
Daniel Breaz
Michael Th. Rassias   Editors

Advancements 
in Complex 
Analysis
From Theory to Practice



Advancements in Complex Analysis



Daniel Breaz • Michael Th. Rassias
Editors

Advancements in Complex
Analysis
From Theory to Practice



Editors
Daniel Breaz
“1 Decembrie 1918”
University of Alba Iulia
Alba Iulia, Romania

Michael Th. Rassias
Institute of Mathematics
University of Zurich
CH-8057 Zurich, Switzerland

Moscow Institute of Physics and Technology
Institutskiy per, d.9
141700 Dolgoprudny
Moscow, Russia

Institute for Advanced Study
Program in Interdisciplinary Studies
1 Einstein Dr,
Princeton, NJ, USA

ISBN 978-3-030-40119-1 ISBN 978-3-030-40120-7 (eBook)
https://doi.org/10.1007/978-3-030-40120-7

Mathematics Subject Classification: 11-XX, 26-XX, 28A10, 30-XX, 32-XX, 33-XX, 35-XX, 37-XX,
39B32, 60-XX, 65Exx, 74S70, 76M40

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40120-7


Preface

This volume presents papers devoted to a broad spectrum of areas of Complex
Analysis, ranging from pure to applied and interdisciplinary mathematical research.
Topics treated within this book include holomorphic approximation, hypercomplex
analysis, special functions of complex variables, automorphic groups, zeros of
the Riemann zeta function, Gaussian multiplicative chaos, non-constant frequency
decompositions, minimal kernels, one-component inner functions, power moment
problems, complex dynamics, biholomorphic cryptosystems, fermionic and bosonic
operators.

The papers have been contributed by experts from the international community,
who have presented the state-of-the-art research in the corresponding problems
treated. Effort has been made for the present volume to be a valuable source for
both graduate students and research mathematicians as well as physicists, engineers
and scientists conducting research in related interdisciplinary subjects.

We would like to express our warmest thanks to all the authors of papers in this
volume who contributed in this collective effort. Last but not least, we would like to
extend our appreciation to the Springer staff for their valuable help throughout the
publication process of this work.

Alba Iulia, Romania Daniel Breaz
Zurich, Switzerland Michael Th. Rassias
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A Theory on Non-Constant Frequency
Decompositions and Applications

Qiuhui Chen, Tao Qian, and Lihui Tan

Abstract Positive time-varying frequency representation of transient signals has
been a hearty desire of signal analysts due to its theoretical and practical importance.
During approximately the last two decades there has been formulated a signal
decomposition and reconstruction method rooting in harmonic and complex analy-
sis and giving rise to the desired signal representation. The method decomposes a
signal into a few basic signals that possess positive-instantaneous frequencies. The
theory has profound relations with classical mathematics and can be generalized to
signals defined in higher dimensions with vector or matrix values. Such represen-
tations, in particular, promote rational approximations in higher dimensions. This
article mainly serves as a survey. It also gives a new proof of a general convergence
result, as well as a proof of a result concerning multiple selections of the parameters.

Expositorily, for a given real-valued signal f one can associate it with a Hardy
space function F whose real part coincides with f. Such function F has the form
F = f + iHf, where H stands for the Hilbert transformation of the context. We
develop fast converging expansions of F in orthogonal terms of the form
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2 Q. Chen et al.

F =
∞∑

k=1

ckBk,

where Bk’s are also Hardy space functions but with the additional properties

Bk(t) = ρk(t)eiθk(t), ρk ≥ 0, θ ′k(t) ≥ 0, a.e.

The original real-valued function f is accordingly expanded

f =
∞∑

k=1

ρk(t) cos θk(t)

which, besides the properties of ρk and θk given above, also satisfies the relation

H(ρk cos θk)(t) = ρk(t) sin θk(t).

Real-valued functions f (t) = ρ(t) cos θ(t) that satisfy the condition

ρ ≥ 0, θ ′(t) ≥ 0, H(ρ cos θ)(t) = ρ(t) sin θ(t)

are called mono-components. Phase derivative in the above definition will be
interpreted in a wider sense. If f is a mono-component, then the phase derivative
θ ′(t) is defined to be instantaneous frequency of f. The above defined positive-
instantaneous frequency expansion is a generalization of the Fourier series expan-
sion. Mono-components are crucial to understand the concept of instantaneous fre-
quency. We will present several most important mono-component function classes.
Decompositions of signals into their principal or intrinsic mono-components are
called adaptive Fourier decompositions (AFDs). We note that some scopes of the
study of the 1D mono-components and AFDs can be extended to vector-valued or
even matrix-valued signals defined on higher dimensional manifolds. We provide
an account of the related studies in pure and applied mathematics, and in signal
analysis, as well as applications of the developed theory.

1 Introduction

It is a common sense among analysts that “The study on the unit circle is harmonic
analysis; and inside the unit circle is complex analysis”, and the same is true for a
manifold and its neighborhood regions. In general, the following mechanism may
be regarded as complex analysis method of harmonic analysis. When studying
analysis on the boundary of a region, say, for instance, in an Euclidean space,
one can at the cost of one more (or p-more) dimension (dimensions), imbed the
region together with its boundary into a larger space, where the latter is equipped
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with a Cauchy complex structure, including essentially the Cauchy theorem, the
Cauchy kernel, and the Cauchy formula. That is, one treats the boundary of the
region as a co-dimension 1 (or co-dimension p + 1) manifold in the larger space
with a Cauchy structure. With the complex structure one can define complex
Hardy spaces consisting of suitable complex holomorphic functions in the regions
divided by the manifold. Here by “suitable” we mean, in particular, the complex
Hardy functions defined in the regions having non-tangential boundary limits as
projections into the corresponding function spaces on the manifold. Conversely,
functions in suitably defined function classes on the manifold can be made to be
associated with those non-tangential boundary limits, the latter being called analytic
signals. Those ideas appeared in the lectures of M.-T. Cheng and D.-G. Deng given
in Beijing University [12], in the book of Gorusin translated by J.-G. Chen [38], in
works of A. McIntosh and, separately, of C. Kenig and other authors, on complex
Hardy spaces, singular integrals, boundary value problems and related topics on
Lipschitz curves and surfaces. This article serves as a survey on the study that the
author and his collaborators have been undertaking by implementing the complex
analysis method to harmonic and signal analysis.

The study can be divided into two parts of which one is mono-component
function theory, studying signals possessing a non-negative instantaneous frequency
function; and the other is approximation to analytic functions by using mono-
components. Note that the monomials zn, n = 0, 1, · · · , are particular cases
of mono-components, and the Fourier series expansion is a mono-component
approximation. The study that we are going to explore is generalization of the
Fourier theory in relation to the scope of the Beurling–Lax theorem involving
forward shift and backward shift invariant subspaces.

The study at beginning was motivated by the tentative definition of the concept
instantaneous frequency (IF), or, in brief, the frequency function, by Gabor [33]. The
concept instantaneous frequency is, so far, still one to be accepted by signal analysts.
People tend to believe that for a general signal there is a certain “frequency” at
each moment of time. This belief is supported by sinusoidal functions that possess
constant frequencies. Justification of existence of a frequency function crucially
depends on how to define IF. Unfortunately, the IF concept itself appears to be
paradoxical: “frequency” is the oscillation number (or in the averaging sense)
per unit time duration, hence a time interval is required in order to determine it;
while “instantaneous” involves only a time moment. A great variety of engineering
definitions of IF have been proposed those, in the author’s opinion, are mostly
vague or self-contradictory. None of the existing theories, nor the applications,
are satisfied [8, 13]. It is believed that there does not exist an anticipated IF
concept for a general signal. One can, however, propose a mathematical definition
of instantaneous frequency based on which signals can be effectively analyzed. The
proposed definition of IF is based on the Möbius transform. A coherent theory that
has close and profound relations with the classical analysis and great potential in
applications has been initialized. As a new trend of Fourier analysis it emphasizes
on non-linear phase phenomenon, consisting of two parts: defining the IF concept,
and decomposing a general signal into those possessing IF. We call the signals
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possessing an IF function as mono-components (or MCs). Signals that do not
possess an IF are called multi-components. There are several classical function
classes belonging to the mono-component class. There are also several newly
constructed function classes belonging to the mono-component function class. The
mono-component function theory is a combined effort of world harmonic and signal
analysts (see Section 2 and the related literature in the references).

G. Weiss and M. Weiss published a paper in 1962 re-proving the Nevanlinna
factorization theorem in the complex Hardy spaces of one complex variable that
sheds lights on Blaschke expansions of functions [117]. The factorization result is a
crucial tool in the complex Hardy spaces theory. Directly related to the Nevanlinna
factorization, M. Nahon, in 2000, in his Ph.D. thesis at Yale University, under
supervision of R. Coifman, developed the non-linear phase unwinding algorithm
(UWA) to expand any analytic signal into a series of Blaschke products [64]. In
the 2016 paper [15] R. Coifman and S. Steinerberger published the UWA theory
and algorithm, and further developed some aspects initialized in [64]. A later paper
by the same authors together with Wu developed certain practical aspects of the
unwinding method with computations of the IFs [16]. More recently a new paper
by R. Coifman and J. Peyriére studies invariant subspace decompositions including
the Schauder basis property of the unwinding series [14]. Being unaware of Nahon’s
thesis, Qian independently studied the UWA method and proved itsH 2-convergence
in [74] (2010), and coincidently uses the same terminology “unwinding” in [92]
(2013). It is noted that UWA is a special case of UWAFD, the latter being
incorporated with a maximal sifting process involving a generalized backward
shifting operator together [74, 81, 95].

As already mentioned the unwinding method is only one of the two main
strategies in the adaptive approximation methodology. The other one is incorporated
with a maximal selection principle (MSP). The terminology adaptive Fourier
decomposition (AFD) that we use at its very beginning started from the MSP type
[81], and further extended to the UWA type, as indeed the latter being also adaptive,
and of the Fourier type. The 1D maximal selection type AFD heavily depends on the
factorization properties of one complex variable. For multi-variables cases, either
with the several complex variables or the Clifford algebra settings, the AFD methods
are not directly applicable. In the latest studies, the AFD methodology, in fact, was
extended to the reproducing kernel Hilbert spaces context with certain boundary
vanishing property, called pre-orthogonal AFD, or POAFD in brief, that includes
the multi-variables cases with scalar- or vector-, or even matrix-valued functions
[1, 2, 5, 77, 91, 94]. The related Hilbert transform and phase derivative theory
may be found in [83, 122]. The mono-component function and the related AFD
approximation theory have found significant applications, including those in system
identification, signal and image processing, etc. [20, 45, 51, 60, 61, 90, 116, 126].
We will include some literature with short descriptions on engineering applications.

The writing of the paper is organized as follows. In Section 2 we present the
main results of mono-component function theory, including the definition of mono-
component function, the inner function type, the Bedrosian type, and the starlike
type mono-components. In Section 3 we give an account on various kinds of AFD
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algorithms in the classical setting, as well as in the reproducing kernel Hilbert space
setting. In Section 4 we provide information on the related studies and applications.

Complex Harmonic Analysis Method in Analyzing Signals

2 Mono-component Function Theory

2.1 Mono-component and IF

In 1946 Gabor proposed his analytic signal approach [35]. Throughout this article
we restrict ourselves to only signals with finite energy, or L2-functions. The theory
on the unit circle is parallel with that on the real line. To explain the idea we most
time restrict ourselves to the unit circle case. We occasionally jump into the upper
half space context, including, for instance, when we describe the ideas in relation to
the Bedrosian type results in terms of Fourier transform. Let s(t) be a real-valued
signal of finite energy on the unit circle ∂D, where D denotes the unit disc. The
associated analytic signal, denoted by s+(t), is defined

s+(eit ) = 1

2

(
s(eit )+ iH̃ s(eit )+ c0

)
, (1)
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where H̃ is the circular Hilbert transformation, and c0 is the 0-th Fourier coefficient,
i.e., the average of s on the circle. That is,

H̃ s(eit ) = 1

2π
p.v.

∫ 2π

0
f (eiu) cot

(
t − u

2

)
du, c0 = 1

2π

∫ 2π

0
f (eiu)du.

We note s+ is the non-tangential boundary limit of the Cauchy integral of s (the
Plemelj formula):

s+(eit ) = lim
z→eit

1

2π

∫ 2π

0

f (eiu)

z− eiu e
iudu, a.e.

The fact that s is real-valued makes the Hilbert transform 1
2 H̃f in (1) the purely

imaginary part of s+, and s = 2Res+ − c0. There also holds the following relation
that in the real line context corresponds to the Laplace transform

s+(eit ) =
∞∑

k=0

cke
ikt .

What is important is that s+(eit ) has a holomorphic continuation into the interior of
the disc

s+(z) =
∞∑

k=0

ckz
k, |z| < 1,

as a Hardy H 2(D) function in the sense that whose non-tangential boundary limit
coincides with s+(eit ). The Fourier multiplier of the circular Hilbert transformation
is −isgn, that is, if

s(eit ) =
∞∑

k=−∞
cke

ikt , ck = 1

2π

∫ 2π

0
s(eiu)e−ikudu,

where sgn(k) = 1, if k > 0; and sgn(k) = −1, if k < 0; and sgn(0) = 0. Then

H̃ s(eit ) =
∞∑

k=−∞
(−i)sgn(k)cke

ikt .

In the sequel we drop the tilde sign above H̃ and write it simply as H.
This Fourier multiplier form of the Hilbert transform gives rise to the Hilbert

transform characterization of the Hardy spaces. If restricted to the L2 cases, it is: A
function s of finite energy belongs to the Hardy H 2 space if and only if Hs = −is
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[70]. This result holds in general contexts including the upper half space cases in
one and higher dimensions [25, 27, 28].

In writing s+(eit ) = ρ(t)eiθ(t), Gabor defined that the derivative of the phase
function, θ ′(t), to be the instantaneous frequency of s(eit ). In commenting on this
definition we would say that the definition is “good,” because if we take the example
that for a positive integer n, s(eit ) = cos(nt), then in such way, s+(eit ) = eint , and
the phase derivative is n, being complementary with the common sense. Gabor’s
definition, however, is not valid for general signals s ∈ L2(∂D), but only a
tentative one, due to the following reasons. Firstly s, and thus s+ as well, is an
equivalent class of Lebesgue square-integrable functions that cannot be expected to
be smooth and hence has pointwise phase derivatives; and secondly, the derivative,
if exists, cannot be expected to be non-negative, as required in physics, and thus
cannot stand as a qualified instantaneous frequency function. It is, in fact, the
signal analysts who decide that the IFs should be non-negative and thus can be
effectively analyzed in engineering applications. The primary importance is that
the instantaneous frequency concept is generated from physics practice: it is an
extension of the vibrating frequency. In the average sense the phase derivative of
an analytic signal is non-negative as read out from the relation

1

2π

∫ 2π

0
θ ′(t)|s+(eit )|2dt =

∞∑

k=0

k|ck|2,

[13, 21, 66]. Pointwisely, however, the phase derivative of an analytic signal can
be negative. For instance, for any non-trivial outer function in the complex Hardy
space we have a set of positive Lebesgue measure on which the phase derivatives
are strictly less than zero [73].

The idea is to define a function set consisting of the signals having well-defined
non-negative analytic phase derivatives. The functions defined in the following
definition are called mono-components. The terminology first appeared in [9]. The
rigorous definition was given by [72]

Definition Let s be a real- or complex-valued signal of finite energy on the
unit circle. We call s a mono-component, or real-mono-component, if its analytic
signal, or equivalently its projection into the Hardy space H 2, viz., s+(t) =
1
2 (s(t)+ iHs(t)+ c0) , in its phase-amplitude representation s+(t) = ρ(t)eiθ(t)

satisfies θ ′(t) ≥ 0, a.e., where the phase derivative θ ′(t) is defined through the non-
tangential limit of the same quantity from inside of the region. Precisely, in the unit
circle case,

θ ′(t) = lim
r→1− θ

′
r (t), a.e.,

where s+(reit ) = ρr(t)e
iθr (t) is the holomorphic continuation inside the unit

disc. When s is a mono-component we call s+ a complex-mono-component, or
simply mono-component as well. When and only when s is a mono-component it
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has an instantaneous frequency function defined as its non-negative analytic phase
derivative θ ′(t).

Since s+ is the non-tangential boundary limit of a Hardy space function inside
the unit disc, θ ′r (t) everywhere exists, and

θ ′r (t) = Re{ re
it s+′(reit )
s+(reit )

}.

We note that the class of mono-component functions is closed under the multiplica-
tion operation but not the addition.

2.2 The Inner Function Type Mono-Components

There exist a number of interesting mono-component subclasses. First we mention
the class of inner functions. Through simple computation one asserts that the
boundary function of the canonical Möbius transform mapping a ∈ D to zero

ea(e
it ) = e

it − a
1− az = e

iθa(t)

is an analytic signal whose phase derivative θ ′a is the Poisson kernel of the disc
[35, 71, 85]. The early study along this direction was joined by Qiu-Hui Chen and
Luo-Qing Li. This implies that finite Blaschke products (Blaschke products with
finitely many zeros) are all mono-components. The question is whether infinite
Blaschke products are mono-components. As an application of the Julia–Wolff–
Carathéodory theorem the following result for general inner functions (containing
finite and infinite Blaschke products and singular inner functions) is proved [73].

Theorem 2.1 (Tao Qian 2009 [73]) Let θ be a real-valued Lebesgue measurable
function on the unit circle. Then the phase function eiθ is a complex mono-
component if and only if eiθ is the non-tangential boundary limit of an inner
function, or, equivalently, if and only if H(eiθ ) = −ieiθ .

The earlier study in [111] gives good observations and partial results. It is noted
that in the earlier digital signal processing (DSP) literature, as far as being aware
by the author, the fact that Blaschke products possess positive phase derivative
functions were stated, but without a valid proof [11]. DSP researchers and engineers
had been using the concept physically realizable signals with minimum phase that
are outer functions, which is a related result, but without a rigorous proof either. The
minimum phase property is a direct consequence of the result that boundary limit
functions of inner functions possess non-negative phase derivative. The reference
[73] also proves the opposite property for outer functions: Under mild conditions
that guarantee absolute continuity of the phase function θ(t) of an outer function
then there holds
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∫ 2π

0
θ ′(t)dt = 0.

The inner and outer functions are thus characterized by the sign properties of
their phase derivatives.

2.3 The Bedrosian Type Mono-Components

The second interesting class of mono-components is regarded as the Bedrosian type.
The classical Bedrosian theorem declares the relation

H(fg) = fHg

under two lots of sufficient conditions, both being based on certain Fourier spectrum
properties of the involved functions. The first lot of sufficient conditions is that there
exists σ > 0 such that suppf̂ ⊂ [−σ , σ ], and supp ĝ ⊂ (−∞, σ ] ∩ [σ ,∞). The
second lot sufficient conditions is that both functions f and g are in the Hardy H 2

space. The latter, through invoking the Paley–Wiener theorem for the Hardy space
functions, is equivalent with f, g ∈ L2, suppf̂ ⊂ [0,∞) and supp ĝ ⊂ [0,∞). The
idea of using the Bedrosian type results is as follows: Suppose that eiθ is an analytic
signal with the property θ ′(t) ≥ 0, a.e. This type of mono-components now have
all been characterized by Theorem 2.1. One wishes to find a non-negative function
ρ(t) that makes the Bedrosian type relation H(ρ(t)eiθ = ρH(eiθ ) hold. For such a
function ρ there holds

H(ρeiθ ) = ρH(eiθ ) = (−i)ρeiθ . (2)

By recalling the Hilbert transform characterization of the Hardy space functions the
last equality implies that ρeiθ is an analytic signal, and, due to the positivity of the
phase derivative θ ′(t), it is a mono-component.

To find the above desired functions ρ the classical Bedrosian theorem cannot
be directly implemented. The first lot sufficient conditions refers to bandlimiting
properties of the functions f and g. That, unfortunately, are not our case: The
inner functions g = eiθ do have the full spectrum range. The second lot of
sufficient conditions requires that the real-valued amplitude function ρ itself is the
boundary limit of some complex Hardy space function. This is impossible either
(see the example given in (3)). To implement the idea in (2) one has to find new
sufficient conditions for the Bedrosian relation to hold in our specific circumstance
f = ρ, g = eiθ .

In order to enrich the mono-component class new sufficient and necessary
conditions for the Bedrosian relation (2) to hold were seeking by mainly a group of
Chinese harmonic and signal analysts using Fourier analysis methods and complex
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analysis methods [79, 87, 105, 113, 121, 123]. One of the most comprehensive
results along this line is based on the following observation.

