

Paley-Wiener-type theorem for analytic functions in tubular domains

Guan-Tie Deng ${ }^{\text {a,1 }}$, Yun Huang ${ }^{\mathrm{b}, *}$, Tao Qian ${ }^{\mathrm{c}, 2}$
a School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China
${ }^{\text {b }}$ Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao
${ }^{\text {c }}$ Institute of Systems Engineering, Macau University of Science and Technology,
Avenida Wai Long, Taipa, Macao

A R T I C L E IN F O

Article history:
Received 18 November 2018
Available online 23 July 2019
Submitted by E.J. Straube

Keywords:

Paley-Wiener-type theorem
Fourier transform
Regular cone
Tubular domain

Abstract

Herein, a weighted version of the Paley-Wiener-type theorem for analytic functions in a tubular domain over a regular cone is obtained by using H^{p} space methods. Then, the classical n-dimensional Paley-Wiener theorem is generalized to a case wherein $0<p<2$. Finally, a version of the edge-of-the-wedge theorem is obtained as an application of the weighted theorems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

The Paley-Wiener theorem describes the properties of the Fourier spectrum of a function, which is the non-tangential limit of one in the classic Hardy space H^{p} associated with the upper half-plane $\mathbb{C}^{+}=\{z=$ $x+i y: y>0\}$, in terms of the location of the support of its Fourier transform. When $p=2$, it is the classical one-dimensional Paley-Wiener Theorem.

Theorem A (Paley-Wiener). ([4,11]). $F \in H^{2}\left(\mathbb{C}^{+}\right)$if and only if there exists a function $f \in L^{2}[0, \infty)$ such that $F(z)=\int_{0}^{\infty} f(t) e^{2 \pi i t \cdot z} d t$ for $z \in \mathbb{C}^{+}$.

[^0]In order to introduce the following results, we recall the definition of the Fourier transform. Assume that $f \in L^{1}\left(\mathbb{R}^{n}\right)$. The Fourier transform of f, denoted by \hat{f}, is defined as $\hat{f}(x)=F=\int_{\mathbb{R}^{n}} f(t) e^{-2 \pi i x \cdot t} d t$ for all $x \in \mathbb{R}^{n}$.

In a previous study [9], Theorem A was generalized to a one-dimensional distribution case for $1 \leq p \leq \infty$. In the distributional case, the support of function f is denoted by d-supp f.

Theorem B. $f \in H^{p}\left(\mathbb{C}^{+}\right)$, where $1 \leq p \leq \infty$. Then, as a tempered distribution, \hat{f} is supported in $[0, \infty)$.
In another research [10], Qian et al. proved the converse of the above theorem.
Theorem C. For $1 \leq p \leq \infty, f \in L^{p}(\mathbb{R})$ and d-supp $\hat{f} \subset[0, \infty)$. Then, f is the boundary limit of a function in $H^{p}\left(\mathbb{C}^{+}\right)$.

Higher-dimensional cases can be naturally considered. We first introduce some definitions in the n-dimensional complex Euclidean space \mathbb{C}^{n}.

We denote the elements of \mathbb{C}^{n} by $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. The product of $z, w \in \mathbb{C}^{n}$ is $z \cdot w=z_{1} w_{1}+z_{2} w_{2}+$ $\ldots+z_{n} w_{n}$. The Euclidean norm of $z \in \mathbb{C}^{n}$ is $|z|=\sqrt{z \cdot \bar{z}}$, where $\bar{z}=\left(\overline{z_{1}}, \overline{z_{2}}, \ldots, \overline{z_{n}}\right)$.

A nonempty subset $\Gamma \subset \mathbb{R}^{n}$ is called an open cone, if it satisfies (i) $0 \notin \Gamma$, and (ii) whenever $x, y \in \Gamma$ and $\alpha, \beta>0$, the expression $\alpha x+\beta y \in \Gamma$ holds.

The dual cone of Γ is expressed as $\Gamma^{*}=\left\{y \in \mathbb{R}^{n}: y \cdot x \geq 0\right.$, for any $\left.x \in \Gamma\right\}$, which is clearly a closed convex cone with vertex at 0 . Next, $\left(\Gamma^{*}\right)^{*}=\overline{\operatorname{ch} \Gamma}$, where ch Γ is the convex hull of Γ. We say that the cone Γ is regular if the interior of its dual cone Γ^{*} is non-empty.

The tube T_{Γ} with base Γ is the set of all points $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right)=x+i y \in \mathbb{C}^{n}$ with $y \in \Gamma$.

A function F belongs to a Hardy space $H^{p}\left(T_{\Gamma}\right)$, if it is holomorphic in T_{Γ}, and satisfies

$$
\|F\|_{H^{p}}=\sup \left\{\left(\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x\right)^{\frac{1}{p}}: y \in \Gamma\right\}<\infty .
$$

In Ref. [12], Stein and Weiss obtained a representation theorem that claims the above characterization for an n-dimensional case. Note that the set $\operatorname{supp} f$ is the support of a measurable function f on \mathbb{R}^{n}, which is the closure of the set $\{x: f(x) \neq 0\}$.

Theorem D. Suppose Γ is an open cone. Then $F \in H^{2}\left(T_{\Gamma}\right)$ if and only if $F(z)=\int_{\Gamma^{*}} e^{2 \pi i z \cdot t} f(t) d t$, where f is a measurable function on \mathbb{R}^{n} satisfying supp $f \subset \Gamma^{*}$ and $\|F\|_{H^{2}}=\|f\|_{L^{2}\left(\Gamma^{*}\right)}=\left(\int_{\Gamma^{*}}|f(t)|^{2} d t\right)^{\frac{1}{2}}$.

Related generalizations of this result were obtained. Especially, Li et al. got some characterization conclusions in Ref. [7] for $H^{p}\left(T_{\Gamma}\right)$ with the index range $1 \leq p \leq 2$.

Theorem E. Assume that Γ is a regular open cone in \mathbb{R}^{n} and $F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$, where $1 \leq p \leq 2$. Then, F is the boundary limit function of $F(x+i y) \in H^{p}\left(T_{\Gamma}\right)$ if and only if d-supp $\hat{F} \subset \Gamma^{*}$.

All the results mentioned herein are for one or higher dimensional Hardy spaces H^{p}, where $1 \leq p \leq \infty$. Since some formulas and methods are not available when $0<p<1$, by using some other techniques, Deng and Qian proved an analogous one-dimensional result for the case when $0<p<1$ in Ref. [2]. Recall that a measurable function f on \mathbb{R}^{n} is called a slowly increasing function, if there exists a positive constant a such that $f(x)(1+|x|)^{-a} \in L^{1}\left(\mathbb{R}^{n}\right)$.

Theorem F. If $0<p<1, F \in H^{p}\left(\mathbb{C}^{+}\right)$, then there exists a positive constant A_{p} depending only on p, and a slowly increasing continuous function f, which is supported in $[0, \infty)$, such that, for φ in the Schwartz class S,

$$
(f, \varphi)=\lim _{y>0, y \rightarrow 0} \int_{\mathbb{R}} F(x+i y) \hat{\varphi}(x) d x,
$$

and $|f(t)| \leq A_{p}\|F\|_{H_{+}^{p}}|t|^{\frac{1}{p}-1}$ holds for $t \in \mathbb{R}$, and $F(z)=\int_{0}^{\infty} f(t) e^{2 \pi i t z} d t$ for $z \in \mathbb{C}^{+}$.
It is also natural to generalize this result to the higher dimensional case. Restricting the cone to be the first octant $\Gamma_{\sigma_{1}}=\left\{y=\left(y_{1}, \ldots, y_{n}\right): y_{i}>0\right.$ for all $\left.i=1, \ldots, n\right\}$, Li proved the following representation result.

Theorem G. ([6]). If $0<p<1, F \in H^{p}\left(T_{\Gamma_{\sigma_{1}}}\right)$, then there exists a constant C_{p}, which is independent of F, and a slowly increasing continuous function f, whose support is in $\bar{\Gamma}_{\sigma_{1}}$, such that, for φ in the Schwartz class S,

$$
(f, \varphi)=\lim _{y \in \Gamma_{\sigma_{1}}, y \rightarrow \infty} \int_{\mathbb{R}^{n}} F(x+i y) \hat{\varphi}(x) d x
$$

and $|f(x)| \leq C_{p}\|F\|_{H^{p}} e^{n B_{p}} B_{p}^{-n B_{p}} \prod_{k=1}^{n}\left|x_{k}\right|^{B_{p}}$, and $F(z)=\int_{\bar{\Gamma}_{\sigma_{1}}} f(t) e^{2 \pi i t \cdot z} d t$, where $C_{p}=\left(\frac{\pi}{2}\right)^{\frac{n}{p}}, B_{p}=$ $\frac{1}{p}-1 \geq 0$.

Some weighted versions of the Paley-Wiener theorem were considered previously, including one by Genchev in Ref. [5]. Suppose that $D=\left\{z \in \mathbb{C}^{n}, \operatorname{Im} z_{j}<0,1 \leq j \leq n\right\}$ is the last octant in \mathbb{C}^{n} and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{R}^{n}$ is a vector with non-negative components. Let $E_{\sigma}(D)$ be the set of holomorphic functions on D that satisfy $|F(z)| \leq A_{\varepsilon} \exp \left\{\sum_{j=1}^{n}\left(\sigma_{j}+\varepsilon\right)\left|z_{j}\right|\right\}$ for $\varepsilon>0$ and $z \in D$. Integral representations of functions in $E_{\sigma}(D)$ with boundary values $F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$ are studied in [5], being separated into two cases, namely, $p \geq 2$ and $1 \leq p \leq 2$, corresponding to the Theorems H and I given in the sequel.

Theorem H. ([5]). Let $F(z) \in E_{\sigma}(D)$ have boundary values $F(x)$ and suppose that the condition

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(1+|x|^{n(p-2)}\right)|F(x)|^{p} d x<\infty \tag{1}
\end{equation*}
$$

holds, where $p \geq 2$ and $|x|^{2}=\sum_{j=1}^{n} x_{j}^{2}$. Then F has the form

$$
\begin{equation*}
F(z)=\int_{-G(\sigma)} e^{2 \pi i z \cdot t} f(t) d t \tag{2}
\end{equation*}
$$

where $G(\sigma)=\left\{t \in \mathbb{R}^{n}, 2 \pi t_{j} \geq-\sigma_{j}, 1 \leq j \leq n\right\}$ and f is a measurable function satisfying supp $f \subset-G(\sigma)$ and $f \in L^{p}(-G(\sigma))$.

When $1 \leq p \leq 2$, the following theorem was established.

Theorem I. ([5]). Suppose that $F(z) \in E_{\sigma}(D)$ have boundary values $F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$, where $1 \leq p \leq 2$. Then (2) is again satisfied, with f continuous if $p=1$ and with f measurable and satisfying the conditions $|t|^{n\left(1-\frac{2}{p}\right)} f(t) \in L^{p}\left(\mathbb{R}^{n}\right)$ and $f(t) \in L^{q}\left(\mathbb{R}^{n}\right)$, where $\frac{1}{p}+\frac{1}{q}=1$, if $p>1$.

