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Fourier Spectrum of Clifford Hp Spaces on Rn+1
+ for

1 ≤ p ≤ ∞

Pei Dang, Weixiong Mai∗, Tao Qian

Abstract

This article studies the Fourier spectrum characterization of func-
tions in the Clifford algebra-valued Hardy spaces Hp(Rn+1

+ ), 1 ≤
p ≤ ∞. Namely, for f ∈ Lp(Rn), Clifford algebra-valued, f
is further the non-tangential boundary limit of some function in
Hp(Rn+1

+ ), 1 ≤ p ≤ ∞, if and only if f̂ = χ+f̂ , where χ+(ξ) =
1
2
(1 + i

ξ

|ξ|
), the Fourier transformation and the above relation are

suitably interpreted (for some cases in the distribution sense).
These results further develop the relevant context of Alan McIn-
tosh. As a particular case of our results, the vector-valued Clifford
Hardy space functions are identical with the conjugate harmonic
systems in the work of Stein and Weiss. The latter proved the cor-
responding singular integral version of the vector-valued cases for
1 ≤ p < ∞. We also obtain the generalized conjugate harmonic
systems for the whole Clifford algebra-valued Hardy spaces rather
than only the vector-valued cases in the Stein-Weiss setting.
Key words: Hardy space, Monogenic Function, Fourier Spectrum,
Riesz Transform, Clifford Algebra, Conjugate Harmonic System

In memory of Alan McIntosh

1 Introduction

The classical Paley-Wiener Theorem asserts that for a L2(R)-function f , scalar-valued, it is
further the non-tangential boundary limit (NTBL) of a function in the Hardy H2 space in
the upper half plane if and only if the Fourier transform of f , denoted by f̂ , satisfies the
relation f̂ = χ+f̂ , where χ+ is the characteristic (indicator) function of the set (0,∞), that
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takes the value 1 when its argument is in (0,∞) and otherwise zero. This amounts to saying
that a characteristic property of boundary limit functions of the Hardy space functions is
that their Fourier transforms vanish at the negative spectra. This classical Fourier spectrum
characterization of the HardyH2 space functions has been studied and generalized by different
authors (see, for instance, [5, 9]). Among recent studies [18] and [19] give a throughout
treatment to the analogous results for Lp(R) for p ∈ [1,∞]. Those papers prove that if f is a
function in Lp(R), 1 ≤ p ≤ ∞, then f is the NTBL of some function in the Hardy Hp space
in the upper half plane if and only if the Fourier transform f̂ satisfies the relation (f̂ , ψ) = 0
for ψ being any function in the Schwartz class whose support lays in the closure of left half
of the real line. We note that for 2 < p ≤ ∞ this last statement is interpreted as that
f̂ , as a distribution, is supported in [0,∞). The Fourier spectrum characterization results
have implications to the Hilbert transform characterizations of the Hardy space functions, as
well as to Hardy space decompositions of Lp functions, the latter being through the Fourier
spectrum decomposition. We note that the Hardy spaces decomposition can also be extended
to the Lp spaces for 0 < p < 1 ([4]) although there do not exist spectrum decomposition
results.

In higher dimensional Euclidean spaces there exist analogous results. The above men-
tioned Fourier spectrum, Hilbert transformations, and the Hardy space decompositions are
all based on the Cauchy type complex structure associated with the underlying domain on
which the Hardy space functions are defined. In Rn, n > 2, there are two distinguished com-
plex structures, of which one is several complex variables and the other is Clifford algebra.
Both those complex structures in relation to their respective Hardy spaces are treated in [20]
and [21]. The several complex variables setting corresponds to the Hardy spaces on tubes.
The Clifford algebra setting corresponds to the conjugate harmonic systems.

Fourier spectrum properties of Hardy spaces on tubes were first studied in [20] and [21]
with the restriction on p = 2. Certain one-way results for Hp(TΩ) and a partial range of the
space index p, where Ω is an irreducible symmetric cone and TΩ = {x+ iy ∈ Cn; x ∈ Rn, y ∈
Ω ⊂ Rn}, were obtained in [8]. In [12] Hörmander proved some results corresponding to the
type of Paley-Wiener Theorem for bandlimited functions involving entire functions in several
complex variables. Fourier spectrum characterizations of the Hardy spaces on tubes for all
cases 1 ≤ p ≤ ∞ are thoroughly studied in [14].

The present paper gives Fourier spectrum characterizations for functions in the Clifford
algebra-valued Hardy spaces for the whole range p ∈ [1,∞]. As a particular case, the
vector-valued case corresponding to the conjugate harmonic systems was previously and
fundamentally studied in [21, 20], and further in [10, 16, 13]. The previous studies, besides
the restriction to vector-values, were also restricted to the singular integral version, and
the index range is restricted to 1 ≤ p < ∞. The main results of this study imply the
Hilbert transformation eigenvalue characterizations of the Hardy spaces and the Hardy spaces
decompositions of the Lp functions.

The crucial notion with the Clifford algebra setting of the Euclidean spaces is the projec-
tion functions χ± defined by

χ±(ξ) =
1

2

(
1± i

ξ

|ξ|

)

and the associated generalizations of the trigonometrical exponential function

2



e±(x, ξ) = e2πi〈x,ξ〉e∓2πx0|ξ|χ±(ξ),

where x = x0 + x.

The purpose of this paper is to declare the Fourier multiplier form of the Clifford Cauchy
integral representation formula for the Clifford algebra-valued Hardy Hp functions F in the
upper-half space Rn+1

+ for all p ∈ [1,∞]:

F (x0 + x) =

∫

Rn

e2πi〈x,ξ〉e−2πx0|ξ|χ+(ξ)F̂ (ξ)dξ.