The essential structure of Bedrosian type mono-components is as follows:

s(eit ) =
(

1

1− a1eit
+ 1

1− a1e−it

)
eit − a1

1− a1eit

eit − a2

1− a2eit
. (3)

On the circle it is a real-valued function multiplied with an order-2 Blaschke
product. In verifying that s(eit ) is a Bedrosian type mono-component, the key point
is that

1

1− a1z

z− a1

1− a1z

z− a2

1− a2z

is an analytic function in the disc; and for |z| = 1, the product

1

1− a1z

z− a1

1− a1z

z− a2

1− a2z

has an analytic continuation to the interior part of the disc. As a result, s(z) is a
bounded analytic function. Since 1

1−a1e
it + 1

1−a1e
−it is real-valued and has finitely

many sign-change points on |z| = 1, it is, therefore, a so-called generalized
amplitude on the circle. We have the following general result ([79], the finite order
Blaschke products case is proved in [106]).

Theorem 2.2 Let φ(eit ) be an infinite Blaschke product, where a1, · · · , an, · · · are
the totality of its zeros, the multiples being all counted. Then (1) ρ(t) is a real-
valued function such that ρ(t)φ(eit ) ∈ Hp(∂D), 1 ≤ p ≤ ∞, if and only if ρ is
the real part of some function in the backward shift invariant subspace induced by
the Blaschke product φ(eit ), that is, ρ ∈ Re{Hp(∂D) ∩ φ(eit )Hp(∂D)}; and (2)
For 1 < p <∞, ρ ∈ Re{Hp(∂D) ∩ φ(eit )Hp(∂D)} if and only if, in the Lp norm
sense,

ρ(t) = Re{
∞∑

k=1

ckBk(e
it )},

where ck = 〈ρ(t), Bk(eit )〉 = 1
2π

∫ 2π
0 ρ(t)Bk(eit )dt, k = 1, 2, · · · , and {Bk}∞k=1

is the rational orthonormal system (or TM system) generated by a1, · · · , ak, · · · ,
that is,

Bk(z) =
√

1− |ak|2
1− akz

k−1∏

l=1

z− al
1− alz . (4)
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2.4 The Non-Bedrosian Type Mono-Components: The Starlike
and Boundary Starlike Type

The third type mono-components are non-Bedrosian type which contains all p-
starlike, as well as boundary starlike functions in one complex variable. This
kind of mono-components exhibits a different type of connections between mono-
components and conformal mappings. Let f denote a univalent conformal mapping
that, with f (0) = 0, maps the unit disc together with its boundary to a region of
a rectifiable boundary. Obviously, if f (eit ) is starlike, then f is a complex mono-
component as its phase function is increasing along with increasing of the angular
variable t. Below we will denote by S∗ the set of such starlike functions. Next we
define several other function classes including p-starlike functions as follows.

Definition Let p be any positive integer. Denote by S(p) the set of p-valent
holomorphic functions satisfying the following conditions:

(i) There exists r : 0 < r < 1, such that for all z : r < |z| < 1, there holds
Re{ zf ′(z)

f (z)
} > 0; and

(ii)
∫ 2π

0 Re{ zf ′(z)
f (z)
}dt = 2pπ for all z : r < |z| < 1. Functions belonging to S(p)

are called p-starlike functions.

Definition A function f is said to be a weak p-valent starlike function, and denoted
f ∈ Sw(p), if and only if it is holomorphic in D with precisely p zeros in D
(including multiples) and with the expression

f (z) = [h(z)]p
p∏

k=1

(z− ak)(1− akz)
z

,

where h ∈ S∗.
With p = 1 and a1 = 0 we obtain Sw(1) = S(1). The article [40] shows

that S(p) is a proper subset of Sw(p). The advantage of the latter is that functions
in Sw(p) have an explicit representation formula. In order to reveal the essential
structure we assume the convenient property that functions under study have a
holomorphic continuation to an open neighborhood of the closed unit disc. Denote
by A the set of such holomorphic functions, one can show A ∩ S(p) = A ∩ Sw(p)
[79]. To describe the relation between mono-components and various types of
starlike functions we need two more definitions.

Definition [53] A univalent function is said to be a boundary starlike function with
respect to the origin if f is holomorphic in D, limr→1− f (r) = 0, f (D) is starlike
with respect to the origin, and Re{eiαf (z)} > 0 for some real number α and all
z ∈ D. Denote by G∗ the set of all boundary starlike functions with respect to the
origin.
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The following definition specifies a class of mono-components.

Definition Let f (eit ) = ρ(t)eiθ(t) ∈ Lp(∂D), p ≥ 1. Then f is called a Hilbert-n,
or H -n atom, if it satisfies the following conditions:

(1) H(ρ cos θ) = ρ sin θ;
(2) ρ ≥ 0, θ ′ ≥ 0 a.e.; and
(3)

∫ 2π
0 θ ′(t)dt = nπ.

Note that due to (1) f has a holomorphic continuation into the unit disc as a
Hardy space function. In (2) the phase derivative θ ′ takes the sense given in 2.1. The
condition (3) refers to the multivalent degree of f. The concept H -p atom was first
proposed in [72] for p = 2 with the result that a function f is a H -2 atom if and
only if f is a starlike function about the origin. Some further studies along this line
for p = 2n are given in [106]. The following result ultimately reveals the relation
between the H -n atoms and the starlike-boundary starlike functions.

Theorem 2.3 Assume that f is holomorphic in D having p zeros in the open disc D.
Then f (eit ) is a H -n atom, n ≥ 1, if and only if

f 2(z)=
[
p∏

i=1

hi(z)

]2 n−2p∏

j=1

g2
j (z)=

[
p∏

k=1

(z−ak)
(

1

z
−ak

)]2
⎡

⎣
n−2p∏

k=1

(z−bk)
(

1

z
− bk

)⎤

⎦ [h(z)]n,

where {ak}pk=1 are the zeros of f (z) inside the unit disc, {bk}n−2p
k=1 are the zeros of

f (z) on the unit circle (both can be with multiples), h(z) ∈ S∗, hi ∈ Sw(1), and
gj (bj z) ∈ G∗ are all holomorphic in D, i = 1, · · · , p, j = 1, · · · , n− 2p.

The results on mono-component functions in particular with the three categories,
viz., the inner function type, the Bedrosian type, and the starlike type, are not only
important in themselves in the theory, but also bring new understanding to related
topics in the classical harmonic and complex analysis.

3 Adaptive Fourier Approximations

In this part we will give descriptions of adaptive Fourier approximations (AFD). In
the one complex variable cases AFD gives rise to positive-frequency expansions of
signals into rational holomorphic functions, while in higher dimensions AFD offers
at this stage mainly fast converging rational or reproducing kernel approximations.

3.1 Mono-component Decomposition of Signals in General

The idea of positive-frequency decompositions of signals is not new, it goes back to
more than 200 years ago in relation to the name Jean Baptiste Joseph Fourier and
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Basic Types of Mono-Component Functions

other names. Fourier series will be a particular case of the general theory that we
are now to present.

Let s be a real-valued function defined on the unit circle ∂D with finite energy.
We recall that its Hardy H 2 space projection is s+ = 1

2 (s + iHs + c0). The
simple relation s = 2Re{s+} − c0 implies that a complex-mono-component
decomposition s+(eit ) = ∑∞

k=1 ρk(t)e
iθk(t) gives rise to a real-mono-component

decomposition, or, in other words, positive-frequency decomposition s : s(eit ) =
−c0 +∑∞

k=1 ρk(t) cos θk(t). We are hence reduced to decomposing the complex
Hardy space function s+.

The ultimate purpose is to find the intrinsic constructing blocks with positive-
time varying-instantaneous frequency. The word “intrinsic” has a profound mean-
ing, but here we understand it simply as fast convergence. The words “fast
convergence”, however, would need to be further justified. It may be shown that
for any Hardy space function s+ and any ε > 0, there exist a constant c and two
1-starlike functions m1 and m2 such that [88]

‖s+ − (c +m1 +m2)‖ ≤ ε.

The two starlike functions m1 and m2 are not unique, and, according to their
construction, are very irregular. To get meaningful intrinsic positive-frequency
decompositions one would then use function systems of a certain type. The one
we use consists of rational functions, essentially built up from parameterized
reproducing kernels of the underlying space.
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3.2 One Dimensional Core-Adaptive Fourier Decomposition
(Core-AFD) and Its Variations

Due to the above-mentioned reason we decide to use the rational orthonormal
system, or by another name the Takenaka–Malmquist, or TM system in brief,
introduced in Theorem 2.2. We note that TM systems in general cannot be avoided
for they are Gram–Schmidt (G-S) orthogonalization of the partial fractions with
poles outside the closed unit disc, the latter being fundamental constructive building
blocks of rational functions in the Hardy spaces. TM systems consist of functions
of positive frequency due to their construction in (finite) Blaschke products. The
difference between our use and the traditional use of TM systems is that we make
the parameters defining the system to be adaptive: For every individual function or
signal we expand it by using a suitable TM system while the determining parameters
are deliberately selected according to the data of the given function. The TM system
itself may not be a basis. Whether or not the system in use is a basis, is, in
fact, not interested or required. On the other hand, the adaptive expansion in the
selected TM system converges very fast. And, additionally, each expanding term
has positive non-constant and non-linear instantaneous frequencies. In contrast, the
traditional use of a TM system is based on a fixed collection of parameters making
the corresponding TM system a basis of the underlying space. The reason of use
of a particular and fixed collection of parameters, however, is, as usual, not be well
justified. Laguerre and two-parameter Kautz systems are examples of such fixed-
parameter TM bases.

In the sequel we change our function notation s+ in the Hardy H 2(D) to f. In
the unit circle context we have f (z) = ∑∞

l=1 clz
l,
∑∞
l=1 |cl |2 < ∞. Now we seek

a decomposition of f into a TM system with adaptively selected parameters. The
collection of the functions

ea(z) =
√

1− |a|2
1− az , a ∈ D,

consists of normalized Szegö kernels of the disc. Below we present AFD, or more
specifically, Core-AFD algorithm. Set f = f1. First write

f (z) = 〈f1, ea1〉ea1(z)+
f1(z)− 〈f1, ea1〉ea1(z)

z−a1
1−a1z

z− a1

1− a1z
.

We note that in this stage a1 can be any complex number in the unit disc and the
above is an identity. Denoting

f2(z) = f1(z)− 〈f1, ea1〉ea1(z)
z−a1

1−a1z

, (5)
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calling it the reduced remainder, the identity is re-written as

f (z) = 〈f1, ea1〉ea1(z)+ f2(z)
z− a1

1− a1z
, (6)

We call the operator defined by (5) mapping f1 to f2 the generalized a1-
backward shift operator and f2 the generalized a1-backward shift of f1. The
terminology is a generalization of the classical backward shift operator

S(f )(z) = a1 + a2z+ · · · + ck+1z
k + · · · = f (z)− f (0)

z
.

Recognizing that f (0) = 〈f, e0〉e0(z), the operator S is the generalized 0-backward
shift operator.

Notice that the Szegö kernel is the reformulation of the Cauchy kernel in the arc-
length measure and hence it has the reproducing kernel property. As a consequence
of the orthogonality property and the modular one property of Möbius transform we
have the energy relations

‖f ‖2 = ‖〈f1, ea1〉ea1‖2 + ‖f2‖2 = (1− |a1|2)|f1(a1)|2 + ‖f2‖2.

The purpose now is to extract the maximal energy portion of the form of
‖〈f1, ea1〉ea1‖2 from the totality ‖f ‖2 and thus the remainder has the smallest
energy. This is reduced to maximize (1 − |a1|2)|f1(a1)|2 among all a1 ∈ D.
Although D is an open set we can show that there exists a1 in D such that

a1 = arg max{(1− |a|2)|f1(a)|2 : a ∈ D}

[81]. The existence of such maximal selection is called Maximal Selection Principle.
Selecting such a1 and repeating the process for f2, and so on. We call f2 as maximal
sifting from f1 through a1. After n maximal siftings we have

f (z) =
n∑

k=1

〈fk, eak 〉Bk(z)+ fn+1

n∏

k=1

z− ak
1− akz ,

where for k = 1, · · · , n,

ak = arg max{(1− |a|2)|fk(a)|2 : a ∈ D},

Bk(z) = B{a1,··· ,ak}(z) =
√

1− |ak|2
1− akz

k−1∏

l=1

z− al
1− alz ,
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and, for k = 2, . . . , n+ 1, fk is the maximal sifting of fk−1 through ak−1, that is,

fk(z) = fk−1(z)− 〈fk−1, eak−1〉eak−1(z)
z−ak−1

1−ak−1z

.

We have the following convergent theorem.

Theorem 3.1 For any given function f in the Hardy H 2 space, by applying the
maximum sifting process at each step we have

f (z) =
∞∑

k=1

〈fk, eak 〉Bk(z).

This result was first proved in [81] based on the complex modular 1 property of
the Möbius transform. Below we provide a new proof releasing the modular 1
requirement for the system functions but only based on maximal selections of the
parameters. The essence of the proof is contained in several proofs of the reference
[76]. There is a similar expansion developed in [89] but the computation is less
efficient.

Proof We prove the convergence by contradiction. Assume that through a sequence
of maximally selected parameters a = {a1, · · · , an, · · · } we arrive

f =
∞∑

k=1

〈fk, eak 〉Bk + h, h �= 0. (7)

The routine argument by using the Riesz–Fisher theorem shows that both the
functions

∑∞
k=1〈fk, eak 〉Bk and h are in H 2. We note that h is orthogonal with all

Bk, and thus also with
∑∞
k=1〈fk, eak 〉Bk.

The relation (7) can be re-written as

f =
(
M∑

k=1

+
∞∑

k=M+1

)
〈fk, eak 〉Bk + h,

where by our notation,

gM+1 =
∞∑

k=M+1

〈fk, eak 〉Bk + h = GM+1 + h.

To proceed we note that

〈fk, eak 〉 = 〈f,Bk〉 = 〈gk, Bk〉, (8)

where gk = f −∑k−1
l=1 〈fl, eal 〉Bl is the k-th standard remainder.
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Therefore, we have

gM+1 =
∞∑

k=M+1

〈gk, Bk〉Bk + h. (9)

Due to the density of the span of {ea}a∈D in H 2, there exists a ∈ D such that
δ � |〈h, ea〉| > 0.We can in particular choose a to be different from all the selected
ak’s. We are now to explore a contradiction in relation to the selections of aM+1 for
largeM.Now, on the one hand, by the Bessel inequality applied to the infinite series
part in (7), taking into account (9), we have

|〈gM+1, BM+1〉| → 0, as M → 0. (10)

On the other hand, we will show, for largeM ,

|〈gM+1, B
a
M+1〉| >

δ

2
. (11)

This is clearly a contradiction.
The rest part of the proof is devoted to showing (11). Due to the relations

|〈gM+1, B
a
M+1〉| ≥ |〈h,BaM+1〉| − |〈GM+1, B

a
M+1〉| (12)

and

|〈GM+1, B
a
M+1〉| ≤ ‖GM+1‖ → 0, as M →∞, (13)

for large M the lower bounds of |〈gM+1, B
a
M+1〉| depend on the quantity of

|〈h,BaM+1〉|. Now for any positive integer M denote by XaM+1 the (M + 1)-
dimensional subspace spanned by {ea, B1, · · · , BM }.We have two ways to compute
the energy of the projection of h into XaM+1, being denoted as ‖h/XaM+1‖2. One
way is based on the orthonormality of {B1, · · · , BM,BaM+1} obtained from G-S
orthonormalization of the system {B1, · · · , BM, ea}. Due to the orthogonality of h
with B1, · · · , BM, we have

‖h/XaM+1‖2 = |〈h,BaM+1〉|2.

The other way is based on G-S orthonormalization of the same (M + 1)-tuple of
functions but in the order {ea, B1, · · · , BM}. Then we have

‖h/XaM+1‖2 ≥ |〈h, ea〉|2 = δ2.
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Hence we have, for anyM , |〈h,BaM+1〉| ≥ δ. In view of this last estimation and (13)
and (12), for large M we have the contradiction given by (11), (10). The proof is
complete.

Remark It is noted that the selected parameters a1, · · · , an, · · · according the
maximal principle may not satisfy the hyperbolic non-separable condition

∞∑

k=1

(1− |ak|) = ∞

and thus the generated TM system {Bk} may not be a basis. By doing such
decomposition one is not interested in whether the resulted TM system is a basis,
but only in whether it can effectively expand the given signal f. The AFD algorithm,
in fact, achieves very fast convergence.

Remark For arbitrary selections of a1, . . . , an, . . . , we arrive at a pre-mono-
component decomposition in the following sense: Each of the Bk’s in the infinite
sum after being multiplied by eit becomes a mono-component. If we choose
a1 = 0, then all Bk’s are mono-components, and AFD offers a mono-component
decomposition.

Remark AFD is different from all the other existing greedy type algorithms
[56, 109] due to the following features: (i) The sifting process to get a reduced
remainder makes the system automatically orthogonal. (ii) Owing to the relations (8)
the optimization in AFD is more optimal than that in orthogonal greedy algorithm.
(iii) In AFD the supreme is attainable and therefore the algorithm attains the
maximum energy portion in each of the iterations.

Remark Restricted to a practical subclass the convergence rate for AFD is M/
√
n,

where n is the order of the AFD partial sum. This is considered as a good
convergence rate for the boundary limits of Hardy space functions may be non-
smooth.

3.3 Unwinding AFD (UWAFD)

Let f = hg, where f, g are Hardy H 2(D) functions, and h is an inner function. Let
f and g be expanded into their respective Fourier series, viz.,

f (z) =
∞∑

k=0

ckz
k, g(z) =

∞∑

k=0

dkz
k.
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The Plancherel theorem and the modular 1 property of inner functions assert that

∞∑

k=0

|ck|2 = ‖f ‖2 = ‖g‖2 =
∞∑

k=0

|dk|2.

In digital signal processing (DSP) there is the following result: For any n,

∞∑

k=n
|ck|2 ≥

∞∑

k=n
|dk|2

(see, for instance, [11, 19]).
In DSP this is referred as energy-front-loading property of minimum phase

signals. This amounts to saying that through factorizing out the inner function factor
the convergence rate of the Fourier series of the remaining outer function becomes
higher. This fact suggests that the AFD process would be better to incorporate with
the factorization process for speeding up the convergence. This instructs that when
a signal by its nature is of high frequency, one should first perform “unwinding”
before extracting out from it a maximal portion of lower frequency. We proceed
as follows [74, 92]. First we do factorization f = f1 = I1O1, where I1 and
O1 are, respectively, the inner and outer factors of f. The factorization is based
on Nevanlinna’s factorization theorem, also see [117]. The outer function has the
explicit integral representation

O1(z) = e
1

2π

∫ 2π
0

eit+z
eit−z log |f1(e

it )|dt
.

The outer function is computed by using the boundary value of f1. On the boundary
the above integral is taken to be of the principal integral sense. The imaginary part
of the integral reduces to the circular Hilbert transform of log |f1(e

it )|. Next, we do
a maximal sifting to O1. That gives

f (z) = I1(z)[〈O1, ea1〉ea1(z)+ f2(z)
z− a1

1− a1z
],

where f2 is the maximal shifting of O1 through a1 :

f2(z) = O1(z)− 〈O1, ea1〉ea1(z)
z−a1

1−a1z

.

By factorizing f2 into its inner and outer factors, f2 = I1O2, we have

f (z) = I1(z)[〈O1, ea1〉ea1(z)+ I2(z)O2(z)
z− a1

1− a1z
].
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We next proceed a maximal sifting to O2, and so on. In such way we arrive at the
unwinding AFD decomposition [74]:

Theorem 3.2 The above procedure gives rise to the unwinding AFD (UWAFD)
decomposition

f (z) =
n∑

k=1

k∏

l=1

Il(z)〈Ok, eak 〉Bk(z)+ fn+1(z)

n∏

k=1

z− ak
1− akz

n∏

l=1

Il(z),

where fk+1 = Ik+1Ok+1 is the maximal shifting of Ok through ak, k = 1, . . . , n,
and Ik+1 and Ok+1 are, respectively, the inner and outer functions of fk+1.

Furthermore,

f (z) =
∞∑

k=1

k∏

l=1

Il(z)〈Ok, eak 〉Bk(z).

Remark Like AFD, unwinding AFD (UWAFD) is a mono-component or pre-mono-
component decomposition. Experiments, in particular on singular inner functions,
show that among various AFD type algorithms UWAFD converges most rapidly
[92].

Remark If we do not incorporate with a maximal sifting process as what we have
done in UWAFD, the algorithm falls into UWA, which was first developed in [64]
2000. Below we denote Blaschke products as φk , which can have finite or infinite
zeros, denote products of a singular inner function and an outer function by ψk ,
and denote f = f1, fk(z) = ψk−1(z) − ψk−1(0), k = 2, · · · , ck = ψk(0), k =
1, 2, · · · . UWA proceeds as

f (z) = f1(z) = φ1(z)ψ1(z)

= φ1(z)
(
ψ1(z)− ψ1(0)+ ψ1(0)

)

= c1φ1(z)+ φ1(z)f2(z)

= c1φ1(z)+ φ1(z)φ2(z)
(
ψ2(z)− ψ2(0)+ ψ1(0)

)

= c1φ1(z)+ c2φ1(z)φ2(z)+ φ1(z)φ2(z)f3(z)

= · · ·

=
∞∑

k=1

ckφ1(z) · · ·φk(z).