These two theorems were generalized to a larger class of convex domains in \mathbb{C}^{n}. In Ref. [8], $a(z)$ is denoted as a non-negative convex function continuous in $T_{\bar{\Gamma}}$ and homogeneous of degree 1 . Let $P_{a}\left(T_{\Gamma}\right)$ be the class of functions that are holomorphic in T_{Γ} and satisfy $|F(z)| \leq c_{\varepsilon} e^{a(z)+\varepsilon|z|}$ for $\varepsilon>0, c_{\varepsilon}>0$ and $z \in T_{\Gamma}$. Musin obtained two results in [8] for functions in $P_{a}\left(T_{\Gamma}\right)$ with boundary values $F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$. When $p \geq 2$, a representation result was stated as follows.

Theorem J. ([8]). Suppose that $F \in P_{a}\left(T_{\Gamma}\right)$ have boundary values $F(x)$ which satisfy $|x|^{n\left(1-\frac{2}{p}\right)} F(x) \in$ $L^{p}\left(\mathbb{R}^{n}\right)$ for $p \geq 2$. Then there exists $f \in L^{p}\left(\mathbb{R}^{n}\right)$ such that $F(z)=\int_{U(\tilde{a}, \Gamma)} e^{2 \pi i z \cdot t} f(t) d t$ holds for $z \in T_{\Gamma}$, where $U(\tilde{a}, \Gamma)=\left\{\xi \in \mathbb{R}^{n}:-2 \pi \xi \cdot y \leq \tilde{a}(y)\right.$ for all $\left.y \in \bar{\Gamma}\right\}$ and $\tilde{a}(y)=a($ iy $)$ for $y \in \Gamma$.

Musin established the following result for $1 \leq p<2$.
Theorem K. ([8]). Suppose that $F \in P_{a}\left(T_{\Gamma}\right)$ have boundary values $F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$ for $1 \leq p<2$. Then $F(z)=\int_{U(\tilde{a}, \Gamma)} e^{2 \pi i z \cdot t} f(t) d t$ holds for $z \in T_{\Gamma}$. For $p=1$ we have $f \in C\left(\mathbb{R}^{n}\right)$, while for $p>1$ we have supp $f \subset U(\tilde{a}, \Gamma), f \in L^{q}\left(\mathbb{R}^{n}\right)$ and $|t|^{n\left(1-\frac{2}{p}\right)} f(t) \in L^{p}\left(\mathbb{R}^{n}\right)$.

1.2. Statement of main results

Herein, we consider Paley-Wiener-type theorems for functions in the weighted class defined as follows.
For the first time, we consider the following type of generalization. Let ψ be a measurable function in \mathbb{R}^{n}. A function $F(z)$ holomorphic in tube T_{Γ} is said to belong to space $H^{p}(\Gamma, \psi)$ if

$$
\|F\|_{H^{p}(\Gamma, \psi)}=\sup \left\{e^{-2 \pi \psi(y)}\left(\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x\right)^{\frac{1}{p}}: y \in \Gamma\right\}<\infty
$$

for $0<p<\infty$ and

$$
\|F\|_{H^{\infty}(\Gamma, \psi)}=\sup \left\{e^{-2 \pi \psi(y)}|F(x+i y)|: x \in \mathbb{R}^{n}, y \in \Gamma\right\}<\infty
$$

for $p=\infty$.
In the main results, we assume that $\psi \in C(\bar{\Gamma})$ and satisfies

$$
\begin{equation*}
R_{\psi}=\varlimsup_{y \in \Gamma, y \rightarrow \infty} \frac{\psi(y)}{|y|}<\infty \tag{3}
\end{equation*}
$$

and let

$$
\begin{equation*}
U(\psi, \Gamma)=\left\{\xi \in \mathbb{R}^{n}: \lim _{y \in \overline{\Gamma, y \rightarrow \infty}}(\psi(y)-\xi \cdot y)>-\infty\right\} \tag{4}
\end{equation*}
$$

Then we establish the following representation theorems.
Theorem 1. Assume that $1 \leq p \leq 2, \frac{1}{p}+\frac{1}{q}=1, \Gamma$ is a regular open cone in \mathbb{R}^{n}. If $F(z) \in H^{p}(\Gamma, \psi)$, then there exists $f(t) \in L^{q}\left(\mathbb{R}^{n}\right)$ with suppf $\subseteq-U(\psi, \Gamma)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f(t)|^{q} d t \leq\|F\|_{H^{p}(\Gamma, \psi)}^{q} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
F(z)=\int_{\mathbb{R}^{n}} f(t) e^{2 \pi i t \cdot z} d t \tag{6}
\end{equation*}
$$

hold for $z \in T_{\Gamma}$.
Theorem 2. Assume that $p>2$, Γ is a regular open cone in \mathbb{R}^{n}. If $F(z) \in H^{p}(\Gamma, \psi)$ satisfies

$$
\begin{equation*}
\lim _{y \in \overline{\Gamma, y \rightarrow 0}} \int_{\mathbb{R}^{n}}|F(x+i y)|^{p}|x|^{n(p-2)} d x<\infty, \tag{7}
\end{equation*}
$$

then there exists $f(t) \in L^{p}\left(\mathbb{R}^{n}\right)$ with supp $f \subseteq-U(\psi, \Gamma)$ such that (6) holds for $z \in T_{\Gamma}$.
Theorem 3. Assume that $F(z) \in H^{p}(\Gamma, \psi)$, where $0<p<1$ and Γ is a regular open cone in \mathbb{R}^{n}. Then, there exists a real constant R_{ψ} defined as (3) and a slowly increasing continuous function $f(t)$ with suppf \subseteq $\left(\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}\right)$ such that (6) holds for $z \in T_{\Gamma}$.

In the above theorems, take $\psi(y)=\frac{a(i y)}{2 \pi}$, where $a(z)$ is defined as in Theorem J and Theorem K, and $a(i k y)=k a(i y)$ for $y \in \Gamma$ and $k>0$. By applying Theorem 1 and Theorem 2, we can obtain the same results as those derived from Theorem K and Theorem J. And in the case, $\operatorname{supp} f \subset-U\left(\frac{a(i y)}{2 \pi}, \Gamma\right)=\{t$: $-2 \pi t \cdot y-a(i y) \leq 0\}$.

By restricting Γ to be the last octant D, we can define $\psi(y)=-\frac{\sigma \cdot y}{2 \pi}$ as in Theorem H and Theorem I for $y \in D$ and $\sigma \in \mathbb{R}^{n}$. Theorem 1 and Theorem 2 imply the same conclusions as those by Theorem I and Theorem H. In the case, supp $f \subset-U\left(-\frac{\sigma \cdot y}{2 \pi}, \Gamma\right)=\left\{-2 \pi t_{j}+\sigma_{j} \geq 0,1 \leq j \leq n\right\}$.

In addition, for any $\psi(y)$ defined in the form of $c|y|+\phi(y)$ satisfying (3), where $c \geq 0$ and $\phi(y)=o(|y|)$ when $|y| \rightarrow \infty$, analogous integral representations hold.

On the other hand, suppose that $F \in P_{a}\left(T_{\Gamma}\right)$ with boundary value $F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$ when $1 \leq p<2$. For any $\varepsilon>0$ and $z \in T_{\Gamma \cup\{0\}}$, let ω be a non-negative $C^{\infty}\left(\mathbb{R}^{n}\right)$ function supported in the unit ball with $\|\omega\|_{L^{1}\left(\mathbb{R}^{n}\right)}=1$ and $\omega_{\varepsilon}(t)=\varepsilon^{-n} \omega\left(\varepsilon^{-1} t\right)$, and set $F_{\varepsilon}(z)=\int_{\mathbb{R}^{n}} F(z+u) \omega_{\varepsilon}(u) d u$. Then $F_{\varepsilon}(z) \in H^{p}\left(\Gamma, \frac{a(i y)}{2 \pi}\right)$, where $1 \leq p \leq 2$. According to Theorem 1 , there exist $f_{\varepsilon}, f \in L^{q}\left(\mathbb{R}^{n}\right)$ such that f_{ε} weakly* converges to f along with $\varepsilon \rightarrow 0$ and (6) holds for F_{ε} with $\operatorname{supp} f_{\varepsilon} \subset-U\left(\frac{a(i y)}{2 \pi}, \Gamma\right)$. Sending $\varepsilon \rightarrow 0,(6)$ holds for F and $\operatorname{supp} f \subset-U\left(\frac{a(i y)}{2 \pi}, \Gamma\right)$. Theorem J can also be obtained by applying Theorem 2 when $p>2$. For the same reason, when $F(z) \in E_{\sigma}(D)$ with boundary value $F(x)$ satisfying certain conditions, Theorem H and Theorem I can be concluded as corollaries of Theorem 1 and Theorem 2. Therefore, by applying Theorem 1 and 2, Theorem H, I, J and K can be generalized to cases in which $F(z)$ satisfies $|F(z)| \leq C_{\varepsilon} e^{\psi(z)+\varepsilon|z|}$ with boundary value $F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$ for $1 \leq p<2$ and $|x|^{n\left(1-\frac{2}{p}\right)} F(x) \in L^{p}\left(\mathbb{R}^{n}\right)$ for $p \geq 2$.

If we set $\psi(y)=0$, then $\operatorname{supp} f \subset \Gamma^{*}$. When $1 \leq p \leq 2$, Theorem 1 implies Theorem B and E in the one and higher dimensional cases respectively. In the particular case $p=2$, it reduces to the classical Paley-Wiener Theorems, which are Theorem A and D herein. When $0<p<1$, Theorem F and G are special cases of Theorem 3.

2. Lemmas

In order to prove Paley-Wiener-type results for holomorphic functions in tubular domains, we need the following lemmas.

Lemma 1 ([1]). Assume that a is a real number and u is subharmonic in the upper half-plane \mathbb{C}^{+}, which satisfies $\sigma=\overline{\lim }_{z \in \mathbb{C}^{+},|z| \rightarrow \infty}|z|^{-1} u(z)$ and $\overline{\lim }_{z=x+i y \in \mathbb{C}^{+}, y \rightarrow 0} u(z) \leq a$, then $u(x+i y) \leq a+\sigma y$ for all $z=x+i y \in \mathbb{C}^{+}$.

Proof. The proof of Lemma 1 refers to [1].
Lemma 2. Assume that Γ is a regular open convex cone of \mathbb{R}^{n}. Let $\psi \in C(\bar{\Gamma})$ satisfy (3). By defining $U(\psi, \Gamma)$ as in (4), we have $U(\psi, \Gamma) \subset\left(-\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}\right)$.