The above formula is also the Laplace transform of functions on Rn in the Clifford algebra
setting provided that the formula makes sense. We note that when 1 ≤ p ≤ 2, the above
relation is valid in the Lebesgue integration sense, while when p > 2 it is valid in the
distribution sense. We will prove that, for all p ∈ [1,∞], a Clifford algebra-valued Lp(Rn)-
function F satisfies F ∈ Hp(Rn+1

+ ) (the NTBL of some Clifford algebra-valued Hardy space

function) if and only if F̂ = χ+F̂ , where the multiplication between χ+ and the distribution
F̂ will be precisely defined in the rest part of the paper; and F ∈ Hp(Rn+1

+ ) if and only if
HF = F, where H = −

∑n

k=1 ekRk is the Hilbert transformation, and Rk, k = 1, ..., n are the
Riesz transformations. For the Clifford algebra-valued Hardy spaces in the lower-half of the
space Rn+1 we have the counterpart results F̂ = χ−F̂ ; and HF = −F.

In [21] (see also Propositions 2.3-2.5) the characterization by the Riesz transformations
of the NTBLs of the vector-valued Hardy spaces functions, or alternatively the conjugate
harmonic systems, for 1 ≤ p < ∞, is proved. When p = 2, the corresponding Fourier
spectrum characterization of the vector-valued functions in H2(Rn+1

+ ) can be directly derived

from Theorem 3.1 in [21, page 65] (see also Proposition 2.3) through the relation F̂ =
(f̂0, (R1(f0))

∧, ..., (Rn(f0))
∧) = (f̂0,−i

ξ1
|ξ|
f̂0, ...,−i

ξn
|ξ|
f̂0). Our study systematically treats the

Fourier multiplier aspect for the Clifford algebra-valued functions case, and for the whole
index range 1 ≤ p ≤ ∞, involving distributional and BMO functional analysis.

The paper is organized as follows. In §2 some notations and terminologies are given. In
§3 we prove the main results. In §4, as an application of the Fourier spectrum of Hp(Rn+1

+ ),
we prove the analogous result in the Clifford algebra-valued Bergman spaces on Rn+1

+ .

2 Preliminaries

2.1 Hp space in terms of conjugate harmonic systems

Let Rn+1
+ = {x = (x, x0) ∈ Rn+1; x0 > 0, x ∈ Rn}, and uj, 0 ≤ j ≤ n, be functions defined

on Rn+1
+ . Suppose F = (u0, u1, . . . , un) satisfies the generalized Cauchy-Riemann systems in

Rn+1
+ , i.e.,

n∑

j=0

∂uj

∂xj
= 0,

∂uj

∂xk
=
∂uk

∂xj
, j 6= k, 0 ≤ j, k ≤ n.

(2.1)
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Such (n+ 1)-tuple F = (u0, u1, . . . , un) is called a conjugate harmonic system ([21, 20]). For
0 < p < ∞, we say that F ∈ Hp(Rn+1

+ ), the vector-valued monogenic p-Hardy space, if F
satisfies (2.1), and moreover,

||F ||p = sup
x0>0

[∫

Rn

|F (x, x0)|
pdx

] 1

p

<∞. (2.2)

For p = ∞, we say that F ∈ H∞(Rn+1
+ ) if F satisfies (2.1), and

||F ||∞ = sup{|F (x, x0)| : (x, x0) ∈ Rn+1
+ } <∞. (2.3)

||F ||p is a norm when 1 ≤ p ≤ ∞, and a Hilbert space norm when p = 2 (see c.f. [21, page
220]). For Hp(Rn+1

+ ), the following results for harmonic functions are well-known.

Proposition 2.1 ([21, page 78]) Let u(x, x0) be harmonic in Rn+1
+ .

One has:
(a) If 1 < p ≤ ∞, u(x, x0) is the Poisson integral of an Lp(Rn) function if and only if
sup
x0>0

‖u(x, x0)‖p <∞.

(b) u(x, x0) is the Poisson integral of a Borel measure if and only if sup
x0>0

‖u(x, x0)‖1 <∞.

Proposition 2.2 ([3, Theorem 1.3, page 62]) For f ∈ Lp(Rn), 1 ≤ p ≤ ∞, if u(x, x0)
is the Poisson integral of f , then
(a) u∗(x) = sup|y−x|<αx0

|u(y, x0)| ≤ AM(f)(x), where α > 0, M(f) is the Hardy-Littlewood

maximal function of f.
(b) For almost all x ∈ Rn, one has

lim
(y,x0)→(x,0),|y−x|<αx0

u(y, x0) = f(x).

Proposition 2.3 ([21, page 65]) Let f0 and f1, . . . , fn belong to L2(Rn), and let their re-
spective Poisson integrals be u0(x, x0) = Px0

∗f0, u1(x, x0) = Px0
∗f1, . . . , un(x, x0) = Px0

∗fn.
Then a necessary and sufficient condition that

fj = Rj(f0), j = 1, . . . , n,

is that (u0, ..., un) satisfies the generalized Cauchy-Riemann equations (2.1), where Rj is the
j-th Riesz transformation, that is,

fj(x) = Rj(f0)(x) = lim
ǫ→0

1

σn

∫

|x−y|>ǫ

xj − yj

|x− y|n+1
f0(y)dy (2.4)

with σn = π
n+1
2

Γ(n+1

2
)
.

Proposition 2.4 ([21, page 220]) Suppose that F ∈ Hp(Rn+1
+ ), 1 < p < ∞. Then there

exist f0, f1, f2, . . . , fn, each in Lp(Rn), so that uj(x, x0) is the Poisson integral of fj , j =
0, . . . , n. Also fj = Rj(f0), R1, R2, . . . , Rn are the Riesz transformations. Conversely, suppose
f0 ∈ Lp(Rn), and let fj = Rj(f0), and uj(x, x0) be the Poisson integrals of fj, j = 0, . . . , n.
Then F = (u0, u1, . . . , un) ∈ Hp(Rn+1

+ ); moreover ‖f0‖Lp ≤ ‖F‖p ≤ Ap‖f0‖Lp.
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Proposition 2.5 ([21, page 221]) Let F ∈ H1(Rn+1
+ ). Then lim

x0→0
F (x, x0) = F (x) exists

almost everywhere, as well as in the L1(Rn) norm. Also

∫

Rn

sup
x0>0

|F (x, x0)|dx ≤ A sup
x0>0

∫

Rn

|F (x, x0)|dx = A‖F‖1.