The convergence in H 2 was first proved in Remark 4.4, [74]. Several generalized
convergence results were proved in [15]. In the recent papers [108] and [104] the
computation aspect of UWA is studied.
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3.4 Cyclic AFD for n-Best Rational Approximation

In core-AFD the parameters a1, . . . , an, . . . are selected in the one by one manner
to obtain an optimal sequence of Blaschke forms to approximate the given function

n∑

k=1

〈f,B{a1,··· ,ak}〉B{a1,··· ,ak}(z). (14)

Now we change the question to the following: Given f ∈ H 2(D) and a fixed positive
integer n, find n parameters ã1, . . . , ãn such that the associated n-Blaschke form
best approximates f, that is,

‖f −
n∑

k=1

〈f,B{ã1,··· ,ãk}〉B{ã1,··· ,ãk}(z)‖ (15)

= min{‖f −
n∑

k=1

〈f,B{b1,··· ,bk}〉B{b1,··· ,bk}(z)‖ : {b1, · · · , bn} ∈ Dn}. (16)

This amounts an optimization with simultaneous selected n parameters that is
obviously better than one on selections of n parameters in the one by one manner.
Simultaneous selection of the parameters in an approximating n-Blaschke form is
equivalent with the so-called optimal approximation by rational functions of degrees
not larger than n. The latter problem was phrased as n-best rational approximation.
It has been a long standing open problem, presented as follows.

Let p and q denote polynomials of one complex variable. We say that (p, q)
is an n-pair if p and q are co-prime, both of degrees less than or equal to n, and
q does not have zero in the unit disc. Denote by Rn the set of all such n-pairs.
If (p, q) ∈ Rn, then the rational function p/q is said to be a rational function of
degree less or equal n. Let f be a function in the Hardy H 2 space in the unit disc.
To find an n-best rational approximation to f is to find an n-pair (p1, q1) such that

‖f − p1/q1‖ = min{‖f − p/q‖ : (p, q) ∈ Rn}.

Existence of such a minimum solution was proved many decades ago [4, 112], a
practical algorithm to get a solution, however, has been an open problem till now.
The best n-Blaschke form approximation is essentially equivalent with the n-best
rational approximation. There are separate proofs for existence of the solution of
optimization problem (15) [75, 84]. By taking advantages of the explicit form and
the orthogonality of Blaschke forms we get a practical algorithm for the classical
n-best rational approximation problem.

By using cyclic AFD algorithm we can easily get a solution of the mentioned
problem (15) if there is only one critical point for the objective function [75]. In
general, cyclic AFD offers a conditional solution depending on the initial values to
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star with. Besides cyclic AFD there was a previously existing algorithm, RARL2,
by the French institute INRIA, that again can only get a conditional solution [4, 32].
The theory and algorithm of cyclic AFD seem more explicit than RARL2. It uses
the poles of the approximating rational functions as parameters. The other known
rational approximation models all use the coefficients of p and q as parameters.
Using coefficients of polynomials, which is double amount of the parameter number
of the n-Blaschke form setting, involves tedious analysis and computation. The
ultimate solution of the optimization problem lays on suitable selections of initial
values to start with. Finding suitable optimal initial values, however, is an NP hard
problem. Below we describe cyclic AFD algorithm.

For a given positive integer number n the objective function for the n-Blaschke
optimization problem is

A(f ; a1, . . . , an) = ‖f ‖2 −
n∑

k=1

|〈f,Bk〉|2. (17)

Definition 2 An n-tuple (a1, . . . , an) is said to be a coordinate-minimum point
(CMP) of the objective functionA(f ; z1, . . . , zn) if for any chosen k among 1,. . . ,n,
whenever we fix the rest n− 1 variables, being z1 = a1, . . . , zk−1 = ak−1, zk+1 =
ak+1, . . . , zn = an, and select the kth variable zk to minimize the objective function,
we have

ak ∈ arg min{A(f ; a1, . . . , ak−1, zk, ak+1, . . . , an) : zk ∈ D}.

In the core-AFD algorithm we proceed the following procedure: For a (k− 1)-tuple
{a1, . . . , ak−1} in D we produce the reduced remainders f2, . . . , fk, and for fk we
apply the maximal selection principle to find an ak giving rise to max{|〈fn, ea〉| :
a ∈ D}. The proposed cyclic AFD algorithm repeats such procedure always for k =
n : For any permutation P of 1, . . . , n, for the first (n− 1) parameters in the order
aP(1), . . . , aP (n−1) we produce the corresponding reduced remainders f2, . . . , fn,

and then use the maximal selection principle to select an optimal aP(n).
The proposed cyclic AFD algorithm is valid by the following theorem.

Theorem 3.3 Suppose that f is not an m-Blaschke form for any m < n. Let s0 =
{b(0)1 , . . . , b

(0)
n } be any n-tuple of parameters inside D. Fix some n − 1 parameters

of s0 and make an optimal selection of the single remaining parameter under
the “maximal selection principle” in accordance with the objective function (17).
Denote the obtained new n-tuple of parameters by s1.We repeat this procedure and
make cyclic optimal selections over the n parameters. In the process we obtain a
sequence of n-tuples s0, s1, . . . , sl, . . . , with decreasing objective function values
d1, . . . , dl, . . . that tend to a limit d ≥ 0, where, in the notation and formulation of
(17),

dl = A(f ; b(l)1 , . . . , b
(l)
n ) = ‖f ‖2 −

n∑

k=1

(1− |b(l)k |2)|f (l)k (b(l)k )|2. (18)
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Then, (i) If s, as an n-tuple, is a limit of a subsequence of {sl}∞l=0, then s is in
D; (ii) s is a CMP of A(f ; · · · ); (iii) If the correspondence between a CMP and
the corresponding value of A(f ; · · · ) is one to one, then the sequence {sl}∞l=0 itself
converges to the CMP, being dependent of the initial n-tuple s0; (iv) IfA(f ; . . .) has
only one CMP, then {sl}∞l=0 converges to a limit s in D at which A(f ; · · · ) attains
its global minimum value.

We refer the reader to [75] for details and examples of cyclic AFD. In a recent
paper the algorithm is improved by incorporating a complex gradient decent method
[82].

3.5 Pre-Orthogonal Adaptive Fourier Decomposition
(POAFD) for Reproducing Kernel Hilbert Spaces

The approximation theory and algorithm that were developed in the previous
sections can be extended to more general contexts. To explain just the idea we
restrict ourselves to the simplest cases, including the weighted Bergman spaces
and weighted Hardy spaces, etc. Assume that Hilbert space H consists of functions
defined in an open connected region E (can be unbounded) in the complex plane,
and the reproducing kernel ka is an analytic function of the variable a in E satisfying
the relation

f (l)(a) = 〈f,
(
∂

∂a

)l
ka〉, l = 1, 2, · · · (19)

Let {a1, · · · , an, · · · } be a finite or infinite sequence. For a fixed n we define the
multiple of an, denoted by l(an), to be the repeating times of an in the n-tuple
{a1, · · · , an}. With this definition, for instance, the multiple of a1 is just 1, and the
multiple of a2 will depend on whether a2 = a1. If yes, then l(a2) = 2, and, if not,
l(a2) = 1, and so on. Note that it is a little abuse of notation for it is not dependent
on the value of an but on the repeating times of an in the corresponding n-tuple. We
accordingly define

k̃an �
[(

∂

∂a

)l(an)−1

ka

]

a=an
�

(
∂

∂a

)l(an)−1

kan . (20)

We further assume the following boundary vanishing condition, implying the maxi-
mal selection principle in every individual context, as follows: Let a1, · · · , an−1 be
previously given, and {B1, · · · , Bn−1} be the Gram–Schmidt orthonormalization of
{k̃a1, · · · , k̃an−1}, then for every f ∈ H, the pre-orthogonal system has the property

lim
a→∂E

〈f,Ban 〉 = 0, (21)
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where {B1, · · · , Bn−1, B
a
n } is the Gram–Schmidt orthonormalization

of {k̃a1, · · · , k̃an−1 , ka},with a �= ak, k = 1, · · · , n−1.We note (1) if a→ ∂E , then
a is different from any already selected ak, k = 1, · · · , n − 1; and (2) in any case
the limit a → ∂E is in the sense of the topology of the one-point-compactification
of the complex plane while the “one point” takes to be∞.With boundary vanishing
assumption we conclude the maximal selection principle of POAFD: Under the
assumption (21), through a compact argument, there exists a sequence {bj }∞j=1 such

that none of the bj ’s take any values a1, · · · , an−1, and limj→∞ bj � an ∈ E, and

lim
j→∞ |〈f,B

bj
n 〉| = max{|〈f,Ban 〉| : a ∈ E}. (22)

To understand what would happen if an coincides with a previous ak, k < n, we
prove the following lemma.

Lemma 3.4

lim
l→∞B

bj
n = Bann ,

where {B1, · · · , Bn−1, B
an
n } is the Gram–Schmidt orthonormalization of

{k̃a1, · · · , k̃an−1 , k̃an}.
Proof If an does not coincide with any ak, k = 1, · · · , an−1, then limj→∞ B

bj
n =

B
an
n , where {B1, · · · , Bn−1, B

an
n } is the Gram–Schmidt orthonormalization of

{k̃a1, · · · , k̃an−1 , kan} = {k̃a1, · · · , k̃an−1 , k̃an}. Now consider the case that an
coincides with some of the earlier a1, · · · , an−1, or in other words, l(an) > 1. That

means that, in the notation (20), the (l − 1) functions kan,
∂
∂a
kan, · · · ,

(
∂
∂a

)(l−2)
kan

have already appeared in the sequence {k̃a1, · · · , k̃an−1}. As a consequence, the
function

Tl−2(bj , an) = kan +
∂
∂a
kan

1! (bj − an)+ · · · +
(
∂
∂a

)(l−2)
kan

(l − 2)! (bj − an)l−2,

as the order-(l − 2) Taylor expansion of the function ka(z) in bj about an, is in the
linear span of B1, · · · , Bn−1. This last statement amounts to the identical relation

Tl−2(bj , an)−
n∑

k=1

〈Tl−2(bj , an), Bk〉Bk = 0. (23)

Since bj ’s are taken differently from all ak, k = 1, · · · , n − 1, we have, with the
G-S orthonormalization,
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B
bj
n (z) =

kbj (z)−
∑n−1
k=1〈kbj , Bk〉Bk(z)

‖kbj −
∑n−1
k=1〈kbj , Bk〉Bk‖

, (24)

Inserting (23) into (24), and dividing by (bj − an)l−1 and |bj − an|l−1 to the
numerator and the denominator parts, respectively, we have

B
bj
n (z)=e−i(l−1)θ

kbj (z)−Tl−2(kbj ,an)(z)

(bj−an)l−1 −∑n−1
k=1〈

kbj−Tl−2(bj ,an)(z)

w−an)l−1 , Bk〉Bk(z)

‖ kbj (z)−Tl−2(bj ,an)(z)

(bj−an)l−1 −∑n−1
k=1〈

kbj (z)−Tl−2(bj ,an)(z)

(bj−an)l−1 , Bk〉Bk‖
, (25)

where eiθ is the tangential direction of the limiting bj → an. We can, in fact,
take any direction, including θ = 0. Letting bj → an with θ = 0, and using the
Lagrange type remainder of the Taylor expansion, we obtain

lim
j→∞B

bj
n (z) = k̃an(z)−

∑n−1
k=1〈k̃an , Bk〉Bk(z)

‖k̃an −
∑n−1
k=1〈k̃an , Bk〉Bk‖

.

Therefore, {B1, · · · , Bn−1, B
an
n } is a Gram–Schmidt orthonormalization of

{k̃a1, · · · , k̃an−1 , k̃an}. The proof is complete.

Remark The essence of the proof is contained in [76, 77, 96].

We have the pre-orthogonal adaptive Fourier decomposition (POAFD) conver-
gence theorem as follows.

Theorem 3.5 Selecting {a1, · · · , an, · · · } according to the maximal selection prin-
ciple set by (22), we have

f =
∞∑

k=1

〈f,Bn〉Bn,

where for any positive integer n, {B1, · · · , Bn−1, Bn} is the Gram–Schmidt
orthonormalization of {k̃a1, · · · , k̃an−1 , k̃an}.
One can adopt the same proof for the AFD convergence (Theorem 3.1) in which only
the standard remainders gk’s are involved. As a matter of fact, the sifting process and
the role of the induced remainders are taken place by the pre-orthogonal process.

Remark Repeating selection of a parameter is a natural thing under maximal
selection principle. For POAFD we refer the reader to the references [54, 55, 76,
77, 84, 91], where POAFD is called by other names including POGA or PreOGA,
etc. Since the method inherits the AFD idea, that is especially seen from the relation
(8), we decide to justify the name and call it by POAFD.
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Various Adaptive Fourier
Decomposition Methods

4 Related Studies and Applications

4.1 Aspects in Relation to Beurling–Lax Shift-Invariant
Subspaces

The AFD type expansions is in a great extent related to the Beurling–Lax shift-
invariant subspaces of the Hardy H 2 spaces. In the unit disc case,

H 2(D) = span{Bk}∞k=1 ⊕ φH 2(D), (26)

where {Bk}∞k=1 is the TM system generated by a sequence {a1, · · · , an, · · · },
where multiples are counted, and φ is the Blaschke product with the zeros
{a1, · · · , an, · · · } including the multiples. Note that when a Blaschke product φ
having ak’s as all its zeros does not exist, corresponding to the condition

∞∑

k=1

(1− |ak|) <∞,

then the associated TM system is a basis. Although this has been well known over
a long time, its relations with adaptive expansions, as far as what are aware by the
author, have not been brought up. The fact that TM systems being Schauder systems
was proved in [93]. The space decomposition relation (26) was extended to Hp

spaces, where p �= 2 [80]. Relations between backward shift invariant subspaces
and bandlimited functions and Bedrosian identity [80, 107] were studied. There are
open questions on whether there exist adaptive and fast converging expansions by
using TM systems for the cases p �= 2, and for p = 2 how far one can extend AFD
(26) to higher dimensions. The study has a great room to be further developed.
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4.2 Extra-Strong Uncertainty Principle

The phase and frequency studies in mono-component function theory lay certain
foundations in digital signal processing. In related studies what is called extra-strong
uncertainty principle

σ 2
t σ

2
ω ≥

1

4
+

(∫ ∞

−∞
|t − 〈t〉||φ(t)− 〈ω〉||f (t)|2dt

)2

(27)

was recently established [22], where f is a real-valued signal, σ 2
t and σ 2

ω are the
standard deviations with respect to the time and the Fourier frequency, and 〈t〉 and
〈ω〉 are the corresponding means. A weaker uncertainty principle of the same type
was previously given by L. Cohen

σ 2
t σ

2
ω ≥

1

4
+ |

∫ ∞

−∞
(t − 〈t〉)(φ(t)− 〈ω〉)|f (t)|2dt |2

[13]. We further extended the above result to multi-dimensional contexts [21–24,
26].

4.3 The Dirac-Type Time-Frequency Distributions Based on
Mono-component Decompositions

The Dirac-type time-frequency distribution (DTFD) of the form

P(t, ω) = ρ2(t)δ(ω − θ ′(t)) (28)

is the ultimate desire of signal analysts. Several time-frequency distributions,
including windowed Fourier transform and Wigner–Ville transform, etc., have been
used by signal analysts, of which none are entirely satisfied. The existing time-
frequency distributions do not give explicit and clear frequency components, and,
they often depend on parameter selections. Positive-frequency decompositions of
signals offered by the AFD decompositions naturally give rise to Dirac-type time-
frequency distributions. For a single mono-component m1(t) = ρ1(t) cos θ1(t)

the corresponding DTFD according to (28) is the graph (t, θ ′1(t)) of the function
ω = θ ′1(t) in the ω-t plane, while the weight ρ2

1(t) may be represented by colors
continuously changing along with changing of the values ρ2

1(t). If a signal f is
expanded into a series of “intrinsic composing” mono-components, then its DTFD is
the bunch of color-weighted graphs of which each is made from a composing mono-
component [20, 126]. This definition has been interested and being paid attention by
signal analysts including Leon Cohen and Lorenzo Galleani, etc., and has been used
in practice (see below the application section).
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4.4 Higher Dimensional AFDs

To develop an AFD like approximation theory in higher dimensions a Cauchy type
structure is necessary that is mainly for use of the reproducing kernel property
in conjunction with maximal selection principle. By using the Cauchy structure
in the Clifford algebra or the several complex variables setting we achieved the
AFD type theories and the associated algorithms for function spaces with those
settings, including several real variables on the plane (Clifford Hardy spaces and
Hardy spaces on tubes), on the real spheres, on the n-torus, and on the n-complex
spheres [1, 2, 91, 94, 114]. With D. Alpay, F. Colombo, I. Sabadini we achieved
analogous theory involving matrix-valued Blaschke products [1, 2]. This study has
impacts to rational approximation in a number of spaces [5].

4.5 Fourier Spectrum Characterization of Hardy Spaces:
Analytic Signals Revised

The Paley–Wiener theorem for the classical Hardy H 2 space over the upper half
complex space addresses the fact that if f ∈ L2(R), then further f ∈ H 2(C+) if
and only if suppf̂ ⊂ [0,∞). This result is systematically extended to Hp(C+)
for all p ∈ [1,∞], where the Fourier transform is in some occasions defined
in the distribution sense [70, 86]. The results are summarized as: Letting f ∈
Lp(R), then f is further the non-tangential boundary limit of some function
in the complex Hardy space Hp(C+) if and only if f̂ = χ+f̂ , where χ+ is
the indicator (characteristic) function of the right-half-real line, and the Fourier
transform may take the distribution sense. The generalization to the Hardy spaces
on tubes (extending the p = 2 case in [103] to 1 ≤ p ≤ ∞) was given in [49]. The
results of the same type but with the Clifford algebra setting is given in [28] proving
that a Clifford-valued function f ∈ Lp(Rn) is the non-tangential boundary limit of
some Clifford-valued Hardy space function in the upper half space if and only if

f̂ = χ+f̂ , where χ+(ξ) = 1
2

(
1+ i ξ|ξ |

)
, ξ = ξ1e1 + · · · + ξnen (the Hardy space

projection function). This extends some partial cases proved in [103] for conjugate
harmonic systems. In various contexts Fourier spectrum characterizations give rise
to Hardy spaces decompositions for Lp, 1 < p ≤ ∞, that further induce Hardy
space decompositions of Lp, 0 < p < 1, [30, 48]. Hardy space decomposition is
the strategy of our study of functions of various integrability in the Lebesgue sense.
The strategy is extensively implemented along with the mono-component and AFD
approximation theories. In particular, for any signal f , by multiplying f̂ with χ+
and then taking the inverse Fourier transform, we obtain the associated analytic
signal. This is philosophically valid in any context. We finally note that the Hardy
space decomposition issue has been extended to theLp-vector fields and one obtains
the Hardy–Hodge decomposition [6].
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4.6 Hilbert Transforms as Singular Integral Operators:
Analytic Signals Revised

As in the 1-D case [7], on higher dimensional manifolds one defines the non-
scalar part of the non-tangential boundary limit of a hypercomplex holomorphic
function in a certain sense to be the Hilbert transform of the scalar part [83].
Hilbert transform, therefore, is a particular singular integral. One is to study singular
integrals to understand Hilbert transforms. On one dimensional manifolds, including
Lipschitz perturbations of the real line and the circle, certain singular integrals of
holomorphic kernels form an operator algebra as studied in a series of work of A.
McIntosh, C. Li, S. Semmes, T. Qian, R.-L. Long, and S.-L. Wang [37, 58, 59, 67].
The theory on the plane was earlier established in the work, or under influence, of
A. McIntosh [36, 46, 47]. Through using and generalizing the results of Fueter and
Sce to arbitrary Euclidean spaces (as technical necessity) the second author acquired
the necessary techniques to establish the theory of the operator algebra of singular
integrals of quaternionic or Clifford monogenic kernels on Lipschitz perturbations
of the unit sphere for all dimensions [3, 68, 69]. Based on the established singular
integral theory Hilbert transformations of the plane and of the sphere became well
understood. Analytic signals on the sphere, for instance, are constructed as follows:
Let f be a real-valued signal of finite energy on a manifold S. Denote by HS the
Hilbert transform of f on the manifold. Then the analytic signal on S is defined to
be f+ = f + HSf, where HSf is the non-scalar part (on sphere it is a 2-form
valued function). f+ has Clifford monogenic extension to one of the two regions
divided by S. One can derive, if ζ is on the plane or on the sphere,

f+(ζ ) = ρf (ζ )
(
f (ζ )

ρf (ζ )
+ HS(f )(ζ )
|HS(f )(ζ )|

|HS(f )(ζ )|
ρf (ζ )

)
(29)

= ρf (ζ )
(

cos θ(ζ )+ HS(f )(ζ )
|HS(f )(ζ )| sin θ(ζ )

)
(30)

= ρf (ζ )e
HS (f )(ζ )|HS (f )(ζ )| θ(ζ ), (31)

where ρf (ζ ) =
√|f (ζ )|2 + |HSf (ζ )|2, and

(
HS (f )(ζ )|HS (f )(ζ )|

)2 = −1, the latter being

a varying imaginary element just like the complex imaginary element with the
property i2 = −1. The instantaneous frequency is defined, as in the classical case
through the mentioned monogenic extension, which can be formally read

θ ′(ζ ) = Re{[(�ζ − I )f+(ζ )
] [
(f+(ζ ))−1

]
},

the latter can be expressed in terms of the angle θ(ζ ) [83, 122], where �ζ is the
surface Dirac operator on the manifold. Such formulation gives IF a certain sense in
higher dimensions. The related studies published, in, respectively, 2015 and 2017
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with the Chinese Science Press two monographs books [76] and [78]. With the
Szegö and Bergman kernel of the related regions, following what is done in the
standard domains, approximation theory for certain hypercomplex analytic function
spaces can be established [41]. We finally note that Hilbert transformation may be
characterized by commutativity with the affine groups in the underlying symmetric
manifold which shows that the three objects the Hilbert transformation, the Dirac
differential operator, and the group representation theory have intimate relations
[25, 27].