Proof. Assume that $\xi \in U(\psi, \Gamma)$. If $\xi \in-\Gamma^{*}$, it is clear that $\xi \in-\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$. Otherwise, for $\xi \notin-\Gamma^{*}$, there exists $\xi_{1} \in-\Gamma^{*}$ such that

$$
\left|\xi-\xi_{1}\right|=\inf \left\{|\xi-x|: x \in \partial\left(-\Gamma^{*}\right)\right\}
$$

and $\xi_{1} \cdot\left(\xi-\xi_{1}\right)=0$. Then, for any $\tilde{y} \in-\Gamma^{*}$,

$$
(\tilde{y}-\xi) \cdot\left(\frac{\xi_{1}-\xi}{\left|\xi_{1}-\xi\right|}\right) \geq\left|\xi_{1}-\xi\right| .
$$

It follows that $\tilde{y} \cdot\left(\xi_{1}-\xi\right) \geq 0$, which implies $\xi_{1}-\xi \in\left(-\Gamma^{*}\right)^{*}=-\bar{\Gamma}$. Thus, $\xi-\xi_{1} \in \bar{\Gamma}$. For any $\varepsilon>0$, based on (3), there exists $r_{\varepsilon}>0$ such that $\psi(y) \leq\left(R_{\psi}+\varepsilon\right)|y|$ holds for $y \in \bar{\Gamma}$ with $|y| \geq r_{\varepsilon}$. Since $\xi \in U(\psi, \Gamma)$, according to (4), there exists A_{ξ} and $r_{0}>r_{\varepsilon}$ such that $\psi(y)-\xi \cdot y \geq A_{\xi}$ holds for any $y \in \bar{\Gamma}$, where $|y| \geq r_{0}$. Letting $e_{0}=\frac{\xi-\xi_{1}}{\left|\xi-\xi_{1}\right|}$, then $\xi \cdot e_{0}=\left(\xi-\xi_{1}\right) \cdot \frac{\xi-\xi_{1}}{\left|\xi-\xi_{1}\right|}=\left|\xi-\xi_{1}\right|$. Set $y=\rho e_{0}$ with $\rho \geq r_{0}$, then $y \in \bar{\Gamma}$. We can observe that

$$
\left(R_{\psi}+\varepsilon\right) \rho \geq \psi\left(\rho e_{0}\right) \geq A_{\xi}+\rho \xi \cdot e_{0}=A_{\xi}+\rho\left|\xi-\xi_{1}\right|,
$$

which implies that $\left|\xi-\xi_{1}\right| \leq R_{\psi}+\varepsilon$ for considerably small $\varepsilon>0$. It follows that $\xi-\xi_{1} \in \overline{D\left(0, R_{\psi}\right)}$. Thus, $\xi=\xi-\xi_{1}+\xi_{1} \in \overline{D\left(0, R_{\psi}\right)}-\Gamma^{*}$. Then we obtain $U(\psi, \Gamma) \subset\left(-\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}\right)$.

Lemma 3 ([3]). Let $K \subset$ int Γ^{*} be a compact set. Then there exists a positive constant δ_{K} such that, for all $y \in \Gamma$ and all $u \in K, y \cdot u \geq \delta_{K}|y|$.

Lemma 4. Assume that $F(z) \in H^{p}(\Gamma, \psi), 0<p<\infty, \Gamma$ is a regular open cone in \mathbb{R}^{n}, and $\psi \in C(\Gamma \bigcup\{0\})$ satisfies (3). Then,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x \leq e^{2 p \pi\left(|y| R_{\psi}+\psi(0)\right)}\|F\|_{H^{p}(\Gamma, \psi)}^{p} \tag{8}
\end{equation*}
$$

Moreover, when $1<p<\infty$, there exist $F_{0}(x) \in L^{p}\left(\mathbb{R}^{n}\right)$ and a sequence $\left\{y_{k}\right\}$ in Γ tending to zero as $k \rightarrow \infty$, such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} F\left(x+i y_{k}\right) h(x) d x=\int_{\mathbb{R}^{n}} F_{0}(x) h(x) d x \tag{9}
\end{equation*}
$$

holds for any $h \in L^{q}\left(\mathbb{R}^{n}\right)$.
Proof. Assume that $1<p<\infty$, the unit ball of $L^{p}\left(\mathbb{R}^{n}\right)$ is weakly compact, which implies that, for $F \in H^{p}\left(T_{\Gamma}\right)$, there exists $F_{0}(x) \in L^{p}\left(\mathbb{R}^{n}\right)$ and a sequence $\left\{y_{k}\right\}$ in Γ tending to zero as $y_{k} \rightarrow 0$ such that (9) holds for any $h \in L^{q}\left(\mathbb{R}^{n}\right)$.

Next, we prove (8). Given an integer $N>0$ and $y_{0} \in \Gamma$, let $E(N)=[-N, N] \times \cdots \times[-N, N]$ be a cube in \mathbb{R}^{n} and $y \in \Gamma,\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis vectors in the Euclidean space \mathbb{R}^{n}. The function $g_{j, N}(w)(j=1,2, \ldots)$ defined by

$$
\left.\sum_{k_{1}=-j}^{j} \sum_{k_{2}=-j}^{j} \cdots \sum_{k_{n}=-j}^{j} \left\lvert\, F\left(\frac{N}{j}\left(k_{1} e_{1}+k_{2} e_{2}+\cdots+k_{n} e_{n}\right)+w y+i y_{0}\right)\right.\right)\left.\right|^{p}\left(\frac{N}{j}\right)^{n}
$$

is continuous in $\overline{\mathbb{C}^{+}}$and converges uniformly for w in every compact subset of \mathbb{C}^{+}to the function

$$
h_{N}(w)=\int_{E(N)}\left|F\left(y w+t+i y_{0}\right)\right|^{p} d t
$$

where $\overline{\mathbb{C}^{+}}$is the closure of \mathbb{C}^{+}. For $k \in \mathbb{N}^{n}, y_{0}, y \in \Gamma, F\left(\frac{N}{j} k+w y+i y_{0}\right)$ is a holomorphic function of $w \in \mathbb{C}^{+}$for fixed $y, y_{0} \in \Gamma$. Thus, the function

$$
\log \left(\left|F\left(\frac{N}{j} k+w y+i y_{0}\right)\right|^{p} \frac{N^{n}}{j^{n}}\right)
$$

is subharmonic in \mathbb{C}^{+}, which indicates that $\log g_{j, N}(w)$ is subharmonic in \mathbb{C}^{+}. Then, the function $\log \left|h_{N}(w)\right|$ is subharmonic in \mathbb{C}^{+}. For fixed $y \in \Gamma$, where $|y|>R_{0}$, the set $\left\{v y+y_{0}: 0 \leq v \leq|y|^{-1}\left(R_{0}+\left|y_{0}\right|\right)\right\}$ is compact in Γ. By the continuity of ψ in Γ, we have

$$
\sup \left\{\frac{\psi\left(v y+y_{0}\right)}{\left|v y+y_{0}\right|}: 0 \leq v \leq|y|^{-1}\left(R_{0}+\left|y_{0}\right|\right)\right\}<\infty .
$$

Therefore,

$$
\varlimsup_{w \in \mathbb{C}^{+},|w| \rightarrow \infty} \frac{\log \left|h_{N}(w)\right|}{|w|} \leq 2 \pi p|y| R_{\psi}
$$

and

$$
\left|h_{N}(u)\right| \leq \int_{\mathbb{R}^{n}}\left|F\left(x+i y_{0}\right)\right|^{p} d x .
$$

Applying Lemma 1 to the subharmonic function $\log \left|h_{N}(w)\right|$ in \mathbb{C}^{+}, it follows that

$$
\int_{E(N)}\left|F\left(y w+x+i y_{0}\right)\right|^{p} d x \leq e^{2 \pi p|y| R_{\psi} v} \int_{\mathbb{R}^{n}}\left|F\left(x+i y_{0}\right)\right|^{p} d x .
$$

For $y \in \Gamma$, letting $w=i$ and $N \rightarrow \infty$, we observe that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|F\left(x+i y+i y_{0}\right)\right|^{p} d x & \leq e^{2 p \pi|y| R_{\psi}} \int_{\mathbb{R}^{n}}\left|F\left(x+i y_{0}\right)\right|^{p} d x \\
& \leq e^{2 \pi p|y| R_{\psi}} e^{2 p \pi \psi\left(y_{0}\right)}\|F\|_{H^{p}(\Gamma, \psi)} .
\end{aligned}
$$

Thus, by sending $y_{0} \rightarrow 0$ and based on (3), Fatou's lemma and the continuity of ψ at 0 , we obtain the desired estimate

$$
\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x \leq e^{2 p \pi\left(|y| R_{\psi}+\psi(0)\right)}\|F\|_{H^{p}(\Gamma, \psi)}^{p}
$$

Consequently, (8) holds for any $y \in \Gamma$ and the proof is complete.

3. Proof of the theorems

3.1. Proof of Theorem 1

Proof. We divide the proof of Theorem 1 into the following steps.
Step 1. Let ω be a non-negative $C^{\infty}\left(\mathbb{R}^{n}\right)$ function with compact support in the unit ball and $\|\omega\|_{L^{1}\left(\mathbb{R}^{n}\right)}$ $=1$. Let $\omega_{\varepsilon}(t)=\varepsilon^{-n} \omega\left(\varepsilon^{-1} t\right)$. Since Γ is regular, we choose $u_{0} \in \Gamma^{*}$ and $\varepsilon_{0}>0$ such that the ball $D\left(u_{0}, 2 \varepsilon_{0}\right) \subseteq \Gamma^{*}$. Furthermore, let $\tilde{\omega}(u)=\omega_{\varepsilon_{0}}\left(u-u_{0}\right)$, then the function $\Omega(z)=\int_{\mathbb{R}^{n}} e^{2 \pi i z \cdot u} \tilde{\omega}(u) d u$ is an entire function. For any $y \in \Gamma, x \in \mathbb{R}^{n}$, we have $|\Omega(x+i y)| \leq 1$. Notice that the Hausdorff-Young inequality implies

