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ABSTRACT
The existing frequency-domain-based iterative learning control (ILC)methods are highly dependent
on the mathematical models of the controlled systems. For linear discrete-time single-input single-
output (SISO) systems with unknown mathematical models, this paper tries to present fully data-
driven ILC designs in frequency domain. With the help of support vector machine (SVM), the input-
output data of the linear discrete-time SISO system at the first repetition is utilised to constitute an
adaptive Fourier decomposition (AFD)model. Then, basedon theAFDmodel, a P-type ILC lawandan
extendedD-type ILC lawwithdata-drivendetermining techniques for learninggains arepresented. It
is noted that comparingwith the conventional D-type ILC law, the newly proposed extendedD-type
ILC law exhibits superior tracking characteristic due to involving the frequency information during
the ILC process. A numerical example is utilised to illustrate the effectiveness of the proposed ILC
algorithms with the data-driven determining techniques for learning gains.
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1. Introduction

Iterative Learning Control (ILC) is a control method-
ology which focuses on improving the tracking per-
formance of dynamic system that performs the same
task repetitively over a fixed time interval. It allows a
controller to learn from previous tasks and determine
a feedforward control input which forces the system
output to track a given reference trajectory. Recent
three decades have witnessed a renascent interest in
ILC designs (Meng & Moore, 2020; Shen & Zhang,
2017; Xiong et al., 2016; Xu, 2011; Zhang et al., 2010)
with extensive applications in industrial robots (Cheah
et al., 1994), manufacturing (Zhao et al., 2015), traf-
fic systems (Yu et al., 2018), and chemical processes
(Mezghani et al., 2002), etc.

Hitherto, the existing ILC algorithms have been
designed mainly in time domain, such as contraction
mapping-based ILC (Meng & Moore, 2020; Sun et al.,
2017), adaptive ILC (Li et al., 2016; Shao & Xiang,
2019; Xu, 2016), norm-optimal ILC (Yu et al., 2018),
point-to-point ILC (Freeman, 2012), terminal ILC
(Chi et al., 2014), and hybrid ILC (Ouyang et al., 2006).

CONTACT Xiao-Dong Li lixd@mail.sysu.edu.cn School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, People’s
Republic of China

Many of the aforementioned ILC methods are repre-
sented in a proportional-plus-integral-plus-derivative
(PID)-type formation (Kurek & Zaremba, 1993; Shen
& Zhang, 2017; Xu, 2011). To estimate or determine
the learning gains existed in these PID-type ILC laws,
relevant parameter information of the controlled sys-
tem are normally required. In recent years, although
generalised Lipschitz condition on controlled system
was required, data-driven ILC had attracted consider-
able attention (Bu et al., 2018; Yu et al., 2020) due to
its effectiveness in removing the need of model knowl-
edge of plants. Therefore, to extend the applications
of the conventional PID-type ILC algorithms, a fully
data-driven technique to determine the learning gains
in the PID-type ILC algorithms, which doesn’t require
relevant model information of the controlled system,
is expected.

Compared with the fruitful ILC results in time
domain, the frequency-domain-based ILC works are
very limited (Ruan & Li, 2014; Ye & Wang, 2006;
Zhang, Wang, & Ye, 2009; Zhang, Wang, Ye, Zhou,
et al., 2009; Zhang et al., 2010). In Ruan and Li (2014),
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the average energy of the ILC tracking errors over a
finite time interval was converted into a quarter of a
summation of fundamental spectrums plus harmonic
spectrums. Then, by analysing the frequency spectrum
features of the ILC tracking errors, sufficient and nec-
essary conditions for monotone convergence of the
ILC tracking errors were presented. In Ye and Wang
(2006), for linear continuous-time single-input single-
output (SISO) systems, a negative learning gain was
used to increase the learnable frequency range in P-
type ILC law through the analysis on contraction con-
dition of the ILC tracking errors in frequency domain.
And in Zhang, Wang, Ye, Zhou, et al. (2009), a mul-
triate cyclic pseudo-downsampled P-type ILC scheme
was proposed and applied to the control of joint 3
which moved in a horizontal plane on a four-axis,
closed-loopDC servo industrial SCARA robot. Exper-
imental results demonstrated that the proposed P-type
ILC scheme could produce a good learning transient
for the desired trajectories with high frequency com-
ponents with/without initial state errors. Furthermore,
the convergence and robustness of the cyclic pseudo-
downsampled ILC scheme in Zhang, Wang, Ye, Zhou,
et al. (2009) were examined analytically, and proved
mathematically inZhang et al. (2010). InZhang,Wang,
and Ye (2009), for linear discrete-time SISO systems, a
cutoff frequency phase-in ILC scheme utilising P-type
ILC law was proposed to deal with initial position off-
set and to improve ILC tracking accuracy. It is worth
noting that to achieve good learning transient and high
tracking accuracy, all the existing frequency-domain-
based ILC designs (Ruan & Li, 2014; Ye &Wang, 2006;
Zhang, Wang, & Ye, 2009; Zhang, Wang, Ye, Zhou,
et al., 2009; Zhang et al., 2010) are highly dependent
on the mathematical models of the controlled systems,
and thus lose the most important feature of ILC sys-
tems. From an engineering point of view, a frequency-
domain-based control technique is sometimes prefer-
able as it may exhibit the spectrum characteristics of
system signals and has the lower computation com-
plexity on convolution operation of time-domain sig-
nals. Therefore, there is a need to exploit data-driven
ILC schemes in frequency domain without utilising
accurate model knowledge on the controlled systems.

To address the unknown model knowledge of the
controlled systems in frequency domain, it should
be noticed that in recent years, a novel Adaptive
Fourier Decomposition (AFD) series was proposed
as a universal approximator to dynamical systems

in frequency domain (Mi & Qian, 2012; Mo et al.,
2015; Qian, 2010; Qian et al., 2011). In AFD theory, a
frequency-domain-based signal is decomposed as an
infinite linear combination of some selected param-
eterised kernel functions. The breakthrough of AFD
is that an easy way to select the poles for the ker-
nel functions one-by-one is found (Qian, 2010; Qian
et al., 2011). Owing to the outstanding approximat-
ing ability of AFD series to nonlinear functions in
frequency-domain, AFD has made much success in
some applications such as stock index trend analysis
(Zhang et al., 2014), image denoising (Wang et al.,
2016), and system identification (Mi &Qian, 2012;Mo
et al., 2015), etc. Numerical examples in Mi and Qian
(2012) demonstrated that the AFD-based frequency-
domain identification algorithm could exhibit a better
performance than the finite impulse response (FIR)
filter and the Laguerre models of Mäkilä (1991).