Analytic Signals in Various Contexts

4.7 Applications

Mono-component function and AFD theories have demonstrative applications in
signal and image analysis as well as in system identification. A number of signal
and image analysts promoted the AFD method. Below we summarize part of the
applications found in the literature.

It is commented in [118] that, as a new method, AFD was proposed in the
recent years that could be used to decompose and reconstruct signals. It contains
the classical Fourier method as a particular case. Experiments show that the 1D
AFDs achieve excellent signal decomposition and reconstruction results. The article
[119] compares 2D AFD with the traditional frequency digital watermark methods,
including discrete cosine transform DCT, discrete wavelet transform DWT, discrete
Fourier transform DFT, etc., and concludes that 2D AFD has better transparency
and robustness under attacking. A recent watermarking method based on 2D AFD
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is developed in [51]. The article [120] revises the 2D AFD algorithm and, as a result,
increases its speed, and uses it in denoising.

In [52] Y. Liang et al. propose a new fault diagnosis method of rolling bearing
faults based on AFD. They show that AFD can avoid using band-pass filters, the
latter often suffering from the difficulty of algorithm parameter selection, they show
that AFD adaptively, efficiently, and accurately diagnose all kinds of rolling bearing
problems in their study.

In [115] the authors study interference and separation between the lung sound
(LS) and the heart sound (HS) signals. Due to the overlap in their frequency spectra,
it is difficult to separate them. The article proposes a novel separation method based
on AFD. This AFD-based separation method is validated on real HS signals from
the University of Michigan Heart Sound and Murmur Library, as well as on real
LS signals from the 3M repository. Simulation results indicate that the proposed
method is more effective than the extraction methods based on the recursive least
square (RLS), than the standard empirical mode decomposition (EMD) and its
various extensions, including the ensemble EMD (EEMD), the multivariate EMD
(M-EMD), and the noise assisted M-EMD (NAM-EMD) [39, 102].

Over the years people have made unremitting studies in predicting the stock
price movements. In [125] a novel automatic stock movement forecasting system is
proposed, which is based on the newly developed signal decomposition approach—
adaptive Fourier decomposition (AFD). AFD can effectively extract the signal
primary trend, which is specifically suitable in the Dow theory based automatic
technique analysis. Effectiveness of the proposed approach is assessed through the
comparison with the direct BP approach and manual observation. The result is
proved to be promising.

In [124] an AFD based time-frequency speech analysis approach is proposed.
Given the fact that the fundamental frequency of speech signals often undergoes
fluctuation, the classical short-time Fourier transform (STFT) based spectrogram
analysis suffers from the difficulty of window size selection. AFD is a newly
developed signal decomposition theory. The outstanding characteristic of AFD is
to provide instantaneous frequency for each decomposed component, so the time-
frequency analysis becomes accessible. Experiments are conducted based on the
sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The
results show that the AFD based time-frequency distribution outperforms the STFT.

AFD has already been employed to the productions of CASA Environmental
Technology Co., Ltd, including the second generation of BEWS (biological early
warning system) and ETBES (ecological toxicity biological exposed system). The
two systems take advantages of AFD and unwinding to analyze the biological
behavioral signal. Compared with the traditional Fourier, wavelet, and EMD
algorithms, the AFD approach can efficiently solve early warning judgment for low
concentration pollutants and disturbance of fish biological clock and other problems.

In control theory the authors of the article [44] introduce an AFD algorithm
to eliminate the channel noise superimposed on the output signal in the wireless
transmission process. In the frequency domain, based on AFD, an ILC method for
discrete linear system with wireless transmission is proposed. Simulation results



32 Q. Chen et al.

show that the AFD algorithm is able to achieve signal denoising well in the case of
small decomposition threshold compared with Fourier decomposition. Thus the goal
that the output signal of ILC system can track the desired signal is better achieved.

Indian researchers in their article [34] assert that to analyze biomedical signals
in relation to e-health devices the frequency domain method outperforms the time
domain method, and among numerate frequency domain methods (Hermit, Fourier,
Karhunen–Loeve, Wavelet) AFD appears to have features of a greater variety, and
more stable for the data compression. Based on compression using AFD they started
to manufacture economic, accurate, and stable domestic e-health devices.

Apart from China and Asia, AFD has also achieved international influence. Inter-
ests, studies, and applications of AFD are found in relevant literature, by Ph.D. thesis
of F. D. Fulle at Michigan University on oxygenic photosynthesis; by A. Kirkbas
et al. on optimal basis pursuit based on Jaya optimization for adaptive Fourier
decomposition [42]; by V. Vatchev, on a class of intrinsic trigonometric mode
polynomials [110]; by J. Mashreghi et al. on Blaschke Products and Applications
[57]; by R.S. Krausshar et al. on Clifford and harmonic analysis on cylinders and
tori [43]; by F. Colombo et al. on the Fueter mapping theorem in integral form and
the F-functional calculus [18]; by M.I. Falcão et al. on remarks on the generation
of monogenic functions; by F. Colombo et al. on the Fueter primitive of bi-axially
monogenic functions [17]; by L. Salomon on analysis of the anisotropy in image
textures [101]; by F. Sakaguchi on the related integral-type method in higher order
differential equations [97–100]; by P. León on instantaneous frequency estimation
and representation of the audio signal through complex wavelet additive synthesis
[29]; by F.E. Mozes on computing the instantaneous frequency for an ECG signal
[63]; by N.R. Gomes, as Doctoral dissertation, on compressive sensing in Clifford
analysis; by T. Eisner et al. on discrete orthogonality of the Malmquist–Takenaka
system on the upper half plane and rational approximation [31]; and by A. Perotti
on his article in directional quaternionic Hilbert operators [65].

The AFD methods have found promising applications, especially in model
reduction, in system identification [10, 50, 60–62, 116].
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One-Component Inner Functions II

Joseph Cima and Raymond Mortini

Abstract We continue our study of the set Ic of inner functions u in H∞(D) with
the property that there is η ∈]0, 1[ such that the level set Ωu(η) := {z ∈ D :
|u(z)| < η} is connected. These functions are called one-component inner functions.
Here we show that the composition of two one-component inner functions is again
in Ic. We also give conditions under which a factor of one-component inner function
belongs to Ic.

1 Introduction

Let H∞ = H∞(D) be the space of all bounded holomorphic functions in the open
unit disk D. In this paper we study an important class of inner functions, the so-
called one-component inner functions. Recall that a function u ∈ H∞ is said to
be inner if the boundary values of u have modulus one almost everywhere. Such
an inner function u now is said to be a one-component inner function if there is
η ∈]0, 1[ such that the level set (also called sublevel set or filled level set)

Ωu(η) := {z ∈ D : |u(z)| < η}

is connected. We denote the collection of all one-component inner functions
by Ic. Unimodular constants are considered to belong to Ic. These functions
were first studied by B. Cohn [7] in connection with embedding theorems and
Carleson measures. It was shown in [7, p. 355], for instance, that arc length on
{z ∈ D : |u(z)| = ε} is a Carleson measure whenever Ωu(η) is connected for some
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η < ε < 1. Many operator-theoretic applications appear in [1–3, 5]. A detailed study
of the elements in Ic was undertaken by A.B. Aleksandrov [1]. Classes of explicit
examples of one-component inner functions were given by the present authors in [6].
The most fundamental ones are finite Blaschke products and singular inner functions
Sμ with finite singularity set (or spectrum) Sing(Sμ). Infinite interpolating Blaschke
products with real zeros (xn) satisfying 0 < η1 ≤ ρ(xn, xn+1) ≤ η2 < 1 (where ρ
is the pseudohyperbolic distance in D) were also shown to belong to Ic. On the other
hand, no finite product of thin interpolating Blaschke products (these are (infinite)
Blaschke products B whose zeros (zn) satisfy limn

∏
k:k �=n ρ(zn, zk) = 1) can be

in Ic. It also turned out that the class of one-component inner functions is invariant
under taking finite products. In the present note, we are considering when a factor of
a one-component inner function is in Ic again. A sufficient criterion is provided. On
the other hand, as it is shown, there exist two non-one-component inner functions u
and v such that uv ∈ Ic. Our main result will show that the class of one-component
inner functions is also invariant under taking compositions, generalizing special
cases dealt with in [6]. The results of this note stem from December 2016. A paper
by A. Reijonen [13] provides other classes of one-component inner functions.

2 Main Tools

Our results will mainly be based on the following known results which we recall for
citational reasons.

Lemma 1 Given a non-constant inner function u and η ∈ ]0, 1[, letΩ := Ωu(η) =
{z ∈ D : |u(z)| < η} be a level set. Suppose that Ω0 is a component (=maximal
connected subset) of Ω . Then

(1) Ω0 is a simply connected domain; that is, C \Ω0 has no bounded components.
(2) infΩ0 |u| = 0.
(3) Either Ω0 ⊆ D or Ω0 ∩ T has measure zero.

A detailed proof of parts (1) and (2) is given in [6]; part (3) is in [4, p. 733].
Recall that the spectrum Sing(u) of an inner function u is the set of all boundary

points ζ for which u does not admit a holomorphic extension; or equivalently, for
which Cl(u, ζ ) = D, where

Cl(u, ζ ) = {w ∈ C : ∃(zn) ∈ D
N, lim zn = ζ and lim u(zn) = w}

is the cluster set of u at ζ (see [9, p. 80]). The pseudohyperbolic disk of center
z0 ∈ D and radius r is denoted by Dρ(z0, r).
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Theorem 2 (Aleksandrov) Let u be an inner function. The following assertions
are equivalent:

(1) u ∈ Ic.
(2) There is a constant C > 0 such that for every ζ ∈ T \ Sing(u) we have

i) |u′′(ζ )| ≤ C |u′(ζ )|2,
ii) lim infr→1 |u(rζ )| < 1 for all ζ ∈ Sing(u).

Note that as a consequence of this result, which is due to A. B. Aleksandrov [1,
Theorem 1.11 and Remark 2, p. 2915], u ∈ Ic necessarily implies that Sing(u) has
measure zero.

3 Splitting Off Factors

In this section we give a condition under which a factor of a one-component inner
function is in Ic again. Recall from [6] that for the atomic inner function S(z) =
exp(− 1+z

1−z ) and a thin Blaschke product with positive zeros, SB ∈ Ic, but not B.
For a �= 0, let

φa(z) =
|a|
a

a − z
1− az

and φ0(z) = z. A Blaschke product B is written as B = eiθ
∏∞
j=1 φaj , where

we have
∑∞
j=1(1− |aj |) <∞, and each aj appearing as often as its multiplicity

needs. The following result tells us that one can split off finitely many zeros without
leaving the class of one-component inner functions. Any inner function u has the
form u = BSμ, where B is a Blaschke product and Sμ a singular inner function

Sμ(z) := exp

(
−

∫

T

ζ + z
ζ − z dμ(ζ )

)

associated with a positive Borel measure μ which is singular with respect to
Lebesgue measure on T.

Proposition 3 Let Θ ∈ Ic and a ∈ D. If Θ(a) = 0, then v := Θ/ϕa ∈ Ic.

Proof Note that Θ = ϕav. We may assume that v is not constant, otherwise we are
done. Choose η ∈ ]0, 1[ so that ΩΘ(η) is connected. Let

δ := inf{|ϕa(z)| : |Θ(z)| = η}.
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We claim that η < δ < 1. In fact, since the set L := {z ∈ D : |Θ(z)| = η} is not
empty, and |ϕa| < 1 in D, we see that δ < 1. Moreover, if z0 ∈ L, then

L′ := {|ϕa(z)| : |Θ(z)| = η, |ϕa(z)| ≤ |ϕa(z0)|}

is a compact set in [0, 1], and so

inf{|ϕa(z)| : |Θ(z)| = η} = infL′ = minL′.

Hence δ = |ϕa(z1)| for some z1 ∈ L. Since v is not a unimodular constant, we
deduce from |Θ(z1)| = |ϕa(z1)| |v(z1)| that η < δ. Consequently, if |Θ(z)| = η,

|v(z)| = |Θ(z)||ϕa(z)|
≤ η
δ
:= η′ < 1. (1)

We claim that

Ωv(η) ⊆ ΩΘ(η) ⊆ Ωv(η′).

Notice that the first inclusion is obvious. To verify the second inclusion, let z0 ∈
ΩΘ(η). We discuss three cases: ρ(z, a) < δ, ρ(z, a) = δ, and ρ(z, a) > δ.

To this end, we first note that Dρ(a, δ) ⊆ ΩΘ(η). In fact, if ρ(a, z) =
|ϕa(z)| < δ, then |Θ(z)| < η, since otherwise Θ(a) = 0 implies the existence
of z0 ∈ Dρ(a, δ) with |Θ(z0)| = η and so, by the definition of δ, |ϕa(z)| ≥ δ. This
is an obvious contradiction.

Hence |Θ(z)| ≤ η for ρ(z, a) = δ. Thus (1) holds true for z ∈ ∂Dρ(a, δ). By the
maximum principle, |v(z)| < η′ on Dρ(a, δ). If ρ(z, a) ≥ δ and |Θ(z)| < η, then,
as in (1), |v(z)| < η′, too. We deduce that ΩΘ(η) ⊆ Ωv(η′).

Now we are able to prove thatΩv(η′) is connected. Assuming the contrary, there
would exist a componentΩ1 ofΩv(η′) distinct (and so disjoint) from that containing
the connected set ΩΘ(η). In particular, |v| ≥ |Θ| ≥ η on Ω1. By Lemma 1,
infΩ1 |v| = 0, which is an obvious contradiction. �

The preceding result admits the following generalization.

Proposition 4 Let u, v be two non-constant inner functions and put Θ = uv.
Suppose that

(i) Θ ∈ Ic and that η ∈]0, 1[ is chosen so that ΩΘ(η) is connected.
(ii) σ := sup|Θ|=η |v| ∈ ]η, 1[ (or equivalently, δ := inf|Θ|=η |u| ∈ ]η, 1[).
Then v ∈ Ic. The assertion does not necessarily hold if σ = 1 (or, equivalently, if
δ = η).

Proof Due to hypothesis (ii), we have the following estimate on |Θ| = η:
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|u| = |Θ||v| ≥
η

σ
= δ. (2)

Note that δ ∈ ]η, 1[. We claim that

Ωu(δ) ⊆ ΩΘ(η) ∩Ωv(σ). (3)

To this end, we first show that |Θ| < η onΩu(δ). In fact, assuming the contrary,
there exists z0 ∈ Ωu(δ) such that |Θ(z0)| ≥ η. Let Ω0 be that component of Ωu(δ)
containing z0. By Lemma 1(2), infΩ0 |u| = 0. Since u is a factor of Θ , we conclude
that there exists z1 ∈ Ω0 ⊆ Ωu(δ) such that |Θ(z1)| < η. Thus, the connected set
Ω0 meets {|Θ| < η} as well as its complement. Hence Ω0 meets the topological
boundary of ΩΘ(η). Because Ω0 ⊆ D, we obtain z2 ∈ Ω0 such that |Θ(z2)| = η.
Hence, by (ii), |v(z2)| ≤ σ and so |u(z2)| ≥ δ by (2). Both assertions |u(z2)| ≥ δ
and z2 ∈ Ω0 ⊆ Ωu(δ) cannot hold. Thus our assumption right at the beginning of
this paragraph was wrong. We deduce that

Ωu(δ) ⊆ ΩΘ(η). (4)

By continuity, this inclusion implies that |Θ| ≤ η on {|u| = δ}. Hence, for
|u(z)| = δ,

|v(z)| = |Θ(z)||u(z)| ≤
η

δ

(2)= σ . (5)

Now ∂Ωu(δ)∩D = {|u| = δ}. IfΩ is a component ofΩu(δ) whose closure belongs
to D, then by the maximum principle and (5), |v| < σ on Ω . If E := Ω ∩ T �= ∅,
then E has measure zero by Lemma 1 (3). The maximum principle with exceptional
points (see [4, p. 729] or [8]) now implies that |v| < σ on Ω . Consequently,

Ωu(δ) ⊆ Ωv(σ). (6)

Thus (3) holds. Next we will deduce that

Ωv(η) ⊆ ΩΘ(η) ⊆ Ωv(σ). (7)

To see this, observe that the first inclusion is obvious because v is a factor of Θ . To
prove the second inclusion, we write the η-level set of Θ as

ΩΘ(η) =
(
ΩΘ(η) ∩Ωu(δ)

)
∪
(
ΩΘ(η) \Ωu(δ)

)
.

By (6), the first set in this union is contained in Ωv(σ). The second set is also
contained in Ωv(σ), because if |u(z)| ≥ δ and z ∈ ΩΘ(η), then
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|v(z)| = |Θ(z)||u(z)| <
η

δ

(2)= σ . (8)

To sum up, we have shown that for every z ∈ ΩΘ(η) we have |v(z)| < σ both in
the case where |u(z)| < δ and |u(z)| ≥ δ. Thus

ΩΘ(η) ⊆ Ωv(σ),

and so, (7) holds. Using these inclusions (7), we are now able to prove that Ωv(σ)
is connected. Assuming the contrary, there would exist a component Ω1 of Ωv(σ),
distinct (and so disjoint) from that containing the connected setΩΘ(η). In particular,
|v| ≥ |Θ| ≥ η on Ω1. By Lemma 1 (2), infΩ1 |v| = 0, which is an obvious
contradiction.

Finally we construct an example showing that in (ii) the parameter σ cannot be
taken to be 1. In fact, let v be a thin interpolating Blaschke product with positive
zeros clustering at 1, for example

v(z) =
∞∏

n=1

1− 1/n! − z
1− (1− 1/n!)z ,

and let u(z) = S(z) := exp[−(1+z)/(1−z)] be the atomic inner function. Then, by
[6, Proposition 11],Θ = uv ∈ Ic. However, v /∈ Ic, see [6, Corollary 21]. Thus, by
the main assertion of this proposition, σ = sup|Θ|=η |v| = 1. A direct proof of the
assertion σ = 1 can also be given using [10, p. 55], by noticing that the boundary
of the component ΩΘ(η) is a closed curve in D ∪ {1}. �
Observation We know from [6, Proposition 12] that u, v ∈ Ic implies uv ∈ Ic.
Here is an example showing that neither u nor v must belong to Ic for uv to be in
Ic. In fact, let b be a thin Blaschke product with real zeros clustering at 1 and −1
(just consider b(z) = v(z)v(−z), v as above). Let ũ := Sb and ṽ(z) := S(−z)b(z).
Then Θ := ũṽ ∈ Ic, because Θ(z) = (

S(z)v2(z)
)(
S(−z)v2(−z)) is the product

of two functions in Ic (same proof as in [6, Proposition 11]), but neither ũ nor ṽ
belongs to Ic. This can be seen as follows: since S(−1) = 1, ũ = Sb behaves as
b close to −1. Thus, for η arbitrarily close to 1, the level set Ωũ(η) is contained in
a union of pairwise disjoint pseudohyperbolic disks Dρ(xn, η∗), n = 0, 1, 2, · · · ,
together with some tangential disk D at 1, where x0 = 0 and xn is the n-th negative
zero of b (this works similarly as in [6, Corollary 21] and [6, Proposition 11]).

4 Composition of One-Component Inner Functions

In [6] we showed that for every finite Blaschke product B, the atomic singular inner
function S and Θ ∈ Ic, the compositions S ◦ B ∈ Ic and B ◦ Θ ∈ Ic. Using
the following standard lemma, we will extend this to arbitrary one-component inner
functions.
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Lemma 5

1) Let B be a Blaschke product with zero sequence (an)n∈N. Then the following
inequalities hold for every ξ ∈ T \ Sing(B) and n0 ∈ N:

|B ′(ξ)| =
∑

n∈N

1− |an|2
|an − ξ |2 ≥

1− |an0 |
1+ |an0 |

> 0.

2) If u is an inner function for which Sing(u) �= T, then

δu := inf{|u′(ξ)| : ξ ∈ T \ Sing(u)} > 0.

