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Herein, a weighted version of the Paley–Wiener-type theorem for analytic functions 
in a tubular domain over a regular cone is obtained by using Hp space methods. 
Then, the classical n-dimensional Paley–Wiener theorem is generalized to a case 
wherein 0 < p < 2. Finally, a version of the edge-of-the-wedge theorem is obtained 
as an application of the weighted theorems.
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1. Introduction

1.1. Background

The Paley–Wiener theorem describes the properties of the Fourier spectrum of a function, which is the 
non-tangential limit of one in the classic Hardy space Hp associated with the upper half-plane C+ = {z =
x + iy : y > 0}, in terms of the location of the support of its Fourier transform. When p = 2, it is the 
classical one-dimensional Paley–Wiener Theorem.

Theorem A (Paley–Wiener). ([4,11]). F ∈ H2(C+) if and only if there exists a function f ∈ L2[0, ∞) such 
that F (z) =

∫∞
0 f(t)e2πit·zdt for z ∈ C+.
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In order to introduce the following results, we recall the definition of the Fourier transform. Assume that 
f ∈ L1(Rn). The Fourier transform of f , denoted by f̂ , is defined as f̂(x) = F =

∫
Rn f(t)e−2πix·tdt for all 

x ∈ Rn.
In a previous study [9], Theorem A was generalized to a one-dimensional distribution case for 1 ≤ p ≤ ∞. 

In the distributional case, the support of function f is denoted by d-suppf .

Theorem B. f ∈ Hp(C+), where 1 ≤ p ≤ ∞. Then, as a tempered distribution, f̂ is supported in [0, ∞).

In another research [10], Qian et al. proved the converse of the above theorem.

Theorem C. For 1 ≤ p ≤ ∞, f ∈ Lp(R) and d-suppf̂ ⊂ [0, ∞). Then, f is the boundary limit of a function 
in Hp(C+).

Higher-dimensional cases can be naturally considered. We first introduce some definitions in the 
n-dimensional complex Euclidean space Cn.

We denote the elements of Cn by z = (z1, z2, ..., zn). The product of z, w ∈ Cn is z · w = z1w1 + z2w2 +
. . . + znwn. The Euclidean norm of z ∈ Cn is |z| =

√
z · z̄, where z̄ = (z1, z2, ..., zn).

A nonempty subset Γ ⊂ Rn is called an open cone, if it satisfies (i) 0 /∈ Γ, and (ii) whenever x, y ∈ Γ and 
α, β > 0, the expression αx + βy ∈ Γ holds.

The dual cone of Γ is expressed as Γ∗ = {y ∈ Rn : y · x ≥ 0, for any x ∈ Γ}, which is clearly a closed 
convex cone with vertex at 0. Next, (Γ∗)∗ = chΓ, where chΓ is the convex hull of Γ. We say that the cone 
Γ is regular if the interior of its dual cone Γ∗ is non-empty.

The tube TΓ with base Γ is the set of all points z = (z1, z2, ..., zn) = (x1 + iy1, ..., xn + iyn) = x + iy ∈ Cn

with y ∈ Γ.
A function F belongs to a Hardy space Hp(TΓ), if it is holomorphic in TΓ, and satisfies

‖F‖Hp = sup
{( ∫

Rn

|F (x + iy)|pdx
) 1

p

: y ∈ Γ
}

< ∞.

In Ref. [12], Stein and Weiss obtained a representation theorem that claims the above characterization 
for an n-dimensional case. Note that the set suppf is the support of a measurable function f on Rn, which 
is the closure of the set {x : f(x) 	= 0}.

Theorem D. Suppose Γ is an open cone. Then F ∈ H2(TΓ) if and only if F (z) =
∫
Γ∗ e

2πiz·tf(t)dt, where f

is a measurable function on Rn satisfying suppf ⊂ Γ∗ and ‖F‖H2 = ‖f‖L2(Γ∗) =
(∫

Γ∗ |f(t)|2dt
) 1

2

.

Related generalizations of this result were obtained. Especially, Li et al. got some characterization con-
clusions in Ref. [7] for Hp(TΓ) with the index range 1 ≤ p ≤ 2.

Theorem E. Assume that Γ is a regular open cone in Rn and F (x) ∈ Lp(Rn), where 1 ≤ p ≤ 2. Then, F is 
the boundary limit function of F (x + iy) ∈ Hp(TΓ) if and only if d-suppF̂ ⊂ Γ∗.

All the results mentioned herein are for one or higher dimensional Hardy spaces Hp, where 1 ≤ p ≤ ∞. 
Since some formulas and methods are not available when 0 < p < 1, by using some other techniques, Deng 
and Qian proved an analogous one-dimensional result for the case when 0 < p < 1 in Ref. [2]. Recall that 
a measurable function f on Rn is called a slowly increasing function, if there exists a positive constant a
such that f(x)(1 + |x|)−a ∈ L1(Rn).
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Theorem F. If 0 < p < 1, F ∈ Hp(C+), then there exists a positive constant Ap depending only on p, and 
a slowly increasing continuous function f , which is supported in [0, ∞), such that, for ϕ in the Schwartz 
class S,

(f, ϕ) = lim
y>0,y→0

∫
R

F (x + iy)ϕ̂(x)dx,

and |f(t)| ≤ Ap‖F‖Hp
+
|t| 1p−1 holds for t ∈ R, and F (z) =

∫∞
0 f(t)e2πitzdt for z ∈ C+.

It is also natural to generalize this result to the higher dimensional case. Restricting the cone to be the 
first octant Γσ1 = {y = (y1, . . . , yn) : yi > 0 for all i = 1, . . . , n}, Li proved the following representation 
result.

Theorem G. ([6]). If 0 < p < 1, F ∈ Hp(TΓσ1
), then there exists a constant Cp, which is independent of F , 

and a slowly increasing continuous function f , whose support is in Γσ1 , such that, for ϕ in the Schwartz 
class S,

(f, ϕ) = lim
y∈Γσ1 ,y→∞

∫
Rn

F (x + iy)ϕ̂(x)dx

and |f(x)| ≤ Cp‖F‖HpenBpB
−nBp
p

∏n
k=1 |xk|Bp , and F (z) =

∫
Γσ1

f(t)e2πit·zdt, where Cp = (π2 )
n
p , Bp =

1
p − 1 ≥ 0.

Some weighted versions of the Paley–Wiener theorem were considered previously, including one by 
Genchev in Ref. [5]. Suppose that D = {z ∈ Cn, Im zj < 0, 1 ≤ j ≤ n} is the last octant in Cn and 
σ = (σ1, . . . , σn) ∈ Rn is a vector with non-negative components. Let Eσ(D) be the set of holomorphic 

functions on D that satisfy |F (z)| ≤ Aε exp
{ n∑

j=1
(σj + ε)|zj |

}
for ε > 0 and z ∈ D. Integral representations

of functions in Eσ(D) with boundary values F (x) ∈ Lp(Rn) are studied in [5], being separated into two 
cases, namely, p ≥ 2 and 1 ≤ p ≤ 2, corresponding to the Theorems H and I given in the sequel.

