the same as that of two-product-Szegd dictionary. 2D-FS and 2D-PUD denotes 2D
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Fig. 4. Comparison of the different algorithms with decomposition leéVek= 5. (a) Original image, (b) slice-1D-AFD, (c) slice-1D-UBD, (d) 2D-GA, (e)
2D-FS, and (f) 2D-PUD.

T ey il oy s
ARbeENEE M

@)

Fig. 5. Experimental results on image reconstruction. (a). 20 original images from ORL face database. (b). 20 original images from Yale face database.
Image reconstruction results of (a) by 2D-PUD with N=5. (d). Image reconstruction results of (b) by 2D-PUD with N=5.
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Fourier series and our proposed approach, respectively. W& he above criteria, namely, PSNR, SSIM, El, and FD, can
implement the 2D decompositions by adopting overlappire directly used for evaluating the grayscale images. For color
block methods. The first set of our experiments compar@sages, we calculate the average of the respective PSNR,
the efficiency of the image decomposition and reconstructi®8IM, EIl, and FD values of three different color channels.
among slice-1D-AFD, slice-1D-UBD, 2D-GA, 2D-FS, andregardless of color or grayscale images, better reconstruction
our proposed 2D-PUD on 6 popular test images and tvgmalities are indicated by larger values of PSNR and SSIM,
large databases - The ORL Database of Faces and Yale Fawe smaller difference of EI and FD.

Database, including 240 grayscale images from ORL and 1026
grayscale images from Yale, respectively. The second set of
experiments illustrates the effectiveness of our proposed algo-
T'th”."' by the appllcatu_)n n watermarkmg through Comparm%’,ﬁriteria Lena Cameraman Baboon Peppers Barbara Monarch ORle Y

it with the popular discrete cosine transform (DCT) based g1 02575 03186 04267 0.2688 0.3586 0.3653 0.47550.3597
watermarking techniqgue. Some commonly used attacks arerD 0.0305 0.0464 0.0667 0.0297 0.0469 0.0418 0.05450.0190
also tested, including Gaussian filtering, salt and pepper noise,

and image cutting.

TABLE |
THE El AND FD VALUES OF THE ORIGINAL IMAGES.

TABLE Il

A. Image Decomposition and Reconstruction COMPARISON RESULTS AMONG FIVE DECOMPOSITION APPROACHES ON
PSNR, SSIM, EIAND FD VALUES OF THE SELECTED SIX IMAGES AND

We use the following measurements to evaluate the recon-" RcspecTiveE AVERAGES OFORL AND YALE DATABASES. THE

struction quality of images: peak signal-to-noise rate (PSNR),
structural similarity index (SSIM), edge intensity (El), and

DECOMPOSITIONLEVEL ISN = 5.

fiqure definition (ED). Images _Methods PSNR SSIM El FD
9 ) _( ) Slice-1D-AFD 20.6606 0.5331 0.1799 0.0195
PSNR is defined as Slice-1D-UBD 23.7143 0.6731 0.2440 0.0298
9552 Lena 2D-GA  30.5142 0.9221 0.2538 0.0309
PSNR= 10log ——, (36) 2D-FS 344962 0.9549 0.2562 0.0313
MSE 2D-PUD  52.1189 0.9985 0.2580 0.0307
where Slice-ID-AFD 20.1428 0.5844 0.2296 0.0279
Slice-1D-UBD 19.4296 0.5720 0.2533 0.0331
1 mol ) Cameraman  2D-GA 26.2435 0.8839 0.3222 0.0446
MSE = SN s y) = I, y))?, (37) 2D-FS  28.8802 0.9232 0.3200 0.0631
mxmn = 2D-PUD  48.4741 0.9966 0.3198 0.0467
_ _ _ ) Slice-1D-AFD 20.4109 0.3910 0.2392 0.0307
m x n is the size of grayscale image I. J is the reconstructed Slice-1D-UBD 22.4272 0.5862 0.3100 0.0412
image of I. Baboon 2D-GA  26.5681 0.8474 0.3938 0.0565
Lo 2D-FS 29.6990 0.9278 0.4150 0.0817
_S_SIM_[40] measures the structural s_|m|lar|ty between the JD-PUD 491860 0.9987 0.4273 0.0668
original image | and the reconstructed image J. Based on the Slice-1D-AFD 21.4408 0.5932 0.2356 0.0259
calculation of the luminance, the contrast and the structural 5 Sllczeblg-XBD 3?1253?3?58 8523863 8-2?7517; 8-(?33%3