Proof

1) Just compute the logarithmic derivative B ′/B and note that on T \ Sing(B) the
Blaschke product B converges.

2) Let ϕa(z) = (a − z)/(1 − az). By Frostman’s theorem (see [9, p. 79])
there is a ∈ D such that B := ϕa ◦ u is a Blaschke product. Of course,
Sing(u) = Sing(B), u = ϕa ◦ B, and ϕ′a(z) = −(1 − |a|2)/(1 − az)2. Hence,
for ξ ∈ T \ Sing(u),

|u′(ξ)| = |ϕ′a(B(ξ))| |B ′(ξ)| ≥
1− |a|2
|1− aB(ξ)|2 δB

≥ 1− |a|
1+ |a| δB > 0.

This concludes the proof. �
Theorem 6 If u and v are two non-constant inner functions in Ic, then u ◦ v ∈ Ic.

Proof As in [6], we shall use Aleksandrov’s theorem (Theorem 2).
(1) Let Θ := u ◦ v. It is well known that Θ is an inner function again (see e.g.

[12, p. 83]). Now

Sing(Θ) = Sing(v) ∪ {ξ ∈ T \ Sing(v) : v(ξ) ∈ Sing(u)}.
Since v ∈ Ic, lim infr→1 |v(rζ )| < 1 for every ζ ∈ Sing(v) (Theorem 2). Hence
there exists a sequence (rn) in ]0, 1[, rn→ 1, such that v(rnζ )→ w0 ∈ D. Then

Θ(rnζ ) = u(v(rnζ ))→ u(w0) ∈ D. (9)

If ξ ∈ Sing(Θ) \ Sing(v), then v(rξ) → v(ξ) = eiθ ∈ Sing(u) for some θ ∈ R.
By Lemma 5, v′(ξ) �= 0; hence v is a conformal map in small neighborhoods of ξ ;
in particular, due to the angle conservation law, the curve γ : r �→ v(rξ) stays in a
cone

C = C(θ) := {z ∈ D : |z| ≥ r0, | arg z− θ | < σ }
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with curved base, aperture 0 < 2σ < π and cusp at eiθ ∈ Sing(u) (see the figure,
where we sketched the situation for θ = 0).

Since u ∈ Ic, lim inf |u(reiθ )| < 1. We claim that lim inf |u(v(rξ))| < 1, too. To
see this, choose a pseudohyperbolic radius ρ0 so big that for some r0 ∈ ]0, 1[ the
cone C is entirely contained in the domain

V :=
⋃

−1<x<1

Dρ(xe
iθ , ρ0).

Note that by [11], the boundary of V is the union of two arcs of circles cutting
the line {seiθ : s ∈ R} at eiθ under an angle α with σ < α < π/2 (see Figure 1).

Choose rn so that lim u(rneiθ ) = a ∈ D. Then the curve γ cuts the boundary of
infinitely many disks Dρ(rneiθ , ρ0) twice. But for z ∈ Dρ(rneiθ , ρ0) we have

|u(z)| − |u(rneiθ )|
1− |u(rneiθ )| |u(z)| ≤ ρ(u(z), u(rne

iθ )) ≤ ρ(z, rneiθ ) ≤ ρ0,

and so

|u(z)| ≤ ρ0 + |u(rneiθ )|
1+ |u(rneiθ )| ρ0

.

This clearly implies that

lim inf |u(v(rξ))| < 1.

Consequently, lim inf |Θ(rξ)| < 1 for every ξ ∈ Sing(Θ). Next we verify the first
condition in Aleksandrov’s theorem (Theorem 2). By an elementary calculation, we
obtain

Fig. 1 The curve γ , the cone
C(0) with cusp at 1, and the
envelope of a series of
pseudohyperbolic disks of
fixed radius ρ0.
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A := (u ◦ v)′′
[(u ◦ v)′]2 =

u′′ ◦ v
(u′ ◦ v)2 +

(u′ ◦ v)
(u′ ◦ v)2

v′′

(v ′) 2 (10)

= u′′ ◦ v
(u′ ◦ v)2 +

1

u′ ◦ v
v′′

(v ′) 2
.

If ζ ∈ T \ Sing(u ◦ v), then |v(ζ )| = 1 and ξ := v(ζ ) �∈ Sing(u). Since u, v ∈ Ic,
we deduce from Lemma 5 and Aleksandrov’s theorem 2 that

|A(ζ )| ≤ sup
β /∈Sing(u)

|u′′(β)|
|u′(β)|2 +

1

δu
sup

α/∈Sing(v)

|v′′(α)|
|v′(α)| 2 =: C <∞,

where

δu := inf{|u′(ξ)| : ξ ∈ T \ Sing(u)}.

Hence Θ ∈ Ic. �
Theorem 7

1) Let E ⊆ T be a closed finite set. Then there exists a one-component inner
function u such that for some η0 ∈ ]0, 1[ (and hence for all η ∈ [η0, 1[) the
associated level set Ωu(η) is connected and has the property that

Ωu(η) ∩ T = Sing(u) = E. (11)

2) There exists u ∈ Ic such that Ωu(η) ∩ T = Sing(u) is an infinite set.

Proof

1) Let E = {λ1, . . . , λN } be finite. Then the function Sμ given by

Sμ(z) =
N∏

j=1

exp

(
−λj + z
λj − z

)

belongs to Ic (by [6, Corollary 17]) and satisfies (11).
2) Let E = S−1(1) be the countably infinite set of points where the atomic inner

function S(z) = exp(−(1 + z)/(1 − z)) takes the value 1, and let b be the
interpolating Blaschke product with zeros 1 − 2−n. Then b and S belong to Ic

(see [6, Theorem 6]). By Theorem 6, u := b ◦ S ∈ Ic. It is easy to see that
Ωu(η) ∩ T = Sing(u) = E. The same holds true for S ◦ b as well; just note that
the argument function of b on T \ {1} is unbounded when approaching 1 from
both sides on the circle (see [9, p. 92]), so that b−1({1}) is infinite. Thus we have
a singular inner function in Ic with infinitely many singularities. �
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To conclude, we want to give some useful (surely known) information on the
relations between Sing(u) andΩu(η). To this end, let X and ∂X denote the closure,
respectively, boundary, in C of a set X, X ⊆ D.

Observation 8 Let u be an inner function. Then the following assertions hold:

(1) For all η ∈]0, 1[, we have

E := Ωu(η) ∩ T = ∂Ωu(η) ∩ T = Sing(u),

(2) X := ⋃
n ∂Ωn may be a strict subset of ∂Ωv(η) (but not always) whenever Ωn

are the components of Ωv(η) for a non-one-component inner function v.

Proof

(1) Note that E = ∅ whenever u is a finite Blaschke product. Hence (1) obviously
holds in that case. Now suppose that E �= ∅. We first show that Ωu(η) ∩ T ⊆
Sing(u). To see this, let ξ ∈ E. Then there is zn ∈ Ωu(η) such that zn → ξ . In
particular, by taking a subsequence, u(znk )→ w for somew ∈ D with |w| ≤ η.
Hence w ∈ Cl(u, ξ), and so ξ ∈ Sing(u).

One may also see this in the following way: if ξ ∈ T\Sing(u), then u has an
analytic extension u∗ around ξ with |u∗(ξ)| = 1. Hence, given 0 < η < η′ < 1,
we see that |u∗(z)| ≥ η′ for every z ∈ U , where U is a neighborhood of ξ in C.
In particular, U ∩Ωu(η) = ∅. Thus ξ /∈ Ωu(η).

To prove the other inclusion, let ξ ∈ Sing(u). Then there is a sequence (zn)
in D with zn → ξ and u(zn) → 0. Hence zn ∈ Ωu(η) for almost all n. Thus
ξ ∈ Ωu(η). Consequently, Ωu(η) ∩ T = Sing(u).

Since Ωu(η) is an open set with Ωu(η) ∩ T = ∅, we also obtain that

∂Ωu(η) ∩ T = (
Ωu(η) \Ωu(η)

) ∩ T = Sing(u).

(2) Let B be a thin Blaschke product and S the atomic inner function with
Sing(S) = {1}. Then for any η ∈]0, 1[, ΩB(η) has infinitely many components
all of them are relatively compact in D. So Sing(B) ∩ X = ∅. On the other
hand, if B is a thin Blaschke product with negative zeros clustering at −1,
then u = SB is a non-one-component inner function whose level sets Ωu(η)
consist of infinitely many components which are relatively compact in D (and
clustering at −1) and a component whose closure contains 1. �

Questions

i) Given any countable closed subset E of T, does there exist u ∈ Ic such that
Ωu(η) ∩ T = E?

ii) Is the set Ωu(η) ∩ T necessarily countable whenever u ∈ Ic? We do not think
so. As indicated by Carl Sundberg [14], the usual Cantor ternary set may be the
support of some singular measure μ whose associated singular inner function
Sμ belongs to Ic.
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iii) Give a description of those closed subsets E of T such that for some singular
inner function Sμ with Sing(Sμ) = E every inner factor of Sμ belongs to Ic.

For example, finite subsets of T have this property [6, Corollary 17].
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Biholomorphic Cryptosystems

Nicholas J. Daras

Abstract We present a physical adaptation of classical cryptological discrete
structures within the environment of complex variables.

AMS Subject Classification (2010): Primary 32H02, 32H50, 47A45, Secondary
30D05, 11T71, 46L40, 94A60

1 Introduction

Historically, the first overstepping of the discrete nature of classical cryptology
structures was made by applying the methods of Chaos theory in cryptography.
Already by the 1950s, Claude Shannon pointed out that the mechanisms of
contraction and expansion of chaos could be exploited in cryptology. After a thirty-
year recession, during the 1990s, about 30 published papers gave various encryption
algorithms focusing on analog circuits. After 2000, the Chaos theory became
recognized in several applications and inaugurated the Crypstic from Lexicon Data
Limited (http://eleceng.dit.ie/arg/downloads/Crypstic.zip) .

Generalizing to this direction, it is reasonable to look for an efficient adaptation
of the discrete structures of classical cryptology within a suitable constant environ-
ment, in such a way that the arranging to be computationally functional and free of
any possibility of revocation due to the narrow technological tracking. The purpose
of this paper is to present a physical adaptation of classical cryptological discrete
structures within the environment of complex variables.

Thus, in the next section we will determine biholomorphic rules of encoding
and decoding into a simple connected domain in the complex plane. According
to these rules, the alphabet source is embedded into an initial simple connected
domain of the complex plane C, which is then transformed successively to other
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connected domains of C. The sequential selection of these simply connected
domains, as well as the number and the representation formulas of the biholomor-
phic transformations between these domains, constitute the exclusive information
elements characterizing the result of each coding. In the third section, we will give
basic convergence properties of biholomorphic rules for encoding and decoding,
while in the fourth section, we will investigate the dynamic behaviour of these
biholomorphic codes. Next, in the fifth section, we introduce and study the biholo-
morphic cryptosystems, as well as the evolutionary biholomorphic cryptosystems.
In biholomorphic cryptosystems, all plain texts are embedded into an initial domain
of the complex space C

n which, by means of successive biholomorphic mappings,
is transformed several times in other domains of C

n, resulting in a final domain
of Cn. The initial and final domain of Cn, as well as the form, number and type
of the successive transformations are elements that characterize exclusively the
encryption. Especially, in evolutionary biholomorphic cryptosystems, the successive
domains are all parametrized to provide an additional option of determining
continuously variable cryptosystems, depending on any (real or complex) parameter.

From several examples developed through the sections, it will be clear that the
definitions of the biholomorphic rules of encoding and decoding, as well as the
(evolutionary) biholomorphic cryptosystems may be computationally functional and
free of any possibility of revocation due to the technological tracking. Finally, in
the last section, we will study some basic dynamic properties of biholomorphic
cryptosystems and evolutionary biholomorphic cryptosystems.

2 Biholomorphic Codes

In communications and information processing, code is a system of rules to convert
information – such as a letter, word, sound, image, or gesture – into another,
sometimes shortened or secret, form or representation for communication through
a channel or storage in a medium. The process of encoding converts information
from a source into symbols for communication or storage. Decoding is the reverse
process, converting code symbols back into a form that the recipient understands.

A code is usually considered as an algorithm which uniquely represents symbols
from some source alphabet, by encoded strings, which may be in some other target
alphabet. An extension of the code for representing sequences of symbols over the
source alphabet is obtained by concatenating the encoded strings. Using terms from
formal language theory, the precise mathematical definition of this concept is as
follows: Let Σ and T be two finite sets, called the source and target alphabets,
respectively. A code is a mapping

σ : Σ −→ T ∗
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which assigns each symbol from Σ to a sequence of symbols over T . Any extension
of σ to a homomorphism of Σ∗ into T ∗, mapping each sequence of source symbols
of Σ to a sequence of target symbols of T , is referred to be an extension of σ .

Definition 1 Let Ω be a domain in the complex plan C.

i. A biholomorphic codification chain on Ω is an infinite forward composition

F = . . . ◦ fM ◦ . . . ◦ f1 ◦ f0

of biholomorphic mappings fα : Uα −→ C, with

fα (Uα)
⋂
Uα+1 �= ∅ and Uα = open subset of C such that U0 = Ω.

ii. A biholomorphic encoding rule with length M + 1 (M ∈ N0) on Ω

subordinate to F is a section

F (M) = fM ◦ . . . ◦ f1 ◦ f0

of F starting from the beginning of the biholomorphic codification chain. The
biholomorphic mappings fα are the codification links of the rule F (M).

iii. The set of all biholomorphic encoding rules on Ω will be denoted by

EΩ.

iv. Given a biholomorphic codification chain F , a biholomorphic decodification
chain of F on Ω is an infinite backward composition

G = g0 ◦ . . . gN−1 ◦ gN . . .

of biholomorphic mappings gβ : Vβ −→ C, with

gβ
(
Vβ

)⋂
Vβ−1 �= ∅ and Vβ = open subset of C,

such that for every biholomorphic encoding rule F (M) on Ω subordinate to
F , there is a section G(N) = g0 ◦ . . . gN−1 ◦ gN (N ∈ N0), with V0 ⊂ Ω,
satisfying

G(N) ◦ F (M) = z whenever z ∈ Ω.

v. The backward composition

G(N) = g0 ◦ . . . ◦ gN−1 ◦ gN
is called a biholomorphic decoding rule of F (M) with lengthN+1 and range
in Ω. The biholomorphic mappings gβ are the decodification links of G(N).
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vi. The set of all biholomorphic decoding rules on Ω will be denoted by

DΩ.

vii. A biholomorphic code on Ω is a pair (E,D) satisfying the following two
properties:

– E ⊂ EΩ and
– for each F (M) ∈ EΩ, there is a G(N) ∈ DΩ with N = N(M) and such that
G(N) ◦ F (M) = z whenever z ∈ Ω.

viii. A biholomorphic cipher on Ω is such any pair
(
F (M),G(N)

) ∈ (EΩ,DΩ).
ix. The collection of all the criteria determining the selection of biholomorphic
ciphers is the guideline of the biholomorphic code.

Remark 1 If fα = f , for any α, then the study of the biholomorphic codification
chain is limited just on the study of the iterations and dynamics of f . And, if gβ = g,
for any β, then the study of the biholomorphic decodification chain is limited just
on the study of the iterations and dynamics of g.

Below, we give the general algorithmic framework for the construction of
encoding rules, as well as of respective decoding rules.

CONSTRUCTING BIHOLOMORPHIC CIPHERS AND CODES

Let Ω be a domain in the complex plan C. Let also Σ be a (finite) source alphabet
and let σ be an arbitrary mapping σ : Σ −→ Ω.

1. Consider a biholomorphic code on Ω, that is a pair (E,D) such that

– E ⊂ EΩ and D ⊂ DΩ,
– if F (M) = fM ◦ . . . ◦ f1 ◦ f0 ∈ E, the mappings fM ,. . . ,f1 and f0 are

biholomorphic,
– if G(N) = g0 ◦ . . . ◦ gN−1 ◦ gN ∈ D, the mappings g0,. . . ,gN−1 and gN are

biholomorphic,
– for each biholomorphic encoding rule F (M) ∈ E with length M + 1 on Ω

there exists a biholomorphic decoding rule G(N) ∈ D with length N + 1 and
range in Ω such that

G(N)
(
F (M)

)
= z whenever z ∈ Ω.

2. Choose a biholomorphic cipher (F,G) in (E,D):

– the composition F ◦ σ defines a new code with target alphabet (F ◦ σ) (Σ)
and

– the composition G ◦ F ◦ σ decodes the target alphabet and returns the source
alphabet:

G(F(σ)) (Σ) = Σ.
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Let us give some indicative examples.

Example 1 Let Σ be any source alphabet. Obviously, each character of Σ can be
illustrated at one point of the right half-plane Hδ = {z ∈ C : Rez > 0}, according
to a map σ : Σ −→ Hδ . Set

– U0 = Ω = Hδ = {z ∈ C : Rez > 0} (: the right half-plane),
– U1 = U2 = Δ(0; 1) = {z ∈ C : |z| < 1} (: the open unit disk) and
– U3 = Hπ = {z ∈ C : Imz > 0} (: the upper half-plane).

We may consider the following chain of biholomorphic mappings:

Hδ
f0→ Δ(0; 1) f1→ Δ(0; 1) f2→ Hπ

z
f0�→ eiθ

z− A
z+ Ā︸ ︷︷ ︸
w

f1�→ eiϕ
w + B

1+ B̄w︸ ︷︷ ︸
u

f2�→ C̄u− CD
u−D︸ ︷︷ ︸
v

with 0 ≤ θ , ϕ ≤ 2π , ImA > 0, |B| < 1, ImC > 0 and |D| = 1. The composition

F(z)= (f2 ◦ f1 ◦ f0) (z)=
(
abC̄−aCDB̄) (z−A)+ (

bBC̄−CD) (
z+Ā)

(
ab−aDB̄) (z− A)+ (bB −D) (z+ Ā) , z ∈ Ω,

with a = eiθ and b = eiϕ is a biholomorphic encoding rule with length 3 of Ω.
Defining the chain of the inverse mappings

Hπ
g2→ Δ(0; 1) g1→ Δ(0; 1) g0→ Hδ

v
g2�→ D

v − C
v − C̄︸ ︷︷ ︸
u

g1�→ eiϕB − u
uB̄ − eiϕ︸ ︷︷ ︸

w

g0�→ Āw + eiθA
eiθ − w︸ ︷︷ ︸

z

it is easily verified that its composition

G(v)= (g0 ◦ g1 ◦ g2) (v)=D
(
aAB̄−A) (v−C)+b (ĀB−aA) (v+C̄)

D
(
aB̄+1

)
(v−C)−b (B+a) (v−C̄) , v ∈ Hπ ,

satisfiesG(F(z)) = z for every z ∈ Hδ and therefore it constitutes a biholomorphic
decoding rule with length 3 in Ω over the (time) interval [0, 2π ]. Here, the
biholomorphic cipher (F,G) = (f0, f1, f2; g2, g1, g0) defines the biholomorphic
code (E,D) = (f0, f1, f2; g2, g1, g0) on Ω with guideline

{Ω = U0 = Hδ, U1 = U2 = Δ(0; 1), U3 = Hπ ; 0 ≤ θ, ϕ ≤ 2π, ImA > 0,

|B| < 1, ImC > 0 and |D| = 1}.



56 N. J. Daras

The composition F ◦ σ defines the target alphabet (F ◦ σ) (Σ) associated with the
source Σ.

Example 2 Let Σ be the set of the 255 characters considered by the extended
ASCII code (see, for instance, http://www.ascii-code.com/). Each such character is
illustrated at one point of the right half-plane Hδ = {z ∈ C : Rez > 0}, according
to the identity map σ : Σ→ Hδ : z �→ σ(z) := z + 1 induced by the well-known
ASCII table. Set

– U0 = Ω = Δ(0; 260)∩Hδ = {z ∈ C : Rez > 0} (:the intersection of the disc of
radius 260 with the right half-plane),

– U1 = Δπ (0; 1) = {z ∈ C : |z| < 1, Imz > 0} (: the upper half-disk),
– U2 = Q2 = {z ∈ C : Rez < 0, Imz > 0} (: the second quadrant),
– U3 = Hκ = {z ∈ C : Imz < 0} (: the lower half-plane) and
– U4 = Δ(0; 1) = {z ∈ C : |z| < 1} (: the open unit disk).

We consider the following chain of biholomorphic mappings:

Δ(0; 260) ∩Hδ
f0→ Δπ (0; 1) f1→ Q2

f2→ Hκ
f3→ Δ(0; 1)

z
f0�→

⎛

⎜⎜⎝
i

260
z

︸ ︷︷ ︸
w

⎞

⎟⎟⎠
f1�→

⎛

⎜⎜⎝
w − 1

w + 1︸ ︷︷ ︸
u

⎞

⎟⎟⎠
f2�→

(
u2
︸︷︷︸
v

)
f3�→

⎛

⎜⎜⎝
v + i
v − i︸ ︷︷ ︸
h

⎞

⎟⎟⎠ .

