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In this paper, we study decomposition of functions in Hardy spaces
Hp(T)(1 < p < ∞). First, we will give a direct application of adaptive Fourier
decomposition (AFD) of H2(T) to functions in Hp(T). Then, we study adaptive
decomposition by the system

𝔇 ∶=
{

ea(z) =
Aa,p

1 − āz
, a ∈ D

}
, (1)

where Aa,p is the normalization factor making ea(z) to be of unit p-norm. Under
the proposed decomposition procedure, we show that every 𝑓 ∈ Hp(T) can be
effectively expressed by a linear combination of {ean(z)}

+∞
n=1. We give a maximal

selection principle of ean at the nth step and prove the convergence.
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1 INTRODUCTION

Let X be a Banach space. We say 𝔇 = {g𝛼, 𝛼 ∈ Γ} ⊂ X is a dictionary of X, if it satisfies ||g𝛼||X = 1, and Span{𝔇} is
dense in X. By the terminology adaptive Fourier decomposition (AFD), we refer to approximations in the H2(T) space
by using linear combinations of the analytic Szegö kernels. The earlier and main studies on AFD were presented in
previous studies1,2 when studying the problem of signal decomposition into mono-components.3,4 In the same spirit but
restricted to Hilbert spaces, the adaptive approximation under a dictionary can be found in the study of projection pursuit
regression and neural network training.5 In the series studies, S. Mallat gave a matching pursuit algorithm in real Hilbert
spaces and applied it to signal decomposition with a so-called time-frequency dictionary.6,7 The Hilbert space matching
pursuit algorithm is also called pure greedy algorithm (PGA) being referred to Temlyakov's work.8 Based on PGA, similar
algorithms such as weak greedy algorithm (WGA), Chebyshev threshold greedy algorithm (TGA), and relaxed greedy
algorithm (RGA) in Hilbert spaces and in real Banach spaces with smoothness were studied.9-12

The present paper gives two AFD-type approximations to functions in the Hp(T) spaces in the unit disc for 1 < p < ∞
other than p = 2. In the sequel, we use D and T for the unit disc and the unit circle, respectively. Below, we give a quick
summary of the AFD algorithm for the Hardy space H2(T), where the dictionary consists of the normalized Szegö kernel
of the context, namely

𝔇 ∶=

{
ea(z) =

√
1 − |a|2
1 − āz

, a ∈ D

}
. (2)

If a sequence {an}+∞n=1 is given where repetitions are allowed, applying G-S procedure to the multiple Szegö kernels
{ẽan}

+∞
n=1, we can get an orthogonal system
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B ∶=

{
Bn(z) =

√
1 − |an|2
1 − ānz

n−1∏
k=1

z − ak

1 − ākz
,n = 1, 2...

}
, (3)

which is called T-M system.13 Traditional studies are based on the hyperbolic nonseparability condition

+∞∑
n=1

(1 − |an|) = +∞, (4)

which makes the system to be a basis. In AFD, for any given 𝑓 ∈ H2(T), we adaptively select the parameter an based on
a maximal selection principle,1 and the algorithm is given by

| < (n−1∏
k=1

1 − ākz
z − ak

)
𝑓n−1, ean > | = sup

a∈D
| < (n−1∏

k=1

1 − ākz
z − ak

)
𝑓n−1, ea > |,

𝑓n = 𝑓 −
n∑

k=1
< 𝑓,Bk > Bk.

We proved that the sup is always attainable in the open unit disc and that under the maximal principle selection, the
series converges to the original function whether the condition (4) holds or not. Later, we gave a convergence rate of the
AFD algorithm in Qian and Wang's study.14

2 APPLICATION OF AFD TO H
p(T) SPACES

As mentioned above, the system B becomes a basis if and only if the condition (4) holds, explicitly normalized orthogonal
basis for H2(T) and Schauder basis for Hp(T).15 Compared with a basis, AFD adaptively decomposes functions in H2(T)
space. Empirically, a small number of terms can approximate well.16 If we directly apply AFD to Hp(T) spaces, we can get

Theorem 2.1. Given 𝑓 ∈ Hp(T), p, p0 ∈ (1, +∞), and p ∈ (2, p0) or p ∈ (p0, 2), then for ∀𝜀 > 0, there exists a finite
combination of T-M system as an approximation such that the error is less than 𝜀 + C1− 𝛼𝜀𝛼 , where C and 𝛼 are constants
depending on p, p0.