The objective of this paper is to exploit fully
data-driven ILC algorithms based on AFD for lin-
ear discrete-time SISO systems in frequency domain.
In the AFD-based ILC algorithms, the input-output
data of the linear discrete-time SISO system at the
first repetition/cycle is utilised to constitute an AFD
model, which can well approximate the transfer func-
tion of the linear discrete-time SISO system in statisti-
cal learning sense. During the approximation process,
a SVM technique is employed to determine the coef-
ficients of the AFD series. Then, based on the AFD
model of the linear discrete-time SISO system, a fully
data-driven technique to select the learning gain in
the P-type ILC law is presented. Furthermore, a novel
extended D-type ILC law, which utilises the frequency
information of the ILC system, is proposed. To the best
of authors’ knowledge, this study is the first attempt
to apply the AFD theory to ILC designs in frequency
domain. Notably, several data-driven ILC techniques
based on model approximation with basis functions
were ever presented in Bolder and Oomen (2015) and
Bolder et al. (2014), but they were designed in time
domain. The main features of the paper and its con-
tribution relative to the related works are summarised
as follows: (1) A novel AFD series with SVM appli-
cation is used to approximate the transfer function of
the linear discrete-time SISO system, which operates
over a finite time interval. (2) Different from other
frequency-domain-based ILC designs, the proposed
ILC algorithmswith determining techniques for learn-
ing gains are fully dependent on the input-output data
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of the linear discrete-time SISO system, and don’t
require any model information of the controlled sys-
tem. (3) The extended D-type ILC law involves the
frequency information during the ILC process, and
thus exhibits more superior tracking characteristic to
the conventional D-type ILC law.

The remainder of this paper is organised as follows:
Preliminaries and problem formulation are exhibited
in Section 2. Section 3 presents the AFD-based ILC
designs in frequency domain. The simulation example
is illustrated in Section 4. Finally, Section 5 concludes
this paper.

Notations

H Complex Hilbert space
X Real Hilbert space
C Complex space
R Real space
D Unit disc
H2(D) Hardy space on D

f̄ denotes the complex conjugation of f , and 〈·, ·〉
denotes the inner product of the Hilbert space.

2. Preliminaries and problem formulation

2.1. The relatedmathematical theory to complex
SVM

In this paper, AFD combined with complex SVM is
used to design ILC algorithms in frequency domain.
Just like real SVM, the complex SVM is firmly
grounded in the framework of statistical learning the-
ory, which solves the minimised upper bound of
the generalisation errors embodying the sum of the
approximating errors of input-output complex data
with a confidence interval (Mo et al., 2015; Shawe-
taylor & Cristianini, 2002).

Let S be an input-output complex data set, which is
typically given by

S = {(U(1),Y(1)), (U(2),Y(2)), . . . , (U(l),Y(l))} (1)

where U(r) ∈ H and Y(r) ∈ C, (r = 1, 2, 3, . . . , l) rep-
resent the input data and the output data in S, respec-
tively. Suppose that G̃(·) is a bounded linear function
on the complex Hilbert space H. According to Riesz
representation theorem, G̃(·) is incurred by an ele-
ment w of H. Let w = wRe + jwIm ∈ H, (wRe,wIm ∈
R). Then, for any U = URe + jUIm ∈ H, (URe,UIm ∈

R), there is G̃(U) = 〈U,w〉. Furthermore,

G̃(U) = 〈
URe + jUIm,wRe + jwIm

〉 = G̃Re(U)

+ jG̃Im(U)

where G̃Re(U) = 〈URe,wRe〉 + 〈UIm,wIm〉 and G̃Im(U)

= 〈URe,−wIm〉 + 〈UIm,wRe〉.
For the input-output complex data set S in (1),

some results bound on the generalisation error of com-
plex SVM to complex function G̃(·) are presented as
follows:

Definition 2.1: Consider the regression analysis of
the input-output complex data set S in (1) with the
set ℘ of complex linear functions on H. For G̃(·) ∈ ℘,
an approximating error θ̂ of SVM, and a loss mar-
gin χ , (0 < χ ≤ θ̂), margin slack variables ξr and ςr,
(r = 1, 2, 3, . . . , l) are defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξr = ξr((U(r),Y(r)), G̃(·), θ̂/2,χ/2)
= max{0, |G̃Re(U(r)) − Re(Y(r))| − (θ̂ − χ)/2}

ςr = ςr((U(r),Y(r)), G̃(·), θ̂/2,χ/2)
= max{0, |G̃Im(U(r)) − Im(Y(r))| − (θ̂ − χ)/2}

(2)
where G̃Re(U(r)) = 〈

U(r)
Re ,wRe

〉+ 〈
U(r)

Im ,wIm
〉
, G̃Im(U(r))

= 〈
U(r)

Re ,−wIm
〉+ 〈

U(r)
Im ,wRe

〉
, andU(r) = U(r)

Re + jU(r)
Im ,

(U(r)
Re , U

(r)
Im ∈ R).

As a consequence, themargin slack vectors of input-
output complex data set S with the complex function
G̃(·) ∈ ℘ are given by

{
ξ = ξ(S, G̃(·), θ̂/2,χ/2) = (ξ1, ξ2, . . . , ξl)T

ς = ς(S, G̃(·), θ̂/2,χ/2) = (ς1, ς2, . . . , ςl)T

(3)

Lemma 2.1 (Mo et al., 2015): Let ℘ be the set of
complex linear functions on H. Fix θ̂ ∈ R+ and a prob-
ability distribution on the space H × C. If we restrict
the inputs to the ball B(0, r̂) = {U ∈ H : |U| ≤ r̂}, then
there exists a constant c such that with probability at
least 1–δ over the randomly drawn input–output com-
plex data set S of size l and for all χ , 0 < χ ≤ θ̂ , the
probability that a function G̃(·) ∈ ℘ with its represen-
tation w in H has error larger than θ̂ on a randomly
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chosen input within B(0, r̂) is bounded by

q(l, δ,χ)

= c
l

⎛
⎜⎜⎜⎝ln2(l) ·

4||w||22r̂2 + ||ξ ||22 ln(2/χ)

+||ς ||22 ln(2/χ)

χ2 + 2 ln
2
δ

⎞
⎟⎟⎟⎠
(4)

with ξ , ς defined in (3). In other words, with the nota-
tion errP(G̃(·), θ̂ ) = P{(U,Y) ∈ H × C : |G̃(U) − Y|
≥ θ̂}, there holds Pl{S : errP(G̃(·), θ̂ ) ≤ q(l, δ, γ )} ≥
1 − δ, where Pl is the product probability induced by P
over (H × C)l.

Lemma 2.2: (Struble, 2013): Let Y be a set and K :
Y × Y → R be a function. If K is a kernel function, then
there exists a Reproducing Kernel Hilbert Space (RKHS)
of functions on Y such that K is the reproducing kernel
of real Hilbert space X.

According to Lemma 2.2 and Riesz representation
theorem, for all y ∈ Y , there exists a unique element
K(·, y) of X with the reproducing property f (y) =〈
f ,K(·, y)〉

X
, where f ∈ X. Meanwhile, for any z ∈

Y , supposed that f = K(·, z), then K(y, z) = f (y) =〈
f ,K(·, y)〉

X
= 〈

K(·, z),K(·, y)〉
X
. Thus, we can define

the reproducing kernel of X as a function K : Y ×
Y → RbyK(y, z) = 〈

K(·, z),K(·, y)〉
X
for any y, z ∈ Y .

It is easily obtained that the reproducing kernelK(y, z)
is positive definite and symmetric.

The regression analysis of complex SVM is essen-
tially to formulate an unknown function G̃(·) with the
input-output complex data set S via minimising the
objective function q(l, δ,χ) in probability sense. Thus,
a complex support vector regression algorithm should
be used to minimise the objective function q(l, δ,χ)

in (4) to improve the approximating ability of complex
SVM.

