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0 Introduction 

Let K be a kernel of the form 
p~(x) , 

/ ( x ) = / x l k + ,  

where P~ is a homogeneous  polynomial  of degree k defined on IR "+ 1. In [Se], [D1]  
and [D2]  it was proved that  if Pk is odd, then for an n-dimensional  surface X in 
their classes, the opera to r  Tz,, defined on a nice class of functions on the surface by 

T~f (x)=p .v .  ~ K(x-y)f(y)da(y), x~X, (2) 
Z 

where da(y) denotes the area measure  on the surface, extends to a bounded  
operator  on L2(Z). It follows that, if L(x) is odd, homogeneous  of degree - n ,  and 
real-analytic away from 0 with a good enough radius of convergence on 
IRn+I  k .J{oo},  then the associated opera to r  defined as in (2) by using the kernel 
L gives rise to an L2-bounded opera to r  on the surface (see [Se]). Similar results on 
Lipschitz surfaces were established earlier in [ C M c M ]  and [ C D M ] ,  by using the 
rotation method,  based on L2-boundedness  of the Cauchy  integral of Calder6n 
along Lipshitz curves. Not ice  that  the ro ta t ion  method  can only produce odd 
kernels. It is natural  to ask what  happens  when the kernels of the form (1) are even. 
When ~" = IR", it was proved  that  (see [St, SW], for example) a sufficient condit ion 
for Ta, to be L2(IR n) bounded  is that: 

S P ~ ( x ) d x = 0 ,  (3) 
Sn I 

where dx is the area measure  on the ( n -  1)-unit sphere S" 1. It  is known that  (3) is 
also a necessary condit ion for boundedness  I-J]. In this paper  we will prove  that  if 
an even kernel gives rise to an L2-bounded opera tor  on every member  of a set of 
hyperplanes of a certain variety of directions; or if it gives rise to an L2-bounded 
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operator  on a surface with a set of tangent hyperplanes of a certain variety of 
directions, then the kernel must  be identically zero. In our theorem, however, we 
will make a weaker assumption than L2-boundedness of Tz, in terms of a pointwise 
property of the associated maximal singular integral operator.  

1 Statement of results 

Let K be a kernel of the form (1). We assume throughout  this paper that Pk is 
a non-trivial even function, which means that k is a positive even integer. Without  
loss of generality, we assume that the coefficients of Pk are real numbers and the test 
functions under  consideration are real-valued. We also assume that Pk is not 
divisible by Ix I 2 

To simplify our argument  we assume that all the surfaces under consideration 
are n-dimensional orientable connected smooth  surfaces each having a nowhere 
vanishing normal  vector field. We will be talking about  a set of surfaces together 
with the above-ment ioned normals. For  a given even kernel of the form (l) and 
a surface Z as specified, it might not be possible to define a principal value singular 
integral as in (2). Nevertheless, we can always define the following maximal 
operator:  

7 ~ f ( x ) = s u p  I ~ K ( x - y ) f ( y ) d a ( y ) [ ,  x ~ Z .  (4) 
e > O  yEX, I x - y [  >r, 

We will call an open ball oflR "+ 1 a Z-ball if the centre of the ball is in Z. For  a fixed 
kernel K of the form (1) and a set of surfaces Zi, ieI ,  we define 

.~r = {xelR "+ 1 : 3 i =  i(x)eI, 3 2 i -  ball B such that x e Z i n  B, 

and 

and T*,ZB(x)< oo} 

J V ( I ) =  {neS":  3 x e , ~ ( I )  such that  n=nx, the normal  to El(x) at x} . 

In this way, every x in s~'(l) corresponds to some points on the n-dimensional unit 
sphere S". If I contains only a single point, as we will consider in Corol lary 2, we 
denote the corresponding objects by ~ and JV, respectively. 