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{n}}|\Omega(\varepsilon x+i \varepsilon y)-\Omega(\varepsilon x)|^{q} d x\right)^{\frac{1}{q}} \\
\leq & \left(\int_{\mathbb{R}^{n}}\left|\left(e^{2 \pi y \cdot u}-1\right) \tilde{\omega}\left(\frac{-u}{\varepsilon}\right) \varepsilon^{-n}\right|^{p} d u\right)^{\frac{1}{p}} \\
\leq & \left(\exp \left\{2 \pi|y| \varepsilon\left(\left|u_{0}\right|+1\right)\right\}-1\right) \varepsilon^{-n+\frac{n}{p}}\left(\int_{\mathbb{R}^{n}}(\tilde{\omega}(-u))^{p} d u\right)^{\frac{1}{p}}
\end{aligned}
$$

for $y \in \Gamma$.
For $\Omega(\varepsilon z)=\int_{\mathbb{R}^{n}} e^{2 \pi i \varepsilon z \cdot u} \tilde{\omega}(u) d u$, integrating by parts and taking the derivative with respect to z under the integral, the following formula holds,

$$
(-2 \pi \varepsilon i)^{|\alpha|} z^{\alpha} D_{z}^{\beta}(\Omega(\varepsilon z))=\int_{\mathbb{R}^{n}}(2 \pi \varepsilon i u)^{\beta} e^{2 \pi \varepsilon i z \cdot u} D_{u}^{\alpha}(\tilde{\omega}(u)) d u,
$$

wherein $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right), D_{u}^{\alpha}=D_{u_{1}}^{\alpha_{1}} \cdots D_{u_{n}}^{\alpha_{n}}, D_{z}^{\beta}=D_{z_{1}}^{\beta_{1}} \cdots D_{z_{n}}^{\beta_{n}}$, and $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$. This implies that, for all $\varepsilon>0, \alpha$, and β, there exists a constant $M_{\alpha, \beta, \varepsilon}>0$ such that

$$
\left|z^{\alpha} D_{z}^{\beta}(\Omega(\varepsilon z))\right| \leq e^{2 \pi \gamma(y)} M_{\alpha, \beta, \varepsilon}<\infty
$$

for $z=x+i y \in \mathbb{C}^{n}$, where $\gamma(y)=\max \left\{-y \cdot u:\left|u-u_{0}\right| \leq \varepsilon_{0}\right\}$. Let $K=D\left(u_{0}, 2 \varepsilon\right)$. Then by Lemma 3, there exists a positive constant δ_{K} such that $\gamma(y) \leq-\delta_{K}|y|$ for y that satisfies $\frac{y}{|y|} \in K$. Therefore, for each $N \geq|\alpha| / 2$, there exists a constant $M_{N, \beta, \varepsilon} \geq 0$ such that

$$
\begin{equation*}
\left|D_{z}^{\beta}(\Omega(\varepsilon z))\right| \leq \frac{M_{N, \beta, \varepsilon} e^{-2 \pi \varepsilon \delta_{K}|y|}}{\left(1+|x|^{2}\right)^{N}} \tag{10}
\end{equation*}
$$

Step 2. Let $F_{\varepsilon}(z)=\int_{\mathbb{R}^{n}} F(z+u) \omega_{\varepsilon}(u) d u$ for $z \in T_{\Gamma}$ and let $F_{\varepsilon}(x)=\int_{\mathbb{R}^{n}} F_{0}(x+u) \omega_{\varepsilon}(u) d u$, where $F_{0}(x)$ is defined as in Lemma 4. It is clear that $F_{\varepsilon}(z)$ is holomorphic in T_{Γ}. Since $\left|F_{\varepsilon}(z)-F(z)\right| \leq$ $\max \{|F(z+\varepsilon t)-F(z)|:|t| \leq 1\}$, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(z)=F(z) \tag{11}
\end{equation*}
$$

uniformly on any compact subset of T_{Γ}. Hölder's inequality and (8) imply that

$$
\begin{equation*}
\left|F_{\varepsilon}(z)\right| \leq\|F\|_{H^{p}(\Gamma, \psi)} e^{2 \pi\left(R_{\psi}|y|+\psi(0)\right)}\left\|\omega_{\varepsilon}\right\|_{L^{q}} . \tag{12}
\end{equation*}
$$

Based on the Minkowski inequality,

$$
\begin{align*}
& \left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|F(x+u+i y) \omega_{\varepsilon}(u)\right| d u\right)^{p} d x\right)^{\frac{1}{p}} \\
\leq & \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|F(x+u+i y) \omega_{\varepsilon}(u)\right|^{p} d x\right)^{\frac{1}{p}} d u \leq e^{2 \pi \psi(y)}\|F\|_{H^{p}(\Gamma, \psi)}, \tag{13}
\end{align*}
$$

which implies that $F_{\varepsilon}(z) \in H^{p}(\Gamma, \psi)$. Then based on (8),

$$
\begin{align*}
\left(\int_{\mathbb{R}^{n}}\left|F_{\varepsilon}(x+i y)\right|^{p} d x\right)^{\frac{1}{p}} & \leq\left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|F(x+u+i y) \omega_{\varepsilon}(u)\right| d u\right)^{p} d x\right)^{\frac{1}{p}} \\
& \leq\|F\|_{H^{p}(\Gamma, \psi)} e^{2 \pi\left(R_{\psi}|y|+\psi(0)\right)} . \tag{14}
\end{align*}
$$

Since $\omega_{\varepsilon} \in L^{q}\left(\mathbb{R}^{n}\right)$, it follows from (9) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F_{\varepsilon}\left(x+i y_{k}\right)=\int_{\mathbb{R}^{n}} F_{0}(x+u) \omega_{\varepsilon}(u) d u=F_{\varepsilon}(x) . \tag{15}
\end{equation*}
$$

Step 3. Let

$$
\begin{equation*}
g_{\varepsilon, t}(y)=g_{\varepsilon}(t, y)=\int_{\mathbb{R}^{n}} G_{\varepsilon}(u+i y) e^{2 \pi i(u+i y) \cdot t} d u \tag{16}
\end{equation*}
$$

where $y \in \Gamma \bigcup\{0\}, t \in \mathbb{R}^{n}, G_{\varepsilon}(z)=F_{\varepsilon}(z) \Omega(\varepsilon z)$. Clearly, (10) and (12) indicate that $g_{\varepsilon}(t, y)$ is a continuous function of $t \in \mathbb{R}^{n}$. We now prove that $g_{\varepsilon, t}(y)$ is a constant in Γ. Let $H_{\varepsilon}(u+i y)=G_{\varepsilon}(u+i y) e^{2 \pi i(u+i y) \cdot t}$. According to the Cauchy integral formula, (10) and (12), for all $y \in \overline{D\left(y_{0}, \delta_{0}\right)} \subset \bar{\Gamma}$ and $x \in \mathbb{R}^{n}$, there exists a constant $M_{y_{0}, \delta_{0}, t, \varepsilon}>0$ such that $\left|\frac{\partial}{\partial y_{k}} H_{\varepsilon}(z)\right| \leq M_{y_{0}, \delta_{0}, t, \varepsilon}(1+|x|)^{-n-1}$. The Cauchy-Riemann equations imply that $\frac{\partial}{\partial y_{k}} H_{\varepsilon}(u+i y)=i \frac{\partial}{\partial u_{k}} H_{\varepsilon}(u+i y)$ for $z=u+i y$. Thus, taking the derivative with respect to y under the integral, for $k=1,2, \ldots, n$,

$$
\begin{equation*}
\frac{\partial}{\partial y_{k}} g_{\varepsilon}(t, y)=\int_{\mathbb{R}^{n}} \frac{\partial}{\partial y_{k}} H_{\varepsilon}(u+i y) d u=\int_{\mathbb{R}^{n}} i \frac{\partial}{\partial u_{k}} H_{\varepsilon}(u+i y) d u=0 . \tag{17}
\end{equation*}
$$

Therefore, $g_{\varepsilon, t}(y)$ is a constant in Γ.
Step 4. Hölder's inequality and (13) imply that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}\left|F(u+x+i y) \omega_{\varepsilon}(u) \Omega(\varepsilon(x+i y))\right| d u d x \\
\leq & \|F\|_{H^{p}(\Gamma, \psi)} e^{2 \pi \psi(y)}\left(\int_{\mathbb{R}^{n}}|\Omega(\varepsilon(x+i y))|^{q} d x\right)^{\frac{1}{q}} .
\end{aligned}
$$

Using Fubini's theorem, for $y \in \Gamma$, we obtain

$$
\begin{aligned}
g_{\varepsilon, t}(y) & =\int_{\mathbb{R}^{n}} F_{\varepsilon}(x+i y) \Omega(\varepsilon(x+i y)) e^{2 \pi i(x+i y) \cdot t} d x \\
& =\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} F(u+s+i y) \omega_{\varepsilon}(s) d s\right) \Omega(\varepsilon(u+i y)) e^{2 \pi i(u+i y) \cdot t} d u \\
& =\int_{\mathbb{R}^{n}} F(x+i y) h_{\varepsilon}(x, y, t) d x,
\end{aligned}
$$

where

$$
h_{\varepsilon}(x, y, t)=\int_{\mathbb{R}^{n}} \omega_{\varepsilon}(x-u) \Omega(\varepsilon(u+i y)) e^{2 \pi i(u+i y) \cdot t} d u
$$

is a continuous function of $x, y, t \in \mathbb{R}^{n}$. Since

$$
\begin{aligned}
& h_{\varepsilon}(x, y, t) \\
= & \int_{\mathbb{R}^{n}} \omega_{\varepsilon}(x-u)\left(\int_{\mathbb{R}^{n}} e^{2 \pi i(\varepsilon u+i \varepsilon y) \cdot s} \tilde{\omega}(s) d s\right) e^{2 \pi i(u+i y) \cdot t} d u \\
= & e^{2 \pi i(x+i y) \cdot t} \int_{\mathbb{R}^{n}}\left(\varepsilon^{-n} \tilde{\omega}\left(\frac{-u}{\varepsilon}\right) \int_{\mathbb{R}^{n}} e^{-2 \pi i v \cdot t} e^{2 \pi i(v-i y) \cdot u} \omega_{\varepsilon}(v) d v\right) e^{-2 \pi i u \cdot x} d u,
\end{aligned}
$$

the function $h_{\varepsilon}(x, y, t) e^{-2 \pi i(x+i y) \cdot t}$ of $x \in \mathbb{R}^{n}$ is the Fourier transform of the function

$$
h_{\varepsilon, y, t}(u)=\varepsilon^{-n} \tilde{\omega}\left(\frac{-u}{\varepsilon}\right) e^{2 \pi y \cdot u} \int_{\mathbb{R}^{n}} e^{2 \pi i v \cdot(u-t)} \omega_{\varepsilon}(v) d v
$$

and the function $h_{\varepsilon}(x, 0, t) e^{-2 \pi i x \cdot t}$ of $x \in \mathbb{R}^{n}$ is the Fourier transform of the function

$$
h_{\varepsilon, 0, t}(u)=\varepsilon^{-n} \tilde{\omega}\left(\frac{-u}{\varepsilon}\right) \int_{\mathbb{R}^{n}} e^{2 \pi i v \cdot(u-t)} \omega_{\varepsilon}(v) d v
$$

The Hausdorff-Young inequality implies that

$$
\begin{align*}
& \left(\int_{\mathbb{R}^{n}}\left|h_{\varepsilon}(x, y, t)\right|^{q} e^{2 \pi q y \cdot t} d x\right)^{\frac{1}{q}} \\
\leq & \left(\int_{\mathbb{R}^{n}}\left|e^{2 \pi y \cdot u} \varepsilon^{-n} \tilde{\omega}\left(\frac{-u}{\varepsilon}\right) \int_{\mathbb{R}^{n}} e^{2 \pi i v \cdot(u-t)} \omega_{\varepsilon}(v) d v\right|^{p} d u\right)^{\frac{1}{p}} \\
\leq & \left(\int_{\mathbb{R}^{n}}\left|e^{-2 \pi \varepsilon y \cdot u} \tilde{\omega}(u)\right|^{p} d u\right)^{\frac{1}{p}} \varepsilon^{n\left(\frac{1}{p}-1\right)} \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\int_{\mathbb{R}^{n}}\left|h_{\varepsilon}(x, y, t) e^{2 \pi y \cdot t}-h_{\varepsilon}(x, 0, t)\right|^{q} d x\right)^{\frac{1}{q}} \\
\leq & \left(\int_{\mathbb{R}^{n}}\left|\left(e^{2 \pi y \cdot u}-1\right) \varepsilon^{-n} \tilde{\omega}\left(\frac{-u}{\varepsilon}\right) \int_{\mathbb{R}^{n}} e^{2 \pi i v \cdot(u-t)} \omega_{\varepsilon}(v) d v\right|^{p} d u\right)^{\frac{1}{p}} \\
\leq & \left(\int_{\mathbb{R}^{n}}\left|\left(e^{-2 \pi \varepsilon y \cdot u}-1\right) \tilde{\omega}(u)\right|^{p} d u\right)^{\frac{1}{p}} \varepsilon^{n\left(\frac{1}{p}-1\right)} . \tag{19}
\end{align*}
$$