2.2. ILC and the AFD approximationwith SVM

Consider the linear discrete-time SISO system which
operates repeatedly over the discrete-time instants
{0, 1, 2, . . . ,N},{

xk(n + 1) = Axk(n) + Buk(n),
yk(n) = Cxk(n),

(5)

where k = 0, 1, 2, · · · · · · denotes the repetition times,
and n ∈ {0, 1, 2, . . . ,N} is the discrete-time index.

xk(n) ∈ R
n,uk(n) ∈ R

1, and yk(n) ∈ R
1 represent sys-

tem state, system input, and system output, respec-
tively. For the linear discrete-time system (5), if it is
obtained by sampling a linear continuous-time system
with sampling period T, then the running time of the
output yk(n) is NT in one repetition.

As the iterative initial state satisfies xk(0) = 0 ∈ R
n

for k = 0, 1, 2, · · · , it is known that the linear discrete-
time system (5) can be converted into the following
form in frequency domain,

Y(z−1) = G(z−1) · U(z−1), z ∈ D (6)

whereG(z−1) = C(z−1I − A)−1B is the transfer func-
tion of the linear discrete-time system (5).

For the linear discrete-time system (5) or (6),
given a desired output trajectory Yd(z−1) at ω ∈
[0,π/T) for z−1 = ejωT , the task of ILC design in fre-
quency domain is to iteratively determine a control
input sequence {Uk(ejωT)} such that the system out-
put {Yk(ejωT)} can well track the desired trajectory
Yd(ejωT) at ω ∈ [0,π/T) as the repetition times k goes
to infinity.

Regarding the transfer function G(z−1), z ∈ D,
it is continuous on |z| = 1. We have the following
Lemma 2.3.

Lemma 2.3: Let G(z−1), z ∈ D be the transfer func-
tion of the linear discrete-time system (5). As the
frequency-domain-based input–output data set V =
{(ϑr,G(ejϑr)), r = 0, 1, . . . , N̂ − 1} is obtained by sam-
pling the frequency response of the linear discrete-time
system (5) with impulse input signal δ(n), where ϑr =
2πr
N̂
, and N̂ denotes the number of sampling points on

the boundary of the unit disc D. If

Ĝ(z−1, N̂) = 1
N̂

N̂−1∑
r=0

G(ejϑr)e−jϑr

e−jϑr − z
(7)

then, G(z−1) = lim
N̂→+∞

Ĝ(z−1, N̂).

The proof of Lemma 2.3 is provided in Appendix 1.
From Lemma 2.3, we know that the transfer func-

tion G(z−1) can be approximated by Ĝ(z−1, N̂) as the
number N̂ of sampling points is large enough. In Mi
andQian (2012), it was proved that forϑ ∈ [0, 2π) and
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ϑ + �ϑ ∈ [0, 2π), there is

|G(z−1) − Ĝ(z−1, N̂)|
< sup

�ϑ≤
∣∣∣ 2πN̂

∣∣∣
|G(ej(ϑ+�ϑ)) − G(ejϑ)|

On the other hand, it is known that the ILC tech-
niques are often used in the dynamical systems with-
out accurate model knowledge. For the transfer func-
tion G(z−1) = C(z−1I − A)−1B of the linear discrete-
time system (5), as the matrices A, B, and C in (5)
are unknown, G(z−1) cannot be available. An input-
output data set-based approximating technique is thus
needed. For this purpose, using the SVMandAFD the-
ory, we have the following Theorem 1 addressing the
input-output data set-based approximation to G(z−1)

in probability sense.

Theorem 2.1: For the transfer function G(z−1) of the
linear discrete system (5), and the function Ĝ(z−1, N̂)

given in (7), assume that the data set S = {(U(1),Y(1)),
(U(2),Y(2)), . . . , (U(l),Y(l))}, l ≤ N̂ with Y(m) = Ĝ
(1/U(m), N̂),m = 1, 2, . . . , l is obtained by randomly
taking U(m) ∈ D. Let G̃(z−1) = ∑l

m=1
φ̄m

1−U(m)z̄ , where
φm = (αm − α∗

m) − j(βm − β∗
m) with αm,α∗

m,
βm,β∗

m determined by (B.12∼13) in Appendix 2. Then,
the probability, in which the inequality
|G(z−1) − G̃(z−1)| < θ is derived with probability at
least 1 − δ, is larger than 1 − q(l, δ,χ), where q(l, δ,χ)

is the same as in (4) of Lemma 2.1 and θ = θ̂ +
sup

�ϑ≤
∣∣∣ 2πN̂

∣∣∣
|G(ej(ϑ+�ϑ)) − G(ejϑ)| with θ̂ the error of

approximating Ĝ(z−1, N̂) by G̃(z−1) and ϑ ,ϑ + �ϑ ∈
[0, 2π).

According to the AFD theory on H2(D), the
estimated transfer function G̃(z−1) can be repre-
sented as a linear combination of parameterised
Szegö kernels (Mo et al., 2015). That is G̃(z−1) =∑l

m=1
�

Cm · K(U(m), z), where z ∈ D and
�

Cm, (m =
1, 2, · · · , l) is the coefficient of parameterised Szegö
kernel K(U(m), z). In Theorem 1, there are

�

Cm = φ̄m
and K(U(m), z) = 1

1−U(m)z̄ , (m = 1, 2, · · · , l).
In Theorem 1, regarding the approximating error

θ to transfer function G(z−1) by using the AFD
series G̃(z−1), from the notation θ = θ̂ + sup

�ϑ≤
∣∣∣ 2πN̂

∣∣∣
|G(ej(ϑ+�ϑ)) − G(ejϑ)|, where ϑ ∈ [0, 2π) and ϑ +

�ϑ ∈ [0, 2π), it is noted that θ in fact includes
an approximating error to Ĝ(z−1, N̂) by using the
AFD series G̃(z−1) and a residual error by using
Ĝ(z−1, N̂) to approximate G(z−1) in Lemma 2.3.
Theorem 1 demonstrates theoretically that the AFD
series G̃(z−1) = ∑l

m=1
φ̄m

1−U(m)z̄ can well approximate
the unknown transfer function G(z−1) in probability
sense. Based on the SVM technique and AFD the-
ory, Appendix 2 presents a detailed proof of Theorem
2.1 by utilising Lemmas 2.1–2.3. It is worth noting
that the proof process actually provides an approx-
imating algorithm to transfer function G(z−1) by
using the data set S = {(U(1),Y(1)), (U(2),Y(2)), . . . ,
(U(l),Y(l))}.

Lemma 2.3 and Theorem 2.1 actually constitute
a two-step approximation process of the AFD series
G̃(z−1) to G(z−1). According to Lemma 2.3, G(z−1)

is firstly approximated by Ĝ(z−1, N̂) as the num-
ber N̂ of sampling points is large enough due to
G(z−1) = lim

N̂→+∞
Ĝ(z−1, N̂). Then, the data set S =

{(U(1), Y(1)), (U(2), Y(2)), . . . , (U(l), Y(l))}, (l ≤ N̂)
withY(m) = Ĝ(1/U(m), N̂),m = 1, 2, . . . , l is obtained
by randomly taking U(m) ∈ D. Resultantly, the AFD
series G̃(z−1) = ∑l

m=1
φ̄m

1−U(m)z̄ becomes the estima-
tion of G(z−1).