We call N a k-lattice array on S", if there are n +  1 sets N1 . . . . .  N , + l ,  each 
consisting of k + 1 distinct real numbers,  and N consists of the projection points 
onto  S" of the Cartesian product  N1 x �9 �9 �9 x N,+1 c ' IR "+ 1. 

If  P is a polynomial ,  the notat ion P - -  0 means that all the coefficients of P are 
zero. There are different conditions on the zero set of a polynomial  that guarantee 
the polynomial  to be zero (see Lemma 3 below, for example). 

N o w  we are ready to state our  theorem. 

Theorem 1 Let K be a kernel of the form (1) and Z i, iE I, be a set of surfaces. I f  the set 
JV(I) contains a k-lattice array or a measurable set of positive measure on S", thel~ 
K = 0 .  

The theorem is stated in terms of the maximal singular integral operator.  To apply 
it to the associated singular integral operators,  in case they exist, we need the 
following notion. 



Homogeneous even kernels on surfaces ~71 

We will call an n-dimensional  smooth  surface Z an admissible surface with 
respect to the kernel K, if there is an opera to r  T,. satisfying the following conditions: 

(i) Tz maps  L~(X), the space of L ~ functions with compac t  supports,  into 

(ii) Tr extends to a bounded  linear opera to r  on L2(X); 
(iii) For  every f e L ~ ( X ) ,  

Tz f (x )=~ K ( x - y ) f ( y ) d a ( y ) ,  for x e { s u p p f }  c , 

where L'(X) are the L" spaces of functions defined on Z with respect to the area 
measure da(y). If an admissible surface happens  to be a graph, then in terms of the 
parametr izat ion by IR", Tx is just a so called C a l d e r 6 n - Z y g m u n d  opera tor  with 
standard kernel K (see [J]), 

References [Se], [D1]  and [D2]  gave two kinds of admissible surfaces with 
respect to odd kernels, each consisting of a wide class of surfaces and neither 
containing the other. In both  cases it was assumed that  the area of the surface 
inside an n-sphere centred at a point  on the surface is equivalent to the area of the 
sphere. A surface X of Semmes '  type is smooth  and IR ~+ I \X  satisfies a p roper ty  
similar to Whitney 's  decomposi t ion  in the s tandard case (see [Se]); and a surface of 
David's type is assumed to have a paramet r iza t ion  satisfying certain est imates (see 
[D2]). 

Remark. If X is admissible, then the associated singular integral opera tor  is locally 
L2-bounded. F rom the s tandard C a l d e r 6 n - Z y g m u n d  opera tor  theory, the maxi-  
mal opera to r  T ' i s  locally L2-bounded,  and so for any E-ball B, 

T * Z B ( x ) < ~  a.e. x ~ Z c ~ B .  

It follows that  xe~r  for a.e. xeZ .  
We will somet imes denote, for xEIR,+ 1, x = (x, x,+ 1), where 

x=(x~ . . . . .  x,)~lR". 
The theorem has the following easy corollaries. 

Corollary 1 Let IHi, ieI,  be a set of admissible hyperplanes with respect to an even 
kernel of the form (1). I f  the set of the normals of these hyperplanes contains a k-lattice 
array or a measurable set of positive measure on S", then K = O. In particular, let e be 
an arbitrary positive number. I f  every hyperplane in the sector S ~ = { x =  
(x, x, + 1)e IR" + 1 : I x, + 1 t _-< I x ] tan e} is admissible with respect to the kernel K, then 
K = 0 .  

The following corol lary is related to only one surface. 

Corollary 2 Let K be a kernel of the form (1) and Z be an admissible surface with 
respect to the kernel K. I f  the set of the normals of X contains a k-lattice array or 
a measurable set of positive measure on S", then K =0.  

2 Proofs of the theorem and the corollaries 

!'roof of the theorem. First, let us fix a normal n~o/~(I). Let x s d ( 1 )  be such that 
~ = nx. From the definition of d ( I ) ,  there is an index ieI, and a Zi-ball B such that 
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x~X~nB and 

T*,ZB(x)=supl ~ K ( x -  y)da(y)l < oo . 
e > O  y~Z'i,c~B, l x - y [  >e 

To simplify our notation we temporarily suppress the subscript i. 
We start with the following lemma. 