Then the composition

F(z) = (f3 ◦ f2 ◦ f1 ◦ f0) (z) = (1+ i) (260− z) (260+ z)
(1− i) (260− z) (260+ z)− 1040i

, z ∈ Ω,

is a biholomorphic encoding rule with length 4 of Ω. If we define the chain of the
inverse biholomorphic mappings

Δ(0; 1) g3→ Hκ
g2→ Q2

g1→ Δπ (0; 1) g0→ Δ(0; 260) ∩Hδ

h
g3�→

⎛

⎜⎜⎝i
h+ 1

h− 1︸ ︷︷ ︸
v

⎞

⎟⎟⎠
g2�→

(
e−

1
2 logv︸ ︷︷ ︸
u

)
g1�→

⎛

⎜⎜⎝
1+ u
1− u︸ ︷︷ ︸
w

⎞

⎟⎟⎠
g0�→ (−260wi︸ ︷︷ ︸

z

),

then its composition

G(h) = (g0 ◦ g1 ◦ g2 ◦ g3) (h) = −260i
1+ exp

(
1
2 log

(
i h+1
h−1

))

1− exp
(
− 1

2 log
(
i h+1
h−1

)) , h ∈ Δ(0; 1),

http://www.ascii-code.com/
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satisfies

G(F(z)) = z for every z ∈ Hδ,

and therefore it is a biholomorphic decoding rule with length 4 in Ω. Here,
the biholomorphic cipher (F,G) = (f0, f1, f2, f3; g3, g2, g1, g0) defines the
biholomorphic code (E,D) = (f0, f1, f2, f3; g3, g2, g1, g0) on Ω with guideline

{Ω = U0 = Δ(0; 260) ∩Hδ, U1 = Δπ (0; 1), U2 = Q2, U3 = Hκ , U4 = Δ(0; 1)}.

The composition F ◦ σ defines the target alphabet (F ◦ σ) (Σ) associated with the
source Σ.

Example 3 Let Σ be any collection of source symbols. Each such symbol can be
associated with a point of the open unit disk Δ(0; 1), according to an arbitrary map
σ : Σ→ Δ(0; 1). Let

z0, z1, . . . , zM

beM arbitrarily chosen points in the open unit and let

t0, t1, . . . , tM

be M arbitrarily chosen positive numbers in the closed interval [0, 2π ]. For j =
0, 1, . . . ,M , we define the function

fj (z) = eitj z+ zj
1+ z̄j z .

Let us consider the following chain of biholomorphic mappings:

Δ(0; 1) f0→ Δ(0; 1) f1→ . . .
fM−1→ Δ(0; 1) fM→ Δ(0; 1)

z
f0�→ f0(z)︸ ︷︷ ︸

w0

f1�→ . . .
fM−1�→ fM−1(z)︸ ︷︷ ︸

wM−1

fM�→ fM(z)︸ ︷︷ ︸
wM

.

Then the composition F(z) = (fM ◦ fM−1 ◦ . . . ◦ f1 ◦ f0) (z), z ∈ Δ(0; 1), is a
biholomorphic encoding rule with length M + 1 of Δ(0; 1). If we define the chain
of the inverse biholomorphic mappings

Δ(0; 1) gM=f
−1
M→ Δ(0; 1) gM−1=f−1

M−1→ . . .
g1=f−1

1→ Δ(0; 1) g0=f−1
0→ Δ(0; 1),

then its compositionG(h) = (g0 ◦ g1 ◦ . . . ◦ gM−1 ◦ gM) (h), h ∈ Δ(0; 1), satisfies

G(F(z)) = z for every z ∈ Δ(0; 1),
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and therefore it is a biholomorphic decoding rule with lengthM+1 in Δ(0; 1). Here,
the biholomorphic cipher (F,G) = (f0, f1, . . . , fM−1, fM ; gM, gM−1, . . . , g1, g0)

defines the biholomorphic code (E,D) = (F,G) on Δ(0; 1) with guideline

{Ω = U0 = . . . = UM = Δ(0; 1), z0, . . . , zM ∈ Δ(0; 1); t0, . . . , tM ∈ [0, 2π ]}.

The composition F ◦ σ defines the target alphabet (F ◦ σ) (Σ) associated with the
source Σ.

Example 4 Let Ω be any simply connected domain in the complex plan C. Let also
Σ be any collection of source symbols. Each such symbol can be associated with a
point of the open unit disk Δ(0; 1), according to an arbitrary map σ : Σ→ Δ(0; 1).
Let f (z) be an automorphism of Ω. If, for example, Ω = Δ(0; 1), then f (z) can be
expressed as follows:

f (z) = eit0 z+ z0

1+ z̄0z

for a point z0 in the open unit disk and a t0 ∈ [0, 2π ]; and if Ω = C, then

f (z) = az+ b

for a ∈ C \ 0 and b ∈ C. For any arbitrarily chosen positive integerM , we consider
the iterate of orderM of f :

F = fM = f ◦ f ◦ . . . ◦ f ◦ f︸ ︷︷ ︸
Mtimes

.

Obviously, F is a biholomorphic encoding rule of length M on Ω. If we define the
iterate of orderM of the inverse mapping g = f−1

G(h) = gM = g ◦ g ◦ . . . ◦ g ◦ g︸ ︷︷ ︸
Mtimes

,

it is immediately seen that

G(F(z)) = z for every z ∈ Ω

and therefore it is a biholomorphic decoding rule with length M in Ω. Here,
the biholomorphic cipher (F,G) = (

fM ; gM)
defines the biholomorphic code

(E,D) = F,G) on Ω. If Ω = Δ(0; 1),the guideline is

{M;Ω = Δ(0; 1), z0 ∈ Δ(0; 1), t0 ∈ [0, 2π ]},
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and if Ω = C, the guideline of the code is the set

{M,Ω = C, a ∈ C, b ∈ C}.

The composition F ◦ σ defines the target alphabet (F ◦ σ) (Σ) associated with the
source Σ.

3 Convergence Properties of Biholomorphic Codes

Possibly, one could think that an endless elongation of the biholomorphic encod-
ing rule, by using increasingly longer lengths in the backward compositions of
biholomorphic mappings, will shield the encoding process, making it more difficult
to decode. And conversely, one would think that increasingly longer forward
compositions of biholomorphic mappings would make the decoding process more
feasible.

In this section, we will give a series of examples, for several ordinary cases,
through which it will be clearly seen that the arbitrary choice of finite length for
the biholomorphic encoding rules, as well as the arbitrary choice of the domains
of definition and the different intrinsic forms of the biholomorphic mappings
participating in the biholomorphic codification chains, create an “insurmountable”
computational protect of the codification, in the sense that they constitute absolutely
essential conditions that cannot substituted or even be approached by large and
simple encoding rules. And similarly, the attempts for biholomorphic decoding
should be specific, of finite length, with different domains of definition and with
different intrinsic forms of biholomorphic mappings in the decoding rules.

To this end, suppose a biholomorphic code (E,D) on a non-empty domain Ω ⊂
C consists in a given sequence

((
F (M)=fM ◦ fM−1 ◦ . . . ◦ f1 ◦ f0

)
,
(
G(M)=g0 ◦ g1 ◦ . . . ◦ gM−1 ◦ gM

))

M,N∈N0

of biholomorphic ciphers on Ω. An application of the Contraction Theorem for
holomorphic functions (see, for instance, [9]) shows that

Theorem 1 (Contraction of Biholomorphic Encoding Rules) If for anyM ∈ N0,
the codification links f0, f1,. . . ,fM are all equal to the same function f ∈ Ā(Ω)
having bounded range f (Ω) in Ω, then the biholomorphic encoding rule

F (M)(z) = fM(z) = (f ◦ f ◦ . . . ◦ f ◦ f︸ ︷︷ ︸
M+1 t imes

)(z)

trivializes in Ω as its lengthM + 1 grows illimitably, in the sense that

F (M)(z) →
M→∞ A,
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where A is the attractive fixed point of f in Ω.

Using Lorentzen–Gill’s results on infinite compositions of contractive functions
[6, 14], we can also easily show the following.

Theorem 2

i. Assume that, for any M , the codification links f0, f1,. . . ,fM are all defined on
the same simply connected domain Ω (i.e., with the notation of Definition 2,
Uα = Ω, ∀α = 1, 2, . . . ,M) and there exists a compact set E ⊂⊂ Ω such
that for each M , fα(Ω) ⊂ E whenever α. Then the sequence of biholomorphic
encoding rules

(
F (M) = fM ◦ . . . ◦ f1 ◦ f0

)
M=0,1,2,... converges uniformly on

compact subsets of Ω to a constant function F(z) ≡ c if and only if the sequence
of fixed points

(
γ α

)
of the codification links fα converge to the point c ∈ E.

ii. If, for any N , the decodification links gN , gN−1,. . . ,g0 are all defined on the
same simply connected domain Ω (i.e., with the notation of Definition 1,Vβ =
Ω, ∀β = 1, 2, . . . , N ) and there exists a compact set K ⊂⊂ Ω such that for
each N , gβ(Ω) ⊂ K whenever β, then the sequence of biholomorphic decoding
rules

(
G(N) = g0 ◦ . . . ◦ gN−1 ◦ gN

)
N=0,1,2,... converges uniformly on compact

subsets of Ω to a constant function G(z) ≡ c̃ ∈ K .

Remark 2 Recall that the sequence of iterates of a biholomorphic self-map of the
unit disc, which fix one point of the disk, converges uniformly on the compact
subsets of the disk to a constant, the interior fixed point (see [16]).

Theorem 3

i. Assume that all the codification links fα in a biholomorphic codification chain
F are all defined in the same disk DR = {z ∈ C : |z| < R}. Suppose there
exists a sequence (pα) of non-negative numbers such that C

∑∞
α=1 pα < R and

|fα − z| < Cpα , ∀z ∈ DR and α = 0, 1, 2, . . ., for a C > 0 . Set

r := R − C
∑∞

α=1
pα (> 0).

Then the sequence of biholomorphic encoding rules
(
F (M) = fM ◦ . . . ◦ f0

)

M=0,1,2,... converges to a function F(z) uniformly on compact subsets of the
open disk Dr = {z ∈ C : |z| < r}.

ii. Assume that all the links gβ in a biholomorphic decodification chain G are
defined on the open disk DR = {z ∈ C : |z| < R} and satisfy gβ(z) =
z
(
1+ uβ(z)

)
, with |uβ(z)| ≤ Cqβ(, z ∈ DR) and

∑∞
β=1 qβ <∞, for a C > 0.

Choose a 0 < r < R and define

� := �(r) := R − r
∏∞
β=1

(
1+ Cqβ

) .

Then the sequence of biholomorphic decoding rules
(
G(N) = g0 ◦ . . . ◦ gN

)

N=0,1,2,... converges uniformly on the compact subsets of the disk D� = {z ∈
C : |z| < �} to a biholomorphic function G(z) satisfying
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|G′(z)| ≤
∏∞

β=1

(
1+ CR

r
qβ

)
.

As it has been seen in the examples of Section 1, an important case of
biholomorphic encodings and decodings is derived by the use of non-singular
Möbius transformations:

ax + b
cx + d , (ad − bc �= 0).

Below, we will deal particularly with the case of biholomorphic decodings whose
links are described by these transformations.

Firstly, according to a slight adaptation of the wording of earlier known results
due to Gill [8] and Piranian–Thron [21], we have the following two general
propositions.

Proposition 1 Suppose, for any N , the biholomorphic decoding rule G(N) =
g0 ◦ . . . ◦ gN is a non-singular Möbius transformation. Then, within the set of
convergence of the sequence

(
G(N)

)
N=0,1,2,..., the limit function is either

(i). a non-singular Möbius transformation,
(ii). a function taking on two distinct values or

(iii). a constant.

In (i), the sequence converges everywhere in the extended plane. In (ii), the sequence
converges either everywhere, and to the same value everywhere except at one point,
or it converges at only two points. Case (iii) can occur with every possible set of
convergence.

Proposition 2 If the sequence
(
G(N)

)
N=0,1,2,... of the biholomorphic decoding

rules converges to a Möbius transformation, then the sequence of the decodification
links gN converges to the identity function.

Further, by exploring the conditions which shape the form of links of the chains,
we infer the next theorem, based on known results due to DePree and Thron [2],
Magnus and Mandell [17] and Gill [5].

To state the theorem, we need some preparatory material. For this purpose, we
recall that a Möbius transformation with three or more fixed points coincides with
the identity (and so fixes every point). Otherwise, it has either:

(i). one fixed point (: in that case the transformation is conjugate to the mapping
z �→ z+ 1 and we say that the Möbius transformation is parabolic;

(ii). two distinct fixed points (: in that case, if the transformation is conjugate to a
transformation of the formz �→ λz, where |λ| = 1, we say that the Möbius
transformation is elliptic; if the transformation is conjugate to a transformation
of the form z �→ λz, where |λ| �∈ {0, 1}, we say that the Möbius transformation
is loxodromic; in the particular case of λ real positive and not equal to 0 or 1,
the Möbius transformation is called hyperbolic.
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Note that the location of the fixed points is a delicate question: if, for instance, a
parabolic Möbius transformation maps the upper half-plane Hπ onto itself, then it
has one fixed point in ∂Hπ and none in Hπ ; an elliptic Möbius transformation map-
ping Hπ onto itself has one fixed point in Hπ and none in ∂Hπ ; and an hyperbolic
Möbius transformation mapping Hπ onto itself has two fixed points in ∂Hπ and
none in Hπ . Moreover, we need the following.

Lemma 1

i. [3] For every loxodromic, hyperbolic, or elliptic Möbius transformation
h, we have (h(z)− A) / (h(z)− B) = (z− A) / (z− B), where K :=
(a − cA) / (a − cB) andA, B are the two distinct fixed points of h. The constant
K is called the multiplier of h.

ii. If |K| < 1, the Möbius transformation h is loxodromic or hyperbolic and

satisfies hk(z)
k→∞→ A for all z �= A and hk(B) ≡ B. A is called the attractive

fixed point of h; B is called the repelling or repulsive fixed point of h.

Based on the above background, we are in position to state the announced
theorem.

Theorem 4 Assume that all the links gβ in a biholomorphic decodification chain
G are Möbius transformations that converge to a Möbius transformation g.

i. If the links gβ and their limit g are all hyperbolic or loxodromic, then
the sequence of biholomorphic decoding rules

(
G(N) = g0 ◦ . . . ◦ gN−1 ◦ gN

)

N=0,1,2,... converges to a constant function G(z) ≡ c for all values z �= B: the
repelling fixed point of g.

ii. Suppose any decodification link gβ has two fixed points Aβ and Bβ and the
limit g of the decodification links is a parabolic Möbius transformation. If∑∞
β=1 |Aβ − Bβ | < ∞ and

∑∞
β=1 β|Bβ+1 − Bβ | < ∞, then the sequence

of the biholomorphic decoding rules
(
G(N)

)
N=0,1,2,... converges to a constant

everywhere in the extended complex plane C̄.

Finally, for the sake of completeness, it should also be given the following result
which refers to the case of the biholomorphic encodings whose links are Möbius
transformations.

Theorem 5 ([7]) Assume that all the links fα in a biholomorphic codification chain
F are Möbius transformations that converge to a Möbius transformation f . If the
links fα and their limit f are all hyperbolic or loxodromic, then the sequence
of biholomorphic encoding rules

(
F (M) = fM ◦ fM−1 ◦ . . . ◦ f1 ◦ f0

)
M=0,1,2,...

converges to the attractive fixed point A of f for all values of z except possibly

one z0. In this exceptional case F (M) (z0)
M→∞→ B, the repelling fixed point of f .



Biholomorphic Cryptosystems 63

4 Dynamic Properties of Biholomorphic Codes

Certainly, it is of interest, for our intentions, to study the recurring points into
biholomorphic codification chains F = . . .◦fM ◦ . . .◦f1 ◦f0 which can entirely be
covered by segments from successive sub-chains of the F , each of which maps a set
into itself. Observe that if f0 = f1 = . . . = fM = . . . = f , then the study is limited
just on the study of the iterations and dynamics of the biholomorphic mapping f .

To this end, we must look for characteristic properties of points that are kept fixed
through the parts fnj+1−1 ◦ . . . ◦ fnj+1 ◦ fnj of a biholomorphic codification chain
F on an open domain Ω ⊂ C.

Notation 1 We will use the symbol

F (M)n

to denote the segment of the biholomorphic codification chain F that involves the
composition of all functions which are at the part of F that starts from the function
in the (n+ 1)th place of F and ends with the function in the (M + 1)th place of F .
It is clear that

F (M)n = fM ◦ . . . ◦ fn+1 ◦ fn.
Thus, for instance, we may write

F
(8)
3 = f8 ◦ . . . ◦ f4 ◦ f3 and F

(nj+1−1)
nj = fnj+1−1 ◦ . . . ◦ fnj+1 ◦ fnj .

In particular, we have

F
(M)
M (p)=fM(p), F (M+1)

M (p)=(fM+1 ◦ fM)(p), . . . , FM+nM (p)=(fM+n ◦ . . . ◦ fM+1 ◦ fM)(p).

If n > 0 andM = ∞, then we set

F (∞)n = . . . fM ◦ . . . , fn+1 ◦ fn
and we say that F (∞) is a truncated codification chain with late start in position n.
For example, the segment

F
(∞)
6 = . . . f8 ◦ f7 ◦ f6

of F is a truncated codification chain with late start in position 6.
If the segment starts from the beginning of the codification chain (: n = 0) and

ends with the function in the (M + 1)th place, then we adopt often the simpler
notation

F (M) = fM ◦ . . . ◦ f1 ◦ f0.
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For example,

F (1000) = f1000 ◦ . . . ◦ f1 ◦ f0 and F (∞) = . . . ◦ fM ◦ . . . ◦ f1 ◦ f0.

In particular, we have

F (0)(p) = f0(p), F
(1)(p) = (f1◦f0)(p), . . . , F

(M)(p) = (fM ◦ . . . ◦ f1 ◦ f0) (p).

Finally, we point out that with the notation of Definition 2, we have F (0) (Ω) =
U0 = Ω, F (1) (Ω) ⊂ U1, . . . and in general

F (M) (Ω) ⊂ UM,

for anyM = 0, 1, 2, . . .

We will need some preparatory material.

Definition 2 Let F = . . .◦fM ◦ . . .◦f1 ◦f0 be a biholomorphic codification chain
on an open domain Ω ⊂ C.

i. Let p ∈ F (M) (Ω). The orbit of the point p through the codification F is the
sequence of points is the sequence of points

©+(p) :=
{
p, F

(M)
M (p), F

(M+1)
M (p), . . . , F

(M+n)
M (p), . . .

}
.

If M > 0, we also say that ©+(p) is a truncated orbit with late start in
positionM . IfM = 0, then the orbit has the simple form

©+(p) :=
{
p, F (0)(p), F (1)(p), . . . , F (n)(p), . . .

}
.

ii. A point z ∈ ©+(p) is periodic in the chain F , if the value of z occurs more
than once in its orbit©+(p).

iii. A periodic point z is said to be of restricted periodicity, if the number of times
of its occurrence in the chain is finite; it is said to be of extensive periodicity, if
the number of times of its occurrence is infinite.

It is straightforward to show the following two propositions.

Proposition 3 A point p ∈ F (M) (Ω) is periodic in the codification chain F , if
there is an n ∈ N such that p is a fixed point of F (M+n)M , that is, p is a solution of

the equation F (M+n)M (z) = z⇔ (fM+n ◦ . . . ◦ fM+1 ◦ fM) (z) = z.
Proposition 4 Let M ∈ N. The codification chain F has a restricted (respectively,
an extensive) periodicity at z ∈ F (M) (Ω), if there is a finite (respectively, an
infinite) sequence

(
nj

) ⊂ M,M + 1, . . . so that n1 = M and the value F (∞)M (z) of

the codification chain F (∞)M = (. . . fM+n ◦ . . . ◦ fM+1 ◦ fM) at the point p can be
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expressed as infinite succession of finite segmentation sub-chains F
(nj+1−1)
nj (p) =

(
. . . fnj+1−1 ◦ . . . ◦ fnj+1 ◦ fnj

)
(p) satisfying F

(nj+1−1)
nj (p) = F (nj+2−1)

nj+1 (p). The
sequence

(
nj

)
is called the sequence of periods of the point p in the codification

chain F , while the sequence
(
F
(nj+1−1)
nj

)
is the segmentation sequence of F .

Remark 3 With this notation, it is clear that if M > 0, then we say that the
codification chain F has a period with late start in position M and F can be
represented as follows:

F= . . . ◦ fnj+1−1 ◦ . . . ◦ fnj+1 ◦ fnj︸ ︷︷ ︸
F
(nj+1−1)
nj

◦ . . . ◦ fn2−1 ◦ . . . ◦ fn1+1 ◦ fn1︸ ︷︷ ︸
F
(n2−1)
n1

◦ (fM ◦ . . . ◦ f0) .