Proof. Since p is between 2 and p0, the space H2(T)
⋂

Hp0 (T) is dense in Hp(T). Given 𝑓 ∈ Hp(T), for ∀𝜀 > 0, there
must exist g ∈ H2(T)

⋂
Hp0(T) such that ||f − g||p < 𝜀. Apply AFD to g, we can get a finite T-M system {Bk}n

k=1 such
that

||g − n∑
k=1

< g,Bk > Bk||2 < 𝜀. (5)

By Hölder inequality, for some 𝛼 ∈ (0, 1), we have

||g − n∑
k=1

< g,Bk > Bk||p ≤ ||g − n∑
k=1

< g,Bk > Bk||𝛼2 ||g − n∑
k=1

< g,Bk > Bk||1−𝛼p0
. (6)

On the other hand, as an equivalent condition of the Schauder basis property of the T-M system in Hp(T),15 there
exists a constant Cp0 , which is regardless of n, such that

||g − n∑
k=1

< g,Bk > Bk||p0 ≤ Cp0 ||g||p0 . (7)
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From inequalities (5), (6), and (7), we have

||𝑓 −
n∑

k=1
< g,Bk > Bk||p ≤ ||𝑓 − g||p + ||g − n∑

k=1
< g,Bk > Bk||p

< 𝜀 + C1−𝛼𝜀𝛼

, (8)

where C and 𝛼 depend on p, p0.

Remark 1. The function g in the above theorem can have simple choices, for instance, a partial sum of the Fourier
expansion of f, or, a Poisson integral of f. The difference between this result and the partial sum convergence of
+∞∑
k=1

< 𝑓,Bk > Bk with respect to a Schauder basis {Bk}+∞k=1 is that we use effective AFD in place of a basis, and the

coefficients of two representations are different.

3 ALGORITHM IN H
𝐩(T), 𝟏 < 𝐩 < +∞

Given dictionary 𝔇 ∶=
{

ea(z) =
Aa,p

1−āz
, a ∈ D

}
, where Aa,p is the normalization constant with respect to a and p, making||ea(z)||p = 1. For any given 𝑓 (eit) ∈ Hp(T), we construct a sequence of {ean}

+∞
n=1 and a sequence of complex numbers

{cn}+∞n=1 inductively by

|F𝑓n−1 (ean)| = sup
a∈D

|F𝑓n−1 (ea)| (i𝑓 attainable), (9)

||𝑓n−1 − cnean ||p = min
c∈C

||𝑓n−1 − cean ||p, (10)

𝑓n = 𝑓n−1 − cnean , (11)

where F𝑓n−1 is the unique complex supporting functional of the remainder fn− 1 satisfying ||F𝑓n−1 || = 1 and F𝑓n−1 (𝑓n−1) =||𝑓n−1||p. When ean is fixed through (9), we obtain the best approximation to fn− 1 from Span{ean}. From convexity of Hp(T)
and Span{ean} is closed, the best approximation at the nth step always exists and unique. In the following, we prove that
the sup in (9) can be attained.

Lemma 3.1. (17). If 𝑓 (z) ∈ Hp(D), then

|𝑓 (z)| ≤ (
1

1 − |z|2
) 1

p ||𝑓 ||p,
and the derivatives f (n)(z) satisfy |𝑓 (n)(z)| ≤ Cn,p

1

(1 − |z|2)n+ 1
p

||𝑓 ||p.
With this lemma, we can prove the sup in (9) is attainable.