On the other hand, letting $G_{\varepsilon}(u)=F_{\varepsilon}(u) \Omega(\varepsilon u)$ and $g_{\varepsilon}(t)=\int_{\mathbb{R}^{n}} F_{\varepsilon}(u) \Omega(\varepsilon u) e^{2 \pi i u \cdot t} d u$, we have

$$
\begin{aligned}
\left|g_{\varepsilon, t}(y)-g_{\varepsilon}(t)\right| & =\left|\int_{\mathbb{R}^{n}}\left(F(x+i y) h_{\varepsilon}(x, y, t)-F_{0}(x) h_{\varepsilon}(x, 0, t)\right) d x\right| \\
& \leq\left|I_{1}(\varepsilon, t, y)\right|+\left|I_{2}(\varepsilon, t, y)\right|+\left|I_{3}(\varepsilon, t, y)\right|
\end{aligned}
$$

where $y \in \Gamma$,

$$
\begin{aligned}
& I_{1}(\varepsilon, t, y)=\int_{\mathbb{R}^{n}} F(x+i y) h_{\varepsilon}(x, y, t)\left(1-e^{2 \pi y \cdot t}\right) d x, \\
& I_{2}(\varepsilon, t, y)=\int_{\mathbb{R}^{n}} F(x+i y)\left(h_{\varepsilon}(x, y, t) e^{2 \pi y \cdot t}-h_{\varepsilon}(x, 0, t)\right) d x, \\
& I_{3}(\varepsilon, t, y)=\int_{\mathbb{R}^{n}} F(x+i y) h_{\varepsilon}(x, 0, t) d x-\int_{\mathbb{R}^{n}} F_{0}(x) h_{\varepsilon}(x, 0, t) d x .
\end{aligned}
$$

Based on (9) and (18), we have $I_{3}\left(\varepsilon, t, y_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Hölder's inequality, (18) and (19) imply that $\left|I_{1}(\varepsilon, t, y)\right|+\left|I_{2}(\varepsilon, t, y)\right| \rightarrow 0$ as $y \rightarrow 0$, where $y \in \Gamma$. We deduce from (17) that for $y \in \Gamma$, there holds:

$$
\begin{equation*}
g_{\varepsilon, t}(y)=g_{\varepsilon}(t)=\int_{\mathbb{R}^{n}} G_{\varepsilon}(u+i y) e^{2 \pi i(u+i y) \cdot t} d u \tag{20}
\end{equation*}
$$

As a result, for all $t \in \mathbb{R}^{n}$, the following estimate holds:

$$
\begin{equation*}
\left|g_{\varepsilon}(t)\right| \leq\|F\|_{H^{p}(\Gamma, \psi)} e^{2 \pi(\psi(y)-y \cdot t)}\left(\int_{\mathbb{R}^{n}}|\Omega(\varepsilon(x+i y))|^{q} d x\right)^{\frac{1}{q}} \tag{21}
\end{equation*}
$$

Notice that

$$
\left(\int_{\mathbb{R}^{n}}|\Omega(\varepsilon(x+i y))|^{q} d x\right)^{\frac{1}{q}} \leq\left(\int_{\mathbb{R}^{n}}\left|e^{-2 \pi \varepsilon y \cdot u} \tilde{\omega}(u)\right|^{p} d u\right)^{\frac{1}{p}} \leq\|\tilde{\omega}\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for $y \in \Gamma$. Next, we show that $g_{\varepsilon}(t)=0$ for $t \notin U(\psi, \Gamma)$. To this end, assume that $t_{0} \notin(U(\Gamma, \psi))$. Then, based on (4), there is a sequence $\left\{y_{k}\right\}$ in Γ tending to zero as $k \rightarrow \infty$, such that $\psi\left(y_{k}\right)-t_{0} \cdot y_{k} \rightarrow-\infty$. It follows from (21) that $g_{\varepsilon}\left(t_{0}\right)=0$ for $t_{0} \notin U(\Gamma, \psi)$.

Step 5. The Hausdorff-Young inequality implies that

$$
\left(\int_{U(\Gamma, \psi)}\left|g_{\varepsilon}(t)\right|^{q} e^{2 \pi q y \cdot t} d t\right)^{\frac{1}{q}} \leq\left(\int_{\mathbb{R}^{n}}\left|F_{\varepsilon}(u+i y) \Omega(\varepsilon(u+i y))\right|^{p} d u\right)^{\frac{1}{p}}
$$

for $\varepsilon>0, y \in \Gamma$. Based on (10), (14), (16), Fatou's lemma and the fact that $|\Omega(\varepsilon(u+i y))| \leq 1$, for $\varepsilon>0$, $y \in \Gamma$,

$$
\begin{equation*}
\left\|g_{\varepsilon}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \leq \lim _{y \in \overline{\Gamma, y \rightarrow 0}}\left\|e^{2 \pi y \cdot t} g_{\varepsilon}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{q} \leq e^{2 \pi \psi(0)}\|F\|_{H^{p}(\Gamma, \psi)}^{q} \tag{22}
\end{equation*}
$$

Therefore, there exists $g(t) \in L^{q}\left(\mathbb{R}^{n}\right)$ and a sequence $\left\{\varepsilon_{k}\right\}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{\varepsilon_{k}}(t) h(t) d t=\int_{\mathbb{R}^{n}} g(t) h(t) d t \tag{23}
\end{equation*}
$$

holds for any $h \in L^{p}\left(\mathbb{R}^{n}\right)$ as $\varepsilon_{k} \rightarrow 0$ along with $k \rightarrow \infty$. We rewrite (20) as

$$
g_{\varepsilon}(t) e^{2 \pi y \cdot t}=\int_{\mathbb{R}^{n}} F_{\varepsilon}(u+i y) \Omega(\varepsilon(u+i y)) e^{2 \pi i t \cdot u} d u .
$$

Then for $y \in \Gamma, g_{\varepsilon, t}(y) e^{2 \pi y \cdot t}$ is the inverse Fourier transform of $G_{\varepsilon}(u+i y)$ considered as a function of u.
Recall that $g_{\varepsilon}(t)=0$ for $t \notin U(\psi, \Gamma)$. For fixed $y_{0} \in \Gamma$, there exists a $\delta_{1}>0$ such that $\overline{D\left(y_{0}, \delta_{1}\right)} \subseteq \Gamma$. Thus,

$$
\delta_{2}=\inf \left\{x \cdot y: x \in \Gamma^{*},|x|=1,\left|y-y_{0}\right| \leq \delta_{1}\right\}>0 .
$$

Consequently, by Lemma $2, U(\psi, \Gamma) \subseteq-\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$. For $t \in U(\psi, \Gamma)$, there exist $t_{1} \in-\Gamma^{*}$, and $t_{2} \in \mathbb{R}^{n}$ satisfying $\left|t_{2}\right| \leq R_{\psi}$ such that $t=t_{1}+t_{2}$. Therefore, for $y \in D\left(y_{0}, \delta_{1}\right)$,

$$
\begin{aligned}
t \cdot y & =t_{1} \cdot y+t_{2} \cdot y \leq-\left|t_{1}\right| \delta_{2}+\left|t_{2}\right||y| \\
& \leq-\left(|t|-\left|t_{2}\right|\right) \delta_{2}+R_{\psi}|y| \leq-|t| \delta_{2}+R_{\psi}\left(\delta_{2}+\left|y_{0}\right|+\delta_{1}\right) .
\end{aligned}
$$

As a result,

$$
\left|g_{\varepsilon}(t) e^{2 \pi y \cdot t}\right| \leq\left|g_{\varepsilon}(t)\right| e^{2 \pi\left(-|t| \delta_{2}+R_{\psi}\left(\delta_{2}+\left|y_{0}\right|+\delta_{1}\right)\right)}
$$

Combining with (22), this implies that $g_{\varepsilon}(t) e^{2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$ for $y \in \Gamma$. Note that $F_{\varepsilon}(u+i y) \Omega(\varepsilon(u+i y)) \in$ $L^{1}\left(\mathbb{R}^{n}\right)$ for $y \in \Gamma$, we then have the following inverse Fourier transform:

$$
\begin{equation*}
F_{\varepsilon}(x+i y) \Omega(\varepsilon(x+i y))=\int_{\mathbb{R}^{n}} g_{\varepsilon}(t) e^{-2 \pi i t \cdot(x+i y)} d t \tag{24}
\end{equation*}
$$

which is holomorphic in T_{Γ} since $g_{\varepsilon}(t) e^{2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\chi(t)$ be the characteristic function of set $U(\psi, \Gamma)$. Then, the function $\chi(t) e^{-2 \pi i(x+i y) \cdot t}$ belongs to $L^{p}\left(\mathbb{R}^{n}\right)$. According to (23),

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F_{\varepsilon_{k}}(z) \Omega\left(\varepsilon_{k} z\right)=\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{\varepsilon_{k}}(t) \chi(t) e^{-2 \pi i t \cdot z} d t=\int_{\mathbb{R}^{n}} g(t) \chi(t) e^{-2 \pi i t \cdot z} d t \tag{25}
\end{equation*}
$$

Sending ε to zero, we have $\Omega(\varepsilon z) \rightarrow 1$ for $z \in T_{\Gamma}$. Consequently, based on (11) and (25),

$$
\begin{equation*}
F(z)=\int_{\mathbb{R}^{n}} g(t) \chi(t) e^{-2 \pi i t \cdot z} d t \tag{26}
\end{equation*}
$$

We see that (6) holds by letting $f(t)=g(-t)$ and $\operatorname{supp} f \subseteq-U(\psi, \Gamma)$. The proof of Theorem 1 is complete.