Remark 2.1: To achieve the above approximation of
G(z−1) by using the AFD series G̃(z−1), according to
Mi and Qian (2012) and Mo et al. (2015), it is essen-
tially required that the poles of G(z−1) are located
within the Unit disc D.

Remark 2.2: Actually, function approximation/
identification issue by using AFD series was ever
addressed in Mi and Qian (2012) andMo et al. (2015).
For subsequent data-driven ILC applications of AFD
approximation, with the results in Mi et al. (2012),
we cannot obtain the convergence of ILC tracking
error in statistical learning sense because the coeffi-
cients of parameterised Szegö kernels inAFD series are
decided according to the maximal selection principle.
While in Mo et al. (2015), the bound of approxima-
tion error with AFD series is not provided such that
the resultant ILC tracking error cannot be well anal-
ysed if the approximation procedure inMo et al. (2015)
is employed.
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3. AFD-based ILC designs in frequency domain

To clearly exhibit the AFD-based ILC approach, a sim-
plified design procedure of ILC in frequency domain is
depicted in Figure 1.

According to Figure 1, for the systemG(z - 1) in (6),
at the initial iteration k = 0, input u0(n) = δ(n) to get
the response signal of G(z - 1) such that a frequency-
domain-based data set V = {(ϑr,G(ejϑr)), r = 0, 1,
. . . , N̂ − 1} is obtained by sampling, where ϑr = 2πr

N̂
.

Then, using the proposed AFD technique with SVM,
the unknown transfer function G(z - 1) is well approx-
imated by G̃(z−1) in statistical learning sense. From
the estimated transfer function G̃(z−1), the learning
gains in the designed ILC laws can be conveniently
determined. In the following, two types of ILC laws
in frequency domain with determination of learning
gains are investigated.

3.1. P-type ILC designwith determination of
learning gain

For the linear discrete-time system (5), the following
P-type ILC law is applied at n ∈ {0, 1, 2, . . . ,N − 1},

uk+1(n) = uk(n) + � · ek(n + 1) (8)

where � stands for the learning gain, and for the
desired output trajectory yd(n), the ILC tracking error
is defined as

ek(n) = yd(n) − yk(n) (9)

It is noted that the P-type ILC law (8) is not new
(Kurek & Zaremba, 1993), but a novel determining

Figure 1. Simplified design procedure of ILC.

scheme for the learning gain � is presented in this
paper.

Correspondingly, the P-type ILC law (8) in fre-
quency domain is written as

Uk+1(ejωT) = Uk(ejωT) + � · ejωTEk(ejωT),

ω ∈ [0,π/T) (10)

with the ILC tracking error in frequency domain

Ek(ejωT) = Yd(ejωT) − Yk(ejωT) (11)

Then, the learning gain � in the P-type ILC law (8)
or (10) can be determined according to the following
Theorem 2.

Theorem 3.1: For the linear discrete-time system
(5), the transfer function G(z - 1) is approximated by
G̃(z−1) = ∑l

m=1
φ̄m

1−U(m)z̄ in Theorem 2.1, and the P-
type ILC law (8) is used. If the learning gain � makes
that

∣∣∣∣∣1 − �ejωT
l∑

m=1

φ̄m

1 − U(m)ejωT

∣∣∣∣∣+ |�|θ < 1,

ω ∈ [0,π/T) (12)

then the probability, in which lim
k→+∞

Ek(ejωT) = 0 is

derivedwith probability at least 1 − δ, is larger than 1 −
q(l, δ,χ), where q(l, δ,χ) is defined in (4) of Lemma 2.1,
and θ ∈ R

+ denotes the approximating error of transfer
function G(z - 1).

Proof: The ILC tracking error at the (k + 1)-th trial
for the linear discrete-time system (5) is represented
as

Ek+1(ejωT) = Yd(ejωT) − Yk+1(ejωT)

= Yd(ejωT) − Yk(ejωT)

− [Yk+1(ejωT) − Yk(ejωT)]

= Ek(ejωT) − [Yk+1(ejωT) − Yk(ejωT)]
(13)

According to (6), for z−1 = ejωT , we have

Yk(ejωT) = G(ejωT)Uk(ejωT) (14)
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From (10), there is

Yk+1(ejωT) − Yk(ejωT)

= G(ejωT)

× [Uk+1(ejωT) − Uk(ejωT)]

= �ejωTG(ejωT)Ek(ejωT) (15)

Substituting (15) into (13), there is

Ek+1(ejωT) = [1 − �ejωTG(ejωT)]Ek(ejωT)

= [1 − �ejωTG̃(ejωT) − �ejωT(G(ejωT)

− G̃(ejωT))]Ek(ejωT) (16)

where G̃(ejωT) is the estimation to the transfer function
G(ejωT).

Since |G(ejωT) − G̃(ejωT)| < θ from Theorem 2.1,
(16) can be converted to

|Ek+1(ejωT)| < (|1 − �ejωTG̃(ejωT)| + |�|θ)

· |Ek(ejωT)| (17)

By Theorem 2.1, G(ejωT) is estimated as

G̃(ejωT) =
l∑

m=1

φ̄m

1 − U(m)ejωT
(18)

Substituting (18) into (17), we have

|Ek+1(ejωT)|

<

(∣∣∣∣∣1 − �ejωT
l∑

m=1

φ̄m

1 − U(m)ejωT

∣∣∣∣∣+ |�|θ
)

· |Ek(ejωT)| (19)

It is concluded that

|Ek(ejωT)|

<

(∣∣∣∣∣1 − �ejωT
l∑

m=1

φ̄m

1 − U(m)ejωT

∣∣∣∣∣+ |�|θ
)k−1

· |E1(ejωT)| (20)

Consequently, from the condition (12), if
∣∣1 − �ejωT∑l

m=1
φ̄m

1−U(m)ejωT

∣∣∣+ |�|θ < 1, we have lim
k→+∞

Ek

(ejωT) = 0.

It is noted that the derivation of lim
k→+∞

Ek(ejωT) =
0 is with a certain probability because the approxi-
mation result |G(ejωT) − G̃(ejωT)| < θ is obtained in
probability sense. From Theorem 2.1, we know that

Pl{P{|G(ejωT)−G̃(ejωT)| ≥ θ}≤q(l, δ,χ)} ≥ 1 − δ

where P(·) accounts for the event probability, and Pl(·)
denotes the product probability induced by randomly
sampling from the data set S of the ILC system. Subse-
quently,

Pl{1 − P{|G(ejωT) − G̃(ejωT)| < θ}
≤ q(l, δ,χ)} ≥ 1 − δ

that is, Pl{P{|G(ejωT) − G̃(ejωT)| < θ} > 1
− q(l, δ,χ)} ≥ 1 − δ. �

Therefore, the probability, inwhich lim
k→+∞

Ek(ejωT) =
0 is derivedwith probability at least 1 − δ, is larger than
1 − q(l, δ,χ). This completes the proof.