Lemma 1 I f  Tx is the tangent hyperplane of 2; at x, then 

Pk(x) dx = 0 ,  (5) 
S"~ (T x - x) 

where Tx -x - -  { y - x : y e T x  }, the hyperplane that passes through the origin and has 
the same direction as Tx does, and dx denotes the normalized (n-1)-dimensional 
spherical area measure on S" ~ ( T x -  x). 

Proof. Since there is a local parametrization of )2 at x, there is a Z-ball B1 centred 
at x and contained in B such that inside B1 both r and Tx can be parametrized by, 
say, the first n variables. Write a typical element x oflR "+ 1 as x =(x, x,+ 1). Denote 
by a and t the parametrizations of 2; and T, respectively. So, for example, the piece 
of Z inside the ball B1 consists of the points {(y, a(y))}, where y varies in the 
projection ball B1 of B1 onto IR". 

For  every e > 0, 

T~ z~(~) = ~ K ( x -  y) d~(y) 
yEXc~B~,rx~ yJ >e 

+ ~ K(x--y)da(y).  
yEZc~(B\,B1),]x y] >e 

Notice that the second integral of the above sum is uniformly bounded with respect 
to e, and, therefore, so is the first integral. 

Using the parametrization, the last mentioned fact can be written as 

I ~ Pk((X'a(x))- (Y 'a(Y)))x /~ 'Da(Y) '2dYl  <C 
{ , : 6 > l y - - x i > e }  l( x' a(X))--(y, a(y))t k+" 

where C is a constant independent of e,, ,5 is the radius ofB~, D = ( D 1 , . . . ,  D,) and 

d 
D~=~x~x j, j = l , 2  . . . . .  n + l .  

Consider the corresponding integral on the tangent hyperplane: 

Pk((X, t(x))--(y,  t(y))) x/1 +lDt(y)I 2 dy . (6) 
{Y=6>IY x4>~} I ( X '  t(x))--(y, t(y))l k+" 

The difference between the last two integrals is dominated by 

Pk((X,a(x))-(y,a(y))) ( x / ]  + lDa(y)12_  x/ l  +lDe(x)12 dy 
{y:8>[y  x l>e  } I (X ,  a ( x ) ) - ( y ,  a(y))l k+" 

+ ~ (Pk((X,a(x))--(y,a(y))) Pk((X,t(x))--(y,t(y)))) 
{y:6>Jy--xj>t} I(X, a(X))--(y, a(y))J k+" I(X, t(x))--(y, t(y))l k+" 

�9 ~l+]Dt(y) lZdy . 
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By using the mean value theorem, the second term of the above sum is dominated 
by 

I ( x , a ( x ) ) - ( y , a ( y ) ) l  k+" I ( x , t ( x ) ) - ( y ,  t(y))[ k+" 

1 
< C  ~ t x _ y l . + ~  I (~ (x ) -a (y ) ) - t ( x ) - t ( y ) ) tdy  

{Y:~>Iy " xl>e} 

1 
< C  ~ I x - y l "  ldY 

{y:0>ly xl >~:} 

< C ,  

where the last constant C depends on 6, and we used the fact that the surface is 
smooth. 