Moreover, the space H1(Rn+1
+ ) is naturally isomorphic with the space of L1(Rn) functions f0

which have the property that Rj(f0) ∈ L1(Rn), j = 1, . . . , n. The H1 norm is then equivalent

with ‖f0‖1 +
n∑

j=1

‖Rj(f0)‖1. Conversely, suppose f0 ∈ L1(Rn) and Rj(f0) ∈ L1(Rn), Rj(f0) =

fj, j = 1, . . . , n. Then

n∑

j=0

∫

Rn

sup
x0>0

|uj(x, x0)|dx ≤ A

n∑

j=0

‖fj‖L1 ,

where uj = Px0
∗ fj , j = 0, ..., n.

It is noted that the Riesz transformations Rj , 1 ≤ j ≤ n, defined as (2.4) are bounded
operator from Lp(Rn) to Lp(Rn), 1 < p <∞, and weakly bounded from L1(Rn) to L1(Rn).
When p = ∞, we need to revise the Riesz transforms (see e.g. [22]) Rj , 1 ≤ j ≤ n, as

Rj(f0)(x) = lim
ǫ→0

1

σn

∫

|x−y|>ǫ

(
xj − yj

|x− y|n+1
− χ{|y|>1}(y)

−yj
| − y|n+1

)
f0(y)dy,

which are well-defined for f0 ∈ L∞(Rn) up to a constant, and χ{|y|>1} is the characteristic
function for {y ∈ Rn; |y| > 1}. The revised Riesz transformations are bounded from L∞(Rn)
to BMO(Rn) (Bounded Mean Oscillation space).

2.2 Clifford algebra-valued Hardy Hp spaces

Let e1, ..., en be basic elements satisfying

ejek + ekej = −2δjk, j, k = 1, ..., n,

where δjk is the Kronecker delta function. Let Rn = {x = x1e1 + · · ·+xnen; xj ∈ R, 1 ≤ j ≤
n} be identical with the usual Euclidean space Rn, and Rn+1

+ = {x0 + x; x0 > 0, x ∈ Rn}.
The real (complex) Clifford algebra R(n) (C(n)) generated by e1, ..., en, is the associative

algebra generated by e1, ..., en over the real (complex) field R (C). The elements of R(n)

(C(n)) are of the form x =
∑

T xTeT , where T = {1 ≤ j1 < j2 < · · · < jl ≤ n} runs over
all ordered subsets of {1, ..., n}, xT ∈ R (C) with x∅ = x0, and eT = ej1ej2 · · · ejl with the
identity element e∅ = e0 = 1. Sc x := x0 and NSc x := x − Sc x are respectively called the
scalar part and the non-scalar part of x. In this paper, we denote the conjugate of x ∈ C(n)

by x =
∑

T xTeT , where eT = ejl · · · ej2ej1 with e0 = e0 and ej = −ej for j 6= 0. The

norm of x ∈ C(n) is defined as |x| := (Sc xx)
1

2 = (
∑

T |xT |
2)

1

2 . Generally, a Clifford algebra
is not a division algebra, unless n = 2, that corresponds to the algebra of quaternions.
x = x0 + x ∈ Rn+1 is called a vector or a para-vector, and the conjugate of a vector x is

5



x = x0 − x. If x is a vector then x−1 = x
|x|2
. For more information about Clifford algebra, we

refer to [2].
A Clifford algebra-valued function F is left-monogenic (resp. right-monogenic) if

DF = (
n∑

k=0

∂kek)F = 0

(
resp. FD = F (

n∑

k=0

∂kek) = 0

)
,

where ∂k = ∂
∂xk

, 0 ≤ k ≤ n, and D is the Dirac operator. Note that D(DF ) = ∆F = 0 if F
is left-monogenic, which means that each component of F is harmonic. A function that is
both left- and right-monogenic is called a monogenic function. Vector-valued left-monogenic
functions are simultaneously right-monogenic functions, and vice-versa, and thus they are
monogenic.

The Fourier transform of a function in L1(Rn) is defined as

f̂(ξ) = F(f)(ξ) =

∫

Rn

e−2πi〈x,ξ〉f(x)dx,

where ξ = ξ1e1 + · · ·+ ξnen ∈ Rn, and the inverse Fourier transform is formally defined as

g∨(x) = F−1(g)(x) =

∫

Rn

e2πi〈x,ξ〉g(ξ)dξ.

We note that the Fourier transformation is linear and thus it, together with some of its
properties, can be extended to Clifford algebra-valued functions. In particular, the Plancherel
Theorem holds for Clifford algebra-valued functions: For Clifford algebra-valued functions
f, g ∈ L2(Rn) there holds

∫

Rn

f(x)g(x)dx =

∫

Rn

f̂(ξ)ĝ(ξ)dξ.

An alternative form of the Plancherel Theorem is
∫

Rn

f(x)g(x)dx =

∫

Rn

f̂(ξ)g∨(ξ)dξ.

Define, for x = x0 + x,

e(x, ξ) = e+(x, ξ) + e−(x, ξ)

with
e±(x, ξ) = e2πi〈x,ξ〉e∓2πx0|ξ|χ±(ξ)

(see e.g. [15]), where χ±(ξ) =
1
2
(1± i

ξ

|ξ|
). χ± enjoy the following projection-like properties:

χ−χ+ = χ+χ− = 0, χ2
± = χ±, χ+ + χ− = 1. (2.5)

Definition 2.6 Let F (x) =
∑

T fT (x)eT , where x = x0 + x ∈ Rn+1
+ . If F is left-monogenic

on Rn+1
+ and satisfies

||F ||pHp = sup
x0>0

∫

Rn

|F (x0 + x)|pdx <∞, 1 ≤ p <∞, (2.6)

6



then we say F (x) belongs to the Hardy space Hp(Rn+1
+ ). If F is left-monogenic on Rn+1

+ and
satisfies

||F ||H∞ = sup
x∈Rn+1

+

|F (x)| <∞,

then we say F (x) ∈ H∞(Rn+1
+ ).

When p = 2, the inner product of H2(Rn+1
+ ) is defined as

〈F,G〉 =

∫

Rn

G(x)F (x)dx,

where F (x) andG(x) are respectively the NTBL functions of F andG. The norm ofH2(Rn+1
+ )

is, in fact, equal to

||F ||2H2 = Sc 〈F, F 〉.

In particular, if F ∈ Hp(Rn+1
+ ), 1 ≤ p ≤ ∞, is a vector-valued function, i.e., F (x) =

f0(x) +
∑n

j=1 fj(x)ej , then F corresponds to an element in Hp(Rn+1
+ ) ([13]). To see this, we

let U(x0 + x) = u0(x0 + x)− u1(x0 + x)e1 − · · · − un(x0 + x)en. With e0 = 1, we have

DU = (
n∑

k=0

∂kek)[u0(x0 + x)e0 − u1(x0 + x)e1 − · · · − un(x0 + x)en]

=
∂u0

∂x0
+
∂u1

∂x1
+ · · ·+

∂un

∂xn
+

∑

0≤j<k≤n

(
∂uj

∂xk
−
∂uk

∂xj
)ejek, (2.7)

which means that DU = 0 if and only if U satisfies (2.1). Thus Hp(Rn+1
+ ) can be regarded

as a proper subspace of Hp(Rn+1
+ ).

By Propositions 2.3−2.5, we have, for 1 ≤ p <∞,

U(x) = u0(x)−
n∑

j=1

Rj(u0)(x)ej .

For general vector-valued F ∈ Hp(Rn+1
+ ), 1 ≤ p <∞, there holds

F (x) = f0(x)−

n∑

j=1

Rj(f0)(x)ej = (I +H)f0(x),

where the operator H, the Hilbert transformation, is defined by

H = −

n∑

j=1

Rjej .

Note that the Fourier multiplier of Rj is −i
ξj
|ξ|

(see e.g. [11]), i.e.,

Rj(f0)(x) =

(
−i

ξj

|ξ|
f̂0(ξ)

)∨

(x).
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This implies that the Fourier multipliers of 1
2
(I ±H) are, respectively, χ±(ξ).

The Cauchy integral formula in Clifford analysis may be regarded as the reproducing for-
mula. In particular, for F ∈ Hp(Rn+1

+ ), the following reproducing formula plays an important
role.

Proposition 2.7 (see e.g. [10, 16]) For F ∈ Hp(Rn+1
+ ), 1 ≤ p <∞, we have

F (x) =

∫

Rn

E(x− y)F (y)dy,

where E(x) = 1
2σn

x
|x|n+1 is the Cauchy kernel, and F (y) is the NTBL function of F .

When 1 < p <∞, one has

Proposition 2.8 (see e.g. [16]) For f ∈ Lp(Rn), 1 < p <∞, there exists a constant L > 0
such that

||Cx0
(f)||Lp ≤ L||f ||Lp,

where

Cx0
(f)(x) =

∫

Rn

E(x− y)f(y)dy, x = x0 + x, x0 > 0,

and L is independent of x0 and f. As a consequence, as a function of x, the function Cx0
(f)(x)

belongs to Hp(Rn+1
+ ).

Moreover,

lim
x0→0+

Cx0
(f)(x) =

1

2
(f(x) +Hf(x)), a.e. x ∈ Rn.

There are parallel results for the lower-half of the space Rn+1. If we apply Proposition 2.8 to
the NTBL of a Hardy space function F, then we conclude, from the last relation, H2 = I.

Let Ψ(Rn) be the Clifford algebra-valued Schwartz space, whose elements are given by

ψ(ξ) =
∑

T

ψT (ξ)eT ,

where ψT are in the Schwartz space S(Rn). Denote by Ψ±(Rn) the subclasses of Ψ(Rn)
consisting of the Clifford algebra-valued Schwartz functions of, respectively, the forms

ψ(ξ) = ψ(ξ)χ±(ξ),

where ψ(ξ) takes the zero value in some neighborhood of the origin. It is easy to show that
the direct sum Ψ+(Rn)⊕Ψ−(Rn) is dense in Ψ(Rn).

Denote by Ψ±
scalar(R

n) the subclasses of Ψ±(Rn), whose elements are of the form

ψ(ξ) = ψ̃0(ξ)χ±(ξ),

where ψ̃0 is scalar-valued.
For more information on the Clifford algebra-valued distribution theory, we refer to, e.g., [2]
and [17].
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3 Main Results

Our main results are as follows.

Theorem 3.1 For F ∈ Hp(Rn+1
+ ), 1 ≤ p ≤ ∞, we have

(F̂ , ψ) = (F, ψ̂) =

∫

Rn

ψ̂(x)F (x)dx = 0,

where ψ ∈ Ψ−(Rn).

Conversely, we have

Theorem 3.2 Let F ∈ Lp(Rn), 1 ≤ p ≤ ∞. If (F̂ , ψ) = 0 for ψ ∈ Ψ−(Rn) (F̂ = χ+F̂ if
1 ≤ p ≤ 2), then F (x) is the NTBL function of some F (x) ∈ Hp(Rn+1

+ ).

In particular, we have

Corollary 3.3 F ∈ Hp(Rn+1
+ ), 1 ≤ p ≤ 2 if and only if F ∈ Lp(Rn) and F̂ (ξ) = χ+(ξ)F̂ (ξ),

and

F (x) =

∫

Rn

e+(x, ξ)F̂ (ξ)dξ =

∫

Rn

E(x− y)F (y)dy.

Remark 3.4 Theorem 3.1 and Theorem 3.2 extend Proposition 2.3 and Proposition 2.5,
respectively, to the non-vector-valued Hardy spaces cases. Moreover, the sufficiency and the
necessity of the result for the case p = ∞ are not proved in either the vector-valued or the
Clifford algebra-valued Hardy spaces in literatures.

Proof of Theorem 3.1: We first prove the result for 1 < p <∞. Mainly using Proposition
2.7 and Proposition 2.8, we have

|(F, ψ̂)| = lim
x0→0

|(F (·+ x0), ψ̂)|

= lim
x0→0

|(Cx0
(F ), ψ̂)|

≤ lim
x0→0

|(Cx0
(F −G), ψ̂)|+ lim

x0→0
|(Cx0

(G), ψ̂)|

≤ Cn lim
x0→0

||Cx0
(F −G)||Lp||ψ̂||Lq + lim

x0→0
|(Cx0

(G), ψ̂)|

≤ Cn lim
x0→0

L||F −G||Lp||ψ̂||Lq + lim
x0→0

|(Cx0
(G), ψ̂)|,

(3.8)

where q = p

p−1
, L is given in Proposition 2.8, and Cn is a constant depending on n.

For any ǫ > 0, G is chosen as a smooth function with compact support such that

||F −G||Lp < ǫ.
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Since Cx0
(G) ∈ H2(Rn+1

+ ), there follows

Cx0
(G)(x) =

∫

Rn

E(x0 + x− y)G(y)dy

=

∫

Rn

E(
x0

2
+ x− y)Cx0

2
(G)(y)dy

=

∫

Rn

e2πi〈x,ξ〉e−2π
x0
2
|ξ|χ+(ξ)(Cx0

2
(G))∧(ξ)dξ.

This shows that
(Cx0

(G))∧(ξ) = e−2π
x0
2
|ξ|χ+(ξ)(Cx0

2
(G))∧(ξ).

Therefore,

(Cx0
(G)(x), ψ̂(x)) = ((Cx0

(G))∧(ξ), ψ(ξ)) = (e−2π
x0
2
|ξ|χ+(ξ)(Cx0

2
(G))∧(ξ), ψ(ξ)) = 0.

Hence, through (3.8), for any ǫ > 0, we have

|(F, ψ̂)| ≤ CnLǫ||ψ̂||Lq + 0,

which shows (F, ψ̂) = 0.
Now we deal with the case p = 1. We use the following Lemma (for the complex analysis

setting, see also e.g. [4]).

Lemma 3.1 If F ∈ H1(Rn+1
+ ), then Fx0

(·) = F (x0 + ·) ∈ L2(Rn).

Proof Since F is left-monogenic, by the mean-value theorem, we have

F (x0 + x) =
1

Vx0
2

∫

Bx(
x0
2
)

F (y0 + y)dy,

where Bx(
x0

2
) is the ball centered at x with radius x0

2
, Vx0

2
is the volume of Bx(

x0

2
). Then we

have

|F (x0 + x)| ≤
1

Vx0
2

∫

Bx(
x0
2
)

|F (y0 + y)|dy

≤
C

xn+1
0

∫ 3x0
2

x0
2

∫

Rn

|F (y0 + y)|dydy0

≤
C

xn0
sup
y0>0

∫

Rn

|F (y0 + y)|dy,

where C is a constant. This implies that Fx0
(x) ∈ L∞(Rn). Then, we have

∫

Rn

|F (x0 + x)|2dx =

∫

Rn

|F (x0 + x)||F (x0 + x)|dx

≤ sup
x∈Rn

|F (x0 + x)|

∫

Rn

|F (x0 + x)|dx <∞.

10



The proof of the lemma is complete.

Now we continue to prove Theorem 3.1. Let F ∈ H1(Rn+1
+ ), x0 > 0. Then we have

(F, ψ̂) = (F − Fx0
, ψ̂) + (Fx0

, ψ̂).

For any ǫ > 0, for a suitably chosen x0 > 0, we have

|(F − Fx0
, ψ̂)| ≤ Cn‖F − Fx0

‖1‖ψ̂‖∞ ≤ Cnǫ‖ψ̂‖∞.

On the other hand, as in the proof for the case 1 < p <∞,

(Fx0
, ψ̂) = 0.

Hence
|(F, ψ̂)| ≤ Cnǫ‖ψ̂‖∞

for arbitrary ǫ > 0. That shows (F, ψ̂) = 0.
For p = ∞, we will mainly adopt the technique used in [19]. In Lemma 3.2, we will show

that for F ∈ H∞(Rn+1
+ ),

F (x) = HF (x) + c,

where c is a constant. It is easily shown that

(c, ψ̂) = 0, ψ ∈ Ψ−(Rn).

Hence, in the following we only need to consider

F (x) =
1

2
(I +H)F (x) =

1

2

∑

T

(I +H)fT (x)eT .

We first consider that ψ ∈ Ψ−
scalar(R

n). We have ψ(ξ) = ψ̃0(ξ)χ−(ξ) = ψ0(ξ) +
∑n

j=1 ψj(ξ)ej,

where ψ̃0 is a scalar-valued Schwartz function. In particular, we note that

ψ̂(x) =

∫

Rn

ψ̃0(ξ)
1

2
(1− i

ξ

|ξ|
)e−2πi〈x,ξ〉dξ

=

∫

Rn

ψ̃0(−ξ)
1

2
(1 + i

ξ

|ξ|
)e2πi〈x,ξ〉dξ,

which means that ψ̂(x) is the NTBL function of functions in H1(Rn+1
+ ). In the following

we first accept, and use this property to prove that (F, ψ̂) = 0 for ψ ∈ Ψ−(Rn). Since
ψ̂ ∈ H1(Rn+1

+ ) and (I +H)fT (x) ∈ BMO(Rn), ((I +H)fT (x), ψ̂) is well-defined. As shown
in [7, page 146], we have

∫

Rn

ψ̂(x)Rj(fT )(x)dx =
n∑

k=0

∫

Rn

ekψ̂k(x)Rj(fT )(x)dx

= −
n∑

k=0

∫

Rn

ekRj(ψ̂k)(x)fT (x)dx

= −

∫

Rn

Rj(ψ̂)fT (x)dx.

11



Hence we have

∫

Rn

ψ̂(x)(fT (x)−
n∑

j=1

Rj(fT )(x)ej)dx =

∫

Rn

(ψ̂(I +
n∑

j=1

Rjej))(x)fT (x)dx.