Theorem H. ([5]). Let F (z) ∈ Eσ(D) have boundary values F (x) and suppose that the condition

∫
Rn

(1 + |x|n(p−2))|F (x)|pdx < ∞ (1)

holds, where p ≥ 2 and |x|2 =
n∑

j=1
x2
j . Then F has the form

F (z) =
∫

−G(σ)

e2πiz·tf(t)dt, (2)

where G(σ) = {t ∈ Rn, 2πtj ≥ −σj , 1 ≤ j ≤ n} and f is a measurable function satisfying suppf ⊂ −G(σ)
and f ∈ Lp(−G(σ)).

When 1 ≤ p ≤ 2, the following theorem was established.
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Theorem I. ([5]). Suppose that F (z) ∈ Eσ(D) have boundary values F (x) ∈ Lp(Rn), where 1 ≤ p ≤ 2. 
Then (2) is again satisfied, with f continuous if p = 1 and with f measurable and satisfying the conditions 
|t|n(1− 2

p )f(t) ∈ Lp(Rn) and f(t) ∈ Lq(Rn), where 1
p + 1

q = 1, if p > 1.

These two theorems were generalized to a larger class of convex domains in Cn. In Ref. [8], a(z) is denoted 
as a non-negative convex function continuous in TΓ and homogeneous of degree 1. Let Pa(TΓ) be the class 
of functions that are holomorphic in TΓ and satisfy |F (z)| ≤ cεe

a(z)+ε|z| for ε > 0, cε > 0 and z ∈ TΓ. Musin 
obtained two results in [8] for functions in Pa(TΓ) with boundary values F (x) ∈ Lp(Rn). When p ≥ 2, 
a representation result was stated as follows.

Theorem J. ([8]). Suppose that F ∈ Pa(TΓ) have boundary values F (x) which satisfy |x|n(1− 2
p )F (x) ∈

Lp(Rn) for p ≥ 2. Then there exists f ∈ Lp(Rn) such that F (z) =
∫
U(ã,Γ) e

2πiz·tf(t)dt holds for z ∈ TΓ, 
where U(ã, Γ) = {ξ ∈ Rn : −2πξ · y ≤ ã(y) for all y ∈ Γ} and ã(y) = a(iy) for y ∈ Γ.

Musin established the following result for 1 ≤ p < 2.

Theorem K. ([8]). Suppose that F ∈ Pa(TΓ) have boundary values F (x) ∈ Lp(Rn) for 1 ≤ p < 2. Then 
F (z) =

∫
U(ã,Γ) e

2πiz·tf(t)dt holds for z ∈ TΓ. For p = 1 we have f ∈ C(Rn), while for p > 1 we have 

suppf ⊂ U(ã, Γ), f ∈ Lq(Rn) and |t|n(1− 2
p )f(t) ∈ Lp(Rn).

1.2. Statement of main results

Herein, we consider Paley–Wiener-type theorems for functions in the weighted class defined as follows.
For the first time, we consider the following type of generalization. Let ψ be a measurable function in 

Rn. A function F (z) holomorphic in tube TΓ is said to belong to space Hp(Γ, ψ) if

‖F‖Hp(Γ,ψ) = sup

⎧⎪⎨
⎪⎩e−2πψ(y)

⎛
⎝∫
Rn

|F (x + iy)|pdx

⎞
⎠

1
p

: y ∈ Γ

⎫⎪⎬
⎪⎭ < ∞

for 0 < p < ∞ and

‖F‖H∞(Γ,ψ) = sup
{
e−2πψ(y)|F (x + iy)| : x ∈ Rn, y ∈ Γ

}
< ∞

for p = ∞.
In the main results, we assume that ψ ∈ C(Γ) and satisfies

Rψ = lim
y∈Γ,y→∞

ψ(y)
|y| < ∞, (3)

and let

U(ψ,Γ) = {ξ ∈ Rn : lim
y∈Γ,y→∞

(ψ(y) − ξ · y) > −∞}. (4)

Then we establish the following representation theorems.

Theorem 1. Assume that 1 ≤ p ≤ 2, 1
p + 1

q = 1, Γ is a regular open cone in Rn. If F (z) ∈ Hp(Γ, ψ), then 
there exists f(t) ∈ Lq(Rn) with suppf ⊆ −U(ψ, Γ) such that
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∫
Rn

|f(t)|qdt ≤ ‖F‖qHp(Γ,ψ) (5)

and

F (z) =
∫
Rn

f(t)e2πit·zdt (6)

hold for z ∈ TΓ.

Theorem 2. Assume that p > 2, Γ is a regular open cone in Rn. If F (z) ∈ Hp(Γ, ψ) satisfies

lim
y∈Γ,y→0

∫
Rn

|F (x + iy)|p|x|n(p−2)dx < ∞, (7)

then there exists f(t) ∈ Lp(Rn) with suppf ⊆ −U(ψ, Γ) such that (6) holds for z ∈ TΓ.

Theorem 3. Assume that F (z) ∈ Hp(Γ, ψ), where 0 < p < 1 and Γ is a regular open cone in Rn. Then, 
there exists a real constant Rψ defined as (3) and a slowly increasing continuous function f(t) with suppf ⊆
(Γ∗ + D(0, Rψ)) such that (6) holds for z ∈ TΓ.

In the above theorems, take ψ(y) = a(iy)
2π , where a(z) is defined as in Theorem J and Theorem K, and 

a(iky) = ka(iy) for y ∈ Γ and k > 0. By applying Theorem 1 and Theorem 2, we can obtain the same 
results as those derived from Theorem K and Theorem J. And in the case, suppf ⊂ −U(a(iy)

2π , Γ) = {t :
−2πt · y − a(iy) ≤ 0}.

By restricting Γ to be the last octant D, we can define ψ(y) = −σ·y
2π as in Theorem H and Theorem I

for y ∈ D and σ ∈ Rn. Theorem 1 and Theorem 2 imply the same conclusions as those by Theorem I and 
Theorem H. In the case, suppf ⊂ −U(−σ·y

2π , Γ) = {−2πtj + σj ≥ 0, 1 ≤ j ≤ n}.
In addition, for any ψ(y) defined in the form of c|y| + φ(y) satisfying (3), where c ≥ 0 and φ(y) = o(|y|)

when |y| → ∞, analogous integral representations hold.
On the other hand, suppose that F ∈ Pa(TΓ) with boundary value F (x) ∈ Lp(Rn) when 1 ≤ p < 2. 

For any ε > 0 and z ∈ TΓ
⋃
{0}, let ω be a non-negative C∞(Rn) function supported in the unit ball with 

‖ω‖L1(Rn) = 1 and ωε(t) = ε−nω(ε−1t), and set Fε(z) =
∫
Rn F (z + u)ωε(u)du. Then Fε(z) ∈ Hp(Γ, a(iy)

2π ), 
where 1 ≤ p ≤ 2. According to Theorem 1, there exist fε, f ∈ Lq(Rn) such that fε weakly* converges to 
f along with ε → 0 and (6) holds for Fε with suppfε ⊂ −U(a(iy)

2π , Γ). Sending ε → 0, (6) holds for F
and suppf ⊂ −U(a(iy)

2π , Γ). Theorem J can also be obtained by applying Theorem 2 when p > 2. For the 
same reason, when F (z) ∈ Eσ(D) with boundary value F (x) satisfying certain conditions, Theorem H and 
Theorem I can be concluded as corollaries of Theorem 1 and Theorem 2. Therefore, by applying Theorem 1
and 2, Theorem H, I, J and K can be generalized to cases in which F (z) satisfies |F (z)| ≤ Cεe

ψ(z)+ε|z| with 
boundary value F (x) ∈ Lp(Rn) for 1 ≤ p < 2 and |x|n(1− 2

p )F (x) ∈ Lp(Rn) for p ≥ 2.
If we set ψ(y) = 0, then suppf ⊂ Γ∗. When 1 ≤ p ≤ 2, Theorem 1 implies Theorem B and E in 

the one and higher dimensional cases respectively. In the particular case p = 2, it reduces to the classical 
Paley–Wiener Theorems, which are Theorem A and D herein. When 0 < p < 1, Theorem F and G are 
special cases of Theorem 3.

2. Lemmas

In order to prove Paley–Wiener-type results for holomorphic functions in tubular domains, we need the 
following lemmas.
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Lemma 1 ([1]). Assume that a is a real number and u is subharmonic in the upper half-plane C+, which 
satisfies σ = limz∈C+,|z|→∞ |z|−1u(z) and limz=x+iy∈C+,y→0 u(z) ≤ a, then u(x + iy) ≤ a + σy for all 
z = x + iy ∈ C+.

Proof. The proof of Lemma 1 refers to [1]. �
Lemma 2. Assume that Γ is a regular open convex cone of Rn. Let ψ ∈ C(Γ) satisfy (3). By defining U(ψ, Γ)
as in (4), we have U(ψ, Γ) ⊂ (−Γ∗ + D(0, Rψ)).

Proof. Assume that ξ ∈ U(ψ, Γ). If ξ ∈ −Γ∗, it is clear that ξ ∈ −Γ∗ + D(0, Rψ). Otherwise, for ξ /∈ −Γ∗, 
there exists ξ1 ∈ −Γ∗ such that

|ξ − ξ1| = inf{|ξ − x| : x ∈ ∂(−Γ∗)}

and ξ1 · (ξ − ξ1) = 0. Then, for any ỹ ∈ −Γ∗,

(ỹ − ξ) · ( ξ1 − ξ

|ξ1 − ξ| ) ≥ |ξ1 − ξ|.

It follows that ỹ · (ξ1 − ξ) ≥ 0, which implies ξ1 − ξ ∈ (−Γ∗)∗ = −Γ. Thus, ξ − ξ1 ∈ Γ. For any ε > 0, based 
on (3), there exists rε > 0 such that ψ(y) ≤ (Rψ + ε)|y| holds for y ∈ Γ with |y| ≥ rε. Since ξ ∈ U(ψ, Γ), 
according to (4), there exists Aξ and r0 > rε such that ψ(y) − ξ ·y ≥ Aξ holds for any y ∈ Γ, where |y| ≥ r0. 
Letting e0 = ξ−ξ1

|ξ−ξ1| , then ξ · e0 = (ξ − ξ1) · ξ−ξ1
|ξ−ξ1| = |ξ − ξ1|. Set y = ρe0 with ρ ≥ r0, then y ∈ Γ. We can 

observe that

(Rψ + ε)ρ ≥ ψ(ρe0) ≥ Aξ + ρξ · e0 = Aξ + ρ|ξ − ξ1|,

which implies that |ξ − ξ1| ≤ Rψ + ε for considerably small ε > 0. It follows that ξ − ξ1 ∈ D(0, Rψ). Thus, 
ξ = ξ − ξ1 + ξ1 ∈ D(0, Rψ) − Γ∗. Then we obtain U(ψ, Γ) ⊂ (−Γ∗ + D(0, Rψ)). �
Lemma 3 ([3]). Let K ⊂ int Γ∗ be a compact set. Then there exists a positive constant δK such that, for all 
y ∈ Γ and all u ∈ K, y · u ≥ δK |y|.

Lemma 4. Assume that F (z) ∈ Hp(Γ, ψ), 0 < p < ∞, Γ is a regular open cone in Rn, and ψ ∈ C(Γ 
⋃
{0})

satisfies (3). Then,
∫
Rn

|F (x + iy)|pdx ≤ e2pπ(|y|Rψ+ψ(0))‖F‖pHp(Γ,ψ). (8)

Moreover, when 1 < p < ∞, there exist F0(x) ∈ Lp(Rn) and a sequence {yk} in Γ tending to zero as k → ∞, 
such that

lim
k→∞

∫
Rn

F (x + iyk)h(x)dx =
∫
Rn

F0(x)h(x)dx (9)

holds for any h ∈ Lq(Rn).

Proof. Assume that 1 < p < ∞, the unit ball of Lp(Rn) is weakly compact, which implies that, for 
F ∈ Hp(TΓ), there exists F0(x) ∈ Lp(Rn) and a sequence {yk} in Γ tending to zero as yk → 0 such that (9)
holds for any h ∈ Lq(Rn).
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Next, we prove (8). Given an integer N > 0 and y0 ∈ Γ, let E(N) = [−N, N ] × · · · × [−N, N ] be a cube 
in Rn and y ∈ Γ, {e1, e2, . . . , en} be the standard basis vectors in the Euclidean space Rn. The function 
gj,N (w) (j = 1, 2, . . . ) defined by

j∑
k1=−j

j∑
k2=−j

· · ·
j∑

kn=−j

∣∣∣F(N
j

(k1e1 + k2e2 + · · · + knen) + wy + iy0)
)∣∣∣p(N

j

)n

is continuous in C+ and converges uniformly for w in every compact subset of C+ to the function

hN (w) =
∫

E(N)

|F (yw + t + iy0)|pdt,

where C+ is the closure of C+. For k ∈ Nn, y0, y ∈ Γ, F
(

N
j k + wy + iy0

)
is a holomorphic function of 

w ∈ C+ for fixed y, y0 ∈ Γ. Thus, the function

log
(∣∣∣F(N

j
k + wy + iy0

)∣∣∣pNn

jn

)

is subharmonic in C+, which indicates that log gj,N (w) is subharmonic in C+. Then, the function log |hN (w)|
is subharmonic in C+. For fixed y ∈ Γ, where |y| > R0, the set {vy + y0 : 0 ≤ v ≤ |y|−1(R0 + |y0|)} is 
compact in Γ. By the continuity of ψ in Γ, we have

sup{ψ(vy + y0)
|vy + y0|

: 0 ≤ v ≤ |y|−1(R0 + |y0|)} < ∞.

Therefore,

lim
w∈C+,|w|→∞

log |hN (w)|
|w| ≤ 2πp|y|Rψ

and

|hN (u)| ≤
∫
Rn

|F (x + iy0)|pdx.

Applying Lemma 1 to the subharmonic function log |hN (w)| in C+, it follows that
∫

E(N)

|F (yw + x + iy0)|pdx ≤ e2πp|y|Rψv

∫
Rn

|F (x + iy0)|pdx.

For y ∈ Γ, letting w = i and N → ∞, we observe that
∫
Rn

|F (x + iy + iy0)|pdx ≤ e2pπ|y|Rψ

∫
Rn

|F (x + iy0)|pdx

≤ e2πp|y|Rψe2pπψ(y0)‖F‖Hp(Γ,ψ).

Thus, by sending y0 → 0 and based on (3), Fatou’s lemma and the continuity of ψ at 0, we obtain the 
desired estimate
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∫
Rn

|F (x + iy)|pdx ≤ e2pπ(|y|Rψ+ψ(0))‖F‖pHp(Γ,ψ).

Consequently, (8) holds for any y ∈ Γ and the proof is complete. �
3. Proof of the theorems

3.1. Proof of Theorem 1

Proof. We divide the proof of Theorem 1 into the following steps.
Step 1. Let ω be a non-negative C∞(Rn) function with compact support in the unit ball and ‖ω‖L1(Rn)

= 1. Let ωε(t) = ε−nω(ε−1t). Since Γ is regular, we choose u0 ∈ Γ∗ and ε0 > 0 such that the ball 
D(u0, 2ε0) ⊆ Γ∗. Furthermore, let ω̃(u) = ωε0(u − u0), then the function Ω(z) =

∫
Rn e2πiz·uω̃(u)du is an 

entire function. For any y ∈ Γ, x ∈ Rn, we have |Ω(x + iy)| ≤ 1. Notice that the Hausdorff–Young inequality 
implies

⎛
⎝∫
Rn

|Ω(εx + iεy) − Ω(εx)|qdx

⎞
⎠

1
q

≤

⎛
⎝∫
Rn

∣∣∣∣(e2πy·u − 1)ω̃(−u

ε
)ε−n

∣∣∣∣
p

du

⎞
⎠

1
p

≤ (exp{2π|y|ε(|u0| + 1)} − 1)ε−n+n
p

⎛
⎝∫
Rn

(ω̃(−u))p du

⎞
⎠

1
p

for y ∈ Γ.
For Ω(εz) =

∫
Rn e2πiεz·uω̃(u)du, integrating by parts and taking the derivative with respect to z under 

the integral, the following formula holds,

(−2πεi)|α|zαDβ
z (Ω(εz)) =

∫
Rn

(2πεiu)βe2πεiz·uDα
u (ω̃(u)) du,

wherein α = (α1, . . . , αn), β = (β1, . . . , βn), Dα
u = Dα1

u1
· · ·Dαn

un
, Dβ

z = Dβ1
z1 · · ·Dβn

zn , and zα = zα1
1 · · · zαn

n . 
This implies that, for all ε > 0, α, and β, there exists a constant Mα,β,ε > 0 such that

|zαDβ
z (Ω(εz))| ≤ e2πγ(y)Mα,β,ε < ∞

for z = x + iy ∈ Cn, where γ(y) = max{−y · u : |u − u0| ≤ ε0}. Let K = D(u0, 2ε). Then by Lemma 3, 
there exists a positive constant δK such that γ(y) ≤ −δK |y| for y that satisfies y

|y| ∈ K. Therefore, for each 
N ≥ |α|/2, there exists a constant MN,β,ε ≥ 0 such that

|Dβ
z (Ω(εz))| ≤ MN,β,εe

−2πεδK |y|

(1 + |x|2)N . (10)

Step 2. Let Fε(z) =
∫
Rn F (z + u)ωε(u)du for z ∈ TΓ and let Fε(x) =

∫
Rn F0(x + u)ωε(u)du, where 

F0(x) is defined as in Lemma 4. It is clear that Fε(z) is holomorphic in TΓ. Since |Fε(z) − F (z)| ≤
max{|F (z + εt) − F (z)| : |t| ≤ 1}, we have

lim Fε(z) = F (z) (11)

ε→0



G.-T. Deng et al. / J. Math. Anal. Appl. 480 (2019) 123367 9
uniformly on any compact subset of TΓ. Hölder’s inequality and (8) imply that

|Fε(z)| ≤ ‖F‖Hp(Γ,ψ)e
2π(Rψ|y|+ψ(0))‖ωε‖Lq . (12)

Based on the Minkowski inequality,

⎛
⎝∫
Rn

⎛
⎝∫
Rn

|F (x + u + iy)ωε(u)|du

⎞
⎠

p

dx

⎞
⎠

1
p

≤
∫
Rn

⎛
⎝∫
Rn

|F (x + u + iy)ωε(u)|pdx

⎞
⎠

1
p

du ≤ e2πψ(y)‖F‖Hp(Γ,ψ), (13)

which implies that Fε(z) ∈ Hp(Γ, ψ). Then based on (8),

⎛
⎝∫
Rn

|Fε(x + iy)|pdx

⎞
⎠

1
p

≤

⎛
⎝∫
Rn

⎛
⎝∫
Rn

|F (x + u + iy)ωε(u)|du

⎞
⎠

p

dx

⎞
⎠

1
p

≤ ‖F‖Hp(Γ,ψ)e
2π(Rψ|y|+ψ(0)). (14)

Since ωε ∈ Lq(Rn), it follows from (9) that

lim
k→∞

Fε(x + iyk) =
∫
Rn

F0(x + u)ωε(u)du = Fε(x). (15)

Step 3. Let

gε,t(y) = gε(t, y) =
∫
Rn

Gε(u + iy)e2πi(u+iy)·tdu, (16)

where y ∈ Γ 
⋃
{0}, t ∈ Rn, Gε(z) = Fε(z)Ω(εz). Clearly, (10) and (12) indicate that gε(t, y) is a continuous 

function of t ∈ Rn. We now prove that gε,t(y) is a constant in Γ. Let Hε(u + iy) = Gε(u + iy)e2πi(u+iy)·t. 
According to the Cauchy integral formula, (10) and (12), for all y ∈ D(y0, δ0) ⊂ Γ and x ∈ Rn, there exists 
a constant My0,δ0,t,ε > 0 such that 

∣∣∣ ∂
∂yk

Hε(z)
∣∣∣ ≤ My0,δ0,t,ε(1 + |x|)−n−1. The Cauchy–Riemann equations 

imply that ∂
∂yk

Hε(u + iy) = i ∂
∂uk

Hε(u + iy) for z = u + iy. Thus, taking the derivative with respect to y
under the integral, for k = 1, 2, . . . , n,

∂

∂yk
gε(t, y) =

∫
Rn

∂

∂yk
Hε(u + iy)du =

∫
Rn

i
∂

∂uk
Hε(u + iy)du = 0. (17)

Therefore, gε,t(y) is a constant in Γ.
Step 4. Hölder’s inequality and (13) imply that

∫
Rn

∫
Rn

|F (u + x + iy)ωε(u)Ω(ε(x + iy))|dudx

≤ ‖F‖Hp(Γ,ψ)e
2πψ(y)

⎛
⎝∫

|Ω(ε(x + iy))|qdx

⎞
⎠

1
q

.

Rn
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Using Fubini’s theorem, for y ∈ Γ, we obtain

gε,t(y) =
∫
Rn

Fε(x + iy)Ω(ε(x + iy))e2πi(x+iy)·tdx

=
∫
Rn

⎛
⎝∫
Rn

F (u + s + iy)ωε(s)ds

⎞
⎠Ω(ε(u + iy))e2πi(u+iy)·tdu

=
∫
Rn

F (x + iy)hε(x, y, t)dx,

where

hε(x, y, t) =
∫
Rn

ωε(x− u)Ω(ε(u + iy))e2πi(u+iy)·tdu

is a continuous function of x, y, t ∈ Rn. Since

hε(x, y, t)

=
∫
Rn

ωε(x− u)

⎛
⎝∫
Rn

e2πi(εu+iεy)·sω̃(s)ds

⎞
⎠ e2πi(u+iy)·tdu

= e2πi(x+iy)·t
∫
Rn

⎛
⎝ε−nω̃(−u

ε
)
∫
Rn

e−2πiv·te2πi(v−iy)·uωε(v)dv

⎞
⎠ e−2πiu·xdu,

the function hε(x, y, t)e−2πi(x+iy)·t of x ∈ Rn is the Fourier transform of the function

hε,y,t(u) = ε−nω̃(−u

ε
)e2πy·u

∫
Rn

e2πiv·(u−t)ωε(v)dv

and the function hε(x, 0, t)e−2πix·t of x ∈ Rn is the Fourier transform of the function

hε,0,t(u) = ε−nω̃(−u

ε
)
∫
Rn

e2πiv·(u−t)ωε(v)dv.

The Hausdorff–Young inequality implies that

⎛
⎝∫
Rn

|hε(x, y, t)|qe2πqy·tdx

⎞
⎠

1
q

≤

⎛
⎝∫
Rn

∣∣∣∣∣∣e2πy·uε−nω̃(−u

ε
)
∫
Rn

e2πiv·(u−t)ωε(v)dv

∣∣∣∣∣∣
p

du

⎞
⎠

1
p

≤

⎛
⎝∫ ∣∣e−2πεy·uω̃(u)

∣∣p du
⎞
⎠

1
p

εn( 1
p−1) (18)
Rn
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and

⎛
⎝∫
Rn

|hε(x, y, t)e2πy·t − hε(x, 0, t)|qdx

⎞
⎠

1
q

≤

⎛
⎝∫
Rn

∣∣∣∣∣∣(e2πy·u − 1)ε−nω̃(−u

ε
)
∫
Rn

e2πiv·(u−t)ωε(v)dv

∣∣∣∣∣∣
p

du

⎞
⎠

1
p

≤

⎛
⎝∫
Rn

∣∣(e−2πεy·u − 1)ω̃(u)
∣∣p du

⎞
⎠

1
p

εn( 1
p−1). (19)

On the other hand, letting Gε(u) = Fε(u)Ω(εu) and gε(t) =
∫
Rn Fε(u)Ω(εu)e2πiu·tdu, we have

|gε,t(y) − gε(t)| =

∣∣∣∣∣∣
∫
Rn

(F (x + iy)hε(x, y, t) − F0(x)hε(x, 0, t))dx

∣∣∣∣∣∣
≤ |I1(ε, t, y)| + |I2(ε, t, y)| + |I3(ε, t, y)|,

where y ∈ Γ,

I1(ε, t, y) =
∫
Rn

F (x + iy)hε(x, y, t)(1 − e2πy·t)dx,

I2(ε, t, y) =
∫
Rn

F (x + iy)(hε(x, y, t)e2πy·t − hε(x, 0, t))dx,

I3(ε, t, y) =
∫
Rn

F (x + iy)hε(x, 0, t)dx−
∫
Rn

F0(x)hε(x, 0, t)dx.

Based on (9) and (18), we have I3(ε, t, yk) → 0 as k → ∞. Hölder’s inequality, (18) and (19) imply that 
|I1(ε, t, y)| + |I2(ε, t, y)| → 0 as y → 0, where y ∈ Γ. We deduce from (17) that for y ∈ Γ, there holds:

gε,t(y) = gε(t) =
∫
Rn

Gε(u + iy)e2πi(u+iy)·tdu. (20)

As a result, for all t ∈ Rn, the following estimate holds:

|gε(t)| ≤ ‖F‖Hp(Γ,ψ)e
2π(ψ(y)−y·t)

⎛
⎝∫
Rn

|Ω(ε(x + iy))|qdx

⎞
⎠

1
q

. (21)

Notice that

⎛
⎝∫

|Ω(ε(x + iy))|qdx

⎞
⎠

1
q

≤

⎛
⎝∫

|e−2πεy·uω̃(u)|pdu

⎞
⎠

1
p

≤ ‖ω̃‖Lp(Rn)
Rn Rn
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for y ∈ Γ. Next, we show that gε(t) = 0 for t /∈ U(ψ, Γ). To this end, assume that t0 /∈ (U(Γ, ψ)). Then, 
based on (4), there is a sequence {yk} in Γ tending to zero as k → ∞, such that ψ(yk) − t0 · yk → −∞. It 
follows from (21) that gε(t0) = 0 for t0 /∈ U(Γ, ψ).

Step 5. The Hausdorff–Young inequality implies that

⎛
⎜⎝ ∫
U(Γ,ψ)

|gε(t)|qe2πqy·tdt

⎞
⎟⎠

1
q

≤

⎛
⎝∫
Rn

|Fε(u + iy)Ω(ε(u + iy))|pdu

⎞
⎠

1
p

for ε > 0, y ∈ Γ. Based on (10), (14), (16), Fatou’s lemma and the fact that |Ω(ε(u + iy))| ≤ 1, for ε > 0, 
y ∈ Γ,

‖gε‖qLq(Rn) ≤ lim
y∈Γ,y→0

‖e2πy·tgε‖qLq(Rn) ≤ e2πψ(0)‖F‖qHp(Γ,ψ). (22)

Therefore, there exists g(t) ∈ Lq(Rn) and a sequence {εk} such that

lim
k→∞

∫
Rn

gεk(t)h(t)dt =
∫
Rn

g(t)h(t)dt (23)

holds for any h ∈ Lp(Rn) as εk → 0 along with k → ∞. We rewrite (20) as

gε(t)e2πy·t =
∫
Rn

Fε(u + iy)Ω(ε(u + iy))e2πit·udu.

Then for y ∈ Γ, gε,t(y)e2πy·t is the inverse Fourier transform of Gε(u + iy) considered as a function of u.
Recall that gε(t) = 0 for t /∈ U(ψ, Γ). For fixed y0 ∈ Γ, there exists a δ1 > 0 such that D(y0, δ1) ⊆ Γ. Thus,

δ2 = inf{x · y : x ∈ Γ∗, |x| = 1, |y − y0| ≤ δ1} > 0.

Consequently, by Lemma 2, U(ψ, Γ) ⊆ −Γ∗ +D(0, Rψ). For t ∈ U(ψ, Γ), there exist t1 ∈ −Γ∗, and t2 ∈ Rn

satisfying |t2| ≤ Rψ such that t = t1 + t2. Therefore, for y ∈ D(y0, δ1),

t · y = t1 · y + t2 · y ≤ −|t1|δ2 + |t2||y|

≤ −(|t| − |t2|)δ2 + Rψ|y| ≤ −|t|δ2 + Rψ(δ2 + |y0| + δ1).

As a result,

|gε(t)e2πy·t| ≤ |gε(t)|e2π(−|t|δ2+Rψ(δ2+|y0|+δ1)).

Combining with (22), this implies that gε(t)e2πy·t ∈ L1(Rn) for y ∈ Γ. Note that Fε(u + iy)Ω(ε(u + iy)) ∈
L1(Rn) for y ∈ Γ, we then have the following inverse Fourier transform:

Fε(x + iy)Ω(ε(x + iy)) =
∫
Rn

gε(t)e−2πit·(x+iy)dt, (24)

which is holomorphic in TΓ since gε(t)e2πy·t ∈ L1(Rn). Let χ(t) be the characteristic function of set U(ψ, Γ). 
Then, the function χ(t)e−2πi(x+iy)·t belongs to Lp(Rn). According to (23),



G.-T. Deng et al. / J. Math. Anal. Appl. 480 (2019) 123367 13
lim
k→∞

Fεk(z)Ω(εkz) = lim
k→∞

∫
Rn

gεk(t)χ(t)e−2πit·zdt =
∫
Rn

g(t)χ(t)e−2πit·zdt. (25)

Sending ε to zero, we have Ω(εz) → 1 for z ∈ TΓ. Consequently, based on (11) and (25),

F (z) =
∫
Rn

g(t)χ(t)e−2πit·zdt. (26)

We see that (6) holds by letting f(t) = g(−t) and suppf ⊆ −U(ψ, Γ). The proof of Theorem 1 is com-
plete. �
3.2. Proof of Theorem 2

Proof. Following the proof of Theorem 1, we have

gε(t) =
∫
Rn

Gε(u + iy)e2πi(u+iy)·tdu (27)

for y ∈ Γ, t ∈ Rn. And gε(t) = 0 for t /∈ U(ψ, Γ).
The Hardy–Littlewood inequality ([13]), (7), and (27) indicate that there exists a constant cp such that

∫
Rn

|e2πy·tgε(x)|pdx ≤ cp

∫
Rn

|Gε(x + iy)|p|x|n(p−2)dx,

where Gε(x) = Fε(x)Ω(εx). Based on Hölder’s inequality,

|Fε(x + iy)|p ≤
( ∫
D(0,1)

|F (x + εt + iy)|pdt
)( ∫

D(0,1)

|ω(t)|qdt
) p

q

.

It follows from Fatou’s lemma and (10) that
∫
Rn

|gε(x)|pdx

≤ lim
y∈Γ,y→0

cp‖ω‖pLp(Rn)

∫
Rn

( ∫
D(0,1)

|F (x + εt + iy)|pdt
)
|Ω(ε(x + iy))|p|x|n(p−2)dx

≤ cp‖ω‖pLp(Rn)M0,0,ε lim
y∈Γ,y→0

∫
Rn

|F (x + iy)|p
( ∫
D(0,1)

|x− εt|n(p−2)dt

)
dx

≤ C lim
y∈Γ,y→0

∫
Rn

(1 + |x|n(p−2))|F (x + iy)|pdx < ∞,

where C = cp‖ω‖pLp(Rn)M0,0,ε2n(p−2)−1Vn with 0 < ε < 1, and Vn is the volume of an n-dimensional ball in 
Γ∗ ⊂ Rn. Therefore, there exists g(t) ∈ Lp(Rn) and a sequence of {εk} such that

lim
k→∞

∫
gεk(t)h(t)dx =

∫
g(t)h(t)dx (28)
Rn Rn
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holds for any h ∈ Lq(Rn) as εk → 0 along with k → ∞. We rewrite (27) as

gε(t)e2πy·t =
∫
Rn

Fε(u + iy)Ω(ε(u + iy))e2πit·udu.

Note that gε(t)e2πy·t ∈ L1(Rn) for y ∈ Γ, which can be certified by the same way as that of Theorem 1. 
The inverse Fourier transform formula is given as

Fε(x + iy)Ω(εx + iεy) =
∫
Rn

gε(t)e−2πit·(x+iy)dt.

Then, for a sequence of {εk} tending to zero as k → ∞,

lim
k→∞

Fεk(z)Ω(εz) = lim
k→∞

∫
Rn

gεk(t)χ(t)e−2πit·zdt =
∫
Rn

g(t)χ(t)e−2πit·zdt,

where χ(t) is the characteristic function of set U(ψ, Γ). As a result, F (z) =
∫
U(ψ,Γ) g(t)e

−2πit·zdt. We can 
see that (6) holds by letting f(t) = g(−t), and suppf ⊆ −U(Γ, ψ). �
3.3. Proof of Theorem 3

Proof. For momentarily fixed y0 ∈ Γ, let Fy0(z) = F (z + iy0). Then Fy0 is holomorphic in TΓ. Let r =
d(y0, ∂Γ) = inf{|y0 − y| : y0 ∈ Γ, y ∈ ∂Γ} and δ = δy0 = r/2. It follows from the subharmonic property of 
function |Fy0(z)|p and Lemma 4 that

|Fy0(z)|p ≤ 1
Ω2nδ2n

∫
|η|≤δ

(( ∫
Rn

|F (τ + i(y + y0 + η))|pdτ
) 1

p
)p

dη

≤ 1
Ω2nδ2n

∫
|η|≤δ

(
e2πψ(y+y0+η)‖F‖Hp(Γ,ψ)

)p

dη ≤ Cn,p,δe
2pπψy0 (y),

where ψy0(y) = sup{ψ(y + y0 + η) : |η| ≤ δ}, Cn,p,δ = Ωn

Ω2nδn
‖F‖pHp(Γ,ψ) and Ωm is the volume of the unit 

ball in Rm. Therefore,
∫
Rn

|Fy0(x + iy)|2dx ≤ C
2−p
p

n,p,δe
2(2−p)πψy0 (y)

∫
Rn

|Fy0(x + iy)|pdx

≤ C
2−p
p

n,p,δ‖Fy0‖pHp(Γ,ψ)e
4πψy0 (y),

which implies that Fy0 ∈ H2(Γ, ψy0). Similarly, we have
∫
Rn

|Fy0(x + iy)|dx ≤ C
1−p
p

n,p,δ‖Fy0‖pHp(Γ,ψ)e
2πψy0 (y). (29)

Thus, Fy0 ∈ H1(Γ, ψy0) ∩H2(Γ, ψy0). Let gy(t) be the inverse Fourier transform of Fy(x). Applying Theo-
rem 1 to Fy0(z), we obtain

gy0(t)e−2πy0·t = gy+y0(t)e−2π(y+y0)·t
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for y, y0 ∈ Γ, which shows that gy(t)e−2πy·t is independent of y. We denote it by g(t). Then

g(t) = gy(t)e−2πy·t (30)

is continuous on Rn. It follows that F (z) =
∫
Rn g(t)e−2πiz·tdt for z ∈ TΓ. Combining with (29), we obtain

|g(t)| = |gy0+y(t)e−2π(y0+y)·t| ≤ C̃n,p exp{J(y0, y, t)},

where C̃n,p = ( Ωn

Ω2n
)

1−p
p ‖Fy0‖Hp(Γ,ψ) and

J(y0, y, t) = −n(1
p
− 1) log δy0 − 2π(y0 + y) · t + 2πψy0(y)

for z ∈ TΓ. We can now prove suppg(t) ⊂ U(ψy0 , Γ). To this end, we show that g(t) = 0 for t /∈ U(ψy0 , Γ). 
In fact, when t /∈ U(ψy0 , Γ), based on (4), there is a sequence {yk} in Γ tending to zero as k → ∞, such 
that ψ(yk) − t · yk → −∞. Then g(t) = 0 for t /∈ U(ψy0 , Γ). Letting f(t) = g(−t), the representation

F (z) =
∫
Rn

f(t)e2πiz·t (31)

holds and suppf ⊆ −U(ψy0 , Γ). According to Lemma 2, −U(ψy0 , Γ) ⊂ (Γ∗ +D(0, Rψy0
)). Since Rψy0

= Rψ

for any fixed y0 ∈ Γ, we see that −U(ψy0 , Γ) is also a subset of Γ∗ + D(0, Rψ). Hence, suppf ⊆ (Γ∗ +
D(0, Rψ)).