Remark 3.1: To design the P-type ILC law (8) for the
linear discrete-time system (5), a challenging work in
applications is to determine the learning gain �. To
guarantee the convergence of the ILC tracking error
ek(n), it is normally required that the learning gain
� should meet the condition ρ(I − CB�) < 1, where
ρ(·) represents the spectral radius of matrix (Kurek &
Zaremba, 1993). As a result, the knowledge on B and
C of the system (5) is in fact required. In this paper,
the presented convergence condition (12) in Theorem
1 is based on the estimated transfer function G̃(z−1),
and does not require anymodel information of the sys-
tem (5). A feasible value of the learning gain � can
be obtained by solving the inequality (12). Therefore,
Theorem 1 with a data-driven determining technique
for the learning gain � extends the applications of the
P-type ILC law (8) to the ‘fully-blind’ linear discrete-
time systems. Furthermore, following a similar pro-
cedure to the case of the P-type ILC law (8), some
data-driven determining techniques for learning gains
in other PID-type ILC laws, i.e. theD-type ILC law, can
be easily obtained.
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3.2. Relation between the feasible range of�in the
P-type ILC law (8) and the approximating error θ

In Theorem 1, the condition (12) of determining
learning gain � ∈ R is closely related to the approx-
imating error θ of the transfer function G(ejωT).
Suppose that G̃(ejωT) = κ(ω) · ejν(ω), where ν(ω) ∈
[0, 2π) and κ(ω) ∈ R

+. From (12), we get

θ <
1

|�| · (1 − |1 − �ejωTG̃(ejωT)|)

= 1
|�| ·

(
1 −

√
1 + �2κ2(ω) − 2�κ(ω)

· cos(ν(ω) + ωT)

) (21)

Let f (�) = 1
|�|

(
1 −

√
1 + �2κ2(ω) − 2�κ(ω)

· cos(ν(ω) + ωT)

)
and

g(�)=−
√
1 + �2κ2(ω) − 2�κ(ω) · cos(ν(ω) + ωT)

+ 1 − �κ(ω) · cos(ν(ω) + ωT).
In Appendix 3, it is proved that g(�) < 0 as 0 <

� <
2 cos(ν(ω)+ωT)

κ(ω)
or 2 cos(ν(ω)+ωT)

κ(ω)
< � < 0.

If � > 0, then we have θ < f (�) = −
�κ2(ω)−2κ(ω)·cos(ν(ω)+ωT)

1+
√

1+�2κ2(ω)−2�κ(ω)·cos(ν(ω)+ωT)
from (21). Resul-

tantly, 0 < � <
2 cos(ν(ω)+ωT)

κ(ω)
is obtained from θ >

0. Subsequently, it can be derived that for each ω ∈
[0,π/T), the function f (�) decreases monotonically
on 0 < � <

2 cos(ν(ω)+ωT)
κ(ω)

due to

∂f (�)

∂�

= g(�)

�2
√
1 + �2κ2(ω) − 2�κ(ω) · cos(ν(ω) + ωT)

< 0.

On the other hand, if � < 0, then we have θ <

f (�) = �κ2(ω)−2κ(ω)·cos(ν(ω)+ωT)

1+
√

1+�2κ2(ω)−2�κ(ω)·cos(ν(ω)+ωT)
from (21).

Thus, 2 cos(ν(ω)+ωT)
κ(ω)

< � < 0 is gotten from θ > 0.
Subsequently, it is obtained that for eachω ∈ [0,π/T),
f (�) increasesmonotonically on 2 cos(ν(ω)+ωT)

κ(ω)
< � <

0 due to
∂f (�)

∂�

= −g(�)

�2
√
1 + �2κ2(ω) − 2�κ(ω) · cos(ν(ω) + ωT)

> 0

Based on the properties of f (�) mentioned above, the
smaller the approximating error θ is, the larger the
feasible range of � can be selected.

3.3. Extended D-type ILC designwith determination
of learning gain

It is known that for the linear discrete-time system (5),
a D-type ILC law was ever proposed in Cheah et al.
(1994) as follows:

uk+1(n) = uk(n) + L · [ek(n + 1) − ek(n)] (22)

In this paper, an extended D-type ILC law is further
suggested for n ∈ {0, 1, 2, . . . ,N − 1},

uk+1(n) = uk(n) + L · [ek(n + 1) − ek(n) − T
π

×
∫ π

T

0
Ek(ejωT)ejωnT(ejωT − 1 − jωT)dω]

(23)

where Ek(ejωT) is the frequency domain form of ek(n),
and L is the learning gain.

The extended D-type ILC law (23) can be trans-
ferred to the following form in frequency domain

Uk+1(ejωT) = Uk(ejωT) + L · [ejωTEk(ejωT) − Ek(ejωT)

− T
π

N−1∑
s=0

e−jωsT
∫ π

T

0
Ek(ejωT)ejωsT

× (ejωT − 1 − jωT)dω] (24)

Applying theDiscreteTimeFourier Transform (DTFT)
Theorem in Tu and Zhang (2008) to (24), we get

Uk+1(ejωT) = Uk(ejωT) + L · [ejωTEk(ejωT) − Ek(ejωT)

−Ek(ejωT) · (ejωT − jωT − 1)]

= Uk(ejωT) + L · jωTEk(ejωT) (25)

According to (25), (13), and (14), we have

Ek+1(ejωT) = (1 − L · jωTG(ejωT))Ek(ejωT) (26)

Theorem 3.2: For the linear discrete-time system
(5), the transfer function G(z−1) is approximated by
G̃(z−1) = ∑l

m=1
φ̄m

1−U(m)z̄ in Theorem 2.1, and the
extended D-type ILC law (23) is used. If the learning
gain L makes that∣∣∣∣∣1 − jωTL

l∑
m=1

φ̄m

1 − U(m)ejωT

∣∣∣∣∣+ ωTθ |L| < 1,

× ω ∈ [0,π/T) (27)

then the probability, in which lim
k→+∞

Ek(ejωT) = 0 is

derivedwith probability at least 1 − δ, is larger than 1 −
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q(l, δ,χ), where q(l, δ,χ) is defined in (4) of Lemma 2.1,
and θ ∈ R

+ denotes the approximating error of transfer
function G(ejωT).

Proof: From (26), it yields

Ek+1(ejωT)

= [1 − jωTLG̃(ejωT)−jωTL(G(ejωT) − G̃(ejωT))]

· Ek(ejωT) (28)

Considering (18) and |G(ejωT) − G̃(ejωT)| < θ in
Theorem 2.1, the following can be further derived
from (28),

|Ek+1(ejωT)|
< (|1 − jωTLG̃(ejωT)| + ωTθ |L|)

· |Ek(ejωT)|

<

(∣∣∣∣∣1 − jωTL
l∑

m=1

φ̄m

1 − U(m)ejωT

∣∣∣∣∣+ ωTθ |L|
)

· |Ek(ejωT)|

<

(∣∣∣∣∣1 − jωTL
l∑

m=1

φ̄m

1 − U(m)ejωT

∣∣∣∣∣+ ωTθ |L|
)k

· |E1(ejωT)| (29)

Consequently, according to (27), we have lim
k→+∞

Ek(ejωT) = 0.
Similar to the subsequent proof process of Theorem

2, we can further show that the probability, in which
lim

k→+∞
Ek(ejωT) = 0 is derived with probability at least

1 − δ, is larger than 1 − q(l, δ,χ). This completes the
proof.