Theorem 3.2. For any nonzero function 𝑓 (eit) ∈ Hp(T), there exists ã ∈ D such that

|F𝑓 (eã)| = sup
a∈D

|F𝑓 (ea)|.
Proof. It suffices to show that

lim|a|→1
|F𝑓 (ea)| = 0.

From the Riesz representation theorem,

F𝑓 (ea) =
1

2𝜋 ∫
2𝜋

0

|𝑓 (eit)|p−1||𝑓 ||p−1
p

sgn𝑓 (eit)ea(eit)dt. (12)
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Denote |𝑓 (eit)|p−1||𝑓 ||p−1
p

sgn𝑓 (eit) = h(eit) ∈ Lq(T), where q denotes the usual conjugate exponent satisfying 1
p
+ 1

q
= 1. Write

h(eit) as

h(eit) = [h(eit) − Pr(eit) ∗ h(eit)] + Pr(eit) ∗ h(eit), (13)

where Pr ∗ h is the Poisson integral of h, then

|F𝑓 (ea)| = ||||| 1
2𝜋 ∫

2𝜋

0
h(eit)ea(eit)dt

||||| ≤
||||| 1
2𝜋 ∫

2𝜋

0
[h(eit) − Pr(eit) ∗ h(eit)]ea(eit)dt

|||||
+
||||| 1
2𝜋 ∫

2𝜋

0
[Pr(eit) ∗ h(eit)]ea(eit)dt

|||||
.

From Hölder's inequality and the approximation to identity property of the Poisson integral, for ∀𝜀 > 0 , there exists
r such that ||||| 1

2𝜋 ∫
2𝜋

0
[h(eit) − Pr(eit) ∗ h(eit)]ea(eit)dt

||||| ≤ ||h − Pr ∗ h||q||ea||p ≤ 𝜀, (14)

and ||||| 1
2𝜋 ∫

2𝜋

0
[Pr(eit) ∗ h(eit)]ea(eit)dt

||||| ≤ ||h||q||Pr ∗ ea||p, (15)

where

||Pr ∗ ea||pp = 1
2𝜋 ∫

2𝜋

0
|ea(reit)|pdt, (16)

= |Aa,p|p 1
2𝜋 ∫

2𝜋

0

|||| 1
1 − āreit

||||pdt, (17)

=
|| 1

1−ārz
||pp|| 1

1−āz
||pp , (18)

≤ (1 − |a|2)p−1

(1 − |a|r)p . (19)

The last inequality holds because of the fact that the numerator in (18) is not larger than 1
(1−|a|r)p , and the denominator

is not less than 1
(1−|a|2)p−1 , which is deduced from Lemma 3.1. With the fixed r, when |a| is sufficiently close to 1,||Pr ∗ ea||p ≤ 𝜀. We thus conclude lim|a|→1

|F𝑓 (ea)| = 0.

Remark 2. This theorem gives a principle of element selection. It ensures that the algorithm can continue step by
step. If at the nth step, sup

a∈D
|F𝑓n−1 (ea)| = 0, the algorithm automatically stops and f can be expressed as a finite linear

combination of n terms. However, the proved boundary vanishing property does not hold for general dictionary. When
the sup can not be attained, a so-called weak form is used, ie, for any fixed 0 < c < 1, |F𝑓 (g̃)| ≥ c sup

g∈𝔇
|F𝑓 (g)|.

4 CONVERGENCE

By the proposed algorithm, for any given f, we can get an approximation
n∑

k=1
ckeak after n steps with the residual fn. The

algorithm is convergent if lim
n→+∞

𝑓n = 0. The proof is separated into two cases: {cn} ∈ l1 or not. We first have
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Theorem 4.1. Let f be any nonzero function inHp(T), {ean}
+∞
n=1, {cn}+∞n=1 are sequences from (9) and (10). If

+∞∑
n=1

|cn| < +∞,

then 𝑓 =
+∞∑
n=1

cnean .

Proof. Since
+∞∑
n=1

|cn| < +∞, the sequence {fn} is a cauchy sequence. Denote

g = 𝑓 −
+∞∑
k=1

ckeak =

(
𝑓 −

n∑
k=1

ckeak

)
+

(
−

+∞∑
k=n+1

ckeak

)
= 𝑓n + hn .

Obviously, we have lim
n→+∞

𝑓n = g, lim
n→+∞

hn = 0. Suppose g ≠ 0, from Theorem 3.2, there exists ã ∈ D such that|Fg(eã)| = sup
a∈D

|Fg(ea)| ≠ 0. For this eã, there exists a unique c̃ ∈ C, such that ||g − c̃eã||p = min
c∈C

||g − ceã||p. Hence,

||g||p ≥ ||g − c̃eã||p
= ||𝑓n + hn − c̃eã||p
≥ ||𝑓n − c̃eã||p − ||hn||p
≥ ||𝑓n − dneã||p − ||hn||p

, (20)

where ||𝑓n − dneã||p = min
d∈C

||𝑓n − deã||p.

On the other hand, the Frechet differentiability of p-norm and strong convergence of sequence {𝑓n}+∞n=1 show that
lim

n→+∞
||F𝑓n − F𝑓n+1 || = 0. Further, from definition of fn + 1, we have F𝑓n+1 (ean+1 ) = 0, which indicates lim

n→+∞
|F𝑓n (ean+1 )| =

lim
n→+∞

sup
a∈D

|F𝑓n (ea)| = 0. As a result, lim
n→+∞

|F𝑓n (eã)| = 0. From the definition of dn, the sequence {dn}+∞n=1 is uniformly

bounded. Hence, we actually have lim
n→+∞

|F𝑓n(dneã)| = 0. The residual fn satisfies

0 ≤ ||𝑓n||p − ||𝑓n − dneã||p
≤ ||𝑓n||p − |F𝑓n (𝑓n − dneã)|
≤ |F𝑓n (𝑓n) − F𝑓n(𝑓n − dneã)|
= |F𝑓n (dneã)|

. (21)

That is,

lim
n→+∞

||𝑓n − dneã||p = lim
n→+∞

||𝑓n||p = ||g||p. (22)

Combining (20) and (22), we have ||g − c̃eã||p = min
c∈C

||g − ceã||p = ||g||p, which means that |Fg(eã)| = sup
a∈D

|Fg(ea)| = 0.

The density of Span{𝔇} shows g = 0, which contradicts with the assumption g ≠ 0.

In the following, we will prove convergence for the other case {cn} ∉ l1.

Lemma 4.2. For any complex numbers a, b ∈ C, we have

|a + b|p − |a|p − p|a|p−1|b|Resgn(āb) ≥ 0, (23)

where Resgn is the real part of signum function.

Proof. Set a = |a|ei𝜃1 , b = |b|ei𝜃2 . If a = 0, the inequality obviously holds.
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Suppose |a| > 0, set 𝜃2 − 𝜃1 = 𝜃 and |b||a| = c, (23) can be written as

||||a|ei𝜃1 + |b|ei𝜃2 |||p − |a|p − p|a|p−1|b|Resgn(ei(𝜃2−𝜃1))

= ||||a| + |b|ei𝜃|||p − |a|p − p|a|p−1|b| cos 𝜃

= |a|p[||||1 + |b||a|ei𝜃||||p − 1 − p
|b||a| cos 𝜃]

= |a|p(|1 + cei𝜃|p − 1 − pc cos 𝜃)

.

Obviously, we have |1 + cei𝜃|p ≥ |1 + c cos 𝜃|p ≥ 1 + pc cos 𝜃.

Lemma 4.3. For any complex numbers a, b, ei𝛽 ∈ C, there exists a positive constant Cp such that the following inequality
holds: |a + b|p−1|bResgn[(āb + |b|2)ei𝛽] − |a|p−1|b|Resgn(ābei𝛽)

≤ Cp[|a + b|p − |a|p − p|a|p−1|b|Resgn(āb)].
(24)

Proof. When a = 0 or b = 0, it obviously holds. To prove the lemma, we only need to prove it for a = ei𝜃 , because
we can factorize |a|p from the both sides. Further, we only need to prove it for b ∈ R+, because we can put the phase
of b on the phase of a = ei𝜃 . From above, we only need to prove it for a = ei𝜃, b ∈ R+.

Denote

Ψ(b) =
|ei𝜃 + b|p−1bResgn[(e−i𝜃b + b2)ei𝛽] − bResgn(e−i𝜃bei𝛽)|ei𝜃 + b|p − 1 − pbResgn(e−i𝜃b)

= (1 + b2 + 2b cos 𝜃)
p
2
−1[b2 cos 𝛽 + b cos(𝛽 − 𝜃)] − b cos(𝛽 − 𝜃)]

(1 + b2 + 2b cos 𝜃)
p
2 − 1 − pb cos 𝜃

,

which is a continuous function with respect to b, and

lim
b→+∞

Ψ(b) = cos 𝛽 ≤ 1

lim
b→0+

Ψ(b) =

(
p
2
− 1

)
cos 𝜃 cos(𝛽 − 𝜃) + cos(𝛽 − 𝜃) + 2 cos 𝛽

p[1 + (p − 2)cos2𝜃]

≤
⎧⎪⎨⎪⎩

| p
2
−1|+3

p
, p ≥ 2| p

2
−1|+3

p(p−1)
, 1 < p < 2

. (25)

Hence, we can always find a constant Cp ≥ 1 such that (24) holds.

Lemma 4.4. For the sequences {𝑓n}+∞n=1, {cn}+∞n=1, {F𝑓n−1 (ean)}
+∞
n=1 in the proposed algorithm, there exists 0 < 𝛾p < 1,

such that ||𝑓n−1||p − ||𝑓n||p|cn| ≥ 𝛾p|F𝑓n−1 (ean)|. (26)

Proof. In the following, we sometimes omit the variable eit without confusion. F𝑓n−1 (cnean) is a complex number, there
must exist a 𝛽n such that

|F𝑓n−1 (cnean )| = F𝑓n−1 (cnean ei𝛽n) = ReF𝑓n−1 (cnean ei𝛽n). (27)
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Direct computation gives

||𝑓n−1||p−1
p |F𝑓n−1 (cnean)| = ||𝑓n−1||p−1

p ReF𝑓n−1 (cnean ei𝛽n)

= Re 1
2𝜋 ∫

2𝜋

0
|𝑓n−1|p−1sgn𝑓n−1cnean ei𝛽n dt

= Re 1
2𝜋 ∫

2𝜋

0
|𝑓n + cnean |p−1|cnean |sgn(𝑓n + cnean )sgn(cnean)sgn(ei𝛽n)dt

= 1
2𝜋 ∫

2𝜋

0
|𝑓n + cnean |p−1|cnean |Resgn[(𝑓ncnean + |cnean |2)ei𝛽n]dt

.

From Lemma 4.3,

|𝑓n + cnean |p−1|cnean |Resgn[(𝑓ncnean + |cnean |2)ei𝛽n]

≤ Cp(|𝑓n + cnean |p − |𝑓n|p) + |𝑓n|p−1|cnean |Resgn(𝑓ncnean ei𝛽n)

− pCp|𝑓n|p−1||cnean |Resgn(𝑓ncnean )

. (28)

Notice that
F𝑓n (ean) = F𝑓n(cnean ) = F𝑓n(cnean ei𝛽n) = 0. (29)

From (29), we can respectively get

∫
2𝜋

0
|𝑓n|p−1|cnean |Resgn(𝑓ncnean )dt = 0 (30)

and

∫
2𝜋

0
|𝑓n|p−1|cnean Resgn(𝑓ncnean ei𝛽n)dt = 0. (31)

Integrating the both sides of (28),

1
2𝜋 ∫

2𝜋

0
|𝑓n + cnean |p−1|cnean |Resgn[(𝑓ncnean + |cnean |2)ei𝛽n]dt

≤ Cp

(
1

2𝜋 ∫
2𝜋

0
|𝑓n + cnean |pdt − 1

2𝜋 ∫
2𝜋

0
|𝑓n|pdt

)
= Cp(||𝑓n−1||pp − ||𝑓n||pp)
≤ pCp||𝑓n−1||p−1

p (||𝑓n−1||p − ||𝑓n||p)

.

From all above,

|F𝑓n−1 (cnean )| ≤ pCp(||𝑓n−1||p − ||𝑓n||p), (32)

hence 𝛾p = 1
pCp

∈ (0, 1) satisfies

𝛾p|F𝑓n−1 (ean)| ≤ ||𝑓n−1||p − ||𝑓n||p|cn| . (33)

Now, we are ready to prove the convergence.
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Theorem 4.5. Let f be a nonzero function in Hp(T) , {ean}, {cn} are sequences from (9) and (10). If
+∞∑
n=1

|cn| = +∞, then

𝑓 =
+∞∑
n=1

cnean .

Proof. Denote Sn =
n∑

k=1
|ck|, then

+∞∑
n=2

ln Sn
Sn−1

= +∞ deduces to
+∞∑
n=1

|cn|
Sn

= +∞. From the convergence of series

+∞∑
n=1

(||𝑓n−1||p − ||𝑓n||p) , there must exist a subsequence {nk} such that

lim
k→+∞

(||𝑓nk−1||p − ||𝑓nk ||p) Snk|cnk | = 0. (34)

Because if not, there exists a positive number r0, such that the sequence (||𝑓n−1||p−||𝑓n||p) Sn|cn| ≥ r0 holds except finitely

many terms, which leads to the convergence of series
+∞∑
n=1

|cn|
Sn

. From Lemma 4.4, we can get

Snk−1|F𝑓nk−1 (eank
)| ≤ Snk |F𝑓nk−1(eank

)|
≤ Snk

1
𝛾p

||𝑓nk−1||p − ||𝑓nk ||p|cnk | .

Combined with (34) and lim
k→+∞

Snk−1 = +∞, it shows that

lim
k→+∞

|F𝑓nk−1 (eank
)| = 0. (35)

Suppose lim
n→+∞

||𝑓n||p = R > 0, then for l < nk − 1,

||||F𝑓nk−1 (𝑓l)| − ||𝑓nk−1||p||| ≤ |F𝑓nk−1 (𝑓l) − F𝑓nk−1(𝑓nk−1)|
≤
||||||F𝑓nk−1

( nk−1∑
𝑗=l+1

c𝑗ea𝑗

)||||||
≤

nk−1∑
𝑗=l+1

|c𝑗||F𝑓nk−1 (ea𝑗
)|

≤
nk−1∑
𝑗=1

|c𝑗||F𝑓nk−1 (eank
)|

,

which indicates

lim
k→+∞

|F𝑓nk−1 (𝑓l)| = R. (36)

Since Hp(T) is separable, the closed unit ball of its dual space is weak-star sequentially compact. Let F be a weak-star
cluster point of F𝑓nk−1 , then (36) indicates the F to be a nonzero functional. For this F, sup

a∈D
|F(ea)| = 𝛿 > 0, so, for

sufficiently large k, |F𝑓nk−1 (eank
)| ≥ 𝛿

2
, which is a contradiction with (35).

5 CONCLUSION

In this paper, we study adaptive decomposition of functions in Hardy spaces under the Cauchy-kernel dictionary. The
adaptivity is due to the parameter sequence {an} being selected according to the given function f. The selection principle
is to maximize the absolute value of applying the supporting functional of remainder fn− 1 to elements in the dictionary.
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With this dictionary, the maximizer can be attained. The coefficient sequence {cn} is to minimize norm of the residual fn
step by step. We prove strong convergence of the proposed algorithm. Also, we can directly apply AFD algorithm in H2(T)
to functions in Hp(T) instead of a basis.
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