3.2. Proof of Theorem 2

Proof. Following the proof of Theorem 1, we have

$$
\begin{equation*}
g_{\varepsilon}(t)=\int_{\mathbb{R}^{n}} G_{\varepsilon}(u+i y) e^{2 \pi i(u+i y) \cdot t} d u \tag{27}
\end{equation*}
$$

for $y \in \Gamma, t \in \mathbb{R}^{n}$. And $g_{\varepsilon}(t)=0$ for $t \notin U(\psi, \Gamma)$.
The Hardy-Littlewood inequality ([13]), (7), and (27) indicate that there exists a constant c_{p} such that

$$
\int_{\mathbb{R}^{n}}\left|e^{2 \pi y \cdot t} g_{\varepsilon}(x)\right|^{p} d x \leq c_{p} \int_{\mathbb{R}^{n}}\left|G_{\varepsilon}(x+i y)\right|^{p}|x|^{n(p-2)} d x
$$

where $G_{\varepsilon}(x)=F_{\varepsilon}(x) \Omega(\varepsilon x)$. Based on Hölder's inequality,

$$
\left|F_{\varepsilon}(x+i y)\right|^{p} \leq\left(\int_{D(0,1)}|F(x+\varepsilon t+i y)|^{p} d t\right)\left(\int_{D(0,1)}|\omega(t)|^{q} d t\right)^{\frac{p}{q}}
$$

It follows from Fatou's lemma and (10) that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|g_{\varepsilon}(x)\right|^{p} d x \\
& \leq \lim _{y \in \overline{\Gamma, y \rightarrow 0}} c_{p}\|\omega\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} \int_{\mathbb{R}^{n}}\left(\int_{D(0,1)}|F(x+\varepsilon t+i y)|^{p} d t\right)|\Omega(\varepsilon(x+i y))|^{p}|x|^{n(p-2)} d x \\
& \leq c_{p}\|\omega\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} M_{0,0, \varepsilon} \lim _{y \in \overline{\Gamma, y \rightarrow 0}} \int_{\mathbb{R}^{n}}|F(x+i y)|^{p}\left(\int_{D(0,1)}|x-\varepsilon t|^{n(p-2)} d t\right) d x \\
& \leq C \varliminf_{y \in \overline{\Gamma, y \rightarrow 0}}^{\lim _{\mathbb{R}^{n}}} \int\left(1+|x|^{n(p-2)}\right)|F(x+i y)|^{p} d x<\infty,
\end{aligned}
$$

where $C=c_{p}\|\omega\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} M_{0,0, \varepsilon} 2^{n(p-2)-1} V_{n}$ with $0<\varepsilon<1$, and V_{n} is the volume of an n-dimensional ball in $\Gamma^{*} \subset \mathbb{R}^{n}$. Therefore, there exists $g(t) \in L^{p}\left(\mathbb{R}^{n}\right)$ and a sequence of $\left\{\varepsilon_{k}\right\}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{\varepsilon_{k}}(t) h(t) d x=\int_{\mathbb{R}^{n}} g(t) h(t) d x \tag{28}
\end{equation*}
$$

holds for any $h \in L^{q}\left(\mathbb{R}^{n}\right)$ as $\varepsilon_{k} \rightarrow 0$ along with $k \rightarrow \infty$. We rewrite (27) as

$$
g_{\varepsilon}(t) e^{2 \pi y \cdot t}=\int_{\mathbb{R}^{n}} F_{\varepsilon}(u+i y) \Omega(\varepsilon(u+i y)) e^{2 \pi i t \cdot u} d u .
$$

Note that $g_{\varepsilon}(t) e^{2 \pi y \cdot t} \in L^{1}\left(\mathbb{R}^{n}\right)$ for $y \in \Gamma$, which can be certified by the same way as that of Theorem 1 . The inverse Fourier transform formula is given as

$$
F_{\varepsilon}(x+i y) \Omega(\varepsilon x+i \varepsilon y)=\int_{\mathbb{R}^{n}} g_{\varepsilon}(t) e^{-2 \pi i t \cdot(x+i y)} d t
$$

Then, for a sequence of $\left\{\varepsilon_{k}\right\}$ tending to zero as $k \rightarrow \infty$,

$$
\lim _{k \rightarrow \infty} F_{\varepsilon_{k}}(z) \Omega(\varepsilon z)=\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} g_{\varepsilon_{k}}(t) \chi(t) e^{-2 \pi i t \cdot z} d t=\int_{\mathbb{R}^{n}} g(t) \chi(t) e^{-2 \pi i t \cdot z} d t
$$

where $\chi(t)$ is the characteristic function of set $U(\psi, \Gamma)$. As a result, $F(z)=\int_{U(\psi, \Gamma)} g(t) e^{-2 \pi i t \cdot z} d t$. We can see that (6) holds by letting $f(t)=g(-t)$, and $\operatorname{supp} f \subseteq-U(\Gamma, \psi)$.

3.3. Proof of Theorem 3

Proof. For momentarily fixed $y_{0} \in \Gamma$, let $F_{y_{0}}(z)=F\left(z+i y_{0}\right)$. Then $F_{y_{0}}$ is holomorphic in T_{Γ}. Let $r=$ $d\left(y_{0}, \partial \Gamma\right)=\inf \left\{\left|y_{0}-y\right|: y_{0} \in \Gamma, y \in \partial \Gamma\right\}$ and $\delta=\delta_{y_{0}}=r / 2$. It follows from the subharmonic property of function $\left|F_{y_{0}}(z)\right|^{p}$ and Lemma 4 that

$$
\begin{aligned}
\left|F_{y_{0}}(z)\right|^{p} & \leq \frac{1}{\Omega_{2 n} \delta^{2 n}} \int_{|\eta| \leq \delta}\left(\left(\int_{\mathbb{R}^{n}}\left|F\left(\tau+i\left(y+y_{0}+\eta\right)\right)\right|^{p} d \tau\right)^{\frac{1}{p}}\right)^{p} d \eta \\
& \leq \frac{1}{\Omega_{2 n} \delta^{2 n}} \int_{|\eta| \leq \delta}\left(e^{2 \pi \psi\left(y+y_{0}+\eta\right)}\|F\|_{H^{p}(\Gamma, \psi)}\right)^{p} d \eta \leq C_{n, p, \delta} e^{2 p \pi \psi_{y_{0}}(y)}
\end{aligned}
$$

where $\psi_{y_{0}}(y)=\sup \left\{\psi\left(y+y_{0}+\eta\right):|\eta| \leq \delta\right\}, C_{n, p, \delta}=\frac{\Omega_{n}}{\Omega_{2 n} \delta^{n}}\|F\|_{H^{p}(\Gamma, \psi)}^{p}$ and Ω_{m} is the volume of the unit ball in \mathbb{R}^{m}. Therefore,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|F_{y_{0}}(x+i y)\right|^{2} d x & \leq C_{n, p, \delta}^{\frac{2-p}{p}} e^{2(2-p) \pi \psi_{y_{0}}(y)} \int_{\mathbb{R}^{n}}\left|F_{y_{0}}(x+i y)\right|^{p} d x \\
& \leq C_{n, p, \delta}^{\frac{2-p}{p}}\left\|F_{y_{0}}\right\|_{H^{p}(\Gamma, \psi)}^{p} e^{4 \pi \psi_{y_{0}}(y)},
\end{aligned}
$$

which implies that $F_{y_{0}} \in H^{2}\left(\Gamma, \psi_{y_{0}}\right)$. Similarly, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|F_{y_{0}}(x+i y)\right| d x \leq C_{n, p, \delta}^{\frac{1-p}{p}}\left\|F_{y_{0}}\right\|_{H^{p}(\Gamma, \psi)}^{p} e^{2 \pi \psi_{y_{0}}(y)} . \tag{29}
\end{equation*}
$$

Thus, $F_{y_{0}} \in H^{1}\left(\Gamma, \psi_{y_{0}}\right) \cap H^{2}\left(\Gamma, \psi_{y_{0}}\right)$. Let $g_{y}(t)$ be the inverse Fourier transform of $F_{y}(x)$. Applying Theorem 1 to $F_{y_{0}}(z)$, we obtain

$$
g_{y_{0}}(t) e^{-2 \pi y_{0} \cdot t}=g_{y+y_{0}}(t) e^{-2 \pi\left(y+y_{0}\right) \cdot t}
$$

for $y, y_{0} \in \Gamma$, which shows that $g_{y}(t) e^{-2 \pi y \cdot t}$ is independent of y. We denote it by $g(t)$. Then

$$
\begin{equation*}
g(t)=g_{y}(t) e^{-2 \pi y \cdot t} \tag{30}
\end{equation*}
$$

is continuous on \mathbb{R}^{n}. It follows that $F(z)=\int_{\mathbb{R}^{n}} g(t) e^{-2 \pi i z \cdot t} d t$ for $z \in T_{\Gamma}$. Combining with (29), we obtain

$$
|g(t)|=\left|g_{y_{0}+y}(t) e^{-2 \pi\left(y_{0}+y\right) \cdot t}\right| \leq \widetilde{C}_{n, p} \exp \left\{J\left(y_{0}, y, t\right)\right\}
$$

where $\widetilde{C}_{n, p}=\left(\frac{\Omega_{n}}{\Omega_{2 n}}\right)^{\frac{1-p}{p}}\left\|F_{y_{0}}\right\|_{H^{p}(\Gamma, \psi)}$ and

$$
J\left(y_{0}, y, t\right)=-n\left(\frac{1}{p}-1\right) \log \delta_{y_{0}}-2 \pi\left(y_{0}+y\right) \cdot t+2 \pi \psi_{y_{0}}(y)
$$

for $z \in T_{\Gamma}$. We can now prove $\operatorname{supp} g(t) \subset U\left(\psi_{y_{0}}, \Gamma\right)$. To this end, we show that $g(t)=0$ for $t \notin U\left(\psi_{y_{0}}, \Gamma\right)$. In fact, when $t \notin U\left(\psi_{y_{0}}, \Gamma\right)$, based on (4), there is a sequence $\left\{y_{k}\right\}$ in Γ tending to zero as $k \rightarrow \infty$, such that $\psi\left(y_{k}\right)-t \cdot y_{k} \rightarrow-\infty$. Then $g(t)=0$ for $t \notin U\left(\psi_{y_{0}}, \Gamma\right)$. Letting $f(t)=g(-t)$, the representation

$$
\begin{equation*}
F(z)=\int_{\mathbb{R}^{n}} f(t) e^{2 \pi i z \cdot t} \tag{31}
\end{equation*}
$$

holds and $\operatorname{supp} f \subseteq-U\left(\psi_{y_{0}}, \Gamma\right)$. According to Lemma 2, $-U\left(\psi_{y_{0}}, \Gamma\right) \subset\left(\Gamma^{*}+\overline{D\left(0, R_{\psi_{y_{0}}}\right)}\right)$. Since $R_{\psi_{y_{0}}}=R_{\psi}$ for any fixed $y_{0} \in \Gamma$, we see that $-U\left(\psi_{y_{0}}, \Gamma\right)$ is also a subset of $\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$. Hence, $\operatorname{supp} f \subseteq\left(\Gamma^{*}+\right.$ $\left.\overline{D\left(0, R_{\psi}\right)}\right)$.