. . . eppers - . . . .
correlation of images, SSIM is computed by 2D-FS 347850 0.9566 0.2683 0.0347
_ o 3 - 2D-PUD  47.9617 0.9970 0.2701 0.0301
SSIM(1, ) = [I(1, )] [e(1, )7 [s(1, )], (38) Slice-ID-AFD 19.4638 0.4295 0.2468 0.0281
Slice-1D-UBD 22.7953 0.6222 0.3059 0.0365

— 2 2
wherel(l,J) = (2ppy+ C1)/(uf + py+ C1) represents the  gapyar 2D-GA 289639 0.8973 0.3459 0.0427
luminance of images:(l,J) = (20|UJ+CQ)/(U|2+03+CQ) 2D-FS 322859 0.9458 0.3542 0.0560
compares the contrast of imagesl., J) = (o13+C3)/(0j03+ S“fgﬂfm 4149777%62 069597633 00'32‘12018 0600427976
Cd) measures the structural correlation of images, where Slice-1D-UBD 21:5031 0:6821 0:2944 0:0356
Ky, p3, oy, oj, and o)y are the local means, standard Monarch 2D-GA 26.5390 0.9211 0.3552 0.0445
deviations, and cross-covariance for the images | and J. In 2%%55[) 5302;32883589 0099958539 0053655999 00604"'2816
this article,a = = v = 1 andC3 = (/2. Larger PSNR Siice-1D-AFD 18.1445 0.2945 0.3679 0.0156
and SSIM values usually correspond to better reconstruction Slice-1D-UBD 18.7004 0.3633 0.3988 0.0334
quality. ORL 2D-GA  27.8298 0.8871 0.4703 0.0679
. . 2D-FS 30.1065 0.9224 0.4648 0.0728
El [41] is the average sum of the absolute value of the image JD-PUD  41.8766 0.9944 0.4772 0.0597
edges. Slice-ID-AFD 17.0724 0.3356 0.2859 0.0421
FD [41] reflects the clarity of an image, computed as Slice-1D:UBD 17,4553 0.3786 0.5042 50.0454
Yale 2D-GA  30.2005 0.9259 0.3614 0.0407
m—1n—1 - ) B 273 2D-FS 34.1292 0.9593 0.3568 0.0418
Hatly) Ty $Iytl) T(@.y) } 2D-PUD  45.0382 0.9935 0.3600 0.0385
rz=1 y=1

FD =

(m—1)x(n—1) ’

(39) To show the efficiency of the proposed algorithm, we
wherem xn is the size of image I. The difference of the El andonduct a number of experiments. First, six popular test
FD values between the original image and the reconstruciethges, including two grayscale and four color images of size
image also represent the reconstruction quality. The smalii6 x 256, are selected as original images. Fig. 4(a) lists the

the difference is, the higher the reconstruction quality will beix original images that are respectively “lena”, “cameraman”,
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Fig. 6. Comparison results of (a) El and (b) FD differences on six test imag

and respective averages of ORL and Yale databases among five methods S 002
the decomposition leveN = 5. —~—sico0AD|| S —_—
Slice-1D-UBD 0.01 - oo ton
mrs || 2
—*—2D-GA 0 ——2D-GA
—+—2D-PUD —+—2D-PUD
- — -Original value ‘ -- - Original value
-0.1 -0.01
“pbaboon”, “peppers”, “barbara’, and “monarch”. The recon ' 2 3 4 5 o284 S
. X . Decomposition level N Decomposition level N
structed images through the tested five algorithms with- 5 ©) (d)

are displayed in Fig. 4(b)-(f). In Fig. 4 we can see that our _ s of th g it d
proposed approach demonstates best visual perormance. CopTSn s o s 0 1wt feren s
the six test images. Then, we conduct the experiments on
two face databases. These face images are shot at different
times, with different lighting, expressions and facial detailg Application in Digital Watermarking
We compare separately the average PSNR, SSIM, EIl, and
FD values for each database. To demonstrate the constructiohhere are various schemes to embed and extract the water-
quality visually, 20 images from each of above two database®rk. They can be divided into two categories. One is that the
and their corresponding reconstruction images through otigtermark is embedded in the spatial domain and the other
proposed approach are illustrated in F|g 5. The results Sh&/\,that it is embedded in the transform domain. In the Spatial
that the reconstructed images are visually indistinguishatlemain, the watermark is directly embedded into a host image
from the corresponding original images. by modifying the pixel values [42]-[45]. In the transform

. . .. domain, the coefficients of the transformed host image are
_ Table | lists the EI and FD values of the six originalyqified [46]-[49]. The popular transform domain techniques
images and the average El and FD values of the ORL apflde two-dimensional discrete cosine transform (2D-DCT),
Yale databases, respectively. Tables Il gives the comparisgp, dimensional discrete Fourier transform, etc. Spatial do-
results of the PSNR, SSIM, El, and FD values of the Si\5in techniques have lower computational complexity, but are
images and respective averages of the ORL and Yale datab3ses ropyst than the transform domain techniques [46]. 2D-
among the five methods with’ = 5. Fig. 6 compares the El pp generates an adaptive orthonormal system that can offer
and FD differences of the six images and respective averages,ore secure watermark embedding in the transform domain,
of the ORL and Yale databases among the five approacieshe gecomposing components of the watermarked image are
with N = 5. Table Il illustrates that our proposed approacfiterent from those of the original image due to the adaptivity.
outperforms other approaches on all test images. Fig. 6 shqus utline the specific approach as follows.
that .ZD'PUD has the smallest differences of El and FD amoNYassume that the pixels of a host image and a watermark are
the five methods. discrete values of functiong andg in L?(T?), respectively.

To further show the effect of the decomposition level, th€henf*+ andf -+, as well agy** andg~*, can be easily
comparison results of the PSNR, SSIM, El, and FD values obtained through the partial Hilbert transforms described in
the reconstructed “lena” with different decomposition levelSubsection II-B. From Theorem Z;™* produces an adaptive
among five tested algorithms are shown in Fig. 7. In Fig. 7(oythonormal system. Due to the orthogonality of the 2D partial
and (d), black dotted lines represent the EI and FD valugswinding systemg** can be projected into the system.
of the original image. Clearly, as the decomposition le¥el Similarly, g—* can also be projected into the 2D partial
increases, the PSNR and SSIM values of the reconstructgwwvinding orthonormal system of . As a result, taking
image become larger, and the differences of the El and Rie relations among*:*, ¢~ ", andg into consideration, the
values between the original image and the reconstructed imagiginal watermark is scrambled by the 2D partial unwinding
become smaller. According to Fig. 7(a), the PSNR and SSItthonormal system of the host image to obtain a new water-
values of the 2D-PUD withV = 1 are already larger than themark. There is a difference between the original watermark
respective PSNR and SSIM values of the slice-1D-AFD and and the projected watermark This difference will be
slice-1D-UBD with NV = 5. Besides, whenV increases, the recorded separately and added back to the extracted projected
PSNR value of the 2D-PUD is remarkably larger than thoseatermark during the final extraction.
of the 2D-GA and 2D-FS. Algorithm 3 illustrates how 2D-PUD is applied to the
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Algorithm 3 The watermark embedding and extraction prorp—1, Fig. 8 shows the embedding and extraction of the
cesses using 2D-PUD method watermark image “bird” using the 2D-PUD method. As shown
Input: An original host imagd of sizem x n, an original in Fig. 8 (a) and (c), the color image “monarcl256 x 256)
watermarkA of sizep x ¢ (p < m,q < n), a small positive is used as the host image and another color image “bird”
embedding factoe. (128 x 128) is chosen as the watermark. Fig. 8 (d), (b), and
_Output: The watermarked imagé and extracted watermark (e) display the projected watermark, the watermarked image,
A. and the extracted watermark, respectively. There is no visible
1: Choose the decomposition leval to obtain the recon- differences either between the host and watermarked images,
structed imagd; by using the 2D-PUD method. or between the original and extracted watermark images. The
2: Get a new watermarkA; by projecting the original PSNR value between the watermarked and the original host
watermarkA into the 2D partial unwinding orthonormalimages is 34.7994, and the NCC value between the original
system ofl. and the extracted watermarks is 1, which indicate both the
3: Randomly embed the watermaf through the process embedding and extraction results are promising.
I, + cA; to get the watermarked imagkand save the
embedded positions. TABLE Il
4: Extract the watermaria by the processA-A1+(J-I1)/c CoMPARISON OF THENCC VALUES BETWEEN2D-DCTAND 2D-PUD
at the embedded pOSitiOﬂS. METHODS UNDER DIFFERENT ATTACKS