IfM = 0, the codification chain F takes the form

F=
. . . ◦ fnj+1−1 ◦ . . . ◦ fnj+1 ◦ fnj︸ ︷︷ ︸

F
(nj+1−1)
nj

◦ . . . ◦ fn3−1 ◦ . . . ◦ fn2+1 ◦ fn2︸ ︷︷ ︸
F
(n3−1)
n2

◦ fn2−1 ◦ . . . ◦ f1 ◦ f0︸ ︷︷ ︸
F
(n2−1)
0

.

Definition 3 Let p ∈ F (M)(Ω) ⊂ UM be a periodic point with sequence of periods(
nj

)
in the chain F . We say that p is

i. repelling if |
(
F
(nj+1−1)
nj

)′
(p) |> μ for some positive constant μ > 1,

whenever j = 1, 2, . . .;

ii. attracting if |
(
F
(nj+1−1)
nj

)′
(p) |< λ for some positive constant λ < 1,

whenever j = 1, 2, . . .;

iii. super-attracting if
(
F
(nj+1−1)
nj

)′
(p) = 0, whenever j = 1, 2, . . .;

iv. rationally indifferent if
(
F
(nj+1−1)
nj

)′
(p) is a root of unity, whenever j =

1, 2, . . .;

v. irrationally indifferent if |
(
F
(nj+1−1)
nj

)′
(p) |= 1 and

(
F
(nj+1−1)
nj

)
(p) is a

root of unity, whenever j = 1, 2, . . ..

Respectively, the orbit ©+(p) of p is called a repelling cycle, an attracting
cycle, a super-attracting cycle, a rationally indifferent cycle or an irrationally
indifferent cycle.

Definition 4

i. The Fatou set for F is the set F = FΩ(F ) of all points p ∈ Ω such that
the family F = (F (M)) is normal in a neighbourhood of p, i.e., for every
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sequence (F (Mk)) ⊂ F one can extract a subsequence
(
F

(
Mkj

))
which converges

uniformly on a compact neighbourhood of a either to ∞ or to a holomorphic
function.

ii. The Julia set J = JΩ(F ) for F is the complement of the Fatou set FΩ(F ).

By definition, the Fatou set is open, while its Julia set is closed.

Proposition 5

i. Every attracting fixed point p ∈ Ω in the codification chain F is in the Fatou set
F = FΩ(F ) of F .

ii. Furthermore, the set A of all z ∈ Ω whose orbits converge to a p ∈ Ω is an
open subset of the Fatou set. This set is called the basin of attraction of p in the
codification chain F . The connected component of A containing p is called the
immediate basin of attraction of p in the codification chain F .

Proof

i. Choosing local coordinates, we can assume that p = 0. By Taylor’s theorem,
there is some ball (in the Euclidean metric) B ⊂ Ω around 0 such that

| F (nj+1−1)
nj (z) |< λ | z | for all z ∈ B whenever j = 1, 2, . . . It then follows

that limj→∞ F
(nj+1−1)
nj (z) = 0 uniformly on B. Hence B is a neighbourhood of

normality.

ii. Now suppose z0 ∈ A. Then F
(nj+1−1)
nj (z0) ∈ B for some nj . It follows that

(
F
(nj+1−1)
nj

)−1
(z0)

is a neighbourhood of z0 contained in A. Thus A is open. The seg-

mentation sequence
(
F
(nj+1−1)
nj

)
converges uniformly on B to 0, so

limj→∞
(
F
(nj+1−1)
nj

)
(z0) = 0, which shows that A is contained in the Fatou

set.

Proposition 6 Every repelling fixed point p ∈ Ω in the codification chain F is in
the Julia set J = JΩ(F ) of F .

Proof Choosing local coordinates, we can assume that p = 0. In the domain of
these coordinates, the derivative of any F (nk+1−1)

nk ◦ . . . ◦ F (n3−1)
n2 ◦ F (n2−1)

n1 at 0 is
equal to

(
F
(nk+1−1)
nk

)′
(p) . . .

(
F (n3−1)
n2

)′
(p)

(
F (n2−1)
n1

)′
(p)(k = 1, 2, . . .).

Since |
(
F
(nj+1−1)
nj

)′
(p) |> μ > 1 whenever j = 1, 2, . . ., no subsequence of

these derivatives will converges to a finite value. On the other hand, the derivative
of a sequence of biholomorphic mappings converges to the derivative of the
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locally uniform limit of the mappings, assuming such a limit exists. Hence, the

sequence
(
F
(nk+1−1)
nk ◦ . . . ◦ F (n3−1)

n2 ◦ F (n2−1)
n1

)
cannot form a normal family on

any neighbourhood of p = 0, and so {p} is in the Julia set.

5 Biholomorphic Cryptosystems

In classical cryptography, a cryptosystem is a five-tuple (P, C,K, E,D), where the
following conditions are satisfied. P is a finite set of possible plaintexts C is a finite
set of possible ciphertexts K, the keyspace, is a finite set of possible keys. For each
K ∈ K, there is an encryption rule eK ∈ E and a corresponding decryption rule
dK ∈ D. Each eK : P → C and dK : C → P are functions such that dK (eK) (x) =
x for every plaintext element x ∈ P .

The purpose of the present section is to give an extension of this definition
which is based on theory of complex variables and to show the differences of this
extension with the classical case. In this direction, we point out that translating
such a classical definition to the context of complex variables induces a natural
change in the keyspace, from the discrete state to an uncountable infinite structure.
It follows that an encryption method which based on the theory of complex analysis
is beyond the capacities of modern computers, even of future quantum computers.
As a consequence, the rules in the context of theory of complex analysis can
become so complicated, from the point of view of constructive approximations,
that it becomes impossible to achieve decryption by using electronic machines or
advanced computer technology.

After these brief and very general introductory remarks, we are able to go to
the foundation of complex cryptosystems. To this end, we first give the following
general definition. To do so, we may remark that, in practice, the capacity of each
message may not exceed a certain number of characters, so we can assume that the
length of each plaintext in P equals a given number, say n. Otherwise, you may
add at the end of the plain text, the symbol of blank space, so many times so that
the length of the resulting final plaintext which will result equals to n. Under this
assumption, we are now in position to define biholomorphic cryptosystems.

Definition 5 Let us consider two domains Ω ⊂ C
n and D ⊂ C

n which together
constitute the encryption environment. A finite biholomorphic cryptosystem is a
four-tuple (P,K, E,D), where the following conditions are satisfied.

1. P is a fixed finite set of possible plaintexts embedded into Ω.
2. E is the set of biholomorphic encryption rules on Ω with range in D, that is, a

subset of the set:

{F : Ω→ D : F is holomorphic mapping} .
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3. D is the set of biholomorphic decryption rules on D with range in Ω, that is a
subset of the set:

{G : D→ Ω : G is holomorphic mapping} .

4. K is a subset (not necessarily finite) of the set u = uN ◦. . .◦u1: uα is holomorphic
mapping of Uα , U1 = Ω, uα (Uα) ⊂ Uα+1 ⊂ C

n, uN (UN) ⊂ D, N ∈ N. The
elements of K are the keymappings, while K is the keyspace.

5. For each u ∈ K, there exist a mapping Fu ∈ E and a mapping Gu ∈ D such that
Gu (Fu) (z) = z for every plaintext element z ∈ P . Fu is a finite composition of
biholomorphic mappings f (u)1 , . . . , f (u)N (satisfying f (u)α (Uα) ⊂ Uα+1, U1 = Ω

and f (u)N (UN) ⊂ Ω, for someN ∈ N) and is called a biholomorphic encryption

chain, whileGu is a finite composition of biholomorphic mappings g(u)M , . . . , g(u)1
(with gβ+1

(
Vβ+1

) ⊂ Vβ , V1 = D and gM (VM) ⊂ Ω, for some M ∈ N ) and is
said to be a corresponding biholomorphic decryption finite chain.

Remark 4

i. If the length of the plaintext is very long, it is appropriate to take a partition of
the long plain text into others with shorter length, embedded into open subsets
of Euclidean spaces of several complex variables, so that it will be possible to
apply the process of the above definition into these subsets. Thus, without loss
of generality, in what follow, we will always assume that each plain text has
enough small length.

ii. Compared with the classical case, Definition 5 is purely functional, and does
not claim that the set of possible ciphertexts is given. Instead, it completely
bypasses this set and the role of the ciphertext set is played from the range(
f
(u)
N ◦ . . . ◦ f (u)1

)
(P) of a composite function. Further, Definition 5 does

not require as the keyspace is finite. Instead, the space K may be infinite
dimensional.

iii. It is well known that a self-map of a domain in C that fixes 3 points is necessarily
the identity [19]. However, if n > 1, then an automorphismGu ◦Fu of a domain
Ω in C

n fixing the finite set P is not necessarily the identity map idΩ (see, for
instance, [4]).

We can generalize the definition 5, so that the resulting parametrized encryption
form depends on the particular time moments.

Definition 6 Let Ω ⊂ C
n and D ⊂ C

n be two domains . An evolutionary
biholomorphic cryptosystem is a four-tuple (P,K, E,D), where the following
conditions are satisfied.

1. P is a fixed finite set of possible plaintexts embedded into Ω.
2. E is the set of evolutionary biholomorphic encryption rules on Ω with range

in D, that is, a subset of the set:

{F : Ω× R→ D : F is holomorphic inΩ and continuous in R} .
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3. D is the set of evolutionary biholomorphic decryption rules on D with range
in Ω, that is a subset of the set:

{G : D × R→ Ω : G is holomorphicin D and continuous in R} .

4. K is a subset (not necessarily finite) of the set
{u = uN ◦ . . . ◦ u1: uα : Uα × R→ C

n+1 is holomorphic in the open set
Uα ⊂ C

n and continuous in R, U1 = Ω× R,
uα (Uα × R)∩Uα+1×R �= ∅, uN (UN × R) ⊂ D×R,N ∈ N}.

The elements of K are the evolutionary keymappings, while K is the evolu-
tionary keyspace.

5. For each u ∈ K, there exist a mapping Fu ∈ E and a mapping Gu ∈ D such that
Gu (Fu) (z) = z for every plaintext element z ∈ P . Fu is a finite composition of
biholomorphic mappings f (u)1 , . . . , f (u)N (satisfying f (u)α (Uα × R) ⊂ Uα+1×R,

U1 × R = Ω× R and f (u)N (UN × R) ⊂ Ω× R, for some N ∈ N) and is called
a evolutionary biholomorphic encryption chain, while Gu is a finite composi-
tion of biholomorphic mappings g(u)M , . . . , g(u)1 (with gβ+1

(
Vβ+1 × R

) ⊂ Vβ×R,
V1 × R = D × R and gM (VM × R) ⊂ Ω× R, for someM ∈ N ) and is said to
be a corresponding evolutionary biholomorphic decryption finite chain.

Remark 5 In contrast to the classical case, the (non-finite) keyspace K contains
keymappings depending continuously on the time parameter t ∈ R. This allows
consideration of a dynamic evolution of cryptosystems, eventually by means of
a differential equation. Practically, this means introducing of continuously rolling
codes, which guarantees increased degree of security (safety).

Let us see how Definition 5 describes the complex-valued cryptographic pro-
cedures, having adapted to the context of the classical case. To this end, we will
give two indicative cases. The first case refers to the description of the encryption
environment in which the domains Ω ⊂ C

n and D ⊂ C
n coincide and are bounded

sets. The second case describes the encryption environment in which both the two
domains coincide with whole C

n.
Recall that the finite set P of possible plaintexts is formed by characters of the

source alphabet S . According to the method developed in the first section, the source
alphabet S can be embedded into an open subset U of the complex plane C, via
a biholomorphic code (E,D). Thus, each character χj of any plaintext element
χ = χ1χ2 . . . χn ∈ P is coded to a corresponding element zj ∈ U : χj �→ zj ,
j = 1, 2, . . . , n. This implies that every plaintext χ in the set P is represented as a
point z = z(χ) of Un: χ = χ1χ2 . . . χn ∈ P �→ z = (z1, . . . , zn) ∈ Un.

1st Case: The Bounded Encryption Environment
In order to refer to the case where the encryption environment consists of two

bounded sets, we let λB ≥ maxχ∈P
∑n
j=1 | zj |2 and λΔ ≥ maxχ∈P maxj | zj |.

Dividing the coordinates of the point z = z(χ) ∈ Un by λB or λΔ, we may suppose
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that Un is the open unit ball Bn ≡ Bn(0; 1) of Cn or the open unit polydisk Δn ≡
Δn(0; 1) of Cn. As it is explained in [25],

Proposition 7

i. The group of automorphisms of the ball Bn (: i.e., the group of biholomorphisms
of the ball Bn onto the ball Bn consists of all fractional-linear transformations

Φ : Bn→ Bn : (z1, . . . , zj , . . . , zn
) �→

⎛

⎜⎜⎜⎝
α1,0 +∑n

ν=1 α1,νzν

α0,0 +∑n
ν=1 α0,νzν︸ ︷︷ ︸
w1

, . . . ,
αj,0 +∑n

ν=1 αj,νzν

α0,0 +∑n
ν=1 α0,νzν︸ ︷︷ ︸
wj

, . . . ,
αn,0 +∑n

ν=1 αn,νzν

α0,0 +∑n
ν=1 α0,νzν︸ ︷︷ ︸
wn

⎞

⎟⎟⎟⎠

which satisfy the relationships∑n
j=1 αj,νᾱj,κ = α0,ν ᾱ0,κ for any ν �= κ and∑n
j=1 | αj,ν |2 − | α0,ν |2= −∑n

j=1 | αj,0 |2 + | α0,0 |2 �= 0.
ii. The group of automorphisms of the polydisk Δn (: i.e., the group of biholomor-

phisms of Δn onto Δn consists of all fractional-linear transformations

Ψ : Δn→ Δn : (z1, . . . , zj , . . . , zn
) �→

⎛

⎜⎜⎜⎝e
iθτ (1) zσ(1) − ασ(1)

1− ᾱσ (1)zσ(1)︸ ︷︷ ︸
u1

, . . . , eiθτ (j)
zσ(j) − ασ(j)

1− ᾱσ (j)zσ(j)︸ ︷︷ ︸
uj

, . . . , eiθτ (n)
zσ(n) − ασ(n)

1− ᾱσ (n)zσ(n)︸ ︷︷ ︸
un

⎞

⎟⎟⎟⎠

where θ = (θ1, . . . , θn) ∈ Sn, α = (α1, . . . , αn) ∈ Δn and σ , τ are
two permutations of 1,. . . ,n (See http://mathoverflow.net/questions/154612/
automorphism-groups-of-unit-disk-mathbfdn-and-unit-ball-bn; also recall that
all automorphisms of the complex unit disk Δ = z ∈ C : |z| < 1 to itself can be
written in the form fa(z) = eij (z−a)(1−āz) where a ∈ Δ and θ ∈ S1. This map sends

a to 0, 1
ā

to∞ and the unit circle to the unit circle; see http://planetmath.org/
automorphismsofunitdisk).

According to the above proposition, we can give the following two general
frameworks for the construction of a finite biholomorphic cryptosystem into a
bounded encryption environment.

A General Framework for Constructing Biholomorphic Cryptosystems with
Bounded Encryption Environment

1. Let

(a) P be the fixed finite set of possible plaintexts;
(b) Ω be a domain in the complex plan C;

http://mathoverflow.net/questions/154612/automorphism-groups-of-unit-disk-mathbfdn-and-unit-ball-bn
http://mathoverflow.net/questions/154612/automorphism-groups-of-unit-disk-mathbfdn-and-unit-ball-bn
http://planetmath.org/automorphismsofunitdisk
http://planetmath.org/automorphismsofunitdisk
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(c) Σ be a (finite) source alphabet;
(d) σ be an arbitrary mapping σ : Σ→ Ω.

2. Consider a biholomorphic code on Ω.
3. Applying the biholomorphic codification, every plaintext χ in the set P is

represented as a point

ζ = ζ (χ) ∈ C
n.

4. Choose Un ∈ {Bn,Δn}.
5. If Un = Bn, then do the following steps

(a) Let us choose an arbitrary set N of random numbers λB , such that

λB ≥ max
χ∈P

n∑

n=1

| ζ j |2 .

(b) For any λB ∈ N, dividing the coordinates of the point ζ = ζ (χ) ∈ Ωn by
λB , every plaintext χ in the set P is represented as a point z of the unit open
ball:

z = z(χ) = (z1, . . . , zn) ∈ Bn.

(c) Take E = D = {Φ : automorphism of Bn}.
(d) Denote by M the set of all (n+ 1)× (n+ 1) matrices

I=

⎛

⎜⎜⎝

α0,0 α0,1 . . . α0,n

α1,0 α1,1 . . . α1,n

. . . . . . . . . . . .

αn,0 αn,1 . . . αn,n

⎞

⎟⎟⎠

such that

– the row α0,0, α0,1, . . . , α0,n is arbitrarily chosen into C
n \ {0} and

– the entries of the other n rows are n(n + 1) complex numbers satisfying
the following system of n(n+ 1) equations:

(E1)
∑n
j=1 αj,ν ᾱj,κ = α0,ν ᾱ0,κ (ν �= κ) and

(E2)
∑n
j=1 | αj,ν |2 − | α0,ν |2= −∑n

j=1 | αj,0 |2 + | α0,0 |2 �= 0
(ν = 1, 2, . . . , n).

Note that the solutions of the these equations are not uniquely defined;
(e) According to Proposition 7.i, to each attributive matrix [Φ] ∈ M, there

corresponds a unique automorphism Φ ∈ Aut (Bn) defined by
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Φ : Bn → Bn : (z1, . . . , zj , . . . , zn
) �→

⎛

⎜⎜⎜⎝
α1,0 +

∑n
ν=1 α1,νzν

α0,0 +
∑n
ν=1 α0,νzν︸ ︷︷ ︸
w1

, . . . ,
αj,0 +

∑n
ν=1 αj,νzν

α0,0 +
∑n
ν=1 α0,νzν︸ ︷︷ ︸
wj

, . . . ,
αn,0 +

∑n
ν=1 αn,νzν

α0,0 +
∑n
ν=1 α0,νzν︸ ︷︷ ︸
wn

⎞

⎟⎟⎟⎠

(f) Choose M ⊂M.
(g) To define the keyspace K, do the following steps.

i. For any finite family withM elements of M:

mM = {[Φ]s : s = 1, 2, . . . ,M} ⊂M,

where

[Φ]s =

⎛

⎜⎜⎜⎝

α
(s)
0,0 α

(s)
0,1 . . . α

(s)
0,n

α
(s)
1,0 α

(s)
1,1 . . . α

(s)
1,n

. . . . . . . . . . . .

α
(s)
n,0 α

(s)
n,1 . . . α

(s)
n,n

⎞

⎟⎟⎟⎠

A. construct the sums

α
(s)
1,0 +

∑n
ν=1 α

(s)
1,νzν

α
(s)
0,0 +

∑n
ν=1 α

(s)
0,νzν︸ ︷︷ ︸

w
(s)
1

, . . . ,
α
(s)
n,0 +

∑n
ν=1 α

(s)
n,νzν

α
(s)
0,0 +

∑n
ν=1 α

(s)
0,νzν︸ ︷︷ ︸

w
n(s)

, s=1, 2, . . . ,M;

B. for z = (z1, . . . , zn) ∈ Bn define the automorphism

Φs (z1, . . . , zn) =
(
w
(s)
1 , . . . , w

(s)
n

)
, s = 1, 2, . . . ,M

C. choose a permutation τ of the indices 1, 2, . . . ,M ,M ∈ N;
D. consider the composition Φτ(M) ◦ . . . ◦Φτ(2) ◦Φτ(1) ;
E. define KmM =

{
Φτ(M) ◦ . . . ◦Φτ(1) : Φτ(s) ∈ mM (s ≤ M)

}
.

ii. Define

K :=
[⋃

mM :f inite f amily with M elements ofM
KmM

]
× N.

It is clear that for each keymapping (Φ, λB) ∈ K, there exist a mapping
FΦ ∈ E and a mapping GΦ ∈ D such that GΦ (FΦ(z)) = z for every
z ∈ Bn. In particular,
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GΦ

(
FΦ

(
ζ (χ)

λB

))
= ζ

(χ)

λB

for every plaintext element χ ∈ P and λB ∈ N. Indeed, any finite
composition FΦ = ΦiM ◦. . .◦Φi1 ∈ E is a biholomorphic encryption chain,
and the finite compositionGΦ = Φ−1

i1
◦ . . . ◦Φ−1

iM
∈ D is the corresponding

biholomorphic decryption chain.

6. If Un = Δn, then do the following steps

(a) Let us choose an arbitrary set Λ of random numbers λΔ, such that

λΔ ≥ maxχ∈P
∑n

n=1
| ζ j |2 .

(b) For any λΔ ∈ Λ, dividing the coordinates of the point ζ = ζ (χ) ∈ Ωn by
λΔ, every plaintext χ in the set P is represented as a point z of the unit open
ball:

z = z(χ) = (z1, . . . , zn) ∈ Δn.

(c) Take E = D = {Φ : automorphism of Δn}.
(d) Denote by N an arbitrary collection of complex vectors in C

n:

N = {
a = (a1, . . . , an) ∈ C

n
}
.