Next, we prove that $f(t)$ is a slowly increasing function on $\Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$. Let

$$
J(t)=\inf \left\{J\left(y_{0}, y, t\right): y_{0} \in \Gamma, y \in \bar{\Gamma}\right\}
$$

then $|f(t)|=|g(-t)| \leq \widetilde{C}_{n, p} \exp \{J(-t)\}$. The fact that $\psi \in C(\bar{\Gamma})$ and (3) indicate that there exists a positive constant $A>R_{\psi}$, which is independent of y_{0}, y, such that $\psi_{y_{0}}(y) \leq A\left(1+\left|y_{0}\right|+|y|\right)$ for any $y_{0}, y \in \Gamma$. Taking $y_{0}=\rho v$ with $\rho>0$ and a fixed $v \in \Gamma$ with $|v|=1$, we have $\delta_{y_{0}}=d(\rho v, \partial \Gamma) / 2=\rho \varepsilon$, where $\varepsilon=d(v, \partial \Gamma) / 2$. Thus,

$$
J(-t)=\inf _{\rho>0}\left\{-n\left(\frac{1}{p}-1\right) \log (\varepsilon \rho)+2 \pi \rho|t|+2 \pi A(1+\rho)\right\} .
$$

The above infimum can be attained when $\rho=n\left(\frac{1}{p}-1\right)(2 \pi(|t|+A))^{-1}$. Then

$$
J(-t) \leq 2 \pi A+n\left(\frac{1}{p}-1\right)\left(-\log \varepsilon-\log \left(n\left(\frac{1}{p}-1\right)\right)+1+\log (2 \pi(A+|t|))\right) .
$$

Hence, for $t \in \Gamma^{*}+\overline{D\left(0, R_{\psi}\right)}$, there exists a positive $A_{n, p, v}$ such that

$$
|f(t)| \leq \widetilde{C}_{n, p} e^{J(-t)} \leq A_{n, p, v}(1+|t|)^{n\left(\frac{1}{p}-1\right)},
$$

which shows that f is a slowly increasing function. Thus, the proof is complete.

4. Application

Let K be a compact subset of \mathbb{R}^{n}, we denote the support function of K by $\varphi_{K}(y)$, which is defined as $\varphi_{K}(y)=\sup \{x \cdot y: x \in K\}$. It is convex and continuous on \mathbb{R}^{n} and satisfies condition (3). For any $s \geq 0, y \in \mathbb{R}^{n}, \varphi_{K}(s y)=s \varphi_{K}(y)$. We define the polar set of K as $K^{*}=\left\{y \in \mathbb{R}^{n}: \varphi_{K}(y) \leq 1\right\}$.

If K is convex, closed and $0 \in K$, then $K^{* *}=\left(K^{*}\right)^{*}=K$ ([12], Chapter 3, Lemma 4.7). Moreover, $\varphi_{K^{*}}(x)=\sup \left\{x \cdot y: y \in K^{*}\right\}$ and $\varphi_{K^{* *}}(x)=\varphi_{K}(x)$.

For all $z \in \mathbb{C}^{n}$, define $\tilde{\varphi}_{K}(z)=\sup \{|z \cdot t|: t \in K\}$. An entire function F on \mathbb{C}^{n} is of exponential type K^{*}, where K is compact, if for each $\varepsilon>0$ there exists a constant A_{ε} such that

$$
\begin{equation*}
|F(z)| \leq A_{\varepsilon} e^{2 \pi(1+\varepsilon) \tilde{\varphi}_{K}(z)} \tag{32}
\end{equation*}
$$

for all $z \in \mathbb{C}^{n}$.
If K is convex, compact and symmetric (that is, $x \in K$ implies $-x \in K$), and it has a non-empty interior, it is called a symmetric body. The class of entire functions satisfying (32) is denoted by $\mathscr{E}\left(K^{*}\right)$ ([12]).

Theorem L (Paley-Wiener in \mathbb{C}^{n}). ([12], Chapter 3, Theorem 4.9). Suppose K is a symmetric body and $F \in L^{2}\left(\mathbb{R}^{n}\right)$. Then F is the Fourier transform of a function, $f \in L^{2}(K)$, vanishing outside K if and only if F is the restriction to \mathbb{R}^{n} of a function in $\mathscr{E}\left(K^{*}\right)$.

We will generalize the Paley-Wiener theorem for band-limited functions defined in \mathbb{C}^{n} to the case when $0<p \leq 2$. We first introduce the following lemmas.

Lemma 5. Assume that $0<p<\infty, K$ is compact and symmetric, Γ is a regular open cone in $\mathbb{R}^{n}, F(z)$ is holomorphic in the tube T_{Γ} and continuous in the closed tube $T_{\bar{\Gamma}}$. For each $\varepsilon>0$, if there exists a constant A_{ε} such that (32) holds for all $z \in T_{\Gamma}$ and $F \in L^{p}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x \leq e^{2 \pi p \varphi_{K}(y)} \int_{\mathbb{R}^{n}}|F(x)|^{p} d x \tag{33}
\end{equation*}
$$

for all $y \in \Gamma$.
Proof. The proof is similar to that of Lemma 4. Given an integer $N>0$, let $E(N)=[-N, N] \times \cdots \times[-N, N]$ be a cube in \mathbb{R}^{n} and $b \in \Gamma$. Then, function $g_{j, N}(w)(j=1,2, \cdots)$ defined by

$$
\sum_{k_{1}=-j}^{j} \sum_{k_{2}=-j}^{j} \ldots \sum_{k_{n}=-j}^{j}\left|F\left(\frac{N}{j}\left(k_{1} e_{1}+k_{2} e_{2}+\ldots+k_{n} e_{n}\right)+w b\right)\right|^{p}\left(\frac{N}{j}\right)^{n}
$$

is continuous in $\overline{\mathbb{C}^{+}}$and converges uniformly for w in every compact subset of \mathbb{C}^{+}to the function

$$
h_{N}(w)=\int_{E(N)}|F(b w+t)|^{p} d t .
$$

For fixed $N>1, j>1, b \in \Gamma$, and $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{N}$, the function

$$
\log \left(\left|F\left(\frac{N}{j}\left(k_{1} e_{1}+k_{2} e_{2}+\cdots+k_{n} e_{n}\right)+a+w b\right)\right|^{p} \frac{N^{n}}{j^{n}}\right)
$$

is subharmonic in \mathbb{C}^{+}, which implies that $\log g_{j, N}(w)$ is subharmonic in \mathbb{C}^{+}. Hence function $\log \left|h_{N}(w)\right|$ is subharmonic in \mathbb{C}^{+}and satisfies

$$
\varlimsup_{w \in \mathbb{C}^{+},|w| \rightarrow \infty} \frac{\log \left|h_{N}(w)\right|}{|w|} \leqslant 2 \pi p \varphi_{K}(b)
$$

and

$$
\left|h_{N}(u)\right| \leqslant \int_{\mathbb{R}^{n}}|F(x)|^{p} d x
$$

Applying Lemma 1 to the subharmonic function $\log \left|h_{N}(w)\right|$ in \mathbb{C}^{+}, there holds

$$
\int_{E(N)}|F(b w+x)|^{p} d x \leqslant e^{2 \pi p \varphi_{K}(b) v} \int_{\mathbb{R}^{n}}|F(x)|^{p} d x .
$$

Since φ_{K} is homogeneous of degree one, letting $w=v i, y=v b \in \Gamma$, and sending $N \rightarrow \infty$, we obtain the desired estimate (33) for $y \in \Gamma$ and the proof is complete.

The following lemma shows that inequality (33) holds for any $y \in \mathbb{R}^{n}$.
Lemma 6. Assume that $0<p<\infty, K$ is compact and symmetric, F is an entire function in \mathbb{C}^{n} such that $F \in L^{p}\left(\mathbb{R}^{n}\right)$. If $F \in \mathscr{E}\left(K^{*}\right)$, then (33) holds for any $y \in \mathbb{R}^{n}$.

Proof. Note that \mathbb{R}^{n} can be decomposed into a finite union of non-overlapping convex regular cones, $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k}$, with vertexes at the origin 0 . Based on Lemma 5 , (33) holds for any $y \in \mathbb{R}^{n}=\bigcup_{j=1}^{k} \Gamma_{j}$. Then the desired formula can be proved.

We can now state an n-dimensional version of the Paley-Wiener theorem for $0<p \leq 2$:
Theorem 4. Assume that $0<p \leq 2, K$ is a symmetric body, $F \in L^{p}\left(\mathbb{R}^{n}\right)$. Then F is the Fourier transform of a function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ when $0<p<2$ and $f \in L^{2}\left(\mathbb{R}^{n}\right)$ when $p=2$, vanishing outside K if and only if F is the restriction to \mathbb{R}^{n} of a function in $\mathscr{E}\left(K^{*}\right)$.

Proof. If F is the Fourier transform of function $f \in L^{1}\left(\mathbb{R}^{n}\right)$ vanishing outside K, then it is easy to check that

$$
F(z)=\int_{\mathbb{R}^{n}} e^{-2 \pi i z \cdot t} f(t) d t=\int_{K} e^{-2 \pi i x \cdot t} e^{2 \pi y \cdot t} f(t) d t
$$

extends F to a function in $\mathscr{E}\left(K^{*}\right)$.
The converse can be deduced from Lemma 6 and Theorem 1. Assume that F is the restriction to \mathbb{R}^{n} of a function in $\mathscr{E}\left(K^{*}\right)$. For simplicity, we also denote the latter by F. Based on Lemma 6, (33) holds for all $y \in \mathbb{R}^{n}$. The subharmonic property of function $|F(z)|^{p}$ and Lemma 6 imply that

$$
\begin{aligned}
|F(z)|^{p} & \leq \frac{1}{\Omega_{2 n}} \iint_{|\tau+i \eta| \leq 1}|F(z+\tau+i \eta)|^{p} d \tau d \eta \\
& \leq \frac{1}{\Omega_{2 n}} \int_{D_{n}(0,1)} d \eta \int_{\mathbb{R}^{n}}|F(z+\tau+i \eta)|^{p} d \tau \leq C_{n}^{p} e^{2 p \pi|y| R_{1}} \int_{\mathbb{R}^{n}}|F(x)|^{p} d x,
\end{aligned}
$$

where Ω_{n} is the volume of the unit ball $D_{n}(0,1)$ in $\mathbb{R}^{n}, \Omega_{2 n}$ is the volume of the unit ball $D_{2 n}(0,1)$ in \mathbb{C}^{n}, $R_{1}=\max \left\{\varphi_{K}(y):|y|=1\right\}$ and $C_{n}^{p}=\Omega_{n} e^{2 p \pi R_{1}} \Omega_{2 n}^{-1}$. Therefore,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|F(x+i y)|^{2} d x=\int_{\mathbb{R}^{n}}|F(x+i y)|^{p+2-p} d x \\
\leq & e^{2(2-p) \pi|y| R_{1}} C_{n}^{2-p}\left(\int_{\mathbb{R}^{n}}|F(x)|^{p} d x\right)^{\frac{2-p}{p}} \int_{\mathbb{R}^{n}}|F(x+i y)|^{p} d x \\
\leq & e^{4 \pi|y| R_{1}} C_{n}^{2-p}\left(\int_{\mathbb{R}^{n}}|F(x)|^{p} d x\right)^{\frac{2}{p}} .
\end{aligned}
$$

By Lemma 6, we then have $F \in H^{2}\left(T_{B}\right)$ for all bounded bases B. Thus, there exists g such that

$$
F(z)=\int_{\mathbb{R}^{n}} e^{2 \pi i z \cdot t} g(t) d t, \int_{\mathbb{R}^{n}}|F(x+i y)|^{2} d x=\int_{\mathbb{R}^{n}}|g(t)|^{2} e^{-4 \pi y \cdot t} d t
$$

for all $z=x+i y \in T_{B}$ ([12], Chapter 3, Theorem 2.3). We can assume $0 \in B$, then Plancherel's theorem asserts that $g \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\|g\|_{2}^{2}=\int_{\mathbb{R}^{n}}|F(x)|^{2} d x$. Thus, we see that $F(x)=\hat{f}(t)$ is the Fourier transform of $f(t)=g(-t)$. Based on Lemma 6,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f(t)|^{2} e^{4 \pi y \cdot t} d t \leq e^{4 \pi \varphi_{K}(y)} \int_{\mathbb{R}^{n}}|F(x)|^{2} d x . \tag{34}
\end{equation*}
$$

By using the same method as in the end of the proof of Theorem 4.9 of Chapter 3 in [12], we can prove that the inequality (34) holds only when f vanishes almost everywhere outside K. Then Theorem 4 can be stated.