One can easily show that ψ̂(I +
∑n

j=1Rjej) = 0. In fact, since the Fourier multiplier of Rj is

−i
ξj
|ξ|
, we have

(ψ̂(I +

n∑

j=1

Rjej))
∨(ξ) = ψ(ξ)(1 + i

n∑

j=1

ξjej
|ξ|

) = ψ̃0(ξ)
1

2
(1− i

ξ

|ξ|
)(1 + i

ξ

|ξ|
) = 0.

Thus ψ̂(I +
∑n

j=1Rjej) = 0, and hence ((I +H)fT (x), ψ̂) = 0 for ψ ∈ Ψ−
scalar(R

n). Conse-

quently, (F, ψ̂) = 0 for ψ ∈ Ψ−
scalar(R

n). For ψ ∈ Ψ−(Rn), we have

(F, ψ̂) =
∑

S

eS(F, (ψSχ−)
∧).

Then, for each S, we have
(F, (ψSχ−)

∧) = 0

by applying the above argument. We have (F, ψ̂) = 0 for ψ ∈ Ψ−(Rn).
✷

Proof of Theorem 3.2: We first consider the case p = 1. Define

Φ(x0 + x) =

∫

Rn

e+(x, ξ)F̂ (ξ)dξ

and

Gx0
(x) = G(x0 + x) =

∫

Rn

Px0
(x− y)F (y)dy.

We then have

Φ(x0 + x) =

∫

Rn

e+(x, ξ)F̂ (ξ)dξ =

∫

Rn

Px0
(x− y)F (y)dy = G(x0 + x).

We also note that Gx0
∈ L1(Rn) since

||Gx0
||L1 ≤ Cn||F ||L1||Px0

||L1 <∞.

By interchanging the derivatives with the integral, we can show that Φ is left-monogenic
since e+(x, ξ) is monogenic. Thus Φ(x) ∈ H1(Rn+1

+ ).
Next we consider the case for Lp(Rn), 1 < p ≤ ∞. By the assumption, we have

0 = (F̂ , ψ) = ((F+)∧ + (F−)∧, ψ) = ((F−)∧, ψ), for all ψ ∈ Ψ−(Rn), (3.9)

12



where F+ = 1
2
(I + H)F and F− = 1

2
(I − H)F, and ((F+)∧, ψ) = 0 follows from the proof

of Theorem 3.1 (Note that this argument only works for 1 < p ≤ ∞, not including p = 1).
Consequently, we can have, for ϕ being a scalar-valued Schwartz function taking zero in some
neighborhood of the origin,

((F−)∧, ϕ) = ((F−)∧, ϕχ+) + ((F−)∧, ϕχ−) = 0,

where ((F−)∧, ϕχ+) = 0 follows from the proof of Theorem 3.1, and ((F−)∧, ϕχ−) = 0 is given
by (3.9). This implies that (F−)∧ is either zero or a distribution with support at the origin.
For the latter case, (F−)∧ has to be a finite linear combination of the partial derivatives of
the Dirac delta function (see e.g. [12, 17]), which contradicts to F ∈ Lp(Rn), 1 < p < ∞.

Thus, for 1 < p < ∞, (F−)∧ = 0, and then F− = 0. For p = ∞, F− is a constant c. Then,
for 1 < p < ∞, we have F = F+, and for p = ∞, F = F+ + c being the NTBL function of
some functions in Hp(Rn+1

+ ). ✷

Lemma 3.2 For F ∈ H∞(Rn+1
+ ), we have

F (x) = HF (x) + c, (3.10)

where c is a constant.

Proof: Denote by S0(R
n), where φ ∈ S0(R

n) is a scalar-valued Schwartz function such that
φ̂ takes the zero value in some neighborhood of the origin. To show (3.10), it suffices to show
that

((I −H)F (x), φ(x)) = 0 (3.11)

holds for all φ ∈ S0(R
n). In fact, we have

((I −H)F (x), φ(x)) = (((I −H)F )∨(ξ), φ̂(ξ)),

which means that ((I − H)F )∨ is either zero or a distribution with support at the origin.
Thus (I −H)F (x) = c, and hence F (x) = HF (x) + c, where c is a constant.

Let F =
∑

T fTeT , and ψ(x) =
(

φ̂(ξ)

2π|ξ|

)∨
(x). Moreover, we have

−2π|ξ|e−2πx0|ξ|ψ̂(ξ) = −e−2πx0|ξ|φ̂(ξ),

and hence,

(∂0Px0
∗ ψ)(x) = −Px0

∗ φ(x).

13



Note that for φ ∈ S0(R
n), ψ is still a Schwartz function. For each T, we have

((I +
n∑

j=1

ejRj)fT (x0 + x),−φ(x))

= ((I +

n∑

j=1

ejRj)fT (x0 + x), (−2π|ξ|ψ̂(ξ))∨(x))

= (fT (x0 + x), (−2π|ξ|ψ̂(ξ))∨(x)(I −
n∑

j=1

Rjej))

= (fT (x0 + x), [(−2π|ξ|ψ̂(ξ))(1 +

n∑

j=1

i
ξjej
|ξ|

)]∨(x))

= (fT (x0 + x),−φ(x)) + (fT (x0 + x), [
n∑

j=1

−2πiξjψ̂(ξ)ej ]
∨(x))

= (fT (x),−Px0
∗ φ(x)) + (fT (x0 + x), [

n∑

j=1

−2πiξjψ̂(ξ)ej ]
∨(x))

= (fT (x), (∂0Px0
∗ ψ)(x)) + (fT (x0 + x),−

n∑

j=1

∂jψ(x)ej).

(3.12)

In the second equality we have used the result proved in [7, page 146], while the other
equalities follow from the properties of the Fourier transform and the Fourier multiplier of
the Riesz transformations. Since ψ is a Schwartz function, for any ǫ > 0, we can find ψ̃, a C∞-
function with compact support, such that ||ψ− ψ̃||L1 < ǫ and ||∂jψ− ∂jψ̃||L1 < ǫ, 1 ≤ j ≤ n.

We also note that

∂0Px0
(x) =

1

σn

∂

∂x0

x0

(x20 + |x|2)
n+1

2

=
1

σn

−nx20 + |x|2

(x20 + |x|2)
n+1

2
+1
.

Thus,

|(fT (x), (∂0Px0
∗ (ψ − ψ̃))(x))|

≤
C ′

σn

∫

Rn

∫

Rn

x20

(x20 + |x− y|2)
n+1

2
+1

|ψ(y)− ψ̃(y)|dydx

+
C ′′

σn

∫

Rn

∫

Rn

|x− y|2

(x20 + |x− y|2)
n+1

2
+1

|ψ(y)− ψ̃(y)|dydx

≤ C ′||Px0
∗ (|ψ − ψ̃|)||L1 +

C ′′

x0
||Px0

∗ (|ψ − ψ̃|)||L1

≤ (C ′ +
C ′′

x0
)||ψ − ψ̃||L1,

≤ Cǫ.
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where C ′, C ′′ and C are constants. Hence,

(3.12) = ((∂0Px0
∗ fT )(x), ψ̃(x)) + (

n∑

j=1

∂jfT (x0 + x)ej, ψ̃(x))

+ (fT (x), ∂0Px0
∗ (ψ − ψ̃)(x)) + (fT (x0 + x),

n∑

j=1

−(∂jψ(x)− ∂jψ̃(x))ej)

= ((∂0 +

n∑

j=1

∂jej)fT (x0 + x), ψ̃(x))

+ (fT (x), ∂0Px0
∗ (ψ − ψ̃)(x)) + (fT (x0 + x),

n∑

j=1

−(∂jψ(x)− ∂jψ̃(x))ej)

= (DfT (x0 + x), ψ̃(x))

+ (fT (x), ∂0Px0
∗ (ψ − ψ̃)(x)) + (fT (x0 + x),

n∑

j=1

−(∂jψ(x)− ∂jψ̃(x))ej).

Then, we have

((I +
n∑

j=1

ejRj)F (x0 + x),−φ(x))

= (DF (x0 + x), ψ̃(x))

+ (F (x), ∂0Px0
∗ (ψ − ψ̃)(x)) + (F (x0 + x),

n∑

j=1

−(∂jψ(x)− ∂jψ̃(x))ej).

Since F is left-monogenic, we have

((I +
n∑

j=1

ejRj)F (x0 + x),−φ(x))

= (F (x), ∂0Px0
∗ (ψ − ψ̃)(x)) + (F (x0 + x),

n∑

j=1

−(∂jψ(x)− ∂jψ̃(x))ej).

Thus, for any ǫ > 0, we have

|((I +

n∑

j=1

ejRj)F (x0 + x),−φ(x))|

≤ |(F (x), ∂0Px0
∗ (ψ − ψ̃)(x))|+ |(F (x0 + x),

n∑

j=1

−(∂jψ(x)− ∂jψ̃(x))ej)|

≤ C ′′′(||ψ − ψ̃||L1 +

n∑

j=1

||∂jψ − ∂jψ̃)||L1)

≤ (n + 1)C ′′′ǫ,
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where C ′′′ is a constant. Hence,

((I +

n∑

j=1

ejRj)F (x0 + x),−φ(x)) = 0.

Finally, we have

((I +
n∑

j=1

ejRj)F (x), φ(x)) = lim
x0→0

((I +
n∑

j=1

ejRj)F (x0 + x), φ(x)) = 0

for all φ ∈ S0(R
n). The proof is completed.

Remark 3.5 If F ∈ H∞(Rn+1
+ ) is vector-valued, the above result becomes

F (x) = f0(x)−

n∑

j=1

Rj(f0)(x)ej + c,

which is a special case of the celebrated characterization of BMO proved by Fefferman and
Stein in [7].

We note that the proof of the above lemma holds for Hp(Rn+1
+ ), 1 ≤ p ≤ ∞. This means

that we have given an alternative proof of the Cauchy integral formula for F ∈ Hp(Rn+1
+ ), 1 ≤

p <∞, i.e.,

F (x0 + x) =

∫

Rn

E(x− y)F (y)dy,

and for F ∈ H∞(Rn+1
+ ),

F (x0 + x) =

∫

Rn

E(x− y)F (y)dy + c,

where E(x− y) is revised corresponding to the revision of Rj , 1 ≤ j ≤ n.

When p = 2, we can prove F (x) = HF (x) in the normal sense. The proof of the above
lemma is motivated by the case p = 2. In fact, a direct computation of DF = 0 yields

(∂0fT (x0 + x) +
n∑

j=1

(−1)lj∂jfTj
(x0 + x))eT = 0, for all T, (3.13)

where Tj satisfies (−1)ljejeTj
= eT . We note that

lj = N(j ∩ Tj) + P (j, Tj),

where N(A) = #A denotes the number of elements in some set A, and

P (j, Tj) = #{k; j > k, k ∈ Tj}.
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Taking the Fourier transform on x, we have

(∂0f̂T (x0 + ξ) +

n∑

j=1

(−1)lj(2πiξj)f̂Tj
(x0 + ξ))eT = 0.

Using the fact that

lim
x0→0

∂0f̂T (x0 + ξ) = lim
x0→0

∂0(Px0
∗ fT )

∧(ξ) = lim
x0→0

∂0(e
−2πx0|ξ|f̂T (ξ)) = −2π|ξ|f̂T (ξ),

we have

(f̂T (ξ) +
n∑

j=1

(−1)lj (−i
ξj

|ξ|
)f̂Tj

(ξ))eT = 0,

and consequently,

(fT (x) +

n∑

j=1

(−1)ljRj(fTj
)(x))eT = 0.

This means that F (x) = HF (x).
We also note that the system (3.13) is indeed a generalization of the conjugate harmonic

system (2.1). When F is vector-valued, the system (3.13) is reduced to (2.1) (see the simple
argument given in §2). Consequently, for Hp(Rn+1

+ ) ∋ F = f0 +
∑n

j=1 fjej , F = HF is then
reduced to fj = −Rj(f0), 1 ≤ j ≤ n, which is the classical result for the conjugate harmonic
system (see Propositions 2.3−2.5).

4 Analogue in Bergman Space

In this section we prove a representation formula for the functions in the Clifford algebra-
valued Bergman space in the upper half-space as an application of our results in the previous
sections. For the analogous result in the complex analysis setting, we refer to [6] and [1].

Definition 4.1 Let F (x) =
∑

T fT (x)eT , where x ∈ Rn+1
+ . If F is left-monogenic on Rn+1

+ ,

and satisfies

||F ||pAp =

∫ ∞

0

∫

Rn

|F (x0 + x)|pdxdx0 <∞, 1 ≤ p <∞,

then we say that F belongs to the Bergman space Ap(Rn+1
+ ).

As an application of the Fourier spectrum characterization of Hp(Rn+1
+ ), 1 ≤ p < ∞, we

have

Theorem 4.2 For F ∈ Ap(Rn+1
+ ), 1 ≤ p ≤ 2, there exists a function G ∈ Lq(Rn), q = p

p−1
,

such that

F (x) =

∫

Rn

e+(x, ξ)G(ξ)dξ.
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Moreover, for 1 < p ≤ 2,

(∫

Rn

|χ+(ξ)G(ξ)|
q

(2πp|ξ|)
q

p

dξ

) 1

q

≤ ||F ||Ap <∞,

and for p = 1,

sup
ξ∈Rn

|χ+(ξ)G(ξ)|

2π|ξ|
≤ ||F ||A1 <∞.

Theorem 4.3 For F ∈ Ap(Rn+1
+ ), 2 < p <∞, we have that, for x0 > 0, there holds

(F (x0 + ·), ψ̂) = 0

for ψ ∈ Ψ−(Rn).

Proof of Theorem 4.2
Since F is left-monogenic, |F |p is subharmonic for 1 ≤ p ≤ 2. We thus have

|F (x)|p ≤
1

Vδ

∫

Bx(δ)

|F (y0 + y)|pdy,

where Bx(δ) is the ball centered at x with radius 0 < δ < x0 (for instance, let δ = x0

2
), Vδ is

the volume of Bx(δ). Then we have

|F (x)|p ≤
C

δn+1

∫ x0+δ

x0−δ

∫

|x−y|<δ

|F (y0 + y)|pdydy0

≤
C

δn+1

∫ ∞

0

∫

|x−y|<δ

|F (y0 + y)|pdydy0,

and then,
∫

Rn

|F (x0 + x)|pdx ≤
C

δn+1

∫

Rn

∫ ∞

0

∫

|x−y|<δ

|F (y0 + y)|pdydy0dx

=
C

δn+1

∫ ∞

0

∫

Rn

∫

Rn

χBy(δ)(x)dx|F (y0 + y)|pdydy0

=
C ′δn

δn+1

∫ ∞

0

∫

Rn

|F (y0 + y)|pdydy0

=
C ′

δ

∫ ∞

0

∫

Rn

|F (y0 + y)|pdydy0

where the second equality used Fubini’s theorem, and C and C ′ are constants. The above
inequality implies that Fy0(x) = F (y0 + x) ∈ Hp(Rn+1

+ ) for F ∈ Ap(Rn+1
+ ) and y0 > 0.

Consequently, we have

Fy0(x) =

∫

Rn

e+(x, ξ)F̂y0(ξ)dξ

18



and

Fy0(x) =

∫

Rn

Px0
(x− y)Fy0(y)dy.

Thus

F̂y0+x0
(ξ) = e−2πx0|ξ|F̂y0(ξ)

and hence

e2π(y0+x0)|ξ|F̂y0+x0
(ξ) = e2πy0|ξ|F̂y0(ξ).

Therefore, if we let G(ξ) = e2πy0|ξ|F̂y0(ξ), which is independent of y0, then we have

Fy0(x) =

∫

Rn

e+(x, ξ)e−2πy0|ξ|G(ξ)dξ

=

∫

Rn

e+(y0 + x, ξ)G(ξ)dξ.

Consequently,

F (x) =

∫

Rn

e+(x, ξ)G(ξ)dξ.

Moreover, by Hausdorff-Young’s inequality, we have, for 1 < p ≤ 2,

(∫

Rn

|χ+(ξ)G(ξ)|
qe−2πx0q|ξ|dξ

) 1

q

≤

(∫

Rn

|F (x0 + x)|pdx

) 1

p

,

and for p = 1,

sup
ξ∈Rn

|χ+(ξ)G(ξ)|e
−2πx0|ξ| ≤

∫

Rn

|F (x0 + x)|dx.

For 1 < p ≤ 2, by Minkowski’s inequality,

(∫

Rn

(∫ ∞

0

|χ+(ξ)G(ξ)|
pe−2πx0p|ξ|dx0

) q

p

dξ

) p

q

≤

∫ ∞

0

(∫

Rn

|χ+(ξ)G(ξ)|
qe−2πx0q|ξ|dξ

) p

q

dx0

≤

∫ ∞

0

∫

Rn

|F (x0 + x)|pdxdx0,

and thus

(∫

Rn

|χ+(ξ)G(ξ)|
q

(2πp|ξ|)
q

p

) 1

q

≤

(∫ ∞

0

∫

Rn

|F (x0 + x)|pdxdx0

) 1

p

<∞.
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For p = 1,

sup
ξ∈Rn

|χ+(ξ)G(ξ)|

2π|ξ|
≤

∫ ∞

0

∫

Rn

|F (x0 + x)|dxdx0 <∞.

✷

Proof of Theorem 4.3
As in the proof of Theorem 4.2, we can show that Fy0(x) ∈ Hp(Rn+1

+ ) for F ∈ Ap(Rn+1
+ ), 2 <

p <∞ and y0 > 0. Then, by Theorem 3.1 we complete the proof. ✷
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