Next, we prove that f(t) is a slowly increasing function on Γ∗ + D(0, Rψ). Let

J(t) = inf{J(y0, y, t) : y0 ∈ Γ, y ∈ Γ},

then |f(t)| = |g(−t)| ≤ C̃n,p exp{J(−t)}. The fact that ψ ∈ C(Γ) and (3) indicate that there exists a positive 
constant A > Rψ, which is independent of y0, y, such that ψy0(y) ≤ A(1 + |y0| + |y|) for any y0, y ∈ Γ. Taking 
y0 = ρv with ρ > 0 and a fixed v ∈ Γ with |v| = 1, we have δy0 = d(ρv, ∂Γ)/2 = ρε, where ε = d(v, ∂Γ)/2. 
Thus,

J(−t) = inf
ρ>0

{−n(1
p
− 1) log (ερ) + 2πρ|t| + 2πA(1 + ρ)}.

The above infimum can be attained when ρ = n( 1
p − 1)(2π(|t| + A))−1. Then

J(−t) ≤ 2πA + n(1
p
− 1)

(
− log ε− log (n(1

p
− 1)) + 1 + log (2π(A + |t|))

)
.

Hence, for t ∈ Γ∗ + D(0, Rψ), there exists a positive An,p,v such that

|f(t)| ≤ C̃n,pe
J(−t) ≤ An,p,v(1 + |t|)n( 1

p−1),

which shows that f is a slowly increasing function. Thus, the proof is complete. �
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4. Application

Let K be a compact subset of Rn, we denote the support function of K by ϕK(y), which is defined 
as ϕK(y) = sup{x · y : x ∈ K}. It is convex and continuous on Rn and satisfies condition (3). For any 
s ≥ 0, y ∈ Rn, ϕK(sy) = sϕK(y). We define the polar set of K as K∗ = {y ∈ Rn : ϕK(y) ≤ 1}.

If K is convex, closed and 0 ∈ K, then K∗∗ = (K∗)∗ = K ([12], Chapter 3, Lemma 4.7). Moreover, 
ϕK∗(x) = sup{x · y : y ∈ K∗} and ϕK∗∗(x) = ϕK(x).

For all z ∈ Cn, define ϕ̃K(z) = sup{|z · t| : t ∈ K}. An entire function F on Cn is of exponential type K∗, 
where K is compact, if for each ε > 0 there exists a constant Aε such that

|F (z)| ≤ Aεe
2π(1+ε)ϕ̃K(z) (32)

for all z ∈ Cn.
If K is convex, compact and symmetric (that is, x ∈ K implies −x ∈ K), and it has a non-empty interior, 

it is called a symmetric body. The class of entire functions satisfying (32) is denoted by E (K∗) ([12]).

Theorem L (Paley–Wiener in Cn). ([12], Chapter 3, Theorem 4.9). Suppose K is a symmetric body and 
F ∈ L2(Rn). Then F is the Fourier transform of a function, f ∈ L2(K), vanishing outside K if and only 
if F is the restriction to Rn of a function in E (K∗).

We will generalize the Paley–Wiener theorem for band-limited functions defined in Cn to the case when 
0 < p ≤ 2. We first introduce the following lemmas.

Lemma 5. Assume that 0 < p < ∞, K is compact and symmetric, Γ is a regular open cone in Rn, F (z) is 
holomorphic in the tube TΓ and continuous in the closed tube TΓ. For each ε > 0, if there exists a constant 
Aε such that (32) holds for all z ∈ TΓ and F ∈ Lp(Rn), then∫

Rn

|F (x + iy)|pdx ≤ e2πpϕK(y)
∫
Rn

|F (x)|pdx (33)

for all y ∈ Γ.

Proof. The proof is similar to that of Lemma 4. Given an integer N > 0, let E(N) = [−N, N ] ×· · ·×[−N, N ]
be a cube in Rn and b ∈ Γ. Then, function gj,N (w)(j = 1, 2, · · · ) defined by

j∑
k1=−j

j∑
k2=−j

. . .

j∑
kn=−j

∣∣∣F(N
j

(k1e1 + k2e2 + . . . + knen) + wb
)∣∣∣p(N

j

)n

is continuous in C+ and converges uniformly for w in every compact subset of C+ to the function

hN (w) =
∫

E(N)

|F (bw + t)|pdt.

For fixed N > 1, j > 1, b ∈ Γ, and k1, k2, . . . , kn ∈ N, the function

log
(∣∣∣F(N

j
(k1e1 + k2e2 + · · · + knen) + a + wb

)∣∣∣pNn

jn

)

is subharmonic in C+, which implies that log gj,N (w) is subharmonic in C+. Hence function log |hN (w)| is 
subharmonic in C+ and satisfies
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lim
w∈C+,|w|→∞

log |hN (w)|
|w| � 2πpϕK(b)

and

|hN (u)| �
∫
Rn

|F (x)|pdx.

Applying Lemma 1 to the subharmonic function log |hN (w)| in C+, there holds
∫

E(N)

|F (bw + x)|pdx � e2πpϕK(b)v
∫
Rn

|F (x)|pdx.

Since ϕK is homogeneous of degree one, letting w = vi, y = vb ∈ Γ, and sending N → ∞, we obtain the 
desired estimate (33) for y ∈ Γ and the proof is complete. �

The following lemma shows that inequality (33) holds for any y ∈ Rn.

Lemma 6. Assume that 0 < p < ∞, K is compact and symmetric, F is an entire function in Cn such that 
F ∈ Lp(Rn). If F ∈ E (K∗), then (33) holds for any y ∈ Rn.

Proof. Note that Rn can be decomposed into a finite union of non-overlapping convex regular cones, 

Γ1, Γ2, . . . , Γk, with vertexes at the origin 0. Based on Lemma 5, (33) holds for any y ∈ Rn =
k⋃

j=1
Γj . 

Then the desired formula can be proved. �
We can now state an n-dimensional version of the Paley–Wiener theorem for 0 < p ≤ 2:

Theorem 4. Assume that 0 < p ≤ 2, K is a symmetric body, F ∈ Lp(Rn). Then F is the Fourier transform 
of a function f ∈ L1(Rn) when 0 < p < 2 and f ∈ L2(Rn) when p = 2, vanishing outside K if and only if 
F is the restriction to Rn of a function in E (K∗).

Proof. If F is the Fourier transform of function f ∈ L1(Rn) vanishing outside K, then it is easy to check 
that

F (z) =
∫
Rn

e−2πiz·tf(t)dt =
∫
K

e−2πix·te2πy·tf(t)dt

extends F to a function in E (K∗).
The converse can be deduced from Lemma 6 and Theorem 1. Assume that F is the restriction to Rn of 

a function in E (K∗). For simplicity, we also denote the latter by F . Based on Lemma 6, (33) holds for all 
y ∈ Rn. The subharmonic property of function |F (z)|p and Lemma 6 imply that

|F (z)|p ≤ 1
Ω2n

∫ ∫
|τ+iη|≤1

|F (z + τ + iη)|pdτdη

≤ 1
Ω2n

∫
Dn(0,1)

dη

∫
Rn

|F (z + τ + iη)|pdτ ≤ Cp
ne

2pπ|y|R1

∫
Rn

|F (x)|pdx,

where Ωn is the volume of the unit ball Dn(0, 1) in Rn, Ω2n is the volume of the unit ball D2n(0, 1) in Cn, 
R1 = max{ϕK(y) : |y| = 1} and Cp

n = Ωne
2pπR1Ω−1

2n . Therefore,
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∫
Rn

|F (x + iy)|2dx =
∫
Rn

|F (x + iy)|p+2−pdx

≤ e2(2−p)π|y|R1C2−p
n

( ∫
Rn

|F (x)|pdx
) 2−p

p
∫
Rn

|F (x + iy)|pdx

≤ e4π|y|R1C2−p
n

( ∫
Rn

|F (x)|pdx
) 2

p

.

By Lemma 6, we then have F ∈ H2(TB) for all bounded bases B. Thus, there exists g such that

F (z) =
∫
Rn

e2πiz·tg(t)dt,
∫
Rn

|F (x + iy)|2dx =
∫
Rn

|g(t)|2e−4πy·tdt

for all z = x + iy ∈ TB ([12], Chapter 3, Theorem 2.3). We can assume 0 ∈ B, then Plancherel’s theorem 
asserts that g ∈ L2(Rn) and ‖g‖2

2 =
∫
Rn |F (x)|2dx. Thus, we see that F (x) = f̂(t) is the Fourier transform 

of f(t) = g(−t). Based on Lemma 6,
∫
Rn

|f(t)|2e4πy·tdt ≤ e4πϕK(y)
∫
Rn

|F (x)|2dx. (34)

By using the same method as in the end of the proof of Theorem 4.9 of Chapter 3 in [12], we can prove 
that the inequality (34) holds only when f vanishes almost everywhere outside K. Then Theorem 4 can be 
stated. �

The following three theorems are versions of the edge-of-the-wedge theorem (see in [14–16]). First, we 
introduce some definitions:

Let Γ be a regular open cone in Rn. We denote by A(Γ) the space of functions ψ ∈ C(Γ), which satisfy

lim
y∈Γ,y→0

ψ(y) < ∞ and R(ψ,Γ) = lim
y∈Γ,|y|→∞

ψ(y)
|y| < ∞.

Theorem 5. Assume that Γ is a regular open cone in Rn, ψ1 ∈ A(Γ), and ψ2 ∈ A(−Γ). If F1 ∈ Hp1(Γ, ψ1)
and F2 ∈ Hp2(−Γ, ψ2) (1 ≤ p1, p2 ≤ 2) satisfy

lim
y∈Γ,y→0

∫
Rn

|F1(x + iy) − F2(x− iy)|2dx = 0, (35)

then F1 and F2 can be analytically extended to each other and further form an entire function 
F ∈ E (K∗). Furthermore, there exists a measurable function f(t) ∈ L2(Rn) with suppf ⊆ K =
(−U(ψ1, Γ)) 

⋂
(−U(ψ2, −Γ)), such that

F (z) =
∫
K

f(t)e2πit·zdt

holds for z ∈ Cn.

Proof. Theorem 1 implies that there exists a measurable function fj ∈ Lqj (Rn) (j = 1, 2) with suppfj ⊆
−U(ψj , (−1)j−1Γ) such that
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Fj(z) =
∫
Rn

fj(t)e2πit·zdt

holds for z ∈ T(−1)j−1Γ. Plancherel’s theorem and (35) imply that

∫
Rn

|f1(t)e2πt·y − f2(t)e−2πt·y|2dt =
∫
Rn

|F1(x + iy) − F2(x− iy)|2dx.

The finiteness of the right hand side can be deduced from (26). Fatou’s lemma implies that ‖f1−f2‖L2(Rn) =
0, and hence f1(t) = f2(t) almost everywhere on Rn. If we let f(t) = f1(t) = f2(t), then suppf ⊆ K. Let 
R = max{R(ψ1, Γ), R(ψ2, −Γ)}. Then, Lemma 2 implies that

K ⊆ (Γ∗ + D(0, R)) ∩ (−Γ∗ + D(0, R)).

Thus, set K is a bounded convex set. Consequently,

F (z) =
∫
K

e2πiz·tf(t)dt

is an entire function, where F (z) = F1(z) for z ∈ TΓ and F (z) = F2(z) for z ∈ T−Γ. Moreover,

|F (z)| ≤ C0 exp{2πϕK(Imz)} ≤ C0e
2πR0|y|, z ∈ Cn,

where ϕK(y) is the support function of the convex set K and

C0 =
∫
K

|f(t)|dt, R0 = sup{ϕK(b)
|b| : b ∈ Rn, b 	= 0}.

The proof is complete. �
Applying the same method as for cases p > 2 and 0 < p < 1, we can obtain the following two theorems. 

Therefore. The proofs are omitted.

Theorem 6. Assume that Γ is a regular open cone in Rn, p1, p2 > 2, ψ1 ∈ A(Γ), and ψ2 ∈ A(−Γ). If 
F1 ∈ Hp1(Γ, ψ1) and F2 ∈ Hp2(−Γ, ψ2) satisfy the conditions of Theorem 2 and (35) holds on Rn, then 
F1 and F2 can be analytically extended to each other and further form an entire function F ∈ E (K∗). 
Furthermore, there exists a measurable function f(t) ∈ L2(Rn), which is the Fourier transform of F (x) with 
suppf ⊆ K = (−U(ψ1, Γ)) 

⋂
(−U(ψ2, −Γ)), such that the representation

F (z) =
∫
K

f(t)e2πit·zdt

holds for z ∈ Cn.

Theorem 7. Assume that Γ is a regular open cone in Rn, 0 < p1, p2 < 1, ψ1 ∈ A(Γ), and ψ2 ∈ A(−Γ). If 
F1 ∈ Hp1(Γ, ψ1) and F2 ∈ Hp2(−Γ, ψ2) satisfy conditions of Theorem 3 and (35) holds almost everywhere 
on Rn, then F1 and F2 can be analytically extended to each other and further form an entire function 
F ∈ E (K∗). Moreover, there exists a slowly increasing continuous function f(t) ∈ L2(Rn), which is the 
Fourier transform of F (x) with suppf ⊆ K = (Γ∗+D(0, R)) 

⋂
(−Γ∗+D(0, R)), such that the representation
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F (z) =
∫
K

f(t)e2πit·zdt

holds for z ∈ Cn.
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