The following three theorems are versions of the edge-of-the-wedge theorem (see in [14-16]). First, we introduce some definitions:

Let Γ be a regular open cone in \mathbb{R}^{n}. We denote by $\mathfrak{A}(\Gamma)$ the space of functions $\psi \in C(\Gamma)$, which satisfy

$$
\lim _{y \in \Gamma, y \rightarrow 0} \psi(y)<\infty \quad \text { and } \quad R(\psi, \Gamma)=\varlimsup_{y \in \Gamma,|y| \rightarrow \infty} \frac{\psi(y)}{|y|}<\infty .
$$

Theorem 5. Assume that Γ is a regular open cone in \mathbb{R}^{n}, $\psi_{1} \in \mathfrak{A}(\Gamma)$, and $\psi_{2} \in \mathfrak{A}(-\Gamma)$. If $F_{1} \in H^{p_{1}}\left(\Gamma, \psi_{1}\right)$ and $F_{2} \in H^{p_{2}}\left(-\Gamma, \psi_{2}\right)\left(1 \leq p_{1}, p_{2} \leq 2\right)$ satisfy

$$
\begin{equation*}
\varliminf_{y \in \overline{\Gamma, y \rightarrow 0}}^{\lim _{\mathbb{R}^{n}}} \int_{\mid}\left|F_{1}(x+i y)-F_{2}(x-i y)\right|^{2} d x=0 \tag{35}
\end{equation*}
$$

then F_{1} and F_{2} can be analytically extended to each other and further form an entire function $F \in \mathscr{E}\left(K^{*}\right)$. Furthermore, there exists a measurable function $f(t) \in L^{2}\left(\mathbb{R}^{n}\right)$ with suppf $\subseteq K=$ $\left(-U\left(\psi_{1}, \Gamma\right)\right) \bigcap\left(-U\left(\psi_{2},-\Gamma\right)\right)$, such that

$$
F(z)=\int_{K} f(t) e^{2 \pi i t \cdot z} d t
$$

holds for $z \in \mathbb{C}^{n}$.
Proof. Theorem 1 implies that there exists a measurable function $f_{j} \in L^{q_{j}}\left(\mathbb{R}^{n}\right)(j=1,2)$ with $\operatorname{supp} f_{j} \subseteq$ $-U\left(\psi_{j},(-1)^{j-1} \Gamma\right)$ such that

$$
F_{j}(z)=\int_{\mathbb{R}^{n}} f_{j}(t) e^{2 \pi i t \cdot z} d t
$$

holds for $z \in T_{(-1)^{j-1} \Gamma}$. Plancherel's theorem and (35) imply that

$$
\int_{\mathbb{R}^{n}}\left|f_{1}(t) e^{2 \pi t \cdot y}-f_{2}(t) e^{-2 \pi t \cdot y}\right|^{2} d t=\int_{\mathbb{R}^{n}}\left|F_{1}(x+i y)-F_{2}(x-i y)\right|^{2} d x .
$$

The finiteness of the right hand side can be deduced from (26). Fatou's lemma implies that $\left\|f_{1}-f_{2}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=$ 0 , and hence $f_{1}(t)=f_{2}(t)$ almost everywhere on \mathbb{R}^{n}. If we let $f(t)=f_{1}(t)=f_{2}(t)$, then $\operatorname{supp} f \subseteq K$. Let $R=\max \left\{R\left(\psi_{1}, \Gamma\right), R\left(\psi_{2},-\Gamma\right)\right\}$. Then, Lemma 2 implies that

$$
K \subseteq\left(\Gamma^{*}+\overline{D(0, R)}\right) \cap\left(-\Gamma^{*}+\overline{D(0, R)}\right) .
$$

Thus, set K is a bounded convex set. Consequently,

$$
F(z)=\int_{K} e^{2 \pi i z \cdot t} f(t) d t
$$

is an entire function, where $F(z)=F_{1}(z)$ for $z \in T_{\Gamma}$ and $F(z)=F_{2}(z)$ for $z \in T_{-\Gamma}$. Moreover,

$$
|F(z)| \leq C_{0} \exp \left\{2 \pi \varphi_{K}(\operatorname{Im} z)\right\} \leq C_{0} e^{2 \pi R_{0}|y|}, \quad z \in \mathbb{C}^{n}
$$

where $\varphi_{K}(y)$ is the support function of the convex set K and

$$
C_{0}=\int_{K}|f(t)| d t, \quad R_{0}=\sup \left\{\frac{\varphi_{K}(b)}{|b|}: b \in \mathbb{R}^{n}, b \neq 0\right\} .
$$

The proof is complete.
Applying the same method as for cases $p>2$ and $0<p<1$, we can obtain the following two theorems. Therefore. The proofs are omitted.

Theorem 6. Assume that Γ is a regular open cone in $\mathbb{R}^{n}, p_{1}, p_{2}>2, \psi_{1} \in \mathfrak{A}(\Gamma)$, and $\psi_{2} \in \mathfrak{A}(-\Gamma)$. If $F_{1} \in H^{p_{1}}\left(\Gamma, \psi_{1}\right)$ and $F_{2} \in H^{p_{2}}\left(-\Gamma, \psi_{2}\right)$ satisfy the conditions of Theorem 2 and (35) holds on \mathbb{R}^{n}, then F_{1} and F_{2} can be analytically extended to each other and further form an entire function $F \in \mathscr{E}\left(K^{*}\right)$. Furthermore, there exists a measurable function $f(t) \in L^{2}\left(\mathbb{R}^{n}\right)$, which is the Fourier transform of $F(x)$ with suppf $\subseteq K=\left(-U\left(\psi_{1}, \Gamma\right)\right) \bigcap\left(-U\left(\psi_{2},-\Gamma\right)\right)$, such that the representation

$$
F(z)=\int_{K} f(t) e^{2 \pi i t \cdot z} d t
$$

holds for $z \in \mathbb{C}^{n}$.
Theorem 7. Assume that Γ is a regular open cone in $\mathbb{R}^{n}, 0<p_{1}, p_{2}<1, \psi_{1} \in \mathfrak{A}(\Gamma)$, and $\psi_{2} \in \mathfrak{A}(-\Gamma)$. If $F_{1} \in H^{p_{1}}\left(\Gamma, \psi_{1}\right)$ and $F_{2} \in H^{p_{2}}\left(-\Gamma, \psi_{2}\right)$ satisfy conditions of Theorem 3 and (35) holds almost everywhere on \mathbb{R}^{n}, then F_{1} and F_{2} can be analytically extended to each other and further form an entire function $F \in \mathscr{E}\left(K^{*}\right)$. Moreover, there exists a slowly increasing continuous function $f(t) \in L^{2}\left(\mathbb{R}^{n}\right)$, which is the Fourier transform of $F(x)$ with supp $\subseteq K=\left(\Gamma^{*}+\overline{D(0, R)}\right) \bigcap\left(-\Gamma^{*}+\overline{D(0, R)}\right)$, such that the representation

$$
F(z)=\int_{K} f(t) e^{2 \pi i t \cdot z} d t
$$

holds for $z \in \mathbb{C}^{n}$.

References

[1] G.T. Deng, Complex Analysis, Beijing Normal University Press, 2010 (in Chinese).
[2] G.T. Deng, T. Qian, Rational approximation of functions in Hardy spaces, Complex Anal. Oper. Theory 10 (2016) 903-920.
[3] J. Faraut, A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.
[4] J.B. Garnett, Bounded Analytic Functions, Academic Press, 1987.
[5] T.G. Genchev, A weighted version of the Paley-Wiener theorem, Math. Proc. Cambridge Philos. Soc. 105 (1989) 389-395.
[6] H.C. Li, The Theory of Hardy Spaces on Tube Domains, Thesis of Doctor of Philosophy in Mathematics, University of Macau, 2015.
[7] H.C. Li, G.T. Deng, T. Qian, Fourier spectrum characterizations of H^{p} space on tubes over cones for $1 \leq p \leq \infty$, Complex Anal. Oper. Theory (2017) 1-26.
[8] I.K. Musin, Paley-Wiener type theorems for functions analytic in tube domains, Mat. Zametki 53 (4) (1993) 92-100.
[9] T. Qian, Characterization of boundary values of functions in Hardy spaces with applications in signal analysis, J. Integral Equations Appl. 17 (2) (2005) 159-198.
[10] T. Qian, Y.S. Xu, D.Y. Yan, L.X. Yan, B. Yu, Fourier spectrum characterization of Hardy spaces and applications, Trans. Amer. Math. Soc. 137 (3) (March 2009) 971-980.
[11] W. Rudin, Real and Complex Analysis, third ed., McGraw-Hill Book Co., New York, 1987.
[12] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
[13] E. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1962.
[14] V.S. Valdimirov, Methods of the Theory of Functions of Many Complex Variables, The Massachusetts Institute of Technology Press, 1966.
[15] V.S. Valdimirov, Generalized Function in Mathematics Physics, Nauka, Moscow, 1976 (in Russian).
[16] V.S. Valdimirov, Methods of the Theory of Generalized Functions, Taylor \& Francis, London and New York, 2002.

[^0]: * Corresponding author.

 E-mail addresses: denggt@bnu.edu.cn (G.-T. Deng), yhuang12@126.com (Y. Huang), tqian1958@gmail.com (T. Qian).
 1 This work was partially supported by NSFC (Grant 11271045) and by SRFDP (Grant 20100003110004).
 ${ }^{2}$ The work is supported by the Macao Science and Technology Foundation No. FDCT079/2016/A2, the Multi-Year Research Grants of the University of Macau No. MYRG2016-00053-FST and No. MYRG2018-00168-FST, the Beijing Municipal Natural Science Foundation (No. 1182008).