The first term can be estimated similarly, and is also dominated by a constant. 
Therefore, the integral in (6) is uniformly bounded with respect to e. Since the 

mapping t is linear, we have 

sup ~ K(x)dx < C .  
e {y:~>[yl>e,  ye (T  __x) } 

On letting ~-~0, since K is homogeneous, we have that 

S P (x)ax=O. 
S " ~ ( T x - x )  

This concludes the proof  of Lemma 1. 
Now let n vary in .At(I). According to our assumption, the set ~g(I)  contains 

a k-lattice array or a measurable set of positive measure on S". Denote the k-lattice 
array or the measurable set of positive measure on S" by {nz:2eA }, the set of the 
associated tangent hyperplanes by {Tx : 2eA}, and the set of the tangent points by 
{x~:2eA}. We have that 

Pk(x)dx=O, 2 e A ,  (7) 
S"c~(Ta-x~)  

and we have to prove that (7) implies that Pk = O. 
By changing variables, the above can be written as 

Pk(A~x)dx=O, 2 c A ,  (8) 
S" 1 

where Az are rotations such that A~e.+l=nz and dx denotes the normalized 
spherical area measure on S"- 1. To simplify the notation, we suppress the subscript 
)~ for a moment  and write A=Az=(ajz), an ( n + l ) x ( n + l )  or thonormal  
matrix. We therefore have Ae,+l=nx=n=(aj(,+l))tj:l ...... +1, and A x =  

Lemma 2 I f  Q is a homogeneous function of degree k on IR" which satisfies 

Q(x) dx = 0 ,  
S n 1 

~ hen 
Ak,/ZQ=O , 

where A.= Z~= l DE, the Laplacian in the first n variables. 
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Proof If p is the outer unit normal on S"-1, then 

8~Q = kQ " 
8p 

G.I. G a u d r y ,  T. Qian  

Using the relations 

2 
1--aj(n+ l)= ajt , 

/ = 1  

- -a j (n+ 1)ah(n+ 1) ~ ~ af lah l  , 
/ = 1  

where j, h=  1 . . . . .  n+  1, and j # h ,  (10) can be written as 

A,(Pk(AX))= A , + x -  aj(,+l)Dj Pk (Ax), 
\ j = l  

~ n + l  2 where A,+I =z.,j=a Dj, the Laplacian in n+  1 variables. 

Using Green's formula, we have 

0 = k  S Q(x) dx 
S n- 1 

= S ~ ( x )  ax 
S ~ I up 

= ~ A ,Q(x )dx .  
xEIg ", I xl < 1 

Since A,Q is homogeneous of degree k - 2 ,  the above reduces to 

1 

O = ~ r  "+k-a dr" ~ A . Q ( x ) d x ,  
0 S'~ 

and, so, 
Z.Q(x)dx=0. 

Sn 1 

Repeat the above argument k/2 times to deduce that 

A~/2 Q(x)dx =0 . 

Since Q is a polynomial of degree k, the above integrand is a constant. We therefore 
conclude the desired result (also see Lemma 4 below). 

Now let Q(x)=Pk(AX). Using (8) and Lemma 2, we obtain 

A~/z(Pk(AX)) = 0 .  (9) 

So our task has reduced to proving that if (9) holds for all A = A~, 2 e A, then Pk = O. 
A direct calculation gives 
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It follows that (9) can be rewritten as 

o= Akn/2 ( pk(AX) ) 

j = l  
k 

= , , - j = l a J t " + l ) D '  P k + i ~ = 1 \ i }  , + 1 \  ;= la j t '+ l )DJ)  Pk(AX). 

So, 

k -~ i 

which is an equality between P~,s coefficients. 
Taylor's expansion and the above equality give 

t 
Pk(Ae, + 1  )= Pk( (aj(, + 1)) i =1 . . . . . .  +1 ) 

1 ('+1 l)nJ )kpk(O ) 

/ 

1 -- aj(n+ 1)Dj : \ i : ,  ) ek)(0) 

Now consider the polynomial 

Ql (x )=Pk(x )_ l x l 2  1 1)k+ 1 V(- 

1 -  Dj/ ek(0)},  
"= \ j--~a 1 I X l  } ,/ 

where we treated xj as constants when we applied the differential operators Dj. 
Q1 is therefore a homogeneous polynomial of degree k on IR "+1 and satisfies 

QI(Ae ,+I )=O . (11) 

Equation (1 l) holds in fact for all A~e,+ 1 - - - -  i~x~, )~EA. By using the following lemma 
we can conclude that Q1 = O, and therefore Pk is divisible by Ix 12. This is a contra- 
diction if Pk # O. 

Lemma 3 Assume that Q is a homogeneous polynomial o f  degree k defined on IR" + x 
~vith real coefficients. I f  it vanishes on a k-lattice array, or on a measurable set 
qf positive measure on S', then Q = O. 

Proof Let us first deal with the case in which Q vanishes on a k-lattice array. 
Owing to the homogeneity of Q, the assertion is a consequence of the following 
algebraic proposition stated in [Y]: 

Proposition Let  R(u l ,  u 2 . . . . .  Urn) be a polynomial in the variables ul , u2 . . . . .  Um 
with real coefficients. Suppose that the degree o f  R in uj is not more than n j, 
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j =  1, 2 . . . . .  m. I f  there is an m-Cartesian product: 

S = S l x S 2 x " "  x S m ,  

where S~ contains nj + 1 elements, and R vanishes on S, then R = O. 

The p ropos i t i on  is a consequence of the fundamenta l  theorem of a lgebra  and 
induct ion.  

N o w  we deal  with the second case in which Q vanishes on a measurab le  set of 
posi t ive measure  on S". If Q+O,  consider  the zero set Z of Q: 
Z = {xelR "+ 1: Q(x)= 0}. We will prove  that  r e ( Z ) =  O, where m denotes  the (n + 1)- 
d imens iona l  Lebesgue measure.  I t  will then follow that  the zero set on the unit 
sphere S" is a null  set with respect to the n-dimensional  spherical  area  measure,  
which is a contradic t ion;  and  therefore Q = O. Tha t  re(Z)= 0 is a consequence of the 
fol lowing more  general  

L e m m a  4 Let R be a non-trivial polynomial defined on IR" + 1 with real coefficients. 
I f  Z =  {x~lR "+ 1: R(x)=0},  the zero set of R, then m(Z)=0.  

Proof We use induct ion.  When  n = 0, the asser t ion follows from the fundamenta l  
theorem of algebra,  and the fact that  finite sets are null. F o r  general  n, we have 

F o r  every fixed x ,  + 1, Z . . . .  = {x ~IR" : (x, x ,  + 1)e Z } is the zero set of the po lynomia l  
Q ( ' ,  x ,+ 1) in n variables.  By the induct ion  hypothesis ,  the n-d imensional  measure 
of Z . . . .  equals  0, i.e. 

S Zz(X,X.+l)dx=O, 
~ n  

and so by using the F u b i n i - T o n e l l i  theorem,  m ( Z ) =  0. This concludes  the p r o o f  of 
the lemma,  and so tha t  of Theorem 1. 

Coro l l a ry  1 is s t ra ight forward;  and  we will p rove  only Coro l l a ry  2. F r o m  the 
r emark  abou t  admiss ible  surfaces in Sect. 1, it follows that  d is dense in L" with 
respect  to the induced  topo logy  on S. 

Since 

j" ek(y) dy (12) 
Snc~(Tx- x) 

is con t inuous  in xe2~ and vanishes on d (see L e m m a  1), (12) too vanishes on Z, 
N o w  we are in the pos i t ion  as in (8), and  the same reasoning gives Pk-= 0. 

Note added in proof. We are grateful to S. Semmes for pointing out that, if the even nonzero 
kernel K is not homogeneous, it may still give rise to a bounded operator on L 2, provided it 
satisfies supplementary conditions, for instance boundedness of truncated integrals on all 
k-hyperplanes. For a comprehensive account, see Part III of G. David, Wavelet and singular 
integrals on curves and surfaces. Lecture Notes Math.. Springer-Verlag, vol. 1465 (1991); also, the 
article by R. R. Coifman and S. Semmes, L 2 estimates in nonlinear Fourier analysis. Proceedings 
of Harmonic Analysis, Sendai. Lecture Notes Math.. Springer-Verlag, 79-95 (1990). 
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