(e) Denote by L an arbitrary collection of real vectors in Sn:

L = θ = (θ1, . . . , θn) ∈ Sn.

(f) Let T be a set of arbitrary permutations of 1, 2, . . . , n:

T = {τ = (τ 1, . . . , τ n)} .

(g) According to Proposition 7.ii, to each (a1, . . . , an) ∈ N and any two
permutations τ , ς ∈ T , there corresponds a unique automorphism defined by

Ψ(a,τ ,ς) : Δn → Δn : (z1, . . . , zj , . . . , zn
) �→ Ψ(a,τ ,ς)

(
z1, . . . , zj , . . . , zn

) =
⎛

⎜⎜⎜⎜⎝
eiθτ (1)

zς(1) − ας(1)
1− ᾱς(1)zς(1)︸ ︷︷ ︸
u1

, . . . , eiθτ (j)
zς(j) − ας(j)
1− ᾱς(j)zς(j)︸ ︷︷ ︸
uj

, . . . , eiθτ (n)
zς(n) − ας(n)
1− ᾱς(n)zς(n)︸ ︷︷ ︸
un

⎞

⎟⎟⎟⎟⎠
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(h) Define the keyspace

K =
{
Ψ(a,τ ,ς) : (a, τ , ς) ∈ (N , T , T )

}
×Λ.

It is clear that for each keymapping (Ψ, λΔ) ∈ K, there exist a mapping
FΨ ∈ E and a mapping GΨ ∈ D such that GΨ (FΨ(z)) = z for every
z ∈ Δn. In particular,

GΨ

(
FΨ

(
ζ (χ)

λΔ

))
= ζ

(χ)

λΔ

for every plaintext element χ ∈ P and λΔ ∈ Λ. Indeed, any finite
composition FΨ = ΨiM ◦ . . .◦Ψi1 ∈ E is a biholomorphic encryption chain,
and the finite composition GΨ = Ψ−1

i1
◦ . . . ◦ Ψ−1

iM
∈ D is the corresponding

biholomorphic decryption chain.

Let us give a concrete example.

Example 5 By considering the extended ASCII code, each character of the word
Evelpis corresponds to the sequence of seven numbers 69 118 101 108 112
105 115. Using the biholomorphic encoding rule with length 4 of Example 2, we
see that

a). the integer 69 is coded to the complex number

ξE =
−4509326640+ i12406806482

22065630722
≈ −(0.2043597437486)+i(0.5622683981953);

b). the integer 118 is coded to the complex number

ξv =
−6587118720+ i12349344672

33996661792
≈ −(0.1937578095256)+i(0, 3632516847553);

c). the integer 101 is coded to the complex number

ξe =
−6029190960+ i12618481362

29681073922
≈ −(0.2031325071271)+i(0.4251356064528);

d). the integer 108 is coded to the complex number

ξl =
−6282731520+ i12540403712

31438917632
≈ −(0.1998393072415)+ i(0.398881534625);
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e). the integer 112 is coded to the complex number

ξp =
−6412922880+ i12475249152

32455762432
≈ −(0.1975896543314)+ i(0.384377017121);

f). the integer 105 is coded to the complex number

ξi =
−6347250000+ i13104281250

31376171250
≈ −(0.2022952370264)+i(0.4176507434762);

g). the integer 115 is coded to the complex number

ξs =
−6503250000+ i12416531250

33223941250
≈ −(0.1957398717709)+i(0.3737224056764).

First Choice Un = Bn.
We take

E = D =
{
Φ : automorphism of B7 ⊂ C

7
}

andM = 2.

To define the keymapping, we may consider the biholomorphic encryption chain
Φ = Φ2 ◦Φ1 ∈ E , where

Φj : B7 → B7 : (z1, . . . , z7) �→ Φj (z1, . . . , z7) =
⎛

⎜⎜⎜⎜⎜⎜⎝

α
(j)

1,0 +
∑7
ν=1 α

(j)

1,νzν

α
(j)

0,0 +
∑7
ν=1 α

(j)

0,νzν︸ ︷︷ ︸
w
(j)
1

, . . . ,
α
(j)

n,0 +
∑7
ν=1 α

(j)
n,νzν

α
(j)

0,0 +
∑7
ν=1 α

(j)

0,νzν︸ ︷︷ ︸
w
(j)
7

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The mapping Φ−1 = Φ−1
1 ◦ Φ−1

2 ∈ D is the corresponding biholomorphic
decryption finite chain. According to Proposition 7.i, for any s = 1, 2, the
coefficients a(s)j,ν satisfy the system of equations (E1) and (E2) . It is easily seen
that the entries of the matrix
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[Φ](1) =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(1)
0,0 = 1∓i√3

2 α
(1)
0,1 = 0 α(1)0,2 = 0 α(1)0,3 = 0 α(1)0,4 = 0 α(1)0,5 = 0 α(1)0,6 = 0 α(1)0,7 = 1±i√3

2

α
(1)
1,0 = 1∓i√3

2 α
(1)
1,1 = 0 α(1)1,2 = 0 α(1)1,3 = 0 α(1)1,4 = 0 α(1)1,5 = 0 α(1)1,6 = 0 α(1)1,7 = 1±i√3

2

α
(1)
2,0 = 1∓i√3

2 α
(1)
2,1 = 0 α(1)2,2 = 0 α(1)2,3 = 0 α(1)2,4 = 0 α(1)2,5 = 0 α(1)2,6 = 0 α(1)2,7 = 1±i√3

2

α
(1)
3,0 = 1∓i√3

2 α
(1)
3,1 = 0 α(1)3,2 = 0 α(1)3,3 = 0 α(1)3,4 = 0 α(1)3,5 = 0 α(1)3,6 = 0 α(1)3,7 = 1±i√3

2

α
(1)
4,0 = 1∓i√3

2 α
(1)
4,1 = 0 α(1)4,2 = 0 α(1)4,3 = 0 α(1)4,4 = 0 α(1)4,5 = 0 α(1)4,6 = 0 α(1)4,7 = 1±i√3

2

α
(1)
5,0 = 1∓i√3

2 α
(1)
5,1 = 0 α(1)5,2 = 0 α(1)5,3 = 0 α(1)5,4 = 0 α(1)5,5 = 0 α(1)5,6 = 0 α(1)5,7 = 1±i√3

2

α
(1)
6,0 = 1∓i√3

2 α
(1)
6,1 = 0 α(1)6,2 = 0 α(1)6,3 = 0 α(1)6,4 = 0 α(1)6,5 = 0 α(1)6,6 = 0 α(1)6,7 = 1±i√3

2

α
(1)
7,0 = 1∓i√3

2 α
(1)
7,1 = 0 α(1)7,2 = 0 α(1)7,3 = 0 α(1)7,4 = 0 α(1)7,5 = 0 α(1)7,6 = 0 α(1)7,7 = 1±i√3

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

satisfy the system of equations (E1) and (E2) and, thus, one can choose

Φ (z1, . . . , z7) =⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1± i√3

2
+ 1∓ i√3

2
z7

1∓ i√3

2
+ 1± i√3

2
z7

︸ ︷︷ ︸
w1

,
(−3)

1
4 z1

1∓ i√3

2
+ 1± i√3

2
z7

︸ ︷︷ ︸
w2

,
(−3)

1
4 z2

1∓ i√3

2
+ 1± i√3

2
z7

︸ ︷︷ ︸
w3

,

(−3)
1
4 z3

1∓ i√3

2
+ 1± i√3

2
z7

︸ ︷︷ ︸
w4

,
(−3)

1
4 z4

1∓ i√3

2
+ 1± i√3

2
z7

︸ ︷︷ ︸
w5

,
(−3)

1
4 z5

1∓ i√3

2
+ 1± i√3

2
z7

︸ ︷︷ ︸
w6

,
(−3)

1
4 z6

1∓ i√3

2
+ 1± i√3

2
z7

︸ ︷︷ ︸
w7

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Further, taking

[Φ](2) = [Φ](2)(α)
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(2)
0,0 = 1 α

(2)
0,1 = −ᾱ α(2)0,2 = 0 α

(2)
0,3 = 0 α

(2)
0,4 = 0 α

(2)
0,5 = 0 α

(2)
0,6 = 0 α

(2)
0,7 = 0

α
(2)
1,0 = −α α

(2)
1,1 = 1 α

(2)
1,2 = 0 α

(2)
1,3 = 0 α

(2)
1,4 = 0 α

(1)
1,5 = 0 α

(2)
1,6 = 0 α

(2)
1,7 = 0

α
(2)
2,0 = 0 α

(2)
2,1 = 0 α

(2)
2,2 = B α

(2)
2,3 = 0 α

(2)
2,4 = 0 α

(2)
2,5 = 0 α

(2)
2,6 = 0 α

(2)
2,7 = 0

α
(2)
3,0 = 0 α

(1)
3,1 = 0 α

(2)
3,2 = 0 α(2)3,3 = B α

(2)
3,4 = 0 α

(2)
3,5 = 0 α

(2)
3,6 = 0 α

(2)
3,7 = 0

α
(2)
4,0 = 0 α

(2)
4,1 = 0 α

(2)
4,2 = 0 α

(2)
4,3 = 0 α(2)4,4 = B α

(2)
4,5 = 0 α

(2)
4,6 = 0 α

(2)
4,7 = 0

α
(2)
5,0 = 0 α

(2)
5,1 = 0 α

(2)
5,2 = 0 α

(2)
5,3 = 0 α

(2)
5,4 = 0 α(2)5,5 = B α

(2)
5,6 = 0 α

(2)
5,7 = 0

α
(2)
6,0 = 0 α

(2)
6,1 = 0 α

(2)
6,2 = 0 α

(2)
6,3 = 0 α

(2)
6,4 = 0 α

(2)
6,5 = 0 α(2)6,6 = B α

(2)
6,7 = 0

α
(2)
7,0 = 0 α

(2)
7,1 = 0 α

(2)
7,2 = 0 α

(2)
7,3 = 0 α

(2)
7,4 = 0 α

(2)
7,5 = 0 α

(2)
7,6 = 0 α(2)7,7 = B

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with B := √
1− | α |2 and | α |< 1, it is easily seen that the entries α(2)j,ν satisfy the

system of equations (E1) and (E2) and, thus, one can choose
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Φ
(α)
2 (w1, . . . , w7) =

(
w1 − α

1− ᾱw1
,

√
1− | α |2w2

1−ᾱw1
,

√
1− | α |2w3

1−ᾱw1
,

√
1− | α |2w4

1−ᾱw1
,

√
1− | α |2w5

1−ᾱw1
,

√
1− | α |2w6

1−ᾱw1
,

√
1− | α |2w7

1−ᾱw1

)
.

According to these choices, the corresponding biholomorphic encryption chain is
given by

Φα (z1, . . . , z7) =
(
Φ
(α)
2 ◦Φ1

)
(z1, . . . , z7)

=
(

1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

− α

1− ᾱ
1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

,

√
1− | α |2 (−3)

1
4 z1

1∓ i√3

2
+1± i√3

2
z7

1− ᾱ
1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

,

√
1− | α |2 (−3)

1
4 z2

1∓ i√3

2
+1± i√3

2
z7

1− ᾱ
1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

,

√
1− | α |2 (−3)

1
4 z3

1∓ i√3

2
+1± i√3

2
z7

1− ᾱ
1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

,

(−3)
1
4 z4

1∓ i√3

2
+1± i√3

2
z7

1− ᾱ
1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

,

√
1− | α |2 (−3)

1
4 z5

1∓ i√3

2
+1± i√3

2
z7

1− ᾱ
1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

,

√
1− | α |2 (−3)

1
4 z6

1∓ i√3

2
+1± i√3

2
z7

1− ᾱ
1± i√3

2
+1∓ i√3

2
z7

1∓ i√3

2
+1± i√3

2
z7

)
, ( | α |< 1).
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In particular, we have

Φα
(
ξE, ξv, ξe, ξl, ξp, ξi, ξs

) =
(
Φ
(α)
2 ◦Φ1

) (
ξE, ξv, ξe, ξl, ξp, ξi, ξs

)

=
(

1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

− α

1− ᾱ
1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

,

√
1− | α |2 (−3)

1
4 ξE

1∓ i√3

2
+1± i√3

2
ξs

1− ᾱ
1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

,

√
1− | α |2 (−3)

1
4 ξv

1∓ i√3

2
+1± i√3

2
ξs

1− ᾱ
1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

,

√
1− | α |2 (−3)

1
4 ξe

1∓ i√3

2
+1± i√3

2
ξs

1− ᾱ
1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

,

(−3)
1
4 ξl

1∓ i√3

2
+1± i√3

2
ξs

1− ᾱ
1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

,

√
1− | α |2 (−3)

1
4 ξp

1∓ i√3

2
+1± i√3

2
ξs

1− ᾱ
1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

,

√
1− | α |2 (−3)

1
4 ξi

1∓ i√3

2
+1± i√3

2
ξs

1− ᾱ
1± i√3

2
+1∓ i√3

2
ξs

1∓ i√3

2
+1± i√3

2
ξs

)
, ( | α |< 1).

To find the corresponding biholomorphic decryption finite chain, observe that,
putting

A := 1± i√3

2
, B := 1∓ i√3

2
, C := (−3)

1
4 and Dα :=

√
1− | α |2,
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we have

Φ−1
1 (w1, . . . , w7) =

(
w2

[
B

C
+ A
C

Bw1 − A
B − Aw1

]

︸ ︷︷ ︸
z1

, w3

[
B

C
+ A
C

Bw1 − A
B − Aw1

]

︸ ︷︷ ︸
z2

, w4

[
B

C
+ A
C

Bw1 − A
B − Aw1

]

︸ ︷︷ ︸
z3

,

w5

[
B

C
+ A
C

Bw1 − A
B − Aw1

]

︸ ︷︷ ︸
z4

, w6

[
B

C
+ A
C

Bw1 − A
B − Aw1

]

︸ ︷︷ ︸
z5

, w7

[
B

C
+ A
C

Bw1 − A
B − Aw1

]

︸ ︷︷ ︸
z6

,

[
Bw1 − A
B − Aw1

]

︸ ︷︷ ︸
z7

)
,

and

Φ
(α)−1

2 (u1, . . . , u7) =
([

u1 + α
1+ ᾱu1

]

︸ ︷︷ ︸
w1

,
u2

D

[
1− ᾱ u1 + α

1+ ᾱu1

]

︸ ︷︷ ︸
w2

,
u3

D

[
1− ᾱ u1 + α

1+ ᾱu1

]

︸ ︷︷ ︸
w3

,
u4

D

[
1− ᾱ u1 + α

1+ ᾱu1

]

︸ ︷︷ ︸
w4

,

u5

D

[
1− ᾱ u1 + α

1+ ᾱu1

]

︸ ︷︷ ︸
w5

,
u6

D

[
1− ᾱ u1 + α

1+ ᾱu1

]

︸ ︷︷ ︸
w6

,
u7

D

[
1− ᾱ u1 + α

1+ ᾱu1

]

︸ ︷︷ ︸
w7

)
.

Thus, the corresponding biholomorphic decryption finite chain is given by

Φ−1 (u1, . . . , u7) =
(
Φ−1

1 ◦Φ(α)
−1

2

)
(u1, . . . , u7) =

⎛

⎜⎜⎜⎜⎝
u2

[
A+ B
CD

(
1− ᾱ u1 + α

1+ ᾱu1

)
B u1+α

1+ᾱu1
− A

B − A u1+α
1+ᾱu1

]

︸ ︷︷ ︸
z1

, u3

[
A+ B
CD

(
1− ᾱ u1 + α

1+ ᾱu1

)
B u1+α

1+ᾱu1
− A

B − A u1+α
1+ᾱu1

]

︸ ︷︷ ︸
z2

,

u4

[
A+ B
CD

(
1− ᾱ u1 + α

1+ ᾱu1

)
B u1+α

1+ᾱu1
− A

B − A u1+α
1+ᾱu1

]

︸ ︷︷ ︸
z3

, u5

[
A+ B
CD

(
1− ᾱ u1 + α

1+ ᾱu1

)
B u1+α

1+ᾱu1
− A

B − A u1+α
1+ᾱu1

]

︸ ︷︷ ︸
z4

,

u6

[
A+ B
CD

(
1− ᾱ u1 + α

1+ ᾱu1

)
B u1+α

1+ᾱu1
− A

B − A u1+α
1+ᾱu1

]

︸ ︷︷ ︸
z5

, u7

[
A+ B
CD

(
1− ᾱ u1 + α

1+ ᾱu1

)
B u1+α

1+ᾱu1
− A

B − A u1+α
1+ᾱu1

]

︸ ︷︷ ︸
z6

,

B u1+α
1+ᾱu1

− A
B − A u1+α

1+ᾱu1︸ ︷︷ ︸
z7

⎞

⎟⎟⎟⎟⎠
,( | α |< 1).
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Second Choice Un = Δn. Take

E = D =
{
Ψ : automorphism of Δ7 ⊂ C

7
}

andM = 3.

Let us choose

a). three arbitrary complex vectors in C
7:

α(1)=
(
α
(1)
1 = i2 , α(1)2 = i3 , α(1)3 = i

4 , α
(1)
4 = i

5 , α
(1)
5 = i

6 , α
(1)
6 = i

7 , α
(1)
7 = i

8

)T
,

α(2)=
(
α
(2)
1 = 1−i

2 , α
(2)
2 = 1+2i

3 , α
(2)
3 = 1−3i

4 , α
(2)
4 = 1+4i

5 , α
(2)
5 = 1−5i

6 , α
(2)
6 = 1+6i

7 , α
(2)
7 = 1−7i

8

)T
,

α(3)=
(
α
(3)
1 = 1+i

2 , α
(3)
2 = 1−2i

3 , α
(3)
3 = 1+3i

4 , α
(3)
4 = 1−4i

5 , α
(3)
5 = 1+5i

6 , α
(3)
6 = 1−6i

7 , α
(3)
7 = 1+7i

8

)T
;

for each α(j), we get an arbitrary permutation of 1, 2, . . . , 7:
σ (1) = (

σ (1)(1) = 2, σ (1)(2) = 6, σ (1)(3) = 4, σ (1)(4) = 1, σ (1)(5) = 7, σ (1)(6) = 5, σ (1)(7) = 3
)
,

σ (2) = (
σ (2)(1) = 5, σ (2)(2) = 4, σ (2)(3) = 3, σ (2)(4) = 7, σ (2)(5) = 6, σ (2)(6) = 1, σ (2)(7) = 2

)

and
σ (3) = (

σ (3)(1) = 7, σ (3)(2) = 3, σ (3)(3) = 1, σ (3)(4) = 5, σ (3)(5) = 2, σ (3)(6) = 4, σ (3)(7) = 6
)
.

b). three arbitrary real vectors in R
7:

θ(1) =
(
θ
(1)
1 = θ(1)2 = θ(1)3 = θ(1)4 = θ(1)5 = θ(1)6 = θ(1)7 = π

3

)T
,

θ(2) =
(
θ
(2)
1 = θ(2)2 = θ(2)3 = θ(2)4 = θ(2)5 = θ(2)6 = θ(2)7 = 0

)T
,

θ(3) =
(
θ
(3)
1 = θ(3)2 = π

3 , θ
(3)
3 = θ(3)4 = θ(3)5 = π

4 , θ
(3)
6 = θ(3)7 = π

)T
;

for each θ(j), we get another permutation of 1, 2, . . . , 7:
τ (1) = (

τ (1)(1) = 3, τ (1)(2) = 7, τ (1)(3) = 1, τ (1)(4) = 5, τ (1)(5) = 4, τ (1)(6) = 2, τ (1)(7) = 6
)
,

τ (2) = (
τ (2)(1) = 4, τ (2)(2) = 1, τ (2)(3) = 3, τ (2)(4) = 2, τ (2)(5) = 6, τ (2)(6) = 7, τ (2)(7) = 5

)

and
τ (3) = (

τ (3)(1) = 6, τ (3)(2) = 7, τ (3)(3) = 5, τ (3)(4) = 1, τ (3)(5) = 3, τ (3)(6) = 4, τ (3)(7) = 2
)
.

According to Proposition 7.ii,
c). to

(
α(1), θ (1), σ (1), τ (1)

)
, there corresponds a unique automorphism defined by

Ψ1 = Ψ
(
α(1),θ (1),σ (1),τ (1)

)
: Δ7 → Δ7 : (z1, . . . , z7) �→ Ψ1 (z1, . . . , z7) =

(
eiπ

z2 − i
2

1+ i
3z2︸ ︷︷ ︸

u1

, ei
π
3
z6 − i

7

1+ i
7z6︸ ︷︷ ︸

u2

, eiπ
z4 − i

5

1+ i
5

z4

︸ ︷︷ ︸
u3

,

ei
π
3
z1 − i

2

1+ i
2z1︸ ︷︷ ︸

u4

, ei
π
3
z7 − i

8

1+ i
8z7︸ ︷︷ ︸

u5

, eiπ
z5 − i

6

1+ i
6z5︸ ︷︷ ︸

u6

, ei
π
3
z3 − i

4

1+ i
4z3︸ ