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Preface

From the idea to the content, this book is basically Alan McIntosh’s theory. In this
book, we state systemically the theory of singular integrals and Fourier multipliers
on Lipschitz graphs and surfaces which stems largely from the famous “Coifman-
McIntosh-Meyer Theorem” since 1980s. The book elaborates the basic framework,
essential thoughts, and main results of the theory. At the same time, this book also
serves as a comprehensive reference on recent developments of this topic.

The subject of Fourier multipliers on Lipschitz surfaces has a profound back-
ground in harmonic analysis and partial differential equations. When we study
boundary value problems of second-order elliptic operators, we need to deal with
L*-boundedness of the Cauchy-type integral operators on Lipschitz curves 7.
Because the kernel of the Cauchy integral is nonlinear and non-smooth, there exists
an essential difficulty on the study of the corresponding singular integral operators.
In 1977, by using techniques of complex analysis, C. P. Calderén first proved that
the singular Cauchy integral operator is bounded on L*(y) under the assumption that
the Lipschitz constant is sufficiently small. For the general cases, R. Coifman,
A. MclIntosh, and Y. Meyer applied the method of multilinear operators to get rid
of the restriction on the Lipschitz constant and obtained the L*-boundedness of the
singular Cauchy integral operator on any Lipschitz curve 9. In considering the
L’-boundedness, 1 < p < 00, of a linear or non-linear operator, from the view of
point of harmonic analysis, its L*-boundedness would be the core. In fact, the
I”-boundedness of an operator may be deduced from its L*-boundedness by using
the interpolation theorem and the duality of L.

The corresponding problem on higher dimensional spaces is the L”-boundedness
of the singular Cauchy integral operators on Lipschitz surfaces X. The increase
of the spatial dimension requires to apply a truly original approach. To introduce a
Cauchy-type complex structure on the Euclidean spaces R”, the most efficient way
is to embed R" into the Hamilton quaternions or the Clifford algebra Ry, The L*-
boundedness of the singular integral operators with holomorphic kernels on the
Lipschitz surfaces was proved independently by Li et al. [1] and Gaudry et al. [2].
In this book, we adopt the method of Gaudry et al.

vii



viii Preface

There exists a one to one correspondence between the convolution integrals 7T
and the Fourier multipliers M. In 1994, C. Li, A. Mclntosh, and T. Qian estab-
lished an explicit and one-to-one correspondence between the Clifford monogenic
kernels ¢ and the complex holomorphic symbols b on Lipschitz graphs Z (see [3]),
and obtained the Cauchy-Dunford functional calculus of the Dirac operator on X.
Such functional calculus has three equivalent forms: the Cauchy-Dunford integrals,
the singular integrals with holomorphic kernels, and the bounded holomorphic
Fourier multipliers. Since 1996, T. Qian began to consider the analogy on the
high-dimensional spheres, tours, and their Lipschitz perturbations, i.e., the theories
on starlike Lipschitz surfaces. For the cases of the spheres in the quaternionic and
the Clifford algebras Ry,,, by a generalized Fueter’s theorem, Qian [4, 5] obtained a
correspondence between a class of H™-Fourier multipliers and a class of holo-
morphic kernels, and proved that the corresponding class of H**-Fourier multipli-
ers, the corresponding singular integral operators, and the induced Cauchy-Dunford
functional calculus of the spherical Dirac operators are equivalent. Moreover, the
mentioned operators are all bounded on L”(X). We note that, as necessary technical
preparations of proving the correspondence and the boundedness of the operators,
generalizations of the quaternionic Fueter theorem to the Clifford algebras
R(n) were achieved: the cases n being odd were obtained by M. Sce [6], while the
cases n being even were done by Qian [7], in the latter the fractional Laplace
operators were defined via the corresponding Fourier multipliers. So far, the Fueter’s
theorem and its n-dimensional generalizations seem to be the unique approach
to dealing with the singular integrals on Lipschitz perturbations of the spheres. The
approach to analysis on the spheres offered by the Fueter theorem and its gener-
alizations is an art of mathematics that may be viewed as the Clifford algebra
version of “Starting from the unit disc” (see [8]). The further generalizations of
Fueter’s theorem and inverse Fueter’s theorem have independent interest and
applications; we refer the reader to [9].

This book establishes singular integral and Fourier multiplier theories in three
different contexts: the Lipschitz curve context in the one complex variable setting;
the graph type Lipschitz surface context; and the starlike Lipschitz surface context.
The later two contexts are with the Clifford algebra setting. Chapters 1 and 2 are
devoted to the theory of singular integrals and Fourier multipliers on Lispchitz
curves. In Chap. 1, we state the boundedness, the singular integral expression, and
the functional calculus of the Fourier multipliers. The analogous theory on the
Lipschitz perturbations of the unit disc is given in Chap. 2.

In Chaps. 3-5, we will state systemically how to deal with the singular integrals
and Fourier multipliers on the Lipschitz surfaces X by the technique of Clifford
analysis. In Chap. 3, in order to make it self-containing, we state some basic facts
and necessary backgrounds, including the Dirac operators, the Fourier transform,
and monogenic functions on the sectors. At the same time, as a preliminary of the
holomorphic Fourier multipliers on the Lipschitz surfaces, we introduce the gen-
eralizations of Fueter’s theorem. In Chap. 4, we prove a Clifford martingale T ()
theorem which implies the boundedness of the Cauchy-type singular integral
operators. As is indicated above, for the main results of this chapter, there exists a
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parallel but different proof. We refer the interested reader to [1]. Chapter 5 includes
the correspondence between H™-Fourier multipliers, the singular integral operators
of monogenic kernels the Lipschitz surface X, and the H™-functional calculus
of the spherical Dirac operator. The results of this chapter indicate that the Fourier
multipliers and the monogenic kernels on the sectors play important roles in the
theoretical framework of the Fourier multipliers and the singular integral operators.

The primary purpose of Chaps. 68 is to present the theory of the holomorphic
Fourier multipliers on the starlike Lipschitz surfaces. In Chap. 6, we expatiate the
results on the H®-Fourier multipliers on the starlike Lipschitz surfaces via the
high-dimensional generalization of Fueter’s theorem obtained in Chap. 3. In this
chapter, we will give a detailed account of the estimate of the kernels of the
operators with monogenic kernels. Chapter 7 is based on some new results on the
fractional holomorphic Fourier multipliers on the starlike Lipschitz surfaces. The
research on this topic is inextricably linked with the recent developments in the
hyperbolic Clifford analysis. Theoretically speaking, the occurrence of the so-called
“Photogenic Cauchy transform” implies that the study of the fractional Fourier
multipliers is necessary. A well-known example of such class of Fourier multipliers
is the fractional differential and integral operators with respect to the Dirac operator
on the starlike Lipschitz surfaces. In addition, our study is significant for boundary
values problems of differential operators on the starlike Lipschitz surfaces. In
Chap. 8, using the complex analysis of several variables, we generalize the results
of Chaps. 6 and 7 to the case of n-tours and the n-dimensional complex spheres.
Particularly, the Cauchy-type singular integrals obtained by Gong [10] were
extended to a family of singular integrals with holomorphic kernels. We also obtain
the corresponding results of the fractional integrals and differentials.

In this book, we give a panorama-like and detailed demonstration of the theory
of the holomorphic Fourier multipliers on the Lipschitz curves and surfaces.
Through the writing of this book, we attempt to bring out the following core idea.
Although the disposing technicalities vary with the different settings, the theories of
different contexts all obey the same philosophy: the equivalence between the
operator algebra of the singular integrals, Fourier multiplier operators, and the
Cauchy-Dunford functional calculus of the Dirac operators.

The writing and the publication of this book received the great supports of two
academicians of the Chinese Academy of Sciences, Lan Wen and Xiangyu Zhou.
We should express our gratitude to them. Several teachers and graduate students of
University of Macau and Qingdao University helped the authors diagram the
illustrations of this book. Hereon, the authors wish to say a word of hearty thanks to
them.

Macao, China Tao Qian
Qingdao, China Pengtao Li
September 2018
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Chapter 1 ®)
Singular Integrals and Fourier ez
Multipliers on Infinite Lipschitz Curves

The main contents of this chapter are closely related with harmonic analysis and
operator theory. Let y denote a Lipschitz graph on the complex plane C:

y:{x+ig(x)e(:: xER},

where g is a Lipschitz function satisfying ||g’||cc < N < 00. We will prove the L?-
boundedness of certain singular convolution integral operators on y . The main results
of this chapter are based on the theory of Fourier multipliers and the H *°-functional
calculus of type w operators on the curve y which are established by A. McIntosh
and T. Qian in [1]. Roughly speaking, the type w operators can be represented as
b(D,), where D,, is the differential operator on y, and b is a bounded holomorphic
function defined on some sector S, v > tan~! N. With the additional assumption
g being bounded, A. MclIntosh and T. Qian studied a class of generalized Fourier
multipliers on y, see [2, 3] for the related results.

For the boundedness of singular convolution integrals, there exist several different
methods. In this chapter, we apply the method introduced by A. MclIntosh and T.
Qian. The proof depends on the quadratic estimates of the type w operators on
sectors. Precisely, we first prove that the quadratic estimates of the type w operators
are equivalent to the inverse quadratic estimates of the dual operators (see Theorem
1.2.1). Then we prove, if an operator T satisfies the quadratic estimates and the
related inverse quadratic estimates, then for a bounded holomorphic function b, the
holomorphic functional calculus b(T') is bounded, see Theorem 1.2.3.

© Springer Nature Singapore Pte Ltd. and Science Press 2019 1
T. Qian and P. Li, Singular Integrals and Fourier Theory on Lipschitz Boundaries,
https://doi.org/10.1007/978-981-13-6500-3_1
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2 1 Singular Integrals and Fourier Multipliers on Infinite Lipschitz Curves

1.1 Convolutions and Differentiation on Lipschitz Graphs

In this section, denote by C and R the complex number field and the real number
field, respectively. We use y to denote the following Lipschitz graph :

y = {x +ig(x) € C, where g is a Lipschitz function satisfying [[g'lcc < N < oo} .

We will use the following complex-valued function spaces.

Definition 1.1.1 (i) Let 1 < p < co. L?(y) denotes the space consisting of all
equivalent classes of functions: u : y — C which are measurable for the measure
|dz| and satisfy

1/p
July = (f u@I"ldz]) " <00, 1< p <o
Y

and
lulloo = ess-suplu(z)| < oo,

where “ess-sup” denotes the essential supremum.
(ii) Denote by Cy(y) the space of all continuous functions on y which converge

to O at infinity. The norm of Cy(y) is defined by

llulloc = max |u(z)].
z€y

For 1 < p < oo, let p’ = p/(p — 1). Define the pairing between L”(y) and
L” (y) as follows:

(u,v) =/u(Z)V(z)dz.
Y

It can be proved that for 1 < p < oo, (L?(y), L” (y)) is a dual pair of Banach
spaces. For p = 1, (L'(y), Co(y)) is a dual pair of Banach spaces. Here

lull, = sup {I(u,v)l,v e L (y), IVl = 1}

and
luelly = sup {1 e, W)L v € Cotr), Ivlloe = 1.

Suppose that ¢ is a function defined on a subset of C which contains I' = {z —
£, z €y, & € y}and u is a measurable functionon y. If (z — -)u(-) € L' (y), then
the convolution of u and ¢ is defined by

(P *u)2) =/¢(Z—§)M(5)dé-
14
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Theorem 1.1.1 Let 1 < p < oo. Assume thatu € LP(y) and ¢ (- — z) € L' (y) for
almost all z € y. Then

P 1/p
I % ull, < sup /|¢<z—s)||d5| sup(/|¢(z—§)||dz|) lul,.
Y

zey sey

where 1/p' =1 —1/p.

Proof At first, notice that for almost z € y, ¢(z — -)u(-) is measurable. Then if
1 < p < 0o, we have

P 1/p
1o xuly <[ [ ([ e~ ou@liaz) ezl
Y
p/p' 1/p
o - o) ( [ 1o - olueride )iz
<[/(] ) (), )iz
l/p/ 1/p
([ we-oiae)” ([ [ we-oneriiz)
Y

zZey
<sup ([ 10— onaz)” ”sup //|¢(z—s>||dz|) el
14

zey

The cases p = 1 and p = 0o can be dealt with similarly. In fact, for p = 1,

I+ ully < / /|¢(z— £)u(®)llde| ) ldz|]

< sup //Iqﬁ(z—é)lldzl fleells-
§ey

For p = oo,
16 ull < sup ([ 10~ Ouelide1)
ZEy Yy

<sp ([ 16 oz Il
14

z€Y
d
Let w = arctan N. Denote by S,, the following closed double sector (Fig.1.1):
S, = {z € C, |argz| < wor|arg(=2)| < w} U {0].
If ImA > 0, let
ie*?, Rez > 0,
h(2) = { (1.1)

0, Rez < 0.
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Fig. 1.1 S,

If ImA < O, let

ie**, Rez <0,

N 1.2
0, Rez > 0. (1.2

P (2) = {

We have the following theorem:

Theorem 1.1.2 Assume that A € S,,. Then the convolution operator defined on y :
R}J/l = ¢)» *Uu

is bounded on LP(y), 1 < p < oo, and Cy(y). For the two cases,
-1
IR < fdistG, S0}

Moreover, for u € LP(y),v € Lp'(y), 1 < p<oo (and, hence u € Ll(y), Ve

Co(¥)),
(Ryu,v) = (u, R_,v).

Proof This theorem is a direct consequence of Theorem 1.1.1. Denote, respectively,
by ¥~ (z) and y*(z) the following two curves:

Y (2) = {§ € y, Re§ < Rez}

and
yT(2) ={§ € y, Re§ > Rez}.

Foru € LP(y) or Co(y), if A ¢ S, R,u can be represented as

ify_(z) ey (E)de, TImi > NJ|A|,

Rou(z) = ~
e {—i Sy € Pu@)dg, Imi < —NJa|.

If A ¢ y, then |tan 1| < tan . Without loss of generality, let ImA > N|ReX| and
z € y, then by (1.1),
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/ 162z — £)[1dE] < (dist(h, S}~

¥
Similarly, by invoking Theorem 1.1.1, we obtain the desired result. (]

Let u be a Lipschitz function on y. The derivative of u is defined as

oo d L u(z+h) —u(z)
uiz) = dz ‘yu(Z) - hﬁ(%,lzrﬂhey h ’

It can be deduced from a simple computation that

dz

ulx +igx)) =1+ ig’(X))fliu(x +ig(x)).
% dx

By duality, D,, , can be defined as the closed linear operator on L”(y), 1 < p < oo,
and Cy(y) with the largest domain ®(D,, ,,) in L”(y), 1 < p < 0o, and Cy(y). For
all compactly supported Lipschitz functions v,

(Dy,pu,v) = (u,iv').

The following properties of D, , can be proved on y directly, and can alternatively
be obtained via the related operators D, on L”(R) or Co(R).

Theorem 1.1.3 (i) D, ,u(x +ig(x)) = (1+ ig’(x))*lD,,u(x +ig(x)) and

DD, = [u: u(+ig() e DD,

Wi(y). 1< p<oo

Ao(y) ={u € Co(y) : u' € Co(y)}, p=0.
Except when p = oo, ©(D,) is dense in L?(y) (or Co(y)). Moreover, for all p,
the space of compactly supported Lipschitz functions on y is a dense subspace of
D(Dy,p) under the norm ||ullp + | Dy, pllp (or ullos + 11Dy ottllc)-

(i) If1<p<oo, 1 <p <ocowithl/p+1/p =1, then
(Dypu, v) = —(u, Dy pyv), u € Wy(y),v € Wy(y)

and
(Dyqu, vy = —(u, D, gv), u € W,l()/),v € Ao(y).

Also, each operator has the largest domain under which the equality holds.
(iii) If A ¢ Sy, then for allu € D(D,, ,) and v in the related dual space,

(—=(Dy,p +ADu, Ryv) = (u,v).
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Hence, for A not belonging to the spectrum of D,, ,,

—(Dy, + 1D =Ry,
and, in L?(y), 1 < p < o0, or Co(y),

(D, + 2D~ < {dist(x, Sy}

1.2 Quadratic Estimates for Type @ Operators

We first state some backgrounds for bounded linear operators. Let 7" be a bounded
linear operator on a Banach space X. The resolvent set of T is defined by

p(T) = {z € C, (T — zI) is one-one, onto, and (T — zI) " is bounded}.

The spectrum of T is defined by o(T) = C\p(T). We can see that o(T) is a
non-empty compact subset of B(0, || T||). The resolvent operators R, = (T — Al )1
depend holomorphically on A in p(T) and satisfy

RiR, = — ) "(R, — Ry).

For a function f, there exist a number of methods to define operator algebras of f,
f(T), which satisfy

@) a1 fi(T) + 2 fo(T) = {c1 f1 + 2 2}(T),
(i) (L)) = fi(T) fo(T).

Here we list several methods to define f(T), where the norms satisfy different esti-
mates:

(@) If T = f AdE; is a self-adjoint operator on a Hilbert space H, then f(T) =
f f (M)A E;, and for all bounded Borel functions f ony, || f(T)|| < ess-sup(f),
where “ess-sup” denotes the essential supremum with respect to the spectral
measure.

(b) Let X=L?(y), 1 < p < 00o.Forsome L*(y)-function w, let Tu(z)=w(z)u(z).
Then o (T) = ess-range(w), and if f is a bounded Borel function defined on
o(T), f(Du(z) = f(w(2)u(z). Moreover, || f (Tl = || fllcc-

(¢) Let f(z) =Y 2gciz', |zl <r,and |T| <r.Then f(T) =Y ¢;T' defines a
bounded linear operator, and

LA DI el Tl < oo

(d) Suppose f is holomorphic on an open set £ D ¢ (T') and § is a path containing
o(T). Let
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£ = Qri)™! /(T — A7 F)da.
)

Because (T — AJ)~! depends on A holomorphically, the integral is independent
of the precise path.

Although the related formulas give a good estimate only in the examples (a) and
(c), (1) and (ii) hold for all the cases. In particular, the above four methods give
the same f(T). Below we turn to define and discuss f(D,) for the unbounded
operator D,

A closed linear operator T in a Banach space X is a linear mapping from a linear
subspace D(T) to X for which the graph {(u, Tu), u € D(T)} is a closed subspace
of X x X. Similarly, the spectrum o (7") and the resolvent set p(T) are defined,
respectively, as follows:

p(T) = {z € C, (T — zI) is one-one, onto, and (T — zI)~" is bounded },
o(T)=C\ p(T),
R, = (T — AI) depends holomorphically on A € p(T).

Definition 1.2.1 For 0 < w < 7/2, we define the sets
Sus = {z €C, |arg(z)] < worz = o}, R
S(u = Ow,+ U S =

The above sets are closed, whose interiors are denoted by Sg’ e Sg’_ and Sg, see
Fig. 1.2:

Fig. 1.2 S0
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Definition 1.2.2 If T is an operator on the Banach space X satisfying:

(i) T is aclosed operator on X;
(i) o(T) is a closed subset of S,;
(iii) for all u > w, there exists a constant c,, such that | R; || < ¢, |A|7!, A ¢ SO,

then T is called a type w operator.

We give some examples of type w operators.

(a) If T is a (unbounded) self-adjoint operator on a Hilbert space, the T is a type 0
operator.

(b) If X = L?(y), 1 < p < oo and for some Lebesgue measurable function w with
its essential range in S, Tu(z) = w(z)u(z), then o (T) = ess-range(w) and T
is a type w operator.

(c) The operator D, defined in Sect. 1.11s a type w operatoron L”(y), 1 < p < o0
and Cy(y), where tanw = N.

Let H* (Sg) denote the Banach space of all holomorphic functions with finite L*°-
norms, where the L°°-norm is defined as ||b||oc = sup |b(z)|. Letb € H“(Sg), w >
w. For a type w operator T, we define b(7T") and would like to obtain ||b(T)| <
C||b|l»- However, such estimate is not valid for all 7. Hence in the next section, we
will give some conditions on 7" such that the desired estimation holds, and then we
apply these results to D,,. For this purpose, let

clzl®

0y _ oo g0
WS = {¥ e H¥S), W) < T

for some ¢; > 0, s > 0}.

For ¢ € \I/(Sg), we consider ¥ (T). These operators are similar to the bounded
operators in (d) and can be defined via the contour integral:

Y(T) = Q2n)"" /5(T — 2Dy da,

where § is the sum of the paths §, and 6_ ( making an angle with 6 with the real axis).
Because T is a type w operator and ¢ € \IJ(Sg), it is easy to see that the integral
converges in the operator norm and

|Al*

ey

i< en [
B
The definition of ¥/ (T') is independent of the choice of the paths §. Moreover,

W) (T) = Y1 (T)Y2(T),
Vi(T) + Yo (T) = (Y1 + ¥2)(T).
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Specially, if ¥ (z) = z(1 +z2) 7!, then ¥(T) = T(T +il)~"(T —il)~'. Also,
when Tu =0, ¥(T) = 0. We refer the reader to [4] for the details. In the next
section, we need the following estimate. For t > 0, define v, (z) = ¥ (r2).

Lemma 1.2.1 Let T is a type o operator in X and let ¥, Y € \Il(Sg). Then there
exists a constant ¢ such that

(i) Forallb e H®(S)) and t € (0, 00), [[(by:)(T)|| < cl|blloo;
(ii) For all Borel functions f : [a, B] — X and forall0 < o < < 00,

(/OOO( faﬁ I/ff(T)w,(T)f(r)fldfsz_f>‘/2 < C(/f ”f(r)nszf)n/z

t
Proof (i) Because (b, )(T) = 2mi)~! j; Ry (tA)b(M)d A, we have

by (D) < 27)~! fcewlcmr‘(l + [T dA
)
< cllblloo-

(i)

(W) (D] < @)~ / colp T GlA

s ) (1)
T = C(%)(l +10g(;)),0 <t <t <o0;
b C(;)(l +log(£)),0 <T<t<o0
Hence, we can obtain
[ wemwnseta 4
< sup (/ﬁ |evom] ) sgp(/ooo ||(%¢;>(T)||?)(/f rore)

p ,dt
< C/ LA O

O

A dual pair (X, Y) of Banach spaces consists of two Banach spaces X, Y and a
bounded bilinear form (u, v) which satisfies:

[(u, v)|
lullx < Csup ——,u €
Ivily
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and

|(u, )|

lallx

[Ivily < Csup

A dual pair (T, T’) of type w operators concerns a type w operator 7' in X and a type
w operator T’ in Y which satisfy that for all u € D(T) and v € D(T"),

(Tu, vy = (u, T'v).

The following result can be verified easily.

Lemma 1.2.2 [f (T, T') isadual pair of type w operatorson (X, Y)and ¢ € \I'(Sg)
forsome u > w, thenforallu € X andv € Y, (Y (T)u, v) = (u, Y (T")v). Moreover,
there exists a constant ¢ such that for ¥ € \11(52), I (THI < cllw (D).

Example 1.2.1 (a) Assume that (X, Y) = (L?(y), L (y)), 1 < p < oo, and for
some measurable function w with essential range in S, Tu = wu and T'v = wv.
Then (T, T’) forms a dual pair of type w operators. For all u, ¥ (T)u(z) =
Y (w(z))u(z). Obviously, (W (T)u, v) = (u, ¥ (T")v).

(b) For the operator D,, defined in Sect. 1.1, (D,, —D,) is a dual pair of type w
operators on (LP(y), L” (y)), 1 < p < oo,and (Co(y), L'(y)).

Lemma 1.2.3 Let (X, Y) be a dual pair of Banach spaces. If Z is a dense linear
subspace of Y, and f is a continuous function from a compact interval [a, b] to X,
then there exists a Borel function v from [a, b] to Z such that for all t, ||v(t)| = 1

and || f (O < 2C(f (1), v(1)).

In fact, we can choose the function v as follows:

V() =Y he(Oxe (),
k

where z;, € Z, x; is the characteristic function of an interval, A, is a continuous
function on this interval with || = 1, k takes over the natural numbers.
If for all u € X and a constant ¢,

o0 dT\1/2
0wy : ([ )" < gl

then we say that the type w operator T satisfies the quadratic estimate Q () with
respect to ¥ € l11(52), u > . For example,

(a) If T is a self-adjoint operator on a Hilbert space, then T satisfies Q () for
¥ € W(S)) and all o > 0. For this case,

g =max{( [Twor) " ([Tweors) )
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(b)Let X = LP(y) and Tu(z) = w(z)u(z) for some Lebesgue measurable func-
tion w with the essential range in S, thenif 1 < p < 2.Forany ¢ € LIJ(SS), n> w,
T satisfies Q (). However, for all L?(y), T does not satisfy the related square
function estimate:

swrs |( [ wemuorE) ] < qa,.

For p =2, S(¥) and Q(y) are equivalent.
The following result gives the dual form of Q(y).

Lemma 1.2.4 Let (T, T') be a dual pair of type w operators on (X, Y) and Z be
a dense linear subspace of Y. Then T satisfies the quadratic estimate Q () with
respect to W € \D(Sg), W > o if and only if for a constant q, all Borel functions f
from [a, Blto Z and all0 < o < B < 00,

| [ weso®] <o [Trors)” (14)

T
Proof We first assume that the operator T satisfies the quadratic estimate Q (). Let
g€ Xand f € Y. We have

(e [ ) - / . o)

p d
</ @)l

([ 1) ([Crerd)”

o

B dr\1/2
<a( [ 1r@rE) e

This implies that the operator T satisfies the estimate (1.4).

Conversely, assume that (1.4) holds. Letu € X and 0 < @ < 8 < oo. By Lemma
1.2.3, there exists a Borel function v from [«, 8] to Z such that for all 7, ||v(7)|| =1
and

[Ye (Tull < 2C (e (T)u, v(2)).

Write g(7) = (Y. (T)u, v(r)), by (1.4), we have

[ v v = [ perrgeno)

< [ ol
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B dT\1/2
<l ([ el

b dt\1/2
< ||u||ql(/ vy 2)

Hence

B dT\1/2 B dr\1/2
([ wermp) " <2e( [ wemmven)
o T o T
< 2Cqu]|ull,

where the constant in the above estimate is independent of & and 8. So the quadratic
estimate Q () holds. U

We use W(S) ) to denote the set:
{vews): y=00ns)_}.
Assume that (T, T’) is a dual pair of type w operators in (X, Y). Let Z be a dense

linear subspace of Y.

Definition 1.2.3 Let Y be a Banach space.

(i) Define Y, as the linear subspace of Y which consists of all Borel functions
vy € Y from [«, B] to Z satisfying the following condition: there exists a function
V= \IJ(SI(LJF), 1 > w, such that

B d
- =f 1/f+(rT/)f(r)7T.

(ii) Define Y_ as the linear subspace of Y which consists of all Borel functions
v_ €Y from [«, B] to Z satisfying the following condition: there exists a function
Y_ € \IJ(SI(L_), 1 > w, such that

B
v =f w,(,T/)f(f)de.

Similarly, we can define the linear subspaces X and X_. Let i € lI!(Sﬂ), w> w.
Ifforagy andallv, € Yy,

o dT\1/2
R () : vl <q+</0 ||1/ff(T/)v+||2?T) ,

we say that T’ satisfies the reverse quadratic estimate R, (1) with respect to the
function ¥ (this definition is independent of the choice of the dense linear subspaces
Z). Similarly, we can define R_ ().
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Theorem 1.2.1 Let (T, T') be a dual pair of type w operators in (X, Y). If for some
Ve lI!(Sg), u > w, T' satisfies the reverse quadratic estimate R (V), then for any
Yy € \IJ(SS,JF) and all v > w, T satisfies the quadratic estimate Q(Y.).

Proof By Lemma 1.2.4, we only need to verify that the dual operator T’ satisfies
Q). Let f be a Borel function from [«, ] to the dense linear subspace Z of Y.
Then

b , dt
Vi = / Y (xT )f(T)? €Y.

Therefore, by R, (V) and (ii) of Lemma 1.2.1, we have

b , dt o P , , dt||2dt\1/2
| [ varrr@| < [ ] [ wamweeriro )
o T 0 « T t
b dty\1/2
2
<cq+(/a 1 @OP)
By Lemma 1.2.4, we can obtain that T satisfies Q (). O

Theorem 1.2.2 Let (T, T') be a dual pair of type w operators in {X,Y). Assume
that for ¥+ and ~ € \D(Sg), w > w, T' satisfies the reverse quadratic estimate

R, (¢ ") and R_(y™), respectively. Then for any ¥ € W(S%) and all v > o, T
satisfies the quadratic estimate Q ().

This result is a direct consequence of the former theorem. It gives rather surpris-
ing conditions under which T satisfies quadratic estimate. The reason is that the
hypotheses of the theorem only involve estimates on the subspaces Y, and Y_ (
together with the assumption that (7', T’} is a dual pair of type w operators). We will
further investigate this topic in the sequel. The quadratic estimate implies that T has
a H™ functional calculus. Below we give some result along the line.

Theorem 1.2.3 Let (T, T') be a dual pair of type w operators in (X, Y), where 0 <
w < u < /2. Assume that for some odd or even functions ¥ € ‘lf(Sg) satisfying
¥(t) > 0,t >0, T and T’ satisfies the quadratic estimate Q (). Then there exists
a constant such that ||b(T)|| < ¢||b|leo for all b € \11(52).

Proof Let ¢ € ‘lf(Sg) be an even function satisfying

o ,, dt
/ p(OY (r)— =1
0 T

Then for all z € Sg,

*© 5, . dt
b(Z)=/O (b)) ()Y (tz)T.
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Hence foru € X andv e Y,

o ) dt
W v = [ eonmwienShu. )
*© . \dt
= /0 (oD @w T, waTw)=.

Therefore,

o0 di\1/2 o] dit\1/2
|(b(T)u, v>|<sup||(b<z>t)<T)||(/0 I emulP<) (fo lwar i<ty

Applying (i) of Lemma 1.2.1 and the assumptions of T and 7', we can see that
16(D)II < cllblloo- O

This result was obtained by A. Mclntosh, see [4], where it is shown that if T is a
one-one operator with a dense domain and a dense range, and b € H* (Sg), then the
operator b(T) is closed and has a dense domain, where

b(T) =T~ (T* + )(by)(T)

and ¥ (&) = £(£2 4+ 1)~ The following result is also obtained in [4].

Lemma 1.2.5 Let T be a one-one type w operator with a dense domain and a dense
range in X. Assume that b, is a uniformly bounded net of functions in \I/(Sg) which
converges to a function b € H °°(S2) uniformly on every set of the form

{zeSE,O<8<|z|<A<oo].

Suppose the operators by (T) are uniformly bounded. Then for all u € X, b, (T )u
converges to b(T)u uniformly and ||b(T)|| < sup ||bs(T)]||.

By Lemma 1.2.5, the former theorem and Theorem 1.2.2, we obtain the following
result.

Theorem 1.2.4 Let (T, T') be a dual pair of type w operatorsin (X, Y), T and T’
have the dense domains and dense ranges. Assume that for some ¥ and some ~ €
lI!(Sﬁ), w > w, T satisfies the reverse quadratic estimates Ry (y) and R_(y ™),

respectively, and that T does too. Then for all b € H°°(SS) and all v > w, b(T) is
a bounded operator in X. For some constant c,,

16(D)II < evllbllso-

Moreover, forallby, b, € H°°(SS), (b1b))(T) = b (T)by(T) and (by + by)(T) =
bi(T) + by(T).
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When (X, Y) is a pairing between a Hilbert space and itself, the converse of the
above result also holds. But for L?, p # 2, the converse result is not ture.
Let x4 define on S and satisfy

x+(z) =1, Rez > 0,
x+(2) =0, Rez < 0.

Notice that when T satisfies the assumption of Theorem 1.2.4, then P, = x4 (T)
and P_ =1 — P, = x_(T) are bounded projections. We also note that y is con-
tained in R(P,) and X_ is contained in R(P_). This indicates that Theorem 7.3.2
is a surprising result, since it implies the decomposition X = R(P;) @ R(P-) asa
consequence of the estimates on the spaces R(Py), R(P_), R(P}) and R(P’).

1.3 Fourier Transform and the Inverse Fourier Transform
on Sectors

In order to apply the results of Sect. 1.2 to the operator D, on L?(y), we need
the inverse Fourier transform of the functions in H °°(S,8). For 0 < u < /2, the
sets S ,, S _ and S} are open sets defined in Definition 1.2.1. We also define the
following sets:

Definition 1.3.1 Define the open sets Cj) = C?)

oLn Cfl._, where

C2!+ ={zeC,—pu <arg(z) <+ u}, Coy_ = —C2’+

as shown in Figs. 1.3 and 1.4.

We use py to denote the ray {se’”, 0 < s < oo}. Forb € H®(S), |)andz € C), .,
define

GD)(2) =¢(2) = (27T)71/ e h(£)d8,

Po

Fig. 1.3 C?
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0
Fig. 1.4 C0_ . y
Fig. 1.5 5(2)

where —,u < —0 < arg(z) < — 0 < m + . Because b is bounded and holomor-
phic in SO _, it is clear that the definition of b is independent of the choice of 6.

w, +’
When z € SO |, define

ot
GIB)() = i (2) = /5( e,

where the integral is along a contour 8(z) from —z to z in C° .+ see Fig. 1.5.
Let S(R) denote the Schwartz class of rapidly decreasing functions.

Theorem 1.3.1 Letb € H°°(S0 1) @ =G() and ¢; = G (D). Then

(i) ¢ is a holomorphic function on C° .+ Which satisfies
|6(2)] < 2rdist(z, p—y U prs)} " 1Blloo.
(i1) ¢ is a holomorphic function on S2,+ which satisfies ¢1(z) = ¢(2) + ¢ (—z)

and belongs to H°°(SS’+)f0r allv < .
(iii) For all functions u € S(R),
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(2n)"/oob(§)ﬁ(—$)d§ = lim /¢>(x+ia)u(x)dx
0 a—0+ R

= lim ( @) ulx)dx + q)l(e)u(O)).
lz|>€

e—0

Proof Choose aray py as suggested such that the integrand is decreasing at co expo-
nentially. Then (i) and (ii) can be proved directly. For a > 0, let by (£) = e **b(£).
Then forall z € C° _, G(by)(z) = ¢(z + ia). Specially, for x > 0,

ot

b(x +ia) = Glby)(x) = Qr)"! / ¢ b, (£)dE

Po

= 27)7! /oo € by (£)dE.
0

Hence ¢ (x + i) = (bva)(x). Similarly, we can prove the case x < 0. By Parseval’s
formula, we can obtain that for u € S(R),

@) /0 b (§)il(—E)dE = /R 6 (x + ia)u(x)dx

and

Qn)~! /OO b(E)i(—E)dE = lim /¢(x+ia)u(x)dx.
0 a—>0+ Jp

Finally, we prove the last equality in (iii). Let € > 0.
o0
et [ b@ic-es
0

= lim ¢(x +io)u(x)dx + ¢(x +io)u(0)dx

a—0+ [ x|>e IxI<e

+ ¢ (x + i) (u(x) — M(O))dx]

lxl<e

= P@u(x)dx + ¢1(e)u(0) + lim ¢(x +ia)(u(x) — u(0))dx.

x| =€ lx|<e

Then for u € S(R), we can get

lim lim [d(x +ia)(u(x) —u(0))|dx

e—>0a—0+ Ix|<e

< Clim lim % + > u(x) — u(0)|dx

e—>0a—0+ Ix|<e
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< Clim lim x|~ u(x) — u(0)|dx

e—>0a—0+ Ix|<e

=0,

which implies

et [ b@ieds =lin[ [ swuwds+aeu0)]

x| =€
]

Forb € H*(S), ) and z € C}, _, the inverse Fourier transform is defined by

GO =9 = o / S D(E)dE,
Po

wheremr — u < —60 < arg(z) <m —6 < pand py = {se'? 1 0 < s < co}. Because
b is a holomorphic function in Sg’f, it is obvious that the definition of G (b) is
independent of the choice of 6. Moreover, for z € Sg, +» define

Gi(D)(2) = ¢1(2) = ¢ (W)dA,

8(2)

where the integral is along a contour from —z to z in ng_. If we replace Sg’ 4 and
ng 4 by quf and Cg’f, respectively, and replace lim,_,o, by lim,_o_, Theorem
1.3.1 still holds. Now we consider a bounded holomorphic functionb € H* (Sl(j). Set
b=>b, +b_,whereby € Hw(Sg,i).Deﬁne Gb)=Gb )+ Gbh_)and G(b) =
G1(b;) + G (b-). The following result can be deduced from Theorem 1.3.1.

Theorem 1.3.2 Let b € H®(S), ¢ = G(b) and ¢, = G,(b). Then

(1) ¢ is holomorphic on Sg and satisfies

¢ (2)] < {27dist(z, p—p U pris)} 1Bl

(2) ¢y is a holomorphic function on 52,+ which satisfies ¢1(z) = ¢(2) + ¢ (—z)
and belongs to H*(S%) for all v < p.
(3) Forallu € S(R),

et [ b@ic-eds =tim ([ poutndx + gieu).

|x|>e

Theorem 1.3.2 indicates that any bounded holomorphic function b in H*(S%) can
be regarded as the Fourier transform of the function ¢ satisfying |¢(z)| < C/|z].
Similar to the classical Fourier theory, the converse of the above theorem holds.
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olé€) €8P, olé€). £€80_

Fig. 1.6 o(§,¢)

Theorem 1.3.3 Given 0 < v < u < /2. Suppose that ¢ and ¢, are holomorphic
functions on Sg and S2,+ which satisfy z¢ (z) and ¢(z) are bounded, and ¢’ (z) =
¢(2) + ¢(—z2) forall z € Sgﬁ_. Then there exists unique function b € H°°(S8) such
that ¢ = G(b) and ¢ = G(b). Moreover, for some constant C,, , which depends
only on u and v,

[6]l0o < C,Msup{lqu(z)l 1z € 52,+} + sup {|¢1(z)| 1z € Sg}.

Proof By the fact that ¢;(—2z) = —¢1(z), we extend ¢, to the whole Sg. For& € Sﬁ,
define

= 1i —ifz
b =tim ([ gz +g100)

= tim [ / L (w0 + Sor0)az],

where ¢o(z) = %(q& (z) — ¢(—2)), o (&, €) is shown in Fig. 1.6, where the interval
(—e€, €) is omitted. For large z € 0 (§, €), Im(z§) < k,x <0 (when § € 52,_, the
curve o (€, €) is the conjugate of the one shown), see Fig. 1.6.

We can obtain the following properties:
(a) If v < pu, then b € H°°(SS).
(b) If& e R, & # 0, then

be) = _tim | / R (000 + Sr0)x].

(©

sup
£e,N

/e<x|<N oikx [d)o(X) + %¢1(X)]dx‘ < 00.

(d) The function b, ¢ and ¢, satisfy (3) of Theorem 1.3.2.
(e) We can deduce that ¢ = G(b) and ¢ = G (D).
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Now we prove (c¢) for £ > 0, and the others can be dealt with similarly. At first,

assumethatE ™! < e.Let0 < a < wandlet C(N), C(€) and § be the contours shown
(Each consists of two pieces).

/€<|ng e s [¢0(x) + %qﬁl (X)]dx’

<c1[/ |e"‘“|<N“+s)|dz|+/ le™ 52| (e 7! + &)|dz]
C(N) C(e)

+f eférsinot(rfl +§)dr]
[e.N]

o o o0

< cz[/ e’ENSi“9(1+§N)d9+/ e’é“ing(1+ée)d9+/ e*“ds]
0 0 0

<C

3.

Now suppose € < £€~' < N. We replace the integral by one on the contour shown.
Similarly, we can obtain

Ve ie 1/
/ e (9o(x) + 51 (x)dx| < € /0 (sinx)(x + £)dx

1
=C1/ (sin)(¢~' + Ddr
0
= C,.

Finally, when N < £~!, we only need a bound of the second type. (]

Remark 1.3.1 Tfthe restriction of ¢ on R, ¢ |g, is a good function, i.e., p|r € L>(R) N
L}DC(R), then b|g is the Fourier transform of ¢|g. For z € Sgﬁ, ll_r)% ¢1(ez) = 0. Also
(3) of Theorem 1.3.2 is equivalent to the classical Parseval formula.

Now we give several well-known examples.

(a) If

X&), €8

b(E) = {0’ cesh

then ¢(2) = iRnz)~!, ¢1(2) = 1/2.

(b) If
| sené, SGSSMJF;
ey - [ £ 0

then ¢(z) = i(w2)~", ¢1(z) =0.
(c) Ifb(§) = x1(§)E™, s € R, then

¢(2) = l.(ZJT)*lefns/ZF(l + is)zflfis’
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$1(2) = Qrs) e T +is) (2" — 7).
(d) Ifb(€) = x()e™",t > 0, then

d() =im) Yz +in), I}‘igoqﬁ] (z) = 0.

(e) If b(&) = x4 (&)tEe™™,t > 0, then
¢(2) = —Qm) 'tz +it)2 i) = Qr) 2z + D)7

In (e), the function ¢ is absolutely integrable on R and lir% ¢1(€) = 0. This assertion
€—>

is true for the following class of functions.

cslzl®

\I/(Sg) = {1/; € H°°(Sg), for some ¢; > 0,5 > 0, |¥(2)| < Q1)

Theorem 1.3.4 Let v € \IJ(S/(Z) and ¢ = G(). Then for any v < u, there exist
s > 0and c, > 0 such that

¢ (2)] < ¢, min{|z|™', 2|71}, z € S,

Therefore, \l|im0 G1(¥)(2) = 0 uniformly on SS.

Proof Let z = |z]e!® and py be the integral contour in the definition of G(¢). At
first we assume that z € Sg and |z| > 1. For any s € (—1, 1), because ¢ € \l/(Sg),
then | (z)| < C|z|*. This gives for z € Sf)),

@) = G| < ¢ / (RIS s g
0

< c(lz]sin(@ + 6p)) ™' *
< c(dist(z, C\S)) ™'
< 1—s

clz|= 77,

— cmin {|Z|—1+S, |z|—‘—3‘}.

Similarly, when |z| < 1, we have | (z)| < |z|™*. Hence when s € (—1, 1), for z €
SY, we can get

|¢(Z)| — |G(1ﬁ)(Z)| < C/oo e—lz\sin(0+00)tt—sdt

0
< c(lz] sin(@ + 6)) ™'
< e(dist(z, C\S9) '+
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= cmin {12171, 12177,

Atlast, when |z| — 0, we estimate the decay property of the function G (¥). Without
loss of generality, we assume that |z| < 1. From the definition of G (y), taking

8(z):{§=rei9: O<r<z|, argz <0 < argz+ 7},

we deduce that

G112 < / 16(8)lde

3(2)
Izl

1.4 Convolution Singular Integral Operators
on the Lipschitz Curves

In this section, applying the H*°-functional calculus of the differential operator D,
on the Lipschitz curve y, we prove the L”-boundedness of the convolution singular
integral operators on y. Roughly speaking, the main idea is to prove the operator
D, satisfies the reverse quadratic estimate by the square integral estimate obtain by
Kenig [5]. Hence for b € H °°(SE), by Theorem 1.2.4, we can see that the operator
b(D,) is bounded on L”(y). Then we use the Fourier transform on the sectors to
prove that if the kernel satisfies certain conditions, then the convolution singular
integral operator on y can be represented as the H°°-functional calculus b(D,), see
Theorems 1.3.3, 1.4.1, 1.4.2 and 1.4.3 for the details.

Let D = lldi The differential operator D,, on the Lipschitz curve y is defined
as D, = (1+ iA(X)™'D. Let (Dy, —D,) be a dual pair of type w operators in
(LP(y), L” (¥)), 1 < p < 00, or (Co(y), L' (y)). When 1 < p < o0, D, is a one-
one operator on L”(y) and has a dense domain and a dense range.

Our first aim is to represent v/ (D,,) as an integral operator for ¢ € W (Sg), w > w.

Notice that
Y(D,) = 2n)"! /5 (D, =AD"y (M)da,

where § consists of the rays pg, —pg, Pg+r and —pgir, © < 6 < . We also notice
that for almost all z € y,
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i / eMCTOUE)dE, 7€ pp U p_gin,

(Dy —AD7u@ = Ru@ =4 7 °

i / HOu(E)dE, 2 € pg U ppen.
y*(2)

Hence, foru € L?(y),1 < p < 00, or Cy(y),and z € v,

1
W (D, )u(z) = / / / /
VD= o y=@ J oo @ Jpoin
+ / / / / MOy MuE)dr
y+() Jp-o y*(2) P9+q

¢(z = E)u(§)ds,

14

where ¢ = G () and we have used the estimate obtained in Theorem 1.3.4 when
changing the order of the integrals. We thus can obtain

Y(Dy)u = ¢ xu.

Specially, for T > 0, define W, as

v =1
r(Z) =
0, ze Sg’f.

4

0
P ZES,

Then by Example (e) in Sect. 1.3,
W (Dy)u(z) = —(2n)_lr/(z +it — &) Tu(€)de.
¥

We will prove that the operator D, in L*(y) satisfies the reverse quadratic esti-
mate with respect to ¥ = W;. We choose C.(y), the space of compactly supported
functions on y, as a dense linear subspace. Denote by L?(y), the space of the
functions

B dt
uy(z) =/ W+(7Dy)f(f)(Z)T,

where f denotes a Borel function from [, 8] to C.(}), ¥4 € W(S° ) \I/(S0 ),
u > . We will prove that for some constant g, and all U, € L? (y)+,

d
Ry (W) sl < g ( /0 e P5)

We have seen that
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V(D)) fr(2) = Fr(2) = /(l)r(z — &) f=(§)d§,
14

where ¢, (z) = 77 '¢(r2), and ¢ = G () is holomorphic on C}, ,. By Theorem

134, forw<v<pand0 <o < 1, on C°

b the function satisfies

Clz|®

29| <« ———.
|z (2)] R

In fact, via the above formula, F, can be understood as not only being defined on y
but also being defined on the open set €2 over y, that is,

B
U(2) =/ Fr(z)d?T-

The following results can be proved easily:

(i) U is holomorphic on 2,
(i) U is continuous on 2, U y and equals to u on y,
(>iii) U satisfies
U@ < Clzl™ U @] < Clzl ™

Hence, forz € y and ¢ > 0,
U'(z+it) = Qi)™ f(z +it — &) Pu (£)dE = it ™'Y, (D, )us (2).
Y

So the desired reverse quadratic estimate is
00 ) o 1/2
Ry(W) + fluyllz < 27761+(/ /IIU (z+in)| IdZIdt) )
0 Jy

where u and U satisfy the above properties (i), (ii), (iii). Now we prove the estimate
R (V). For 0 <o <m/2 and z = x + iy a complex number, I',(z) will denote
the open angle with axis in the vertical direction, wertex z, opening o and pointing
upwards, i.e.

I'y@)={w=a+ibeC,b>y,|x —al <[tana](b — y)}.

Obviously, if 0 < o < [arctan 1/M], then for some e > 0, 'y C Q4 forallz € y.
Assume that 0 < o < arctan 1/M, and that U is defined in Q, if z € A, We
define the non-tangential maximal function as

(M U)(z) = sup |U(§)|.
§ely(2)
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For the functions U defined on ., we define the following Littlewood-Paley

type g-function on y. Assume that U is differentiable in 2., forz =t 4+ in(t) € y,
define

00 2 \1/2
«@ = ([ ilocrinfa)
Then by [5, Theorem 3.17], we can obtain there exists a constant ¢ such that
1M Ullr2¢p) < cllig@lz2y)-
On the other hand, on y, the boundary value of U coincides with . This gives
lusllzg) < MUz < cllg@lzzgy,
which, together with the change of variables, implies that

luillzzgy < cllg@lzg)

([ ser)”
([ ooyl
-

-1

/ (/ U’(z+it)‘2|dz|>dt]l/2
/ f( / Dy @) 1z )ar]

2 dr\1/2
Lz(y)T)

= ([ [w@n

We can see that D,, satisfies the reverse quadratic estimate R, (V). Similarly, D,,
satisfies R_(W). Denote by D, the duality of D,. Because D), = —D,, D, also
satisfies R_ (W) and R, (V). Hence, the assumptions of Theorem 1.2.4 are satisfied.
For the case of L”, the following result holds.

Theorem 1.4.1 Forany ;1 > w =tan~' N and p € (1, 00), there exists a constant
Cy,p Such that for all b € H“(Sﬁ) andu € L?(y),
16(Dy)ullp < cppllbllsollullp.

Proof We have proved that there exists a constant ¢, such that forallb € W (S/(i) and

ue L*(y),
16(D)ull2 < cpllblloolluell2.
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Forall z € SS,

b(D,u(z) = / 6z — HuE)de,
Y

where ¢ = G(b). By Theorem 1.3.2, the function ¢ satisfies |¢ (z)] < k, [|b]loo]z| ™"
forall z € SS where < v < u, k), depends on v. Hence for all non-zero z € S, and
some constant k, |¢’(z)| < «||bll|z| 2. Notice that the Lipschitz curve satisfies the
doubling measure condition. By the theory of Calderén-Zygmund operators ([6]),
when 1 < p < oo, there exists a constant ¢, , such that for all b € \D(S/(i) and u €

LP(y),
16Dy )ullp < cppllbllsollullp-

By Lemma 1.2.5, we know that the above estimate holds for all b € H °°(S2). U

Next, applying the results of Sect. 1.3, we give an precise representation of the
operator b(D, ) in L?(y).

Theorem 1.4.2 Assumeb € H °°(Sg), U > w. Let ¢+ be a holomorphic function on
Cg,i satisfying ¢+(2) = G(x+b)(2). Let ¢ and ¢ be holomorphic functions on Sg
and qu + Which are defined by

¢(2) = G(b)(2) = ¢+ (2) + ¢-(2),
$1(z) = G1(D)(2).

Ifu € L?(y), then for almost all 7 € y,

b(D,)u(2) = lim / 00— § i)+ 9z — & — i Ju(e)ds
a—0+ y

e—>0+

= lim [/ ¢ (z — EuE)dE + ¢, (GL(Z))],
[z—&[>€

where for z € y, t(z) denotes the unit tangent vector at z.

Proof We prove this theorem for the case b € H*® (52’4_), andthecaseb € H*® (Sg,_)
can be dealt with similarly.

Suppose thatu € LP7(y) and b € H°°(S2,+). Let¢ = G(b) and ¢y = G (b). For
a > 0and s > 0, define the following functions in H°°(S2,+) and \II(SS'+), respec-
tively,

bo(§) = b(€)e ™ € HX(S) )
and

bas(§) =& (1 + &) by (§) € W(S ).
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Notice that the functions b, ; and b, are uniformly bounded on SO

ot and for any
fixed o, on every set with the form

[zest  0<s<i<a<wl]

when s — 0, b, s converges to b, uniformly. Hence by Lemma 1.2.5 and Theorem
14.1,ass — O,
”ba,s(Dy)u - bot(Dy)u”p — 0.

Set ¢y s = G(bys) and ¢, = G(b,). Notice that, for almost all z € y,
bus D) = [ otz = s,
%
Therefore we can get

(a2 — £)] < (2)"" / b, ()]

Po
<Cla+|z—¢g)!

and when s — 0, ¢, converges to ¢, in the pointwise sense. By the Lebesgue
dominated convergence theorem,

be(Dy)u(z) = /(Iba(z —&u)dé = / $(z—& +iJu(é)dt a.e.
Y Y
Using Lemma 1.2.5 and Theorem 1.4.1 again, we can obtain that, in L”(y),
b(Dy)u(z) = lirg /¢(z — &+ lo)u(§)ds.
a—04 y

To prove the second equality, we first assume that u is a compactly supported
Lipschitz function on y. We will prove

b(Dy)u(z) —/

lz—§|>8

o - e —ue) [ [ o] < ol
C(z,8) Jy

where C(z,€) = {€ € C, |& —z] = ¢, Im& > g(Re&)}.

In fact, take a subsequence {z,} — 0 in the first equality. We can assume that the
first equality converges in the pointwise sense. Hence, for any fixed € > 0, we have
b(D,)u(z) = Ji + J» + J3, where

JI=/| e
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|12 </ ¢ (@ —ONu®) —u@IdE| < Cellu'lloo,
lz—§|>€

Jy = lim u(2) ¢(z — & +it)dE = u(2) ¢(z — &)dE.
> C(z,€) C(z,€)

Note the fact that

tim[ [ [ 6o - grierin] =0
€« Clz,e) Jy

where for almost all z € y, £(z) denotes the unit tangent vector on y. We can get the
second equality for Lipschitz functions with compact support on y.

To extend the second equality to u € LP(y), similar to the convolution singular
integral operators on R”, we need the following maximal estimate:

Lemma 1.4.1 Set
Tgu(z>=f G s

and
T*u(z) = sup |T.u(z)|,z € y.

e>0

Then
IT*ull, < Cpllull,, 1 < p < oo. O

Denote by ) _. the sector [z e C: |arg(+2)| < u] SetS) = S) , US) _.The
main result of this section is as follows.

Theorem 1.4.3 Giventan™'(N) < u < w/2and1 < p < oo. Let ¢ and ¢, be holo-
morphic functions defined on Sg and qu + Such that z¢(z) and ¢1(z) are bounded.

Ifforall z € S2,+,
$1(z) = ¢ (2) + P(—2),

then for u € L?(y) and z € y a.e., we can define the following bounded linear
operator T on L?(y):

e =tin [ [ oG- ouwds + giern)
0L Jiz—¢1>e

where t(2) is the unit tangent vector at 7 € y. Moreover,

ITuly < Cnp| sup {1201 5 2 € 0} +sup {1+ 2 € 80wl

Here Cy ,, , denotes the constant which depends only on N, p and p.
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Proof Infact, let B = b(D, ). This theorem is a direct corollary of Theorems 1.3.3,
1.4.1and 1.4.2. a

1.5 LP?-Fourier Multipliers on Lipschitz Curves
In this section, let y be a Lipschitz graph defined as
Y =V, = {x+ig(x)e(C, X ER}.

where g is a Lipschitz function. Assume that ||g'|lcc < M < 00 and ||g]lec < M <
oo. We will discuss a class of L”-Fourier multipliers on y. We first introduce the
following class of Bancah spaces.

Definition 1.5.1 Let —oc0 < 8 < o0.

(1) If a Lebesgue measurable function w : (—oo, co) — C satisfies

oo ) 1/2
vl = (| @R expCapieas) < oo,

we callw € Cg.
(2) Forw € Cg,if w',w" € Cg, wecallw € C/zg and the norm is defined as

. 2 2 2
Iwlles =: {Iwlg, + w13, + w12, }.

We regard Cfg as a test space, its dual is denoted by (Clzg)’. Define the dual relation as

(w, v) = foo w(E)Wv(E)dE, w e Cg,v € Cy.

o0

At first, [{(w, v}| < [wllc_, ||v||C§. Secondly, (w, v) =0forallv C% if and only if
w = 0.HenceC_p < (C})".Ifa < B,thenCp C C, andC; C CZ. This embedding
is continuous and dense. Therefore (Cﬁ)’ C (C%)’.

We will use the Fourier transform and the inverse Fourier transform concepts on
y which are defined as follows. If u € L'(y), define

) = / e“u(z)dz.
Y

Then u is a continuous function and satisfies

(&) < M ully,
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soit € C_p, B> M and ||iillc_, < (B — M)~"?||ull;.
For B > M and w € Cg, on the strip

Xp = {5 €C, [Im&| < B},

define the holomorphic function w as

~ 1 > ict
w(;>=2—/ 5w (E)dE.
T J_

oo

If w =0, then w = 0. Let
(Cp)" (y) = {Wly. weCp} and (C})"(y) = {il,, we Cj}.

The norms of the above spaces are defined as ||vT/||(cﬁ>V(y) = [wllc, and ||vvv||(cz)vm =
Iwlies.

Theorem 1.5.1 (i) A holomorphic function f on Xg belongs to (Cg)" if and only
if

sup / |f(x +iy)|2dx < oo.
lyl<B

Moreover

1 . . 12
31wl < V2w sup ( [ e+ infax) < i,
yi<

(ii) Ifw € Cg and |Imz| < M, then

1
W@ < (6 - M) Hwlie,

and
sup |w(x +iy)| = 0, |x| = oo,
ylsM

soWw |, € Co(y). Hence (Cg)" (y) is embedded in Co(y) continuously.
(iii) Ifw,v € Cg, then

N O
/ w(2)v(z)dz = - f w(E)v(=§)d§.
¥ T J-oco
(iv) A holomorphic function f on Xg belongs to (C%,)v if and only if

sup / (1 4+ x%) f(x +iy)|?dx < oo.
[yI<B
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Moreover, there exists cg > 0 such that
1 PN N 1/2
Wl < sup ([ 10+ +inPax) < calvig
yi<

(v) Forall p €[1, o0], (Cé)v(y) is embedded in L? (y) continuously.

Proof The second part of (ii) can be obtained via the Cauchy integral formula on the
rectangle with vertices (1 & %)Rez + 5(M + B). By (ii), applying Cauchy’s theo-
rem, we can prove that

/W(z)lvi(z)dz=/W(X)\7(x)dx,
y R

so (iii) can be deduced from the so-called Parseval identity. It is easy to see that the
functions f with the standard properties are of the form f =, where w € Cg or
C%. To prove (v), we first prove that if w € Cfg and |y| < M, then for some constant

e, L+ ) W(x +iy)| < clwllez.- H

Remark 1.5.1 Let A(y) be the space of all functions f which are holomorphic for

min |g(z)| — € < Imz < max |g(z)| + €
ZEY ey

and satisfy

/U@+WWM<C@

Then (g 5, (Cp)Y (v) = Ay).

For the arguments of approximation, we shall use the maximal function M,
defined as follows. For a locally integrable function u on y, define

M) = s~ [ ueas),
B(z,p)

p>0

wherez € y and B(z, p) = {£ € y, |& — z| < p}. Thefollows results can be obtained
by the usual methods. Noticing that || g'|| < N, we have

Proposition 1.5.1 For 1 < p < oo, there exists constants ¢, y and cy such that
IMyull, < cpnllully, ueLP(y)

and
Az € y, Myu(z) > A}) <cwllul,

where w denotes the measure introduced by the arc-length.
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Proposition 1.5.2 Suppose that u is a locally integrable function on y, ¢ * u and
¥ % u are well-defined, where \ is a decreasing function in L' (0, 00) such that

o) < ¥(x), z=x+iyel,

where I’ ={z— &, z,&€ € y}. Thenforall 7 € y,

¢ u(2)| < enlllli Myu(z).

The above result can be proved directly for the functions v with the form ¥ (§) =
> axxk(§), where y; is the characteristic function of a ball centered at 0. For
general ¥, we use the sequence of such functions to approximate . We prove that,
in an appropriate sense, the function u is the limit of the sequence {¢, * u}, where
¢n(2) = n¢(nz) and ¢ is a holomorphic function defined on all of C which satisfies

o0
/ p(x)dx =1 (1.5)
—00
and for some constant c,
c
|¢(Z)|<m, z=x+iyeS, (1.6)

where tan u > N.

For N < m/4,take ¢ (z) = exp(—z?).Form/4 < N < /2, there exists a function
satisfying two conditions mentioned above. The following example was constructed
by MclIntosh-Qian [7].

Lemma 1.5.1 ([7, Section8]) Let 0 < u < 1 /2. There exists an entire holomorphic
function ¢ satisfying (1.5) and (1.6).

Proof At first, let f be a holomorphic function on the upper-half plane which is
defined as
f@ =+ 2 exp((—iz)),

where A satisfies tA /2 < /2 — . The following conclusions can be verified easily.

(i) Let § denote the curve {z, |argz — 7w /2| = /2)}. Forallz € 6, |f(2)| = |i +
7|72
(ii)) When y — 400, | f(iy)| — oo.

Define a function

5x7 Js = [ (©)dg, z below 8,

G =
« 57 s ﬁf(é’)dév + f(z), z above §.

(1.7)
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The function G can be extended to C continuously, so it is an entire holomorphic func-
tion. It is bounded below § and unbounded above 8. Define ¢ as ¢ (z) = «G'(2)G'(2),
where is « a normalizing factor. Then ¢ satisfies (1.5) and (1.6).

O

We call a sequence {¢, } constructed as above an identity sequence. The sequence
{¢,} satisfy the following properties. Let ¥, (s) = n(1 + n?s%)~!, s > 0. Then

(1) for every n,

0 (2)] < c¥u(x]). 2 =x +iy € S). (1.8)
(2) For every n,
| wntsras = 3. (1.9)
0 2
(3) Forall § > 0,
/ Y, (s)ds — 0,n — 0. (1.10)
s

(4) For every n and every € € y,
/%(Z—E)dz:l. (1.11)
¥

The following two theorems give the ways in which ¢, * u converges to u.
Theorem 1.5.2 Let {¢,} be an identity sequence. Then

(i) for1 < p < oo, there exists a constant cp, y such that
| sup @, * ulll, < cpnllully, ue LP(y).
n
(ii) Ifu e L?(y), 1 < p < oo, then for almost all 7 € y,
lim (¢, * u)(z) = u(2).
n—0o0
(iii) Ifu e L?(y), 1 < p < oo, then
lim |[(¢, *xu) —ull, =0.
n—0oQ

(iv) Ifu € Co(y), then
Lim [[(n * u) — ulloc = 0.

Proof Part (i) is a corollary of the former two propositions. Next assume that u €
Co(y). It can be deduced from (1.11) that
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(6 % u)(2) — u() = / 60 (z — D) — u(2))de

[—z]<é

+ / Gz — O u(E) —u(z))d¢
[ —z]=6

=1L+ 5.

Let € > 0. Take 6 small enough such that for all ¢ on y which satisfies [¢ — z| < §,
|u(¢) — u(z)| < €. Hence, by (1.8) and (1.9),

I <e/ bz — O)lId2 | < cery/T+ N2.
Y

Applying (1.10), we can get I < € for all sufficiently large n. Hence

I % u(z) —u(2)| < (1 +cmy/1 + N2).
Therefore (iv) holds as part (ii) does in the case when u € Cy(y).

Foru € LP(y),1 < p < oo and any é > 0, there exists the decomposition u =
v +w, where v € Co(y) and |[w]|, < 8. Hence, by the former propositions,

w(fz v iy« u —u@) > )
=u({z ey, Tm oy sw@ - w@| > «})
<u(fzer. Tmig, s w@! > x2}) +u({z e v, Tmw@l > «/2})

<u({zer. Mw > w2}) +u({zer. Tmw@l = «/2})

S ek Pwllf < ek PP
Let § — O first and then k — 0. We can get
M({Z €y, nll)n;o|¢n * M(Z) - M(Z)| > 0}) =0.

This implies Part (ii) holds for the case 1 < p < oco. The case p = oo can be reduced
to the case p = 1 by a localization argument.

Now we prove (iii). Foru € L?(y), define U € LP(R) by U(x) = u(x + ig(x)).
Then

1600 =l = | [ 00— ) ~ utrtc
14

Lr(y)

<c

[ vt = 31w = viay|

LP(dx)
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LP(dx)

— /anqswm UG~ s/mlds|

ds
LP(dx)

< chwnquHW(x) ~UGx —s/m)
=c [ washaw. s/mas,
R

where
AW, s/m = |lU@) - UG = s/

Lp(dx)

Notice that when n — oo, A(U, s/n) — 0 and AU, s/n) <2||U|,. By the
Lebesgue dominated convergence theorem, when n — oo, the last integral tends
to 0. ]

Let¢ saEisfy (1.5) an(} (1.6). Define an identity sequence {¢, } by ¢, (z) = n¢ (nz).
Let ®, = ¢, and ® = ¢. Then &, (&) = ®(n~'&), where ® is continuous and sat-
isfies ®(0) = 1. When & > 0,

|D(&)| = ‘ /Oo e*"%(x)dx) - )/Oo e EC g (0 _iNydx

o
< e Ml / lp(x —id)|dx = cre *El.

[e¢]

When £ < 0, in the above estimate, replace A by —A. Hence for every A > 0, there
exists ¢ such that
[P (E)] < cre ™! —00 < & < 0. (1.12)

Therefore for all » and all 8 > 0, ®, € Cg. Clearly, on any compact subset of
(=00, 00), ®, — 1 uniformly.

Theorem 1.5.3 Let {¢,} be an identity sequence and let ®, = (]Ab,,. Suppose that
BZ>a>M.

(1) Ifw € Cq, then ¢, xw = (P,w)" € (Cp)"(y) and ®,w — w in Cy.
(2) Ifu € L'(y), then ¢, x u € (Cp)"(y) and ®,i — il in C_g.

Proof We first prove (i). Taking A = 2n(f8 — «) in (1.12), we can see that |P(§)] <
¢, exp(—=2(B — a)[€]). Then

IPawlie, = / |©,(§)w(&)|” exp(2B1E)dE
< / W(E) 2 exp2BIE]) exp(—2(8 — )| dE

< / w(E) 2 exp(2al&])dE

2
< lwlle, -
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Hence ¢, x w € (Cp)" (y). Also, at each point, &, — 1,
o0
1 ©yw —wiig, = / |@u(E)w(E) — w(E) I expe§|)dé
oo
= / |©,(5) — 1P Iw (&) expa|§)dE — 0,n — oo,
—00

Now we prove (ii). Because u € L'(y), |i(€)| < exp(|€|M)||u]|,. Similarly, we can
get i1 € Cp and &4 — i in C_g. Also

b5 u() = / 60 (2 — Du(C)dE
Y

_ f L / " 0 ©)e D dgu()dt
y 21 J_ oo

21 / N / () dr e D, (€)dE
7)ol

1 o0
. / A(E) D, (5)e* dE
T J-o0o

()" (2).

We state several density results and a version of Parseval’s formula.
Theorem 1.5.4 Let 8 > aand 1 < p < o0.

(i) The following inclusions are all dense:

(CHY(y) CL'NLP N (Cp)V(y) CLPN(Cp)V(y) C (Cp) (1)

(CHY () C (CL)Y (¥);

L'NLP N (Cp)¥(y) CL'NLP(y) C LP(y);

LP N (Cp)"(y) CLPN(Ca)¥(y) C LP(y);

(Cp)"(y) C(C)¥(¥).

(1.13)

(ii) In the above inclusions, L? (y) can be replaced by Cy(y).
(iii) Foru € L'(y) andw € Cs,

1 o0
/ W@z = o f A(E)W(—E)dE.
¥ T J—c0

(iv) Ifu e L'(y) and it = 0, then u = 0.

Proof (i) We prove the inclusions in first line. Let u € (Cg)"(y). For any € > 0,
define uc(z) = (1 + €2z%)'u(z). By (i) and (iv) of Theorem 1.5.1, u. € (C3)" ().
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In L?(y) and Cy(y), ue — u. Hence these inclusions are dense. In addition, we can
see that (Cé)v(y) is dense in (C2)V(y), and (Cp)"(y) is dense in (C,)" (y). This
proves the second and the fifth inclusions.

Letu € L' N LP(y). Then ¢, x u € (Cp)" (y) and ¢, * u belongs to L' (y) and
LP(y). In L'(y) and L?(y), ¢, * u — u. we get L' N L” N (Cp)¥ (y) is dense in
L' N LP(y), and is dense in L”(y). This proves the third inclusion. Similarly, we
can prove L” N (Cy)"(y) is dense in LP(y), and L? N (Cg)" (y) is dense in L” N
(C)Y (¥)-

(ii). In the proof of (i), replacing L?(y) by Co(y), we can use the same method
to verify that the conclusion of (i) is valid for Cy(y).

(iii) Let u € L'(y) and w € Cg. Then ¢, xu = (®,1u)" € (B)"(y). By (iii) of
Theorem 1.5.1,

1 o0
/(¢n *u)(2)Ww(z)dz = 7 / (®nit) (E)w(—&)dE.
y T J-co

Because ¢, * u — u in L'(y) and ®,4 — i in C_g(y), (iii) holds.
At last, by (iii) and the fact that (C%)V(y) is dense in L'(y), we can obtain (iv).
O

From Theorem 1.5.1, we can see that the following definition of the Fourier
transform coincides with the definition for u € L (y).
For some 1 < p < oo, u € LP(y), define i € (C/Zg)’ by

(t, w_) =/u(z)v71(z)dz,
¥

where w € C?; and w_ (&) = w(-§).

It should be pointed out that this definition is independent of the choice of 8, 8 >
M, and the mapping ¥ : L?(y) — (C%)’ satisfying ¥ (u) = @ is continuous and
one-one. If the above Fourier transform and the inverse Fourier transform are well-
defined, two transforms are inverse operations.

Theorem 1.5.5 Let u € L?(y), p € [1,00] and letw € Cg, B> M. Thenu =w
if and only if w = 1.

Proof Letu € LP(y),1 < p < oo and w € Cg. By (iii) of Theorem 1.5.1, we can
see that for all v € C2,

v 1 [ 1
[ w@iez = o [ wem-ods = 5w v-).
v T J_oo 2
Assume that w = u € L”(y). Then for any v € Cé,

fv?(z)ﬁ(z)dz =fu(z)§(z)dz = L(ft, Vo).
Y

y 2
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Hence & = w. On the other hand, assume that it = w € Cg. Then forall v € C2,

/vvv(z)f/(z)dz = L(w, v_) =/u(z)\3(z)dz.
v 21

Y

Specially, for an identity sequence {¢,},
/%(E —w(2)dz =/¢>n(§ —u(2)dz.
¥ 14

Taking limits for all ¢ € y, we can get w = u.

Now we introduce Fourier multipliers. Let 1 < p < oo and take 8 < M.

Definition 1.5.2 Let b € L*°(—o0, 00). If a L*°-function b satisfies

1513, =3 50p {16 1o, € L7 ()N (Cp) (), Tl = 1} < o0,

we call b a L?(y)-Fourier multiplier, denoted by b € M, (y).

When 1 < p < oocandb € M,(y), there exists a unique L”-bounded linear oper-
ator B defined on the dense subspace L”(y) N (Cp)" (y):

Bu = (bi))".

When p = coand b € M, (y), we can define a unique bounded linear operator B on
Co(y) similarly. If b; and b, are L”-Fourier multipliers, the corresponding operators
are denoted by B; and B,, respectively, then b, b, is also a L?-Fourier multiplier with
the corresponding operator denoted by By B,. The function 1 also belongs to M, (y)
with the corresponding operator /.

The reason for using Cg to define L?-Fourier multipliers is thatif w € Cg and b €
L*°(—o00, 00), then bw € Cg. By (i) of Theorem 1.5.4, when B > M, the definition
of bw is independent of the choice of S.

Proposition 1.5.3 Let b € L°°(—00, 00). Then

v) v
15113, 0 = 5p {1OW) 2y, w € GG Mol oy = 1}

When the right-hand side of the above equality is finite, b is a L?-Fourier multiplier.

Proof Assume that the right-hand side of the above equality is finite. Let u €
L?(y) N (Cp)¥(y). By (i) of Theorem 1.5.4, there is a sequence {w,} C C,23 such
that w, — u in L”(y) N (Cp)" (y). Then the sequence {w,} is a Cauchy sequence
in L?(y). By the assumption, {(bw,)"} is also a Cauchy sequence in L”(y). Hence
there existsv € LP(y) suchthat (bw,)" — vin L?(y). Therefore, bw, — Vin (Cé)’.
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On the other hand, in Cg, w, — i, so in Cg and (C%)’, bw, — bu. Finally, we can
obtain that v = bz and (bw,)Y — (b)Y in L?(y). O

Proposition 1.5.4 Let 1 < p<ocoand p’' = (1 — p~')~\. Then b € M,(y) if and
onlyifb_ € My(y), where b_(§) = b(—§), and ||bllm, ;) = 16— M, ()- Denote by
B and B_ the operators corresponding to b and b_, respectively. Then B and B_
are dual operators in the sense that (Bu, v) = (u, B_v) for all u and v. Hence they
have the same spectra o (B) = o (B_).

Proof In (iii) of Theorem 1.5.4, we use the Parseval formula twice, and the proof is
completed. [

We also need the following lemma.
Lemma 1.5.2 Denote by L;,.(—o0, 00) the Fréchet space of all locally integrable

functions on (—00, 00). Let 1 < p < 2.

(i) If u € LP(y), then it € Lj,.(—00, 00), and the mapping u — U is continuous
Jrom L (y) to Lioc(—00, 00).
(ii) Ifu € LP(y), then Bu = bil.

Proof Let 6 be a C?-function on (—00, c0) with support in [—1 — €, 1 4 €] which
equals to 1 in a neighborhood of [—1, 1]. For s > 1, define 6,(§) = 6(&/s). Then 6,
is an entire function and satisfies for some c.,

(1 +121)16(2)] < ecJImg |t (eMFosmmel 1),

Hence for all z satisfying [Im¢| < M, |9vs ©)| < f:(¢]), where f; is a L'-function
with the norm satisfying || f;||; < c;M~'exp((1 + €)sM). By Young’s inequality,
there exists a constant ¢, ; such that

@) L@y < cpsIWllLee)-

Then by Titchmarsh’s restriction theorem, we obtain that for all w € Cg,
”05W||p’ g Cp ” (OSW)\/ ” L7 (R) g Cp,s ”VVV||LI’(;/)~

Because L? N (Cp)" () is dense in LP (), we can prove that for any u € L?(y), the

Fourier transform # is equivalent to a locally integrable function. Hence (ii) holds.
O

It is well-known that if b is a Lebesgue measurable function on (—o0, 0c0) which

satisfies b = (Eu\) forall u € L' N L?(y) and a bounded linear operator B, then
b € L®(—00,00) and ||b||s < ||B]|. For LP-Fourier multipliers on the Lipschitz
curve y, we can prove a similar result.

Theorem 1.5.6 Suppose 1 < p < oocandletb € M,(y).
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(i) The spectrum o (B) of the operator B corresponding to the function b satisfies
o D ess —range(b).

(ii) N1blloc < 161Im,p)-
(iti) M,(y) is complete, and so is a Banach algebra.

Proof (i) We first suppose 1 < p < 2.Let B(A, p) and B(A, p) denote the open ball
and the closed ball centered at A with radius p, respectively. Assume that . ¢ o (B).
There exist x and p > 0 such that for all u € B(X, p), (B — nl) is invertible and

satisfies ||[(B — uI)~!|| < k. Let 6, be the function used in Lemma 1.5.2, where
€ < 1. Foru € L?(y), define the operator Fj , as

Fy(u) = 6 % (B — D)™ (0 % u).
Then

1Py u )o@ < €pasll(B = D)™ (6 % w)llLeg)
<

KCpas |05 * Loy < kCpsCpasllill Loy
We can see that, foru € LP(y),
(b — W) (F ) =0,
and || Fy , || < ¢k, where ¢, depends on s and is independent of . Hence we can get
165/(b — Wlloe < I1Fs ull < sk
So the measure of the set
{b(&), —s <& <IN B, ()™

is zero. On covering B(x, p) with finitely many balls of the form B(u, (cyk)™ "), we
can see that the measure of the set

{b(§), —s <& <s}NBQ, p)

is also zero. Taking a sequence {s} which tends to infinity, we know
B(r, p) N ess-range (b) = 0.

This implies that ess — range(b) C o (B).

For the case 2 < p < 0o, we can use the duality and Lemma 1.5.4.
Now we prove (ii). It is obvious that
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I1blloc = supf{|A|, A € ess-range(b)}
< sup{|Al, A € a(B)} < ||BIl = 1bllm, )

Now we prove (iii). It is sufficient to verify that M,(y) is complete. Let {b,}
be a Cauchy sequence in M, (y) and let B, be an operator corresponding to b, on
L?(y). Then B, converges to an operator B on L”(y) in the operator norm. By
(ii), b, tends to b € L*®(—o00, 00) in L. So it can be deduced immediately that
be M,(y),b, — bin M,(y), and the operator corresponding to b is B. (I

1.6 Remarks

Remark 1.6.1 In[8], A. McIntosh and T. Qian give another proof for the main results
of Sects. 1.3 and 1.4. Precisely, let y be a Lipschitz curve: y (x) = x + i A(x), where
tan~! |A'|loo < @ < /2. The set Sg is defined by

{zeC: |argz| < wor |arg(—z)| < w}.

They obtain the following result. Suppose that ¢ is holomorphic in Sg and satisfies
|p(z)] < C/|z|. Let C.(y) be the class of all continuous functions with compact
supports. For the operator

Tf() = / 6 — O F @)L, | e Caly).z & suppl,

the following conclusions are equivalent:

(i) T can be extended to a bounded operator on Lz(y);
(ii) There exists a function ¢; € HOO(SB)) such that for any z € Sg, ') =0 @)+
¢ (—2).

Remark 1.6.2 1If

{ pe—-=in"'-07,
¢1 =0,

the above operator is the well-known singular Cauchy integral operator on y. If N is
small enough, the L”-boundedness of the operator is obtained by C. P. Calderénin [9].
R. Coifman, A. Mclntosh and Y. Meyer prove that the L”-boundedness for arbitrary
constant N ([10]). From then on, other mathematicians give several different proofs.
For example, in [11], R. Coifman and Y. Meyer obtain that the L”-boundedness
of singular Cauchy integrals can be used to prove the L”-boundedness of other
convolution singular integral operators. We refer the reader to [5, 12] for further
information. As a summary of this chapter, we give the following theorem. This
theorem indicates that any convolution type Calderén-Zygmund operator on the
Lipschitz curve y can be regarded as a special case of Theorem 1.4.3.
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Theorem 1.6.1 For some i > w, let ¢ be a holomorphic function on 52 such that
for a constant ¢ and all 7 € §°, |p(2)| < clz|~". Suppose S is a bounded linear
functional on L*(y) and

(Su)(2) = / 6z — Eu(E)dE.
Y

for all compactly supported continuous functions u and 7 € y outside of the support
of u. Then there exists b € H°°(Sg), w,0 < wando € Csuchthat S = b(D,) + al.
Specially, if o < v < u, there exists a bounded holomorphic function ¢ = G1(b)
on SO such that for all z € S°, ¢'(z) = ¢(2) + ¢ (—2).
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Chapter 2
Singular Integral Operators on Closed oo
Lipschitz Curves

In Chap. 1, we state a theory of convolution singular integral operators and Fourier
multipliers on infinite Lipschitz curves. A natural question is whether there exists an
analogy on closed Lipschitz curves. In this chapter, we establish such a theory for
starlike Lipschitz curves. A curve is called a starlike Lipschitz curve if the curve has
the following parameterization: ¥ = {exp(iz) : z € y}, where

y=lr+igw): ¢ e L¥(—m 1D, g(—m) = g(m) .

It can be proved that the starlike Lipschitz curves defined using such parameterization
are the same as those defined as star-shaped and Lipschitz in the ordinary sense.

In the same pattern as in the infinite Lipschitz graph case, we can define Fourier
series of L? functions on y. The question can now be specified into the following
two:

The first, what kind of holomorphic kernels give rise to L?-bounded operators on
starlike Lipschitz curves y ?

The second, is there a corresponding Fourier multiplier theory? In other words,
what complex number sequences act as L”-bounded Fourier multipliers on the
curves?

It should be pointed out that these questions are not trivial even for the case p = 2,
as the Plancherel theorem does not hold in this case. However, on the other hand, the
case p = 2 is essential, as the boundedness for 1 < p < oo can be deduced from the
L? theory using the standard Calderén-Zygmund techniques.
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2.1 Preliminaries

Let y be a Lipschitz curve defined on the interval [—, 7] with the parameterization
y(x) =x+ig), g:[-m, 7] > R,

where R denotes the real number field, g(—n) = g(), g’ € L®°([—n, w]) with
llg'llcc = N. Denote by py the 27 -periodic extension of y to —oco < x < oo, and
by ¥ the closed curve

y = {exp(iz) 1z € y} = {exp(i(x+ig(x))) - <x < 71}.

We call y the starlike Lipschitz curve associated with y.
We use f, F and F to denote the functions defined on py, y and ¥y, respectively.
For F € L*(¥), the nth coefficient of F on ¥ is defined as

A _~ dz
Fy(n) z ”F(z)?-

2mi 7

In the case of no confusion, we will sometimes suppress the subscript and write
F(n).
Set
o = exp(—max g(x)), T = exp(— min g(x)).

We consider the following dense subclass of L?(¥):
AG) = {f(z) : f(z) is holomorphic in o — n < |z| < T + n for some 1 > 0}.

Without loss of generality, we assume that min g(x) < 0 and max g(x) > 0. In the
case, the domains of the functions in A(Y) contain the unit circle T, and by Cauchy’s

~ ~ ~ ~
theorem, weknow Fy(n) = Fr(n).If F and G belong to A(¥), by the Laurent series,
we can obtain the inverse Fourier transform formula

Fo= Y Frma, 2.1)

where z is in the annulus where F is defined. We apply Cauchy’s theorem to get the
Parseval identity

1 ~ o~ dz © A 2
- /y FoGoT = Y FrmGyt-n. (22)

n=—00
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Similar to Chap. 1, we will use the following half and double sectors on the
complex plane C. For w € (0, 7/2], define the sets

Sg,Jr:{ze(C: |arg(z)|<a),z7$0},

So _=-50 .. 80 =8, Us"

w,+’ Yo w,—=’

and
o, =s0u [z eC: Im@z) > o},

w

CO’_ = SgU [z eC: Im(z) < O},

where S0 ., 89, CY , and C? are shown in Figs.1.2, 1.3 and 1.4. Let X be one of
the sets defined above. Denote by

X(n):Xﬂ{z € C: |Re(2)] én}

the truncated set and by

o0

pxe = {X(n) + 2k7r}

k=—00

the periodic set associated with the truncated set. The graphs of Sg’i (), Sg () and
CY , () are shown in Figs.2.1, 2.2 and 2.3.

(1) The figures of the sets SO | and S _ are as follows:

[ Q-

Fig.2.1 SO _(m)U S, (m)
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(2) The sets C) _ () and C), _ () are shown in the following figures:

We also use the sets of the form exp(i0) =

{exp(iz) :

z € O}, where O is the

truncated set defined above. Let Q be a double or half sector defined above. H*(Q)

denotes the function space

{ f:Q — C: fisbounded and holomorphic in Q}.

If no confusion occurs, we write || -

lloo as || - lz=(0)-

Letb € H“(Sg), w € (0, w/2]. Then b can be divided into two parts: b = b* +

b, where

Hence, b* € H‘X’(S0 4

l

bt = bX{z: Re(z)>0}»
= DX{z: Re(z) <0}

(2.3)

In each of the followmg statements, the symbol “+” should be read as either all

u+”

GE(bH)(2)

=¢*(2) =

, or all “—”. The following transform has been used in Sect. 1.3:

1
/ exp(iz¢)b(¢)de, zeC
2;1 o
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where ,ogt denotes the ray s exp(if), 0 < s < 00, 6 is a constant which depends on
zZ € Cg,i and satisfies ,oei C Sg,i. Also

GE(bh)(2) = ¢ (2) = 5 ¢pE(0)de, z€ 8D L.
*(2)

where the integral is along any path from —z to z in Cg, L

In what follows, we denote by co, c¢i, C the fixed constants, and by C,, ,, the
constants which depend on w, i and so on. These constants may vary from one
occurrence to another. For b € H*°(S?), using the decomposition b = b + b~ and
Theorem 1.3.2, and letting

p=90"+¢", b1=0+¢,

we can see that the following two theorems are the main results obtained in Sect. 1.3.
We reformulate them for the sake of convenience.

Theorem 2.1.1 Letw € (0, 7/2]andb € H"O(Sg). Then there exists a pair of holo-
morphic functions (¢, ¢1) defined in Sg and Sg’+ such that for any u € (0, w),

i) 16 < Copulblio/lzl, z € Sp;
(i) ¢1 € HZ(S) ), Id1llgese ) < Coullblloo, and ¢1(z) = ¢(2) +¢(—~2), z €

0 .
Sa)n“

(iii) forall f € S(R)

@m! / b f—ode =timf{ [ g0 f)dx + i@ O}

[x[>e€

Theorem 2.1.2 Letw € (0, w/2] and b € H*®(S°). There exists a pair of holomor-
phic functions (¢, ¢1) defined in S° and Sg’ 4 satisfying

(1) there exists a constant cy such that

c
()] < —. z €8
|zl
(ii) there exists a constant ¢y such that || || g~(s0 ) < c1, and
$1(2) =¢(2) +d(—2), z€ Sy .
Then for any 1 € (0, w), there exists a unique function b € Hoo(Sg) such that

D11 1250y < Coo (o + €1),

and the function pair determined by b according to Theorem 2.1.1 is identical to
(¢, ¢1). Moreover, for all complex numbers & € S°, the function b is given by
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—> 00

b(¢) = lim lim (f exp(—iéx)p(x)dx + (])l(e)).
e~>0N e<|x|<N

2.2 Fourier Transforms Between S and pS? (r)

Theorem 2.2.1 Letw € (0, w/2] and b € HOO(SS)), and let (¢, ¢1) be the function
pair associated with b in the pattern of Theorem 1.3.2. Then there exists a pair of
holomorphic functions (®, ®1) defined in SO () and Sg, (), respectively, satisfy-
ing, for every u € (0, w),

(i) @ can be holomorphically and periodically extended to pS° () and

Co.ullbllo

|®(2)| <
|z]

0
, Z € Sﬂ(n).
Moreover, ®(2) = ¢(2) + ¢o(2), z € Sg (1), where ¢ is a bounded holomor-

phic function in S (1);
(i) @1 € HX(S) , (1)), [Pl aeese,) < Coullblloo, and

' (2) = @(2) + (—2), z € S°(7);

(iii)) ® and ® are uniquely determined (modulo constants) by the Parseval formula.
Precisely, for any continuous 2w -periodic function F defined on R,

27 Z b(n)F (—n) =!i§3)</5

n=—0o0

S(x)F(x)dx + &4 (E)F(O)),

<l

where F(n) denotes the nth Fourier coefficient of F, and b(0) = %Cbl ().

Proof By the Poisson summation formula, we define & as

O(z) =21 Y $(z+2km), z € pSH(n), (2.4)

k=—00

where the summation takes the following sense: there is a subsequence {n;} of {n}
such thatforall z € S°(rr), when! — oo, the partial sum locally uniformly converges
to a 2 -periodic and holomorphic function satisfying the assertion (i). In the sequel,
we call such sequences applicable sequences. Moreover, we shall show that the limit
functions defined through different applicable sequences differ from one another by
constants which are bounded by c||b|| -
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We use the following decomposition

n +n n
> @ +2kn) =p@) + Y (@ +2km) — pQhkm)) + Y ¢ (k)

k=—n k50 k=1

=@ +Y +) .
1 2

We will prove that the series ), locally uniformly converges to a bounded holomor-
phic function in Sg (7r), and some subsequence of the partial sums of >, converges
to a constant dominated by C,,||5|| .

By (i) of Theorem 2.1.1, Cauchy’s theorem and the fact that ¢ is a holomorphic
function, we can deduce the estimate:

C
[¢'(2)] < ﬁ, ze S°,

so the convergence of ), is proved. For ) ,, we use the mean value theorem for the
integrals to get

> oikm = [
k=1 m =
= 4120+ D) — ¢12m)

+ Y [#h@km) = Re(¢] 60) — im(@i o) |.
k=1

2(n+Dm

9l ()dr + Y [#1Ckm)  Re(9](60)) — iIm(@] (n0)) |
k=1

where &, ni € (2km, 2(k 4+ 1)7r). By the estimate of ¢’, the above series converges
absolutely. It can be deduced from the boundedness of ¢, that there exists an applica-
ble subsequence {n;} such that ¢, (2(n; 4+ 1)7) converges to a constant cy. Therefore,
we have

1 R
S0 = 9@+ Y [#(z+ 2km) — p(2km) | + lim 3" gj2nm)

k#0 n=I
= ¢(2) + ¢o(2) + co,

where ¢ is a bounded holomorphic function in 52 (1), co 1s a constant depending on
the subsequence {n;} chosen. At the same time, ® can be extended holomorphically
to pS? (), and the different ®’s associated with different applicable sequences may
differ from one another by constants dominated by c||b|] -
Now we prove (ii) and (iii). We use the decomposition b = b™ + b~ given in
(2.3). Define
b (z) = exp(Faz)b*(2), o > 0.
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Let ¢* and ¢ be the functions associated with b* and b™, respectively. By
Remark 1.3.1, p%(-) = ¢+ (- & i), and the latter are inverse Fourier transforms of
b*%. Now we define the corresponding periodic functions ®*¢ and holomorphic
functions ®* in pCY , (), respectively, which satisfy the size condition in the
assertion (i). It is to be noted that for all ®*%, we choose the same applicable
sequence {n;} as we have chosen for ®*. By the estimate in (i) of Theorem 2.1.1
and the fact that ¢ is holomorphic, we can prove that when o — 0, >, is locally
uniformly and absolutely convergent. Let

1

o D (2) = pT(2) + Py Y (2) + ¢

and

1
Edﬁ(z) = ¢*(2) + ¢y (2) + cp,

where ¢3E’“ and qbgt are holomorphic and uniformly bounded in Cg, 4 (7r). Since the
convergence as n; — 0o is uniform for « — 0, we can change the order of taking

limits n; — oo and o — 0, and conclude that q)i'“, qﬁoi “ and C(j)[ are convergent
locally uniformly in CJ) , (7). Hence,

lirr%) O (7) = dF ().

Notice that for fixed o, ®** € L>®([—m, ]), and when n; — o0, the series which
define &+ converges uniformly in x € [—m, 7 ]. For all non-zero real £ in the sense
of (3) in Theorem 2.1.2, we have

T np

] T

— | exp(—iEx)®T*(x)dx = f exp(—i£x) lim § ¢ (x + 2km)dx
27‘[ —x —x l—>ook

=—ny

oo

= / exp(—i&x)¢™ (x)dx = b™* ().

oo

In particular, {p**(n)}, n # 0, are the standard Fourier coefficients of ®*¢. If F is
any smooth periodic function on [—, ], then Parseval’s identity holds:

27 Z b (n)F(—n) =fn O (x)F (x)dx,

n=—o0 -

where .
b (0) = (2n)—1/ dF(x Lia)dx.

-7

Let € > 0. Since F (n) decays rapidly as n — 00, on letting « — 0+, we have



2.2 Fourier Transforms Between SO and pS0 () 51

o0
27 Y b*m)F(-n) = lim { O (x + ia) F(x)dx
a=>0+ U J_r 2 \(—e.0)
n=—oo 5 5

+/ O (x +ia)(F(x) — F(0))dx
lx|<e
+ / OF(x + ioc)F(O)dx}.
lx|<e
Then we can get

lim OF(x +ia)F(x)dx = f &F(x)F(x)dx

=0+ Sz 2\ (—€,0) [~ 7]\ (—€.€)

and

1
limsup/ |®E(x +ia)| - |F(x) — F(0)|dx < lim sup/ — -« |x|dx < Ce.
lx|<e \

a—0+ a—0 x|<e |)C|

Define
OE() = / & (n)dn,
3% (2)

where §%(z) is a path from —z to z in CgA, 4 (7). Hence for dﬁ, (i1) holds and

lim d*(x i) F(0)dx = & () F(0).

a—0+ |x|<e

This gives Parseval’s identity associated with b™:

e—>0

27 Y b*(m)F(—n) = lim </ dE(x) F(x)dx + @f(e)F(O)),
[-7. I\ (—€.€)

n=—00

where b*(0) = %@f(n). Note that if we replace o* by ®* + ¢* in the above
formulas, then, correspondingly, we need to replace b*(0) by b*(0) + ¢ in order
to make the formulas still hold. Since ® = ®* + &, on letting ®; = CDT + &7,
we see that (ii) and (iii) hold. This completes the proof. U

Remark 2.2.1 When we prove Parseval’s identity related to b € H*(S?), the value
of b at the origin is naturally involved. For the sake of convenience, we take b(0) =
%CDI () in consistency with the formula as shown in the theorem. The proof of the
theorem indicates that adding a constant to @ does not change the Fourier coefficients
6(}1) = b(n), n # 0, but we should add the same constant to 5(0).

Theorem 2.2.2 Let w € (0, w/2] and (®, ®y) be a pair of holomorphic functions
defined on pS° () and Sg’ (), respectively, satisfying
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(1) @ is 2mw-periodic, and there exists a constant c( such that

Co 0
P (2)| < =k z €S8, (m);
(ii) there exists a constant c| such that ||, ||Hx(sg’+(7,)) < ¢y, and

P (2) = ®(2) + P(—2), z € Sy, ().
Then for any i € (0, w), there exists a function b* such that b* € H°°(Sg) and
16" 1 1= s0) < Cpuleo + c1).
By Theorem 2.2.1, the function pair determined by b* is identical with (P, @)

(modulo constants). Moreover, b* = b*T + b*~,

1
b%ﬂm=——nm<f emPﬂm¢&M2+¢ﬂd>n€Sgg(2®
A%(e,0,In]71)

27T €—0

where 0 = (u+ w)/2, A%(€,0,0) =1(€,0) Uct (9, 0) UA*(®, 0). Here when
o<,

(e, 0) = {Z=x+iy: y=0,e < £x <o},
ct0,0) = [z =opexp(ia) : afrommw £0 tonw, and then from QO to $9],
A%@®,0) = {Z € Cg,i(n) :z=rexp(i(r £0)),r frommsech to o,

and z = r exp(Fif),r fromo to secO},

when ¢ > w,
I(e,0) =I%(e, ), ¢EB,0) =0, 1), AT6,0) = AT, n).

Proof The integral is along the path A (e, 6, |n|™"), see Figs.2.4 and 2.5.

Fix u € (0, w) and write b* as b in the rest of the proof. For all € € (0, )
andn € Sg U {0}, define b.(n) = bj(n) + b_(n), where bf are the functions in the
definition of b* in the theorem before taking the limit as € — 0. We see that for all
€ be(0) = Ly (m).

For |17|’E < 7, applying the estimate in Theorem 1.3.3, we can prove that b, (1)
is uniformly bounded, and El_i)l&_ b.(n) = b(n) exists.

If |n|~! > m, for the integral over the contour (e, 7r), we use the same argument
as to the integral over I(e, |n|~") for the case ||~' < 7. To estimate the integrals
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T
SNl

%

)
\

o
i SR

=

e o)ucto.@)UuA*t(o.8) o= I"e.o)uc o) UAT(0.68), o>

Fig. 2.4 [T (e,0)Uct(0,0) UAT(0,0)

¥ y!
-n "} -;I‘.‘II\_‘Q“ '.ﬁ'-',:’f’; (ni _}TZ E!‘\,?\*"" -,s’v",' .
—€ € X (3 —£ x
e 0) U (2,8 UA-(0,6), 0 <7 I(e.0) UC (@.6) UA(2.6). 0 > 7

Fig. 2.5 [7(e,0) Uc (0,0) UA (0,0)

over ¢* (6, m) and A(, ), we use Cauchy’s theorem to change the contour of
integration and so to integrate over the set

{z:x+iy:x= —m,y from — (£x)tan6 to 0, and x = 7, y from O to —(intan@)}.

Howeyver, by the condition =Re(z) > 0, it is easy to prove that the integral over the
above contour is bounded. Then b is well-defined and bounded.

Let F be any 2m-periodic continuous function on [—, 7]. Expanding F in a
Fourier series and using the definition of b, we have

[o.¢]

21 Y be() Fmmicny = / ®(x)F(x)dx + ®1(€)F(0).
n=—00 e<|x|<m

On letting ¢ — 0, we get

27 Y b()F g (—n) = lim ( /

n=—00 <lx|<m

O(x)F(x)dx + &, (6)F(0)>.

Denote by (G (b), G1(b)) a pair of holomorphic functions associated to b in the
pattern of Theorem 2.2.1. It can be deduced from Parseval’s identity that
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e—0

lim (f (G(b)(x) — D) F(x)dx + [G(€) — <I>1(e)]F(0)>
e<|x|<m
=27 (61(0) = b(0) ) 7.7 (0),

where b;(0) is the function associated with (G (b), G(b)) in Parseval’s identity of
Theorem 2.2.1. By Theorem 2.2.1, we can add any constant to G (b) and accordingly
adjust the value of b, (0) such that (iii) of Theorem 2.2.1 holds. In particular, we can
take a constant such that b, (0) — b(0) = 0. The right hand side of the last displayed
equality then becomes 0. Using an approximation to identity { F,,} with the property
F,(0) = 0, we conclude that G (b)(x) = P (x) for x # 0. Because of analyticity, we
know for all z € Sg(n), G(b)(z) = ®(z). For G{(b), using (iii) of Theorem 2.2.1
together with the assumption (ii) of ®;, we can get &} = G|(b) and ®; — G, is a
constant. Then by the use of

lim [G1(b)(©) — @1(6)] =0

we have ®; = G (b). The uniqueness of b can be proved similarly. (]

2.3 Singular Integrals on Starlike Lipschitz Curves

The results obtained in Sect.2.2 can be applied to study the relation between the
singular integral operators defined on periodic Lipschitz curves in Sect.2.1 and the
Fourler multipliers. Taking the change of variable z — exp(iz) and substituting d =
do ( In) and <I>1 d, 0 ( In) in Theorems 2.2.1 and 2.2.2, we obtain the following
theorem

Theorem 2.3.1 Let w € (0, w/2] and b € H>(8%). There exists a pair of functions
(CD <I>1) such that ® and d>1 are holomorphic in exp(i SO (m)) and exp(i SO L),
respectively. Moreover, for any u € (0, w),

() 1P@) < Copllblloo/I1 = zl. z € exp(i Sy (m));
(i) @1 € H®(exp(iSS(m))). 1Pl m=(exptisyiry < Copullblloc and

5o (% &1 : 60 .
' (z) = E(<D(z) + P(z )), z € exp(iS,, , (7));

(iii) For all continuous functions F defined on T,

21 Y bn)Fo(—n) = 1m(1)</
€e— N

n=—0oo

5(Z)17(z)dz—z + 51(exp(i6))f(1)).

nz|>e€,zeT

where ’I?T (n) is nth Fourier coefficient of f and b(0) = %51 (exp(im)).
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Theorem 2.3.2 Let w € (0, 7/2] and (D, ®y) be a pair of functions defined on
exp(i S0 (m)) and exp(lS (), respectively, satisfying

(1) there exists a constant cy such that

~ C .
1B (2)| < ﬁ z € exp(i % (m));

(ii) there exists a constant c¢| such that ||®, | o exp(is?, oy < €1, and

1 1
D(z) = (d>(z) + (- )), z €exp(iS? 0.4 ().

Then for any i € (0, w), there exists a function b* in H °°(Sg) such that
16" 150y < Cpuleo + ).

The function pair determined by b* according to Theorem 2.3.1 equals to (%, 51)
(modulo constants). Moreover, b* = b*T + b*~,

b:l:( L 1 7’7% o / 0
n) = im F4 + ®i(exp(i€)) |, n €S, 4.
27 e—0 ilnzeA%(e,0,0) <

where A% (¢, 0, 0) is the path defined in Theorem 2.2.2, and

D, (exp(ie)) = / P (exp(iz))dz,
1(e)

where [(€) is any path from —e to € lying in Cg,i

The following corollaries are in terms of holomorphic extension of series with
positive and negative powers and can be deduced from Theorems 2.3.1 and 2.3.2
immediately.

~ +o00

Corollary 2.3.1 Let{b, }n G EI®, D)= Y b |7 < Landw € (0, 7/2).
n==+1

If there exists 8 > 0 such that @ +3 < 7/2, and there exists a function b €

H>(S0 pavy 1) such that for all £n = £1,X£2, ..., b(n) = b,, then the function o
can be extended holomorphically to the domain exp(icg 15,4+ (7). Moreover, we get

w,8

d(2)| <
[P (2)] 1z

, z€exp(iCy ().

Corollary 2.3.2 Let w € (0, /2) and let ®bea holomorphic function satisfying

1B(2)] < , 2 €exp(iC (1))

C
11—z
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Then for any u € (0, w), there exists a function b* such that b* € HOO(Sgi) and

o +o0
®(z) = Y baz". Moreover, b* = b + b, and forn € S _,
n==1

1 . . . ~ .
b“E() = =— lim (/ exp(—inz)P(exp(iz))dz + <I>1(exp(le))),
27 €0+ \ J_jnzea*(e.0.0)

where A% (e, 0, o) is defined by Theorem 2.2.2, and

B, (explie)) = / B (exp(iz)dz,

1)
where l(€) is any path from —e to € in Cg’i.

Remark 2.3.1 As indicated in Corollary 2.3.2, the mapping d — b satisfying
5(1) = > b(n)z" is not single-valued. In fact, if @y # w,, then both b*' and
b satisfy the requirement. In general, b*' # b*2. This can be verified by using
d(z) =z2",n € Z7.

Corollary 2.3.3 Forany w € (0, 7 /2), there does not exist any function b such that
be H°°(S0 ) and satisfies b(n) = 1 for n = 2% k=1,2,..., and b(n) = 0 for
the other positive integers.

Proof Consider the function
@) =z+2 425+ +F

It is well known that ® does not have any holomorphic extension across any interval
on the unit circle, and according to Corollary 2.3.1, it is not induced by a function b
in H*(S, 0 ) O

For the functions b and F defined in Theorem 2.3.1, by the Laurent series theory,
the series

S b Fr(m:"

n=—0o0

locally uniformly converges toa holomorphlc function in the annulus on which F is

defined. Noticing that F T(n) = F 7(n), we can define an operator Mb ?I(F) —
AR as

My(F)@) =21 Y b Fr(n)z".

n=—00

On the other hand, for the function pair (5, ® 1) occurring in Theorem 2.3.2, there
holds
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~ ) ~ 1~ d ~ ) ~
1%, F () = lim ( / S HFam =L + <1>1(exp(zet<z))>F(z)>,
72|Re(i~In(nz=1))|>e.ney n

e—0

where 7(z) is the unit tangent vector of y at z in Sg, (). We have the following
theorem:

Theorem 2.3.3 Letw € (arctan N, 7/2], b € H™(S2) and let (®, ®,) be the pair
of functions corresponding to b in the pattern of Theorem 2.3.1. Then the following
conclusions hold.

() T3, isawell-defined operator from A(Y) to A(Y), and in the sense of modulo
constants, ~
T35, = Mp.

(i) 1\7;, can be extended to a bounded operator on L*(¥), and the norm is dominated
by c|Ibll -

Proof (i)Foranya > 0, deﬁneéf*"‘ ¢) = —z 8™ (—£), where b is the function
defined in Theorem 2.2.1. Let (CDf*“ , (be’“)l) be the pair of functions corresponding
to b in the pattern of Theorem 2.3.1. By (iii) of Theorem 2.3.1 and Cauchy’s theorem,
we have

Mo F) =21 Y b2 F5(n)

n=—00

=27 3 b Fr(n)

n=—o00
~ dn
=/d>f’ i HEmL!
T n

~ ~ d
= [[@EearhFa ).
v n

Similar to the proof of Theorem 2.2.1, taking the limit « — 0 and noticing that
dE(m = (@™,

we can get the desired equality for b* and b.
(i) Now we prove the boundedness of the following operator:

To.on F()=1im | / (2 = F(Ddn+ By (et @) F @)}, FEAR),
=0 U ecRez—n)i<n

where 7(z) is the unit tangent vector of y at z in Sg’ 4+ (). Here A(y) denotes the

class of all 27 -periodic holomorphic functions satisfying: F € A(y) if and only if

F = F o (i~'In) € A(¥). By the decomposition of (i) of Theorem 2.2.1, we have
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€,—0

+ Boz ~ M F ()
7 2|Re(z—n)|>€y

+e / F()dn + &1F(2).

-7

To,0)F(z) = lim / ¢(z—n)Fdn
72 |Re(z—n)|>€,

where €, — 0 is a subsequence of the sequence € — 0, ¢; and ¢, are constants.
The second and the third integrals are dominated by the L2-norm of F, while the
first integral is dominated by

sup
e>0

/ ¢z —mFi(n)dn| + cMFi(2), Re(z) € [-m, ],
[Re(z—n)|>€

where for [Re(n)| < 27, Fi(n) = F(n); otherwise F|(n) = 0. MF, is the Hardy-
Littlewood maximal function of F on the curve . By the boundedness of the operators
introduced by (¢, ¢;) and that of M, we obtain the desired boundedness. O

Theorem 2.3.4 Let ¢ be a holomorphic function satisfying |¢(z)| < C/|z| on S.
Assume that y = x +iA(x) is a Lipschitz curve, ||A'||s < tanw. If there exists a
L?(y)-bounded operator T such that

T(f)(2) :/¢><z—¢>f<;>d¢, VfeCy)zd supp f.
Y

where C.(y) denotes the class of continuous functions with compact support on y,
then there exists a function ¢, € H>(S0) such that o =0 +¢(—2), z¢€ SO

Proof Because T is bounded on Lz(y), the formula for 7 can be extended to
1@ = [ e orf .
Y

where f = xo, Q is any finite interval on y and z ¢ 0. Define a new family of
functions ¢¢ = ¢ x(ccc: |-|>¢} and the corresponding operators:

L)) = / 6oz — O f(©)de.
Y

By a standard argument, we can get the operator norm || 7¢ || .2,y 12(y) 15 uniformly
bounded. This implies that for any interval Q on y and any €, we have uniformly:

/ ITexolldE| < | Q. (2.6)
0
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For z € y, denote by y, the curve y — z. Because y is a Lipschitz curve, then y, is
also a Lipschitz curve passing the origin. We also write Q. , = {¢ € ¥, : [¢] < n}.
Fix zg € y. For z; € Q; ,/2, we will prove the following estimate:

T.(xo, (@) — / p()de| < € <0, @)

ceyp.e<|¢l<n

where C is a constant independent of €, 7 and z; € Q2.
In fact, denote by y*(zo, n) the right and the left endpoints of Q;, ,. Define

Sy =:{¢ € y,,, fromzy +y*(z0,n) toz1 + ¥ (z0. 1), 1¢| > €}

and
S, =:{¢ € yo, fromy (z9, 1) to ¥ (20, 1), I£| > €}.
We have
T.xo,, (1) - / b(0)de
teyoe<lcl<n

=/ ¢(5)dg +/ ¢(£)ds.
Si S>

Using the Cauchy theorem, we can reduce the above integrals to the integrals along
circles of radius 1 and € and along the directions of radius within {z € C : n < |z] <
3n/2}. Then from the condition |¢ (z)| < C/|z|, we can conclude (2.7).

From (2.7), we have

| $©)de| < C+ITxo,, |
L€y €<Itl<n

Taking average to both sides of this inequality w.r.t. z; € Q, ,/2 and using (2.6), we
obtain forany 0 < € < n < 00,

Il p()dz| < C. )
L€y e<Itl<n

From the Cauchy theorem, the condition |¢ (z)| < C/|z| and the inequality (2.8), we

have
\(/ +f >¢(¢)d¢\ <c
I=(z7,2) YD
+

where z; ,zf S Sg,i, and /7 (z},z,) is a contour lying in SO’_ from z| to z,,
R P o in O + + —1 1t o] — [
I7(z7, z;) is a contour lying in S, , from z; to zy, and |z | = |z |, |23 | = |z5 |-
Forz € SO ., welet
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1
$1(2) = 5( [ $(0)d¢ + / ¢<;)dc>.
1= (—1,F2) It(1,£2)

Now it is easy to check that ¢, € H*(S?) and for z € S?,
, 1
@) =3(s@+62).

We state the following theorem.

Theorem 2.3.5 Assume that w € (arctan N, m/2]. Let d be holomorphic in
exp(ng (1)) and satisfy (i) OLTheorem 2.3.2 with respect to w. If T is a bounded
operator on L*(¥) andfor all F belonging to the class of continuous functions Co(y),

~ ~ ~ d ~
T(F)(z)=/~<1>(zé‘l)F(§)§, 2 ¢ supp (B,
Y

then there exists a unique function 51 € Hoo(exp(ng’+)), u € (0, ) such that for
F e Coy),

~ 1 /~ ~
3, (2) = E(d)(z) + @(z*l)), z € exp(is?, (1))

and ~ ~
T'(F)=T353,)(F).

Proof On Sg, + (), we define the function ¢ as

d(n) = D(e™).
Then, on the one hand, we can get for n € sg, L),

~ C C
$O] < B < ——— < —.
[T=ei] = ]

On the other hand, let f(z) = F(eiz). For z ¢ supp (F) and & € Y, without loss of
generality, we can write z = ¢ and & = ¢, where z ¢ supp f and w € y. If the
operator

~ ~ ~ d ~
T(F)(z)=/~cb<zs-1)F<s>§, 2 ¢ supp (F),
Y

is bounded on L?(¥), then by change of variables, we can see that

~ =i .vdeiw
T(F)(@z) = /q’(el TTYF (") ——

W
y e
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_ i/¢(n — ) Fowydw
Y
=: Tp(f),

which implies that the operator T}, is also bounded on L*(y). By Theorem 2.3.4,
there exists a function ¢; € H°°(Sg) such that ¢1(n) = ¢ () + P (—n), n € Sg. For
z=¢€" eexp(iSy () withn € SO, (), define

®1(2) = D1(e") =: 1 ().
Then

~ dn d ~ .
®)(z) = d—za(cbl(em))

1 d
ie_""%(d)](n))

1
— oM + d(—n)]
1e'n

ie—m[a(ei") + $(e—i")]
I~ -
;[%)w(z )]

This completes the proof of Theorem 2.3.5. (]

2.4 Holomorphic H*°-Functional Calculus on Starlike
Lipschitz Curves

The purpose of this section is to clarify that the theory of holomorphic H *°-functional
calculus on infinite Lipschitz curves established by A. McIntosh in [1] can also be
established in the case of closed curves. Precisely, we study the relations between
the operator classes M,, T(3 3,, and the holomorphic H*-functional calculus, see
also [2, 3] for further information.

For the functions F € A(Y), we define the differential operator dd—z |7 as

F(z+h)— F(z) ~
— zEY.

d ~
L F@= i
dz ly F&) h%O,HzIJlrhE? h ’

For 1 < p < oo, (LP(¥), L? (¥)) is the dual of Banach spaces defined as follows:

(F, G) =/~f(z)5(z)dz,
Y
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where p’ = (1 — p~!)~!. Now by duality, we define Dy, as the closed operator with
the largest domain in L?(y) which satisfies

o e d
<D;,,,F, G> = <F —z— 5 G>

for all F and G in AY).
Letw € (arctan N, 7w/2] and A ¢ 9. Itis easy to prove Dy, is the surface Dirac
operator on ¥ and %(DA is the functions defined below.
1

Let A ¢ S°. Then on any starlike Lipschitz curve , b(z) = ——; corresponds to the

resolvent of the surface Dirac operator. If Im(A) > 0, by (1.1) and (1.2), we have

| iexp(irz), Re(z) > 0,
$.(2) = { 0, Re(z) < 0.

If Im(1) < 0, then we have

_ 0, Re(z) > 0,
$1(2) = {iexp(i/\z), Re(z) < 0.
It is easy to prove that for every case, ¢, belongs to L'(R) N L?(RR). Hence for the
two cases, we can use the remark made after Theorem 2.1.2.
For Im(L) > 0, we can deduce from the definition that

iexp(ir(z+27)) -
® _ I—exp(ir2m) ° if —m <Re(z) <0,
MO=N o g < Re(r) <
1—exp(iA2m)’ < .
For Im(A) < 0,
—iexp(ir(z—2m)) .
® ) TTexp(-iazn) if 0 < Re(z) <7,
)‘(Z) - —iexp(irz) if — 7 < Re( ) <0
T—exp(—iA2m)°’ < .
For Im(4) > 0,
iexp(ir2m)z* - Inz
¥ ) T=explr2ny if —7 <Re(5*) <0,
M2 = I : Inz
exp(27)° if 0 < Re(%%) < 7.
For Im(A) < 0,
—iexp(—ir2m)z* . Inz
— = if0 <Re(Z*) <m
= l—exp(—iA2m) ° i s
D,(z) =

it e Ing
o (-7 if —7 <Re(F*) <0.
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We can verify that Dy , is the surface Dirac operator on ¥, and in the sense of
Theorem 2.3.3, the function 5~ <I> » 1s the convolution kernel of the resolvent operator
(D7, —A)~ ! Moreover,

1 ~ %)
1Dy, =27l < ||Eq))~” < Z 92 (- + 2l L1y

n=—oo
= [lgallz1(py) < V1 + N2{dist(n, SO}~

The above estimate implies that Dy , is a type w operator. For the H* functions
b with good decay properties at both 0 and co, we can define b(Dy ,) via spectral
integrals as follows:

1
b(Dy.p) = / b)) (D, —nD)~'dn.
Here § is a path consisting of four rays:

{s exp(—if) : s from oo to 0};
{sexp(if) : s from O to oo};
{sexp(—i(mr —60)) : s from oo to 0};
{sexp(i(w 4+ 60)) : s from 0to oo},

where arctan N < § < .
By the above estimates, it is easy to prove that any b(Dy ) is a bounded operator,
and _ o
b(Dy ) =My =T(D,0).

Taking limits of the sequences of Calderén-Zygmund operators, we can extend the
definition of 5(Djy ,) to all functions in H °°(Sg), and prove that

b(Dy,p) = My = T(®, &),
Alternative proofs of the boundedness of the operators can be found in [2] by G.
Gaudry, T. Qian and S. Wang. In addition, when by, b, € H"C(Sg) and oy, «, are
complex numbers,
16(Dy ) < Colllloo
(b162)(Dy,p) = b1(Dy, p)b2(Dy, p)

and
(a1by) + a2b2)(Dy ;) = a1bi(Dy p) + azb2(Dy ).
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Below we shall not restrict ourselves to H°°-multipliers. It should be pointed out
that all the results and methods of the Fourier multiplier theory for infinite Lipschitz
curves can be adapted to the present case. The main difference is that the function
class A(Y) has even better properties. When we deal with the kernels on y, we refer
to its corresponding kernel on py via the Poisson summation formula. The following
theorem can be proved via the corresponding Schur lemma, and we omit the proofs.

For b = {b,}° € [°°, define

n=—00

151w, = sup { | Y- b Fmz"

CF 5 < 1},
LoG) ” ”LP(y) B

My ={b: 1ol < o0}.

We call the functions b in M, ()) the L?(y)—Fourier multipliers.

Theorem 2.4.1 Let ® be a holomorphic function defined on a simple connected
open neighborhood of the set

~

V—)7={z—$: z,v“;e?]

satisfying |5(r exp(i0))| < ¥ (exp(if)), where ffn Y (exp(i6))dO < oo. Then
b= @M € M), 1< p <o,

and the corresponding convolution operator Tg can be represented as

dn

T3 F(2) =/ﬁ>(zn‘l>f<n) n”, F e A®).
Y

Let 71 and }; be two curves of the type under consideration. Define
MG 5 = [b e bl .50 < 00,

where

b FW v ~ 5
12,60 F )"l o Feagnnagm).

1Bl .50 = sup | —="=
! I F e

If %3 is the third such curve, and by € M,(y1, ¥2), b, € M, (32, ¥3), then byb, €
M, (%1, ¥3), and

162611101, 5.5 < 1021lm1, 5.5 101 1m1, G 7 -
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Theorem 2.4.2 Let b € [*° and fg(n) = b(n) exp(2B|n|). If for some B > M =
max A(x), fg € M,(T), where T is the unit circleand 1 < p < oo, thenb € M, (V)
and

1613, 57 < @rpY*(B> — M*) ™ (1 + N2l fallaa,(m)-

For flat curves y, it is obvious that |||l s, ) < C5 bl But the following exam-
ple indicates that in general case, this fact may not hold.

Take y(x) = x + i A(x) to be a piece of the Lipschitz curve defined on [—m, 7]
with g(0) > 0 and m = min g(x) < 0. For any integer S, let bg be a [*°-sequence
satisfying bg(n) = 1 for n < S and bg(n) = 0 otherwise. Using F(z) = #p(m as
the test function, we can prove that for any € > 0,

b5y 2 Ce exp(=S(m + ¢€)).

2.5 Remarks

Remark 2.5.1 We can obtain the following generalizations of Theorems 2.3.1 and
2.3.2. Let y be a closed starlike Lipschitz curve. Suppose that the multiplier b
satisfies |b(z)| < Clz+£1]® in any S, +, 0 < u < w. Then it can be proved that
P (z) = Y2 b(n)z" satisfies

C
(@) < m’zecu,i»o<ﬂ<w- (2.9)

Conversely, if the holomorphic function ¢ satisfies the estimate (2.9), then there exists
a function b such that |b(z)| < C|z = 1|° and ¢ (z) = Zjﬁil b(n)z7", see Sect.7.1
for the details.
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Chapter 3 ®
Clifford Analysis, Dirac Operator ez
and the Fourier Transform

In this chapter, we state basic knowledge, notations and terminologies in Clifford
analysis and some related results. These preliminaries will be used to establish the
theory of convolution singular integrals and Fourier multipliers on Lipschitz surfaces.
In Sect. 3.1, we give a brief survey on basics of Clifford analysis. In Sect. 3.2, we state
the monogenic functions on sectors introduced by Li, McIntosh, Qian [1]. Section 3.3
is devoted to the Fourier transform theory on sectors established by [1]. Section 3.4 is
based on the Mobius covarian of iterated Dirac operators by Peeter and Qian in [2].
In Sect. 3.5, we give a generalization of the Fueter theorem in the setting of Clifford
algebras [3]. In Chaps. 6 and 7, this generalization will be used to estimate the kernels
of holomorphic Fourier multiplier operators on closed Lipschitz surfaces.

3.1 Preliminaries on Clifford Analysis

In this section, n and M denote the positive integers, L equals to 0 or n 4 1, and
M > max{n, L}. The real 2 -dimensional Clifford algebra Ry, or the complex
2M_dimensional Clifford algebra C ) has basis vectors es, where S is any subset in
{1,2, ..., M}. Under the identifications

€0 = égp,
ej=ey, 1< j<M,
the multiplication of basis vectors satisfies

eo=1, e?z—e():—l, 1<j<M, eg=1;

ejex = —erej =e(jp, 1 < j <k < M;
€jéej...ej =eg, 1 <J1 <j2 < v <js < MandS:{jl,jz,...,js}.
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Let u =) uges and v =) vrer be two elements in Ry, (or Cpyy). Then the
S T

product of u and v can be expressed as

uy = E usvreser,
S.T

where ug, vy € R (or C), ugey is usually written as ugeq or ug, and is called the scalar
part of u.

By identifying the standard basis vectors e;, ez, ..., e, of R" with their counter-
parts in Ry or C(yy, we embed the vector space R"™! in the Clifford algebras Ry,
and C ). There are two usual methods to embed R"*+! in Clifford algebras. We treat
them together by denoting standard basis vectors of R+ byei,es, ..., ey, e, and
identifying e; with either ey or e, .

On Ry and C ), we use the Euclidean norm |u| = (}_ |us|*)!/2. For a constant
s
C depending only on M, |uv| < Clul||v]. If u € R"*!, then we can take the constant

C as 1.Ifu € C"*!| the constant C is taken as +/2.
We write x € R"*! as x = x + xze;, where x € R” and x; € R. We also write
the Clifford conjugate of x as x = —x + x e, where e;e;, = 1. Then

n
- = 2 2 2
XX = XX = E xj+xL=|x| .
=1

The Clifford algebras Rg), R(;) and R, are the real numbers, the complex num-
bers and the quaternions, respectively. An important property of the three algebras is
that every non-zero element has an inverse. Although this is not true in general, but
every non-zero element x = x + xy ey in R"*! has an inverse x ! in Ry In fact,

-1 = |)C|72)E e R ¢ R(M).

For the sake of convenience, we recall some basic knowledge in Clifford analysis.

The differential operator

9 "9
D=D+ —e;, where D = —ey,
2 gy, oL Where 2 gaxke"

XL

acts on C! functions f = Y fses of n + 1 variables to give
s

dfs
E —ekes + —eLeS
axy,

and

d d
fD = Z ﬁeg er + ﬁegel,

=1 axk 8x
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Let f be a C' function defined on an open subset of R"™! with values in Ry, or
Cony- If Df =0, then f is called a left-monogenic function. If fD = 0, then f is
called a right-monogenic function. If f is both left-monogenic and right-monogenic,
we call f a monogenic function. For the left-monogenic function and the right-
monogenic function, each component is harmonic. It is easy to prove that for fixed
¢, the function e(x, ¢) is a left-monogenic and right-monogenic function of variable
x because

d
a—eLe()C, §) = —epitere(x, §)
XL

= —epiefe(x, )

= —ife(x,{) = —De(x, ).

Define a function E on R"*!\ {0} as

k(x) = 1 X

DR 0’

On | x|n+1 X #

where o, is the volume of the unit n-sphere in R"*!. In Clifford analysis, for the
above function E, the corresponding Cauchy integral formula holds.

Theorem 3.1.1 Let 2 be a bounded open subset of R" ! with the Lipschitz boundary
0K2 and the exterior unit normal w(y) defined for almost all y € 9Q2. Assume that f is
a left-monogenic function on the neighborhood of Q U 02 and g is a right-monogenic
Sfunction on the neighborhood of 2 U 9S2. Then

® /Eg(y)n(y)f(y)dSy =0

.. _ g(-x)v X € Q’

(ii) /mg(y)n(y)E(x —ydSy = {0, x ¢ QUIY
[ f, xeq,
(iii) . E(x —yny) f(y)dS, = {0, x ¢ QUIQ.

Proof (i) is a direct corollary of Gauss’s divergence theorem, while (ii) and (iii) can
be deduced from (i) and the following identity which is easily verified:

/ nME(Qy —x)dS, = / E(Qy —x)n(y)dS, =1, r > 0.
ly—xl=r [y—xl=r

We also need the following result.
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Theorem 3.1.2 Let f be a right-monogenic function on R"*'\ {0} and satisfy
|f ()| < C/lx|" for x € R"™1\ {0}). Then for some constant ¢ € C,, f(x)=
cx /x|

For & € R", & # 0, define
x+(&) =1 xike |72
such that x(§) + x—(§) = 1. By (ife;)* = |£|%, we get
X+($)2 = x+(&),
x-()? = x_ (&),
X+ @) x-&) =0= x_(&) x+(&).

Moreover, ife; = |&|x+ (&) — |€]x— (&), and in fact, for any polynomial P(A) =
> ax )y in one variable with scalar coefficients, we have

P(iger) = Y ar(ife)" = P(ENx+ () + P(—IEDX-(&).
k

Hence, the polynomial p in m variables defined by p(§) = P(i€ey) satisfies p(0) =
P(0) and

p(&) = P(ifer) = P(IENx+(E) + P(=IEDx-(5), § #0.

It is natural to associate every function B of one real variable with a function b of n
real variables. Precisely, if |£| and —|&| are in the domain of B,

b(§) = B(i§er) = B(IEN x+() + B(—§]) x-(&).
When 0 is in the domain of B, b(0) = B(0), where 0 denotes the 0-vector in R”.

We repeat this procedure for holomorphic functions of complex variables. At first
for¢ =& +in € C", define

CIE =) ¢ =57 — Inl* +2i (€. n),
j=1

where &, 7 € R”, and note that (ize;)> = |¢ |é. Hence, we extend |&|? holomorphi-
cally to C". When |¢ |é # 0, take £|¢|c as its two square roots and define

1 i§€L>
=—(1=x
1) 2( I<lc

such that
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x+(&) + x-(&) =1,

X+(§)2 = x+(&),

x-()* = x-(0),

X+ (O x-()=0=x_(Dx+()
iser = |¢lcx+() — 1¢lcx-—(8).

Let P(A) = Y _ ax)4 be a polynomial in one variable with complex coefficients, the
corresponding polynomial in n variables is defined by

p(@) = P(icer) =) arite)
k

and satisfies if |¢|% # 0, then

p(&) = P(iter) = P(I]c) x+ (&) + P(=[¢I0)x-(©)
1 (P(ICIC) - P(—|§|c))igeL
+3 ;
2 tqfe

= 3 (Puzie) + P1z1o)

if [¢[2 = 0, then
() = P(0) + P'(0)icer.

Let B be any holomorphic function in one variable defined on the open subset
S in C and let b be the holomorphic Clifford-valued function in n variables. For
all ¢ € C", {£|¢]|c} C S. The correspondence between B and b can be defined as
follows naturally. If |¢ |%C # 0, then

b(¢) = B(iter) = B(|¢]c)x+(5) + B(=I¢lc) x- ()

1 1 (Bl — BItlo))icer
= 3 (BUclo + B-t10) + 3 o

If |¢|2 = 0, then
b(¢) = B(0) + B'(0)igey.

The reason that the above correspondence is natural because not only b is the
desired polynomial when B is a polynomial, but also the mapping from B to b is
an algebra homomorphism. In other words, if F is another holomorphic function
defined on S and ¢y, ¢; € C, then

(c1F +cB)(iger) = c1F(iter) + c2B(iger)

and
(FB)(itey) = F(ite )B(ieyr).
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We give an example. For any real number ¢, define the holomorphic function
E;(A) = e~ with variable A € C. The corresponding function in n variables is
defined as follows. If | |(2: #0,

e(ter, ¢) = Ei(i¢er) = e "Iy, (¢) + el x_(¢)
= cosh(t|¢|c) — sinh(t[¢|0)I¢ | icer.

If|¢]2 =0,
e(tep, ) =1—titey.

Then
e(ter, {)e(ser, ¢) =e((t +s)er, §)

and e(te;, —¢) = e(—tey, ¢). In addition,

d
Ee(teb {) = —ilere(ter, ) = —e(ter, {)iler.

For any complex number «, another example is the function defined by R, (1) =
(A —a)~', A # a. Then

Ry(icer) = (icep —a) ' = (itep +a)(C)2 —aD)7), |¢|2 # o

From now on, although we assume that |§|é ¢ (—o0, 0] and Re|¢|c > 0, it has
been unimportant which sign we assign to each square root of | |?C. Now we prove
some estimates.

Theorem 3.1.3 Let { =& +in € C", where £,n € R", and assume that |§|é ¢
(=00, 0]. Let

. 1 1
6 = tan (—Re|§'|<c) e [0, /2).

Then

() 0 <Rel¢|c < [£] < secORel¢|c,
(b) Rel¢le < I¢lel < secORe|¢|c < [¢] < (14 2tan?6)'/?Re|¢|c,
(©) —6 <arg|¢lc <0,

(@) 1x=(0)] < secO/v/2.

Proof 1t is easy to prove
2 2 2 2y2 2\ 2 2 2
Elel” =lglel = ((I%‘I — )"+ 4, n) ) S EF+Inl" =1

Hence
Re[¢lc < 1I¢lel < [¢] (3.1
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Taking the real part of the identity

2
—E+in?=-2=c)k = (RGICIC + iImICIc) ,

we obtain
1> — Inl* = (Rel¢]e)* — Am[¢|e)? (3.2)

or
21617 — 121* = 2(Rel¢|e)? — [I¢]el*

Therefore, by (3.1), we get Re|¢|c < |€]. In addition, by (3.2), we have
§* < In* + (Rel¢|c)” = (tan® 6 + D)(Re|¢|2.).

This means || < sec ORe|¢|c and (a) is proved.
Another corollary of (3.2) is

121 = 2In1* + (Rel¢|c)* — (Im[¢|c)* < (1 + 2tan® 0)(Rel¢|3),

which implies (b).

(c) is a direct corollary of the inequality ||¢]|c| < secORe|¢|c, and (d) can be
deduced from |¢] < (1 4 2tan?0)'2||¢]c|. O
Define

sh={c=g+inec: [tz ¢ (~o0,01 and [n] < Re(l¢|c) tan u].

By (c) of Theorem 3.1.3, we know that |{|¢c € S2’+((C) and —[¢|c € SO’_ when ¢ €
Sp(C™). So for any holomorphic function B defined on S)(C) = S), , (C)U Sp, _,
the corresponding holomorphic function b in n variables:

b(¢) = B(i¢er) = B(I¢lc) x+ (&) + B(=[¢lc) x- (&)

is defined on Sg (C™). In addition, by (d) of Theorem 3.1.3, if B is bounded, then

161l0e < V2 sec 11| Blloo-

Let
H°°(S2(C")) = H°°(52 (€M), Cpy)

be the Banach space of bounded Clifford-valued holomorphic functions on Sg cm).
We have the following result.

Theorem 3.1.4 The mapping B — b defined above is a one-one bounded algebra
homomorphism from H°°(S2 (©)) o HOO(Sg @€m).
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Proof We only need to prove the mapping is one-one. In fact, this point can be
deduced from the following formula, and the reverse result from b to B still holds:

B(\) =

/lé OO O, % € 50400,

On—1

where o, is the volume of the unit (n — 1)-sphere in R”. O

So far we have considered Clifford-valued holomorphic functions of n complex
variables. What is called Clifford analysis is the study of monogenic functions of n +
1 real variables. In the next section, we will relate these two concepts via the Fourier
transform. We need to introduce the following generalized exponential function:

e(x,l) =e(x +xrer, ¢)
x Oe(xper, ¢)

= ¢l “(67“‘6IC x+() + eXLmCX— €)).

=e

For any x = x + xpe;, € R""!, this function is holomorphic on ¢ € C" and is a
left-monogenic function of x € R**! for any ¢ € C". This function satisfies

{ e(x,De(y,0) =e(x+y,0),
e(-xa _g) - e(_xv é‘)

Specially, when x € R” and £ € R", e(x, &) = /% &) ie., the usual exponential
function in the Fourier theory. Moreover, for any ¢ € C", e(x, ¢)ey is also a right-
monogenic function of x € R"*!. We point out that

1
e(x, ) =expi((x, £) —xrger) = 3 - (i((x, &) —xrgen)).

k=0

3.2 Monogenic Functions on Sectors

On the Lipschitz surface, to establish the relation between holomorphic multipliers
and the functional calculus of Dirac operator, Li, McIntosh, Qian [1] introduced the
monogenic functions on sectors. In this section, we will give a detailed statement for
the function classes K (Sy, ), K(C;ﬂ) and K(C;,M) which will be used in Sect. 3.3
and Chap. 5 below.

We start by specifying some sets of unit vectors in

R’fl = {x:g—}—xLeL e R >0}.

For these unit vectors, we use the metric Z(n, y) = cos™'(n, y).
Let N be a compact set of unit vectors in R’f‘ which contains e; and let
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uny = sup Z(n,er).

neN

Then0 < uy < 7/2.For0 < u < 7 /2 — py, define the open neighborhood N, of
N in the unit sphere by

N,={yeR: |y|=1, Z(y,n) < puforsomen e N}.
For every unit vector n, let C;" be the open half space
ChH={xeR"": (x,n) >0},
and define the open cones in R"*! as follows. Let
Cy, =UICr 1 ne NyJ,
Cy, =—Cy,

Sy, = C];H NCy,-

Definition 3.2.1 K (C;ﬂ) is defined as the Banach space of all right monogenic
functions & from Cj\,'# to Car) satistying

1
1®lk(cy,) = 700 sup IX[1|®@)] < 0.
xeCy,

Similarly, we can define K (C];”).

Definition 3.2.2 Define K(Sy,) as the Banach space of all function pairs (¥, o),
where @ is a right-monogenic function from Sy, to Cumy, and @ is continuous on
(0, 400)e; such that (&, ) satisfies

®(Rey) — D(rey) = f ®(x)dxer,
r<|x|<R

and

1
(@, D)k (sy,) = 50 sup |x|"|®(x)| 4 sup [D(rer)| < +o0.

2 XESN, r>0

Notice that P is determined by & up to an additive constant, and
Ve = [ owdser,
lx|=r

In addition, ® has a unique and continuous extension to the cone
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— — n+1 . L
TN#—{)’—X‘i‘)/LeLERIJr Y CSN#}.

This extension satisfies

D(y) - D) = / FEORE)S,,

Ar,2)
where A(y, z) is a smoothly oriented #-manifold in Sy, jointing the (;m — 1)-sphere
Sy={x eR"": (x,y)=0and |x| = |y|}
to the (n — 1)-sphere S, in which case, forall y € Ty,,
LW < (P, Pl k(sy,)-
If N is rotationally symmetric, i.e.,
N={n=n+nge, eR}": n]=1,n, > n|cotw},

we use the symbol

T;? =Ty, = {y =y+yLer € Ry, > |x|cotu}.

Now we state the relationship between these spaces. Here H,, + denote the hemi-
spheres
Hy:={x eR"™: £(x,y) > 0and |x| = |y|}.

with the boundaries S,,.

Theorem 3.2.1 (i) Let &4 € K(Ciﬂ). Define the function ® on Ty, as

Pi(y) = if Q1 (x)n(x)dSy, y € Ty,

Hy s
where n(x) = x/|x| is the normal to the hemisphere H, . Then
(@, ®) = (@, + D, &\ +P_) € K(Sy,)

and
(P, Pk sy, < ||<D+||K(c;ﬂ) + ||<D—||K(C;#)'

(ii) Conversely, assume that (D, ) € K(Sy,). There exists unique functions
NS K(Cﬁu) satisfying ® = ¢, + &_ and & = ¢, + $_. Foralln € N, and
xeCrcCy,
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P (x) =+ 1lim / QM) E(x — y)dSy + (eep)k(x) |

(y,n)=0, |y|>e
where E(x) = X/o|x|"*!, and (®, ®) satisfies
[P+l ki ) < (P, Pk sy,
"

where ¢ only depends on |y, | and the dimension n.

Proof (i) In order to prove

Di(y) — Pil) = / O (X)n(x)dS,,
A(y,2)
we apply Cauchy’s theorem to the right monogenic functions ®,. The bound is
straightforward.
(i1) This is a direct corollary of the results of [4]. In other words, there exists a

natural isomorphism:
K(Sy,) =~ K(Cy) ® K(Cy).

We also need the closed linear subspaces M (C i‘) of K(C ii). The functions in

M (Czj\i) are both left monogenic and right monogenic. The subspaces M (Sy, ) of
K (Sy,) satisfying
M(Sx,) = M(C}; ) ® M(Cy,)

are
M(Sy,) = {(CD, ®) € K(Sy,) : @ is left monogenic and satisfies (3.3)} ,

where for r > 0,

/ (v, 2)r (e ®(y)y — y®(yer))dS, +x®(rey) — e ®(reg)xe, = 0. (3.3)

[yl=r

It is easy to see that

(i) the value of the integral is independent of r,
(i) ifdeM (C?f,ﬂ), the integral equals to O.

We only need to prove that when (®, ®) € M(Sy,), the function @ defined in (ii)
of Theorem 3.2.1 is left monogenic. We omit the details and refer to [4]. O

Now we consider convolutions. Assume that ® € K (C;ﬂ), veM (C,J\?“) and
xeCfc C;;”. Define (® % W) as
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(@ W) (x) = f O(x — (YIS,

(y.,n)=38

_ / O(x — YIS, + Dleer)W(x),

(¥, m)=0, |y[=e

where 0 < § < (x, n). By Cauchy’s theorem and the assumptions that & is right
monogenic and W is left monogenic, we can deduce that the integral is independent
of the choice of the surfaces. On the other hand, because W is right monogenic,
® x W is right monogenic. In fact, we can see from the following Theorem 3.3.1 that
forallv < u,

1P+ Wlik(cs,) < cvnllPlikct I¥ ks,

Moreover, if ¥ € M(C ;}L), then W x W, is both left monogenic and right mono-
genic, and
O x (W) =(dxW)x Y.

For the functions defined on C, N, We have a similar result.
If (&, @) € K(Sy,) and (¥, _) € M(Sy,), define

(®, D) % (W, W) € M(Sy,) = (Oy Wy + D_xW_, &, W, +D_xW).

Hence we can get for all v < u,
1@, D) % (¥, D)0,y < Coull (@, Dl iecs 1V, Wl eess

Let K ; be the linear space of all functions ® on R” \ {0} which can be extended
monogenically to ® € K (C;ﬂ) for some > 0. Similarly, we define K, Ky, M;;,

M, and My, such that
Ky~ Ki®Ky

and
My >~ M & My,

while My, M;; and M, are all convolution algebras. The functions which belong to
both K;? and K, are of the form ®(x) = ck(x) for some ¢ € C(y), where

1

E(x) = ———, x e R"\ {0},
W = i £ER\(0)
with the monogenic extension
ko) 1 x
X)=———.
Oy |x|n+l
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The embedding of K} into Ky is defined as ck € Ky, — (ck, ¢/2) € Ky, while
the embedding K, in K is defined as ck € K, — (ck, —c/2) € Ky.

3.3 Fourier Transforms on the Sectors

The section is devoted to the Fourier transform ¥ (®) of the function ® € K f\; and
the Fourier transform ¥ (®, @) of (&, @) introduced by Li, Mclntosh, Qian [1].
We will prove these transforms are bounded holomorphic functions defined on the
cones in C". We also prove that ¥, ¥_ and # are algebra homomorphism from the
convolution algebras M}, My, and My to holomorphic functions.

We first associate with every unit vectorn = n+nzey € R"+! satisfyingn; > 0,
a real n-dimensional surface n(C™) in C", defined as follows.

n(C") = [C =¢&+ineC’: §#£0andnyn = (ni|g|2 + (x,g)z)lﬂg}
= [5 =&+ineC": [tk ¢ (—oo,0land nzn = Re(|§|(c)g]

= {C =&+ineC": |§|é ¢ (—o0, 0] for some « > 0, n + Re(|¢|c)er =KI’1},

where

CIE =D ¢ =& — [nl* + 2i(x. n).
j=1

The surfaces associated with distinct unit vectors are disjoint. In particular,
er (C") = R" \ {0}. On these surfaces, ||, |¢|, Re(|¢|c) and [|¢|c| are all equiv-
alent. In fact, by Theorem 3.1.3,

Rel¢|e < €] < (np) " 'Rel¢]c,
and for all ¢ € n(C"),
Rel¢lc < |l¢lel < (n)'Ref¢le < l¢] < (r) 7 (1 4 In]»)*Re¢|c.

Further, the parametrization used in the first definition of n(C") is smooth, with

3¢ 1
sa(Gg )| < e %0

To prove this, without loss of generality, we can assume that n = nje; +npey. So

.
¢ =& +i—(ln; +&mD ey,
L
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Then lf] > 2, 8;,/8& = 8_/'k and

Lig} ini&(m? + 8yn?)

0& " nL(EPnl + £

Hence when k& > 2,
%) L |

— ‘gm.
08

= ng 08k

The estimate for the Jacobian follows.
For the open set N,, of the unit vectors defined above, we define the open cones
N, (C") in C" as follows:

N.(Ch = | n@

nenN,

= {; =&+ineC': |§|?C¢ (—o00, 0] forsome k > 0andn € N,

n+Re(¢loer, = xn).
Because N, (C") C 52 (C™), the estimates of Theorem 3.1.3 all hold, where 6 =

Uy + [
When N is rotationally symmetric, namely

NI

N = {n:g—}—nLeL eR™ : In|=1,n; > |n] cotw},

we have Sg (C") = N,—(C"). We let the functions take their values in the complex
Clifford algebra C ), so for example H., (N, (C")) denotes the Banach space of all
bounded holomorphic functions from N, (C") to C(y, with the norm defined as

IBllos = sup { 1)1 5 ¢ € Nu(©].
The exponential functions are defined as

e(x, ) =e (x,{)+e_(x,0),

where

er(x, §) = &' Demrlle y (¢)

and '
e_(x,0) = pcs {)exLR"CX_(é-).

For fixed ¢, these functions are entire left monogenic functions of x € R**+!. For
fixed x, these functions are holomorphic functions of £ € N, (C") which satisfy
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lex(x, £)| = e~ temmauReltle |y, (o)

< wew WRElClc/n p ¢ n(Ch)
and
le_(x, )] = et mHRRele (g
< wew WRECIe/n ¢ T,
Let

HE(N,(C") = {b € Ho(Nu(C") ¢ bys = b}.
Then any function b € Hy (N, (C")) can be uniquely decomposed as
b=b, +b_, where by = byxs € HE(N,(C")).

H;(N,L (€C")) is the closed linear subspace of Hu, (N, (C")). Actually, because for
all b € Hyo (N, (C)),

1bXlloo < V20Bllso X lloo < sec(un + 1) [1Blloo,

then
Hoo (N, (C") = HE(N,(C") & H (N, (C")).

We also introduce the subalgebra
ANLC)) = {b € HaoNu(C™) 1 Cerb(©) = b(E)cey forall ¢}.

Similarly, we can define A*(N,(C")). Notice that if b € A(N,(C")), then by =
by+ € A*(N,(C")) such that

AN, (C) = AT(NL(C) & A (N, (CM).
Particular functions b belonging to A(N,(C")) are those of the form

b(¢) = B(i¢er) = B(IZ|c) x+ () + B(=[¢|c) x-(£),

where B € H,, (SgN +u (C)). All scalar-valued holomorphic functions in Hy, (N, (C"))
belong to A(N,(C")). One of the simplest examples is rx(¢) = i&/I¢|c, k=
1,2,...,n.

Let Hy be the algebra of all functions » on R" \ {0} which can be holomorphically

extended to b € H;(NM((C”)) for some p > 0. Let H denote the algebra of all
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functions b on R” \ {0} which can be holomorphically extendedtob € Ho‘o(ﬁﬂ (Cmy),
where N = {f € R"™"!: n e N}. Then Hy N Hy = {0}.

Define Hy as Hy = H;,L + Hy. Then Hy = H;,L @ Hy. Let AT, Ay and Ay
be the spaces of the functions in Hy, Hy and Hy satisfying §e,.b(§) = b(§)Eey,
& # 0. Then

A=A, & Ay.

If we assume that N is connected, these holomorphic extensions are unique. In
fact we assume that the compact set N of unit vectors in RT’I satisfies a stronger
condition: N are starlike about ¢y, thatis,ifn € N and 0 < t < 1, then

(tn+ (1 —7ey))
[ltn+ (1 — ter)|

Under this case, the open set N, is also starlike about ez and N, (C") is the connected
open subset in C".

Theorem 3.3.1 Let N be a compact set of unit vectors in ]RT'I and starlike about
er. For any (9, @) € Ky, there exists a unique function b € Hy such that for all u
in the Schwarz space S(R"), we have the Parseval identity

7)™ / bEA(—E)dE = lim [ B +wer)eLu()dx (3.4)

a—>0+ R»

— 1im [ O WeLudx + e )u(®).
lx|>e

e—0

Hence bey, is the Fourier transform of the distributions of (®, ®). We write b =
F (P, Dey.
The Fourier transform ¥ is linear and satisfies the following properties.

(1) F is one-one from Ky to Hy. In other words, for any b € Hy, there exists

unique functions (®, ®) € Ky such that b = F (O, )e;. Actually, if b =
by +b_andby = by € HE, then

(@, 9) = (P4, Py) + (O, D),

where &1 = Gy (big) € K,\i,. We write (@, ®) = G(ber) and call G the
inverse Fourier transform.

(i) fO<v<pu<n/2—puyand (P, D) € K(Sy,), then by € HI (N, (C")),
b_ € HZ(N,(C™)) and

[b+llo0 < vl (P, Pk (s,
where the constant c, only depends on v.

(i) If0<v <u <7/2—pn, by € HE (N, (CY))andb_ € HO_O(NM((C")), then
(@, ®) € K(Sy,) and
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(P, D)k (s, < Cvllbrlloc + 1b-lloc)s

where the constant c, depends on v.
@iv) (&, P) € My ifand only if b € Ay.
W) If(®, D) e Ky, W, ¥) e My, b =F (P, Dey and [ = F (¥, W)ey, then

bf =F (P, D) * (¥, ¥))e,.

(vi) The mapping (®, ®) — b is an algebra homomorphism from the convolu-
tion algebra My to the function algebra Ay.

(vil) If (B, ®), (W, W) € Ky, b= F (b, Dler, = F (¥, We, and if f = pb,
where p is a polynomial in n variables with values in Cyy), then

v ( ;9 ; 0 ><I>
= —1 yeeay —1 .
p 0x1 0x,

(viii) LetO <v < u <7w/2 — un, s > —n. If by (or b_) can be holomorphically
extended to a bounded function for some c; and all ¢ € N, (C") (correspond-
ingly, ¢ € Nu (C™")), which satisfies |b+(¢)| < ¢|C|°, then there exists ¢,
such that for all x € C+\,’

[P 0] < coplx|™"

Forally € Ty,
(I < Cs.vlylis-

In particular, when —n < s < 0, we have 1iII(1) P(y) =0.
y—

Proof Without loss of generality, we only verify (i)-(viii) for the case C +u , N, (C),
Ky, My, HE(N,(C"), HY, A}, and F. The case Cy,» N,.(CY, Ky, My,
HZ(N,(C"), Hy, A, and F_ can be dealt with similarly. In the proof, the constant
¢ may depend on uy, u and the dimension n, and may vary from line to line. We
denote by c, a constant if the constant only depends on v. Let ® € K (C;ﬂ). Either
form of the Parseval identity uniquely determines b on R”". Because N,(C") is a
connected open set, Parseval’s identity also determines b on N, (C").

We construct b as follows. For o > 0, define ®,(x) = ®(x + aey), x + aep €
C;ﬂ. We have

1
1®allics,) = 50m 50 {100 + e v e €5, |

< sup{|y|"|d>(y)| yeCy, +aeL} S 1@l
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For
¢ en(C") CN(C") CNLCY, v <p,

define
ba(C) = f o (n(x)es (—x, £)dS, .

where the surface o is defined as
o= {x e R (x,n) = —|x|sin(u — v)}.

Note that the function in the integral is continuous and exponentially decreasing at
infinity. As usual, n(x) denotes the normal of o and nz (x) > 0. In fact, for x € o,

sec(un + 1) . wrels]

e (—x, 0)] < o
+ c ﬁ
< SCCN T 1) ixiersing.
V2

where 0 =y — v.

By this fact and Cauchy’s theorem for monogenic functions, noticing that ®,, is
right monogenic and e (—x, ¢) is left monogenic in x, we can see that the definition
of b, (¢) is independent of the choice of the surfaces o. So b, () depends on ¢ €
N, (C") holomorphically. Hence for all o, 8 > 0,

ba(£)e0le — / O (x + wer)n()es (—(x + aey). )dS,
_ / ®(x + Bern(x)es (—(x + Ber), O)dS.
— bﬂ(é—)eﬂ\llc.

Then we define b as the holomorphic function on N, (C") which satisfies the follow-
ing condition:

b(2) = be(0)e*fle Vo > 0.
We shall prove that for all z € N, (C"),
e (O] < ol ®llk(ct, ) (3.5)

where ¢, is independent of o and

(2ﬂ)_"f ba (§)it(—§)dE :f O (x + aep)u(x)dx. (3.6)
R» R»
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As the estimate in (ii), the first form of Parseval’s identity (3.4) can be deduced as a

corollary.
We prove (3.5). Let

¢ € n(C" C N,(C") C N, (C"

and 6 = p — v. Changing the surface in the integral by Cauchy’s theorem, we can
get

ba(¢) = / + / + / By (1)) (1, 1S,
©0,0,1¢17Y) @117 00,171, 00)

where
o@,r, R) = {x eR™: (x,n) = |x|sin6, r < |x| < R],
(0, R) = {x eR™ x| =R, 0> (x,n) > —Rsine}.

We need the following estimates.

(i) For R < |¢|7",

| / Oy ()n(X)es (—x, £)dS, (3.7)
a(0,0,R)
<e / o (¥)n(x)e(—x, £)dS,
o(0,0,R)
gc’ f ®, ()n()le(—x, ¢) — 11dS, +c‘ ®, (X)n(x)dS,
5(0,0,R) (x,n)>0,|x|=R
< ell@ulliie, ) (s {IVye(=2, )1 1y € 00,0, B x['7"ds, +1)

o (0,0,R)
Sl @allg(cy y(RICI+ 1) < el Pallg(c )-
" "

(i) R > ||,

/ Dy ()n(x)ey (—x, 8)dSy| < cl|Pullg(ct )R*"/ etomReltle/n g g
7(6,R) Nu T(0,R)

= cllPallk(cy ) / el Rele/n s, (3.8)
o Jee,n

0

= C”cDa”K(C;M)/ oR Relglesin®/n, 74
—0
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< D,
lel Ik,

< C“q)a”K(C;#)'

(i) R > 1¢]7",

/ D (x)n(x)eq (—x, £)d Sy
o (6,R,00)
< clbaliger / [l WREE/ns g 59
¥ Jo(8,R,00)
o .
= C”q)a”K(C;; )[ S7167351n9R8|{|C/"LdSX
R

—— [ Pallg(cs

N

R|§ |
In the above estimates (i)—(iii), taking R = |¢|~", we can use the representation of b

to obtain (3.5).
Now we prove (3.6). For ¢ € R”, we define b, y as

bon(§) = / D, (x)epe’™ Sdx.
lx|<N
Then it can be deduced from Parseval’s identity that for u € S(R"),

(271)7"/]R ba,n (§)it(—§)dé :/ O (x +ae)u(x)dx.

[x|<N

We will prove

forallé e R" and N > 0, |by n(§)] < c||d>||K(CN ) (3.10)
forany & € R", when N — 00, by (&) x4+ (&) — by (§) (3.11)

and
forany £ € R", when N — 00, by n () x—(&) = 04(&). (3.12)

Then (3.6) can be deduced from the above estimates and the Lebesgue dominate
convergence theorem.

To prove (3.10) and (3.11), letting n = ¢y, in the definitions of ¢, o (8, T, R) and
(0, R), we use the estimates (3.7)-(3.9).

At first, when |£|~! < N, we prove (3.10). Taking 0 < # < u and using Cauchy’s
theorem, we have
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Dan () x4 (€) = / + / + / —/ Bo (N(x)es (—x. E)dSy.
a(0,0,[E[7Y)  T@,lEI7Y)  o@,1E17L,N)  TO,N)

So we can apply (3.7)—(3.9) to prove that by y(€) x+(§) is uniformly bounded for &
and N. On the other hand, similar to the proof of (3.8), we get

C
|ba, v (E) x-(§)| < W”QHK(C;#) < C||q>a||1<<c;#)~

When |£]~! > N, to prove (3.10), only (3.7) is needed. To prove (3.11), fix £ €
R™, & # 0, and apply Cauchy’s theorem to write

bo(§) — ban(E) X+ () = / + / Do (x)n(x)es (=x, §)dS;.

c(0.N) o(0,N,00)

So, by (3.8) and (3.9), as N — 0,

c

ba(®) = bun©x:®)| < g7

1Pellkc;,) = 0.

Moreover, (3.12) follows from the estimate given above.
As noted previously, the first version of Parseval’s identity (3.4) holds. The next
aim is to prove the second version of (3.4). Let ¢ > 0. Then

(27T)7"/ b&)ia(—£)dé = lim / Dy (x +aep)epu(x)dx + / Oy (x + aep)eLu(0)dx
Rn

a—0+
x| > Ix|<e

+ / B (x + aer)er (u(x) — u(0)dx

lx|<e

/ Q(x)eru(x)dx + 2(e)u(0)

lx|>e

a—0+
x|<e

+ lim / Dy (x +aep)er (u(x) —u(0)dx

where in the second integral we have used Cauchy’s theorem.
Now when u € S(R"),



88 3 Clifford Analysis, Dirac Operator and the Fourier Transform

T lim / 0+ aer e (ulx) — u()|dx

e—>0a—0+
x|<e

< lim lim | C f |x +aer| ™" |u(x) —u(Q)|dx
e—>0a—0+
lx|<e

<Tm [ / )" u(@) — u(O)]dx | =0,

lx|<e

SO

e [ beic-ods =tim | [ owendx + 2Eu©

x|>e

This gives (ii).

We prove (i) and (iii). It is easy to verify that # is one-one. By constructing the
inverse Fourier transform G, we prove the mapping is onto H,'.

Consider the function b € H (N,(C")). Forn € N,, and

x=x+xre, €CH C C,J\,”#,
define

@, (x) = 2m)™" / b(§)e(x, H)dsy Ndo A -+ NdEyer
n(Cr)

= @2m)™" / b(§)er(x,8)dsy ANdgy A -+ NdEyer,
n(Cn)

where in the last equality we have used the facts that e(x, ) = e (x,¢) +e—(x, )
and (b(¢), e_(x,¢)) =0 for b € HE(N,(C")). On the surface n(C"), the function
in the integral is exponentially decreasing at infinity. In fact, when ¢ € n(C"), then

|ei<x,C)e—xL\§IC| < ceomReltlc/ng

and (x, n) > 0. Moreover, e(x, ¢)er is right monogenic and ®,, is a right monogenic
function on C; satisfying
cllblloo

Pa0)] <

’

where ¢ only depends on @y and u.
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Moreover the integrand depends holomorphically on the single complex variable
z = (¢, n). So by the starlike nature of N,, and Cauchy’s theorem in the z-plane,
we find that for all x € C;I satisfying x; > 0, ®,(x) = &, (x). Hence there exists
unique right monogenic functlon ® on C, which coincides with ®,,(x) on C;\. We
call & the Fourier transform of be; and denote ® = G, (ber). The above estimates
for @, indicate that forallv < u, ® € K(C*v) and

[Pl kcy) < cvllbllco-

For the special case x;, = 0 and all ¢ € N, (C"),

b < —.
PO < T

Then by Cauchy’s theorem, we can change the surface of integration to obtain

Gibep)(x) = d(x) = 2n) ™" /R ” b(E)e'™ Odter = b(x)er,

which is the usual inverse Fourier transform of be; .

We prove that b and ® = G, (bey) satisfy Parseval’s identity (3.4). Hence we can
deduce that G is the inverse of the Fourier transform 7., and complete the proofs
of (i) and (iii).

For o > 0, let by (¢) = b(¢)e *%lc, Then for x € R”,

O(x +ae) = G (ber)(x + aer) = G (hoer) (x) = (by) ()L
By the usual Parseval’s identity, we can obtain
@m)™ / bo(§)i(—§)dé = / Q(x +aep)e u(x)dx,
R R
and for all u € S(R"),

Qm)" / bE)i(—6)de = Tim [ (x +wer)eru()dx.
R~ a—0+ R~

Now we prove (iv). Take ® € K (C;ﬂ). Then @ is left monogenic (and is also
right monogenic) if and only if forall x € C +# ,

Dep@(x) = (Per)D(x),
where the both sides all equal to —9®/dxy (x).

Let be;, = 7, (P) and define b, as above. Using twice Parseval’s identity for b,
we can see that for all u € S(R"),
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@) /R gerb, )i (~E)dE = i fR (DL ®)( + ae)erud

and
1) fR bu()geri(~§)ds = i /R (@erD)(x +aepeux)dx.

Hence @ M(CJr ) if and only if for all u € S(R"), De; ®(x) = (Per)D(x). So
the above equality holds if and only if

De; @(x + aey) = (Pep)D(x + aey) forall x € R™ \ {0}.
The above equality is equivalentto&e; b, (§) = by (§)Ee . This equation is equivalent
to Cerb(¢) = b(¢)¢ep forall z € N, (C"). This proves (iv).

The remaining part can be proved in a similar way with the estimates in (viii)
requiring a modification of the proof of (iii). (]

Denote by G_ : Hy — K, the inverse of #_. We call #_ the Fourier transform
and G_ the inverse Fourier transform.

Remark 3.3.1 When N =N, by € H}(N,(C")andb_ € Hg(N,(C")) if and
only if
b € Hoo(N,(C)).

Let B € H°°(S2((C)), where 0 < u < /2. We have seen that B is associated
with the function b € H*(S))(C")) defined as

b(¢) = B(i¢er) = B(I¢|c) x+ (&) + B(=[¢lc) x-(£).

In fact,
b e AS)(C") = [b € H®(S)(C") : teb() = b(¢)¢ey for all g],

and the mapping B —— b is a one-one algebra homomorphism from H Oo(52 ©))
to A(S))(C")). Recall that

% L(C) = {Z=X+iY €eC: Z#0,Y > —|X|tanu},
C) _(C)=—C)_(O),
S0 (€)= {x eC: A #£0,|arg(h)| < u},

Sp_(C)=-S) ,(O),
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C2’+ = {x =x+xie e R x> —|x| tanu},

0 0
0 _=-C

pot?

0 _ 0 0
S,=C,.NC, _,
T —{)’—)’+yL€L€R+1 yL>|y|cotu}

SHC) ={c = +ine T : ¢l ¢ (o0, 01 and [n] < Re(l¢]c) tan .

We find the inverse Fourier transform of b in terms of the inverse Fourier trans-
form of B. We first assume that B € H oQ(Sg +(©)). In this case, the inverse Fourier
transform of B, ® = G(B), is a complex-valued holomorphic function defined on

C. +((C) Specially, when Im(Z) > 0,

1 [ ,
<D(Z)=§ / B(r)e'"4dr.
0

When x; > 0,
1 —
@) = o | BUEDer(x. §)dger
! i
= ——— [ @+ 2)B(ghe e Dag
2emy S T e
= 2@y Jo T f B(r)e ™ ' I ldrds,  (3.13)
sm= 0
1 T |
= W S 71(6[‘ +lT)<D( 1)((1’ T) +le)dSr
! er [ - n— .
= 2y Jo, O T Txl] 2" D((x, ) +ix)dS,
— Op—2 2 1=3))2 )
- 1= @ dt,
2Q2mi)"— ‘/ = ( x |) (Jx|t +ixgr)

where &~ is the (n — 2)th derivative of ®. On C/?L, +» ® extends to a left and right

monogenic function. For all v < p, this function belongs to M (C‘?, -
For B € H“(Sg’f((C)), ® = G(B) and

b(¢) = B(iger) = B(=|¢lc) x-(£).

Then b € H;)(Sg((C”)). Hence we can construct ® = G_(ber). We see that if
x; <0,
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o = / B(—|€De_(x, &)der
— = _ > xL1E] pilx, §)
—2(2n)n/u |§|>B( £ dt
+00
= 2(27[)” /S (e —17:)/ B(—r)e"™ e V""" drdsS,
(_1)n ! — . —xpr i{x, t)r .n—1
= W/Sk](q+lr) /_oo B(—r)e e T drd S,
= Q(_Tll)_l @D 1) +ix)dS,

. .

_ On—2 20-32 | — , HE| s@-D ;

== 1—1¢ — | ® t dt.
S [ a-r o () +ix)

When B € Hy,(S))(C)), write B= By + B_,where By = Bre=0€ Hoo (S, , (C))
and B_ = Bxre<o € Hoo(Sgﬁ((C)). Then b = b, + b_, where b, is the function
with respect to B. We can use this decomposition to relate the inverse Fourier trans-
form G(bey) = (®, D) of be; to the inverse Fourier transform G(B) = (P, P,)
of B.

In the end of this section, we give two examples to make the reader to understand
the relation between (®(z), ®1(z)) and (b, B), and between (P (z), P;(z)) and
(D (x), D(y)), see [1] for more examples.

Example 3.3.1 As usual,

X

AT

(i) (@) ®1()) = (0.1). BO) = 1,b(¢) = 1;
(i) (P, 1) = (517. ). BO) = xnew0: DO = x40
(iii) (@), ©1(2) = (5. 1), BO) = Xreco: () = x-(0):
(i) (@), ®1(2)) = (&.0), BG) = sgn(h), b(¢) = K2t

The above example describes the relation between the function pair (P (z), P(z))
and the function pair (®(x), ®(y)).

Example 3.32 (i) Let (0(2), 1(2)) = (=g, =i +10g(2)) ¢ > 0). Then

z—it

(P(x), 2(y) = (k(x +ter), 2(y), iig})Q()’) =0.
(i) Let ($(2), ®1(2)) = 5 (s, 75« > 0). Then

ok .
(@), 200 = (=150 +1e0). $(1). lim B(y) = 0.
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(iii) Let (®(z), ®1(z)) =T + is)(%e—nsﬂz—l—is’ (ms)"! sinh(m/z)z_m).
Then

©00. 000 = (5 [ 1750+ renar, ,00).

where the function @, is represented as

1 o0
P . (rn) = ﬁ/@ t"“lF(n,nL,t)thn,

where r > 0, |n| = 1, and F is real-valued and satisfies

n

[Fr e, DI S e m) gy

In particular, if n = e, then

0',1,1}’_” o0 tn-‘ris—l

T —is) Jy A+ 2)e0re

D (rey) = dt, r > 0.

(To prove this, first show that the function @ in the preceding row has the form
D(rn) = F(n,ng,r/t)ern.)

The functions ®; and P are really only of interest near zero, and when they tend
to 0, these functions do not enter into Parseval’s identity or the convolution formulae.
It has been proved in Chap. 1 that if |B(1)| < ¢,|A|® holds for all A € Sg, +(©) and
some s < 0, then when z - 0 (z € S, +(C), v < ), ®1(z) = 0, and for all ¢ €
52(((3), [b(¢)| < cs|¢|*. Hence by (viii) of Theorem3.3.1, we conclude that y — 0
(y €T v <u),®(y) — 0. Therefore for | B(L)| < cs|A[*, s < 0, there is no need
to find ®; and P.

Let us turn our attention to the function B = B, = B xgre-0, and substitute the
corresponding values of ® and @ in (3.13). Using the fact that

(er +it)a+ib) = (L +it)(a — be,T)F

fort € "' and a, b € R, we obtain

¥ (=" (1 = D)!
on T Z(Zm)" i / (6””)_ 7 (& 1) + i)
_ |
_ o 21) /(€L+tf)((x t) — xe,T)"dS,,

-1



94 3 Clifford Analysis, Dirac Operator and the Fourier Transform

where x; > 0. If we take the real part of the right hand side, the above result is the
plane wave decomposition of the Cauchy kernel obtained by Sommen in [5]. For the
function B = gre0, We obtain

onlxr 2

x _(,,_1)!(2—_;)*1 /(ZJrit)((L T) —xre ) "dS:,
§n—1

where x; > 0. This coincides with Sommen’s formula, see Ryan [6] for the details.

3.4 Mobius Covariance of Iterated Dirac Operators

In this section, we deduce the fundamental solutions of Dirac operators

"9
D= e—
; 8)6,‘

and
v (o)

in the setting of Clifford algebras. In [2], Peeter and Qian obtained the Mobius
covariance of iterated Dirac operators.
For @ > 0, define the operator D™ as

D) =c, / et 8) (1)~ fe)de,

n

where (i g )~¢ is defined by

(8)™ = |E]7 x4 () + (—IED ™ x-(&)

and

1 :
1) = 5 (1£i8/11).
Hence if @ = [ is a positive integer, we have

ol 1/|§|l, if [ is even,
(lg) - {i§/|§|l+l, ifl odd .

Therefore
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pfw =3[ [ e Ol fede + [ e feae
+ /’l el g)(_|§|)_af(§)d§+2/]1§n Pt §>(_|§|)—D‘—]]5(§)d§]'

If0 < @, + 1 < n, by the formula

A\
1 1
L) e
BE " x| =P

Q_af(i) = Kn,a * f(i)s

we can deduce

where

. . 1
Kn,a(J_C) = Cn,a(l +e7') + dn,a(l - eiwm)Q <—> .

x| |x|n—et

For general o > 0, by the same method, we can get
Kia@) = cna(l+e7)Go(@) + dpa(l = e DGy i1 (1),

where G, g is the fundamental solution of the operator |D |# with the symbol 13 2.
Then for odd n,

K _ Cn,lm,,%m, if [ is odd; -
ni(X) = C"*’le%’ if [ is even. (3.14)
For the even n,
Cn,zw%m, if/isodd and [ < n;
Cn, I TgT» if 1is odd and I < n;
Ku@=1 """ (3.15)

(e 10g |x| +dyp D) e, if L odd and 1 > n;

(cnyloglx| + dn,z)m%, iflisevenand ! > n;

Now we consider the fundamental solutions of the operators D', [ € Z,. Write
Dy = Bix() Then

D™ =(Dy+ D)™ = (Dy — D)'(D5 — D).

By the Fourier transform, the symbol of (Dé — QZ)‘I is |§|‘21. For0 <2l <n+1,
the inverse Fourier transform of || ~2lis ¢, ¢]x|~@*172D This indicates that the kernel
of the operator D~/ is
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Ln,l(x)zcn,l(DO_Q)l< ), 0<2l<n+1.

|x |n+l—2[

A direct computation gives

I—1—

Ln.l(x) = Cn,l l e Z+. (316)

20 7
|x|n+l ’

Forany x = xo + x1e; + - - - + x,e,, we write x = xp +x and x = xje; +--- +
xpe, € R". We define two elementary operations

(ei, -+ €i)" =€ e,
(er,---ei) = (=Dl (e, - ;).

Let I'), be the multiplicative group of all elements in the Clifford algebra which
can be written as products of non-zero vectors in R". For any a,b € T",, U {0},
a = |a|* and |ab| = |a| - |b|. If a € T, then a = [T}’ a;, where a; € R". Gen-
erally speaking, such a representation and M (a) are not unique. Denote by m (a) the
minimum of M (a) over all such representations. If a € R\ {0}, we set m(a) = 0.
Hence, m(x) = 1,and fora € T, aa* = a*a = (—1)"@|a|?. We call a group to be
a Mobius group if this group consists of orientation preserving transforms acting in
the Euclidean spaces. All Mobius transforms from R” U {oo} to R"” U {oo} can be
represented as

¢(x) = (ax +b)(cx +d)~",

where a, b, c,d € " U {0} and
ad* — bc* € R\ {0}, a*c, cd*, d*b, ba* € R".

In addition, under 2 x 2 block matrix multiplication, the identification between the
¢’s and Clifford matrices <ccz Z gives a homomorphism. For simplicity, we take

ad* — bc* = 1 to normalize the Mobius transform. We consider the following mul-
tipliers:

L) f(x) = Jig - f(P(x)),

where forl € Z,

(ex+d)* .
g, L is odd
S = § 1T (3.17)
T L 1s even.

We will use the closed relation between K, ;, Ql and the conformal weights J; 4
to prove the following result.
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Theorem 3.4.1 For [ € 7., the iterated Dirac operator D' intertwines the repre-
sentations T;, T_; of the Mobius transform group, that is, for ¢ # 0,

(=)mOHT_ (D! f), 1 is odd;

; ] (3.18)
T_(D f),lis even.

DT f) = {

Ifc =0, thend # 0 and the factor (—1)" O+ in the last formula should be replaced
by (=1)"@.

Proof We only prove the case ¢ # 0. The case ¢ = 0 can be dealt with similarly and
is easier, so we omit the proof. We only need to prove

(=)@ DT (D' £),11s odd;

- I . (3.19)
D'T_;(D'f),1is even.

(Tzf)={

Atfirst, we assume thatn isodd orn iseven and/ < n. Denote by i the inverse of ¢. If
y=¢x)=(ax +b)(cx + d)~' € R*, then y(cx +d) = ax + b. Hence we have
x=vy®)=0c—a) ' (—yd+b).Letz=z(y)=y—aand A =b —ac”'d. We
canget a o

x=z7'A—-cld. (3.20)

On the other hand, because x = x*, y= X*’ (3.20) is equivalent to

x =AY —d¥ ()N (3.21)
By the Mobius transform and the formula (3.20), we deduce from ¢ # O that A # 0

and

DT (D HW @) = cny / Kni(W (@) = ) - J_1,¢0)(D' @ ()dy (3.22)

dyr(y)
dy

= Cn,l / Kn (W (x) =¥ (y) - Lz,¢(¢(1))(2’f)(z)‘ dy,

where |dy(y)/dy| is the Jacobian matrix. Noticing that x = ¥ (y) is also a M6bius
transform, by the formula (2.4) in [7] and the condition ad™ — bc* = 1, we can obtain
the Jacobian matrix equals to |z(y)|~>". By equalities (3.15), (3.17) and

Y (@) — () = @@ -z (A,
T - = @@ -2z ()
z(x) —z(y) = (x — y)c,

we can deduce that (3.22) is equivalent to
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7 '(x) (x—y) ¢ () A
Cn.l |Z—1(x)|n—l+1 |x |n —I+1 |C|n—l+l |Z—l(y)|n—l+l |A|n—l+1
Y S A D)
.|A|n71+1 |Z71(y)|n71+1 |C|nfl+1

f)(y)| G )|2n y

Lo g (x—y)
St ) /M_y',;,ﬂ(glf)(z)gy)

Cn.l A2 el |Zfl(£)|nfl+1
1L =D ')

= |A|2n |C|2n |Z_1Q)|n_l+1
L (=)™ ')

= |A|2n |C|2n |Z—l(£)|n—l+l

/ Ko — (@' )G

f ),

where in the above estimate we have used m(z~'A) = 1. Replacing x by ¢(x) and
noticing that (x + d*(c*)™!) = z7 (¢ (x)) A, we get

(—D)"@cA*  (cx + d)*
|CA|n+l+1 |cx + d|n—l+l

DN(T(D' HHx) =

f(@ ).

By bc* = ad* — 1 and ¢~'d € R", we can deduce that b = —(c*)~' 4+ ac~'d and
A = —(c*)~!, which gives (3.19).

The case for even [ can be proved similarly. The only difference is that we should
use the formulas (3.14), (3.15) and (3.17) for the case [ even. Now we consider the

case [ > n, where n is even. Similar to the case / being odd, it can be deduced from
(3.15) that

D (T(D' /(¥ (x))
1 (=D)"@ 77 (x)

_|A|2n |C|2n |Z71(£)|n71+1

[ [entog iz + (enatogx = 31+ du)

i !
W(D Hydy

e loglel + (—enTog kD |

4
S
i=1
When n is even and [ is odd satisfying [ > n, (x — y)/Ix — X|”’l+1 =+(x —

X)Z . I} = I3 = 0. For I, by the property of fundamental solution, we can deduce

L Dm0 lw
Ar e iwpe

L=

We shall prove I, = 0. In fact, because
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X—=)

oyt = HE—ah =@ oaehIT = Y g —acTh g —ac™,

ktj=l—n

by integration by parts, we have
Iy = —cor Y hijx—ac™H f (log|y —ac™"+log e (y — ac™H)/ (D' /)((»)dy
k+j=n—I

=—cui Yy, hijx—ac”H / log|y —ac™"|(y —ac™)/ (D' f)(())dy

k+j=n—I

—ent Y, hgx—acH f (log|y —ac™"| +loglc[)(y —ac™ ")/ (D f)((y)dy
k+j=n—l,j<l—n

—enihoion / log |y — ac™"|(y — ac=Y (D! £)(())dy

y Goachy
= Sho s / 6ni00g ]y — e + ) =S (0 Oy
y—ac™|
= honflac™")
=0,

where in the last step we have used the following fact: the function f o ¢ is compactly
supported and hence

flac™) = fogpoy(ac™) = fog¢(co)=0.
As above, we still obtain

1 (=" ()
|A|2n |C|2n |Z_1(£)|"_l+1

D (T(D' HH W) = ).

Replacing x by ¢ (x), we get (3.19) for the case [ odd and [/ > n with n even. The
case [ even can be obtained similarly. O

Now we consider the following question: for the operator D!, if we have the
similar conformal covariance. In fact, if we replace R” in the Mobius transform,
the identification relation and the certain Clifford matrices by R/, respectively, all
conclusions still hold. Now let ¢ denote a Mobius transform from R} U {oo} to
R7 U {oo} and let g be a fixed function from R} U {oo} to R} U {oo}. Define

*

X
gx) = MT_H, X = Xo + X.

Define the representations

S1(@) f(x) := Ly ((ex +d)*) f($(x))
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and

S_1(@) f(x) := glex +d) (P (x)).

We have the following result.

Theorem 3.4.2
D(S1 f) = S_1(Df). (3.23)

Proof By the fundamental solution of the operator D and (3.16), replacing x and y
in Theorem 3.4.1 by x and y, respectively, we have N

1
DTHS_ (DM@ () = / Ly 1) = v (g ez MANDS) () ————5dy
|z(y)[2(+D

—z=1(x) (x — ez~ (A

Tl / lx =y el z= ()t A
A *er 1

x |A|”+3|z_l(y)|"+3|c|”+3 |Z(y)|2(n+]) dy

e o) B

= AP 1) Ly 1(x = y)(Df)(y)dy
— 1
e .

O JACH2nH2 = 1)

Replacing x by ¢ (x) and using Ac* = —1, we get (3.23). (I

3.5 The Fueter Theorem

In this section, we elaborate Qian’s work on the generalization of Fueter’s mapping
theorem, see [3]. We shall work in R**!, the real-linear span of {eg, ey, ..., e,},
where e isidentical with 1 and e;e; + eje; = —26;;. R"*! is embedded into Clifford
algebra R generated by e, ...e,. The elements in R"*! are represented as x =
X0 + x, where xp € R andx =xie; + -+ x4e, withx; € R.If x # 0, there exists
an inverse x ! x~! = 7> Where ¥ = xo — x. We will study the R"*+!-valued and
Clifford-valued functions, and the left and right monogeneity introduced by the Dirac
operator

The Kelvin inversion of a function f is I (f)(x) = E(x) f(x~"). The symbols Z and
Z* denote the sets of all integers and positive integers, respectively.
For a function f on R"*!, the Fourier transform of f is defined by

F()E) = /R T f @,
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A useful result associated with Fourier transform is

P() P€)
T (i )© = Ve g (3.24)

where 0 <a <n+1, k € Z*, P is the homogeneous harmonic polynomial of
degree k, and
Ve = ik /20 L(k/2+a/2) ’

' Fk/2+mn+1)/2 —a/2)

(I'" denotes the usual Gamma function).
For a function g, the inverse Fourier transform R(g) is defined as

R(g)(x) = / eIt € g (6.

Rr+l

The Fourier transform of a function in the Schwartz class still belongs to the Schwartz
class. In this case, the Fourier inversion formula holds: R¥ (f) = f.Inthe sequel, the
Fourier transform and the inverse Fourier transform will be used in the distributional
sense.

For the function g defined on R"t! we can introduce the Fourier multiplier M, as
M, f = R(gF f).Itis easy to prove that the Fourier multiplier induced by —47?|£|?
is identical to the Laplace operator.

Let f° be a complex-valued function defined on an open set O in the upper-half

—
complex plane. Write f 0 — y + iv, where u and v are real-valued. For x € O, set

0 X
() = ulxo, |x]) + mV(Xo, 1x[),

where
n+1
(0] :{XGR 1 (xo, |)_c|)60}.

70 is called the function induced from f 0 and 8 is call the set induced from O.
We shall work with the functions of the form

g(x) = plxo. |x]) + i%CI(Xo, 1x).

where p and ¢ are real-valued. We call p and g the real part and the imaginary part
of g, respectively.

The concepts of intrinsic functions and intrinsic sets naturally fit to our theory.
On the complex plane C, if an open set is symmetric with respect to the real axis,
then the set is called an intrinsic set. If a function is defined on an intrinsic set and
satisfies f9(z) = f°(z) within its domain, then the function is called an intrinsic
function. For f° = u + iv, the above condition is equivalent to requiring that u is
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even respect to the second variable, and v is odd respect to the second variable. In
particular, v(xp, 0) = 0, i.e., if the domain f 0 is restricted on the real axis, then f 0
is real-valued.

Denote by 7 the mapping

—
7:(f'()) — A(n—l)/ZfO,

where f° is any holomorphic intrinsic function and the differential operation is in

the distributional sense. For the sake of convenience, outside the intrinsic set 6, we
take 70 =0.

Note that forodd n € Z*, the operator A"~1/2 is a pointwise differential operator,
while for even n € Z*, A”"~V/2 is the Fourier multiplier induced by (27i|£])"~!
mapping some functions to the distributions. If b is a complex-valued function defined
on an intrinsic set, then

'@ = i@ +5@].
b2 = £[b) ~ 5@

both are intrinsic functions defined on the same set, and b = g% + i b°.

The above observation enables us to extend the domain of 7 to the sets of the
complex-valued functions b on the intrinsic set. These functions » may not be intrinsic
functions. For such a function b, we define

t(b) = 1(g°) + it (b").

The mapping t extended in such a way is linear under addition and real-scalar
multiplication. In the sequel, for the mapping t, we only need to consider the holo-
morphic intrinsic functions. For intrinsic functions, the coefficients of their Laurent
series expansions in annuli centered at real points in their domains are all real. Hence
we only need to consider the functions 7((-)7%), k € Z.For k € Z1, define

PV =1(()h, PV =1(PTH),

We have the following result.
Theorem 3.5.1 Letk € Z*t. Then

(i) P and P*=Y are monogenic functions;
(i) PP is homogeneous of degree (n + 1 — k) and P*V is homogeneous of
degree (k — 1);
(iii) Ifn is odd, then P%=D = ¢((-)"+thk=2),

Proof (i) By the Fourier transform and the following relation:

()0 (i) ()
“(”_<MJ"w—m a0 X))
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we get
PR = () H ) (3.25)
_ (_l)k_l a2\ (n—=1/2 x
_<k—1n<5%) RT<A B?)
(=D g\ oo E
_w—m(ﬁﬂ K@ g
(_1)k71 5 \*! o F
T k=1 (8_0) VinGEO
_ (_l)k—l P k—1
(k — 1)"(}1 <8_)C()> E(x)7
where

Ky = Qi) 'yl = Q)" 'T((n + 1)/2).

This means that for k € Z*, P is monogenic. The monogeneity of P* can be
deduced by the property of the Kelvin inversion, or the result of Bojarski, see [2].
The conclusion (ii) can be obtained by the expression of P~% and the property
of the Kelvin inversion.
(@iii) Let n = 2m + 1. We have

Kn = (=1)"22"(m1)? = (=1)"(@m)!)>.

We use the mathematical induction. The case k = 1 reduces to verifying A" (x>") =
(—=D™(2m)!!. We need the following lemma.

Lemma 3.5.1 Ler f°(2) = u(xg, y) + iv(xo, y) be a holomorphic function defined
on an open set U in the upper-half complex plane. Write uo = u, vo = v, and for
s € LT, write

8”.?—1 1
Uy, = 28 —
ay y
and d 1 0
vy =25 < Yool vs_zl) Y YL
dy y vy ay y
Then
s_>0 X .
A f 7 (x) = us(xo, |x]) + mvx(xo, |x]), xo +ilx] € U.

This lemma can be proved using mathematical induction via a computation of
A(us—1 + ivs—1) invoking the following relation proved in [8]:
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1 Ou, AV
= fo@s =l Bt Wt
y y ay dxo

We will frequently use the formula given in [8]: for any function f° = u + iv and
rezr,

[r/2] [r/2]

(70)7’()6) — Z(_l) C21 r— 21v2[+ |—| Z( 1) C21+l r—21—1 21+l’ (326)

where C' are binomial coefficients with the convention that C’ = 0 for / > r, and
[s] denotes the largest integer that does not exceed s.

For f°(2) =z, using the formula (3.26), by r = 2m and Lemma3.5.1, we can
obtain A™(x?™) = (—1)"™((2m)!!)?, which proves the case k = 1. Now assume that
P® = r((-)"*=1). We need to prove P**D = ¢((-)"**). This is equivalent to
proving

1

k:_ 1 a_(I(Am(( )2m+k))) I(Am((')2m+k+l)), (327)

where k € Z" ork = 0.
By (3.26) and Lemma3.5.1, we have

IN(OR16))

m+[k/2]
= (2m)!![ D (=DICo QD@L =2) - 21 = 2m 4 )y
=0
m+[k/2]
Z (=D'carL @n @l —2) - 21 — 2m + 2)xg" T y”“*z'"],

where we take y = |x|.
By the Kelvin inversion, we replace xo, y and x/y by xo|x|~2, y|x|~> and —x/y,
respectively. It follows that the above becomes

m+[k/2]
@m)! |,,+2k+1[ Z (—1)CZ,, (3.28)

m-+[k/2]
h@Rl=2)---Q2l —2m + 2)x§m+k—21y2[72m + % Z (_1)1+1C§£n++1k
1=0

X(Zl)(Zl _ 2) . (21 —2m + 2)x3171+k—21—1y21+1—2m].

Applying the differential operator [—1/(k + 1)]9/0x to (3.28), we have
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—Q2m)!! 1 x ., 9
K1 E<X>|x|2k+z{(—<n+2k>xo+;y)[~-~]+(x0+y)a—xO[---]},

(3.29)

where [---]isas [---]in (3.28).
Now we have

(—(n+2k)XO+ %y) [

m+[k/2]
=1 3 )+ 20QD Q1= 2) - (2 = 2m + 2R 2 2m
=0

m+[k/2]
Y L Q@ ) 1 - 2 22 22
=0

m+[k/2]
% I 3 DR (0 20212 2) - (2 — 2m 4 2R 22
=0

m—+[k/2]
+ > (=D @D@L=2) - QL = 2m + 2)xg TR 2 =2m
=0

and
0
2 2 — e e .
(xg+ )axo[ ]
m+1k/2]
- { Z (_1)1C%'ln+k(2l)(2l —2)--- 2l =2m+2)2m + k —2I)
1=0

2m+k—21+1_21—-2m 2m—+k—21—1_21—-2m+2
x (xg y + X y ) }

m+[k/2]
4z { Z (Do en@l—2) - 21 —2m+2)2m +k — 21 — 1)
=0

x (x§171+k—21 2[1+1-2m +x§m+k—21—2

y

2l4+1-2m+2
y ) }

By comparing the coefficients of a general nomial x3" ™17 y2/=2" in the real

part of (3.29) with those in the real part of
LA™ (™) (x) = EQ)(A™ ()P ) (e h,

the latter being of the expression (3.28) but with k + 1 in place of k, we are reduced
to verifying
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—2(n +2k)C3  + @m — 2D Co L, (3.30)
+202m + k —20)C3 i+ 2m — 2)(2m + k — 21 +2)C5 2
=—(k+ l)2lC§rln+k+l'

By (s —)C! = (I + 1)C!*!, the second and fourth entries on the left hand side

of (3.30) add up to

2012m —2)C3 (3.31)

while the first and third to

—20Q21 +k+ 1)CE = [—4* =21k + DICE, ., (3.32)

= —20Q@m+k — 2 + )L =2k + DCZ, .

Combining (3.31) with the right hand side of (3.32) and using C! + C!~' = C!_,

we get (3.30). Similarly, we can prove that the imaginary part of (3.29) is equivalent
to the imaginary part of I (A" ((-)>"**+1)). This proves (iii). O

In [9], Kou, Qian and Sommen obtained the following generalization of
Theorem3.5.1. For any x = xp + x € R”, let P, be a homogeneous polynomial of x
of degree k and satisfy

AP (x) = 0.

We consider the following question: if

DAV (g, x) + %V(xo, DP@)) =0,

We first prove that if / € Z, the function
AR (59 + 1) P) ) (3.33)

is still a left monogenic function.
At first, we assume that / is negative. By a simple computation, we can see that

(xo + )1_<i>1_£<i>l<i> 1=1.2
TEE\nE) T = \ax) kg )T

Hence we only need to prove

X
Ak+(n71)/2 (_ Pk (£)>

|x|?

is left monogenic.

Lemma 3.5.2 Q. (x) = X Py(x) is harmonic and homogeneous of degree k + 1.
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Proof By definition, it can be verified directly that

5 \2
(8_> Qr+1(x) =0.
X0

Using Leibniz’s formula for second derivative, we can get

0 2 _» d _ a P _ 9 » 5
(8_x,> Or+1(x) = <8_x, x) (8_x,> k(£)+x<8_xi> (X)?.

This implies that
AQpy1(x) = =20 Pr(x) + XA P (x) = 0.
O

In the proof of Theorem 3.5.1, we use the following Bochner type formula: in the
sense of tempered distributional sense,

Q 0,0 >(9=ngé£QJeZ%0<a<n+L (334)

. |j+(n+1)—ut |$|j+o¢
where Q; is a harmonic homogeneous polynomial of degree j, and

Vi = i/ I'(j/2+a/2)
I rGR+m+1/2—a/2)

By the Fourier transform, (3.34) is equivalent to the following equality: for any
Schwartz functionp on Rf and j € Z,0 <o <n+1,

QW e TGR2+/2) Q)
fm it $dx = i FG/2+ 1+ D/2—a/2) Jay e+

¢(x)dx.

Now we will generalize the above formula to the case Re(w) > —j and j € Z,..

Lemma3.53 Let—j < B,a<m+ 1)+ ja+B=n+1and j € Z,. For any
Schwartz function ¢ on R, we have

pop (LEBY [ Q@ g o ipenp (R [ QW)
o ( 2 > R} |ij+ﬂ¢(x)dx =i R] Ixij+a¢(x)dx'
(3.35)

Proof For 0 < a < n + 1, both sides of (3.34) are holomorphic. For j > 1, by the
orthogonality of the spherical harmonic polynomials, there follows
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j-1
/ T S bmar = T I (¢(x> ~$0) - (Zx, i) ¢3<0>) dx

+ / L’”,é(x)dx,
|

x[>1 |x|/+(n+l) ¢
that can be extended to all complex numbers « with Re(o) > —j holomorphically.

Similarly, the right hand side of (3.34) can also be extended holomorphically to all
complex numbers « such that Re(x) > —. O

Proposition 3.5.1 Let! € Z,, where n + 1 is odd and k is non-negative. Then the

functions
— !
X
AkHa=1/2 ((W) Pk(£)> L eZy

Proof In Lemma3.5.3, letting « = 2 — j, we have

are all left monogenic.

, i) (n+1)/2+4(j=2) .
00 5o i i 0;(x)

D=2 = dx.
e OO R+ D257 =1 Jy e PO

lim
e—0+

Replacing ¢ by AK+"+D/2¢ and j by k + 1, we get

Ji%‘+/x.> i) | ko0 gy = gy [ akeoD2 (%) P,

. |x|(n+1)+k| | R

where
1

—k—(n—1)/2
C((n+1)/2+k)

ﬂk — 217}172/{1-27}17/(”

Hence we obtain

B gt = p [ ot (292 oo

R} R}

Replacing Q1 by X Py (x), we have

Q](|+12(X)¢( Ydx /l;n <ka(_)> ()¢ (x)dx

= Vin /R CEx (P@)8) (1) (x)dx,

R?

where E(x) = MLH = Vl,n(#)/\(x) is the Cauchy kernel on R, § is the Dirac
function. Therefore,



3.5 The Fueter Theorem 109

ARF=D/2 (ﬁ&@) = Vi B 'E * (P(@)8)(x) = y1.18; "EP(d)(x).

This implies
k=12 (L pk()_c))

|x|?

is left monogenic. In addition,

— \!/
AkHn=1)/2 ((Xo —i—)_c)_l Pk(i)) — AkH@=D/2 ((L) Pk(£)> (3.36)

|x[?

p (DTN
— AkT@=1)/2 —_ -
-8 ((z — D! <axo> <|x|2) )

9 -1
8x0
So _1
Ak+(n—l)/2<<x() +£) Pk(i))’ leZy,

are all left monogenic. ]

Now for the case [ > 0, we prove the function
AR + 0 P | (3.37)

is left monogenic function. We first discuss the fundamental solution of the operator
DA*+(=D/2 Below we assume that 2s = 2k + (n — 1). Hence 2s may be even or
odd. It is even if and only if n + 1 is even.

Lemma 3.5.4 The operator D|D|* in R} has a fundamental solution of the same
form as those in the above list for 3% in R"*!, except that the term x in the latter
is replaced by x.

Proof We divide the proof into two cases based on the parity of 2s.
(i) Case 1: 2s is even. The Fourier multiplier corresponding to the fundamental
solution of D|D|* is B
I &
MR T s

where ¢, ; is a constant depending on n and k. A fundamental solution of | D|**2 is

a radial function and is the same as the one in the above list for 32 in R**+!. We
denote the fundamental solution by K (x). By (3.14) and (3.15), when n + 1 is even
and2s +2 <n +1,
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K(x) = |x|n72571 :

Whenn + lisevenand2s +2 > n + 1,

K()C) = (ClOg |X| +d)m

Then DK is a fundamental solution of D|D|%. Hence the function DK can be
represented as follows. Whenn + 1lisevenand 2s +2 <n + 1,

K _ X
(x) = |x|n72s+l '

Whenn + lisevenand2s +2 >n + 1,

K()C) = (ClOg |X| +d)|x|nT+l

(i) Case 2: 2s is odd. At first, because €& = |£[2, 1 3 mzj = \S\ IE\Z‘“ Also, the

Fourier multiplier corresponding to a fundamental solution of D|D|*~! i | Elfﬁ, .

By (3.14) and (3.15), when n 4+ 1 is odd, the fundamental solution is )_c/|x|"‘25+2.
Because the Fourier transform of 1/|&| is the Riesz potential 1/|x|", then in the
tempered distributional sense, the fundamental solution of D|D|?* can be represented
via convolution: _

1 )

* —.
| . |n | . |n—23+2

It is easy to see that the convolution is a locally integrable function away from
the origin. In fact, after being applied a certain times Laplace operator, the above
distribution becomes a locally integrable function away from the origin. Secondly,
as a distribution, the convolution is homogeneous of degree 2s — n. To show this,
letting M and N denote the distributions induced by W and N —2—, respectively,
then for any Schwartz function ¢, we have

(M % N(x), ¢(x/8)) = 8"VHE (M % N(x), ¢(x)).
Write 75 f (x) = f(6x). By the homogeneous properties of M and N, we know
(M « N(x), ¢(x/6)> = <M N, f571¢(x)>
= (N, M x @)

- 5(N(x), T M % ¢(x)>
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— 61+2S(N, M*¢)>

- 31+2S(M «N, ¢>.

Let p denote the rotation about the origin in R}. The representation matrix of p is
(pij) and the operation of p on x is denoted by p~'x. The operation of p on the
functions is denoted by p(f)(x) = f(p~'x). Because M is scalar-valued and N is
vector-valued, the function M * N is vector-valued and homogeneous with degree
2s — n. Write this vector-valued function as K (x) = M * N(x). Then we can get

(PK@. ¢@) = (K. p~'9)
= (NG, Map9)
= (NG, Mxp)
= (o) NG, M)
= (0)(K(), ¢ (0)
= (&, ).

that is, f(,o‘lx) = p(K(x)). Applying the lemma obtained in [ 10, Chap. 3, Sect. 1.2]
to K (x)/|x|*™", we get K (x)/|x|*™" = Cx/|x|, Hence

Cx

M x N(x) = |x|n—2s+l :

We prove when [ € Z_, the function

ARH=1)/2 ((Xo n 1) - P (a_c))

is left monogenic. We need the intertwining relation for the operator.

Lemma 3.5.5 Let n be any positive integer. Then for s =k + (n — 1)/2 and any
infinitely differentiable function g in R \ {0}, we have

(A (it h) = e o PAY@ T, 339)

where a,, 5 is a constant depending on n and s.

Proof Write L = DA’ = D|D|2‘Y. Because n+ 11is odd, by Case 2 of Lemma 3.5.4,
the fundamental solution of L is G(x) = M,,C,—*ZM We have
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e (Mﬁ@@«-)l)) @)
R p—— L (Lo
R X y |y71|(n+1)+25+2 |y|2n+2 g (dy

Cx—' / ~x—y) y!
R |

T e X — y[n2sH |y —L|n=2sl

yil

x [y =1+ D+25+2 [y 22 (Le)(y)dy

Cx—! =y
- /R T L0y
1
Cx—'
= e 8-

Then we can deduce that

L —6 -1 =C X L -1
|.|(n+1>—2sg((') ) )= W( &x).

O

_\!
In Lemma3.5.5, take g(x):(L,) Pi(x), | €Zy. Because g(x~') =

|x|?
(=D¥x!|x| 72k P, (x), we have

(DAan—l)/Z) ((_l)kxl—lpk(£)> = an,SW(DAk+(n—l)/2> (<2>1 pk@) x~h.

(3.39)
By Proposition 3.5.1, we can see that the right hand side of (3.39) is zero and conclude
that
(DAk"r(n—l)/z) ((-x() +£)1_1Pk(£)) — O, 1= Z+.

Based on the following preliminary lemma, we give a generalization of
Theorem 3.5.1.

Theorem 3.5.2 Let f be a holomorphic function defined on an open set B in the
upper half complex plane. Define the set

e
B ={x=x0+x R}, (x0,|x]) € B}.

(i) Let Pi(x) be left-monogenic and homogeneous of degree k. If k + (n — 1) /2 is
—
a non-negative integer, then in the set B, the function
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ARFODREF (x4 x2) Pe(x)]

is left monogenic.
(ii) If (n — 1)/2 is odd and k is a non-negative integer and Py (x) is monogenic and

%
homogeneous of degree k, then in the set B, the function
AFFOTDRLf (xg + 2) Pe(@)]

is left monogenic.

Proof We only need to prove that if the function
AFEDR (o + 0 Pe)), 1 € Z,
is monogenic, then the function
AFEEDR(f (xg + x) Pr(2))

is also monogenic. Through a translation, we may assume that the function f is
holomorphic in a disc centered at the origin of the complex plane. Further, we define
the holomorphic function

g =1if@+ f@],
h(z) = %[f@) — f@].

Itis easy to see that f(z) = g(z) + ih(z). Then we can further assume that the Taylor
series expansion of f is of real coefficients. We will prove:

(i) the series Z;:lfoo ¢zl and

-1
D aA TR (x4 ) P(2)]

I=—00

have the same convergence radius;
(ii) the series Y ;2 ¢;z' and

o0

> ARy + x) Pe(p)]
1=0
have the same convergence radius.
For (i), it can be deduced from (3.36) and (3.25) that

1

AFFTIRI0x0 4+ 0" Pl < CO A D™
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which implies that the two series in (i) have the same convergence radius.

At last, we prove (ii). For this case, n is even. Because A* = |D|’1Ak+"/2, the
fundamental solution of A can be represented as the convolution of Riesz poten-
tial 1/]x|" and the fundamental solution of A**"/2, Under the case that the spatial
dimension is odd, the fundamental solution of A¥*"/2is C/|x|®+D=2~1 where C is
a constant depending on n and k. By Lemma 3.5.4, the fundamental solution of A*
can be represented as C/|x|"+1=2*. Then applying Lemma3.5.5, we can get

s 1 -1 c s -1
(A Wg(x ) =W(A )(@)(x7).

x[?

_\!/
Let g(x) = ( x ) Pi(x). Then g(x~") = (—=1)*x! P, (x). Replacing s by s + 1, we
have

|x|?

_ c _ 7Y _
At 1)/2<(_1)kxlpk()—c)> - |x|2n+2k+2 Al (<_) Pk(i)) “ 1).

By the Newton potential and (3.36), in the sense of distributions,

C 1 1
k+1+m—1)/2( .1 _ -1 -1
A (v pew) (1—1)!/11@7 o=yt =zl AERDOTI.

By Lemma3.5.4,

| ATV (0 + 0 Pe@)]] < CQ A (1) e T

3.6 Remarks

Remark 3.6.1 The idea of Theorem3.5.1 is to investigate the similarity between the
Clifford analysis and the complex analysis of single variable. Via the correspondence
Zx - P® some similarity has been obtained in [11].

The quaternionic space does not coincide with our result forn = 3. The quaternion
forms a complete algebra, and the latter is not a complete algebra. Fueter’s theorem
implies that T maps a holomorphic function of one variable to a regular function of
variables in the quaternionic space. M. Sce generalized Fueter’s result and proved
that if n is odd, then T maps the holomorphic functions defined on the subset in the
upper-half complex plane to the monogenic functions. Theorem3.5.1 (iii) indicates
that if n is odd, the result obtained by the Kelvin inversion coincides with the result
for f0(z) = z*, k € Z obtained by Sce.
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However, for even n, the method of using the the differential operator A”~1/2
introduced by Fueter and Sce is not valid. By the Fourier multiplier transform, the
results of Fueter and Sce can be extended to the case of the power function with
negative index, that is, f°(z) = z*, —k € Z*; while for the power function with
non-negative index, this method is not directly valid.

Remark 3.6.2 There is the following generalization of the result in Sect.3.5. In [12],
F. Sommen proved that if n 4 1 is a positive even integer, P is any homogeneous
polynomial in x of degree k, and is left monogenic for the Dirac D: D Py (x) = 0,
then

DA ((u(xo, X+ %v(xo, x) Pk@))) =0.

|x

It is readily seen that the above result is a special case of Theorem3.5.2.
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Chapter 4 ®
Convolution Singular Integral Operators | o=
on Lipschitz Surfaces

As the high-dimensional generalization of the boundedness of singular integrals on
Lipschitz curves, the L?(X)-boundedness of the Cauchy-type integral operators on
the Lipschitz surfaces X is a meaningful question. The increase of the dimensions
means that we need to apply a new method to solve the above question. In 1994,
C. Li, A. McIntosh and S. Semmes embedded R"*! into Clifford algebra R,, and
considered the class of holomorphic functions on the sectors S,, 4, see [1]. They
proved that if the function ¢ belongs to K (S,, +), then the singular integral operator
T, with the kernel ¢ on Lipschitz surface is bounded on L?(%).

In [2], G. Gaudry, R. Long and T. Qian applied Clifford-valued martingales to
prove the same result as is proved in [1], that i.e., the L?-boundedness of the Cauchy
integral operators on Lipschitz surfaces [2]. The authors of [2] then indicated how to
prove the Clifford T (b) theory. The idea of the proof is similar to that of [3], but there
is some difference. We define a suitable sequence of atomic o-fields on R”. Because
Clifford algebra is non-commutative, it is necessary to associate each atom with a
pair of Clifford-valued Haar functions. Hence, the appropriate Haar system is in fact
a system of pairs of Clifford-valued functions. We only use the martingale technique
to prove the L?-norm equivalence between the function f and its Littlewood—Paley
function S(f).

4.1 Clifford-Valued Martingales

We first state some backgrounds of the martingales and the Littlewood—Paley estimate
of Clifford-valued functions. Let X be a set and B be a o-field in X. Assume that v
is a non-negative measure on 8 and {7, } is a non-decreasing family of o -field
in X satisfying

oo
m=—00

© Springer Nature Singapore Pte Ltd. and Science Press 2019 117
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(1 U Fm generates B;

m=—0oQ

[o¢]
(i) (N Fu=1{0, X}
m=—0oQ
(iii) the measure v is o —finite on $ and on each 7.
Let ¥ be a sub-o —field of B such that v is o-finite on . Because (X, ¥) is
o —finite, X can be writtenas X = (JU;, where U; € ¥ and v(U;) < +o0.If fisa
j

locally integrable scalar-valued function on (X, B, v), i.e., afunction whose integral
is finite on every set of finite v-measure, its conditional expectation E (f1F)is
well-defined. On each U, E(f | ) equals to the conditional expectation of f |y,
with respect to (¥ lu;» v lu,). If Ais any set in F with finite v—measure, then

/E(fwf)dv:/fdv. 4.1)
A A

If f is integrable, then (4.1) also holds for any A € #, whether of finite v—measure
or not.

Let R, denote the Clifford algebra generated by {eo, ey, ..., e,}. The definition
of the conditional expectation can be extended to locally integrable R, -valued
functions. In fact, if f = > fses, then

s

E(f1F) =) E(fs|Fes.
S

The characteristic martingale property (4.1) holds also for R,)-valued functions f.
We denote by LP(F, dv; Rg,) or simply L?(dv; Rg,), 1 < p < oo, the
Lebesgue spaces of all R(,)-vauled ¥ — measurable functions on X. The space
L} .(dv; R,) has the obvious interpretation.
Assume that 1 is a fixed L function on X with values in R'*",

Definition 4.1.1 Suppose that E(I// | F) ¢ 0ae.,andlet f € Llloc(dv; R¢,). Then

the left and the right conditional expectations E’ and E” of f respect to F are given
by the following formulas

Ef)=E(f|F)=EW | F)'EQS|F) (4.2)

and

E'(f)=E(f1F)=E(fy | PEW|F)™" (4.3)

The left conditional expectation of f respect to 7, is denoted by E!(f | %;,) or
E' (f), and the right conditional expectation of f respect to 7, is denoted by E" (f |
Fm) or E,,(f).

The mapping properties of E/ and E” are good only under further assumptions
on the function .
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Proposition 4.1.1 Let 1 < p < oo. The operators E' and E" are bounded on L? if
there exists a constant cy > 0 such that for x a.e.,

o' SIEW || < co. @.4)

Proof This theorem can be proved via modifying the corresponding argument
in [4]. O

If a function ¥ € L*®(X; R!'*") and satisfies (4.4), we call this function pseudo-
accretive with respect to . Now we assume that for a general ¥, the condition (4.4)
holds, and for all 7, the constant in (4.4) is independent of n. That being so, it
follows that, if f € LlloC (dv; Re,yy), then E !(f) and E” (f) are locally integrable. The
main elementary properties of E/ and E” are as follows:

Proposition 4.1.2 (a) Ifg € L™(F, dv; R,)), then E'(fg) = E'(f)g. Similarly,
the right conditional expectation E" commutes with the multiplication on the
left by g.

() El()=E"(1)=1.

(©) If f € L _(dv; Ry, and A is of finite measure (or f € L' (dv; R, and A is
(n) (n)

loc
F -measurable), then

f YE'(f)dv = / yfdv, (4.5)
A A
/ E"(Hydv = f fdv. 4.6)
A A
(d) Form < k, we have

where E,, denotes the left (or right) conditional expectation with respect to F,.
(e) SetAl =E! —E! | A" =E' —E" | and

m m—1’ m—1’

(f. ghy = / Furgdv.

We have for all m # « and f, g € L*(dv; R,)),
(AT f, Alg), =0.

Proof (a) and (b) are obvious. To prove (c), assume that A € ¥. Because E' f and
A is ¥ —measurable,

/wE’fdv=/XAwE’fdv=/E(wa’f)dv=fXAE(w>E’fdv=/wfdv.
A X X X A
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For E", we can give a similar proof and so is omitted.
The conclusion (d) can be proved as follows. For example, for the left conditional
expectation,

Ep(E(f) = En() " En(Y Ec(@) ™ Ec( )
= gm(Wlgm(EK[wEk(wrlEK(w)D
= E.(W)'E (v f) = EL(f).

The proof for the right conditional expectation is similar.
At last, we prove (e). Forn > «,

(An. Alg)y = / A, f AL gdv
:/Em,l(A;fwAig)dv
- / Byt (A, f9) AL gdv
_ / et (AL f9) Bt () B () AL gd
_ / Bl (AL ) Epot ()AL gdv =0,

where in the last step we have used (4.7). The proof for ¥ > n is similar. ]

Definition 4.1.2 Let f € Ll (dv; Rg,y). The left martingale with respect to

loc

{Fm)__ . generated by f is the sequence { 1} ={E! ()} If the limit

m=—0o0 m=—0o0"

fL o = lim E,ln (f) exists a.e., the left-Littlewood—Paley square function S'(f)
m——0Q
is defined by

S =0+ Y ahe)”

m=—00

The right martingale and the right-Littlewood—Paley square function can be
defined similarly. If f € |J LP(dv; R¢,) and v(X) = +o0, then f' = 0.

1<p<0

If f € Ll .(dv; R,), then the BMO-norm of f is defined as

loc

I fllsso = Sup 1 En (1 f — Emo1 fIDI2. (4.8)

We need the following facts: if # € L®(dv; R'*") then s € BM O and for every m,

En( Y 1R)P) < Cl o < ClW I (49)
k=m
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By the John—Nirenberg inequality, the right hand side of (4.8) is equivalent to

il ACREAG)

H ’
00

see [5, 6] for the proof.
The following Littlewood—Paley result is one of the essential ingredients of this
chapter. We use C to denote a constant which may vary from line to line.

Lemma 4.1.1 There exists a constant ¢ > 0 depending only on ¢y and d such that
forall f € L? (dv; Reyy),

loc
NSO < U f e < ellSCH Nz, (4.10)

where S denotes S' or S'.

Proof We only consider the case of left martingales and the case of right martin-
gales can be dealt with similarly. Fix mg. Consider the sequence {#7,},>m, and the
corresponding square function:

1 oe2\?
m;o:“ ALSE)
Ifn > no+ 1, we have
A f = EW I Fo) EGWS | Fo) = EQW | Fuet) " EWS | Far)
= [Ew 1707 = E@ | ) |Ews | F) @.11)
+EW | T [E@S 17 = B | Fun) '],

Hence by (4.4),

8, (NP < C(1Bu@PIEWS | Fl +1Ba@HE).  @12)

o0
Because v is o-finite on %,,,, we can write X = | Uj, where U CU, C -+,
j=1
and the set U; C ¥, that has a finite measure. Fix M > 1. Then by (4.12) and the
standard Littlewood—Paley estimate, we get

> 1AL P (4.13)

Uy m>=moy+1

<c(/ > |Em(wf|¢m>|2|1nw|2dv+/ > 1By

Un m>=mo+1 Uy m2>=mo+1
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N

¢ |y WOPIAuPdv + [ 1yfPd
(/% o [ i)

Uy m>=mo+1

<C</ > |E:1(1//f)|zlzm(l//)|2dv+/|f|2dv>’
X

Uy m>=mo+1

where ~
E,(f)= sup

mo+1<j<m

Ecr 19|

Form >my+ 1,1let T, = Z,fim |Zkzﬂ|2 and set 7,,, = 0. If N > mg, we have

N N
Yo NP = Y IEn NPT = Tugr)
m=mo+1 m=mo+1

= 3 L[| B NP = B NP = 1 E* )P T,

m=my

It can be deduced from (4.9) and (4.14) that

> AE, WP IR ) Pdy (4.14)

Uy m=>=mop+1

i( i le(WIZ)[IE*H(W)P |E:<wf)|2]du

Uy M=no  k=m+l

/Z B Y KW V1B NP = 1B R ]av

m=mg k=m+1

<1V Boro / W f 1Py
U,

< cnwnio/ | fPPdv.

In the last step, we have used the L?(U,;)-boundedness of the maximal function.
The constant is independent of M or my.
By (4.13) and (4.14), we can obtain

> 1AL fPdv < C/lflzdv. (4.15)
Uy

Uy m=>=my+1

In (4.15), letting M — oo and then letting my — —oo, we can conclude that the
inequality on the left hand side of (4.10).
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To prove the inequality on the left hand side of (4.10) we need the following facts.
Ifge L?(dv; R¢,), then

(a) lim E! w8 =8 = hm E’ g in the sense of L2

m—+00

(b) lim Elg=0= hm E’ g in the sense of L*>—

m——00

(c) g= Z Alg= > Ang

m=—00 m=—00

These facts can be proved in the same way as the corresponding scalar-valued results
in [5, Chap.5]. Of course, the condition (4.4) is crucial in the proofs.

Suppose that f, g € L*(dv; R,)). By (4.4) and the right hand inequality in (4.10),
we can get

\/fwgdv = ‘f n8)v( _i ALf)dv) (4.16)
-1/ (% A:ngwAif)dv\

< CIS"gll2 IS () o

In (4.16), taking supremum over all g satisfying ||g||» < 1 and using again the
condition (4.4), we complete the proof. (|

We now construct a special example, and the associated Haar functions are appro-
priate to the analysis of the Cauchy integral. Let X = R" and 8 be the Borel o —field.
Assume that dv is the Lebesgue measure, also denoted by dx. The Lebesgue mea-
sure of a measurable set U is denoted by |U|. Let ¥ be the o — field generated
by the family J of cubes with side length 1 whose corners lie at the points of
the integer lattice.

Let I be any cube in Jy. Divide I equally by the hyperplane that bisects the
edges parallel to the x| —axis, and let J; denote the family of dyadic-quasi-cubes so
produced. Let 77 be the o — generated by J;. Now subdivide each dyadic-quasi-cube
by the hyperplane that bisects the edges parallel to the x,—axis, and let ¥, be the
o —field generated by the new family of dyadic-quasi-cubes.

Continue in this manner, at each stage bisecting each dyadic-quasi-cube of the
previous family by the hyperplane perpendicular to the next coordinate axis. This
produces the sequence {F,,}5_,. For m < 0, the o — field ¥, are produced by the
reverse procedure to the one just described-successive doubling in the coordinate
directions. Note that each dyadic-quasi-cube in ¥y, k € Z, i.e., atom, is actually a
standard dyadic cube of side length 27,

Atlast, let = |J 9. Note thatany I € J is a dyadic-quasi-cube, say I €

m=—o00
Jm—1, and so can be written as I = I} U I, where I, and I, are dyadic-quasi-cubes

in9,,.
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From now on, we only discuss the left martingale. Hence we simplify the notation
by writing E,,, A, fn etc. in place of E,ln, Ain, f,f1 etc. We still assume that the
function ¥ € L®(X : R!*") = L®(R"; R'*") satisfies (4.4), but corresponds to the
particular sequence {¥,,}°% in the o —field. The following lemma is an essential
ingredient of this chapter.

Lemma4.1.2 Foranyl € ,,_1, where [ = 1, U L with I, I, € J,,, there exista
pair of Ryy-valued functions oy and B; on R" and a positive constant C such that

®

o = a1 X, +axn, a; € IR(n)s
Br =bixi, +baxn, bj € Ryy;

(i) Forall f € Ll .(R"; Ry),
Ap f(x) =oa;(x){Br, fly, x €1,
(i) CTHI™Y < oy (0)| < CH7V2, and for all x € I, CTHI|7V2 < |B(x)] <
C|I|71/2;
(iv)
/@ba;dx = /ﬂ,lpdx =0.

Proof Define oy and B; as in (i). We need to choose a;, ay, by and b, such that
(ii)—(@iv) hold.
We consider (ii). Because ¥, and ¥,,_; are atoms, on I, we have

e

For Em (f), a similar formula holds. Let
u = /w(t)dt, uj = / Y(de, j=1,2.
I I

Then on 1,

Anf =EW | F) "EQf | F) = EQ | Fon ) " EQS | Fn)
=i ([ wra)u v ([ wrax)

— ([ wpdx+ [ wrax) oo+ )
I, 6]
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= <(u;1 —u™) | yfdx —u! de) X
1] 12
+ ((u;l —u) | Yfdx—u”! wfdx) XD
I I
On the other hand,

ar{Br, [y = <Cl1b1 Yfdx +aib; 1//de> X1,
L

I,

+ <(12b2 Y fdx + arb Wfdx) XL+
h 2

Comparing the last two expressions, we choose a;, b;, i = 1, 2, such that

1

a1b; = ufl —u", b, = u;l —u Y aby = —u"' = ayby.
Letting u = u; + u, and applying the equality
al=b'=a'G-—a)p ' =b'b—a)a"!, 4.17)
we can see that the above equation has a concise expression:
arby = u ' upuy!, asby = uwguyt, arby = —u"t aphy = —u7'. (4.18)
The solutions of (4.18) can be represented as
a; =uuze, a = —u"ujc, by = c’lul_l, b, = —c’luz_l, 4.19)

where c is any invertible element in R,). We want to choose ¢ such that (iii) holds.
In fact, by (i) and (4.19), it is obvious that if ¢ is taken to be |7 |~1/2, then (iii) holds.
At last, we verify (iv). By (i) and (4.19), we can get

/1//05161)6 = fw(alXI| + axxr,)dx

= uja; + uzas

1

= (uu "up — uzu_lul)c

= ulzfl(u —uy)c— (u— ul)zflu]c =0.

We can deduce from (4.19) that [ ;¢ dx = 0. O

4.2 Martingale Type 7' (b) Theorem

In this section, we prove the boundedness of Cauchy singular integral operators via
the Clifford martingale. The main result is as follows. We suppress the fact that the
Cauchy singular integral is a principal value by writing our operators in terms of
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ordinary integrals. The principal values are to be interpreted as the ones obtained by
projecting the Euclidean balls in ¥ onto R" and integrating over their complements.

Theorem 4.2.1 IfX isa Lipschitz graph, then the Cauchy singular integral operator
is bounded from L*(Z; Rq,) to L*(Z; Rny).

Let ¢(v) = A(v)ep + v (v € R") be the coordinate system on X defined by A.
The unit normal of X is

n(@) = (e — VAW)V1+ [VAW)[%.

For these coordinates, we have

Teh@) = [ _PW =0 ) h T+ VAW Py
e [0 — )|

B /R %wwh@(v»w

where ¥ (v) = e¢g — VA(v). Because [VA(v)| < C, we can see that Ty is bounded
on L*(X; Ry,)) if and only if the operator

YOI,
T : _— d 4.20
fr /R o) =g P (4:20)

is bounded from L*(R"; R(y)) to L*(R"; R,)).
Notice that if I is a dyadic-quasi-cube, then the principal value integral

P(v) — P (u)
() — d)|'+”

exists and defines a locally integrable function. The existence and the local integrabil-
ity of T (4 x7)(u) on R" \ I are straightforward. Moreover, in R” \ I, the singularity
of T(¥ x;)(u) is O(log(dist(u, d1))) as u — 1. To deal with the case u € I, we
only need to consider

T(Wx)w) = p-v./R Y () xs(v)dv

Ts F(x) = p.v. / W“()’)F()’)dﬂ()’)
where F vanishes outside ¢ (/) and satisfies a uniform Lischitz condition. Write
Ty F(x) = p.v. / f L B O[FO) = F@do)

+/}; Wn(y)F(x)do(y)
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The Lipschitz condition of F gives an appropriate control on the first integral.
By Cauchy’s theorem, the monogenicity and cancellation properties of the kernel
(y — x)/|y — x|'*", we obtain a suitable control on the second integral.

We write the operator in (4.20) as

Tf(u) = 5 K@u,v)fv)dv.

In the following lemma, we give some elementary properties of the kernel K.

Lemma 4.2.1 Forallx,x', y suchthatx # yand|x — x'| < 1/2|x — y|, the kernel
K satisfies

C
K (x, y)| < m, X #y, “4.21)
lx —x’
K (x,y) = K, y)| < o (4.22)
and | ]
X —X
|K(y,x) — K(y,x")| gcm 4.23)

Let S denote the span over Ry, of the set of all characteristic functions of dyadic-
quasi-cubes. The space Sy of pointwise products with the function v is a left-linear
space over A,. By use of the idea of [ 7], we can define 7' as a Clifford left functional
on the subspace (Svr)g of Syr. The space (Sy)¢ consists of the functions having
integral O: fix gy € (Sv¥)op and choose N large enough such that the ball By of
radius N centered at O contains the support of g. Then we define

Tuien) = T @0 + [ [ ewweo[&e) = k001 = a0 ]w0)dxdy
1 2
)
By (4.22) and (4.23), this definition is meaningful. An important fact is that

(Bs, TY)y =Ty (Bsy) =0. (4.24)

This can be proved as follows.

(a) When N — oo, I](Vz) — 0.
(b) By the monogenicity of the Cauchy kernel, using Cauchy’s theorem, we can
prove that A}im T (Y x,)(x) exists and is independent of x € suppp,.
— 00

Because the integral of 8, is 0, we can conclude that
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lim 7' (Y x5,)(Bs¥) = 0.
N—o00

In establishing (b), one works on the surface X.
We note that, if T* is the operator f + [ f(y)K (y, x)dy, then for all dyadic-
quasi-cubes [ and J,

(T" )y xadw = i TWx))y-

Similar to 7', we have

(T'. Brly =T'Y(¥By) = 0. (4.25)

By Lemma4.1.2,if f € L*(R"; Reyy), we get

f=Y Aaf =Y i, fly

m=—00 1

and

T(f) =Y TWa) B fly
JegJ

= Za,(ﬁ,, T(ap)y(Bss fy
J, 1

= Za; Z(ﬂl, T(Wap))y(Br, v
; 7

Letuy; = (Br, T(Yay))y. By Lemmas 4.1.1 and 4.1.2, we only need to prove the
linear transform defined by the matrix (u#;;) on 12(T; R()) is bounded. We need the
following Schur lemma.

Lemma 4.2.2 (Schur) Assume that there exist a family of positive numbers (w;) and
a constant C such that

Y lwsu < Cop, 1 €7, (4.26)
J

and

Z lojur;| < Cowy, I €F. (4.27)
7

Then the matrix (u;;) defines a bounded operator on I*(J; Rayy)-
Proof This is a natural modification of the proof of the scalar version. (]

Now we state some facts associated with the estimate of |(8;, T (Y¥oc;))y |. Assume
that I and J are atoms in ¥,, and ¥, and assume that m > «. If the atom A € F,, is
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not contained in J (or J€) but a part of its boundary is in common with the boundary
of J, then A is said to be contiguous to J ( or contiguous to J¢). If the atoms of A
are in the same o —field as / and are contiguous to J, we denote the union of J and
such atoms by I + J. Specially, 2J denotes the union of J with all of atoms in %,
which are contiguous to J. The bottom-left corner x; of J is the vertex of J having
minimal coordinates.

Lemma 4.2.3 Let I and J be atoms of F,, and F, respectively, and m > k. There
exists a constant C, independent of k and m, such that if I C 2J\J, then

dxdy [J]
< C|1|(1og— + 1).
Ixg lx =y 1]

Proof We can prove this lemma via a simple calculation and we omit the details. [

oo
Lemma 4.2.4 Ler I and J be atomsin | J F;. Then

Jj=—00
(1) forallx ¢ 2J,
1T (Yay)| < CII|V2H"x — xy 7174 (4.28)

() if I S 2J)C, then
lBr, T(Yray))yl < C|1|‘”2|J|”2“/”/|x—xj|—1—"dx; (4.29)
1

(iii) forallx ¢ J,
T (W) @)] < C|J|—'/2/ = y|dy:
J

(v) if I C2J\J, then

11"/ 1]
{Br, T(Way))yl < C VIiE (log Tl + 1),

(In the above (i)—(iv), the constant C is independent of I and J ).

Proof The assertion (i) can be proved by the canceling property of Haar functions.
Hence

T(ay) = / K (6. )% (s (0)dy
_ / (K (x, y) — K (e, x) 19 (s ()dy.
J

So we can deduce from (4.23) that if x ¢ 2J, then
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ly — x|
|x _xJ|1+n

IT (Yay)(x)] < cur‘”/
J

< CI"|x = x;1 7" sup |y — xy|
yelJ

1

< ClJ2Hd '
s cll |x — x|t

To prove (ii), we can use (i) and (iii) of Lemma4.1.2. The assertion (iii) follows from
(4.21). The assertion (iv) is clear from (iii) and Lemma4.2.3. U

‘We divide the estimate of

D UIBL T(Wray))yl
1

into three parts, each with a number of separate cases based on the relative size and
disposition of the atoms / and J.

Case 1. The sum with respect to atoms I larger that J.
Fix J € ¥, and consider the set 2J. Let x; be the bottom-left corner of J. Consider
IeF,,m<k.

(a) If 1 lies outside 2J, by (ii) of Lemma4.2.4 and (iii) of Lemma4.1.2, we have

KBr, T(Yay))yl < Clllfl/zlfll/”l/"/lx —xy|7 .
I
Hence, in this case, if t < 1/2, the estimate for the Schur sum is

> KB TWan)yl

Ie U Fm, 1S2J)¢

m<k

o0
g CZ(2]|J|)I—1/2 Z |j|1/2+l/ll / |.X _.XJ|_1_ndX
j=1 !

1€F,_;, ICQI)

oo
< Csz(t71/2)|J|t+l/d/\ |x _ x1|717"dx

j=1 @/

o0

g Csz(tfl/Z)l‘]lt
j=1

<cll.

(b) For afixed m < «, the dyadic-quasi-cubes which meet 2/ are of two kinds: those
that lie in 2J\ J, and one that contains J. If I lies in 2J\ J, then because the ration
of the measures of I and J is bounded above and away from O and independent of
I and J, by (iv) Lemma4.2.4, we know
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|I|t+1/2

/1

[I'[{Br, T(Wap))yl < C H

Because the number of such terms is bounded and is independent of / and J, the
corresponding part of the Schur sum is O (]J[).

If I contains J and is larger than J, the I can be written as I = I; U I, where I,
and [, are atoms in F,,4+1. Assume that J C I, and write 8; = B1x1, + B2x1,- Then
similar to (4.24) and (4.25), we can get

<,31X11, T(l/faf))w = —(ﬂlxlf, T(¢“J)>]//-

Now I{ contains part of the region 2J\J. We can use (i) of Lemma4.2.4 on this
region. In particular,

Brxns Tan)yl = |6 /I POT Way) ()dx| (4.30)

< cipi( /2 ., ITanelds + /( IT(a)()ldx)

2J)¢

<C|1|—1/2|J|—‘/2f dx/|x—y|‘"dy
2J\J J

+ C|I|—1/2|J|1/2+1/n/ |x _.XJ|_1_ndX
J)°

|J|1/2
|I|l/2’

<clinr el < e

where in the second-last step we have used Lemma4.2.3. As for (B2 x1,, T(¥ay))y,
we have I, is disjoint with J, so we can obtain an estimate similar to that of (4.30).
The estimate for the Schur sum of the dyadic-quasi-cubes satisfying I 2 J is

Yo UL TGyl < C Y QIN I <,

1eU Fu. 127 k=1

m<k

where t < 1/2.

Case 2. The sum with respect to atoms I smaller than J.
For this case, we deal with the atoms J € ¥, and I € F,, withm > «.

(a) If I lies outside 2J, then J lies outside 2/. Hence we apply (i) of Lemma4.2.4
to T' and get

. C|1 | 1/2+1/n

IT"(Brd) ()] <

Ix — x|+
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which implies that

dx
T , o <C11/2+1/"171/2/—
(T (Br), )yl < CII| A A P
1
<A
|_x_-xj|]+n
dx
< C|1|1/”*‘/2|J|1/2/—v
; I.x_-x]|l+n

where in the middle step we have used the fact that I € (2J)¢. The estimate of the
corresponding Schur sum is

Z |I|t+l/n—1/2|J|1/2/ dx
|x _ x1|1+n

1€Up., Fon, 1027=0 !

> dx
< CZ(z—j|J|)l+l/n—l/2|]|l/2/

= Qe |x —xg|Hn

o0
<CY @ HHmrr < ey,
j=1

where t > 1/2 — 1/n.
byIfINJ=@and I C2J\ (I + J),then J C (2I)°. So for T*, we can use (ii)
of Lemma4.2.4 to obtain

B Twapyl = C|{T' 6. o) | (431)

< C|J|—‘/2|1|”2+'/"/ &

71X = x|

Letd(x, J) denote the distance of the point x from J. The atom / may have unequal
side length. Let I(/) be the smallest side length. We can deduce from (4.31) that

1
. T ol AV R A — 432
[(Br, T(Fog))yl [T~ D (4.32)

< C|J|—1/2|]|1/2+1/n|1|—1/d—x.
pdx, J)+1)

Denote by L the maximal side length of J and by / the minimal side length
of J, respectively. Then L < 2/ and [" < |J| < 2"I". The smallest side length of
the dyadic-quasi-cubes I € Fiyjis (1) =1/ 2k/n+1 Tt follows from (4.32) that the
estimate of the relevant part of the Schur sum is: if # > 1/2 — 1/n, then
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D KB T(a)yl

IeJ, IC2J\U+J)

m>k

o0
/ dx
< (2‘]|J|)t+1/n—1/2|J|—1/2/ |
; i+ d(x, J) 4+ 270/m=1]

00 et 2 3L 3L 2 du
<cy@ e [ [ [
; 171) e A Rl e ==y
S 2 +2-i14-1
=J t+1/n=1/2) 1 =1/2| y1(n=1)/n
<cy e 72110 o (=57 —)

Jj=1

oo .
< CZ(zfj)Fl’l/nfl/Zi'J't < C|J|t
n
j=1

IfI €+ J)\J,wehave I € 2J\J. By (iv) of Lemma4.2.4,

11"/ 1]
1. Than)yl < € (log 7 +1). (4.33)
In the region (I + J)\J, there exist O (L¢~!/(27//"=1)"=1) atoms which belong to
% In other words, there exist O (2/1=1/") atoms. By (4.33),if t > 1/2 — 1/n, the
corresponding estimate of the Suchr sum is

o0 oo
CZ(ij|Jl)t+1/2|J|71/2j2j(171/n) — C|J|t Zj(zfj)tfl/2+l/n < C|J|t
j=1 j=1

() If I € J and L is contiguous to J¢, we write J = J; + J,, where J; and J,
are atoms in F,,41. Let oy = a1 xj, + a2 s,, and assume that I € J;.
We first consider the atoms / C J; which are contiguous to J{. We have

Kﬁh T(l/fOt1XJl)> <,31, T(I/fOl1XJf)>w‘

J=
= |(rew). @) |

<\f T’(ﬂ,w>(x>a,dx\+\/ T' (B9 ()ardx].
Jenal Ji\2l

Hence by Lemma4.2.3, applying (i) of Lemma4.2.4 to T*(B; ), we get
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(pr. rewann), | < cur e | dx/
2N\I

+ C|I|1/2+l/n/ -
@ene |x —x1|1+”

Ly 1]
< ClP o (o

=

(4.34)

1) eI IR
|I|l/2
|J|1/2'

~

Because J, € J{, we can use an estimate similar to (4.34) to obtain

|I|l/2
|]|1/2'

(g1 Twenxn) [ < 435)

In ¥, ;, there exist 0 (2/0=1/my atoms that are contiguous to J{. It follows from
(4.34) and (4.35) that for the atoms which are contiguous to J{, the corresponding
estimate of the Schur sum is

CZ(Z j|Jl)t+1/2|J|71/2|J|71/22J(1 1/n) __ C|J| Z(Z j)t 1/241/n < C|J|
j=1 j=1

where t > 1/2 — 1/n.
(e)If I € J and [ is disjoint with J{, similar to (i) of Lemma4.2.4, we have

(81 Twenn) | = ’ [ '@ wds

< cur“zf IT"(Br¥) (x)|dx
Ji

_ dx
< C|I|1/2+1/I‘L|J| 1/2/ -
7o v —xg

1

< C|I|l/2+l/n|J|—l/2d(x JL)
> Y1

For [{B;, T(¢o2xy,))y !, a similar estimate holds. So the corresponding estimate of
the Schur sum is

2J(1=1/m)

(o]
. 1
—j 1 TNEHL24 1 =12
> 1) Y

J=1 Jj=1

o0
< C Z(zfj|J|)t+1/2+l/n|J|71/271/n2j log(zj(lfl/n))
j=1
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o0
g C Zk(z—j)t—1/2+1/n|1|l
j=1

< CI,

where t > 1/2 — 1/n.

Case 3. Atoms of the same size.
Here we only need to estimate the term (8;, T (¥« ))y since the arguments for Case
1 can be used to estimate the other parts of the Schur sum.

By Lemma4.1.2, it suffices to prove that for all dyadic-quasi-cubes I,

X T x)yl < CHI

For this, we need to use the monogenicity of the Cauchy kernel. So we pass from
T back to Tx. The coordinate mapping is ¢ (v) = A(v)eg + v. For small € > 0 and
x = ¢(u)(u € I), consider

/ L w0t (Mo (). (4.36)

x—y|>e€ |y - X|

Let P, be the tangent hyperplane X to at x. Seta(u) = dist(u, d¢I) andb = b(x) =
dist(x, d¢(1)). Write (4.36) as I} + I, where

y—x
I = / B X (e ()
b>|x—y|>e 1Y

x|
and _
I / Y ) ey (Mo ()
2= 1MW Xen(Y)ao(y).
lx—y|>b |y _x|1+n o
Then
C|I|l/n
1| <C10g( )
a(u)

By Cauchy’s theorem, we write

y—x y—x
L=| ——— d — d
1 /Sb |y_x|1+n“(Y)X¢<1>(Y) o(y)+/sg 5 _x|1+nn(y)xq><z)(y) o(y)

+f ke () (), 437)

, YEP:, b>|x—y|>€ |y - X|

where S, and S, are the portions of the sphere of radii » and €, respectively, that lie
between X and P,. Because the kernel is anti-systemic and the integrals on S, and
S, are dominated by a constant, independent of x, € and b, then the third integral in
(4.37) is 0. Hence
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|I|1/n
a(u)

|Gt T X))yl < CI +C/10g< )du < Il
I

Assume that b; and b, are two pseudoaccretive functions. The space b, L*(R";
R()) is defined as the set of all products of the form b, f, f € L*(R": R¢yy). Similarly,
we can define L2(R"; Ry))b;. These spaces are isomorphic to L2(R"; Rgy). Let S
denote the space of finite linear combinations over R, of characteristic functions of
dyadic-quasi-cubes. Then b, S is dense in b; L*(R,)). Denote by (Sh,)* the space
of all Clifford left linear functionals on Sb, with values in Ry,,. Similarly, (b;S)*
denotes the space of all Clifford right linear functionals on b;S.

Let T be a Clifford right linear mapping from b; S to (Sb,)* and let A = {(x, y) :
x =y}. We call T a standard Calderén-Zygmund operator, if there exists a C*>
function K in R” x R"\ A with values in R, satisfying:

(i) forx # y,

IK(x, yI<C ; (4.38)

lx — y|"

(i1) there exist a constant § such that for 0 < 6 < 1l and |y — yo| < |y — x|/2,

BT
K(x.y) = K@, yo)l + K (v, x) = K (30, 0)| < c%; (439)
(iii) for all f, g € S having disjoint supports,
T (b1 f)(gh) = // 8()ba(X) K (x, y)br (y) f (y)dxdy. (4.40)

In conformity with (4.40), we write

T(b1f)(ghy) = (g, T1f))p,-

If T' is a left linear mapping from Sb; to (b1S)* such that for all f, g € S,

(g, T(b1 ), = (T"(gh2), fu,

and T is associated with the kernel K, then T is associated with the kernel K (y, x)
in the sense that

(@b 61 = [ ( [ @bk ndx)bio)fo)dy.

If there exists a constant C such that for all dyadic-quasi-cubes Q,

IT(b1x0)(x0b2)| < C|Q],
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We say that T is weakly bounded with respect to b, and b,. This definition is formally
different from the usual one in [7, 8], in which the test functions are taken to be
smooth. However, the two definitions are equivalent.

If h € L®(R"; R'"*"), then Th can be defined as a linear functional on the sub-
space (Sb,)o of Sb; consisting of functions having integral 0. In the next theorem, we
say T (b1) € BM O if there exists a locally integrable BMO function ¢ such that for
all g € (Sha)o, (g, T(b1))p, = (g, ¢)»,. A similar interpretation applies to T7 (by).
For the sequence of o —fields, the space BMO is the one defined in (4.8).

Theorem 4.2.2 (T (b) theorem) Let T and T' ba as above and T be associated with
the standard Calderon-Zygmund kernel K. Then T is extendible to a bounded linear
operator from by L*>(R"; Ry) to L*(R™: Rw)) by if and only if

(i) T(by), T'(b2) € BMO;
(ii) T is weakly bounded for by and b;.

Proof The necessity of the conditions (i) and (ii) was proved in the classical case by
[9-11]. Their proof adapted to the more general Clifford algebra setting.

To prove the sufficiency, we first deal with the case T (by) = T'(b;) = 0. For
every pair of pesduoaccretive functions b; and b,, we associate a Haar basis and
denote the respective pair-base by {(a}l), ,3;1))} reg and {(aﬁz), ﬂ;z) )}1eg. Formally,
we have the following expansion

T (b, f) :Za}”( * Tbla;”)b( M f>b.
1,J ? :

Let
2 1
Uy ——< ;), Tbla(J)>b .

2

It suffices to prove for a suitable number ¢, when w; is taken to be |I|*, the conditions
of Lemma4.2.2 are satisfied.

Because T (b)) = T'(b;) = 0 and the kernel with respect to T satisfies (4.38)
and (4.39), for the present more general operator 7', the statement and the proof
of Lemma4.2.4 still hold. Because of the assumption that 7' (b;) = T*(b;) = 0, we
find that the estimates for Case 1 and Case 2 go through unchanged. The estimate
of the part of the Schur sum corresponding to Case 3 holds by virtue of the weak
boundedness assumption.

The general case: T (by), T'(b;) € BMO.Let T (b)) = ¢ and T'(by) = ¢». We
define

[e¢]

Uif =Y AP@OED (b7 f), i j=1,2,i # ], (4.41)

k=—00

where E\” and A\” are the left conditional expectation operator and the left mar-
tingale difference with respect to the pseudoaccretive function b;. It is obvious that
U;b; = ¢;,i =1, 2. The kernel K; of the operator U; is given by the expression



138 4 Convolution Singular Integral Operators on Lipschitz Surfaces
- ) %) -
. — G J . .
K 0= 30 3 ) (B} "”>b_,,< / b,) . (442)
By (4.42), it is easy to verify
AU f = AP (@)EL (b7 f).

We claim A
ISOW; HHll2 < Clifla, (4.43)

where S denotes the Littlewood—Paley square function with respect to b;. Hence
U; is bounded on L%. To prove (4.43), note that

ISP Wi HI3 (4.44)
=fDA,&”@»E,?‘Z](b;If)Fdx
k

<cf Z|A,if>(¢;>|2(E£i_)’;(b;lf))zdx
/ Z (S0 @r N(ED 6 0) — (£2507 0) Jas

m= k

where E,Ei)*g = sup |E(g|. Now, for every k,
m<k

B (2 1826017) < Clldiluno- (4.45)

m=k

This is because, if I € Ji_1, then we canrestrict o —field {F,,};,_,_, to I and deduce
thaton 7,

1 A
m/} Z 1A (i) Pdx

() )
= m/ZW@, E, (¢i)dx

m=k

_ C 1 b d
o J, éi = 17| j¢i) x

1 2
|1|/¢’ |1\<J>/ "_m/,d”'dz)dx‘
Cllgil3 o

Br( 2 188 60P)

m=k

N
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where we have used the fact that [IV)| = [, b;dx. This gives (4.45). Returning to
(4.43), we have

ISOW; I3 < Clldi Mo f (Mf @) dx < CIS I,

where M f denotes the usual Hardy-Littlewood maximal function. This proves (4.43).
By Lemma4.1.1, U; is bounded on L2. The operator U! is still bounded on L2. If

i # j,because fbjot;j)dx =0,

(Ui b)), flo, = (bj, Ui(bi ))
= 2 3 () o ([ 5) ([ o)
k=—o00 I€Tx_; I I
=0.

Hence if i # j, U/ (b;) = 0. Letting R =t — U; — U}, we have
R(by) = R'(by) = 0. (4.46)

The operator R is also weakly bounded. Applying the method of Theorem4.2.1,
we wish to show that R and T are bounded on L?. This effectively reduces to
checking that the operator R and R’ satisfy the same kind of conditions as those
given in Lemma4.2.4. The proofs of (iii) and (iv) of Lemma4.2.4 use only the
property (4.21) of the kernel K. Consider the kernels associated with the operators
U, and Uj. Fori = 1, 2, they are given by (4.42). Now for fixed x # y, and k, there
exists at most one I € J;_1, denoted by I;_;, such that the summand in (4.42) is
nonzero. For such a term,

lx —yl < Cc27F, (4.47)

where C is independent of x, y and k. Let ko be the largest integer such that (4.47)
holds. By (4.47), the sum in (4.42) is then, in norm, at most

ko
il -
C S / B9 ()b; ()11 — @)1, Idy
L1l Ji,
k=—00 k=1
ko
< Cligillsmo Y Mkl ™

k=—00

ko
< Cligillsmo Y 2™

k=—00
< Cligillsuo2™
< Cligillsmolx — yI™
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As to (i) and (ii) of Lemma4.2.4, we note that, if J is a dyadic-quasi-cube with
x ¢ 2J, then

o] -1
Uibiaf) @) =Y Y ¢ (B, ¢1>b2( f, bl) ( /I bla?)) =0.

—00 I€Jk-1

In fact, the last factor in a term of the double summation is nonzero only when I C J.
But because x ¢ 2J, then x;(x) = 0. So this term is 0. A similar argument applies
to UJ. Hence, (i)—(iv) of Lemma4.2.4 hold for the operator R. The operator R’ can
be dealt with similarly. Assume that R(b;) = R'(b,) = 0. With some appropriate
modifications, the proof of Theorem4.2.1 applies to the operator R. O

4.3 Clifford Martingale ®—Equivalence Between
S(f) and f*

In Sect.4.2, the L?-norm equivalence between a Clifford martingale and its square
function plays an important role in the proof of the main results. The L?-boundedness
of the maximal function f* indicates the L? equivalence between f* and its square
function. The later mentioned result is associated with ® (¢) = ¢2. In this section, we
will generalize this result to more general functions ®.

Let (2, ¥, v) be a nonnegative o —finite space and let ¢ be a bounded Clifford-
valued measurable function. Consider the Clifford-valued measure du = ¢v. The
martingales are with respect to du and a family of {¥,,}> of sub-o-field satisfying

{Fm)}>,, nondecreasing, ¥ = UF,,, NF,, =0, (4.48)
and
(2, Fm, v) complete, o — finite V m. (4.49)
Letey, --- , e, be the basic vectors of R” satisfying
e’ =—1, eie;=—ejer, i £ j, i, j=1,2,...,n, (4.50)
and R, be the Clifford algebra on 2"-dimensional real number field generated
by the increasingly ordered subset e4, {1,---,n}, where ey =¢; ---¢;, A=
{1, i}, 1 <1 < n, ey = eg = 1. We will use the following norm in R;):

A = (Zﬁ)m, L= haea. 4.51)
A A
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For this norm, we have the following relation:
Al < KAl Y &y € Ry, (4.52)

where k is a constant which depends only on the dimension m. When at least one of
A and p, say A, is of the form A = Z;‘Jzo Aje;, i.e., a vector in R"T! ¢ R, we have

KA < 1A (4.53)
For a martingale f = ()%, the maximal square function is defined as

To=swp lfil, 7= f&. (4.54)

k<m

For1 < p < o0, f = {fn}%, is called bounded on L? if

£l = sup |l fiull, < 00. (4.55)

In the next proposition, we prove the boundedness of the maximal operator f*.

Proposition 4.3.1 Let 1 < p < 0o. The maximal operator “x” is (p, p) type and
weak (1, 1) type. For 1 < p < oo, every LP-bounded martingale f = {f,}>, is
generated by some function f € LP(v) which satisfies || f ||, ~ sup,, | finll p-

Proof Let f = {f,,}>,, be a martingale. On the one hand,

Jn = E(fnst | Fn) = E@ | Fon) " E@ i1 | Fon)-

On the other hand,

fo=E(fura | ¢m>~=~i<¢ | Fo) " E(@fsa | Fon)
=E(@ | Fn) "EE@fns2 | Fur1) | Fn)-

The above estimates give
E@fur1) = EE@fuiz | Fu) | Fun)-

Hence {’Ev(qﬁfmﬂ)}cjooo is the martingale with respect to (2, 7, v, {,,}%%,). We can
deduce from the expression of f,, that the following relation holds:

E@fns1 | Fu) = E@ | Fon) fn-
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Then it is L?-bounded. Moreover, we have

sup || follp &~ sup | E @ fms1 | Fudllps

f 2 sup |E(@frr | F)l-

Because of the result in the classical case, * is (p, p) type and weak (1, 1) type.
For 1 < p < 0o and any integer M > 0, we decompose 2 = U2, where ; €
F_m and || < oco. Because for any &, {E(@fnsr | Fm) X tn>—m is a classical
martingale, we can obtain some ¢f € L” (€2, v) such that on 2,

E@fns1 | F) = E@f | F), n > —M.

Therefore, forn > —M,

fu=E@ T E@fusr | Fu)
=E(p | Fu) 'E@f | Fn)
- E(f | 7rm)

Letting M — o0, we can see that f,, = E(f | ,,) ¥ n. Moreover, we have
I fxellp < Csupll fnxallp
n

and
£, < Csup |l fullp-

In addition, sup,, | fiull, < CIfll, and || f1l, = sup,, || fullp- O

By Proposition4.3.1, we can identify a L”-bounded martingale with the function
that generalizes the martingale as follows

J =% ={E(f | Fi) ¥ m}Z.

Proposition 4.3.2 Let 1 < p < oocand f = {fu}%,, be a L?-bounded martingale.
Then
lim f,=f,1< p < oo, (4.56)
m—0o0

where f is the L?-function which generates { f,,}>,, in Proposition4.3.1, and for
p = 1, the following limits exists:

lim f, exists, p =1 4.57)

m—0Q
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and
lim f,=0,1<p<o0. (4.58)

m——00

Pr00f~Let Q = UQy, where Q; € F( with || < ooV k. Then {E(q’) | Fm) X hm>0
and {E(¢fim+1 | Fm) X tm>0 are LP-bounded martingales with respect to (2, F N
Qi {Fm N Qi }m>0), and have their respective limits:

on every 2, lim E(d) | Fm) = ¢ ae.;
m— 00

on every €2, for some g, lim,,_, o E(¢fm+1 | F) = ¢pg ae.;
forl < p<oo,g=1.

The last two limits imply that (4.56) and (4.57) hold. Now we prove (4.58). Write
0(w) = lim,,, | fin|. Then 8(w) < f*(w) and O(w) are NF,, measurable. This
means that 6(w) = a > 0 a.e. Because * is weak (p, p) type, for 1 < p < oo, we
have

C P
HO (@) > Ay < H{f* > A < (X”f”p) Va>0.

Hence a = 0. This gives (4.58). (]
Let ® be a nondecreasing and continuous function from R* to R™ satisfying ®(0) =
0 with the moderate growth condition

OQ2u) < Cip(u), u > 0. 4.59)

We begin to establish the ®—equivalence between S(f) and f*, where f is the
martingale such that for any m,

[Am f1 < D1, (4.60)
where D = {D,,} is a nonnegative nondecreasing and adapted process to {F,,}. We

only consider the case {F, }n>0.

Theorem 4.3.1 Let f = {f}n>0 be a l—martingale or a r —martingale satisfying
(4.60). Then

/ O(S(f))dv < c/ ®(f* 4 Doo)dv (4.61)
Q Q

and

/ O(f)dv < C/ D(S(f) + Doo)dv, (4.62)
Q Q

where the involved constants depend only on Cy and C.

Proof We shall use the stopping time argument and the good A— inequality. Let «
be any real number larger than 1, 8 > 0 to be determined and A be any level. Notice
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that
|fm| < |ﬁn—l| + |Amf| < fr;:_l + Dm—l = Pm—1-

Define the stopping time t = inf{m : p, > B} and the associated stopping mar-
tingale

FO = (£ mz0 = { fminim.o) Im>0-

Then we have

{t < o0} ={ps > BA}, f(r)* = sup |fmin{m,r}| < f: < -1 < BA.
m

Now consider the adapted process {S,,(f)) > A} and define the stopping time
T =inf{m : S,(f™) > A}.

Then we have
{T < o0} = {S(f™) > A}, St () <A

Hence

{S(f) > ar} C {t <o} U{t =00, S;(f)* > a’A?}
C{t <00} U{S(f™)* = Sr_1(f)* > (& — DA%}

and

(XS(f(”)?—SH(ff)2>(oz2—1),\2 | F1)
E(S(f) =S (f)? | Fr).

N

(@2 — )2

Now we consider a new underlying space (2, ¥, v, {Jm}m>0) with J,, = Fripm,and

the martingale
g = {gn}m>o0 such that g,, = 7("2m — T(Z)l

Then we have
(7) (7) (7) (7)
Ang = fT:.m - Tr_l - (fT:—m—l - fTr_l) = AT+mf(t)

and

oo

S =Y 1Angl =) |ArimfOP

m=0

m=0
= D IAS O = S(FO) = Sroa(f )
k=T
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By Lemma4.1.1, we get

ES(f? = St (f)? | Fr) = E(S©)* 1. T)
< CE(Igl* | Jo)
= CE(f™ — £21 1 Fr)
< CB2A2.

Now, because {S(f*) > a)l} C {T < oo}, we obtain

S(FD) > anlly < / XisrnmanydV

{T <o0}

Z/ E(Xs(p@ysany | Fr)dv
{T <00}

< / EQusronz—sr(rop>@ -2y | Fridv
{T <00}

cp? cp?
< sy = 1l < <L iis() > A,
ar—1 ar—1
and hence
cp?
S0 > @l < 1o > Bl + 50— IS(F) > My

which is the desired good A inequality for the couple (S(f), f* + Doo). The one for
the couple (f*, S(f) + Do) is similar. From them, we obtain (4.61) and (4.62). [J

We can get rid of D, in the following cases:

(i) @ is convex;

(i) (2, F, v, {Fm}>,) is regular in some sense.

For simplicity, we only consider the simplest regularity, i.e., the dyadic type one: each
F, is atomic, whose atom [ ™ = Il(m+1) + 12('”“) satisfies ||11(m+]>|u| = ||12(m+1) Ll
A little more general regularity is applicable to our case. We have

Theorem 4.3.2 Under the additional condition (i) on ® or (ii) on (2, F, v, {Fm} %),
we have

f O(S(f)dv ~ f O(f)dv,
Q Q

where in the above equivalence, all the constants only depend on Cy and Cj.

Proof We first consider {#,},>0. Davis’ decomposition holds in such case: every
Clifford martingale f = { f;,}m>0 can be decomposed into a sum of two martingales:
& = {8mtm>0 and h = {hy },n>0 satisfying
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|Angl < 4dy,_;, d* = sup |di|, di = Arf, (4.63)
k<m
and
o0
/ QD(Z [A DAY < C/ ®(d*)dv ¥V convex . (4.64)
(o T —, Q

Now for f = { fiu}m>0, we have
/CD(S(f))du < C/ <I>(S(g))dv+C/ O(S(h))dv
Q Q Q

< c/ c1>(g*)+c/ <I>(d*)+C/ (> |Anh)dv
Q Q (o R ——

< c/ O(f*)dv.
Q

The proof for the reverse inequality is similar. Next we consider the dyadic type
case. We claim that in such case, (4.60) holds for any martingale f = {f,,}*°, and
suitably defined D = {D,,}. In fact,

Dy |mer= sup max(( Ay f] o, 1A f] |,0)
k<m

is a nonnegative, nondecreasing and adapted process such that
|Amf | < Dm—l

and
Doy < Cmin(f*, S(f)).

Only the last assertion needs to be verified. In fact,

G
implies
[, serdn== [ acrau.
Il(k—l) 12(/(71)
This gives

k k
Acf 1y PN = =B f 1o 1571
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or ®
Acf 1o | 1L,

Acf Lo | 1P

Therefore, on 1%,

max(|Ac f1 [;w, |Acfl1w) < ClALf]

and
Do < Csup|Arf] < Cmin{S(f), f*).
k

4.4 Remarks

Remark 4.4.1 Another method to prove the boundedness of Calderén-Zygmund
operators lays on the multi-resolution technique developed by R. Coifman, Y. Meyer
etc. That method is usually called the fast algorithm of Calderén-Zygmund. The
basic idea is to decompose the kernel of the Calderén-Zygmund operator 7 under
consideration by wavelet basis and then represent 7 as a linear combination of
quasi-annular operators. Then applying the smoothness and the canceling condition
of the regular wavelets, we estimate the coefficients of the kernel and obtain that the
L% —norms of the quasi-annular operators have a good rate of decay. This implies the
L?-boundedness of Calderén-Zygmund operators. In 1994, similar to the result on
R", using Clifford-valued regular wavelets, M. Mitrea obtained the L?-boundedness
of singular integral operators on Lipschitz surface, see [12].
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Chapter 5 ®)
Holomorphic Fourier Multipliers i
on Infinite Lipschitz Surfaces

It is well-known that there exists a one-one correspondence between the classical
convolution singular integral operators and the Fourier multiplier operators on the
Euclidean spaces R”. Because Plancherel’s identity involving the Fourier transform
is invalid on Lipschitz surfaces X, the relation between singular Cauchy integral
operators and Fourier multipliers on X is an open problem for a long time. In 1994,
by the aid of Clifford analysis, Li, McIntosh and Qian [1] introduced a class of
holomorphic Fourier multipliers H (S;, ,.) on Lipschitz surfaces. In [1], based on the
idea of the functional calculus of the Dirac operator, the authors proved the following
result: for ¢ € K (S, +), there exists a holomorphic function b € H (S, ) such that
on the Lipschitz surface, any singular integral operator T with the convolution kernel
¢ corresponds to a Fourier multiplier operator M}, where b is the Fourier transform
of the kernel ¢. In this chapter, we will elaborate on the theory established by the
above three authors.

5.1 Singular Convolution Integrals on Infinite Lipschitz
Surfaces

Let ¥ denote a Lipschitz surface consisting of the points x = x + g(x)e, € R**!,
where x € R”, and g is a real-valued Lipschitz function satisfying

n
9o 123172
||Vg||oo=sup( ]8—g) < tano < oo,
D e
j=t

xeR”

where 0 < w < /2.
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The unit normal n(x) € R’:Ll is defined at almost all x € X. Take N to be the
compact set of unit vectors in R'jf‘ which is starlike about ¢, , uy < w and contains
n(x) for almost all x € X.

Let x be a finite-dimensional left module on Cyy. If 1 < p < 0o, then L? (%)
is the space of the equivalent classes of functions u : ¥ — x is measurable with

respect to
dS, = /1 + |Vg(x)|2dx

1/p
lul, = (/ |u()_c)|”de> < +o00.
b>

In the rest of this section, fix X, N and x. Assume that 1 < p < 0o. As usual,
L(L?(X)) denotes the Banach algebra of bounded linear operators on L?(X). The
following theorems are generalizations of the main results of [2].

and

Theorem 5.1.1 Let1 < p < oo.
) Ifd e Kf\,' or Ky, then there exists To € L(L?(X)) defined by

(Tou)(x) = Slir&/ D (x £der — y)n(y)u(y)dsSy
g =

€—>

= lim (/ O (x — y)n(u(y)dS, + Q(ER(X))M(X)>
[x—y|=e,yex

forallu € L?(X) and almost all x € X. Moreover, if ® € K(C?f,“)for all 0 <
u < /2 — w, then there exists a constant C,, , , depending only on w, . and
p such that

”T(IDM”p < Cw,u,p”q)”K(C;M)”u”p-
(i) If (P, D) € Ky, for allu € LP(X) and almost all x € Z, there exists Tp o) €
L(L? (X)) defined as

e—>0

(Tio,0u)(x) = lim (/ S(x — yn(y)u(y)ds, + Q(en(x))u(x)).
le—y>e.yex

Moreover, if (@, D) € K(Sy,) for 0 < u < 7/2 — w, then there exists some
constant C,, ,, , depending only on w, | and p such that

1Tw.o)ullp < Cop,p (P, Pk (sy,) 122l p-

For &, and ®_,
T(Q@ = T(I;.Jr + T<1>,-

Note that (ii) can be deduced from (i) and Theorem 3.2.1 immediately.
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We point out that the spaces K, K ~ and Ky are not convolution algebras, while
the subspaces M;?, M, and My are convolution algebras.

Theorem 5.1.2 The mapping from ® € Mi to Te € L(L?P (X)) and the mapping
Sfrom (®, @) € My to Tie,0) € L(LP (X)) are algebra homomorphisms.

Let

Ex) = x #0.

an|x|”+1’

Then the function E belongs to My and M, . When we consider the function E in
M;V’, we denote by E the function £. When we consider E in M, we write E as
E_. In addition,

(2E,0) = (E4, 1/2) + (E_, 1/2) € My.

The corresponding bounded linear operator on L?(X) is
CZ = T(zE’()), P+ = TE+ and P_ = _TE,-

By Theorem5.1.1, we know that for all # € L”(X) and almost all x € X, these
operators are defined as

(Piu)(x) = £+ lim / E(x £ 8ep — y)n(y)u(y)dS,
=0+ J» :

and
(Csu)(x) =2 1lim E(x — ym(»)u(y)dS,.

€20 Jx—ylze yex

The starting point of this section is the boundedness of the operator Cyx. By
Theorems 5.1.1 and 5.1.2, we can deduce the following properties.

Theorem 5.1.3 Let o, € M,i\;. Cauchy integral operators Py, P_ and Cyx are
bounded linear operators on LP (%) and satisfy the following identity.

(1) P+ P_=1, P, — P_ = Cy (Plemelj’s formula).

@) PiTo, =To, Py =Te,, P-To, =Te P- =0,
PTo =T P-=Ty., PiTe.=Te Py =0.

(3) P2=P,P2=P PP =P P =0C:=1I;

4) To,To. =To_To, =0.

Defining Hardy spaces L7+ (X) as the images of the projections P, there follows

LP(D) =L () LV~ (D).
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The operator Ty, maps L”(X) to LP*(X) and is zero on LP>~ (), while the operator
Te_maps LP(X) to L”~ () and is identity with 0 on L”** (X). Hence we can define
T, € L(LP*(X)) such that

To.0) =To, ®To_,

where (®, ®) is related to @, and ®_ as in Theorem 3.2.1.
At the end of Sect. 3.3, we used the Fourier theory to prove (2E;, 0) € Ky, where

X .
Eﬂx):-W, xeR"\ {0}, j=1,2,...,n.

Then the operators R; z = Lg;, J = 1,2,...,n, are bounded on L”(X). These
operators can be regarded as Riesz transforms on X. The L?-boundedness of the
operators R; 5 is one of the motivations to establish the Fourier theory on X. Because
R; s is not merely the jth component of Cy, the boundedness of these operators
is not a direct consequence of the boundedness of the Cauchy integral operator
CZ = ZEJ‘R]"):.

Theorem 5.1.4 The Riesz transforms R 5, are bounded linear operators on L? (%)
which satisfy

Rj’):Rk’): = Rk,ZRj,):a ZejRj’): = CZ and Z(Rj’z)z = —I

The following results are corollaries of Theorems5.1.1 and 5.1.2. When ® € K}/
and § > 0, ®s € K} is defined as ®5(x) = ®(x + dez). In particular, Es € M},
where

Es(x) = Eqs(x) = Eq(x +de).

If p is a polynomial of m variables with values in C(yy), then p(—iD)Es € K,
where

. .0 | 9
p(—iD)Es(x) = p(—i—, —i—, -, —i
dx1 0x>

)E+(x + SeL).
0x,

Theorem 5.1.5 Leta > 0and § > 0.

() If® € K}, then ® x Es = ®5 € Ky, and ToTg, = To,.
(i) If® € My, then Es  ® = &5 € My, and Tg,To = Ts,.
(i) Ey* Es = Eqys € My, and T, T, = Tk, ..

Assume that p and q are two polynomials, where p satisfies p(§)§er = &ep p(§).
Then p(—iD)E;s € M;\,' and

(iv) Eq* p(—iD)Es = p(—=iD)Eqys € My and
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Te, Tp-iD)Es = Tp(—iD)Eyss-
(V) q(=iD)E, * p(—iD)Es = (qp)(—=iD)Eqss € K}, and
Tyip)E Tp-iD)Es = Tigp)(~iD)Eyus-
Let Q. be an open subset of R"*! above %, that is,

Q+:{XER"+1: X =x 4+ deg, er,8>0}.

For u € L?(Z), let C{u be the left monogenic function on 2, defined by

(CEu(X) = /2 E(X = yn()u()dSy, X € Q..
Then for almost all x € X, when § — 0+,
(Cgu)(x +8ep) = Tgu(x) — Pyru(x).
The limit exists in the sense of L? (see [2]). In other words, as § — 0+,
|Tg,u — Prull, — O.

Although the limit need not always exist as X approaches X, we can differentiate
(Cu)(X) before taking the limit. Generally, given any polynomial p of n variables
with values in C,y. Although the limit may not exist as X approaches X, we can
construct

POt _ (8 .8 PR P
( lQ)(CEu)(X)—p( e ,axn)(cz)(X).

If the limit exists in L?(X), we define p(—i Dy )u(x) as the limit of
p(—=iD)(CEu)(x + 8er) = Tp—ipyr,u(x)
as § — 0+.

Precisely, define p(—iDy) as the linear transformation from D (p(—iDy)) C
LPH(X) to LP(X2):

DH(p(=iDy)) = {u € LM (E) 1 Tyimru — w e L7 (E))
and p(—iDy)u = w.

If for some v € L7 (), u = Ty, v, then u is the restriction of the left monogenic
function U to X, where
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UX) = (Cgv)(X +aer), X +aep € Q4.
Such a function u belongs to Dt (p(—iDy)) and
p(=iDy)u = (p(=iD)U) |5 .
Specially, we consider the functions
qr(x) =i&, k=1,2,...,n

and
n

q(&) =ite, =) ifrecer.

k=1

By use of these functions, we define the operators Dy 5, = gx(—iDy) and Dye; =
q(—iDy,) such that for the function ¥ mentioned above,

Dseru = (De U) |5

and ou
Disu=——,k=12,...,n.
’ 0 Xy

When ¥ has a parametric representation: x = s + g(s)e,, these functions can be
represented as the parameter s. We obtain that for all functions u such thatu = Ty, v,

0 0
Dizuts +g@er) = (- + 5w = DO DJuls +g(s)en);

and

m

Dyepu(s +g(s)er) = Z exeL Dy su(s + g(s)er)
k=1

= (e, —Dg) ' D,u(s + g(s)ey),

where v € LP*(X). In the following theorem, we will see that this representation of
Dy is valid for any function u in its domain. From the following theorem, we also
conclude that these operators are closed linear operators on L”'+(X). In the next two
sections, we will study how to represent the convolution operators in Theorem 5.1.1 as
bounded holomorphic functions of (D 5) and Dy,. We still assume that 1 < p < oo.

Theorem 5.1.6 Let p be a polynomial of n variables with values in Cypy. Then
p(—iDy) is a linear transformation from LPt(X) to L?(X), where its domain
DT (p(—iDy)) is dense in LP"T(X).
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If p(§)ser = Eerp(§), then p(—iDy)u € LP(Z) for allu € D*(p(—iDy)),
and actually p(—iDy) is a closed linear operator on L (X).

Suppose that p and q are two polynomials such that p satisfies p(§)éep =
Eepp(§). Let u € DY (p(—iDy)). Then p(—iDs)u € DT (q(—iDy)) if and only
ifu € DT ((qp)(—iDy)). In this case,

q(—iDs)p(—iDy)u = (gp)(—iDy)u.
Proof Because any function u € L (X) is the limit of Tg,u € Dt (p(—iDy)) as
o — 0, the domain Dt (p(—iDy,)) is dense in L7 (X).

Assume that

p&)ser =&erp(§).

Letu € Dt (p(—iDy)).InTheorem5.1.5, we can see thatwhen > 0, p(—iD)E; €
M. Whena > 0,

Tg, Tp-ip)Es = Tp(-iD)Eyys U-
Letting 6 — 0 and o« — 0, we get
Tg,p(=iDy)u = Ty-ip)£, U

and
p(—iDs)u = Pyp(—iDs)u € L7 (%),

respectively. To prove p(—iDy) is closed in L?-*(X), choose the sequence {v,,} in
D (p(—iDy)) such thatv,, — v € L?*(X) and p(—iD)v,, > w € LP"T (). We
need to prove v € D (p(—iDy)) and p(—iDys)v = w. For any o > 0,

T, p(—=iDs)vy — Ti,w

and
Te,p(=iDs)vm = Tp-in)E,Vm = Tp(-iD)E,V

such that T, _;pyg,v = Ty, w. Hence
Ty—ipe,v=Tgw—>wasa — 0.

We obtain v € D(p(—iDy)) and p(—iDys)v = w.
By Theorem5.1.5, we get

Iy -ip)E, Tp—in)Es = Tigp)(=iD)E, sU-

Hence, letting 6 — 0, we can obtain

Ty-ipye, P(—iDy)u = Tigp)~iDy)E, U-



156 5 Holomorphic Fourier Multipliers on Infinite Lipschitz Surfaces

Letting o« — 0, we can see that p(—iDy)u € D*(g(~iDy)) if and only if u €
DT ((gp)(—iDy)). In this case,

q(—iDy)p(—iDy)u = (qp)(—iDy)u. O
Similarly, we can define the linear transformation p(—iDy) from the domain

D~ (p(—iDy)) C L~ (2) to LP(%).
At last, we define the linear operator p(—i Dy ) on L7 (%) as

p(—iDs)u = p(=iDs)Pru+ p(—iDs) P u
with the dense domain

D(p(~iDy)) = D" (p(—iDy)) & D™ (p(—iDy))
CLPH (D)@ LP () = LI(D).

Theorem 5.1.7 If L (X) is replaced by L?(X) and Dt (p(—iDy)) is replaced
by D(p(—iDy)), Theorem5.1.6 still holds.

Assume that U is a left monogenic function on the strip X + (—z, t)ey. The
function u, defined by

u(}t(x) = U(-x +aeL)a X € Ea a € (_ts t)v
is uniformly bounded on L”(X). Let u = uy = U |g. Then by the remark following

the definition of p(—iDy) in L” (%), Pru = Ti, P1u_, and the similar result for
P_u, we can conclude that for any polynomial p,

p(=iDg) = (p(=iD)U) |5 .

Specially, for such a left monogenic function U, when u = U |3,

oU
Dyeu= (De U)|x and Dysu=—|g, k=1,2,...,n.
’ Xy

5.2 H°®-Functional Calculus of Functions of n Variables

Let (@, ) € K(Sy,). We canregard b = F (P, ®)er, as the Fourier multiplier cor-
responding to the bounded linear operator 7(¢, ). We also regard the mapping from
b e Hy to Te,0) € L(LP (X)) as the bounded H*°-functional calculus of

n

_iQZZ E =i€ka’§;.
k=1
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Write
T@,9) =b(=iDy) =b(—iDy 5, —iDyx, -, —iD, ).

We introduce an algebra 5 which is larger than Hy. P consists of all functions
b from R" \ {0} to C(u) such that b, = by, can be extended holomorphically to
N, (C"). For s and ¢ > 0, this extension satisfies

b+ (D) < c(+15]).

Forsuchab € Py, the functions b, s and b_s belong to H ,f,r and H,, respectively,
where bs5(¢) = by (£)e®¢lc and b_5(¢) = b_({)e %le for § > 0. Hence

®us =Gy (baser) € Kj.

Define b(—i Dy;) to be the linear operator with the domain
D(b(~iDy)) = {u €LP(Z): Ty, — ws € LP(S)ass — 0]

in L7 (%) by
b(—iDs)u =wy +w_.

From the following theorem, we know that the above definition is meaningful.

Theorem 5.2.1 Assume that 1 < p < oo. Letb € Py.
(i) If b € Hy, then b(—iDy) = T,y € L(LP (X)), where (D, D)e;, = G(b).
Specially,
1(=iDs) =1, x+(—=iDy) = Px,
(rjer)(—iDs) = R; 5,
r(—iDy) =Cy = ZejRj,z,
where r(£) = iE|E| ey.

(i) If by =bxy € HL(N,(C") and b_ =by_ € HO_O(N_M((C")) for 0 < u <
/2 — w, then the following inequality

1b(=iD)ullp < Cop,pUlbtlloc + 10-lloc) lll

holds for the constant C, ,, , depending only on w, |, p ( and the dimension

n).

(i) Ifb is a polynomial of n variables, then the definition of the domain of b(—i Dy,)
coincides with that given in Sect. 5.1.
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(iv) The domain of b(—iDy,), D(b(—iDy)), is dense in L? ().

V) Ifb(&)eer = Eerb(§) for all § € R" \ {0}, then b(—iDy,) is a closed linear
operator in LP (X).

vi) Ifu € D(b(—iDy)), fePn and ceCyy, then ueD(f (—iDy)) if and only if
ueD((cb+f)(=iDy)) and cb(—=iDys)u + f(—iDys)u = (cb + f)(—iDy)u.

(vii) If for all & € R"\ {0}, b(§)ser, = &e b(§), u € D(b(—iDy)) and f € Py,
then b(—iDys)u € D(f(—iDy)) if and only if u € D((fb)(—iDy)), and

f(=iDs)b(—=iDy)u = (fb)(—iDy)u.
Proof Forb € Hy,letby = by, and ®, = G, (bier). We have
Di5(x) = Gy (byser)(x) = Oy(x + dey).

Hence, forallu € L7 (%), To,,u — To,uin L7(X)asé — 0.Sou € D(b(—iDy))
and
b(—iQZ)M = Tq>+l/t = Tq>+u +Tp u= T(q;.’g).

The estimates in (ii) can be deduced from (iii) of Theorem3.3.1 and (ii) of
Theorem5.1.1.
To prove (iii), we use the equality

Fr(p(=iDys)kis)er = pis,

which is deduced from (vi) of Theorem 3.3.1. The rest of the proof is similar to that
of Theorem5.1.6. (Il

Now we give some applications. We consider the following boundary values
problem of the harmonic functions.

n

*U U
AU(X) = Z 3% X)+ — o (X)=0, X € .,

(iﬂk— + B —)\E =weL’(Z,0),

where B, k=1,2,...,n,8, € Cand2 < p < o0.
For the special cases 8, =1 and B =0, k = 1,2, ..., n, the solution of this
problem is

o0

UX)=UX+ Xre) =— (CE V(X +tep)dt,
XL
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where v = (Pyo)~'w € LP(X). Here C;o denotes the scalar part of Cauchy integral
Cy:

(CINX) = /E(k(i— Y), n(v(»)dSy, X € 2y,

that is, the double-layer potential operator on X, and P,y = %(I + Cy,), where
Cs, is the singular double-layer potential operator on 3. The invertibility of Py in
L? (%, C) was proved by Verchota [3].

For the general case that 8; and f; are complex numbers, we assume that for
some k > 0,

(B, n+it)| >« forne Nandr € R"" such that [t = 1 and (n, ) =0, (5.1)

where 8 = Y Brex + Brey. (This is the weakest condition on 8 under which we can
expect to solve the boundary values problem, because if ¥ is smooth in a neighbor-
hood of a point x € ¥, then the covering condition of Agmon, Douglis, Nirenberg
for this problem is that there does not exist a unit tangent vector ¢ to X at x satisfying

(B, n(x) +it) =0,

where n(x) is the unit normal to X at x.)
We can deduce from (5.1) that for all £ € N(C™),

I(B. I¢lceL —ig)| = «lIC]cl. (5.2)
There exists a holomorphic function b defined by

I¢Ic

b)) = —°1©
© = B elcer —it)

which is bounded by x~! on N(C"). In fact, for some sufficiently small i, this

function is bounded by 2« ~! on N, (C") . In order to deduce (5.1) from (5.2), we
take ¢ € N(C"): there exist n € N and ¢ > 0 such that n + Re(|¢|c)er = cn. By
(5.1) and the choice of n and t = ¢~'(—& + Im(|¢|c)er), we can obtain the desired
result.

Hence b(—i Dy;) is abounded linear operator on L” (2, Cy). Notice the equality

(D2 Bet = Bueer )o@ ) = =i (©).

k=1
We can prove directly that the solution of the boundary values problem is
[o.¢]

UX)=UX+ Xre) =— (CEb(—iD5)v)o(X + tep)dt,
XL
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where X € Q4 and v = (Pyo)~'w e LP(Z, O).
Moreover, if x € X and § > 0,

(CEb(=iDs)v)o(x + 8er) = (Ta,v)o(x)

where ® = G, (bxier) € M;;. All integrals can be represented as

(C3b(—iDx)v)o(X) =f2<<1>(§—y), n(y)v(y)dsy,

where X € Q..

We point out that the Fourier theory established in Sect. 3.3 has been used to prove
the assumption (5.1) implies ® € M}, and that Ty € L(L? (X, C))). Now we give
a covering lemma. Especially, this lemma can be used to prove that other reasonable
definitions of b(—iDy) could also lead to the same operator as ours. We still assume
that 1 < p < oo.

Lemma 5.2.1 (Covering lemma) Suppose that 0 < u < 7w/2 — w. Let
b = b+ + by

where by is a uniformly bounded net of functions in HX (N, (C")) which converges
to a function by € H (N, (C")) uniformly on each set with the form

[g“eNM((C”):O<8<|§|<A<oo],

and b is a uniformly bounded net of functions in Hy (Nu (C™) which converges
tob_ € H_(N,(C")) in a similar way. Let b = by + b_. Then for any u € L?(X),
b)(—iDy)u converges to b(—i Dy )u. Hence
[b6(=iDs)|l < sup b (—iDg)ll-
Proof In fact, by the definition, we can directly deduce that
D)+ = G+ (bw+er)
converges to @ = G4 (brer). Hence we obtain that for every u € L7 (X),

b(a)(_iQZ)u = Td}(dH“ + Tq)(oz)fu

converges to
To,u+Te u=>b(—iDy)u.
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The following is an easy corollary. We state it for functions defined on sets of the
form Sg (C"), rather than on the general sets N,,(C") and N, (C").

Theorem 5.2.2 Letb be a holomorphic function which satisfies |b(¢)| < c¢(1 + [¢]%)
on Sg (C") for some u € (w, w/2), d and ¢ > 0. Assume that

(i) forall§ € R", b(§)§e, = &e b(§);
(ii) forall¢ € Sg((C”), b(¢) has an inverse b(¢)™! € Cmys
(iii) there exists s > 0 such that

b))~ < ellel® + 1517, & € SHEC™.

Then the operator b(—iDy,) is one-one and has dense range R(b(—iDy)) in
LP(%).

Proof Define the sequence {F),} as
Fu(h) = (mA)* (i +ma) ™ (re=0(W)e " + xre<o(M)e*™),

where A € Sg((C), m = 1,2, .... Then the sequence { F},} is uniformly bounded and
converges to 1 on any set of the form

{/\esg(C): 0<5<|A|<A<oo}.
For any n, define { f,,} C HOO(SS (C™) as

Jn(©) = Fn(IZ1c) x+(8) + Fu(=1¢]c) x-(£)-

Then the sequence { f;,} is uniformly bounded and uniformly converges to 1 on every
set of the form
{;esg(c"): 0<5<|;|<A<oo}.

Let
8m = fub™" € Hoo(Sp(C")

and
hw = b"" fo € Hoo(S)(C").

such that f,, = g,,b = bh,,.
Assume that u € D(b(—iDy)) and b(—iDy)u = 0. By (vii) of Theorem5.2.1,
we know

Sy (—=iDs)u = g(n)(_iQ):)b(_in;)” = 0.

By Lemma5.2.1, f,,(—iDy)u converges to u. So, u = 0. We obtain that b(—i Dy,)
is a one-one operator.
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Letw € L?(X). Then

Jmn(=iDg)w = b(=iDy)hu(—iDy)w € R(b(—iDy))

and
lim f,(—iDs)w = w.
We obtain that R(b(—iDy)) is dense in L”(X). O

5.3 H®-Functional Calculus of Functions of One Variable

We turn our attention to functions b as holomorphic functions of one complex vari-
able. For any holomorphic function B defined on 52 (C), where w < u < /2, there
exists a function b defined on Sg cm

b(¢) = B(i¢er) = B(I¢|c) x+ () + B(=[¢lc) x-(£).

When b(—iDy,) itself is defined, we can naturally define the operator B(Dye;) as
B(Dger) = b(~iDy).

It follows from Theorems 3.1.4 and 5.2.1 that the mapping B — B(Dyey) from
HOO(SS (©)) to L(L?(X)) is a bounded algebra homomorphism.

We point out that the usually used condition b(¢)¢er = Cerb(¢) is satisfied by
the functions b of the form b(¢) = B(iZeyr).

Let H, be the linear space consisting of the following functions B on R \ {0}:
for some i > w, the function B can be extended to B € Hoo(Sg (C)). Let P, be the
linear space consisting of the following functions B on R \ {0}: for some u > w,
these functions B can be extended holomorphically to Sﬁ((C) and on SE (©),

IBOI < c(X+121).

for some s and ¢ > 0.

Theorem 5.3.1 Assume that 1 < p < oo. Let B € P,

(1) The operator B(Dxey) is a closed linear operator in L (X) and its domain
Ds(B(Deyr)) is dense in LP(X).

(i) If B € H,, then
B(Dyer) = To,0) € LIL (X)),

where F(®, ®)e; = b and b(§) = B(i&ey). Specially,
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(iii)

(iv)

)

(vi)

(vii)

l(Dger) =1,
XRe>0(Dser) = Py,
Xre<0(DyxeL) = P_,
sgn(Dyer) = Cs.

IfB € Hoo(Sg ©C))andw < u < m/2, there exists a constant C,, ;, , depending
only on w, |, p and the dimension n such that

”B(Q):eL)u”p < Cw,u,p”B”oo”u”p’ ue LP(E)-

Ifu € D(B(Dyer)), F € Py,andc € C, thenu € D(F(Dyey)) if and only if
u € D((cB + F)(Dxer)), in which case,

¢B(Dye)u+ F(Dgep)u = (B + F)(Dyep)u.

Ifu e D(B(Dyeyr))and F € P, then B(Dye;)u € D(F(Dyey)) ifand only
ifu € D(FB)(Dxey)), in which case,

F(Dyer)B(Dyer)u = (FB)(Dyer)u.

The complex spectrum o (B(Dxey)) is a subset of
N {(B(Sﬁ(@))d D> a)}
In fact, for allu € L? (%),

llull p
P dist{a, B(SS(C))}

I(B(Dser) —al) 'ull, < C

Assume that there exist i € (w, w/2), s > 0 and ¢ > 0 such that
IB)| = c|AF 1+ [A*)7", & € SH(C).

Then the operator B(Dyey) is one-one and has a dense range R(B(Dyer))
in L?(X).

Proof The first five parts are immediate corollaries of Theorem 5.2.1. To prove (vi),
let @ be a complex number such that for some © > w,

d= dist{a, B(Sfj((C))} > 0.
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Then
F=(B—a)" € Hx(S)C))

and || F s < d~'. Hence, by (i1) and (iii), for all u € L? (%),
F(Dyxer) € L(L"(%))

and
”F(Q):eL)“”p < Cw,u,pd71”u”p~

Then by (iv) and (v), for all u € L? (%),
(B(Dger) —al)F(Dgep)u =u
and for all u € D(B(Dyer)),
F(Dyer)(B(Dyer) —alu = u.

Therefore
(B(Dger) —al)™' = F(Dgey).

This proves (vi).
(vii) is a corollary of Theorem5.2.2. (I

The closed linear operator Dy.e; on L?(X) is defined by Dye; = B(Dye;) for
B(A) = A. It follows from (vi) of Theorem5.3.1 that the spectrum o (Dye;) is a
subset of the set

Sw ((C) = Lo+ ((C) U S, ((C)9

where
Sot(C) = {A € C:x=0or|arg(£r)] < a)}

Moreover, for all > w, there exists ¢, ,,, such that for all o« ¢ S,(C) and all
uell(XE),
I(Dger =) ully < coppplal ™ llull,.

In other words, Dy e; isatype w operator on L” (). In fact, we can deduce from (vii)
that Dy.e;, is a one-one type w operator on L” (%) and has dense domain D(Dy.ey,)
and dense range R(Dy.er) in L7 (X).

We can see that the restriction of Dy.e; on L? #(3) is a closed linear operator on
LP*(X) with spectra in S+ (C). In fact, D ser, are the infinitesimal generators of
the holomorphic Cyp-semigroup u > Ty, u,a > 0, in LPE(Z).

The next theorem indicates that the resolvents and polynomials of Dy.e;, are equal
to their counterparts B(Dye; ). Hence we can regard the mapping B — B(Dyey)
reasonably as the functional calculus of the single operator Dye;. The mapping
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defined in Sect.5.2:
b+ b(—=iDy) =b(—iD1 4, —iDsx,...,—iD,x)

can be regarded as the functional calculus of the m commuting operators —i Dy 5,
k=1,2,...,n.For L =0, Dyey is the operator considered by Murry and McIntosh
(4, 5].

Theorem 5.3.2 Assume that 1 < p < oo.

() If a ¢ S,(C), define Ry(A\) = (A —a)~!, where Ry(iter) = (itep — o)™\
Then
Ry(Dyer) = (Dye, —al)™' € LILP(D)).

(i1) For a positive integer k, define Sy(A) = MK such that Si(icer) = (icep) .
Then D(S(Dyer)) = D((Der)") andforallu € D(Dyer)), Si(Dyer)u =

(Qz eL)k”-
d
(iii) Given a polynomial of one variable with complex values P(\) = Y. ayA* and
k=0
aq # 0. Define

P(Dyey)u =) ax(Dyer)'u, u € D(P(Dyer)) = D(Dyer)).
Then D(P(Dseyr)) = Z)((QzeL)d), and for allu € D(Dxe;r), P(Dsep)u =
(Dser)u.

(iv) If ¥ has a parametric representation: x = s + g(s)er, s € R", then

D(Dep) = Wh(E) = {u eLP(D): %u(ﬁngL) e LP(R".ds), j=1,2,..., n}
°J

and

(DyeLu)(s + g(s)er) = (e — Dg) ™' Dyu(s + g(s)er), u € W,(3).

Proof The proofs of (i)—(iii) require repeated use of parts (iv) and (v) of Theo-
rem5.3.1 (see the proof of (vi) of Theorem5.3.1).

To prove (iv), let Ay, be a closed linear operator with domain W;(E) in LP(X).
Forallu € W,(X), define Ay, by

(Asu)(s + g(s)er) = (e, — Dg) ' D u(s + g(s)er),

and Ay, — i is one-one, see [5]. In fact, we can see that Ay, is a type w operator.
For fixed u € D(Dyey), write u = uy +u_, where uy = Pru. For § > 0,
let uys = Tyqsuy. In Sect. 5.1, we see that for u,s € D(Dyer), uys — us and
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Dsepuis — Dyepuy as § — 0. In addition, uys € W, (2). In Sect.5.1, we have
known that Dye;uys = Asuys. The fact that the operator Ay, is closed indicates
thatuy € D(Ay) and Dyepuy = Ayu,. Inasimilar way, we can deal with »_ and
find that u € D(Ay) and Dyeru = Asu. By the facts that (Ay, — i) is one-one
and (Dye; —il) maps onto L” (%), we conclude that D(Ay) can be no larger than
D(Dyeyr,). This completes the proof. U

For B € H,, and indeed for B € P,, the operator B(Dye; ) coincides with the
one obtained using the holomorphic functional calculus in [6-9]. This is derived from
Theorem 5.3.2, Lemma5.2.1 in Sect. 5.2 and the convergence lemma of this operator.
We omit the details and give the following result: the boundedness of the algebra
homomorphism B — B(Dye; ) is equivalent to the following fact: Dy, satisfies the
square function estimate in L7 (X).

For p = 2, a special consequence is the square function estimate:

*© di\1/72 2t
lulz < C( [ 194¢Dzenula =) L w e L),
0

where W, (1) = Xre=o(A)Ae*. In other words, let U = C; u denote the left mono-
genic extension of u to 2. Then we have

llull2 < / [(DU)(X)[*dist{X, E}dX>

Q// ,; axk )‘ +‘3XL(X)‘2)dist{X, E}dx)m,

where u € L>*(X). We refer to [2, Theorem4.1] for the details.
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Chapter 6 ®)
Bounded Holomorphic Fourier e
Multipliers on Closed Lipschitz Surfaces

On the infinite Lipschitz graph, the theory of singular integrals has been established
in [1-6]. In [7, 8], the authors discussed the singular integrals and Fourier multipliers
for the case of starlike Lipschitz curves on the complex plane. The cases of n—tours
and their Lipschitz disturbance are studied in [9, 10]. In 1998 and 2001, by a general-
ization of Fueter’s theorem, T. Qian established the theory of bounded holomorphic
Fourier multipliers and the relation with singular integrals on Lipschitz surfaces
in the setting of quaternionic space and Clifford algebras with general dimension,
respectively. Fueter’s theorem and its generalizations seem to be the unique method
to deal with singular integral operator algebras in the sphere contexts. In this chapter,
we systematically elucidate the results obtained by Qian [11-13]. Denote by R and
R” the linear subspaces of R,) spanned by {eg, i, ..., e,} and by {e1, ez, ..., e,},
respectively.

6.1 Monomial Functions in R;’

The concept of intrinsic functions naturally fits to the theory. A set in the complex
plane C is called intrinsic if it is symmetric with respect to the real axis. For a function
£0, if the domain of £ is an intrinsic set and f°(z) = £°(Z) in the domain, then we
call this function an intrinsic function. For a set in R, if it does not change under
the rotations in R which keep the ep—axis unchanged, then the set is said to be an
intrinsic set in Rf. If O is a set in the complex plane, then

oz[xeR';: (x0,|)_c|60)}

is called a set induced by O. It is obvious that an induced set is always an
intrinsic set in R}. The functions of the form ) cx(z — a)*, ke Z, ai, cp € R,
are intrinsic functions. If f 0 — i + iv, where u and v are real-valued, then f 0 is
an intrinsic function if and only if u(x, —y) = u(x, y) and v(x, —y) = —v(x, y) in

© Springer Nature Singapore Pte Ltd. and Science Press 2019 169
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the domain of f 0 Specially, v(x, 0) = 0, that is, f 0 is real-valued if its domain is
restricted on the real line.
If f%z) = u(x,y)+iv(x,y) is an intrinsic function defined on an intrinsic
— —
set U C C, we can induce a function f° defined on the intrinsic set U from f°
as follows.

> x i
fr(x) = ulxo, [x]) + mV(Xo, Ix[), x € U.

—
The function £ is called the induced function from f°.
We first assume that £ is the function of the form Z*, k € Z, and denote by t the
mapping
ﬁ
T(fo) — Kn_l A(n—l)/ZfO’

where A = DD, D = Dy — D and k,, = (2{)"~'T">((n + 1)/2) is the normalizing
constant such that t((-)~!) = E.

The operator A”~1/2 is defined by the Fourier multiplier transform on tempered
distributions M : &' — S with the corresponding multiplier m (&) = (2mi|&])"!.
The Fourier multiplier operator with respect to m is expressed as

Mf =Rm¥F f),

where

Tf@)=/,¥”““fﬂwx
R}
and

Rh(x) =f e 2mE N p(g)dE.
R}

The monomial functions in R’ are defined to be
P(fk) — T((')ik), P(k*l) — I(P(*k))’ k e Z+'

If it is necessary to emphasize the dimension 7, we write the sequence P* defined
in R? as P®). We have

Proposition 6.1.1 Letk € Z*t. Then

i) POV =E;
(i) PR(x) = GO (0/0x0) Ex);
(iii) PP and P*=V are monogenic;
(iv) PP is homogeneous of degree (—n + 1 — k) and P*=V is homogeneous of
degree (k — 1);
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) N
PP (o + xie 4+ X_1€01) =/ PO (x)dx,,
—00

where ¢, = ffooo(l + t2)7((n+1)/2)dt’_
(vi) PR = (p&-D);
(vii) Ifn is odd, then P%=D = ¢((-)"tF+2),

Proof Using the Fourier transform result on rational homogeneous functions with
harmonic numerators (see [14]) and the relation

e
o= () =anta) (e

we obtain
) ) LD g e ()
(=k) — Nk — 1 R ~7
P (x) =7(() )(x)_Kn (k—l)'<8)€()) M(||2)
D e w1 €
=& ) R(eriler )

-1 (_1)]{71 ( )k_l 2 \n—1 x
= — 2
Kn (k— 1), B.XQ yl,n( 7”) |.X|1+n

B (=D 9 \k-1
= o (—) E(),

where we have let x,, = (2ni)"’1y,%n = (2i)"~'T"?((n + 1)/2). This implies that for
all k € Z*, P% is monogenic. The monogeneity of P~ and the homogeneity
of PP and P*=1 can be deduced from the expression and the properties of the
Kelvin inversion. This proves (i)—(iv). By a direct computation, we can get

o0
en PV (ko + xrer + - +xn_1e,,_1>=/ PO, (6.1)
—0Q

Then (v) can be proved by (i), (ii) and the above equality (6.1). The assertion (vi)
follows from 1% = I. O

Remark 6.1.1 Ttfollows from the definition of the monomial function and the proper-
ties given in Proposition 6.1.1 that there exists a generalization of the Fueter theorem
in the setting of the quaternionic space. If f0(z) = u(x, y) +iv(x, y) is defined
holomor_p)hically on an open set O on the upper half complex plane, then the func-

tion A(f°(g)) is regular with respect to ¢ € O, where A is the Laplace operator
with respect to the variables qo, g1, g2, ¢3. In 1957, Sce generalized this result to
the setting R7 for the case of odd n. In around 1997, T. Qian extended Fueter’s
and Sce’s results to R, where n can be either odd or even integers. The assertions
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(iii) and (vii) of Proposition 6.1.1 are identical to Sce’s result for the functions z¥,

k € 7. In particular, (vii) of Proposition 6.1.1 indicates that if n is odd, then P*~—D
can be defined via either the operator 7 or the Kelvin inversion.

By (ii) of Lemma 6.1.1, we can get

Proposition 6.1.2 For k € Z*, the monomial functions satisfy
[PTR @) < k|70 x| > 1, (6.2)

and
PO < Ck™x[, Ix] < 1. (6.3)

We have the following corollary.

Corollary 6.1.1
Ex—1D=PVx)+ P20+ -+ PP+, |x|>1, (64
and
EQl-x)=POW) + P O@)+--+ PP+, <l (6.5

Proof The equality (6.4) can be obtained by the Taylor expansion of E(x — 1) and
(6.2). Then the equality (6.5) follows from (6.3) and the relation:

IEC—1)x)=EX)Ex" —1)=E —x).

Notice that r(z+1) = E(x — 1). Applying the mapping t term by term to the
series

1

we can obtain (6.4). The equality (6.5) can be deduced similarly from

1
_1_Z=1+z+z2+~--+z"+~~,|z|<1- O

o0
The series of the form Y ¢ (z — a)k, ¢;,a € C, is a Laurent series at a. If

k=—o00
¢ = 0 for all k < 0, the series is a power series or a Taylor series. If ¢, = 0 for all

k > 0, then the series is called a principal series. For a, ¢; € R, the series

¢(x) =Y PP (x — aep),
@)= ZCk(Z —a)f
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is said to be associated to each other and the relation is denoted by ¢ = Y f°. This
notation is also valid for a pair of functions defined through the associated series.
We define the function f° =" c(z — a)* to be the holomorphic extension with
the largest connected domain from the function originally defined through the power
series in its convergence disk. We call this domain a holomorphic domain. The same
convention applies to the principal series. Adopting this convention, the series

-1

iz’%— Z —F=—1+
k=1

k=—00

2
1—z

defines a holomorphic function in C\{1}. If we replace holomorphic by monogenic,
this convention also applies to functions defined through Y ¢, P® (x — aep). An

example is that
oo

-1
Y PP@ 4+ PP

k=1

defines a function which is monogenic everywhere except x = 1. By (6.4) and (6.5),
we can see that the above function is 2E (1 — x) and

T(—1+ L) =2E( — x).
1-z2

For the non-intrinsic series, we have the following proposition.

Proposition 6.1.3 Ifthe function f° is defined on an intrinsic set, then the functions
0 Lo T
'@ =5 ('@ +0).
1 -

@) = (0 - 7°6)
are intrinsic functions defined on the same intrinsic set, and f° = g° + ih°.
This proposition indicates extending Y by

T ="TE" +iT ().

The functions £° and Y (£°) are said to be associated with each other. In this manner,
we can see that fora € Rand ¢, € C,

@)=Y at—af=g"+in’

—00
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where g°(2) = % Re(cy)(z — a)* and hO(z) = i Im(ci)(z — a)*. We note that

—00

o0
3" e PW(x — aep) is associated with f°.
—0oQ

Below we give a corollary of Lemma 6.1.2.

+o00
Proposition 6.1.4 Leta € R and ¢, € C. If the series Y. cx(z — a)* is absolutely
k=1

+o00
convergent in |(z — a)*'| < r, then the series Y. cxP® (x — aey) is absolutely
k=%1

convergent in |(x — aeg)*!| < r.

By Lemma 6.1.4, the mapping 7 can be extended to the Laurent series. Note
o8}

that if £° represents a principal series, then T(f°) = T(f°).If f° = 3 cx(z — a)*
k=0
represents a power series and the dimension 7 is odd, then

r(ick(z - a)k) = i e PE" D (x — aey)
k=0

k=—n—1

exhibits a shift of coefficients. Since we always use the Kelvin inversion to reduce
power series to principal series, for the sake of convenience, we will use the corre-
spondence Y rather than 7.

In the following, we call the series of the form ) ¢x(z — a),a, ¢; € R, anintrinsic
series. If n is odd, there is a direct relation between the holomorphic domain of an
intrinsic series in the complex plane and the monogenic domain of its associated
series in RY.

Proposition 6.1.5 Ler Y cx(z — a)* be an intrinsic series whose holomorphic
domain is an open intrinsic set O. Then for n odd, in R, the associated series

—
3" e PO (x — aeg) can be monogenically extended to the intrinsic set O.

Proof Writen = 2m + 1. We first consider the case of the principal series. Let f° =
-1
> ez — a)* be an intrinsic principal series with the convergence disc B(a, §) C
k=—o00

C. For x € B(aeg, §) C R, we have
—1
YO =Y aP® (x —aeg)

—1 5
=ik Yy aA"(—a)fw

k=—00

—1

= A" (Y at-afm)

k=—00

—
= kp A" (fo)v
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where the change of order of differentiation and summation is justified by Proposition
6.1.4. Because f° can be extended holomorphically to O, when n is odd, applying
Sce’s result on the pointwise monogeneity (see [15]), we can extend the function
Y (f°) monogenically to 3

Now let f° be an intrinsic power series defined holomorphically in an open
intrinsic set O. Denote by /¢ the Kelvin inversion on the complex plane. We obtain
that 7¢(f°) is an intrinsic principal series defined holomorphically in the intrinsic
set

O '={zeC: z7'eo0).

Then the assertion for power series follows from what is proved for principal series

. . —= -

together with the relations (/1€)> =T and O ~! = 0.
The assertion for the Laurent series follows from what have been proved for the
principal series and the power series. This completes the proof. (]

For w € (0, 7 /2), write
S+ =12€C: Jarg(£2)| < a)],
where the angle arg(z) of z takes values in (—m, 7], see Fig. 1.2. Let

Sy () = {z €C: |Re()| <m, z € Sg’i},

S =85, USS

SC(r) = S5, () U S5 _(m),

We 4 (1) = {z €C: [Re(z)| < 7 and +Im(z) > 0} U S (),

H . = {z =exp(in) eC: ne W;)i(n)},

and
H = H£,+ N Hi,—-

These sets are illustrated as follows (Figs.6.1 and 6.2).

(1) The figures of the sets Sy, | and S, _ are as follows:

(2) The sets W | () and W , () are “W" and “M" shaped regions, respectively,
see the following figures (Figs. 6.3, 6.4 and 6.5):

(3) The set H; | is a heart-shaped region, and the complement of Hy _ is a heart-

shaped region, see the following figures (Figs. 6.6, 6.7 and 6.8):

With the obvious meaning, we shall sometimes write HS . = ¢'"o.+. We also
need the following function spaces.
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Fig. 6.8 HS

K(Hg 4) = {¢0 cHy 4 —C, ¢° is holomorphic and in every Hyy 0<p<o,
1921 < Cu/ll = 21},
K(Hg) = [¢°: H — €, 90 =0T 4407, 9"% e K15 L)}

H(SG, 1) = {h : Sg,+ — C, bisholomorphic and inevery S}, 4, 0 < 1 < @, [b(2)| < CM}

and
HOO(S;) = {b : S:U — (Cs b:t = bX{zeC::tRez>0} € HOO(S:),:E)} .

Remark 6.1.2 The above sets and function spaces fit into the theory for closed curves
and surfaces. From the point of the view of complex analysis, Khavinson in [16]
shows interests to those sets and related holomorphic functions. The theory on the
infinite Lipschitz graph is established in [1-6]. In [7, 8], the authors discussed the
case of starlike Lipschitz curves in the complex plane. In [11], the author studied
the case of the Lipschitz surface in the quaternionic space. H*(S)) is the space of
Fourier multipliers. K (H;, ;) and K (H) are spaces of kernels of singular integrals.
On the Fourier multiplier side, this is consistent with the fact that the closure of S
contains the spectrum of the surface Dirac operator on Lipschitz curves or Lipschitz
surfaces whose Lipschitz constants are less than tan(w). On the singular integral side,
in the complex plane for instance, we consider the singular integral operator of the
form

d
/(ﬁ(zn")f(n)—n, zey,
, n

on a starlike Lipschitz curve with the Lipschitz constant less than tan w. It is easy to
prove that the condition z, n € y means zn~! € H¢ for w > arctan N. This requires
that our kernel functions ought to be defined in H.

In RY, we will be working on heart-shaped regions or their complements

R (E1n |x])
i—i :

¢ } HE
: <tanw; = ,
arg(eo, x) ok
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and N
H,=H, NH,_ =H,
that is,
In |x
H, = [x eR}: _nlxD_ <tanw}.
arg(ep, x)

Remark 6.1.3 Thereason for using these sets on surfaces is the same as that described
in Remark 6.1.2 for starlike Lipschitz curves. Precisely, our object of study is singular
convolution integrals with kernels defined in H,, on starlike Lipschitz surfaces. The
definition of H, is inspired by the following observation for the complex plane
case. It is easy to show that a starlike Lipschitz curve has the parameterisation y =
y(x) = e!0CHAM) where A = A(x) is a 2 —periodic Lipschitz function. Assume
that the Lipschitz constant of y is less than tan w. Then for z = expi(x + i A(x))
and n =expi(y +iA(y)), we have

! =expi((x —y) +i(AX) — A(Y)).

This implies that
[Injzn~'Il _ JAG) — AY)|

— = < tan w.
arg(zn~', 1) lx — yl

Let C(,) denote the complex Clifford algebra generated by {e;, e, ..., e,}. In R} we
use the following function spaces

K(H,+) = {¢ :H,+ — Cg, : ¢ is monogenic and satisfies

() < Cu/ll —x|", x € Hy2.0 < < w]

and
K(Hy) = {¢:Hy > Cop: =9 +¢7.6% € K(Hou)|.

Lemma 6.1.1 Assume that b € H*(S;, ). For the multiplier defined by ¢ 2) =

]

b(—=k)z 7%, its jth derivation satisfies

k=1 )
(6" (2)] <

[1— Z|j+l ’

wherez € H; _, 0 < & < w, and j is any positive integer.
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Proof Without loss of generality, forb € H>(S;, ), we can assume that |b(—k)| <
o0

C,. For ¢() = b(—k)z~*, by Theorem 2.3.2,
k=1

0
P°@I< T

Take a circle C(z, r) centered at z with radius r. By Cauchy’s formula, we can get

: C; 0
’(¢0)(/)(Z)‘ < ﬁ/ Mwa.

car |z =&

Let r = 1|1 — z|. Then & € C(z, r) implies that

1 1
1—&l>21—zl—|z—&l=[1—z|— =1l —z| = =|1 — z|.
[1—&>211-zl-lz—§&|=1—z] 2I z| 2| z|

Hence we get

; 2j!C 1 C.j
0y() <—r—— |l -z < —4—.
(@P@< oy T A S T
This completes the proof of Lemma 6.1.1. (]

Lemma 3.5.1 is a powerful tool in the proof of the main result of this section. Based
on this lemma, we can estimate the multipliers in K (H, +) by induction. Before
stating the main result of this section, we first give an auxiliary lemma.

Lemma 6.1.2
o~ G2k 42) - Qhk+2) s (JHH 2, 66
Z 2k =2 2 : (6.6)
k=0

Proof Denote by s the sum of the series. Then s/2 is the sum of the series obtained
by multiplying the original series, term by term, by 1/2. We get

(+4L+2k) - 2k +2)
2k '

o0
s=20+4+2))
k=0

Repeating this procedure up to %( J + 4l + 2) times, we obtain

j+4l+2)’

s = 20D gl 4 2 = 27 (L2

This completes the proof. a
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The main result of this section is as follows.

+o00
Theorem 6.1.1 Ifb € H®(S5, Yandp(x) = Y. b(k)P® (x), then € K (H, +).
k==%1

Proof We will divide the proof into two cases: n odd and n even.
The case of n odd. Let n = 2m + 1. By Proposition 6.1.3, we are reduced to
proving the theorem for b in H*"" (S, ), where

HT (S5 ) = [b € H®(S5,) : b lang:, is real-valued }

In fact, in the decomposition b = g% + ih°, g° and 1° belong to H**" (S, ) and are
dominated by the bound of b. We first consider the case “—”, and next use the Kelvin
inversion to conclude the case “+”.

Now we assume that b € H*"(S;, _) and consider

¢(x) =Y b(=k)P P (x) = A" (xo, |x]),

k=1

oo
where ¢°(z) = > b(—k)z 7. By Theorem 2.3.1, we know that o0 € K(H, ).By
k=1

Cauchy’s formula, we further deduce that for z € H ;,7, 0<u<w,

. 2j1C, 1 _
1)V (2)] < ﬁm, j eZt u{o},

where C,, is the constant in the definition of K (H; ) and §(1) = min{1/2, tan(w —
W)}

Proposition 6.1.5 indicates that ¢ is a monogenic function in H,, _. We only need

to prove
Cu e
lp(x)] < T xeH,_= Hu,—’ 0<pu<ow.

To proceed, we only need to consider the points x & 1 in the region H,, _. We
shall deal with two cases.

Case I: |x| > (8(u)/2"F1/?)|1 — x|. By Lemma 3.5.1, this reduces to study u;
and v, in the region H; _ with the conditions that z ~ 1 and |¢| &~ |1 — z|. We shall
later substitute z = s + it, s = xo, t = |x|. We see that u = ug, v = v and 1/t are
all of the magnitude 1/|1 — z|. If we take derivative with respect to ¢ to each of
them, we can reduce the power by one in the magnitude and thus get the magnitude
1/|1 — z|?. To obtain u, starting from u, we first take the derivative and then divide
the quantity by ¢, leading to the magnitude 1/|1 — z|>. Repeating this procedure to
m times to get u,,, we obtain 1/|1 — z|?"*! = 1/|1 — z|". The estimate for v,, is
similar.
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Case 2: |x| < (8(,u)/2'"+1/2)|1 — x|. Points in H,, _ satisfying x ~ l and xg < 1,
belong to Case 1. Then we assume that xo > 1. By Lemma 7.2.2, we need to prove
that forany 0 < 1 < o,

w.m

11 —z|"’

[t (s, )| 4 [V (s, D] < z=s+it€H, .

We firstdiscuss u;, 0 < I < m. The proof will involve partial derivatives of u; with
respect to the second argument. We claim that forz = s +it = 1,s > 1,z € Hﬁﬁ,
8 = 8(w) and |t] < (8/2"F1/2)|1 — z], the following hold

(1) uy is even with respect to its second argument;
(ii) for any integer 0 < j < oo,

C,.C2" (j + 4l)! 1 .
‘8 jm(s )‘ o TR J is even,
and ;
C,Ci27(j + 5! 1 .
’3 ]ul(s f)’ X §20+) 1 — i+ jisodd.

We use the mathematical induction to /. For [ = 0, the assertion are from the corre-
sponding properties of ¢°.

We assume that (i) and (ii) hold for the indices I: 0 < I < m — 1. We will verify
that they remain to hold for the next index / + 1.

Because (i) holds for the index /, by the definition of u;,;, we get that (i) also
holds for/ + 1.

Now we prove that (ii) holds for / + 1. Because u; (s, t) is even with respect to ¢,
then du; /0t is odd with respect to ¢. This implies that (du;/dt)(s, 0) = 0. Similarly,
we can prove that for k € Z+ U {0},

(@ up) /@) (s, 0) = 0.
For small ¢, the Taylor expansion of (du;/dt)(s,t) att = 01is

20+ 1o
wints, = 2D )—2<l+1>Z

82k+2u /8t2k+2(s O) "
2k + 1)!

For j even, we take derivatives with respect to # up to j times and obtain that

5 o 2k+2u, Q)2k—1) - Qk—j+1) 5 _;
—J
MZ-H(S 1) =2+ l)k;Z 912k+2 (s, 0) 2k + 1)! ! ’

Using the induction hypothesis (ii) for the index / and changing the index k to j /2 + k,
we have
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J

d
— D <2(0+1
(.0 <20+ D

C,C 210+
§20+D+j |1 — z|20+D+j+1

[ee]

o Z (j 4 4 + 2k 4+ 2)12%K
(J+k+ 1)

k=0
2k
X (+2k) - 2k + 1)(8”;%')

C,C 210+
§2U+D+j|] — z]20+D+j+1

oo .
G+4+2k+2) - (2k+2)
<> T ,

<20+

k=0

where we have used the condition ¢/8]1 — z| < 1/2"+1/2,
Now we evaluate the last series. To simplify the expression of the constant C;, we
use the following weaker estimate derived from Lemma 6.1.2:

oo

Z(j+4l+2k+2)-~(2k+2)
2k

L2 AL+ D 6.7)
k=0

The last estimate gives rise to the desired estimate for |(3//31/)u;, (s, t)| with

C; =230y,
For the case that j is odd, by a similar method, we obtain

C,C2l+D t

o7
L (s, t)‘ <2041

otJ 52(1+1)+j|1 _ Z|2(l+1)+j+1 5|1 _ Z|
>\ (j 4 51+ 2k +3)12%K
x Y
= (j + 2k +2)!

t 2k
x (j+2k—|—1)~-(2k—|—3)(8|1_Z|>

C,C2lU+2 1
<204 1) G :
52(z+1)+1|1 _ Z|2(1+1)+;+1 om+1/2

(G H5+2k+3)--- 2k +3)

XY
zk

k=0
3 C,Cr1 20V + 501 + 1)! 1
= §2U+D+j 11— Z|2(1+1)+j+1 ’

where C; is an appropriate constant. Let / = m and j = 0. We obtain the desired
estimate for u,,.

Now we study v, and still consider the two cases: |x| > (8(;L)/2’”+1/2)|1 — x|
and |x| < (8(u)/2™+1/2)|1 — x|. The first case can be dealt with by the method used
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for u,,. For the second case, we will prove: for 0 <I <m,z=s+it~ 1,5 > 1,
z € H;’_, 0 < < w,and [t] < (§/2"1/2)|1 — 2|,

(1) v; is odd with respect to the second argument;
(i1) for any integer 0 < j < oo

CuC12(j + 50! 1 .
‘8 ]w(s t)‘ X s2+) 1=zt Jj is even,
and y
C,C27(j + 4! 1 .
‘a zv’(s t)’ §20+] T A odd.

We use the mathematical induction and the proof is similar to that for u;.

For [ = 0, (i) and (ii) follow from the corresponding properties of ¢°.

Now we assume that (i) and (ii) hold for the index /: 0 <1 < m — 1. We will
prove (i) and (ii) also hold for the index / + 1.

For [ + 1, we can use the definition of v, and the assertion (i) for / to prove that
the assertion (i) holds for / + 1.

Now we prove that (ii) holds for / + 1. Because v;(s, ¢) is odd with respect to ¢,
for k € Z+ U {0}, (8%, (s, 0))/81** = 0 and we can see that its Taylor expansion in
tatt =0is

0
82k+l 8t2k+1 , 0
vi(s, 1) = Z ( n/ )(s, 0) 2kl

—~ 2k + 1!
Hence,
i, 1) _ i @ /94 (5, 0) ey
ot P (2k)!
and
PRIV o0 2%k+3
v 2k+2 09 vi(s, 0)
Bt 2k+1
Vigr(s, 1) =20+ 1) L——=2(1+1) Z 2k +3)] 972k t

Taking derivative with respect to ¢ up to j times and discussing the two cases that
J is even and odd, we can apply a similar method as used above to get the desired
estimate for [ 4 1. In the estimate of |§%vl (s, 1)|, taking I =m and j = 0, we get
the desired estimate for v,,.

Now we consider the case “4”. Assume that b € H*' (S, ) and ¥(x) =

Z b(i) P?(x). The Kelvin inversion implies that
i=1

@) =Y VP,

i=—1
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where b'(z) = b(—z) € H" (S, ). Because I (Y) = 7(¥°), where

B ‘ 1 = .
0 — riyAml — FaN i H¢
vi(2) E b'(i)z - E b'(i)z' € Hy _,

i=—1 i=—1

the conclusions for the above considered case “—" all apply to /(). Using the
relation

V=) =EQI@)a)
and the fact that x € H, , if and only if x~! € H, _, we can get for x € H, .,

1 C,
x|" 1 —x~t]

[y ()| = EC)T ) (xH] <

— Cv
TR

This proves the case b € H>"(Sy, , ) and the proof for n being odd is complete.
The case of n even. The same argument reduces the case “+” to the case “—”.
Letb € H>'(S;, _) and consider

$(x) =Y b(—k) PO ().

k=1

Now n + 1 is odd and so the conclusions obtained in the first part applies ton + 1.
We deduce from (v) of Lemma 6.1.1 that

0o 00
arad@) = [ Y BOPLY  + menedn,

X k=1

where the function ¢ is defined on H,, _ monogenically. Here H,, _ is the intersection
of R and the corresponding H,, _ setin R’f“ . Based on the right order of decaying of

P,fi)], we can change the order of integration and summation to obtain forx € H, _,

0 1 C,
n+1 < |1 —x|”'

lenr16 ()] < Cy /

rax
—oo I = (x + xpp1€04D)]"

The following corollary can be deduced from Theorem 6.1.1 immediately.

o0
Corollary 6.1.2 Leth € H®(S ) and p(x) = ) b(@)PD(x). Then ¢ € K(H,).

1=—00
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6.2 Bounded Holomorphic Fourier Multipliers

If a surface ¥ is n-dimensional and starlike about the origin, and there exists a
constant M < oo such that for x, x’ € X,

’ In |x’1x’|)
— < M,
arg(x, x’)

then we call X a starlike Lipschitz surface. The minimum value of M is called the
Lipschitz constant of X, denoted by N = Lip(X).
Because locally

Injx x| =In(1+ (x~ | = D) ~ (x x| = 1)
~ x 7 (x = D) & (] =[x,
the above defined sense of Lipschitz is consistent with the standard sense.

Lets € Sgr. We consider the mapping r; : x — sxs~!, x € R}. Although r, does
not preserve R, it satisfies the following properties.

Lemma 6.2.1 For any x, y € R}, the following properties hold:

G |rs(y"'x)| = |y~ 'x|. More generally, ry preserves norms of the elements in

R,y which can be expressed as a product of vectors;
(i) (rs(x), rs() = {x, y);
(i) arg(ry(x), re(y)) = arg(x, y);
(iv) (s~ (x) = (v~ 'x);

(v) there exists a vector s € Sgy such that ry (y~'x) = |y|7'X, where X € RY. In
addition, |x — y| = |y|leo — x| and arg(y, x) = arg(|y|eo, X);

(vi) for the same s as in (v), we have r (E(y)) = E(y).

Proof (i) is a direct corollary of the property of |x|. By the relation between the inner
product and the norms in C,), we can deduce (ii) from (i). (iii) can be deduced from
(i) and (ii). (iv) is trivial.

To prove (v), we introduce a new basic vector e’ such that

)’ =1
eej=—ee,i=172--,n.

Let fo=¢, fi=ei fo,i =1,...,n. We have

fF=1, fifi=—fifi, 0<i,j<n,i#]j.
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So {f;};_, forms a basis of type (n + 1, 0). It is a basis of
R+t — RotHLO — {xofo—i—---—}—x,lf,,: x; €R, j:O,l,...,n}.

By the property of the Clifford group in R"*!, we can choose s € R} such that the
mapping () — (sfo)(-)(sfo) "' on R"*! maps yf, to fo|y|. The same mapping maps
xfo to fox, where X € R/. Hence we have

rs (" x) = [(s£0) o) (o) ™ 17 (s fo) (x fo) (s fo) ']
= (folyD ' (foX) = IyI"'%.

Because the mappings induced by the elements in the Clifford group preserve the
distance between vectors, we obtain

lx =yl = 1yfo — xfol = [folyl = foX| = llyleo — X|.
Owing to (iii),
arg(y, x) = arg(ry(y), rs(x)) = arg(folyl, foX) = arg(|yleo, X).

(vi) can be proved as

1
|y~

1

r(E(y) = s(yeg)s™! Uy1™" o) (foeo€o),

Iyl
where —
~ - - y
Q= (sf)(fo)sfo)™ = sfos™! = I
and the last inequality is deduced from (s fy) (yfo) (s fo) "' = fo|y|. By the expression
of ey, we get ry(E(y)) = E(y). ]
Remark 6.2.1 We explain how the sets H,, are related to the starlike Lipschitz sur-
face. Lemma 6.2.1 indicates that if we choose an appropriate s € Sg;, then
In(jx~'x)) = In|ry(x~'x")| = In||x| ']
On the other hand,

arg(x, x') = arg(|x|ep, ¥) = arg(eo, |x|7'%).

Hence, if x and x’ belong to the starlike Lipschitz surface and the Lipschitz constant
is N, then
|Injx~'x| _ |In|lx|~'%]]

arg(x, x')  arg(l, |x|7'%)
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This implies that |x|~'X € H, for any w € (arctan(N), 7/2).

We will work on a fixed starlike Lipschitz surface with the Lipschitz constant N.
We assume that w € (arctan(N), m/2). Write

p =min{|x|: x € ¥} and: = max{|x|: x € X}.

Without loss of generality, we assume p < 1 < t.

Write L2(X) = L%(Z, do), where do is the surface area measure. The norm of
f € L?(X) is denoted by || f]|.

Coifman—Mclntosh—-Meyer [17] proved that on any Lipschitz surface X, the
Cauchy integral operator

1
Csf(x) = p.v.Q—/Z E(x — y)n(y) f(y)do(y)

can be extended to a bounded operator on L?(X), where n(y) is the outward normal
of ¥ aty € ¥ and €2, is the area of the n-dimensional unit sphere Sg:.
We will use the following test function space A

A= {f : forsome s > 0, f(x) is left monogenicin p — s < |x| < t—i—s.}
We have the following result.

Proposition 6.2.1 The class A is dense in L*(X).

Proof For f, g € L*(%), define the bilinear form:

(f. 1= [ fado.
b
It is easy to prove that for any fixed x € Rf,

(f, Y =IFIP (&) =g f), (xf. &) =x(f. g).

If (f, g) =0, we call f is orthogonal to g. Assume that A is not dense in L*(X).

Because the bilinear form (-, -) satisfies the conditions of the inner product on R,

the basic Hilbert space methods are adaptable to this case. Specially, there exists

a nonzero function in L%(X) which is orthogonal to all functions in A and so in

particular to E (- — x”), where x’ lines outside the annuls: p — s < |x| < T + 5.
Hence we can get

(E(-—x), g) = / E(x —x")n(x)h(x)do(x) =0, (6.8)
)
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where h(x) = n(x)g(x) is a function in L%(Z). Because the integral in (6.8) is
absolutely convergent, by the regular continuation, it would remain valid for all
x' ¢ X.

Let x be a pointon X, y' = rx and y* = r~'x. As a corollary of the main results
of [17], on the Lipschitz surface, for almost all x € X, we have

1
0=h( = lim o | [EG=3) = EG =) ko ).

Hence g(x) = 0 for almost all x € X. This is a contradiction and the proof is com-
plete. (]

Now suppose f € A. In the annulus where f is defined, we have the Laurent
series expansion:

fx) = Z Pi(f)(x) + Z Ok (),

k=0 k=0

where for k € Z* U {0}, P,(f) belongs to the finite dimensional right module My
of k-homogeneous left monogenic functions in R, and QO (f) belongs to the finite-
dimensional right module of —(k 4+ n)—homogeneous left-monogenic functions in
R7 \ {0}. The spaces My and M_; are the eigenspaces of the left-spherical Dirac
operator. The mappings

Py f— P(f),
Or: f— Ou(f)

are projections on My and M_ ), respectively. If f is a k—homogeneous spherical
harmonic, k > 1, then f = f* + f~, where f* € My and f~ € M_;,1_,. Itisa
remarkable fact that the spaces My, k = —1, =2, ..., —n + 1, donot exist (see [18]).

Formally, we consider the Fourier multiplier operator induced by a bounded
sequence {by}:

M £ () = D B P(f) () 4+ ) bt Qu () ().

k=0 k=0

It is easy to see that My, : A — Ais a linear operator. The question is whether
My, can be extended to a bounded operator on L*(X). If ¥ is a sphere, then by
Plancherel’s theorem, the boundedness of the operator M, follows from the fact that
{br} is abounded sequence. If X is a starlike Lipschitz surface, then the boundedness
condition is not sufficient.

In order to prove the boundedness of the operator M), we need to employ the
singular integral convolution expression of M. We first give the integral type
expression of the projections Py and Q.
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In the annulus where f is defined, we have
1 _
PN = o [ 13 G DEGING) S ()da )
n Jx

and

1
0i(f)(x) = o fz Iy~ xI7C cE M E(n() f () do (1),

where x = |x|€, vy = |y|n,

1 -
Clorale m) = 7| = +k = D )
+(1 =mC R e m —En|

and

1
Craa m = —= [+ D6 )

+(1 =mC R, e &~ 7)),

where C} is the Gegenbauer polynomial of degree k with respect to v. Because

(6.9)

O _ o yTx - ylxo\ -t
€ o= e =2 and By = (2)
ly~'x| ly~'x|

we conclude that C,ﬁl’ , are the functions of y~'x. For k € ZT U {0}, define

POGx) = [y 'xfCh (& M)

and ~
P(—k—l)(y—lx) — |y_l_x|_k_ncni+]yk(§v 77)

We can see that P® and P*=D are defined on the two-forms R? x R}, and
P®(y=1x)E(y) and P*=V(y~1x)E(y) are monogenic functions in variables x
and y. Particularly, if y = 1, comparing the Taylor expansion and the Laurent expan-
sion of E(x — 1) and E(1 — x), by (6.4) and (6.5), we conclude that the above two
functions reduce to P® (x) and P~*=1(x). Because the inner product and the vector
product can be extended to Ry, x Ry, the domains of P® and P*~" may be
extended to R,y x Ry).
Using the above notations, for k € Z™ U {0} and f € A, we have

1 ~
P(f)x) = o~ [E POGTI)EGNY) f(y)do(y)



6.2 Bounded Holomorphic Fourier Multipliers 191

and

1 ~
0N = o /Z BAD (0 EGn(y) £ (y)do ().

n

Hence we get

[o¢] 1 -
fo=3 L POGTI)EGNG) f()do(y).
k=—oc0 " "

Remark 6.2.2 The above result coincides with the convolution integral expression
of the projection operator in the complex plane. Actually, if f° is a holomorphic
function on the annulus p — s < |z| < ¢ + s in C and o is a starlike Lipschitz curve
in this annulus, the Laurent series of f* is

0\ - L/ —1_\k £0 d_77
f(z)—k;mh ot

In each of these contexts, using the natural multiplicative structure of the underlying
space, we write the projection operators as convolution integral operators. For the
case R, the difference with the previous ones is that now the kernel functions are
defined in the two-forms in R} x RY.

The functions P®), k € Z, defined above satisfy the following properties.

Proposition 6.2.2 For any s € S, we have
PO (y7'x) = (PO x)).

Proof This proposition follows from (i), (ii), (iv) of Lemma 6.2.1 and the fact that
ry is the identity on scalars. O

We call -
$G'x) =) b PP
—0o0

the kernel function associated with the multiplier operator My;,;.

Eroposition 6.2.3 Letw € (arctan(N), m/2) andb € H*(S,). The kernel function
(v~ 'X)E(y) associated with the sequence {b(k)} given above is monogenic in an
open neighborhood of ¥ x X\ {(x,y) : x = y}. In addition, in this neighborhood,

C

CIREI ] T i
11— y~lx|



192 6 Bounded Holomorphic Fourier Multipliers ...

Proof We first consider the left monogeneity with respect to x. Similar to Lemma
6.2.1, choosing s € Sgr and applying the mapping r, term by term to the entries
of the series ¢~5(y‘1x)E(y), we can use the relation I = rg-1r; and Lemma 6.2.1 to
deduce that

SO NEW) = r Gy HEG)).

Set
D; = (0/dX0)eo + (3/0X1)er + - -+ (3/9X,)en,

where every X is the linear combination of x; and the components x. The coefficients
of the combination are determined by the chosen s € Sg; based on the relation

o) (sfo) " = fok.

Because ¥ = s~ 'xs~!, we have

Ds'E(X) = Ds'(sxs/|x|"T!) = 0.
Hence, Ds~! = p(s) Dz, where p(s) is a rational function in S. Because

D@ ' )EW)) = (Ds™H(@ Iy H)E())s
= (p(s)Dx) (@ (Y| E(y)s,

we invoke Theorem 6.1.1 and Remark 6.2.1 to obtain for any fixed y’, x’ € ¥ and
x' ¢y, $(y~'x)E(y) is left monogenic in a neighborhood U of x', where y' € U.
Then $(y’1x) satisfies the desired estimate, where the constant C in this estimate
depends on the size of the neighborhood.

Now we consider the right monogeneity of ¢~>(y_1x)E (y) with respect to x. It
follows from

EME(l—xy H=Ex—y) =E(1—-y '"x)E(®)

that ~ _
EMPPxy ™) = POGT0E(®).

We can obtain ~ ~
EWMexy™) = ')E®W).

Hence, similarly, we replace ¢(y~'x)E(y) by E(y)¢(xy™') to get that the function
is right monogenic with respect to x.

Now we prove that the function 5 (y~'x) E(y) is monogenic with respect to y. We
claim that this function is also of the form 17} (x~'y)E (x), where 1; is function like $
associated with a certain bounded holomorphic function. To prove this, we can see
that
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Copi k& M =Clyy (0, §)E

implies _ _
POGTE@) = PV ) E).

If ¢ is defined through b € H®(S5) by ¢(x) = 3 b(k) PP (x), then ¥ (y) =
> b'(k)P®(y), where b'(z) = b(—z — 1). The function &’ is similar to b. The

k#E—1

proof of Theorem 6.1.1 can be modified to show that the function  enjoys the same

properties as ¢ does. The monogeneity in y follows from the conclusions established

in the early part of the proof. This completes the proof. (|

Similar to the above proposition, we obtain

Proposition 6.2.4 Letw € (arctan(N), 1/2) and b be a holomorphic function in S
which is bounded near the origin and satisfies |b(z)| < Cylzlatooin §;,0 < p < w.
Then the kernel function a(y’lx)E (y) associated with {b(k)} is monogenic with
respect to x and y in the neighborhood of ¥ x {X \ {x = y}}. Moreover,

C

-1
<—
e e T

For b € H*(S;), we write briefly M), = My, that s,

My f(x) =Y bUk)P(f)(x) + Y b(—k) Qi1 (f)(x).

k=1 k=1

Forx € ¥,r ~ 1 andr < 1, we consider the function

M f(x) =Y bk P(f)(rx) + Y b(—h) Qe i () x)

k=1 k=1
=P xX)+0 ), p—s<|x|<ti+s.

By the convolution expression of the projections, we have
- 1
Pr(x) =) (k) / PO G ) E(y)nG) f(y)do (y)
k=1 n Jx

1 > -
=a /2 (kZlb<k>P”‘)(y‘lrx))E(y)n(y)f(y)do(y)

1 ~
= / T Ir)EGnG) f()do (y),
nJx
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~ o0 ~
where ¢ = Y b(k) P®. Similarly, we have
k=1

1 ~
Q') = /E ¢ O I EGNG) f()do (y),

~ -l ~
where g~ = Y b(k)P®.
k=—00
Because the series that defines M; f converges uniformly as r — 1—, we can

change the orders of the summation and the limit to obtain

1 ~ ~
My f(x) = Tim — /E (3070 +67 070 EGNG) f(1)do (v).

For the Fourier multiplier operator M, defined in this section, the following Plemelj
type formula holds.

Theorem 6.2.1 Ifb € H*(S;), then for f € Aand x € %,

= 1 L Tyl T1,,—1—1
My = fim o [ (3071046707 ) B £ 0)da o)
r—>l=3dap Jyp

1 ~ ~
= lim —{ f e ep POTREORO) D)) + 8¢, 0f}.
y—x|>€,ye

e—0 Qn

where § = $+~+ 5_ is the function associated with b as specified in Corollary 6.1.2.
o' =T + ¢!, where

ot (e, x) = / o=y EGn()da ().
S(e,x,+)

Here S(e, x, %) is the part of the sphere |x — y| = € inside or outside X, depending
on * taking + or —.

Proof By the decompositions ¢ = ¢+ + ¢~ and ¢' = ¢! + ¢!, we only need
to prove the equality for the “+” half. The “—” half can be dealt with similarly. For
a fixed constant € > 0, the integral can be decomposed as

im | [ O EGING) £ (0)do ()

r—l= |y—x|>€,yeX

+f F* O POEGRM f (o (1)].
ly—x|<e,yex

Asr — 1—, the first part tends to

/ ¢ TIOEGNG) f(y)do ().
|y—x|>€,yeX
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The second part can be further decomposed as

/ 6T r)EGn()(f () — f))do (y)

[y—x|<e,yeX

+ / o () E(yn(y)do (v) f (x).
|y—x|<e,yeX

As € — O and r — 1—, the first integral tends to zero. By Cauchy’s theorem, for a
fixed €, the second integral tends to ¢! (¢, x) f(x) as r — 1—. This completes the
proof of Theorem 6.2.1. O

Next, we state some knowledge of Hardy spaces of monogenic functions and the
geometry about Lipschitz surfaces.

Let A and A€ be the bounded and unbounded connected components of R} \ Z.
For a > 0, define the non-tangential approach regions A (x) and A{ (x) to a point
x € X as

Ag(x) = Ag(x, A) = {x €Ay —x| < (+a)dist(y, 2)}

and
AS(x) = Ag(x, A) = {x e A |y — x| < (1 + adist(y, z)}.

Similar to the complex variable case considered in [19, 20], it is easy to prove that
there exists a positive constant ¢y depending only on the Lipschitz constant of X
such thatforall0 < o < apandallx € X, there hold A,(x) C A and A{(x) C A°.
The following argument is independent of the choice of « € (0, ap). In this section,
we choose and fix «.

Let f be a function defined in A. The interior non-tangential maximal function
Ny (f) is defined as

N =sup {1701 v € M)}, x € .

The exterior non-tangential maximal function NS(f) can be defined similarly. For
0 < p < o0, the left-Hardy space H”(A) is defined as the set of all left-monogenic
functions f in A satisfying N, (f) € L?(2).If f € HP(A), the norm || f || r(a) is
defined as the L”-norm of N, (f) on X.

Except that the functions in H”°(A¢) are assumed to vanish at oo, the spaces
HP(A°) can be defined similarly. Similar to the Hardy space of monogenic functions
in [21], we can prove the following result.

Proposition 6.2.5 If f € H?(A), p > 1, then the non-tangential limit of f, i.e.,

lim  f(y)

Y= x,yEAL(X)

exists on ¥ a.e. We still use f to denote the limit function and get
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enpll fllaray < W flleecey < Cwpll fllaeca)ys

where ¢y p, Cy,, depend on p and the Lipschitz constant N.

In other words, for p > 1, the H?(A) norm of a function is equivalent to the
L?-norm of its non-tangential boundary limit on the boundary. For the functions in
the Hardy space associated with A€, a similar relation holds.

In polar coordinate, The Dirac operator D can be represented as

1 1
D=1td — -9 = ;(a, _ —r;),
r r

where I'; is a first order differential operator depending only on the angular coordinate
known as the special Dirac operator. It is well known that

L f(Q) =kf (&), f € My, (6.10)

where My, k # —1, =2, ..., —n + 1, is the subspace of homogeneous left mono-
genic functions of degree k. For f € A, we define I'; (f |SR7 ). The definition of I";
can be extended to I'; : A — A.

Similar to the results of Lipschitz graphs studied in [21] (see also [20]), we can
get the following norm equivalence of high order g-functions of f € H?(A). For
f € H?(A®), a similar result holds.

Proposition 6.2.6 Suppose that f € H>(A). Then the norm || f | H2(n) 1S equivalent
to the norm

1
([ [icineora-spraowmS)" j =12
0 z N

The following result is equivalent to the CMcM theorem [17] on X.

Proposition 6.2.7 Assume that f € L*>(X). Then there are f* € H*(A) and [~ €
H?(A?) such that their non-tangential boundary limits which are still denoted by f+
and f~ existin L*(X), and f = f+ + f~. The mappings f — f* are continuous
on L*(%).

It is easy to see that if f € A, then the natural decomposition of f into its power
series part and principal series part is identical to the decomposition given in Propo-
sition 6.2.7.

Denote by X;,0 < s < 1, the surface {sx : x € X}.

Lemma 6.2.2 Letxg € 2,0 < s < 1, and x = sxqo. Then there exists a constant Cx,

such that s
1=y x> cpla-ver+er) T ye sy

where 0 = arg(x, y).
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Proof The assertion is equivalent with

12
ly — x| ZCX«/E{(l—\/E)Z-FGZ} .y EZ

Letxg = roé,y = rpand x; = /sxg € X /5> where&, n € Sgr. A directcomputation
gives

2_ 2 2 26

y—xP =r2[(1 = B> +4psin’ §]

(6.11)
> Cxs[(1 — B)* + B,

where 8 = sro/r.

If s is small, then g is small and 1 — B has a positive lower bound. Since the right
hand side of the desired inequality is bounded from above, then it is dominated by a
constant multiple of 1 — 8. We thus obtain the desired estimate.

Now assume that s is close to, but less than 1. In this case, 8 has a positive lower
bound. We further divide the proof into two subcases. Write r; = |x1| = /s7y.

() ri/r <s Y4 Inthiscase, 8 < s*andhence ]l — B > 1 —s'* > C(1 — /s).
The desired estimate then follows.
(i) ri/r > s~'/% In this case,

In(s~"*) < In(r/r) < N6,

where we have used the fact that ¥ s is Lipschitz, and the Lipschitz constant is
N. Thus

-1 1
0 >—Ins > —(1— .
>4N ns 4N( \/E)
Hence | |
0>-60+—(1-— .
=30t gy =v®

Substituting (6.11) and ignoring the entry related to 1 — B, we obtain the desired
estimate. (]

For the main result of this section, we give the following preliminary lemma.
Lemma 6.2.3 Ifv € (arctan(N), w), thenfory € ¥ andx € A

Cy

IPe @O < T e

Proof In the expansion

G NER) =Y b PP GTI0E(®),

k=1
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substituting

POGTOEY) = ) Va(x)Wa(y),
Joe|=k

where V, € My, Wy € M_,_, and applying I'; with respect to x to the series, we
get

TGO DEQW) =Y kb)) PPy~ 0)E().
k=1

The series on the right hand side is associated with the multiplier b'(z) = zb(z). By
Proposition 6.2.4, we can obtain the proof of the lemma. ([

As the main result of this section, we prove

Theorem 6.2.2 Letw € (arctan(N), w/2). Ifb € H*(S;), thenwith the convention
b(0) = 0, the above defined My, can be extended to a bounded operator from
L*(2) to L*(X). Moreover,

Moyl L2z)—r2z) < CollbllL=(s), arctan(N) <v < w.

Proof Let f € A. By the decomposition of f defined in Proposition 6.2.7, we have
f=f "+ f",where f* € H*(A), f~ € H*(A%) and || f*|l12(s) < Cn I fll2c)-
We can get My, f = My« f+ + M- f~, where

My f*(x) = lim /X Gy IE@NY) f()do (). x € E.

Using
Mys f*(x) = /z FE O OEMNG) f(1)do ()

for x € A and x € A°, respectively, M+ f* can be left-monogenically extended to
A and A°.
By Proposition 6.2.5, it suffices to prove

1My f= 12 < CNILFF e
We only prove the inequality for “+”. The case “—” can be dealt with similarly. For
simplicity, in the rest of the proof, we suppress the superscript “+”. By the Taylor
expansions of f and M, f, we can prove that I'y commutes with M, To prove this,
because the Fourier expansions of the functions in A has a fast decay, we can change
the order of taking differentiation I'; and the infinite summation. As a consequence,
for x € A, we have

1 ~
LeMy f(x) = Q—/E¢(y_IX)E(y)ﬂ(y)F¢f(y)d(f(y)-
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By Lemma 6.2.3, we can also obtain
1 ~
CeMyf(x) = o / Ly ) EGNIT f(y)do(y).
nJx

For x € ¥, changing contour in the integral expression of F?Mb f and using Lemmas
6.2.2 and 6.2.3, we have

da(y)>

[Tz My f(x)] < C / IT: (¢ (y~"'x))I N

X

2d0()’))

/ T ITe FORS

(
(
<<(l,, u_y-lxwdf;(ﬁ)>”2
(
(

(')

X

2do ()
/w l—y-1 Tyt 160 " Iyl )

1
=€ /E [ —f)2+92]<n+1)/2 (Y)>

1 Fef(Say)Pdo(n)
X(/)S[(l—ﬁ)2+9§]<n+l>/2| cf(Vsy)l o(y)) :

where 6 is the angle between x € ¥ ;s and y € X.
Because

1 T sin” 19()
d <C do
/z (1= o+ g 7Y /0 [(1 = /)2 + ggpersD2 0

T 9" 1
<C 0 e,
/0 (1= 32 + 6310270
c

-5

using Proposition 6.2.6 for j = 1, 2, we get

1
d
1My f132a) / / |F§<be><sx>|2<1—s)3da<x>§

1
/ / 1—s /E [(1 — /5)% 4 63]+D/2

x|F;f(ﬁy)|2da<y>)(1 o)

1
<C/ /|Fcf(\/§y)|2
0 )}
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1 -5 ds
X</z [(1 — \/5)? + 631 +D/2 d"(x))(l - x/E)dG(y)T

1
d
<c/ /|F;f<ﬁy>|2(1—ﬁ>do(y)—;
0 >

1
d
<c/ /|Fgf(SY)|2(1—S)d0(y)—s
0o Jx s
~ £ 13-

The bound of the norm || M, || can be deduced from the proof of Lemma 6.2.3. This
completes the proof of Theorem 6.2.2. (]

Remark 6.2.3 The boundedness result is identical with that of CMcM’s theorem.
Because the surface has a doubling measure, by the standard Calderén-Zygmund
technique, the L”-boundedness, 1 < p < oo, as well as the weak (1, 1) boundedness
can be deduced from the L?—boundedness.

Remark 6.2.4 As in the standard cases, the Hilbert transforms on the unit sphere and
on the starlike Lipschitz surfaces are well defined but not the one with the Fourier
multiplier b(z) = —isgn(z), where sgn(z) is the signum function that takes the value
+1 for Rez > 0 and the value —1 for Rez < 0. The associated singular integral is
given by the kernel

1~  R— ~
QPO ED) = o > —isgn(k) PH(y ') E(y)

" k=—o0
2 B =y EW = -2 E(y -
= Q, y X y) = Q, y—X).

When y = 1, the above reduces to

oo

—é—iE(l —x) = %T( 3 —isgn(k)zk).

k=—00

For Hilbert transforms on spheres, we refer to Sect.6.5.

6.3 Holomorphic Functional Calculus of the Spherical
Dirac Operator

In this section, we will illuminate that the class of bounded operators M}, in Sect. 6.1
constitutes a functional calculus of I'; and is identical to the Cauchy—Dunford
bounded holomorphic functional calculus of I'y. The operators M, satisfy the
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following properties and thus the class {M;, b € H*(S;)} is called a bounded
holomorphic functional calculus.

Let N = Lip(¥), arctan(N) < w < /2,1 < py < 00,b, b1, by € H*(S:), and
oy, oy € C. Then

My llros)—rros) < Cpyollblle(s), arctan(N) < v < w;
My, p, = My, o My,;
MO{]br‘rUtzbz = ale] + aszz'

The first conclusion follows from Remark 6.2.3. The second and the third conclusions
can be deduced from the Laurent expansion of test functions.

Denote the resolvent operator of I'; at A € C by

RO, Tp)= I —-T)™".
We prove that for non-real A,
R, To) = Mij6—cy-

In fact, by the relation (6.10), the Fourier multiplier A — k is associated with A1 — I';,
and the Fourier multiplier (A — k) ' is associated with R(x, I';). The property of the

functional calculus in relation to the boundedness then asserts that for 1 < p < oo,

—“|, A S

IRA, T)llrsy—»rr(s) < 7

By this estimate, for b € S with good decays at both zero and the infinity, the
Cauchy—Dunford integral

1
b)) f = %/nb(?»)l?(k, To)drf

defines a bounded operator, where I is the path consisting of four rays: L; U L, U
L3 U L4, where

L, = {s exp(if) : s is from oo to O},
L, = {s exp(—if) : sis from O to oo}

L; = [sexp(i(n +60)) : s is from oo to O]



202 6 Bounded Holomorphic Fourier Multipliers ...

and
Ly = {sexp(i(n —0)): sisfromO to oo}

and arctan N < 6 < w. In the sense of the convergence lemma obtained by McIntosh
[22], the functions b of this sort form a dense subclass of H*°(S;). By this lemma,
we can extend the definition given by the Cauchy—Dunford integral and define a
functional calculus b(I';) on general functions b € H*(S;).

Now we prove b(I';) = M,,. Assume that b has good decays at both zero and the
infinity and f € A. Then changing the order of the integral and the summation in
the following equality, we can get

b(T';)

i/ bR, To)dAf (x)
2 Iul

1 > O
5 nb(“ k;m(x—m

1 ~
><Q_/2PU‘)(y—‘x)E(y)n(y)f(y)dcf(y)dA
1 -1
Zk (ﬁfnbw_“ “)

1 ~
XQ_[ POGTIEGNY) f(y)do(y)
b

n

1 ~
= Ybtg- [ POOTEGIRO 0o
k n
= My f(y).

As defined in Proposition 6.2.7, we denote by P* the projection operators P~ f =
f*. It follows from the estimate of the resolvent R(A, I';) that I'; P* is a type @
operator (see [22]).

The operators T'; P* and T'; are identical to their dual operators on L?(X) in the
dual pair (L?(X), L*(X)) under the bilinear pairing

1
(W =g / FO)g(x)do (x).
n JX

That is
(T PEf, 8)) = ({f, T P*g))

and

(T f, 8)) = ((f T:8)).
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These can be easily derived from Parseval’s identity

Z > hphp + mpiy = —/ Fom)gx)do (x),

k=0 |B|=k

and (6.10). For the Banach dual pair (L? (%), LP(2)), 1 < p<oo,l/p+1/p =
1, analogous conclusions also hold.

6.4 The Analogous Theory in R”

In this section, we state briefly how to establish an analogous theory on the symmetric
Euclidean space

R" = {)_C: xier + -+ xpe,, X; € R}.
In R", the Cauchy kernel is E(x) = X/|x|" and the Dirac operator is
= (0/9x1)er + - - + (3/dxp)en.

We also have Cauchy’s theorem and Cauchy’s formula. Corresponding to (6.4), we
have

Ex—e)=P" "0+ P20+ - +P P+, x| >1. (612

Based on the relation

X—y 2, (=D 1 i X
Ex—y)=—— Vi)' —, (6.13)
= lx—=y" ,; (k — 1)' - X
where V, = (9/0xy,---,9/0x,), lettingz = e;, wWe get
PR (x) (—l)k_'< 9 )k_lE(_)
x) = — x).
- - (k — D!'\ox -

From the Taylor series theory, we know that the general entries of the infinite series
(6.13) are monogenic with respect to D in both x and y. So PP (x) is monogenic.
Define

P*D = (P, kezt,

where [ is the Kelvin inversion: 1(f)(x) = E f(x~!). The properties of the Kelvin
inversion indicate that P*~Y is monogenic. It can be verified that when we replace
P® by P®_ x by x and n by n — 1, Proposition 6.1.1 still holds.
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In R", there are corresponding objects like the heart shaped regions H,, 4, that is,

+1
Ewi={£€Rn3 M<tanw},
’ arg(ey, x)
and
H,=H, NH,_
In fact,
In
H, = {)_CER” : Hnlewx]| <tana)].
arg(ep, x)

We use the following function spaces

K(H, )= {Q H, . — C : ¢ is monogenic and satisfies

C
61 < e 0 < <o),
=4

and

Similar to Theorem 6.1.1, the following is a technical result.

+o00
Theorem 6.4.1 Ifb € H¥ (S, ) andp(x) = Y. b(k)P® (x), then¢ € K (H,, ).
k==+1 -

Proof As in the proof of Theorem 6.1.1, the case b € H*(Sy, ) is reduced to
the case b € H*'(S; ), and the case b € H®'(S; ) is reduced to the case
be H®'(S; ).

Letb € H®'(S;, _). We have

0 o ( l)k 1 k—1
() = ;b(—k)ﬁ (x) = Zb( O o) Ew
(=DF! k=17 X1 — X281 —*+ — Xu&n—1
= —e b(—k
‘Z 0% 1)'<ax1) (m + 11 +-~-+xngn,1|">
_ ( D! k=1
N Zb( - (am) E()
= —e19(¥),
where g; = e,-Hefl, i=1,2,...,n—1 are the basic vectors like eq, e5, ..., e,_1,

and X = x| + x281 + - - - X, gn—1 1S a vector in R’l‘_l. We can also get
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D (—8 + i 4ot o ) D
= e n— e = e .
o4 9x 9 81 ox, 8n—1)€1 1

where D is the Dirac operator in R’f*l. Hence, if ¢ is left monogenic with respect to
D in IR’I’_I , we obtain that ¢ is left monogenic with respect to D in R”. If we replace

e1 by 1, the heart shaped regions H , , are identical to those in R"~". The desired left
monogeneity and the estimate follow from Theorem 6.1.1. The right-monogeneity
can be proved similarly, with the only difference that e; is factorized out of E(x)
from the right hand side, and of D from the left hand side, and define g; = el_l €itl-
The proof is complete. (]

Let X be a surface in R”. If X is (n — 1)-dimensional, starlike about the origin
and there exists a constant M < oo such that for x, x’ € X,

[1n [x~"x||
b

arg(x, x')

we call this surface a starlike Lipschitz surface. The minimum value of M is called
the Lipschitz constant of ¥ denoted by N = Lip(X).
We use the following class of functions

A= {f: Jf is left monogenic in p — s < |x| < ¢+ s for some s >0},

where p = inf {|£| 1 x € 2} and ¢ = sup {|£| X € 2}. By CMcM’s Theorem, we

can deduce that A is dense in L2(X).
If feA,

[e¢]

f@ =) P(H®+) 0,(H),
k=0

k=0

where for k € Zt U {0}, P,(f) belongs to the finite-dimensional right module M,
of k—homogeneous left monogenic functions in R", and Q, (f) belongs to the finite-
dimensional right module of —(k 4+ n — 1)—homogeneous left monogenic functions
in R" \ {0}. The spaces M, and M _, _, ., are eigenspaces of the spherical left-Dirac
operator I",, where the operator is defined by

My f) =Y bePy (@) + Y bi 10, ().

k=0 k=0

In the present case, we can obtain a singular integral expression similar to that in
Theorem 6.2.1. There exists also an analogous theory of Hardy space H?. Based on
these, applying Theorem 6.4.1, we can prove the following result with the method
of Theorem 6.2.2.
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Theorem 6.4.2 Let w € (arctan(N), 7 /2). If b € H*(S() and without loss of gen-
erality, assume that b(0) = 0. The above defined M, = M ,,;, extends to a bounded
operator from L*(2) to L*(X). Moreover;

”M(h(k))||L2(§)—>L2(D < CollbllL=(se), arctan(N) <v < w.

Remark 6.4.1 By Theorem 6.4.2, we can prove that the Fourier multiplier class M,
is identical to a certain class of singular integral operators (see Theorem 6.2.1). By
the method in Sect. 6.3, we can also prove that such class is identical to the Cauchy—
Dunford bounded holomorphic functional calculus of the spherical Dirac operator

L.

6.5 Hilbert Transforms on the Sphere and Lipschitz
Surfaces

Let €2 be a bounded connected Lipschitz domain in R"” with the Lipschitz constant
less than or equal to M. By this, it means that €2 is a bounded and connected open set
whose boundary 9€2 is denoted by X in the sequel. The boundary ¥ may be covered
by a finite number of balls in each of which the piece of the boundary of the domain
under a suitable rotation and translation can become locally a piece of Lipschitz
graph with a Lipschitz constant less than or equal to M. We further assume that the
complement ()¢ is unbounded and connected. Alternatively, we may assume that
2 is an open connected domain above a Lipschitz graph X. In both cases, the whole
space R" is divided into two parts by X, that is, QT = Q and Q7 = R"\(ZT U Q).

jEFora scalar-valued function f in L7 (X), 1 < p < oo, define the Cauchy integral
Cs f as

Cif@)=C*fx) = /Z E(y — 00 () f(do(y), x € @5, (6.14)

n—1

where do (y) is the area measure of the surface and n*(y) are the outward-pointing
and inward-pointing normals of the surface Q¥ at the point y € %, 0,,_; is the surface
area of the (n — 1)-dimensional unit sphere. Notice that

xy=—(x, y)+xAy. (6.15)

By the relation (6.15), the above Cauchy integral becomes

1
Cifw = — fz (E(x — y), () f()do(y) (6.16)

1 + +
+U—/2E()—C_X)/\” W f(do(y), x € Q™.
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Plemelj’s formula ensures that the non-tangential boundary values C* f(x) of
C* f(x) exist and equal to

W= s[fwECrw]acxes, (6.17)

where the operator denoted by C is the principal value Cauchy singular integral
operator defined by

Cfx) = lim E(y —xn*(y) f(»do(y), ae. x € X.
Op—1 >0+ ly—x|>¢, yex - - - -
(6.18)
In the last integral, using “p.v.” to replace lir(r)l+ and decomposing the integral into
the scalar-valued part and the two-form part, we have
2 +
Crw = _—pv. | EQy=2n" ) f0)do) (6.19)
n— z

2
= p.V-/E(E(X—z), () f(y)do (y)

On—1

+

2
p.V./;E(X—Q Aty f(ydo(y), ae x € X.

On—1

By Coifman—McIntosh—Meyer’s Theorem [17], the operator C is bounded on L?,
1 < p < oo. Hence the operator C* is the projection satisfying the property (C*)? =
C*. Asa corollary, C itself is a reflection operator, that is, C? = I, where I is the
identity operator. Because the boundary value f is assumed to be scalar-valued, the
Cauchy integrals C* f and the boundary values C* f are all para-bivector-valued.
In the complex plane and R, the operators mentioned above are para-vector-valued.
(In the complex plane, the boundary data are assumed to be real-valued.)

There exists a second reflection operator N representing the Clifford conjugation,
namely,

Nf(x) = fQ).

The operator N will be used to the boundary values of the para-bivector-valued
Cauchy integrals. The corresponding projections are N* : f — Sc[f] and N~ :
f — NSc[ f]. With the four pairs of the combinations (C, C*) and (N, N¥) of
reflections and projections, we can formulate the corresponding transmission prob-
lems. With a minor modifications dealing with the infinity, the operator theory of C~
is similar to that of C*. Below we mainly deal with the operator C*.

We write

C*f=%(1+<C)f=u+v,

where the scalar-part of the para-bivector-valued C* f is u and denote u = Sc[C™* f].
The two-form part of CT f is v: v = NSc[C™ f]. The above relation gives
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1 X 1

Hence, formally,
f=2(I+N"C) u.

We define the mapping from u to v as the inner Hilbert transform denoted by H™.
We have

v=H%u
1
=-NC
3 f

=N CUI+NO)u.

In the above formulation, in order to deduce the extension and the L?—
boundedness of the Hilbert transform from u to v, we need to require the topo-
logical isomorphism property from u to f in the L? space of the boundary. In other
words, the double layer potential part NTC should be comparatively smaller than
the identity operator I. If the curves and surfaces are smooth, this requirement is
satisfied for | < p < oo. However, for general Lipschitz curves and surfaces X, this
is met only for py < p < 0o, where the index pg € [1, co) depends on the Lipschitz
constant of . However, for 1 < p < po, the closure of the graph « in L? (X) forms
a proper subspace of L”(X), see [23] and the related references.

Similarly, define

1
v = EN*(Cf =N CU—-NtC)'u

as the outer Hilbert transform H ~u. To give a proper meaning of the above definition,
as well as H™ and H~, we claim that the existence of the inverse operator (I +
N+C)~! under certain conditions. Before we deal with the general theory, we check
several interesting examples.

Example 6.5.1 Consider ¥ = R", where 2 is the upper half space
R}, = {x:xo—i—g: xo > 0, geR”}.

For the case (6.14),
ni(z) = Fep = +1

and the scalar part of
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is zero, while f and do (y) are scalar-valued. Hence, N*TC f = 0. As consequence,
f =2u and v = Cu. For the outer Hilbert transform, a similar conclusion holds.
Therefore, the outer and inner Hilbert transforms coincide with the singular Cauchy
integral transform.

Example 6.5.2 Let Q2 = D be the unit disc in the complex plane. Let f bereal-valued.
We have

2w f(ett)

I
N*C(e) = pv.Re| — / Sd(e |
Nl

1 2 lf
—p.v. —/ Re ]f(e”)dz
T Jo I

A direct computation gives
eit

1
W
e —eit 2

Hence, .
NYCf (™) = fo=Iof,

where f; denotes the average of f(e'") on [0, 27] and I, is the operator which maps
f to fo. We notice that the norm of the operator || /|| = 1. Simple computation gives

—1 Ug
I+1l)  u=——+u,
2
where ug = Iyu.
Let ~ ‘ '
Hf() = N"Cf(").
We have
2
Hf = pv—/ cot )f(”)dt
that annihilates constants. Therefore,

HYu=N"CU +Iy) 'u
A2 4w
= —— 4+ u
2

I
N

u.

Similarly, (I — Iy)~" is defined on the closed subspace:

{u clL?: /Ozn u(eydt = 0}
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and satisfies (I — Iy)~'u = u, and
H u=NCU -1y "'u=Hu.

Notice that in this example, the inverse operator (I — N *C)~! does not exist in L?,
but it exists in the proper and closed subspace L} of L?:

2
L (3D) = [f e L?GD), | f(eNdr = 0].
0

Example 6.5.3 Consider 2 = B", ¥ = §"~! n > 2.For high-dimensional spheres,
the double-layer potential N*C is replaced by a non-trivial operator. The inner
and outer Hilbert transforms are distinguished. On the sphere, a direct computation
indicates that the double-layer potential becomes

1

R — 6.20
lx — yl»~2 (6:20)

| =

(E(x —y, 0" () =

Hence, by (6.19),

N*Cf(x) = — /1 UASJE,

w1 Jom lx =yt =

Proposition 6.5.1 On the sphere, the double-layer potential operator N*TC is LP-
bounded, 1 < p < 00, and the norm of the operator equals to 1.

Proof See [24] for the proof. O

What is important is the order of the singularity of double-layer potential rather
than the bound of the operator. On the sphere, the existence and the boundedness in
L? of the inverse operator are guaranteed by the Fredholm theory. Generally, we can
prove that if ¥ is C*°, then

HE(x — y), n* ()] <

|n—2 :

This estimate coincides with (6.20). If £ is C'%, 0 < « < 1, then

C

HEx —y), n" O € ————-
lx — y|='=

6.21)

In the above cases, the operator N C is compact. We can use the Fredholm theory to
prove (I £ N*C)~! exists and for 1 < p < oo, this operator is bounded in L?, see
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[23] and [25]. However, there exists an essential difficulty to use the Fredholm theory
to C! domains and Lipschitz domains. In fact, for this case, we can only obtain the
following estimate of the kernel of the double-layer potential

KE@x =), n" (M) € ————.
lx — yl

This estimate implies that this kernel has the same singularity as the kernel of the
singular Cauchy integral operator on the surface. Fabes—Jodeit—Riviére [26] proved
that N*C was compact for C! domain. For the Lipschitz domain, the operator N*C
is not necessarily compactin L” (X). We need a new method to prove the invertibility
of I + N*C. The case for p = 2 was solved in [25], Dahlberg and Kenig [23] gave
the optimal range of p, see [23, 27]. The existence and boundedness of (I = N +O)!
are corollaries of those results [24].

Theorem 6.5.1 For a Lipschitz domain Q2 C R", n > 2, the inner and outer Hilbert
transforms both exist and are bounded from L? (X) to L? (X), where2 — ¢ < p < 00,
& € (0, 1] depends on the Lipschitz constant of Q2 (For the C' domain one may take
e = 1). In addition, foru € L? (%),

H*u(x) =

2
p.v./Z [E(X —0OA ni(z)](l + N*O) ' u(y)do(y).  (622)

On—1

Now we consider existence of explicit formulas of the Cauchy-type Poisson and
conjugate Poisson kernels on Lipschitz surfaces. Then we deduce explicit formulas
of the kernel of the high-dimensional Hilbert transform. Generally, it is difficult to
derive such formulas. The explicit formulas and the related issues for the sphere case
are studied in [13, 28-30].

Let U be a scalar-valued harmonic function in €2. If a harmonic function V satisfies

(i) Sc[V] =0,
(i) D(U + V) =0,

then V is said to be a harmonic conjugate of U. By this definition, if n > 2, the
harmonic conjugate of a given harmonic function is not unique even modulo Clifford
constants. In fact, there exists a non-constant harmonic function V satisfying (i) but
D(V) = 0. To eliminate this situation, we introduce

Definition 6.5.1 If V is a harmonic conjugate of U and there exists a scalar-valued
boundary data f such that
U+V=Csf,

then V is called a Cauchy-type harmonic conjugate, or a canonical harmonic conju-
gate of U in Q.

It is easy to see that if we choose f as the Dirac function § at y on the boundary,
then we can get
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E(y —x) An*(y)
Op—1

is the Cauchy-type harmonic conjugate of

(E(y —x), n*(y)).

n—1

Notice that for a scalar-valued harmonic function, there exist more than one har-
monic conjugates that differ by non-constant functions. On the other hand, Cauchy-
type harmonic conjugate is unique. We have the following result (see [24]).

Theorem 6.5.2 Assume that Q2 is a Lipschitz domain and the scope of p satisfies the
conditions as in Theorem 6.5.1. Let U be a scalar-valued harmonic function whose
non-tangential maximal function

u (x) = sup |U(QY)

yela(x)

belongs to LP(X), where T'y(x) is the truncated cone of opening o whose axis is
perpendicular to the tangent plane of ¥ at x € X. Then there exists unique Cauchy-
type harmonic conjugate of U.

Now we discuss the Schwarz kernel and the associated Cauchy-type Poisson and
conjugate Poisson kernels. We will seek for the integral representation of the operator
St such that STu = CT f, where u = Sc[C" f]. This is equivalent to find out the
kernel ST (x, y) such that for x € Q,

1
CH ) = /2 E(y — 0n*(y) f(y)do (y) (6.23)

Op—1
= / S* (v, Du(y)do (y)
b
= STu(x).
If the kernel S*(x, X) exists, then it is called the inner Schwarz kernel. The func-
tions P*(x, y) and Ot (x, y) are called the inner Poisson kernel and the conjugate
inner Poisson kernel, respectively, where

Pt =Sc[S*], QF =NSc[S*].

By P* and Q7, we can see that for x € Q,

Ut () = A Pt yu(y)do(y) (6.24)

—2
/E (E(y — x), 0" (0))(I + NTO) u(y)do (y)

On—1
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and
Vi) 2/ QF (x, yu(y)do(y) (6.25)
by

-2

Om—1

[ EG =0 Av 0T+ N o
x

are the unique solutions of the Dirichlet problem inside 2 with boundary data u
and Hu, respectively. Actually, V1 (x) is the Cauchy-type harmonic conjugate of
U™ (x). The functions Pt and Q" are the unique harmonic representations of the
Dirac function 8y, and of its H 78y, where in the sense of distributions, H "8y, can be
represented as the principal value singular kernel of the inner Hilbert transform. As
for Lipschitz domains, the existence of the Poisson kernel can be deduced from the
theory of Green’s function. For Lipschitz curves and surfaces, by the Plemelj formula,
the non-tangential boundary limit of the harmonic function V*(x’) is H™ f(x). In
other words, for almost all x € X,

lim V*(x") = H u(x)

= p~V-/ 0% (x, yu(y)do(y) (6.26)
)
2
= p.V.[ [E(X — XA n+(X)](1 + NTC) u(y)do ().
Opn—1 z
Because

Vi) =/ PH(x', yHT f(y)dy,
b
we have forx € ' C Q, y € &,

0" (', y) = HE P (¥, y),

where the Hilbert transform is with respect to an admissible Lipschitz surface X'.

The outer Cauchy integral C~ is with respect to the outer Poisson kernel and the
conjugate outer Poisson kernel, and therefore the outer Schwartz kernel. The theory
for them are parallel.

The inner Poisson kernel on the sphere is well known. There are a number of
methods to derive this kernel. The harmonic conjugate of the inner Poisson kernel
was first obtained by Brackx et al. Those authors gave the explicit formula of the
kernel in the integral form. They further obtained a finite form of the formulas
inductively with the space dimension (see [31]). As a result, their methods yield the
Cauchy harmonic conjugates. Below we present a different approach based on the
double-layer potential.

Theorem 6.5.3 On the unit sphere, the inner Poisson kernel and its Cauchy-type
harmonic conjugate are
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11— |xP

P w) = — —=_
Opn—1 |-£ - Q'

(6.27)

and, forO <r < 1,

1 ( 2 n—2 [T p'2 )
O@x,w) = - / dp | x A w. (6.28)
0 0

— o
w1t \ X —o" ! |0 — ol

Proof By (6.17) and (6.19), we have
Ctf= l(f + Sc[Cf]) + INsec (6.29)
: . : .

For the inner Poisson kernel and its harmonic conjugate, we will work with the case
“4” in the above formula. Comparing the formula for this case with (6.16) and in
view of the harmonic extensions of the scalar part and the non-scalar part of the
boundary values to inside part of the unit sphere, we get for |x| < 1 and |w| < 1,

1 (w—x, w

= %P(J_c, )+ %S (x, w) (6.30)

Opn—1 |(L) - )_C|n

and
I @-—o)re

1 1~

Opn—1 |-£_(L)|n

where g(g, ) is the Cauchy-type harmonic conjugate of S(x, w). Then we can
immediately obtain that the formula of P (x, ). To obtain the formula of Q(x, w),
we need to compute S(x, @) which can be derived from the following lemma by
taking r < 1. (I

Lemma 6.5.1 Forr = |x| < 1,

nd n—2

R OO 31
A O 6.31)
k=0

n—2

= —/0 p" T E(w — pé)wdp

rn—2

1 +n—2(/’ p" 2 d) A
= X w.
-l \Jy lpg —ar )N

Forr = x| > 1,
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> n-2
Y P e (6.32)
k=1

n—2

rﬂ
1 1 n—2 00 pn—2
Tlmep? 2 (/ 0§ — w|ndp))—”9-
X—w 1ot —w

When r < 1, we refer the reader to the work of Brackx et al. The proof for r > 1 is
given in [32].
Similarly, we have (see [32]).

= ,2/ p" T E(w — p€)awdp

Theorem 6.5.4 On the unit sphere, the outer Poisson kernel and its Cauchy-type
harmonic conjugate are

_ 1|xf* -1
P (x,0) = —— (6.33)
On—1 |x — "
and
0 o= = [ = g #
X, w) = — Aw, r>1, w.
- lx — wl" rn-l lo§ — wl” - =0
For f € LZ(S”’I),X =wE€ sl and x = réwithO <r < 1, we have
+ |x|k +
CHf(x) = Z CLE o f @do(w), (6.34)
where
n+k—2 _ n
ChiE. o) = ———=C" 7 (6. o) + G (5 )t Ao (6.35)

and C"((£, @)) = 0. In fact, by (6.9), the right hand side of (6.35) is a function of
™' x. Hence we can write

PP 'x)=r"Cl (¢ @), k=0,1,2,.

Therefore,

=1
Crfw=3 -
k=0

n—1

/ PO 0) f(@do (@). 6.36)
Snfl
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Similar to (6.36), we have

|x|—n+2—k
Cf@=> _0—1/3 Cou-1¢ o) fwdo(w) (6.37)
P n— =1
- ! / PP (0 x) f(w)do (w)
x lGn 1 Jsr-!
where
k n I’l
Cr—1 €. @) = | 'Zka, PR (g, 0) — CJZ (. 0)E A . (6.38)
Set

PO 'x) =r"7C, LG o), k=—1,-2,.. ..

For the Fourier-Laplace expansion in the sense of L2, there holds

f& = Z

k=—00

f PY(7'§) f(@do (@) (6.39)
Op—1 Jgm-1
This result indicates that the series

oo
SC[ — p0 (! )]
2 oo rhes
=—00
plays the role of the Dirac-§ function.

Theorem 6.5.5 The Able sum expansions of the inner Poisson kernel and its Cauchy-
type harmonic conjugate are

Pr(x,0) = (6.40)
and
0" (g, ) (6.41)
1 7 k -1
= kp® ey — Kl pk) ¢, ~1
_on_l[kX_I:n—i-k—Zr PP (0 8) k;oor P®(w g)] r<l.

Proof We write

AT (r) = L[ irkP(k) @9 (6.42)
k=0

n—1
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From the above arguments, we can see that
+ 1o+ 1ot
AT = SPTrE 0 + 58Tt @) (6.43)
I~ L.
+§S (rgv(i)) + EQ (rgv(i))a r < 17

where the last three entries are the harmonic representation of a half of the Cauchy
singular integral of f, thatis, (1/2)Cf. Similarly,

A_(r):a [ZP(k)(w x):| (6.44)
n—1

—00

= 1P (5w~ S (50

—%ﬁ*(rg, w) — %Q’(rg, w), r> 1.

If the Kelvin inversion of A~ is denoted by K(A™), it is easy to verify that K(A™)
satisfies the following relation:

K(AT)(r) = %P*(rg, ) - %S*(rg, ) - éﬁmg, ) - %Q*(rg, o, r<l

Hence we obtain
PH(x,w) = A (r) + K(A7)(r).

In the first equality of (6.44), using the Kelvin inversion term by term for the series
expansion of A~ and applying (6.42), we get the Abel sum expansion of the Poisson
kernel (6.40).

Next we deduce the Abel sum formula of the conjugate Poisson kernel Q% (x, ).
In fact, by (6.31) of Lemma 6.5.1, we can see that all entries in (6.43) are of the Abel
sum form except for (1/2) Q+(r§ , w). Therefore,

1ot Aty — L pt _! S W, -1
707050 = AT() — S PT(rE @) — 53— LX; ntk— ZP @d)

- [Zr PO 'E) - Zr‘k‘P(k)(__ £)

On—1

k=0
Iyt pgig)]
2 pard n+k-—2
1 [1& k ~ - ~
= o [EZerk—zrkP(k)@ H-3 2 e 1§)]_
n- k=0 k=—00

Hence we get (6.41). This completes the proof.
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Theorem 6.5.6 The Abel sum expansions of the outer Poisson kernel and its canon-
ical harmonic conjugate are

oo
P (x, @)= —— > r M2 pO@lE), x =rg,r> 1, (6.45)
On—1 o - -
and
1 T 1
0w = — (Y —=PPes (6.46)
=T k=1

-1

B Z n+lkl—-2 1 P(k)(g_lg)] - ﬁ(rg, ),

n+lk|—2
Pt |k r

where N is the canonical harmonic conjugate of the double-layer potential N outside
the unit sphere, where

N(l"g) = On_1 yn—2

and

~ 1 n=2 oo ,0”72
N(ré, w) = — o |1d,oé‘ Aw, a.er > 1. (6.47)
= Op—1 "% Jo |p§ —@|" ~

O

6.6 Remarks

Remark 6.6.1 Let Q and Q¢ denote the algebras of Hamilton’s quaternions over R,
the real number field, and C, the complex number field, respectively, with the usual
canonical basis, iy, i1, iz, i3 (ip being the identity of Q which will hence forth be
identified with the identity 1 of R), where

i1ly = —igly = i3, Ial3 = —i3ly = i1, i3i1 = —i1i3 = ia,
andi? = i} = i = —1. A general quaternion is of the formg = 3°)_, qii; = qo + q
g1 € Ror g € C, depending on g € Q or g € Q°, respectively, where g and g =
qi1i1 + q2iz + q3i3 are called the real and imaginary part of g, respectively. In [11],

T. Qian established a singular integral theory on star-shaped Lipschitz surfaces in
the setting of Q. The results in [11] provides explicit formulas to obtain singular
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integral kernels from Fourier multipliers and vice versa. Moreover, macroscopically
speaking, the theory proves identifications between the following three forms: Fourier
multipliers, singular integrals and Cauchy—Dunford’s integrals for functional calculi
on both the unit sphere and star-shaped Lipschitz surfaces.
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Chapter 7 ®)
The Fractional Fourier Multipliers e
on Lipschitz Curves and Surfaces

The main contents of this chapter are based on some new developments on the
holomorphic Fourier multipliers which are obtained by the two authors in recent
years, see the author’s paper joint with Leong [1] and the joint work [2]. In the
above chapters, we state the convolution singular integral operators and the related
bounded holomorphic Fourier multipliers on the finite and infinite Lipschitz curves
and surfaces. Let S, , and S}, be the regions defined in Sect. 1.1. The multiplier b
belongs to the class H* (S}, ;) defined as

H™(S) = {b L S¢ = C: ba = bypec. srecn0) € HO(SC . ]

where H> (S}, ) is defined as the set of all holomorphic function b satisfying |b(z)| <
C, in any Sy, 0 <v < u. A natural question is that whether we can establish
the corresponding theory of Fourier multiplier operators if b is dominated by a
polynomial?

On the other hand, in new progress of Clifford analysis studies, there exist some
examples which can not be included in the theory of singular operator on the Lipschitz
graph. We give the following example.

Example 7.0.1 In[3, 4], in order to investigate the so-called Photogenic-Dirac equa-
tion which have the singular-valued functional solution, D. Eelbode introduce the
Photogenic-Cauchy transform C} on the unit sphere in R”. To give the definition of
this transform, we state some backgrounds on this topic.

Let R be the real orthogonal space with the orthogonal basis By (e, ¢;) =
{e, el, ..., e,} endowed with the quadratic form

n
— 72 2_ g2 _ 2
Qu(T.X) =T =) X} =T - R,
=1
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where we take
1/2

R=X|=|) X}
j=1

The orthogonal space R!" is called the m-dimensional space-time, n denotes the
spatial dimension. The space-time Clifford algebra R, , is generated by the following
multiplication rules: for all 1 <i,j <n, e;ej + eje; = —2§;;. For all i and e =1,
e;e + ge; = 0. The vectors in R, i.e., (m + 1)-tuples (7', X) or space-time vectors
is identified with the 1-vectors in R ,, under the canonical mapping

T,X)=T,Xy,.... X)) — T +X e Ry .

The Dirac operator on R'" is given by the vector derivative

n
D(T. X)1, = edr — Y _ ¢y,
j=1

which factorizes the wave operator [J, = 37 — A, on R as

2

0. = | e0r — ) _ ey,
j=1

Fora +n > 0and w € S"~!, we consider the following Photogenic-Dirac equa-
tion
(07 — 0x)Fuu(T. X) =T '5(Tw — X)

and take the transformation:

X

A=Tandx == =rf € B,(1),

~

where B, (1) is the unit sphere in R” and |£| = 1. In [3], D. Eelbode proved that

(1 _ r2)a+(n71)/2

Falx, @) = Qo +n+ Dela, n)(e +)‘C)(l— <X, @ >)tn

(1 _ r2)a+(n+1)/2

+ (o +n)c(a, n)(e + w) (= < x.q =)ol

where c(«, n) is the constant depending on « and ». In addition, let f () be any func-
tion defined on the sphere S*~!. For all x € B, (1), the Photogenic-Cauchy transform
of f Cp[f1(x) is defined by
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o 1
Crlfl@) = Fox, 0)of (0)dw,
n JSm-1

where 2, is the surface area of the sphere §"~.

If we apply this transform Cy to the inner and outer spherical monogenic poly-
nomials P, and Q; on R" \ {0} and let » — 1—, we can obtain the boundary values
Cp[Pr] 1 and C3[Qx] 1 as follows:

F(n/2—1/2) (@+n+i)fla+n+k—1)+ (k —a)§e}Pr(§)

CiP 1 () =

8mn/1-1/2 (@+n/2+1/2)(ax+n/2—-1/2) ’
"  T(2—-1/2) M +a—=k){(a —k) + (@ +n+k—1)§}0c(§)
Crlad 1) = 8n/1-1/2 (@ 4+n/24+1/2)(a +n/2 —1/2) '

It is obvious that the occurrence of
K*Pr(£), kP(§), K> Qi (&), kQi(£)

indicates that for f € L*(S""), the boundary value C%[f] 1 does not belong to
L>(S"1). Hence, in order to obtain the boundedness of this operator, we need to
restrict f into a space smaller that L*(S™1). In [3], the author replaced XS
by a special Sobolev space and obtained the boundedness of C3[f] 1. Based on
the above result, in this chapter, we consider the Fourier multiplier b satisfying
|b(€)| < C|& + 1]° in some region for s # 0 and study the boundedness of the inte-
gral operators associated with these multipliers.

Remark 7.0.2 Particularly, if we take some special by in the definition of the Fourier
multiplier (see Definition 7.3.2 and the remark below), we can see that the multiplier
operator becomes the boundary value of the Cauchy transform on the hyperbolic
sphere which was studied in [3, 4].

Compared with the Photogenic-Cauchy transform in Example 7.0.1, there exist
two difficulties for the study of Fourier multipliers:

(1) The kernel ¥ (x, @) of the Cauchy transform Cj can be derived from the funda-
mental solution of the wave operator [],,, while the kernel of the Fourier multiplier
does not have an explicit expression.

(2) On the unit sphere in R”, the Plancherel theorem holds. After obtaining the
decomposition of C3 (f) with respect to the spherical harmonics, the author of [3] can
deduce easily that if f belongs to some Sobolev spaces, the function Cj (f) belongs
to L2(S*1). However, in the case of Lipschitz surfaces, there is no corresponding
Plancherel theorem, and the method of [3] is invalid.

To overcome the above difficulties, we use the Fueter theorem to estimate the
kernel of the multiplier operator. We prove that the kernel of the Fourier multiplier
operator has a decay with the form of a polynomial of degree —(n + s). The proof
is similar to that of Chap.6 but with some modifications. When we deal with the
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case s < 0, the function |x|* is unbounded in the domain H, . After getting the

estimate of the kernel on H, _, we can not use the Kelvin inversion to obtain the
corresponding estimate on H,, ., see Theorem 7.2.2 for details.

7.1 The Fractional Fourier Multipliers on Lipschitz Curves

In this section, we generalize the results in Chaps. 1 and 2 to the following cases:
|b,| < Cn®, —00 < s < o0o. Such result corresponds to the fractional integrations
and differentials on the closed Lipschitz curve and has a closed relation with the
boundary value problem on Lipschitz domains.

We still use the following sets in the complex plane C. For w € (0, /2], write

St = {Z e C: |arg(xz)| < a)}
as the sets defined in Definition 1.2.1. Define the sets

W, . = {z €7Z: |Re(z)] < and Im(4z) > o} us,,

see the following graph (Figs.7.1 and 7.2):
The periodization of W,, 4 is the following heart shaped regions:

I

1 1
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

T T
mi / / |

~

1 - SS 1

H _ - ~~. H

1 - Sso 1

1 S~ 1

1 ~< 1

1 = 1

- ~

b/
Fig.71 W, 1
.~ el
[N Pl |
1 S< s 1
1 S - 1
1 ~< -
1 T < -7 A
1 Sso -~ !
1 SO .- 1
} ~ -
L ~ :
1
T :ﬂ
1 1
1 1
1 1
[} 1
1 1
1 1
1 Ll

Fig.7.2 W, _
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Fig.7.3 C,. .+

/!
il

Cot={z=cxplin €C: e W],

which are shown in the following figure (Figs.7.3 and 7.4):
Define
Sw = w,+ U Sw,fs

W, = Ww,+ N Wa),—v

and
Co=Co+NC,y .

Let O be a set in the complex plane. If rz € O for z € O and all 0 < r < 1,
we call O the inner starlike region with the pole zero. If rz € O for z € O and all
1 < r < oo, we call O the outer starlike region with the pole zero. For w € (0, 7 /2],
C, + is heart-shaped and inner starlike with the pole zero, while C,, _ can be regarded
as the complement of a heart shaped region and an outer starlike region with pole
zero.

The following function spaces defined on the sectors will be used in the rest of
this section. For —oco < s < 00,
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H*(Sy.+) = {b : Sw.+ — C | bis holomorphic and satisfies

Ib(z)] < Culzx 1| inevery S, 4,0 < p < a)}
Fors = —1, =2, ..., we will also use another class of function spaces.

H; (S,+) = {b : Sy, — C | b are holomorphic and satisfies

b(2)| < Culz£2 In|z£2|inevery S, +,0 < p < a)}

On the double sectors, we can define the corresponding function spaces. For —oo <
s < 00,

H'(S,) = {b: Sy = C by € H'(Sy1), Whete bs = bjeec, srec-
and
Hiy(S0) = {b: Sy = C | by € Hiy(Sus), Where ba = bjeec, srec-) |

where xg denotes the characteristic function of the set E.

Hence, the function spaces H*(S,) and H; (S,) defined above consist of the
functions on sectors which are bounded near zero and dominated by C,|z|* and
C,|z[*In |z| at infinity in any smaller sectors than those in which the functions are
holomorphically defined.

If a function defined by the Laurent series converges to a holomorphic function
in a region, then this function is called holomorphically defined. In this case, by the
Abel theorem, the power series part is holomorphically defined in the related inner
starlike region with the pole zero. The negative power series part is holomorphically
defined in the related outer starlike region with the pole zero.

For s > —1, define

K(Cyp ) = [d) : C,.+ — C | ¢ is holomorphic and satisfies

lp(2)] <

m inany C, +,0 <t < w}
and

K*(C,) = [qb : C, — C | ¢ is holomorphic and satisfies

C. .
¢ ()] < m inany C, 1,0 < p < a)}
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For —oco < s < —1, we only give the definition of K*(C,, ;). For —oo < s < —1,
the spaces K*(C,, _) and K*(S,,) can be defined similarly. Assume
1 l_7 = {bn},;.io e l*;
o0

(i) ¢p(z) = >_ b,z" is holomorphically defined in C,, 4 ;
n=0

[o.¢]
(iil) The series ¢»(1) = ) b, is convergent.
n=0

Form the difference

G2 — dp(1) = b1z = 1)+ b2 — D4+ b = D4+ (2 — Dy (2),

where

1(b) = (Zbk> €™
k=n n=1

and

D1 () = Z (Z bk) "L
k=n

n=1
Then by (ii), ¢;(p) is holomorphic in C,, .
The sequence I (b) constructed above may or may not satisfy the condition (iii).
If this sequence satisfies (iii), then it satisfies (i) automatically. Hence (1(b), ¢r))

satisfies (i), (ii) and (iii). Then we continue to consider if the sequence I (I (b)) = I*(b)
satisfies (iii), and so on. Write

1I"(D) =1""'(b) and I°(b) = b.
If the above procedure can be applied at most k times, then the pairs
®), ¢rw). 0<j <k,
all satisfy (i), (ii) and (iii), but 7 k+1(p) does not satisfy (iii). In this case, we have
$6(2) = $p(1) + (2 = Dy (1) + -+ + (2 = DF (). (7.1)

Now we begin to define the function class K*(C, +), —00 < s < —1:
K*(Cp 4+) = {¢Q 2 Cy+ — C | b el™, the above procedure can be applied at most k; times ,
where kg = [1 — s] or [—s] depending on whether s is an integer or not,

C
. ks ®
andinany C, +,0 <u <w, [(z—1) ~¢>,kf@(z)| < m}
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where for o > 0, [¢] denotes the largest integer which does not exceed «, that is,
[] =max{n € Z | n < «}.
For s = —1, —2, ..., we consider another class of functions

Ky (Co+) = {#p : Cor.y — C | b €I, the above procedure can be applied at most — s — 1

Injz—1
times, and inany C, 4,0 < u <o, [(z — 1)_5_1¢,ﬂ71@(z)\ < C%} .
It is easy to see that the above spaces {H*(S,, +)} and {K*(C, +)} are increasing
classes along with s — co. Now we state the main results of this section. In the rest
of this section, the symbol “+” should be understood as either all 4 or all —.

Theorem 7.1.1 Let —co <s <00, s #—1,—-2,..., be H (S, +), and ¢(z) =
+o0
> b(n)z". Then ¢ € K*(Cy +).

n==%1

Proof We first consider the case 0 < s < oo. Define
1 .
V(z) = —/ exp(iz{)b(§)ds, z € Vy 4,
2m Po

where
Vyy = {z eC|Im@) > 0} us,

and pp denotes the ray: rexp(if), 0 <r < oo. Here 6 satisfies pg € S, + and
exp(iz¢) is exponentially decaying as { — oo along py. It is easy to see that W
is well defined and holomorphic in V,, . In fact, the definition of W is independent
of the choice of 6. For any n € (0, w), we can see that

C
¥ () < Izlllf”’ z2€ Vg

‘We further define function
vl = / W)L, 2 € Sy,
8(2)

where §(z) is any path from —z to z in V,,. It follows from Cauchy’s formula that for
any u € (0, w),

C
[W'(2)] < # €S, ..

By the Poisson summation formula, define

Y@ =21 Y WE+2nm), ze | @+ W),

n=—00 n=—0oo
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where ) denotes the summation in the following sense:

(i) fors > 0, the series absolutely and locally uniformly converges to a 27 -periodic
holomorphic function v, and the function ¢ = ¢ oIn /i € K*(Cy +);
(i1) for s = 0, there exists a subsequence {n;}{° such that the partial sum

Sny (z2) =27 Z W(z + 2nm)

[l <y

locally uniformly converges to a 2z -periodic function ¥, and ¢ = Y oln /i €
K*(Cop).

It can be proved that different functions W defined via different subsequences {rn}
differ by bounded constants. By use of the estimate of W, it is easy to prove the case
s> 0.

Now we consider the case s = 0. Consider the decomposition

YN We+AD) =W@+ Y 4D € W
1 2

k=—n
where i
dYo=> (\I/(z + 2km) — \v(zkn))
1 k0
and

Z = Z(\yl)’(zkn).
2 k=1

We will prove that )_ is absolutely convergent and bounded, and ) is bounded

1 2
and convergent in the sense mentioned above. Hence, as the principal part of the
sum, W(z) is dominated by C|z|~! as z — 0 and so is the function v. Therefore, the

function ¢ = ¥ o In /i satisfies the desired estimate. To deal with ), we need the
1
following formula derived by Cauchy’s formula:

, C
W'(2)| < |Z|21f"5’ z€ W, .

To deal with ), by the mean value theorem, we obtain
2
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> (W k)

k=1

2(n+1)m n
= [ /2 WY (dr + Y (WY 2km) — Re((W!)) (&) — iIm((‘I"l)/)(ﬂk):|
& k=1

= W' @en+ D) — W' em + Y [ @km) — Re((W!)) ) — Am(¥)) (o) .
k=1

where &, 0, € (2kw, 2(k 4+ 1)r). Then by the estimate of W/, the series part in the
above expression is absolutely convergent. Because that part is bounded, by choosing
a suitable subsequence {n;}, we conclude that the part converges to a constant with
the same bounds. This completes the proof of the case s = 0.

For the case s < 0, we apply induction to the interval —k — 1 < s < —k, where
k > 01is an integer. We first consider —1 < s < 0. Let b € H*(S, 4) and

$(2) =Y bmz", ¢o(2) =) nbm)z",z¢'(z) = po(z).
n=1 n=1

Because b € H*(S,, ;), we have (-)b(-) € H**'(S,, ), where 0 < s + 1 < 1. As
proved above, we get ¢y € K**1(C,, 1), and the series ¢y locally uniformly con-
verges. This fact enables us to integrate the series ¢ (z)/z term by term. Notice that
the region C,, 4 is starlike. Denote by /(0, z) the segment fromOto 1 ~ z =x 4 iy €
C,..+. By the estimate of the functions in K s+1(C,.+), we obtain

$0(¢)

sl < | lac|
1(0,2) ¢

<c / ld¢|
S S0 1T =I5t

cof
S o (1= il eyt

To complete the proof, we divide the rest of the proof into two cases: x < 1 and
x > 1. For x < 1, the above estimate becomes

‘/' dt ‘_ 1 1 [ 1 1]
o (=1 =yl s+ 1x— |yl (11— x|+ [yDsH!
Cps
Sl =gt

where we used the condition thatz ~* 1 —= x~ 1,y =~ 0.
For x > 1, because z belongs to the starlike region C,, 1, we can deduce that

x—1=|1—-x| < (tan(w))ly|
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and
Iyl = Cu(I1 — x|+ yD-

This fact together with x &~ 1 and y & 0 implies

/1 dt
o (11— x| +tlyDs+2

_/'/" dt +/' dt
o A=t =)t S G Iy — D2

_ 1 [ 2% xt! n 1 1 1 j|

s L2 =y x AL =X+ D x =yl
Cyu

\|1_Z|s+l'

For s = —1, by using the result of the case s = 0, we can apply a similar argument
to obtain .
6] < CM/ i< cumi -z,
10,2 1 =€

wherez € Cy, ;.

This completes the proof for the case —1 < s < 0. Below we use induction to the
index s :

Let —k — 1 < s < —k, where k > 0 is an integer, and let b € H}. We define b =
(b)), and get ¢y, € K*(C,y 1),

Now we consider the case —k —2 < s < —k — 1, where k£ > 0 is an integer and
be H* (S, +). Set

6@ =3 b,

n=1

(@) = i bo(m)2",

oo
where by(z) = Y b(z + n). It is easy to see that by € H**!(S,, ;). Because —k —
n=0
1 < s+ 1 < —k,byinduction, we can obtain that ¢y € K,f)“.Hence, if s is an integer,
¢y, can be extended to C,, 4 holomorphically. If s is not an integer, ¢y,
can be extended to C,,  holomorphically. Here b, = {by(n)};2,. In both cases, for
z € Cy 4, we have

N In|z —1]|
[—s—2] |
I(z = 1) P2, (2)] < Cum

or
Cyu

sl _ G
[(z—1) Gri-s-1p (2)] < FEEE
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Because IkQO = I**1p for any k — 0, we have b1 p,) = Prr1py- When s is an
integer,
|In |z —1]|

[—s—1]
l(z—1) G- (2| < C/LW'

If s is not an integer,

C
[—s] M
@ = Do @) <

This proves ¢ € K forb e H}, —k —2 < s < —k — 1. |

The cases “+” and “—""in Theorem 7.1.1 are associated with power series and neg-
ative power series, respectively. By these results, we obtain the result corresponding
to the Laurent series.

Corollary 7.1.1 Let —co <s < 00,5 #—1,-2,...,b € H*(S,) and
[o.¢]
$@ = ) b
n=—o00

Then ¢ € K*(C,).
The inverse of Theorem 7.1.1 is the following.

Theorem 7.1.2 Let —0co0 < s < oo and ¢ € K°(C, +). Then for any u € (0, w),
there exists a function b* € H(S,, 1) such that

+oo
$@) = Y b

n==+1
Moreover, for s < 0 and z € S;i,:t’
. 1 . .
b*(z) = 7 exp(—inz)¢ (exp(in))dn, (7.2)
T Jia()

where
Ae() = {n € H . | n=rexp(i(m & w)), ris from 7 sec u to 0;

and n = rexp(Fiwn), r is from 0 to nsecu}

andfors >0,z € Sﬁ,i’

1 . . .
b'(z) = — lim < / exp(—inz)¢ (exp(in))dn + ¢LfL(z>> :
(e, 121" DU (2] =1 w)UA £ (1271, )

27 e—0
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where if r < 7,

l(e,r):{n:x+iy|y:0,xisfr0m —rto —e¢, andfrom ¢ to r],

ce(r, ) = {77 =rexp(io) | o from w £ uto m, then from O0to F ,u},
and

Asr 1) = {0 € W | 1 = pexplir & ), p is from 7 sec i to 1

and n = pexp(Fin), p from rto w secu};

Ifr > m,
1(8, I") =l(8,7T), ci(r, ,LL) =C:|:(7T9 M)
As(r,p) = Ax(m, ).
In any case,
[s] . . (—inz)[‘“]
¢e:(2) = oexpm) 1+ (—inz) +---+ ——— ) dn,
L (e) [s]!

where Ly () is any contour from —¢ to € in C,, .

Proof Let ¢ € K°(C,, 1), —00 < 5 < 00. We will apply (7.2) or (7.3) to prove that
o0

b* defined above belongs to H*(C,, ), and ¢(z) = Y_ b*(n)z".
n=1

We first consider the case —oco < s < 0. By the ex;;ressions (7.2) and (7.1), using
the estimate of the function ¢ and Cauchy’s theorem, we can prove

1
lim b"(z) = —/ exp(inz)@ (exp(in))dn, z € Sy +,
>0 270 Sy

where

Ap) = {n € Wy | n=rexp(i(m 4+ p)), risfrom msec(u) to 0,

and n = rexp(—iun), rfrom Oto w sec(,u)},

where | arg(z)| < n < w. Let | arg(z)| < 6 < w. By the estimate of ¢ and the prop-
erty of the path A(u), the function b* satisfies the following estimate (Fig.7.5):

o . dr s
16" ()] < Cy <|Z|S +/0 exp(—sin(u — 9)|Z|V)m> < Cuplzl’
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Y

- -r —& & r v/

Fig. 7.5 I (e,r)Ucy(r, ) UAL(r, 1)

Now we consider the case 0 < s < co. By (7.2), without loss of generality, as
7 & 00, assume that |z|~! < 7. We have

27‘[ e—0

1 !
b (z) = — lim {( / exp(—itz)¢ (exp(it))dt + ¢§](z)>
elr|<z| ™!
+/ exp(—inz)¢ (exp(in))dn
e (lz171 )
+/ eXP(—inZ)¢(eXp(in))dﬂ}
Ax(lzlt )
= ! li 1 I I
= Eeli%{ 1(€,2) + L(z, w) + B(z, M)},
where | arg(z)| < 4 < o,
cy(r,p) = {n =rexp(i) | ¢ is from 7 + p to w, and from Oto — u},
and

A1) = {n € W | 1= pexpliGr + ), pis from 7 sec(u) to 7,

and n = pexp(—in), pisfromrtomw sec(,u,)}.

Now we prove that I}, I, I3 are uniformly dominated by the bounds indicated in
the theorem, and the limit lin}) I, exists.
€e—
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By Cauchy’s theorem, we have

_q _it)\[s]
Li(e,2) = / <exp(—itz) —-1- ﬂ ————— (Zitz) )¢(exp(it))dt
e<ItI<el! 1! [s]!
_q _it-\[s]
+/ (1 IS ﬂ) #(exp(in)dr + oL (2)
e<ItI<el! 1! [s]!
i _ it [s]
= / <exp(—itz) —-1- ﬂ — = ﬂ) ¢ (exp(ir))dt
e<ItI<el! 1! [s]!
+op @)
Invoking the estimate of ¢, we obtain
i iyls)
/ [exp(—itz) o Em ﬂ] & (exp(it))dt
<l 1! [s]!

1
< CM |t|[Sl+1|Z|[S]+1_dt
_ t|l+s
e<IrI<lel! |

Izl
< CM|Z|[S]+1 / t[S]*Sdt
0

= Cylzl’.

The above argument implies that lir% I exists.
€—>
[s]

To estimate ¢|zrl

. (2), we only need to estimate the integral

_. k
[ S eepimdn k=0.1.... 15 (73)
Loy k!

Taking the contour L, (|z|~") as the upper half circle centered at 0 with radius |z| ™!,
we get

(—inz)* . e
f @ expin)dn| < C, Inz|“[n|™"~*1d ]
Li(lzI7) : Li(lzI™h)

< Culzl'.
To estimate I,, we have

dt

N
PES < Culzl’.

n
I W] < C, f exp (Inllz] sinGarg(2) + ) ) |
0

Now we consider /3. Letting | arg(z)| < 6 < u, we get
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. |dn|
[13(z, w)] < Cu/ exp(|nlz] sin(u — 0)) ——
Azt [n]i+

N

o0
C, / s exp(—r|z| sin(p — 0))dr
|

2|1
z|

< C;,L,9|Z|x'

For z ~ 0, assume that |z|~! > 7. We first prove that the integral on the contour
I (e, ) is uniformly bounded and has limit as € — 0. Except that the contour in (7.3)
should be replaced by L, (), the argument dealing with I, (¢, z) for |z]~' < 7 still
applies to the integral on I(e, 7). Let the contour L, (;r) be the upper half circle
centered at 0 with radius 7. We have

(=n2)* . < ki —1-=s
o ¢expin))dn| < Gy [nzl*n1~" " |dn|
L) K Ly ()
< Culelf
< Cy,

where k =1,2,...,[s].
To prove the integrals on ¢4 (7, ;) and A (7, n) are bounded, we use Cauchy’s
theorem to change the contour to the following one:

{z:x+iy|x: —m, yisfrom — mtan(w) to 0, and x = —m, yis from O to —ntan(u)}.

However, using the fact that Re(z) > 0, we can conclude that the integrals on the
above sets are bounded.
Now we are left to prove

o0
¢ = Zb“(n)z", —0<s<00, 0<pu<w.

n=1

This is equivalent to proving b(n) = b*(n),n = 1,2, ... in these cases.

oo
Let r € (0, 1). Since the series ¢ (rz) = Y_ b(n)r"z" is absolutely convergent in
n=1

lz| <1, we get

T

L exp(—itm)¢ (rexp(it))dt = r"b,. (7.4)
2

We first deal with the case s > 0. Write § = — In(7). Then r — 1 — 0 if and only
if § — 0+4. Taking the limits § — 0+ and r — 1 — 0 on both sides of (7.4), we
conclude that the right hand side tends to b,,, while the limit of the left hand side is

byg

lim exp(—itn)¢ (exp(—§8 + it))dt.

§—0+ J_
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For any fixed € € (0, ), we can get

lim </ —|—/ )exp(—im)qb(exp(—S + it))dt (7.5)
820+ NJogiige  Jeghign
_. _. 2 _. [Y]
= lim {/ (exp(—itn)— o Em _ GCim o Eim) )
§—0+ 0<11<e 1' 2' [S]‘

X ¢ (exp(—§8 + it))dt

_ )2 —itm)s]
+/ (1 + ﬂ 4 ﬂ Lt (= itn) ) ¢ (exp(—4 + it))dt
L.(e) 1! 2! [s]!

+ / exp(—itn)¢ (exp(—3 + it))dt}
e<|t|<m

. . (—itn)  (—itn)? (—itn)¥!
= lim exp(—itn) — 1 — —— — ——— — ... — A
=0+ Jogr<e 1! 2! [s]!

xplexp(—5 -+ i)t + ¢k + [ exp(-im)g exp(= + in)dr

el

where we used Cauchy’s theorem and the fact that the last two integrals are absolutely
integrable as § — 04. Invoking the estimate of ¢, the last expression of (7.5) is

dominated by
1
C, / [77] Lp—
0<rl<e [£]s+1

which is independent of § > 0. Taking the limits € — 0 on (7.5), the integral tends
to 0 and (7.5) reduces to

b, = lim ( f exp(—itn)¢ (exp(it))dt + ¢ (n)) ,
>0 \Jeglgn ’
which equals to (7.3). By the periodicity of the integrand function and Cauchy’s
theorem, this equals b*(n). The proof for the case s > 0 is complete.
For s < 0, by the estimate of the function ¢ and the Lebesgue dominated con-
vergence theorem, we take the limit r — 1 — 0 on both sides of (7.4) and therefore,
obtain

b(n) = % /ﬂ exp(—itn)¢ (exp(it))dt.

-7

Then by the 27 -periodicity of the integral, Cauchy’s theorem and (7.2), the above
expression equals to b*(n). This completes the proof of the theorem. (]

By Theorems 7.1.1 and 7.1.2, we obtain a result for the case s € Z_.

Theorem 7.1.3 Let s be a negative integer.

+o00
i) Ifbe H (Spx)and ¢(z) = > bn)z", then ¢ € K (Cp 1)
n=%1
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(ii)) If ¢ € K;,(Cy 1), then for any v € (0, w), there exists a function b* such that
b* € H} (S, +), and

+o0
$@ =Y b

n==x1
Moreover, b"* is given by (7.2).

Proof The conclusion (i) was obtained in Theorem 7.1.1. We only need to prove (ii).
By (7.2), it is easy to prove that b* is bounded near the origin. For large z, invoking
(7.1), we obtain that for | arg(z)| < 6 < u,

s o . _ar
1" (@) < Cu | l2I*+ | exp(=rlz|sin(u — 6))|Inr|r -
0

s s *© . _Yd}"
<c, |z|‘+|z|‘/ exp(—rsin(e — 6)|Inr — In 2l "
0

< Cuplzl’In|z|.

o0

This proves b* € Hj} (S, +). The verification of ¢ (z) = Y~ b*(n)z" is similar to the
n=1

case s < 0 in Theorem 7.1.2. The proof is complete. O

Remark 7.1.1 For {b,};2, € [*°, the series

$@) =) bu"
n=1

is well-defined on the unit disc and holomorphic. Theorem 7.1.1 and (i) of Theorem
7.1.3 indicate that if there exists b € H*(S,, +) such that b, = b(n), then ¢ can be
extended to C,  holomorphically. In any small C,, 4, when s is an integer, this
function satisfies the conditions in the definition of K}, (S,, +). When s is not an
integer, this function satisfies the conditions in the definition of K*(S,, +). Theorem
7.1.2 and (ii) of Theorem 7.1.3 give the inverse result.

Remark 7.1.2 Under the assumption of Theorem 7.1.2, the mapping ¢ — b sat-
isfying ¢(z) = Y_ b(n)z" is not single-valued. In fact, by Theorem 7.1.2, any b*,
0 < u < w, gives a solution of b, and if ] # Wy, then generally, b*' # b*2, see also
the example in Remark 7.1.3.

Remark 7.1.3 In the proof of Theorem 7.1.2, we need the following function space
P} which consists of all finite linear combinations of the holomorphic functions with
the following form

1, ifz=n,
gn(2) = [exp(in(z — n)) — exp(—in (z — n))] exp(—m(z — n) tan ®)
2im(z — n) ’

if z #n,
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where 7 is a non-negative integer. It is easy to prove

exp(—m (Re(z) tan w — [Im(z)]))
lz+ 1]

181 (@) < Cpun ,2€8,4+,0<u <o

oo ~
Hence g, € |J H*(S,,+). Itis remarkable that the functions in P} are the inverse
sS=—00
Fourier transforms of the finite polynomials of z given by (7.2) in Theorem 7.1.2.

Similarly, we can define the space P~ with respect to the negative integer.

Remark 7.1.4 The holomorphic extension given in Theorem 7.1.1 is optimal in the
following sense: if w is the largest angle such that b € H*(S,, +), then ¢ can not be
holomorphically extended to any larger heart-shaped region C, 45 4,8 > 0, which
satisfies the corresponding estimate. Or else, by Theorem 7.1.2, we can obtain con-
tradiction.

Remark 7.1.5 (i) of Theorem 7.1.3 corresponds to the function b(z) = z/(1 + z2).
Take s = —1 for example, A. Baernstein studied that how to construct a holomorphic
function in the unit disc such that when z — 1,

¢(z) =O0(n|z — 1)) and ¢'(z) # O(1/|z — 1)),

see [5]. At the same time he also proved that it is equivalent to considering the
matter in the unit disc instead of in the heart-shaped region. The reason is that the
estimates for s = —1 remain unchanged after applying a suitable conformal mapping.
In Theorem 7.1.1, letting s = 0, we conclude that b(z) # O(1/|z]) at oo. However,
it is still an open problem that the estimates given in (ii) of Theorem 7.1.3 are the
best possible in those cases.

7.2 Fractional Fourier Multipliers on Starlike Lipschitz
Surfaces

In this section, we consider a class of Fourier multiplier operators whose multipliers
are dominated by a polynomial and give the estimates of the kernels of the integral
operators associated with the Fourier multipliers. The main tool is still the gener-
alized Fueter theorem obtained in [6] (see Sect.3.5). The main idea is to establish
a relation between the set O in the complex plane C and the set 8 in the (n + 1)-

-
dimensional space RY, and then transfer the estimate for the functions defined on O
to the corresponding one defined on O.
As in Chap. 6, we still use the following intrinsic set. We recall

Definition 7.2.1

(i) A set O in the complex plane C is called an intrinsic set if the set is systemic
about the real axis, that is, the set is unchanged under the complex conjugate.
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(i) If a function f 0 is defined on an intrinsic set in C and @) =f 9() in the
domain, then the function f 0 is called an intrinsic function.

The functions of the form ) ¢ (z — a)¥, ke Z, a,cr € R, are all intrinsic
functions. If f = u + iv, where u and v are real-valued, then f° is intrinsic if and
only if in their domains, u(x, —y) = u(x, y) and v(x, —y) = —v(x, y).

We regard R’ as the (n + 1)-dimensional Euclidean space and define the intrinsic
setin R} as follows.

Definition 7.2.2 We call a setin R} an intrinsic setif it is invariant under all rotations
in R} that keep the e axis fixed. If O is a subset in the complex plane, then in R,
we call the intrinsic set

—
O ={xeR}: (x, |x]) € O}

the set induced by O

Definition 7.2.3 Let f°(2) = u(x, y) + iv(x, y) be the intrinsic functlon defined on

the intrinsic set U C C. Define the function f 70 on the induced set U as follows:

3 X
S (o +x) = ulxo, x]) + QV(xo, x]).

—
We call £ the function induced by f°.

We denote by t the mapping:

—
r(fo) _ kn—lA(n—l)/Zf()’

where A = DD and D = Dy — D, k, = (21')"’11”2(%) is the normalized constant
such that 7((-)~") = E. The operator A"~1/2 is defined via the Fourier multiplier
m(£) = (2mi|€|)"~" defined on the tempered distributions M : &' — S'. Precisely,

Mf = R(mFf),

where

FFE) = f T (x)dx

1

and

Rh(x) = / e T E p(E)dE.

The monogenic monomials in R} are defined by

PP =¢(()") and P4V = 1(PTP), k € Z*,



7.2 Fractional Fourier Multipliers on Starlike Lipschitz Surfaces 241

where I denotes the Kelvin inversion I(f)(x) = E(x)f (x~1).
We also need the following set in the complex plane. For w € (0, 7), let

S(f)i = [z € C: larg(£2)| < a)}, the angle arg(z) € (—m, 7],

S (m)={zeC:|Rez| <m z€S, .},
S¢ =S¢, USS_and S5(r) =S5, (1) USS, (1),

W) = [Z €C:|Rez| <mand £ Imz > O} U S (),

HS . ={z=exp(in) e C,n e WS . (m)}
HE = H  OH .

We define the Fourier multipliers in the following function space

K'(Hy ,) = {¢0 : Hy . — C, ¢" is holomorphic and

: c 0 Cﬂ
inany H, ., O<u<w, |’ (@ < m ,

and
K'HS) ={¢°: H— C, ¢°=¢"" +¢"~, ¢"* € K'(H 1)}

The corresponding multiplier spaces are

H(S;, 1) = {b : S, + = C, bisholomorphic and in any S, .,

0 << lb@)| < Culz £ 1|S}.

and
HY(S(Z) = {b : SZ) — C, bt = b)(zeC:tRer>0) € HS(Ss),i)}.
Let .
—
Hy,+=3xeR]: (En ) <tanwp=HS ,,
' arg(eg, x) '
and
o IInx]| —
H,=H, NH,_={xeR]: ——— <tanw; =H;.
arg(eo, x)

Hence, the corresponding function spaces in R are

K'H, 1) = {q§ : H, + — Cy,, ¢ is monogenic and

I
|1 — xfrts’

600 < x€H, 0<M<w}



242 7 The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces

and
K'(Hy) = {#: Hy— Cop. ¢ =67 +07, 9" € K'(Hon) |-

Now we consider the multipliers b € H X(Sgi). At first, in the following lemma, we
estimate the jth derivative of the intrinsic function ¢°.

Lemma 7.2.1 Assume that b € H*(S; ). For the multiplier defined by ') =
> o b(—k)z7k, its jth derivative satisfies

(") (2)] <

[1— Z|s+j+1 ’

where z € H;, _, 0 < 1 < w and j is a positive integer.

Proof Without loss of generality, for b € H*(S;, _), we assume that [b(—k)| < [k|*.
oo

By Theorem 7.1.1, for ¢°(z) = Y b(—k)z 7%,
k=1

19°(2)| <

|1 _Z|s+1'

Take a circle C(z, r) centered at z with radius r. By Cauchy’s formula, we obtain

. C; 0
|WW@<§/ 1O ).

cer lz—EPH!

Letr = %|1 —z|. Then & € C(z, r) implies that

1 1
1—&>21—zl—lz—&l=|1l—zl— |l —z| = =|1 — 2.
=&l Z211—zl—-|z—§l=1—¢ 2| z| 2| z|

Therefore we obtain

WC 1 e 1
§(u) |1 —gporz S T T

[0 (@) <

This proves Lemma 7.2.1. (|

Lemma 7.2.2 enables us to estimate the kernels of the Fourier multipliers generated
by the functions in H*(S{) and the spherical monogenic functions.

+o0

Theorem 7.2.1 Fors > 0, if b € H*(S;, ;) and ¢ (x) = > b(k)P® (x), then ¢ €
k=+1

K*(Hp ).

Proof Similar to Theorem 6.1.1, we divide the proof into two cases according to the
parity of n.
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Case 1. n is odd: We assume that n = 2m + 1 and restrict the proof to x ~ 1. By
Lemma 3.5.1, we only need to estimate the corresponding #; and v;. There are two
subcases to be considered.
Subcase (1.1). |x] > (8()/2™T1/?)|1 — x|. For this case, we write z = xo + i|x].
x ~ 1 implies that z &~ 1. We can write z = s + it, where s = x¢ and t = |x|. We
haver = |x| = |1 — z].

For ! =0, u; = up = u and v; = vo = v. By the estimate of ¢y, we have

C 1

uol, |vol < < —————.
luol, Ivol < ol < 5000 1T =2

For/=1andt~ |1 —z|, we get

1 dug 1 1 1
u| = 2l-—| < = ;
] ‘ t ot [T —z| |1 —z5t2 |1 —z5t3
and
| | 18V() Vo
vil=|-———
! t ot 12
. 1 1 + 1 1
T T e e T R T
B 1
- |1_Z|s+3'

Because A'¢°(x) = ui (xo, |x]) + 7v1(x0, x]), we have

1,0 i
|A'9° ()| < C |ui(xo, IxD| + le(xo, |x])

1
<C———.
|1 — z[s+3

Repeating the above procedure m times, for u,, and v,,, we obtain

1

lum O], V()| < TR T i T

Subcase (1.2). |x| < (8(n)/2"™1/?)|1 — x|. The points x in H, _ satisfying x ~
1, xo < 1 belong to Subcase (1.1). Hence we assume that xo > 1. Now we prove the
following conclusion: ifz = s +ir & 1,5 > 1,z € H, _and |t| < (8(n)/2"'/2|1 —
z|), then

(1) the function u; is an even function with respect to the second variable ¢.

(2) the jth derivation satisfies

By
guz(s, 1)

C,.C2YC; 1
52U+ |1 _ Z|2l+j+s+1 ’

<
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where the constant C; is

B { (G +40)!, jiseven, (7.7
Pl (450!, jis odd. (1.7)

We apply the mathematical induction to / in order to to prove (1) and (2). Clearly,
for [ = 0, by Lemma 7.2.1, we have

j! 1
()Y |1 — zps+l”

‘—Mo( ‘ PrAS )‘ —¢( )‘

Now we assume that (1) and (2) for 0 </ < m — 1. Because
w1 =201+ 1D (1/1)(0u; /91)(s, 1)
and y; is even, u; is also an even function. This proves (1).

For (2), we first consider the case that j is even. By the definition and (1), du; /9t
is an odd function with respect to the second variable . We can obtain

duy 2k+1
S5(5.0) = St (5,0) = 0.
By Taylor’s expansion, we have
_ 24D (g 1 2k 1L 9 2t
1 (s, 1) = ; </§) (2k)! 9r2k+1 ( 0= + Z (k + 1)! 9r2k+2 ( 0t
0 32k+l 2k
= Z Zk)' 312k+1 ( 0t

k=0

% ,
Letting k = j/2 + k' and noticing that (5“ zl) < (W%,Z)Zk , we conclude that

U+ (Sa t)

&
o0 .
(k)2k — 1)+ 2k —j + 1) 3% 2y, i

=Pu+n ) 2k + 1! gz & O

k=j/2
<» l | o0 (2k/ +])(2k/ +] _ 1) . (Zk/ + 1) C[J,Cl21(2k,+i+2)(2k,+i+2+41)
<20+ )Z k' +j + 1! S2U+2K +j+2

t2k’

x |1 _ Z|21+2k/-hi+2+s+l
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<2(1+1)

C,C210+D NG 2k 244D 2k +2)
52(1+1)+j|1 _ Z|2(l+1)+j+1+s Z 2k :
k=0

The rest of the proof is similar to that of Theorem 6.1.1. By use of (6.7), we obtain
that the series in the last inequality converges and satisfies

o]

5 G+ 2k + +2k) CR+2) a1 4 a1 4 4y,
k=0
Finally, we have
Y C G210+ 4= (i
‘ﬁum(s, n| <200+ 1)82(l+1)+j|1 - Z|2(l+1)+j+l+s2 Fal+an

Now we verify that ’ %M}+] (s, t)‘ satisfies the estimate for odd j. Similar to the proof
for j even, by Taylor’s expansion, we have

J

? 2 2kQk —1)--- 2k + 1 —j) 8%+2y
Tt (s, ) =20+ Dr Y ( ) ( /)
-

/ 2k—1—j
,0)¢ 7,
2k + 1! r2k+2 (s, 0)

ar

Let 2k — 1 — j = 2k’. We can obtain

—u S,
Py 1+1
o) . . 1(2k+3+)) i |
2k D2k +j) - 2k +2) C,C;2 2k +3 50)!
<20+ 2k +j+ 1)( f]) (2k +2) /L2[1(2k+3+') ( +21+:;<{r%t'+)+1 2%
kZ:O Qk+j +2)! B D1 —¢| 3+t

<20+1 : CuCi20™
<20+1 811 —z] §2U+D+j 1 _Z|2(I+1)+j+x+1

oo

Z(2k+j+1)(2k+j)~~-(2k+2) K
2k +j +2)!

1 2k
(2m+1/2) (2k +3 +j + 50)!
k=0
1 C,C210+3

j+51+4 (s
S2+D (5‘1 — Z|) §2(+D+j [1— Z|2(l+1)+j+s+1 Y (G+50+ 3)/2)!

Letting j = 0 and [ = m, we have

C,.Co(4m)! 1 C

|t (s, D] < §2m 11— Z|2m+s+1 = 11— Z|n+s'

Now we estimate v,,. As before, we divide the discussion into two cases.
Subcase (1.3). |x| > (8(u)/2’”+1/2).Whenl = 0, noticing that || ~ |1 — z|, we have
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vo(s, )] = [v(s, )] < C#
For [ = 1, because Si1c |
[CRUGIRS 8{(“’)‘ T
we have
vi(s, D] < 52(6/‘5) <|1 _1Z|2+s I iz| + ¥ _1Z|2 I _1Z|1+s)
C,

= |1 — z[s+3"
Repeating this procedure m times, we know

Cy Cyu
11— Z|2m+1+s - 11— Z|n+s’

|Vm(s9 t)' g

Subcase (1.4). |x] < (8(w)/2™T1/%)|1 — x|. For this case, we assume that xy > 1. For
0 < I < m, we have the following conclusion:

Conclusion (1). vi(s, t) is odd with respect to the second variable ¢. In fact, for/ = 0,

oo
vo(s, ) = Img(s, 1). Because ¢°(z) = Y. b(—k)z 7%, we have
k=1

$°@) =Y b(-hz* =) b(—k)z Tk = ¢O(z).
k=1

k=0
Let ¢°(2) = u(x, y) + iv(x, y), where u and v are real-valued functions. Then
ux, —y) +iv(r, =y) = ulx,y) — iv(xr,y) = u(x,y) = iv(x, y).
Hence v(x, —y) = —v(x, y), that is, v is an odd function for the second variable.

For [ = 1, because (vo/?) is an even function, v; = 2%(%“) is an odd function.
We assume that for 0 </ < m — 1, v; is odd. Hence

is also odd. This proves Conclusion (1).

Conclusion (2). For 0 <[ < m,

C,.C,Cjj! 1
§ 1 — Z|21+j+s+1 ’

By
)ﬁw(s, t)‘ <
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where the constant C; is defined by

(j + 50!, ifjiseven,
7T (44D, ifjis odd.

For simplicity, we only consider the case j is odd. When / = 0, it follows from the
estimate of |(¢°)?] that

C.Cjt 1
(8]) |1 — Z|j+s+l :

B
— <
‘ " vo(s, t)‘ <

Because v;(s, t) is odd with respect to the second variable, (3%%v;/3t%*)(s, 0) = 0.
By Taylor’s expansion, we have

lemf 1 1 aigr %y
=20+ 1)= - i ,0).
Vi (s, 0) = 20+ )ﬂ;((zk)! (2k+1)!> ot 50

Let k = k' + 1 and write k = k’. We get

[e°]

2% 2 82k+3
s, t)—2(l+l)z + M

2k + 3)! 9:%+3

3/Vl+1

5,002k + 1) -+ (2k + 2 — jr?k+1,

We assume that Conclusion (2) holds for 1 </ < m — 1. Letting 2k — j = 2k’, by
t/(8]1 —z]) < 27"/ we have

ale-H
} ov (s’t)‘

o0
2k +2 e 2t 1—j
<20+ 1)2 (2k+3)v(2k+ Do @k 42 = )| 5oy (5, 0t j
1 21(/+3) 1

<20+ 1)2m+1/2 S20HDH) |1 — |20+ Hjtst

Rk 4+j4+345D) - Q4+ ARk +j+2) -2k +2)
Z 2k '
k=0
This proves Conclusion (2).
Similarly, we can prove the case that n are even. For j = 0 and [ = m, we obtain

C,Cp(4m)! 1 Cus
§2m 11 _Z|2m+l+s = 11 _Z|n+s'

‘vm(s, t)) <
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Now we deal with the multipliers defined on the region S | . By the Kelvin inversion,

o0
forb € H*'(S,, , ), we estimate the function ¢ (x) = b(i)PD (x). We have

i=1

1)) = Y bHPP ),

i=—1

where Z(z) = b(—z) € H*'(S;, ). Because I(¢) = 7(¢°), where

- . 1 - ' -
0 — b(i i—1 i bz s,c
¢ (2) E ()z ; E (Hz' €H,_,

i=—1 i=—1
we have ¢ (x) = I*(¢) = E()I(¢)(x") and

o) = |[E@I(@) x| < 1 Cu _ Gl

el T =T~ 1=

c
Becausex € H, = H,

++» we can see that (xo, |x|) € H{ , and

bl = @ + )2 < 1 e,

Finally we obtain that |¢ (x)| < C, /|1 — x|"*5. This completes the proof of Case 1.

Case 2. n is even. As above, we only need to estimate the kernel ¢ defined on H,, _.
oo
Letb € H*' (S, ). Consider ¢ (x) = > b(—k)Pr(fk) (x). Because n + 1 is odd, we

k=1
have

S 00
() = 360 [ PLY G e
k=1 -

o0 1
<c / dx,
X n+1
F o 1= (6 + Xy [PHFS

o /‘” 11— x <Xn+1 )
|1 — x| +s o [1 T (/11 _x|)2](n+1+s)/2 1 — x|
C

= |1 — x|+’
This completes the proof of Theorem 7.2.1. (]

The following corollary can be deduced from Theorem 7.2.1.
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Corollary 7.2.1 Lets > 0, b € H*(S.) and

—00

¢ (x) = (Z + Z) b(i)P? (x).
i=1

i=—1
Then ¢ € K*(H.,).

For the case s < 0, the proof of the conclusion for the function ¢ is similar to that
given in the above theorem. In the following theorem, we prove the conclusion of
Theorem 7.2.1 holds for the spaces whose dimension n are odd.

+o00

Theorem 7.2.2 Fors < 0,b € H*(S;, ) and ¢ (x) = > b(k)P® (x), if the spatial
k=%1

dimension n is odd, we have ¢ € K*(H,, 1).

Proof Because the index s is negative, we can not use the method of Theorem 7.2.1
directly. Precisely, for s < 0, |z|® is unbounded as z approaches the origin. Hence,
after getting the estimate of the function ¢° on the region S ._» we will not use the
Kelvin inversion to obtain the estimate on the region S, .

To deal with this case, we estimate the function ¢ on the regions H,, + and H,, _.
On the region H,, _, the estimate for the function ¢ is the same as that of Theorem
7.2.1. We omit the details.

For the region H,, ., because the Kelvin inversion is invalid, we need to estimate
the intrinsic function ¢° in the region H .- For this purpose, we use Theorem 3.5.1
to obtain that for the odd n, P*~1D = 7((-)"+=2), where the mapping t denotes the

—
operator 7(f%) = k' A®~D/2f0 and

3 X
f7 ) = ulxo, x]) + QV(XO, x]).

Now we complete the estimate for the kernel ¢. We assume that b € H*"(Sg, ,)
and consider ¢ (x) = Y ;- | b(k)P® (x). By Fueter’s theorem, we have

¢ (x) = A"¢" (xo, |x]), where ¢°(z) = Zb(k)szrkfl.
k=1

oo
For simplicity, ) = z”’1¢? (z), where ¢? @)=Y b(k)z. By Theorem 7.1.1, for
k=1
b e H* (S, ),
167 (2)| <

|1_Z|1+s’

where z € H | . Then we have

|Z|”_l C
w
1 _Z|1+s = 1 _Z|1+s’

10°(2)| <
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where in the last inequality we have used the fact that the function |z|*~! is bounded
on Hf .. Then repeating the procedure used in Theorem 7.2.1, by the estimate of
the 1ntr1n51c function ¢°, we can deduce the estimate of the induced function ¢. This
completes the proof. (]

As a direct corollary of Theorem 7.2.2, we have

Corollary 7.2.2 For the case that the spatial dimension n is odd, Corollary 7.2.1
holds for s < 0.

On R”, The Fourier theory indicates that there exists a one-one correspondence
between the kernels of singular integrals and the symbols of Fourier multipliers.
By Theorem 7.2.1, for b € H*(S;), there exists a function ¢ € K*(H,). Now we
consider the converse of Theorem 7.2.1. For ¢ € K*(H,, +), we prove that there
exists a function b”(z) € H*(S; 1) such that by = b"(k), 0 < v < w.

Let n = 3. For the case s = 0, such function »” was obtained by T. Qian in [7].
The main tool is the following polynomial P®). For any z € S¢, let

P(Z) — TO((')Z) z e SC .
P(Z) T (( )Z+2) z€ Sw-t,-’

where (-)° = exp(zIn(-)). In the first case, the function In is defined by cutting the
positive half x-axis; while in the section case, the function is defined by cutting the
negative half x-axis.

By the new functions P and Pﬂf) , we can obtain the following result. For the
sake of simplicity, we assume that n = 3.

Theorem 7.2.3 Let n=3 and —oo <s<—-2. If ¢(x)= Y. bPP(x) e
keZN 0}

K*(H, +), then for any v € (0, w), there exists a function b® € HHZ(S‘f’i) such
that b; = b* (i), i = 1, £2, .. .. In addition,

v 1 @) (-1 +1
b'(z) = 11m = PE(TOHEWNM)@(r=y)do(y),

—1- 272 Ji+0
R
where L*(v) = exp(il*(v)) and the path 1% (v)) is defined as
) = [z € C:z=rexp(i(wr £ v)), ris fromm sec(v) to 0;

and 7 = rexp(—(£iv)), r is from 0 to sec(v)}.

ﬁ
Proof Recall that 7°: 0 — %Afo. Write 0 = %, where n = x + iy. For x =
(x0, |x|) € L*(v), there exists n € exp(il*(v)) such that n = (xo, |x|). Write e =
x/|x|. We have
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1 ov
NG ‘A(())‘ﬁ “ o, |x|)+2e(| i

1
- (o, [x) — x |2V(x0 IXI)>

Now f? = "%, where 1 € I*(v). Then f = u + iv, where u and v are the real part
and the imaginary part of f, respectively. We have 3 (e”’z) = ize™. Let n = re”*

and z = |z|]e™. We can get
e M = exp(—ir|z|e’® M) = exp(r|z| sin(@ — w)) exp(—ir|z| cos(®@ — w)).

Because ¢ € K*(S,,), we have

C
lp )] < T where x = xy + x € L*(v).

|1

For such a x, there exists a z=x+1iy € exp(ili(v)) such that z=¢" = exp
(rsinpu + ircos u) and |x| = "™ sin(r cos ). Then we get

T |z sin(u—6) 1 11,
b*(z <C/ z|e T MESIHT . — —rdr
RIS 0 el [T — em]s+3 |x] |x|

For the factor 1/|1 — el |“+3, we have
[1—eM> =14 XSt —2e 51 cos(rcos ).

Let f(r)=r> and g(r) =14 et _2¢" 5" cos(rcos ). We obtain
lim,_,¢ J; Er)) = 1. Hence we can find a constant C such that

r

|1 _ ersinﬂeircosul <Core (0’ T SeC 1),

that is, 1/]1 — e"Sinkeircosi|s+3 ~ 543 TFinally we have

T sy L1 r?
16" (2)] < C/ |z|e™ T — —— —
X 0 rs+3 eSr sin . prsin ji sm(r cos /L)
7 sin
—rlz\sm(u 6) —4rsinp
<cia [ L ey
< C|Z|Y+2’
where in the last inequality we used s < —2. ]

Theorem 7.2.3 indicates that using the method in [7], for s # 0, we only get
beH Y+2(SC +) rather than b € H*(S;, ). To obtain a more precise result, we need
apply a new method It will be based on the following things. First, the desired
function b is defined on S, . C C. Secondly, by Proposition 6.1.1, we know that
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if the dimension 7 is odd, the polynomials P™® and P*~D k e Z,, satisfy the
following relation:

PO — r(()7F), PED = ()2,

Our idea is to construct a function ¢° € K* (H; ) byuseof ¢ € K°(H,, +). Then we
can express the function b via ¢° by using techniques in complex analysis. At first
we give a lemma to show the relation between H, + and H, .

For any element e in the vector space Q, the hnear spanof 1 and ein R is called the
complex plane induced by e in R} denoted by C¢. Denote by H§ . and H§ the images
onC¢ c R of the sets H + and H{ in C under the mapping i, : a + bi —> a + be,
respectlvely By the same method as that of [7, Lemma 4], we can prove the following
lemma.

Lemma 7.2.2
Hyx=|JHS and H, . = | JH ..

ecJ ecJ

where the index set is the set of all unit elements.

Lemma 7.2.2 establishes the relation between the class of monogenic functions
and the corresponding holomorphic Fourier multipliers.

Theorem 7.2.4 Letnbeoddand p(x) = Y. b P®(x) € K*(H, +). If the series
keZ\{0}

3" bk converges in H .4 then for any v € (0, w), there exists a function b" €
keZ\{0}
HP(Sy 1) such that by = b"(k), k € Z\ {0}.

Proof We already know that if n is odd, for k € Z,
P(—k) — TO((')_k) and P(k—l) — _L,O((_)n-k—k—])‘

For ¢(x) = Y. bP®(x) on H, 1, we define the following function ¢° on
keZ\{0}

HS as¢’(x) = Y. bz, wherez € HS . For simplicity, we only estimate ¢ in
keZ\{0)

H Lete = |§ Foranyz =u+iv e H; ,,byLemma7.2.2, we getx = u + ve =

(xo )Q € H; , C H, 1. We have proved that for z € H;, ,, there exists a constant

3(v) = min {1/2 tan(w — v)} such that the ball S,(z) is contained in Hy, ,, where
z is the center and the radius is 6(v)|1 — z|. We denote by B(x, r) the ball {y €
R, [x — y| < 8|1 —x|} and have B(x, r) C HS , C H, ;.

Assume that f and g are the real part and the imaginary part of ¢°(z), respectively.
The induced function is defined by

-0
¢ (x) = f(xo, |x]) + eg(xo, |x])
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—
and satisfies A“"D/2¢0(x) = ¢ (x), where x = (xp, x) = u + ve. We can see that

18 )| </ c G 4

By X — Y7 [1 =yt

For any y € B(x, §(v)|1 — x|),
IT=y[ >l =x| = |x =yl > (1 =8W)H[ —xl.

We get

_()) C\J S(v)|[1—x| 1 1d
< — —x =y X —
#°1 < _xlnﬂ/o S (E)

< _ &
= — y|14s T
1 — x|

—
By the definition of |¢°|, we have

— C, C,
19°(2)] = |¢° ()] < =

IR

By the above estimate, we can construct the function b € H*(S;, ,) as follows.
Fors <Oandz € thi,

1
P = f exp(—inz)¢° (exp(in))dn,
T Jas()

where

() = {r) € H, . | n=rexp(i(m &+ w)), ris from 7 sec 1 to 0

and n = rexp(Fip), ris fromOtow secu}

andfors >0,z €S, ,

1. . . ,
b(z) = =— lim ( / exp(—inz)¢° (exp(in))dn +¢l;'i<z)),
27 e=0 \Ji(e, |21 Ues (121~ i)UAL (127 |, 0)

where if r < 7,

l(e,r) = {n:x+iy |y=0,xis from —rto —e, thenfromstor},

ci(r, ) = {n = rexp(iee) | o is from w &£ p to w, then from O to ¢ u},
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and

Ai(r,p) = {77 € Wyr | n=pexp(i(m £ n)), pis from 7 sec u to r;

then n = p exp(Fin), pisfromrtonw sec,u},
andif r > m,

le,r)y =1l m), ce(r,pn)=cx(m, ), Ax(r,p) = Ax(m, ).
In any case,

(—inz) :|

Pk (2) = ¢° (exp(in)) [1 +(=inz) +---+ o

Li(e)

where L, (¢) is any contour from —¢ to € in Cy, 4.

By Cauchy’s theorem and the Taylor series expansion, we can use the esti-
mate for ¢0 to show b” € H*(S{) and b; = b"(i), i = £1, £2, ..., see Sect. 7.1 for
details. (]

7.3 Integral Representation of Sobolev—Fourier Multipliers

In this section, we consider a class of Fourier multipliers defined on Sobolev spaces
on starlike Lipschitz surfaces. If a Lipschitz surface ¥ is n-dimensional and starlike
about the origin and there exists a constant M < oo such that x;, x, € X,

|1n |xf1x2| |
— <M, (7.8)
arg(xy, x2)

we call X a starlike Lipschitz surface. We denote by N = Lip(X) the minimum of
M such that (7.8) holds.

Let s € R”. For x € R", we define the mapping r, : x — sxs~!. By (i) and (iv)
of Lemma 6.2.1, we can prove that if x” and x belong to a starlike Lipschitz surface
with the Lipschitz constant NV, then

(Jin 1x~1'l| / arg(x, ¥)) = [in[[x|™'7]] /arg(1, [x]7'%) < N,

that is, |x|~'X € H,. This gives the relation between the set H, and the starlike
Lipschitz surface.

We use M, for the finite dimensional right module of £ homogeneous monogenic
functions in R} and use M_ ) for the right dimensional right module of —(k 4 n)-
homogeneous monogenic functions in R \ {0}. The spaces M; and M_g,,,) are
eigenspaces of the left Dirac operator I's. We define
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Pi:f = P(f)and Oy : f — Ok(f)

as the projections on M and M_ ), respectively.
The Fourier multipliers are defined on the following test function space:

A= Hf . for some s > 0, f (x) is left monogenic in p — s < |x| < l—l—s}.

For f € A, in the annuals where f is defined, we have the Laurant series expansion

FO =) P+ D ().

k=0 k=0

Here we have used the projection operators P and Qy defined as follows:

1
P = o /Z I CE L € MEGRGI 0)do ()

and

1
(W) = o /E ly "X C L EMEGNOf (0)do (),

where x = |x|&€,y = |y|n and n(y) is the outer unit normal of X aty. Here C;H’k(é, n)

and C,, (&, n) are the functions defined as
1 e
Croplm = 7| = (n+k =D "))
+ (1 =mc e e m - En)
and

1 e
Crora€m) = —= [k + DC ()

+ (1= (. 6D, §) = 76) .

where C} is the Gegenbaur polynomial of degree k associated with v (see [8]).

Now, on the starlike Lipschitz surface X, we give the Fourier multiplier induced
by the sequence {b;}, where b, = b(k) for any function b € H*(S¢). We can see from
Theorem 7.2.1 that the corresponding kernel ¢ satisfies

lp )| < Cu/I1 —x|" fors > 0.
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The regularity index s indicates that we can not define the Fourier multipliers for
f € L*(X) as the bounded Fourier multipliers in Sect.6.2. To compensate the role
of s, we need to restrict these multipliers on some subspace of L?>(X). Hence we use
the following Sobolev spaces on the starlike Lipschitz surface X.

Definition 7.3.1 Let s € Z* U {0} and T be a starlike Lipschitz surface. For 1 <
p < 00, define the norm of Sobolev space || - || y»s(x) as
&

R
I hwgecey = I sy + D NP ).

J=0

The Sobolev space associated with the spherical Dirac operator I'¢ is defines as the

— I llypos
L)

closure of the class A under the norm || - [[yzs (s, that is, A
&

Now we give the definition of the Fourier multipliers. By Definition 7.3.1, A is
dense in Wlﬂ’;s. Hence when we define the Fourier multipliers, we assume that f € A.

Definition 7.3.2 For the sequence {b; }icz satisfying |by| < k¥, we define the Fourier
multiplier M, as follows:

Muof () = Y bePe(f)®) + Y bx 10k () ().
k=0 k=0

Remark 7.3.1 When X is the unit sphere, if we take two sequences {b,({l)}and {b,(cz)},

where b,((l) = k? and b,(f) = k, the Fourier multipliers in Definition 7.3.2 reduce to the
boundary values of the Photogenic-Cauchy integrals on the hyperbolic unit sphere,
see Example 7.0.1.

Now for k > 0, we define
PO =y~ Ch &)

and ~
P(fk—l)(yflx) = |y71x|7k7"Cn_+1yk(§7 n.

The projections P, and Qy can be expressed by

1 ~
P = o L B (L EGnG)f ()do (y)

n
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and
1 ~
(W) = o /E PEDGTIE@MG)f ()do ().

If we use

6070 =Y b PP

to denote the kernel of the Fourier multiplier My, in Definition 7.3.2, we get the
following estimate.

Theorem 7.3.1 Let w € (arctan(N), w/2) and b € H*(S.). The kernel 5(})’%)
E(y) associated with {b;} in the manner given above is monogeneically defined
in a neighborhood of ¥ x ¥\ {(x,y) : x = y}. In addition, in this neighborhood,

10| <

[T—y s

Proof The proof of this theorem is similar to Proposition 6.2.3. We omit the
details. O

Forf € A, the multiplier M3, introduced above is well-defined. For b € H*(S?),
we consider the following multiplier M, ,:

M (@) =D biPe(F) () + > b1 Qe () 'x), p—s < x| < I+,

k=0 k=0

wherex € X, r~landr < 1.

We use M| and M, to denote the two sums in the expression of M b b Because b €
H*(S?), b is bounded near the origin and |b(z)| < |z|* when |z] > 1 We deduce that
for |z| > 1, |b(z)| < Iz]* < |z]*'. Hencefors; = [s]+1,b € H*'(S.). Write b (z) =
Z7'b(z). We see that |b1(z)| < |b(z)/z"!| < C implies by (z) € H*(S;), where

H>(S), 1) = {b : 8, + — C: bis holomorphic, and satisfies

b()] < Cyinany S¢,, 0 < v < M}

and
H¥(S5) = {bs S5 > €1 be = bipecc emeemo) € HE(SS 1) .

c c
where S, , and S, are sectors.
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For My, |by| = |b(k)| < k°', we take b1 (2) = z7%1b(z). It is easy to see that b is
also holomorphic in §¢. Then we have

My =) biPi(f) () = ) biick™ Pe(f) (),

where by = by (k) = b Because My is an eigenspace of the spherical Dirac oper-

1
ator ¢, we have
TePi(f) (rx) = kPr(f) (rx)

and

M, = Zbl,krglpk(f)(i’x) =Ty (Z bl,kPk(f)("X)> .

k=0 k=0

By a result of [8], we obtain another expression of Py (f).

1 ~
PeF)(0) = — / By ) EGIn)f ()do ()

— o [ X wrow. oo 0o,

el =k

where we have used the Cauchy—Kovalevska expansion

POGTOED) = ) Var)Wa(),

loe|=k

where V,(x) € My and Wy (y) € M_,_; (see [8, Chap. 2, (1.15)]). By the above
relation, we have

e Pr(F) (x) = —/ Y e V) ) Wo (IR ()0 ()

|or|=k

— o | X 0w omor oo o)

|or|=k

=—/ 2. ,,+k 5 Va1 + k= ) Wa IO ()do ()

|ar|=k
k

= G¥i—oa f Y Ve (T, W) 0 0)do ().

loe| =k

Because the Fourier expansion of the functions in A is rapidly decaying, via inte-
gration by parts, we have
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My =" b1 k" Pe(f)(rx)

la|=k

k=1

= k

S bi (m) / 3 V)T W) 0n(f (0o (3)
k=1

k=1

<n+k 2) Q. /ZV(X)W WnTHWdo ().

la|=k

Since |b1,k(n+,’§_2)"‘| < C, if we denote bl,k(,ﬁ],i—_z)‘” by b; x, we can obtain the
following singular integral expression of M:

M, = Zln - / SEGIOI ()do )

1 ~
o /2 (Z bl,kPk(ylrx)> E(y)n(y)(rfllf(y))da(y)
§ k=1

1 ~
o fz 5167 OEMRG) (T F 0o ).

Similarly, for M;, applying the Cauchy—Kovalevska expansion again ([8, Chap. II,
(1.16)]), we have

Z 1O ()

=§(k e ( ) o/ 3 Wl 0 VoY (o)

= g © +" T (” 1) — / gjkw LDV MO G)do ()

= g (kb e ('%) = f ‘;kw L Va0 0o ().
As above, we still denote 7=t (41)" by b_;_, and obtain the singular integral

expression of M, as
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) 1 N
Ma= Y by /E Bl EGInO) (TS ) () do ()
k=0

1 i - ,
= Q—/); <Z kaP—k—l(y—lr—lx)) E(y)n(y)(l";‘]lf)(y)do.(y)
" k=0

1 Y o
= Q—/Z¢2(y_1r_lx)E(y)n(y)(F;Ilf(y))do_(y).

Finally we rewrite the multiplier M, \(f)(x) as

1 ~ ~
My ()0 = lim — /E (@167 + a7 T EGINOM T 0o (),

where we have used the fact that for f € A, the series which defines M, (f) is
uniformly convergent as r — 1—.
For M, (f)(x), we have the following boundary value result.

Theorem 7.3.2 Lets > 0. If b € H*(S{), then for f € Aand x € %, we have

1 ~ ~
Mo () = lim - /X @167 + G207 T E@IRG (T ) (0)do ()

1 e et s
= lim — { /‘ sl 070 + 07 DIE@NG T (3)do (v)
y—x|>¢e,ye

e—0 2

+($1(8, %) + da(e, ) )] .

Here
Fi(ex) = / 5107 DEGNM o (y)
S(e,x,+)

and

Fale,x) = /S  BOTIEOROM ),

where S(¢g, x, X) is the part of the sphere |y — x| = € inside or outside ¥ depending
on the index of ¢; taking i = 1 ori = 2.

Proof The proof of this theorem is similar to the classical Plemelj formula of the
Cauchy integral. For simplicity, we only consider

1 ~
lim 1 = lim — /E 5167 OEMRG) (T H$)do ).

r—>1- r—1— Qn

The other integral can be dealt with similarly. For a fixed ¢ > 0, the above integral
can be divided into three parts:
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1 ~
= /; F1 0 EGIMO (L) (o ()

1 ~
= = $1 7 POEGnG) (T ) (0)do (7)
Qn yEX,|[y—x|>¢
1 ~
+ o o1 POEMNWITEN ) — (T 0)]do ()
2y Jyes.y-v<e
1 ~
+ o $107 IE@RE)do () () ()
n JyeZ,|y—x|<e
=L +5L+15h,

where the symbol I'sf (y) denotes the spherical Dirac operator I's acting on the
variable 1 of f, where y = |y|n.
Let r — 1—. The integral /; tends to

1 ~
= o167 VE@N@) T 3o ().

S2n yEX,[y—x|>¢

For I,, because f € A implies F‘;‘ f is a Lipschitz function, we have

lim lim I, = lim lim o1 IE()n(y)

e—>0r—1— r—1—¢e—0 yex, |y—x|<e
x[rEne) - TN ldow =o.

Finally we estimate /3. By Cauchy’s theorem, for any fixed ¢ > 0, we have

lim I; = lim ¢1 E@)n(y)do () (TLf) ()

r—1— r—1— yex, [y—x|<e

= 1 (e, 0)(TLf)(x).
This completes the proof of the theorem. ]

As a useful tool in the study of boundary value problems on the non-smooth
domains, the theory of Hardy spaces on Lipschitz curves and surfaces has attracted
attention of many mathematicians. In 1980s, Jerison and Kenig [9, 10] considered
the complex variable case. In [11], Mitrea introduced the theory of Clifford-valued
Hardy spaces on high-dimensional Lipschitz graphs.

Let A and A€ be the bounded and unbounded connected components of R} \ X,
respectively. For o > 0, define the non-tangential approach regions A, (x) and A, (x)
toapointx € X as

Ag(x) = {x €A, Iy —x| < (I +a)dist(y, z)}
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and
AS(r) = {y € AS, |y — x| < (1 + a)dist(y, z)}.

Let f be defined in A (A€). The interior non-tangential maximal function N, (f) is
defined as

NaF)@) = sup{ I ()] © ¥ € A € AL
For 0 < p < oo, Hardy spaces H”(A) and HP(A) are defined as

HP(A) = {f : f is left monogenic in A and N, (f) € LP(E)},

HP(AC) = {f -  is left monogenic in A° and N, (f) € L”(E)].

The theory of monogenic Hardy spaces in [11] indicates that for p > 1, the HP(A)-
norm of a function is equivalent to the L”-norm of its non-tangential maximal function
on the boundary. For the spaces HP(A¢), similar conclusions hold. Precisely, if
f € HP(A) for p > 1, we have

Cilf lzray < Wfllrsy < Clf Nl ay-

Iff e My andk # —1, =2, ..., —n + 1, because M; is the subspace consisting of
all k-homogeneous left monogenic functions, we have I'tf (§) = kf (§). For f € A,
we define I'(f |r) as the restriction of the monogenic extension of I't (f | SK'I) toI.
Then the definition of I's can be extended to I's : A — A.

In [3], Eelbode studied the boundary value of the Photogenic-Cauchy transform
Cy on the unit hyperbolic sphere. In Example 7.0.1, The occurrence of the factors
k%P (f) and k*>Qy (f ) implies that the boundary value Cylf1 1 of Cg is not a bounded
operator from L% (S"~!) to itself. If we restrict this operator to some smaller subspaces
of L*>(S"~1), we can obtain the corresponding boundedness.

Now we give the main result of this section.

Theorem 7.3.3 Let w € (arctan(N), 7/2). If b e H*(S.),s > 0, then with the
assumption b(0) = 0, the multipliers introduced in Definition 7.3.2 can be extended
to a bounded operator from WI%E"Y' () to L*(X), where s; = [s]. In addition,

”M(b(k))Hop < Cv

, arctan N < v < w.

|Z + 1|? L®(S¢)

Proof For f € WFZ;S‘(E) C L*(%), by Proposition 6.2.7, we have f =f* +f~,
where f* € H2(A) and f~ € H*(AC) such that

+
I~z < Cnllf llwes sy

By the linearity and Theorem 7.3.2, we have M, (f) = My+f* + M),-f ~, where
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Mief ) = lim [ Gorty WEGIG 0)do ). x € 3.
Hence, we only need to prove

IMpsf Fllze < CNITES* llgee-
We only prove the above inequality for f . For the sake of simplicity, we omit the
symbol “+”. The f ~ part can be similarly dealt.w
By Theorem 7.3.1, for b € H*(S;), we have

C
|1 _ y71x|n+s :

16" <

Hence by Holder’s inequality, we obtain

T3 Myf (x)]

d
< (/ e (y)> (f 60NN 0P "@))
- " -
12 g2 12
<c/ 1 do(y) / T f DI do(y)
S s, =Tyl s 11—y lxjmts yjn

Through change of variable, we have

1/2
1
riim gc/ -
T Myf ()] (2[(1_m2 e a(y))

12
1 1+s 2
L d ,
x (/Z v SO o(y))

where the integral in the last inequality satisfies

dby

/ 1 a(y)</ﬂ sin” 190
s [(1— VD2 + 64" S A=V 462
1
C————.
(1 — oy

Hence by the equivalent characterization given in Proposition 6.2.6, we have
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2
”be”HZ(A)

1
</ /|Fg+S’be(tx)|2(l—t)zs‘“do(x)%

(1 — >t / I f (Vi) )? gt
d d =
// (1= oy <z[(1—ﬁ>2+931"f o0) ) do()7

1 _lvfy
c rt 2 f —do 1 —Vndo(y)—
| [ireerdm < (1—J)2+9§]" (x)>( i ()%

1
<C /O /E ’Fs(Fg‘f)(«/?y)’ (1—ﬁ)do<y>7

< CIT f llgeay,

where in the forth inequality we used the fact that for # € (0, 1),

(1 _ \/;)2S1+175 — (1 _ %)1+S+25175 g (1 _ \/;)14*5

and i
(I -1
mdo (@) < C(1 = Vi ——=—
fz[(l—J)Zw ks 1—\f)*
In the last inequality, we used Proposition 6.2.6. This completes the proof of Theorem
7.3.3. O

For the classical convolution singular integral operator 7 on R”, one of the basic
facts is the endpoint estimate, that is, the weak-(1, 1) boundedness. If for all A > 0,

C
e X (TE@]> A< —Iflh

we call an operator T is weak-(1, 1) bounded on X. In other words, we say that
this operator is bounded from L' to the weak type space WL!, see [12-14] and the
reference therein. By this weak boundedness, we can use the interpolation theory
and the duality of operators to deduce the LP-boundedness of Ty, 1 < p < oo. In the
rest of this section, we study the endpoint estimate of the Fourier multipliers.

Theorem 7.3.4 Let w € (arg(N), 7). If b € H*(S;), s > 0 and b(0) = 0. Then the
multiplier M,):

Mo ()0 =D biPe(F)(x) + Y bt 1O () (x)

k=0 k=0

is bounded from Wllfl () to WL(X), where s; = [s].
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Proof For b € H*(S;) and z € S;, |b(z)| < C|z|°, s > 0. Hence it is natural to get
|b(z)/z°| < C, where C is a constant. On the other hand, b € H*(S) implies that b
is holomorphic in S¢. Then z~°b(z) is also holomorphic in S. Now for the Fourier
multiplier M), we have

Maof (¥) = Y biPe(f) () + Y b1 Qi) (x)
k=0 k=0
=141l

For simplicity, we only deal with the term /. As above, I can be represented as

1 ~
1= /Z FO DEGNG) (3o ().

If we write b(z) = z"'b (z) and by (z) € H*(S}), then the corresponding sequence is
{b1.r} whose the elements is by = k*' b, . Therefore we can rewrite [ as the following
form

I=" b1k Pe(f) ().

k=0
The kernel associated to M, , is denoted by ¢71 (y~'x)E(y) that satisfies
o0
L@ EQ) = > kbi (k)PP (v 0E().
k=1

By integration by parts, we get
1 ~
I = Q_/z Iy (@16~ E@RMS ()do (y)
1 ~
= o fz 016 DEGNOTN () 3o (y).

Similarly, if we take s = 0 in Theorem 7.3.1, (]31 (y’lx) satisfies

C

P10 < ———.
11—y~ lx|

Hence the multiplier M, , reduces to a H*-Fourier multiplier on starlike Lipschitz
graph and is weak-(1, 1) bounded. Then we have

{xe=: Mf@)|>21} =

—_—

x€ X My, (T8 > 2}

Irerl, -

<

> a
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This completes the proof of this theorem. |

At last, we consider the boundedness of the Fourier multipliers for s < 0. Let
—n < s < 0 and {b;} be a sequence which satisfies |b;| < k°. We define the Fourier
multiplier M, as follows.

My (1)) =D biPe(f)0) + D b1 Q) ().

k=1 k=1

Similar to the case s > 0, we can express the multiplier as

1 ~
Mun @ = o /E SO0 OEMRO) ()do ().

Here x € ¥ and

00 -1
T = (z . z) BP0,
k=1 —o0
where P® s the polynomial defined as

POG ) =y X Cl, &)

or
PGy = |y X TG (6 ).

To obtain the boundedness of the multiplier, we need to estimate the function 5 (x).

o0
By the method of Theorem 1.3.2, we can prove that the kernel ¢ (x) = Y. b P (x)

. k=—o00
satisfies )
Clxl®

m, where x € Hw

lp )] <

For the kernel $ (y~'x) defined above, we can use the method of Proposition 6.2.3 to
obtain 1

~ Cly™ x|’

—1

(™ x)| < “—)’TW
For any two points xi, x, on the starlike Lipschitz surface, we have x; X, e H,,
that is, there exist two constants Cy, C; such that C; < |x; 'xl | < C,. Hence for any
points x;, xy € X, the equality

-1 -1
[x1] = [x2x;, x1| = |x2]lx, x1]

implies that Cy|x;| < |x2] < Czlx1[. In other words, the norms of the two points on the
starlike Lipschitz surface are approximately a constant associated with X, denoted
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by Cx. Hence we can obtain the estimate

~ Cly~ x| 1
PO~ DEGNO| < —————
[T — y= x|t [yl
Clxl*
CEE S
Cs

S |y _x|n+s'

Because the Lipschitz surface is a homogeneous space, our Fourier multiplier
M, f (x) can be regarded as the fractional integral operator on X. By the classi-
cal theory of the fractional integral operator on homogeneous spaces, we can obtain
the L — L7 boundedness of the Fourier multiplier as follows.

Theorem 7.3.5 Let —n <5 <0, 1 <p <q < o0 and %} = ]l) + 5. If b € HY(SY),
the Fourier multipliers on starlike Lipschitz surface:

M f (6) =Y bePi(fH)@) + Db 10k (F) ()
k=1 k=1
with by = b(k) is bounded from [P (%) to L1(X).

Proof For a starlike Lipschitz surface X, if x;, x, € X, then x5 lxl e H,, i.e., there

exist two constants ¢y, ¢; depending on @ and X such that C; < |x; 'x1| < C,. For
any points xj, x; € X, the equality

-1 -1
[x1] = [x2x;, x1| = |x2]lx, x1]

indicates that Ci|x;| < |x2] < C;]x;|. In other words, the norm of any point on X is
about a constant Cy, which is related to . Then the kernel ¢ (y~'x)E(y) satisfies

B OEW] = 1o DIEW)]
C 1
< ———
|1 —y=lx|™ |y
Clyl*
Sy =
< L
ly — x|+

In addition, for any ball B(x, r) = {y eX, x—y|l < r}, we have

o (B(x, 1)) =/ do(y) < Cr',
B(x,r)
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that is, the surface measure of B(x, r) is dominated by the area of a sphere in R”".
Hence, we can use the classical method to prove the boundedness. Below we give
the details. At first, we define the auxiliary function 2 (x) by

o(B(x,7))

rl‘l

Qx) =

r>0

For the integral representation of M, we divide the integral into two parts.

M) (0] < (/ +f )(y>| — Loy =n+0
Bx.r)  JE\BG.r) x|

For I;, we have

1
he [ ol doo)
B(x.r) [y — x|**s

1
/ If )| ———do ().
B(x,27%)\B(x,27%=1r) ly — x|

k=0
Because |y — x| < 27%r fory € B(x, 27%r) \ B(x, 27%~'r), we can obtain

= 1
< 271{71 —hn—s B ’27/( - d
;( N BE ) s |, FOlde®)

3

<Y DT e BE 27 )M () ().

k=0

By the definition of 2 (x), we have

o (B(x, 27%r))

o(B(x,27%r) = P

< QE)Q7Fr)n.

Then by —s > 0, we get

L <rQWME)x) Y Q7)™ < Q@M (F)(x).

k=0

For I,, we have
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o0

Fol
L < d
? kX::O./l?(x,2k+lr)\B(x,2kr) |x — y[ts o0
<@ o B, 2 ) T (o (B(x, 2 )M /B iy, FONdO®)
k=0 X, r

< Y@ T Q) MM (F) (x)
k=0

9]
— rf.vfn)u/p (Z 2k(ns)2)1k(lk/p)> (SZ(x))lf)‘/”M;h/p(f)(x).

k=0

Because s —ni/p < O0for 1 < p < n)/s, then
IMy(F) ()| < rQEOM (F)(x) + " P (Q ) P M, (F) (x).

Letting

r_(Mup<f>(x>>”/”* 1
A\ M@ Q/n(x)’

we obtain

1+sp/nx

MO < (M 0)00) 7 () " (M ()00)
+ (M) " (M (f)(x)>_sp/m+] (ew) o
< (2w)"" (M 100) " (M)

Now we get

(14sp/ni)q

@@l < [ (p000) 0 (1) do ().
z

Let A = 1. Because o (B(x, r)) < cr", then Q7" 1(x) > C™/""! for —n < s < 0.
By the fact that M ,,f (x) < C||fl,, we see that
Q)™M (], = f My, (PO 1M (F) ()P do (x)
b

< Mupf 157 1M (O11
< CIFIETPIE NS
< CIIFIE.

This completes the proof of Theorem 7.4.1. (]
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7.4 The Equivalence of Hardy—Sobolev Spaces

In this section, we give an application of Fourier multipliers on the starlike Lipschitz
surface X. In the proof of Theorem 7.3.1, we used the Hardy decomposition of L2 (X):
forf € L*(X),f =f* +f",wheref* € H*(A)andf~ € H*(A).Iff ¢ WI%:(E),
St and f~ belong to the so-called Hardy—Sobolev spaces. For these spaces, there
exist two methods to given the definitions.

Method I. For f € L*(2),f =f* +f~,wheref* € H>* andf~ € H*>~. That
is f* belongs to the Hardy space, while f~ belongs to the conjugate Hardy space.
We define the Hardy—Sobolev space on X as

7—(_%_51 X)) = { f : there exists a function g € LZ(Z) such that
f=gteX(®)and Th(gh e (D), j=1,2, s]
and
‘HE:SI(Z) = [ f € L*(X) there exists a function g€ L*(%) such that
f =g €L*X)and rg(g—) el (%), j=1,2,. s}
Method II. At first for any f € WZ;‘Y, Féf € LZ(E),]‘ =1,2,...,s. We obtain

the decomposition Fé = (Fé;f)Jr + (F’éf)‘, where (r‘éf)+ € H>* and (Féf)‘ €
H?*~. The Hardy—Sobolev spaces are defined as follows.

7{3;"?2(2) = { f : there exists a function g € L?(X) such that
f=g"el’(D)and (Mg)* e [X(D), j=1,2, s}
and
7-(3"52(2) = { £ there exists a function g € L*(X) such that
f=g el and (Mg)” e [X(%), j=1,2,. s}
On the unit sphere, because we can exchange the order of the Riesz transform and
the Dirac operator, the above two Hardy—Sobolev spaces are the same one obviously.

On a general starlike Lipschitz surface, we will use the theory of Fourier multipliers
to show that the two kinds of Hardy—Sobolev spaces are equivalent on X.

Theorem 7.4.1 For the starlike Lipschitz surface %, let s be a positive integer, the
Hardy-Sobolev spaces H:',(£) and H3* () are equivalent.
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Proof Because A is dense in L?>(X), without loss of generality, we assume that
f € A. By the spherical harmonic expansion, we have

£=) P+ D 0c()(x).

k=1 k=1
Then letting f* = Y 2, Pe(f)(x) and f~ = Y ;2 Ok (f) (%), we get
Te(f*) =Te <Z Pk(f>(x)) :
k=1

Because P (f)(x) belongs to the k-homogeneous eigenspace My, we can deduce
that

Te(f M) = D kPe(f)(x) for f € A.

k=1

On the other hand,

1 ~
P = o /Z Py ' EGNG)f 0)do (y)

1
- Q, / Z Ve ) We 0n()f (do (v),
n Jx

la|=k

where we use the Cauchy—Kovalevska expansion

PCGTIER) = ) Va@)Wa (),

loe|=k

where V, (x) € My and W, (y) € M_3_,. Hence we can get

1 & k
Le(f () = o= ) /E D Ve K+ DWaIne 0)do ()
" k=1 )=k

1 & &
- Q, ; 1 fz Z Ve )T, Wo )n(0)f (0)do ().

loe|=k

Because f decays fast for f € A, we can use integration by parts to obtain that
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Te(F ) (x)

Z — / PO GTINEGNG)(T,f) ()do (y)

=k
= Z [P ().
" k=1

P~

Let by = k+1 We have T's (f T) (x) = M, ((Cgf) ™). Since |by| < C, it follows from
the theory of Fourier multipliers on ¥ that M) is bounded on L*(X), that is, there
exists a constant C; such that

I(Cef Dz < CllTef) Fllzs)-
Conversely, let b, = ’%1 Similarly, we can get

1 k+1
(T () = 5 32 = TP = Moy (TN ),

" k=1

and there exists a constant C, such that

I(TeNF iz < CHITe(F D (s

This proves Theorem 7.4.1. (]

7.5 Remarks

Remark 7.5.1 The definitions of Hj & K}, and Theorem 7.1.3 only concern the case
of the first power of the log function. In fact, if k is a positive integer, by the same
proof, we can extend (ii) of Theorem 7.1.3 to the kth power of the log function.

Remark 7.5.2 By the following method, we can obtain variations of Theorems 7.1.1—
7.1.3. Denote by exp(—i6-) the function z — exp(ifz). Define the spaces

H*(S,.4) = exp(i0)H’ (S, +), H""(S,) = exp(i6-)H*(S.,),

K (Coe) = {61 ¢ 0 exp(=if) € K (Cun) |

and
K5(S,) = {¢ | ¢ o exp(—if) € KS(SH,)}.

If we change the statements of the theorems by using these spaces with the parameter
0, then the singular point z = 1 of the functions ¢, and ¢ will be shifted to the point
z = exp(if) on the unit circle.
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Remark 7.5.3 For the case s = 0, the main results of Sect.7.1 are corollaries of the
Fourier theory of holomorphic functions on the sectors established in [15]. In [16],
the authors proved that if the Lipschitz constant of the curve is smaller than tan(w), as
the kernel, any element in K°(C,, +) and K°(S,,) induces a L?>-bounded convolution
singular integral operator on this starlike Lipschitz curve. In fact, these operators
can be represented as the H°°-functional calculus of the Dirac operator z(d/dz)
on the closed curve. By the conformal mapping, we can deduce a corresponding
singular integral operator on any simply-connected Lipschitz curve. The cases of
s # 0 correspond to the fractional integrations and differentials on these curves. All
those mentioned are closely related to boundary value problems associated with
Lipschitz domains. We refer to [17-19] for further information.

Remark 7.5.4 In[20], D. Khavinson proved the following result. Letf (z) = Y oo | by2",

n=1

where b, = g(n), g is a bounded holomorphic function in the sector Sy = [z :

|argz| < ¢}, 0 < ¢ < 7. Then f can be extended to a holomorphic function on

0

the heart-shaped region G4 = {z =re, 2m —cotg -logr > 6 > cot¢ - log r}.

Hence, in Sect.7.1, the result of the fractional integrals on the closed Lipschitz
curves can be deduced from the result of the unit circle.

Remark 7.5.5 If b € H°(S.), s > 0, there exists a holomorphic function b; such
that |b(z)] < C, and ¢ (x) = F§‘¢>1(x), where s; = [s] + 1. Here ¢, is the kernel
associated with b; in Theorem 7.2.1. However, in this way, we only obtain the
following estimate: |¢ (x)| < C/|1 — x|, which is not precise compared with the
result of Theorem 7.2.1.
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Chapter 8 ®)
Fourier Multipliers and Singular oo
Integrals on C"

In this chapter, we introduce a class of singular integral operators on the n-complex
unit sphere. This class of singular integral operators corresponds to bounded Fourier
multipliers. Similar to the results of Chaps.6 and 7, we also develop the fractional
Fourier multiplier theory on the unit complex sphere.

8.1 A Class of Singular Integral Operators
on the n-Complex Unit Sphere

In this section, we study a class of singular integral operators defined on n—complex
unit sphere. The Cauchy—Szeg6 kernel and the related theory of singular integrals
of several variables have been studied extensively, see [1—4]. The singular integrals
studied in this section can be represented as certain Fourier multiplier operators
with bounded symbols defined on S,,. This class of singular integrals constitute an
operator algebra, that is, the bounded holomorphic functional calculus of the radial
Dirac operator

A special example of these singular integrals is the Cauchy integral operator.
We will still use the following sector regions in the complex plane. For 0 < w <
/2, let

Sw={Z€(C|z;£O, and | arg z| <a)},
So() = {Z €C|z+#0, |Rez| <, and |arg(+z)| < a)}
Wo () = [Z €Clz#0, |[Rez| <7, and Im(z) > O} US, (),

© Springer Nature Singapore Pte Ltd. and Science Press 2019 275
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276 8 Fourier Multipliers and Singular Integrals on C"
H, = [z cClz=¢" we Ww(n)}.

The sets Sy, Sy (), W, (r) and H, are cone-shaped, bowknot-shaped region, W-
shaped region and heart-shaped region, respectively.
Let

$5(2) = Y _b(k)z". 8.1)
k=1

By Lemma 6.1.1, for b € H*(S,,), ¢ can be extended to H,, holomorphically, and

_ C,ul!
8, w1 — 2]

g z€H,,0<pu<py <w, 1=0,1,2,---,

(e52) #nco

where §(u, ©') = min {1/2, tan(u' — ,u)}. C,v is the constant in the definition of
be H®(S,).
In the sequel, we use z to denote any element in C”", that is, z = (zy, ..., zZx),
ze€C,i=1,2,...,n,n>2.WriteZ = (Z1, -+, Zn). Z can be seen as arow vector.
n 1/2
Denote by B the open ball {z € C" : |z| < 1}, where |z| = (Z |z,~|2) ,and dB is
i=1

the boundary, i.e.,
aBz{ze(C": Izlzl}.

The open ball centered at z with radius r is denoted by B(z, ). Any element on the
unit sphere is usually denoted by & or ¢. Below the constant w,,_; occurring in the
Cauchy—Szego kernel is the surface area of 9B = S%"~! and equals to 277" /T (n). For
n
z,w € C", we use the notation zw’ = Y zxwy. The object of study in this section is
k=1

the radial Dirac operator
n

We shall make some modifications on the basis of holomorphic function spaces in
B and the corresponding function spaces on d B. We apply the form given in [1]. Let
k be a non-negative integer. We consider the column vector z*! with the components

/ k!
ﬁZIF"'Zﬁ", ki +ky+-- -k, =k
k!

The dimension of z¥! is

1
Ny = Hn(n+1)-.-(n+k—1)=c,’;+k_1.
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Set
f M. Mz = Hf
B

and

/ eWgMlge (£) = HY,
B

where dz is the Lebesgue volume element in R*" = C”, and do (£) is the Lebesgue
area element of the unit sphere S>"~! = 3 B. It is easy to prove that Hf and HX is the
positive definite Hermitian matrix of order ;. Hence there exists a matrix I" such
that

T/ -HF-T = A,
— 8.2
{rquF=L 8-2)
where A = [;‘3{‘, cee ,’j] is the diagonal matrix and [/ is the identity matrix.
We set
g =2 T,
fig =W T.

and use {pX(z)} to denote the components of the vector zj). By (8.2), we have

/ PP @z = 8y - S - B (8.3)
B

and

/a ; PEE Pl (E)do (E) = 8y - Su. (8.4)

The following theorem is well-known.

Theorem 8.1.1 ([1]) The function system
BHVPpE k=0,1,2,..., v=1,2,..., Ny,

is a complete orthogonal system of the holomorphic function space in B. In the space
of continuous functions on 0 B, the function system { p"j (&)} is orthogonal, but is not
complete.

In [1], applying the function system {p*} and relation

oo Ni

H(z, &) =) Y pi()phE), z€ B, £ € 3B,

k=0 v=1

L. Hua gave the explicit formula of the Cauchy—Szegd kernel on 9 B:
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_ 1 1
H(z, §) = ———F—. (8.5)
@On (1 —z8)"
In the following, we give a technical result.

Theorem 8.1.2 Letb € H*(S,) and

oo Nk
Hy(z, §) =) b)Y  pix)pk(€), z€ B, & € 0B. (8.6)

k=1 v=1

Then for any z € B and & € 9B such that z? € H,
e\ 1 n (n—1) _

Hy(z, §) = —————("$p(r)) - (8.7

(n — Dlwyy—y

are all holomorphic, where ¢, is the function defined in (8.1). In addition, for
O<pu<p <w, [=0,1,2,...,

C,ul!
8! (p, |1 — Z&'|H

|D!Hy(z, &)| < ,zE € Hy, (8.8)

where 8(u, (') = {1/2, tan(u' — ,u)}; C, is the constant in the definition of
H>™(S,).

Proof In (8.5), letting z = r¢ and |{| = 1, we obtain

H(rg, &) =

—. 8.9
wxy—1 (I —rg&Hn 8.9

Taking H (r¢, &) as a function of r, we know that in the Taylor expansion of this
function, the term with respect to r¥ is
rk (8.10)

1 /0 \k 1 1
E(a_r) (a)zn_l (a1-— rg?)n) r=0

_ 1 n(n+l)-~-(n+k—1)(r§§)k.

Wrn—1 k!

Let r¢ = z. We get the projection from H(z, £) to the k-homogeneous function
space of variable z is

I nn+1)---(n+k—1)
2n—1 k!

Ni
> phph®) = &)~
v=1 @
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By the definition of ¢, a direct computation gives the formula of H,(z, £). The
corresponding estimate can be deduced from Lemma 6.1.1. O

Remark 8.1.1 1In the former chapters, the size of w is very important and is related
to the Lipschitz constant of Lipschitz curves or Lipschitz surfaces, see also [5-16].
Now, the Lipschitz constant of the unit sphere is 0, and @ can be chosen as any
number in the interval (0, 7r/2]. In this section, we always assume that w is any
number in (0, r /2] but should be determined via discussion. We also take 4 = w/2
and i’ = 3w’ /4 large enough to adapt to our theory.

For z, w € B U 9B, denote by d(z, w) the anisotropic distance between z and w
defined as .
d(z, w) = |1 —zw'|'/2.

It is easy to prove d is a distance on B U dB. On 9B, denote by S(¢, €) the ball
centered at ¢ with radius & which is defined via d. The complementary set of S(¢, ¢)
in 0 B is denoted by S°(¢, ¢€).

Let f € L?(dB), 1 < p < oo. Then the Cauchy integral of f

_ 1 £
CH@ = — /d i

is well defined and is holomorphic in B.
It is fairly well known that the operator

P(HE@) = Tim C(f)rE)

is the projection from L”(dB) to the Hardy space H”(dB) and is bounded from
L?(0B)to H?(0B),1 < p < oco.Moreover, P (f) has a singular integral expression
(3, 4]

i / f&)
im L
@1 820 Jge(r, ) (1 — CE)"

1
P(f)() = do (&) + Ef(g“) a.e.l € dB.

Let

o = {f : f is a holomorphic function in B(0, 1 + &) for some § > 0].

It is easy to verify that o is dense in LP(dB), 1 < p < oco.If f € <7, then

oo Ny

f@ =YY cuwri,

k=0 v=0

where ¢y, is the Fourier coefficient of f:
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o = / PEE) £ (E)do (&),
OB

Also, for any positive integer /, the series

o0 Nk

DK e ph)
k=0 0

uniformly absolutely converges in any ball contained B(0, 1 + §) on which f is
defined.

Let % be the unitary group consisting of all unitary operators in the sense of
complex inner product (z, w) = zw’ on Hilbert spaces in C". These operators are
linear operators U which keep the inner product invariant:

(Uz, Uw) = {z, w).

Obviously, % is a compact subset in O (2n). It is easy to prove that <7 is invariant
under the operation of U € % . If f € o/, then f is determined by its value on 9 B.
Below we shall regard f |55 as f € 7. For a given function b € H*(S,), we define
an operator M, : o/ — <f as

oo Ny
My(f)(&) =Y b)Y cupt(c), ¢ € 9B,

k=1 v=0

where ¢y, is the Fourier coefficient of the test function f € 7.
The principal value of the Cauchy integral defined via the surface distance

d(n, ¢) =1 —n¢'|'?

can be extended as in the following Theorem 8.1.3:

Theorem 8.1.3 The operator M), can be expressed as the form of the singular inte-
gral. Precisely, for € o7,

MH© =tim [ [ e Bf@dos 811

Se(t, ©)

+ £() Hy (&, E)do (@) ],

S, &)

where

/ Hy(¢. B)do (&)
S, e)

are bounded functions for { € 9B and e.



8.1 A Class of Singular Integral Operators on the n-Complex Unit Sphere 281

Proof Let f € & and p € (0, 1). On the one hand,

00 Ny
My(f)(pg) =D bk) Y cxwpl(p?),
k=1 v=I

where ¢, is the Fourier coefficient of f. Because {b(k)}72, € [*° and the Fourier
expansion of f € &7 is convergent, we obtain

pEIEOM”(f)(pO = M, (f)(0). (8.12)

On the other hand, applying the formula of the Fourier coefficients and the definition
of Hy(z, &) given in (8.5), we have

My(f)(p0) = fa Hypg. D@0 6)

For any ¢ > 0, we get

My(f)(pt) = f Hy(p¢. B f(&)do ()
Sz, &)

+ / Hy(o¢, BY(F (&) — F(£))do (&)
S, &)

+/(0) Hy(p¢, €)do(§)
8. &)

=Ii(p, &) + L(p, &) + f(O):(p, &).

For p — 1 — 0, we have

Li(p, &) — Hy(¢, §) f(E)do (§).

S, ©)

Now we consider I;(p, €). Because the metric d, the Euclidean metric | - | and the
function class o7 are all %7 —invariant, without loss of generality, we can assume that
¢ =(1,0,...,0). For the variable £ € d B, we adopt the parameter system

|
Er=re & =vy ... 8 =,

Write v = (v, ..., v,). The integral region S(¢, €) is defined by the following

condition:

1+r2—¢*
2r ’

2

w =1-—r2 cos > (8.13)

2_ .4
Now, because 1+r2_r—r <cosf < 1,wehave (1 —r)> < e* Then1 —r < €2, or

1 — &% < r. This implies that
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W =1-r'<1—(1-¢eh)?=2e"—¢"

Write

1472 —¢*
a = a(r, &) = arccos (—)
2r

Because (1 —r)?> < ¢*and 1 — y = O(arccos?(y)), we obtain a = O (g?).
It is not difficult to verify that

lE—&P =11 —rP+ (vl + -+ vl (8.14)
=(14r>=2rcosd) + (1 —r?)
=2 —2rcosé
and
d*(c, &) =1 —CE > =14r* —2rcosh (8.15)

=2 —=2rcos) —(1—r?)
=P —1+rA—r).

Now, it follows from (8.14) that 1 — > < d?(¢, &). This fact together with (8.15)
implies that
d*¢, E)+ (U +nd* ¢, &) > |t — €%

Because d? (¢, &) < 2, the last inequality indicates that
¢ — &l <2d(¢, &). (8.16)

Noticing that for f € o7,

If ()= fEI<Clg —§]

Hence

If (&) = fE) < Cd, §).

For any p € (0, 1), because (8.13), we have

I2(p, &)l </ |Hy(p&, OIFE) = fE)do(©)

S, &)

1
<C —_—d
/5@, L

“ 1
<C —————dfdv.
/vv’<222—84 /—a Il - rez@|n—1/2 '
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Now we estimate the inner integral. For n = 2, Holder’s inequality gives

1 “ 1 1 “ 1 3/4
()
2a /,a |1 — reif|2-1/2 2a /a |1 — reif|2

< (1 /n ! d0>3/4
S \2a ), 11 —re?)?
1\3/4 1
<(5) —=r
2a (1 —r2)3/4

In this case, when ¢ — 0,

1
(o, &)] < c/ a2 gy
W 22—t (1r- }"2)3/4

1
< Cel? / —dv
w262 —g* (v)3/4

/«/28284 1

< Ce'? —dt

o 32

<Ce— 0.
For n > 2, because r approaches 1, we have

“ 1 C T 1
. do < —d6
/w |1 — reif|n—(1/2) (1 — r2)n=5/2 [ﬂ 11— reif2

C
< ————.
(1 _ r2)n—3/2

Hence as ¢ — 0,

23 dt < Ce — 0.

[L(p, &) <C 03

Now we prove that if p — 1 — 0, then I5(p, €) has a uniform bound for ¢ near 0.
Similar to the above integral, we have

Lip, &) = f Hy(p¢, €)do (&)
S, €

a
= / B @ g™ | dodv
wL2e2—e* J—a t=pre'’

1 prei® -1 £))@=D
_ T/ / (1" (1)) didv.
U Jyw2e2—¢* J pre—ia t

Using integration by parts, the inner product for the variable ¢ reduces to
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ia

n—1 i
(t"71¢b(t))(n717k) prei® Pre gy (1)
[}:w—lﬂ 7 ] '+m‘1”£ ;4

=1 pre=t¢ re—ia

n—1 ia

_ [huﬂmen+Lv,w.

re—!
k=1 ?

We first estimate the integral of J;,. We have

i 1
Je(pre®dv < C/ N N
~/vv’<28234 W22t 1 — prei’“|”*k

It can be directly verified that

|1 _pre:tia| > |1 _reiia =82.

So the above integral is dominated by

1 1 262 —g4
—_— dv < —/ "3 dt
c2n—2k /VV,<2£2£4 g2k |,

< Ce?,
where the terms are bounded when k =1, tends to zero when k > 2. When
p — 1 — 0, the existence of the limit can be deduced from the Lebesgue dominated
convergence theorem.

Now,

re—ia

<n_1>z/’m ¢,,(,)dt=(n_1)”/a wo)| a0,
P t —a t=pre?

By Cauchy’s theorem and the estimate of ¢, we can prove that for any p — 1 — 0,
the above is a bounded function. This implies that

lim L(pr, aydv =0.

£=0 J 77062 gt

At last we obtain lirlnol3 (p, ¢) exists and is bounded for small & > 0. This
p—1-

proves Theorem 8.1.3. O

Remark 8.1.2 A corollary of (8.14) is

d, & <|¢—g"?,

which is not used in the proof.
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Theorem 8.1.4 The operator My, can be extended a bounded operator from L? (0 B)

to LP(0B), 1 < p < oo, and from L'(3B) to weak L' (3 B).

Proof The boundedness of M}, = M, P from L*(d B) to H*(3 B) is a direct corollary
of the orthogonality of the function system {p*(&)}. We only prove the operator is
bounded from L'(3B) to weak —L'(3B), that is, the operator is weak (1,1) type.
For 1 < p < 2, the L?(d B)—boundedness can be deduced from Marcinkiewicz’s
interpolation. For2 < p < oo, the L” —boundedness can be obtained by the property

of the kernel

Hy(¢, &) = Hy(&, ©)

and the bilinear pair

(f, &) = /B ] F(©)g@)do (),

in the standard duality method.

The weak (1, 1) type boundedness of M, is based on a Homander type inequality.
The proof given below is different from that of the Cauchy integral in [3]. We will

use the non-tangential approach regions

D,(¢) = {Z eC": |1-2zC| < %(1 — Izlz)}, L €0B, a>1.

We shall prove

Lemma 8.1.1 Assume that &, ¢, n € 0B, d(&, ¢) <6, d(&, n) > 26, and z €

Dy (n). Then B _ .
|Hy(z, &) — Hy(z, O)| < 8Cq|1 —&n/| ™"/,

Proof By the estimate

Co

= 1 _r|n+1’

[CRENE

and the mean value theorem, for some ¢ € (0, 1), the real part

[Re(r" ' (r) "V |,z —Re(" ()" |, _ir
< Re" ' (PN |,y | - 12E" — 22|
< Colz&" — 28|

~ .
|1 — zw/|n+1’

where w, = t& + (1 — )¢’ € B.
The imaginary part satisfies a similar inequality.
Denote by &, the projection onto 9 B of w,. We can easily prove

(8.17)



286 8 Fourier Multipliers and Singular Integrals on C"

(i) asd — 0,1 —w|=1—1z|=A@F) - 0;
(i) & € S(§,8) NS¢, 3).
It follows from (i) that §, = {— A(Z) ——w;. Because D, () is an open set, for small § > 0,
ie., 0 <8 < 8y, wehave z, = (1 — A(t))z € Dy(n). We write
11— 2w/i| = |1 = z&,]. (8.18)

On the other hand, by (4) on page 92 of [3], we have

28" — 28’ = 1—A( )IZzS ¢’ (8.19)

1A( ) (|Zt§ Zl?z| + |ZIF - Zt?z|)

< sal 2|1 — 2 F (12
—l—A(t) ' 7€',

< 8Cu|1 — &',
By (3) on page 92 of [3], we have
11— z,&, 7" < 16a|l — &7/ (8.20)

The relations (8.18)—(8.20) i_mply that for § < &y, the last part of the inequality (8.17)
is dominated by §Cq|1 — £n/| 7"~ 1/2,
For 6 > 4y, on the right hand side of the desired inequality,

811 — &2
has a positive lower bound which depends on §y. Hence itis easy to choose C = C,, 5,
such that the inequality holds. This proves Lemma 8.1.1. (]

The weak (1, 1) type boundedness is a special case of Theorem 8.1.5.

Theorem 8.1.5 For any o > 1, there exists a constant C, < 00 such that for any
fed andt > 0,

o (MM () > 1} < Cat ™ flurom,

where

M My(£)E) = sup{IMp(N@] : 2 € D)}

is defined as the non-tangential maximal function of My (f) in the region D, (¢).

The proof of Theorem 8.1.5 is based on Lemma 8.1.1 and a covering lemma
[3]. To adapt to this case, we can make some modifications on the proof for the
corresponding result of the Cauchy integral operator in [3].
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It should be pointed out that the class of bounded operators M, generates an
operator algebra. In fact, this operator class is equivalent to the Cauchy—Dunford
bounded holomorphic functional calculus of D P, where D is the radial Dirac operator
and P is the projection operator from L? to H?.

The operator M;, has the following properties, and hence the operator class
{My, b € H*(S,)} is called the bounded holomorphic functional calculus.

Let b, by, by € H*®(Sy,), and oy, a0 € C, 1 < p < 00,0 < < w. Then

I MpllLr@By—>rr@B) < Cp, wlbllL=cs,)s
My, = My, 0o My, ,

Moy, by 1oz, = 01 My, + a2 M,,.
The first property follows from Theorem 8.1.4. The second and the third properties
can be obtained by the Taylor series expansion of test functions.
Denote by
R(», DP)= (I — DP)™!

the resolvent operator of DP at A € C. For A ¢ [0, 00), we prove

R(L, DP)=M_. .

=)

In fact, by the relation

00 Ny
DP(f)@) =) kY cups@), fed,
k=1 v=1

where ¢y, are the Fourier coefficients of f, the Fourier multiplier (A — k) is associated
with the operator AT — D P. Hence the Fourier multiplier (A — k)~! is associated with
R(A, DP). The properties of the functional calculus in relation to the boundedness
indicate that for 1 < p < oo,

C
IR(x, DP)|lLrapy—rroB) < —

L AES,.
x| :

By this estimate, for a function b € H*(S,,) with good decay properties at both the
origin and the infinity, the Cauchy—Dunford integral

b(DP)f = ﬁ IIb(A)R(k, DP)dxrf

is well defined and is a bounded operator, where I I denotes the path containing two
rays in
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Sy = [s exp(if) : s is from oo to 0} U {s exp(—if) : sisfrom 0 to oo}, 0<6 <w.

Such functions b generate a dense subclass of H>(S,,) in the sense of the covering
lemma of [17]. By this lemma, we can generalize the definition given by the Cauchy—
Dunford integral and define a functional calculus for b € H*(S,,).

Now we prove b(DP) = M}. Assume that b has good decay properties at both
the origin and at the infinity, and f € 7. In the following deductions, the order of
the integral and the summation can be exchanged. Then we have

b(DP)(f)(%)

b(A)R(A DP)d)\f(¢)
2mi

b(2) Z@ k™! chvpv(odx

27Tl 11

00 Ny

1 ! K
Z(zm. | vose—i dx)gckupu(o

k=1

o Np
=> b)Y cph@)
k=1 v=1

= My(1)(©Q).

It follows from the estimate of the norm of the resolvent operator R(A, DP)
that DP is a type w operator (see [17]). For the bilinear pair and the dual pair
(L*(3B), L*(3B)) used in the proof of Theorem 8.1.4, the operator D P equals to
the dual operator on L?(3B), that is,

(DP(f), g>= (f, DP(g)>, fged,

which can be deduced from the Parseval identity

oo Ny

3 ewd = / FORDo ().

k=0 v=1

The Parseval identity follows from the orthogonality of {pX}, where ¢, and ¢}, are
the Fourier coefficients of f and g, respectively.

Under the same bilinear pair, a counterpart result holds for the Banach space dual
pair (L?(dB), L?(dB)), 1 < p <oo, 1/p+1/p' =1.1In [17, 18], the authors
studied the properties on Hilbert spaces and Banach spaces for the generalized type
w operator. It can be verified, without difficulty, that the results of [17, 18] hold for
the operator D P.
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8.2 Fractional Multipliers on the Unit Complex Sphere

The contents of this section is an extension of the results in Sect. 8.1. We state some
new developments of the study on unbounded Fourier multipliers on the unit complex
ball, see Li—Qian—Lv [19]. Let

Swzize(C|z7éO and |argz|<a)},
S, () = {z €eC|z#0,|Re(z)| <7 and |arg(£z)| < a)},
Wo(m) = {2 €C 1z #0. Re@| <7 and Im(2) > 0} Su (o),

H, = {z eClz=¢€%we Ww(n)}.

We also need the following function space:

Definition 8.2.1 Let —1 < s < oco. H*(S,,) is defined as the set of all functions in
S,, which satisfy the following conditions:

(1) for |z] < 1, b is bounded;
2) b <Culzl',z€ 8,0 <pu <o

Remark 8.2.1 The spaces H*(S,,) are extensions of H*(S,,) introduced by A. McIn-
tosh et al. For further information on H*°(S,), see [10, 17, 20, 21] and the reference
therein.

Letting
oo
wp(2) = Zb(k)zk.
k=1

we have the following result.
Lemma 8.2.1 Let b € H*(S,), —1 < s < 00. Then ¢, can be extended holomor-
phically to H,. In addition, for0 < u < ' <wandl =0,1,2, ...,

Cyl!

81, ) |1 — 2 & € e

‘(Z%y%@‘ <

where 8(i, ') = min{1/2, tan(u, '} and C,y is the constant in Definition 8.2.1.

Proof Let
Vo ={zeCiim@ > o} s, -0,

szVwﬂ[ze(C: —ngRezgn}

and py is the ray r exp(i6), 0 < r < oo, where 0 is chosen such that py C S,,. Define
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1 .
Up(2) = 5= exp(i§z2)b(§)d§, z € V,,
27 Jpe)

where as £ — 00, exp(iz€) is decreasing exponentially along py. Then we obtain

' 1 )
||Z|1_H ‘I’b(Z)| = ‘_/ exp(i&z) 12| b(§)dz (8.21)

27 Jpo)
CN' > : s N

S 5 exp(—r|z|sin(0 + arg z))(r|z])*d(r|z|)
2 0

< Cy.

Hence we get |, (z)| < 1/]z|'**. Define
Yi(z) =27 Z W, (z 4+ 2nm), z€ U 2nm + W,).

Itis easy to see that v, is holomorphic, 27 -periodic and satisfies [, (z)| < C/|z|'**.
Let

1
op(2) = U (E) .

i

For 7 € exp(iS,,), we write z = ', where u € S,,. Then sin(|u|/2) < c|u|/2. This
implies that 2 — 2 cos |u| < c|u|? and |1 — ¢!/| < c|u|. Therefore, (8.21) yields

C,, C,,
op()] < <
lTogzl™ ~ [log [z[|™*
Cy

T
Take the ball
B ) = &1z =& < 5(u, w)I1 - z1}.
By Cauchy’s formula, we have

l! @)
)

¢, (2) = z— ———dn.
b 2mi 9B (M — z)H

For any n € dB(z,r), we have |n — z| > (1 — &§(u, i'))|1 — z|. Then we obtain
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o] < e
81(# M)|1—Z|l dB(zr)ll_rlIl-H

Bl(u,u)ll—zl””s

Theorem 8.2.1 Letb € H*(S,) and
(o) Ny

Hy(z.E) =) b)Y pt)pk). z€B,, & € 0B,
k=1 v=1

Then for z € B,, & € 8B, such that z&' € H,,,

e B = (" )
P = Dlwgy ’ e

is holomorphic, where ¢y, is the function defined in Lemma 8.2.1. In addition, for
O<pu<p <wandl =0,1,2,...,

Cc,l
8 (. ) |1 -

|DLH,y(z,8)| &' € Hy,

|n+l+s
where § (i, ') = min{1/2, tan(n’ — w)} and C, is the constant in the definition of

the function space H*(S,,).
Proof We know that

op(2) =Y bk)Z,

rlepr) =) borm

Then we have

")) "V = Zb(k)(n Fhk=Dn+k—=2)... (k+ Dt

1
(n —1)! (n 1)'

> (n+k D!
Zb( ot — k!

n+k—1)n+k—2)n+ n

k
0 b(k)r".

P”ﬂg 0

~
Il
-

Therefore,
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_ Zb(k)(n+k_ Dn+k—2)(n+ DHn

(") g

(z&)*

(n—1)! —F =

0 Ny
= w1 Y b)Y i)k E)

k=1 v=I
= W1 Hb(za é)

By [12, Theorem 3], we can get the following result.

Theorem 8.2.2 Let s be a negative integer. If b € H* (S, +),

oo Ny
Hy(z,§) =Y b)Y pl@)p,(§), z€B, £ € 0B,,

k=1 v=1
then _
Cul![IIn |1 — z&'|| + 1]

! 8| <
|DZHb(Za §)| ~ 8[([1/, ,U»/)|1 _ Z§/|n+l+s .

Proof The proof is similar to that of Theorem 8.2.1. We omit the details. (I

Given b € H*(S,,). We define the Fourier multiplier operator M, : A — A as

o] Ny
My(f)(E) =D b)Y cupl(§), & € OBy,

k=1 v=0

where {cy,} is the Fourier coefficient of the test function f € A.
For the above operator M}, there holds a Plemelj type formula.

Theorem 8.2.3 Letb € H*(S,),s > 0. Take by (z) = 77 %'b(z), where s; = [s] + 1.
The operator My, has a singular integral expression. Precisely, for f € A,

M@ =tim[ [ H & DDy fndon + 02 G [ Hy G o],

Se(§.e) Se(§.8)
where fS(g,a) Hy, (§,m)do (n) is a bounded function of § € 0B,, and ¢.

Proof Let

o) Ny
My (f)(p&) =Y b(k) Y cinpi(p§), & € 0By,

k=1 v=1

where

o = / PR £ (o ().
OB
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We can see that

1 _ 1 .o
DZ 11'12 l | ZZk (Zl Z2 Z, )

Lk lk 1 _lLi 1,
0 § :Zklkzlzz “T—1%k T4l

11'12
,l1'lz T '<Zlk)Z1Z2 Z
=171,

which yields D, p* = kp%. Then we have

M, (f)(p€) = Zb(k)Z / PE(pE) pE () f (Mdo ()

M2 T[Me T

b)Y Z | e b o
1

b(k)— Z f P (0&) D3 pE(n) f (mdo ().

)

By integration by parts,

o] 1 Ny
My (f)(p§) = b(k)f Pf(PE)P’S(n)(Df,‘ Hmdo(n)
ke = Jyp

[e ]

b1<k>Z / P& PE(D}) £)(n)do (n).

k=

For any ¢ > 0, we have

M (f)(p§) = /SC(S )Hbl(PE,ﬁ)Df,‘f(n)dU(n)

+ f Hy, (0§, )(~Dj' f(£) + D}y f(m)do (n)
S(.¢)

+ D;' f(&) Hp, (p§, i)do (1)
S(&.e)

=:Ii(p, &) + L(p, &) + Di' f(E) I3(p, &),

where



294 8 Fourier Multipliers and Singular Integrals on C”"
hp.e) = / Hy, (€, DS f(n)dor (),
Se(&.e)
hL(p,e) = / Hy, (&, 0)(=Dyg' f(§) + Dy f(n)do (),
S(.e)
I3(p, &) = f Hy, (p§, 7)do ().
Sé.e)

For p — 1 — 0, we have
lim /,(p,e) = lim Hy, (p&, m) Dy f(n)do (17)
p—1-0 p—>1-0 Se(&,¢)

= / Hy, (&, 1) Dy f(mdo ().
Se(§.¢)
Now we consider I;(p, €). Let§ = (1,0, ..., 0). For n € 0B,,, write

_ i0 _ _ _
N =rev,m=vy,n3=V3, ..., 0 =V,
v =1[v2,V3,..., V]

For such € dB,,, vi' = 1 — r2. Without loss of generality, assume that £ = 1. We
get
|1 - $ﬁ/|1/2 = |1 — re"9|l/2 =[(1 —rcos8)* + (rsin6)*]"/* < e.

This implies

1+4r%—¢*
cosf > —
r

The above estimate indicates

1+r2—e4}

SE,e) = {r} |vi' =1—r2, cosb >
2r

Because

we obtain 1 — r < &% and
W =1-r’<1—(1-¢>)?=2¢*—¢&*
Set

1+r2—¢*
a=a(r,e) =arccos| — | .
2r
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Because (1 —r)> < &* and 1 — y = O(arccos’ y), we get a = O(&?). It is easy to
see

n
€ =P =11 —reP+ ) Il
k=2

=(14r>=2rcosd) + (1 —r?)
=2 —2rcosf

and

d*(,n) =14 r*—2rcosh
=2 —=2rcost) —(1—r?)
=E—n?—A+r1-r),

that is, d>(€, n) < |€ — n|. Since

dz(é, n) =1 +r2=2rcos0]'* > 1—r,
we have 1 — r < d?(&, n), and thus

& —nl*> <d*E.m) + (1 +nd*E n).
The fact that 4 (£, n) < 2 implies
€ —nl® <2d°(, ) +2d7 (€, ) = 4d° (&, ),

that is, |€ — n| < 2d(&, n). Since f € A, we have

[fG&) — fmI < ClE —nl < Cd(E, n).

Forp € (0, 1)

o) <c [ s r© - rmlaown
S(€.e)

dé&,n
C ——d
/S(g,s) [1—E&n'|" o ()

“ 1
<C ———dfdv.
/\:v’<252—£4 /—a |1 - ret@ln—l/Z v

Forn =2,
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1 ¢ 1 40 < ( 1 /“ 1 d9)3/4
5, “2m12t S\ 5 2
2a ) 1 —ret 2a Jq 1 —ret?
1 (7 1 34
<G [ %)
G | — peit

< ( 1 )3/4 1
S 24/ (1 =234

Then we obtain

1
|L(p, &)l < f a'ltf————dv
w262 —g* (1 — r2)3/4

1
S 51/2[ —apdv
v <oe2—et (VI')3/4

/22—t ¢
= ¢!/ —dt
) 32

<e—0.

For n > 2, we have

a 1 46 < C a |1 _r2|n71/272 i N
/u m X /a |1 _ r€i9|n_l/2 ‘1 _ r2|n—l/2—2

C ! /” ! de
11— r2|n71/271 - [1— re"e|2
1
’1 _ r2|n—l/2—1 :

Then we obtain

V262 —g4
IL(p, &)l < /

1
t2n_3t2n_—3dt S/ vV 282 — 0.

Now we prove thatif p — 1 — 0, I3(p, €) has a uniformly bounded limit for ¢ near
0. Integrating as above, we can deduce that

I3(p.e) = _/ Hy, (0§, in)do (1)
S(&,e)

a
= / / ("o )" ddv.
V262 —s* J—a t=pre'?
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Let s = pre'?. Then ds = isdf. We can obtain
pre'? (n—1)
Lp, &) = —i/ / (s" ', () dsdv.
v’ L2e2—e* Jpre-ia

Using integration by parts, we can see that the inner integral for the variable ¢ reduces
to

de

f (tn—l(pbl (l))(n_l)

—a

n—1 _ (n—k—1)
("', (1))
L;(k — 1! T

n—1
D LI, + LG, a).
k=1

t=prei?

pre'¢

pre'? ¢
+(n— 1)!f oy,
P

re—ia t

pre—[u

We first estimate J; as

/ Ji (preiia) dv
v <262 —g

+ia\k
< c/ - mlere) L
Vi <262—gt (preFie)” |1 — pre*ia

1
<C f v
Vi <262 — gt |1 _ pre:tza|

Since |1 — ,orei"“|2 =14 p%r? — 2pr cosa, we have

= p?r> —2prcosa — (r* — 2r cosa)

= r2(,02 — 1)+ 2rcosa(l — p).

\1 — /orei"“|2 — |1 — rei"”|2

It follows from the relation cosa = (1 + > — &*)/2r that we have

|1 — ,orei"”|2 — |1 — rej“"’|2 =r2p =D+ UA+r’—eHd - p)
=1 =pl+r2—e" =1+ p)r’]
=1 —p)(1—pr*—e* >0.

Therefore,
’1 - preii“‘ > ’1 - reii“| =g’

For any fixed k, as ¢ — 0, we obtain
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. 1
/ Jk (,oreim) dv < Cm dv
V' <262 —gt & v 262 —gt

|
<c /

2n—3
= g2n—2k t dr

0

82"_2

— <
S C82n72k S L

On the other hand, as p — 0,

preia t a
(n— 1)!/ (pb‘—()dt =i(n— 1)!/ @b, (t)\,:p,em do
p.

re~ia —a

<C7

which implies

/ L(pr, a)dv.
v’ <262 —gt

8.3 Fourier Multipliers and Sobolev Spaces on Unit
Complex Sphere

We define Sobolev spaces on the n-complex unit sphere 0B, through defining as
follows. We define the fractional integrals 7* on dB,,. Let

OONk

f@=Y" cupi.

k=0 v=0
For —oco < s < 00, the operator Z° is defined as

o0 Nk

If@) =) Keuwpi@).

k=0 v=0

For s € Z,, we see that the operator 7° reduces to the high-order ordinary differ-
ential operator.

Theorem 8.3.1 Lets € Z,. D} = I* on L*(3B,,).

Proof Without loss of generalization, we assume that f € A. Then

oo Ni

f@ =) cupk.

k=0 v=0
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where ¢y, is the Fourier coefficient of f:

o = / PEE) £ (E)do (£).
0B,

So

o0 Nk

Dif()=>)_%" /a . PEE) f(E)do (€)D(pl)(2)

k=0 v=0

o0 Ny
=Y ey [ HEsedeie.
k=0 v=0"0Bu

O

Definition 8.3.1 Lets € [0, +00). The Sobolev norm || - || w2sg,) on 0B, is defined
as

I f lw2som,y =: 17 fll2 < oo.

The Sobolev space on 9B, is defined as the closure of A under the norm || - || w2s3B,),
that is,
2,5 _H'”wls(m,,)
w=(0B,) = A .

Remark 8.3.1 According to Plancherel’s theorem, f € W?*(3B,) if and only if

0o Ne 1/2
(Zkh 3 |ckv|2) < 0.
k=1 =0

Now we study the boundedness properties of M;, on Sobolev spaces.

Theorem 8.3.2 Givenr,s € [0, +00)andb € H*(S,,). The Fourier multiplier oper-
ator My, is bounded from W2+ (3B,,) to W2 (3B,).

Proof Set

OONA

I'f(@)=Y_ Y c,pi.

k=0 v=0

By the orthogonality of { p’v‘ }, we see that ¢}, = k*cy,. Let b(z) = z27°b(z). Because
b e H°(S,), we have by € H*(S,,). This implies that
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00 Ny
I'(My())(E) = Y b Y cupl(&)
k=1 0

y=

o) Ny
=Y b1k > crph(®)
k=1 v=0

= My, (I [)(®).

Finally, by Theorem 8.1.4, we get

1My () llwar = 1T (M (f)]2
= My, (T f)ll2
< CIT™ £l

This completes the proof of Theorem 8.3.2.
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Symbols
o type operator, 8, 14

B
basis vector, 67

C

Calderén-Zygmund operator, 41

Cauchy, 41
Cauchy—Dunford bounded holomorphic

functional calculus, 287

Cauchy-Dunford integral, 287, 288
Cauchy integral, 206
Cauchy integral formula, 69
Cauchy integral operator, 41, 286
Cauchy—Kovalevska expansion, 258
Cauchy-Szego kernel, 277
Photogenic-Cauchy transform, 222

Clifford algebra, 67

convolution, 2

D
dual, 9
dual pair, 9
dual pair of type w operators, 10, 11

E
Euclidean norm, 68

Fourier multiplier, 64
Fourier transform, 100
inverse Fourier transform, 101
Fueter theorem, 100
functional calculus, 201
bounded holomorphic functional calcu-
lus, 201, 287
Cauchy—-Dunford bounded holomorphic
functional calculus, 287

G
Gegenbaur polynomial, 255

H
Hardy, 58
Hardy-Littlewood maximal function, 58
Hardy—Sobolev space, 270
Hardy space H?0(A), 195
left-Hardy space, 195
Hilbert transform, 208
inner Hilbert transform, 208
outer Hilbert transform, 208, 209

1
inner starlike region, 225
intrinsic, 101
intrinsic function, 101, 102, 169, 170,
173, 240, 249, 250
intrinsic set, 101, 102, 169, 170, 173—

175, 239, 240
F inverse, 68
Fourier, 48 inverse Fourier transform, 50, 239
Fourier coefficient, 48, 51 inverse Fourier transform formula, 44
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K Photogenic, 221
Kelvin inversion, 100 Photogenic-Cauchy transform, 221
Photogenic-Dirac equation, 222
Plemelj type formula, 194, 292

L Poisson, 212

Lipschitz, 1 conjugate inner Poisson kernel, 212
Lipschitz curve, v, 2, 41 conjugate outer Poisson kernel, 213
Lipschitz function, 2, 27 inner Poisson kernel, 212, 213
Lipschitz graph, 1 outer Poisson kernel, 213
Lipschitz perturbation, vi the Poisson summation formula, 48

starlike Lipschitz curve, 44, 62

Q

M quadratic estimate, 10-12
monogenic, 69
left monogenic, 69
right-monogenic, 69 R
radial Dirac operator, 276
reverse quadratic estimate, 12, 13, 23

0o
outer starlike region, 225
S
sector, 3, 28, 226
P closed double sector, 3

Parseval’s identity, 44, 50, 51, 82 half sector, 46
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