Attacks 2D-DCT 2D-PUD

Gaussian filtering (3,0.3) 0.9997 0.9998
Salt and pepper noise 0.001  0.7075 0.9447
Cutting (8,8) 0.7361 0.9510

TABLE IV
COMPARISON OF THE EXTRACTED WATERMARKS BETWEEND-DCT AND
2D-PUDMETHODS UNDER DIFFERENT ATTACKS

Attacks  Gaussian filtering  Salt and pepper noise Cutting
(3,0.3) 0.001

(c) (d) (e) 2D-DCT

Fig. 8. Embedding and extraction of the watermark image “bird” using
2D-PUD method without attacks. (a) Original host image “monarch”, (b)
the watermarked image, (c) original watermark “bird”, (d) the projected
watermark, and (e) the extracted watermark.

2D-PUD

watermark embedding and extraction processes. In order to
test the efficiency of our proposed watermarking technique;

PSNR and normalized correlation coefficient (NCC) [49] are : .
Ehe robustness of our method is compared with popular

used to assess the similarity, in which PSNR is used to ass . : . ! .
y é{%-DCT based watermarking technique, which algorithm is

the similarity between the host images and the watermar . .
images, while NCC is used to assess the similarity between éefly descrlbeq as follows. (i) Perfqrm ZAD'PCT on the host
Image I to obtain the transformed imagk (i) Randomly

original watermarkA and the extracted watermagk. NCC _ -
9 embed the original watermard by multiplying the above

is computed as follows: " : .
P same small positive humber to obtain the imagd + cA

2”: zq: Az, ) x Az, )] and save the embedded positions. (iii) Implement 2D inverse
NCC — z=1y=1 (40) discrete cosine transform (2D-IDCT) on the above image to
P g » 4 _ get the watermarked imag&=(I + cA)". (iv) Extract the
2 2 Al y)? X X Alz,y)? watermark through the proce$d — I)/c at the embedded
e=ly=1 e=ly=1 positions.

For color images, average PSNR and NCC values are computTable 1ll compares the NCC values between 2D-DCT and
ed from three different color channels. Larger PSNR and NCZD-PUD under three attacks, which are respectively Gaussian
values indicate better embedding and watermark extractifitering with 3 x 3 filter size, salt and pepper noige001,
results, respectively. and image cutting with8 x 8 block size. In Table III, we

As described in the previous subsection, 2D-PUD with thean see that our proposed approach performs much better on
decomposition levelV = 5 has high reconstruction quality,salt and pepper noise and image cutting attacks than 2D-DCT.
we chooseN = 5 in Algorithm 3. In addition, the small Comparison of the extracted watermark images between the
positive embedding factoe in Algorithm 3 is selected as 2D-DCT and 2D-PUD methods under the above attacks is
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shown in Fig. IV. Our approach also visually performs mucfa] P. Chazal, J. Flynn, and R. Reilly, “Automated processing of shoeprint
better under above two attacks than 2D-DCT. images based on the Fourier transform for use in forensic scielief?

Th . tal Its d trate th bust t Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3, pp. 341-350, 2005.
€ expernmental results aemonstrate the robusiness o IG. Papari, P. Campisi, and N. Petkov, “New families of Fourier eigen-

proposed approach in digital watermarking. The main reason functions for steerable filtering/EEE Trans. on Signal Process., vol. 21,
is that the watermark embedded by our method is the projectedno- 6, pp. 2931-2943, 2012.