Remark 3.2: It is worth noting that the D-type ILC
law (22) is very noisy from numerical differentiation,
and the bound of ultimate ILC tracking errors is pro-
portional to the noise level. Also, the convergence rate
of the D-type ILC law (22) is slower at lower and
higher frequency ranges (Heinzinger et al., 1992). Thus
the effectiveness of the conventional D-type ILC law
(22) is often decreased by the noise and variety of fre-
quencies involved in control signals, which can be well
demonstrated by the following D-type ILC law (22) in
frequency form,

Uk+1(ejωT)

= Uk(ejωT) + L · [ejωTEk(ejωT) − Ek(ejωT)]

= Uk(ejωT)

+ L ·
[
Ek(ejωT)

+∞∑
i=0

(jωT)i

i!
− Ek(ejωT)

]

= Uk(ejωT)

+ L ·
[
Ek(ejωT)

+∞∑
i=2

(jωT)i

i!
+ jωTEk(ejωT)

]

(30)

According to (30), it is the harmonic frequency com-
ponents Ek(ejωT)

∑+∞
i=2

(jωT)i

i! of error signal that dete-
riorate the performance of the conventional D-type
ILC law.While from the extended D-type ILC law (25)
in frequency form, it can be seen that the original har-
monic frequency components Ek(ejωT)

∑+∞
i=2

(jωT)i

i!
have been fully excluded. Consequently, as illustrated
in Figure 3 of the simulation example in next section,
compared with the results of the conventional D-type
ILC law (22), the convergence rate and accuracy degree
of the ILC tracking are greatly improved by using the
extended D-type ILC law (23). �

3.4. Relation between the feasible range of L in the
extended D-type ILC law (23) and the approximating
error θ

In Theorem 3.1, the condition (27) of determin-
ing learning gain L in the extended D-type ILC
law (23) is closely related to the approximating
error θ of the transfer function G(ejωT). Similar
to the analysis in Section 3.2, from (27), we can
infer that θ < 1

ωT|L|(1 − |1 − jωTLG̃(ejωT)|). Assum-
ing that G̃(ejωT) = μ(ω)

ωT · ej(ν(ω)− π
2 ), where ν(ω) ∈[

π
2 ,

5π
2
)
and μ(ω) ∈ R

+, we get

θ <
1

ωT|L|
(
1 −

√
1 + L2μ2(ω) − 2Lμ(ω) cos ν(ω)

)

Let h(L)= 1
ωT|L|

(
1−

√
1+L2μ2(ω)

−2Lμ(ω) cos ν(ω)

)
. If L > 0,

then θ < h(L) = − Lμ2(ω)−2μ(ω) cos ν(ω)

ωT
(
1+

√
1+L2μ2(ω)−2Lμ(ω) cos ν(ω)

) ,
where 0 < L <

2 cos ν(ω)
μ(ω)

can be obtained by θ > 0.
It can be derived that for each ω ∈ [0,π/T), h(L)
decreases monotonically on 0 < L <

2 cos ν(ω)
μ(ω)

. Fur-
thermore, if L < 0, we get 2 cos ν(ω)

μ(ω)
< L < 0, and for

each ω ∈ [0,π/T), h(L) increases monotonically on
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2 cos ν(ω)
μ(ω)

< L < 0. As a result, it is concluded that the
smaller the approximating error θ is, the larger the fea-
sible range of the learning gain L can be chosen for the
extended D-type ILC law (23).

4. Simulation example

In this section, an example is presented to show the
effectiveness of the proposed AFD-based ILC designs
in frequency domain for linear discrete-time SISO
systems.

Example 4.1: Consider the ILC issue of the following
linear discrete-time SISO system (Zhang et al., 2005)

G(z−1) = 0.02277z−1

z−2 − 1.659z−1 + 0.683
(31)

The desired output trajectory of the system (31) is
yd(n) = 1 − e−0.4n for n = 0, 1, 2, .., 100. In the ILC
process of the system (31), the iterative initial output
is yk(0) = 0 for k = 0, 1, 2, ... The accuracy of ILC is
evaluated by the following average error power index
FEE(k) in frequency domain,

FEE(k) = 1
p

p∑
i=1

|Ek(ejωiT) |2 (32)

where p = 232 is set as the maximum number of i in
ωi, andωi is evenly sampled at [0,π/T).With the same
parameter settings of T = 1s, l = 640, χ = 0.001, and
δ = 0.06, the simulation consists of the following three
parts:

(1) The transfer function G(z−1) is approximated
by G̃(z−1). Input u0(n) = δ(n) to the system
(31), and then obtain a frequency-domain-based
data set V = {(ϑr,G(ejϑr)), r = 0, 1, . . . , N̂ − 1}
with ϑr = 2πr

N̂
and N̂ = 640. Based on the data

set V and a SVM software program, G̃(ejωT) is
obtained by following the procedure introduced
in Section 2. As the approximating error is set
as θ = 0.04, Figure 2 presents the curve of the
approximating function G̃(ejωT) at ω ∈ [0,π). As
a comparison, the curve of the transfer function
G(ejωT) is also given in Figure 2. Clearly, the
effect of the AFD-based approximationmethod to
transfer function G(ejωT) is very promising.

(2) Apply the P-type ILC law (8) and the extended
D-type ILC law (23) to the system (31). As the

Figure 2. Curves of the approximating function G̃(ejωT) and the
transfer function G(ejωT).

approximating error of transfer functionG(z−1) is
set as θ = 0.04, with the approximating function
G̃(ejωT), ω ∈ [0,π) obtained in (1), the learning
gains in the P-type ILC law (8) and the extended
D-type ILC law (23) can be determined by a
searching algorithm to satisfy the convergent con-
ditions (12) and (27), respectively. In this example,
they are taken as � = 1.31 and L = 1.31. With
the initial control input u0(n) = 1.8 · sin(n) for
n = 0, 1, 2, .., 99, Figure 3 presents the profiles of
the ILC tracking error indexFEE(k) by using the P-
type ILC law (8) and the extended D-type ILC law
(23), respectively. And the actual tracking perfor-
mance of the system output yk(n) to the desired

Figure 3. Profiles of the ILC tracking error index FEE(k) at different
iterations by using the P-type ILC law (8), the D-type ILC law (22),
and the extended D-type ILC law (23), respectively.
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Figure 4. Actual tracking performance of the system output
yk(n) to the desired trajectory yd(n) at iterations k = 25, k = 38,
and k = 200, respectively, with the P-type ILC law (8).

Figure 5. Actual tracking performance of the system output
yk(n) to the desired trajectory yd(n) at iterations k = 25, k = 38,
and k = 500, respectively, with the extended D-type ILC law (23).

trajectory yd(n) at different iterations is given in
Figures 4 and 5, respectively. For further compar-
ison, the ILC tracking error index FEE(k) obtained
by using the traditional D-type ILC law (22) with
the learning gain value L = 1.31 is also exhibited
in Figure 3. Clearly, it is observed from Figure 3
that the ILC tracking error index FEE(k) can be
uniformly driven to zero by using the three types
of ILC laws. The extended D-type ILC law (23) is
a little complicated in construction, but it makes
the ILC process convergent in less iterations than
the D-type ILC law (22) because the original har-
monic frequency components of the ILC tracking
error are fully filtered by using the extended D-
type ILC law (23). Remark 3.2 on the extended

Table 1. Convergence times and convergence rate for the P-type
ILC law (8) and the extended D-type ILC law (23).

Total times
Convergence

times
Convergence

rate

The P-type ILC law 300 283 94.33%
The extended D-type ILC law 300 288 96.00%

D-type ILC law (23) is thus illustrated. In addi-
tion, it is worth noting that the P-type ILC law (8)
makes the ILC tracking error index FEE(k) to con-
vergence very quickly. However, as indicated in Ye
andWang (2006), compared to theD-type ILC law
(22), and furthermore, the extended D-type ILC
law (23), the P-type ILC law (8) may introduce
a bigger transient in the ILC process because it
doesn’t capture the direction or trend of tracking
errors that occurred in the previous operations.

(3) To further demonstrate the convergence of the
proposed AFD-based ILC designs in probabilis-
tic sense, the above simulations are repetitively
done 300 times respectively by using the P-type
ILC law (8) and the extended D-type ILC law
(23). Table 1 presents the convergence times and
rates of ILC tracking errors by using the two ILC
laws. It is noted that the computational result of
SVM program shows q(l, δ,χ) = 0.03 with the
parameter settings at the beginning of this exam-
ple. Evidently, the convergence rates of ILC track-
ing errors with the two ILC laws in Table 1 are
larger than the value of (1 − q(l, δ,χ)) · (1 − δ) =
91.18%. Theorem 2.1 and Theorem 2.2 are thus
illustrated in statistical learning sense.

5. Conclusion

For linear discrete-time SISO systems with unknown
mathematical models, two fully data-driven ILC
designs in frequency domain have been proposed
with verification of some numerical results. In these
frequency-domain-based ILC designs, an AFD model
combingwith the SVM technique is first constituted by
utilising the input–output data of the linear discrete-
time SISO system at the first cycle such that the
unknown linear discrete-time SISO system is well
identified in the sense of statistical learning theory.
And then, a P-type ILC law and an extended D-type
ILC law with data-driven determining techniques for
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learning gains are derived. As a result, the high depen-
dence on the controlled systemmodels in conventional
frequency-domain-based ILC designs is relaxed. It is
worth noting that the proposed extended D-type ILC
law involves the frequency information against har-
monic frequency distortion during the ILC process,
and thus exhibits improved features in convergence
rate and tracking accuracy compared to the conven-
tionalD-type ILC law. In futurework,motivated by the
results in Zhang and Luttervelt (2011) and Han et al.
(2016), robustness and resilience of the AFD-based
ILC designs in frequency domain will be investigated.
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Appendices

Appendix 1. Proof of Lemma 2.3

Proof: From the Cauchy’s integral formula, we have G(z−1) =
1
2π j

∮
|ζ |=1

G(ς−1)dς
ζ−z . Assuming that ζ = e−jϑ , we obtain dζ =

−j · e−jϑdϑ . As a result, G(z−1) = − 1
2π j

∫ 2π
0

−je−jϑG(ejϑ )dϑ
e−jϑ−z =

1
2π
∫ 2π
0

e−jϑG(ejϑ )dϑ
e−jϑ−z . Let [0, 2π) ∈ R be divided equally into N̂

sub-intervals [ϑr ,ϑr+1) indexed by r = 0, 1, . . . , N̂ − 1, where
ϑr = 2πr

N̂
. From the definition of integral, it yields

G(z−1) = 1
2π

lim
�

�
ϑ→0

N̂−1∑
r=0

(
e−jϑrG(ejϑr )

e−jϑr − z
�

�

ϑ

)

= lim
N̂→+∞

1
N̂

N̂−1∑
r=0

(
e−jϑrG(ejϑr )

e−jϑr − z

)

where �
�

ϑ = 2π
N̂
. That is G(z−1) = lim

N̂→+∞
Ĝ(z−1, N̂). This

completes the proof.

Appendix 2. Proof of Theorem 2.1

Proof: The proof consists of the following three steps:

(1) From Lemma 2 and the adaptive approximation inMi and
Qian (2012), we obtain that

G̃(z−1) = 〈K(·, z),w〉 (A1)

where K(·, z) denotes the parameterised Szegö kernel and
z ∈ D,w ∈ H2(D). Therefore, there exists a complex num-
ber am ∈ C1 such that

Y(m) = Ĝ(1/U(m), N̂) = G̃(1/U(m)) + am

=
〈
K(·,U(m)),w

〉
+ am, (m = 1, 2, . . . , l)

(2) For d ∈ R1 and ε ∈ R1, define a ε-loss function Lε(d) as,

Lε(d) =
{
0|d| ≤ ε

(|d| − ε)2|d| > ε
(A2)

In sequel, for the obtained complex numbers am ∈ C1,
(m = 1, 2, . . . , l) in step 2, define Lε(am) = Lε(Re(am)) +
Lε(Im(am)) as the ε-loss function on am ∈ C1, where ε =
(θ̂ − χ)/2. According to Lemma 1, there is

q(l, δ,χ) = 4cln2(l)r̂2

lχ2

(
||w||2 + ln(2/χ)

4r̂2
(||ξ ||22 + ||ς ||22)

)

+ 2c
l
ln

2
δ

(A3)

Let

S(w) = 1
2
||w||2 + b ·

( l∑
m=1

ξ 2m +
l∑

m=1
ς2
m

)
(A4)

where b = ln(2/χ)

8r̂2 . In comparison with (A3) and (A4), the
objective of complex support vector regression algorithm is to
minimise q(l, δ,χ) or S(w) by selecting a suitable w ∈ H2(D).

From (A1), we have

Lε(Re(am)) = Lε(Re(Y(m)) − G̃Re(1/U(m))) = ξ 2m (A5)

Lε(Im(am)) = Lε(Im(Y(m)) − G̃Im(1/U(m))) = ς2
m (A6)

where ξm and ςm are defined in (2). Therefore, from (A5) and
(A6), we obtain

S(w) = 1
2
||w||2 + b ·

l∑
m=1

Lε(am) (A7)

(1) According to Y(m) = G̃(1/U(m)) + am and (A5), (A6),
we derive that ξm = max{|Re(am)| − ε, 0} and ςm =
max{|Im(am)| − ε, 0}. Let⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�

ξm = max{Re(am) − ε, 0},Re(am) > 0
�

ξ
∗
m = max{Re(−am) − ε, 0},Re(am) ≤ 0

�
ςm = max{Im(am) − ε, 0}, Im(am) > 0
�
ς

∗
m = max{Im(−am) − ε, 0}, Im(am) ≤ 0

(A8)

According to (A7) and (A8), the minimisation of (A7) is
transferred to minimise 1

2 ||w||2 + b ·∑l
m=1

https://doi.org/10.1109/TNNLS.2020.2980588
https://doi.org/10.1109/TSMCB.2004.841411
https://doi.org/10.1109/TCST.2008.2000986
https://doi.org/10.1080/00207170903373753
https://doi.org/10.1016/j.conengprac.2009.02.016
https://doi.org/10.1587/transinf.E97.D.2187
https://doi.org/10.1016/j.cirp.2011.03.041
https://doi.org/10.1109/TIE.2014.2364800


INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 3407

(
�

ξ
2
m + �

ξ ∗
m
2 + �

ς
2
m + �

ς∗
m
2
)
subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�

ξm − (Re(am) − ε) ≥ 0
�

ξ
∗
m − (Re(−am) − ε) ≥ 0

�
ςm − (Im(am) − ε) ≥ 0
�
ς

∗
m − (Im(−am) − ε) ≥ 0

(A9)

Noting that am = Y(m) − G̃(1/U(m)) = Y(m)

− 〈
K(·,U(m)),w

〉
, and utilising the Lagrangian multipliers

method with the Karush-Kuhn-Tucker condition in Schölkopf
et al. (2000) and Picinbono and Chevalier (2002), it turns

Minimize
w∈H2(D)

{
1
2 ||w||2 + b ·∑l

m=1

(
�

ξ
2
m + �

ξ ∗
m
2 + �

ς
2
m + �

ς∗
m
2
)

−∑l
m=1 αm

[
�

ξm + Re
(〈
K(·,U(m)),w

〉− (Y(m))
)+ ε

]
−∑l

m=1 α∗
m

[
�

ξ
∗
m + Re

(
(Y(m)) − 〈

K(·,U(m)),w
〉)+ ε

]
−∑l

m=1 βm

[
�
ςm + Im

(〈
K(·,U(m)),w

〉− (Y(m))
)+ ε

]
−∑l

m=1 β∗
m

[
�
ς

∗
m + Im

(
(Y(m)) − 〈

K(·,U(m)),w
〉)+ ε

]
−∑l

m=1

(
γm · �

ξm + γ ∗
m · �

ξ
∗
m + ηm · �

ςm + η∗
m · �

ς
∗
m

)}
(A10)

where
�

ξm,
�

ξ
∗
m,

�
ςm,

�
ς

∗
m,αm,α∗

m,βm,β∗
m ≥ 0.

According to Bouboulis et al. (2015) and Bouboulis and
Theodoridis (2010), for (A10), there exists a unique global
optimum

w =
l∑

m=1
φmK(·,U(m)) ∈ H2(D) (A11)

where φm = (αm − α∗
m) − j(βm − β∗

m). Introducing the Wolfe
duality theorem in Shawe-taylor and Cristianini (2002) and
Schölkopf et al. (2000) and exploiting the Karush-Kuhn-Tucker
condition in Schölkopf et al. (2000) and Picinbono and Cheva-
lier (2002), the required Lagrangianmultipliers αm,α∗

m,βm,β∗
m

can be definitely solved by

Maximize
αm ,α∗

m,βm ,β∗
m∈R

{
− 1

2
∑l

m=1
∑l

p=1 [(αm − α∗
m)(αp − α∗

p )

+(βm − β∗
m)(βp − β∗

p )] · Re(K(U(p),U(m)))

+∑l
m=1

∑l
p=1 (βm − β∗

m)(αp − α∗
p ) · Im(K(U(p),U(m)))

+∑l
m=1 [(αm − α∗

m)Re(Y(m)) + (βm − β∗
m)Im(Y(m))]

−∑l
m=1 (αm + α∗

m + βm + β∗
m) ε

+b
∑l

m=1

(
�

ξ
2
m + �

ξ
∗2
m + �

ς
2
m + �

ς
∗2
m

)}
(A12)

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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�

ξm

(
2b

�

ξm − αm

)
= 0

�

ξ
∗
m

(
2b

�

ξ
∗
m − α∗

m

)
= 0

�
ςm

(
2b�

ςm − βm

)
= 0

�
ς

∗
m

(
2b�

ς
∗
m − β∗

m

)
= 0

(A13)

where αm,α∗
m,βm,β∗

m ∈ [0,+∞) and m = 1, 2, 3,
. . . , l.

As a result, from (A1) and (A11)
G̃(z−1) = 〈K(·, z),w〉

=
〈
K(·, z),

l∑
m=1

φmK(·,U(m))

〉

=
l∑

m=1
φ̄m

〈
K(·, z),K(·,U(m))

〉
(A14)

According to Bouboulis et al. (2015), there is〈
K(·, z),K(·,U(m))

〉
= K(U(m), z) (A15)

Combing (A14) with (A15), we get

G̃(z−1) =
l∑

m=1
φ̄mK(U(m), z)

=
l∑

m=1

φ̄m

1 − U(m)z̄

(A16)

From Lemma 2.1, the probability, in which the inequal-
ity |Ĝ(z−1) − G̃(z−1)| < θ̂ is derived with probability at
least 1 − δ, is larger than 1 − q(l, δ,χ), where q(l, δ,χ) is
the same as (1) in Lemma 2.1. Meanwhile, we obtain
that |G(z−1) − Ĝ(z−1, N̂)| < sup

�ϑ≤
∣∣∣ 2πN̂

∣∣∣
|G(ej(ϑ+�ϑ)) − G(ejϑ)|

from Lemma 2.3 and Mi and Qian (2012). As a result,
|G(z−1) − G̃(z−1)| < θ̂ + sup

�ϑ≤
∣∣∣ 2πN̂

∣∣∣
|G(ej(ϑ+�ϑ))−G(ejϑ)|=θ .

And the probability, in which |G(z−1) − G̃(z−1)| < θ is
derived with probability at least 1 − δ, is larger than 1 −
q(l, δ,χ). This completes the proof of Theorem 1.

Appendix 3. Proof of g(�) < 0 as
0 < � < 2 cos(ν(ω)+ωT)

κ(ω)
or 2 cos(ν(ω)+ωT)

κ(ω)
< � < 0 in

section 3.2

Proof: For

g(�) = −
√
1 + �2κ2(ω) − 2�κ(ω) · cos(ν(ω) + ωT)

+ 1 − �κ(ω) · cos(ν(ω) + ωT)

there is
∂2g(�)

∂�2

= −κ2(ω)sin2(ν(ω) + ωT)

×
(√

1 + �2κ2(ω) − 2�κ(ω) · cos(ν(ω) + ωT)
)− 3

2
<0

That means that g′(�) decreases monotonically at 0 <

� <
2 cos(ν(ω)+ωT)

κ(ω)
or 2 cos(ν(ω)+ωT)

κ(ω)
< � < 0. As 0 < � <

2 cos(ν(ω)+ωT)
κ(ω)

, it yields g′(�) < g′(0) = 0, which indicates that
g(�) decreases monotonically. Therefore, we have g(�) <

g(0) = 0 at 0 < � <
2 cos(ν(ω)+ωT)

κ(ω)
. On the other hand, as

2 cos(ν(ω)+ωT)
κ(ω)

< � < 0, there is g′(�) > g′(0) = 0, which
means g(�) increases monotonically. That is g(�) < g(0) = 0
at 2 cos(ν(ω)+ωT)

κ(ω)
< � < 0. This completes the proof.
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