. T S. Lucey, R. Navarathna, A. Ashraf, and S. Sridharan, “Fourier Lucas-
watermark by the 2D partlal unwinding orthonormal syste Kanade algorithm,1EEE Trans. Pattern Anal. Mach. Intell., vol. 35, no.

of the host image and the remaining part after the projection s, pp. 1383-1396, 2013.
is recorded separately. Since attacks are applied on the walff@r-T. Ogawa and M. Haseyama, "Missing texture reconstruction method

: : : based on error reduction algorithm using Fourier transform magnitude
marked images, that is, only part of the watermark is affected .. - scheme/EEE Trans. on Signal Process, vol. 22, no. 3, pp.

by the attacks in our approach. On the contrary, the whole 1252-1257, 2013.
watermark is affected by the attacks in 2D-DCT method. Thi& A. Voropaev, A. Myagotin, L. Helfen, and T. Baumbach, “Direct Fourier

; ; inversion reconstruction algorithm for computed laminographizEE
is due to the fact that our approach decomposes different ;- '~ = Signal Process., vol. 25, no. 5, pp. 2368-2378, 2016,

images into different decomposition components adaptively} w. Hu, G. Cheung, A. Ortega, and O. Au, “Multiresolution graph Fourier
while the discrete cosine transform use the same basis. transform for compression of piecewise smooth imagd=EE Trans. on
Sgnal Process,, vol. 24, no. 1, pp. 419-433, 2015.
[10] X. You, L. Du, Y. Cheung, and Q. Chen, “A blind watermarking scheme
V. CONCLUSIONS AND FUTURE WORKS using new nontensor product wavelet filter bankEEE Trans. on Image

. BT . Process., vol. 19, no. 12, pp. 3271-3284, 2010.
In this paper, the novel 2D non-linear phase decompOSItlﬁQ] B. Gaurav, Q. Wu, and B. Raman, “Discrete fractional wavelet transform

algorithm 2D-PUD is proposed. The matlab code without "and its application to multiple encryptionjiform. ., vol. 223, pp. 297-
optimization (we will do the optimization soon) is provided 316, 2013.

; Al . 12] T. Qian and Y. Wang, “Adaptive Fourier series-a variation of greedy
in the link: http://www.fst.umac.mo/en/staff/fsttg.html. Thd algorithm.” Adv. Comput. Math.. vol. 34, no. 3, pp. 279-293, 2011.

decomposition generates an adaptive orthonormal system.[48 T. Qian, L. Zhang, and X. Li, “Algorithm of adaptive Fourier decom-
convergence is obviously much faster than the standard Fourierposition,” IEEE Trans. Sgnal Process,, vol. 59, no. 12, pp. 5899-5906,

; ; 2011.
methods. So, theoretically anywhere when the Fourier meth%&:ﬁ M. Nahon, “Phase evaluation and segmentation,” PhD Thesis, Yale

can be used, this new method can be used with much moreynjversity, 2000.
effectiveness and efficiency. As in the 1D case, the propodesl R. Coifman and S. Steinerberger, “Nonlinear phase unwinding of func-
method provides the tensor form positive instantaneous ph%%?tlons, J. Fourier Anal. Appl., vol. 23, no. 4, pp. 778-809, 2017.

L . N . R. Coifman and J. Peyriére, “Phase unwinding, or invariant subspace
derivatives that lay foundation in image signal frequency " yecompositions of Hardy spacesyXiv:1707.04844, 2017.

analysis. The experiments illustrate that the proposed methor T. Qian, “Intrinsic mono-component decomposition of functions: an
is more efficient in image reconstruction than the standard advance of Fourier theoryMath. Methods Appl. Sdi., vol. 33, no. 7,

. .~ pp. 880-891, 2010.
greedy algorithm and the most commonly used methods ig)"1 gian. “Two-dimensional adaptive Fourier decompositioMath.

the Fourier category. Apart from the non-linear phase decom- Methods Appl. i., vol. 39, no. 10, pp. 2431-2448, 2016.
position of images, as an application, the proposed methld®] T. Qian, Cyclic AFD algorithm for the best rational approximation,

. . . . . Math. Methods Appl. ., vol. 37, no. 6, pp. 846-859, 2014.
is more effective in watermarking than the standard discr 5%] R. Coifman, S. Steinerberger, and H. Wu, “Carrier frequencies, holomor-

cosine transform based watermarking technique. This is du€ phy, and unwinding;SIAM J. Math. Anal., vol. 49, no. 6, pp. 4838-4864,
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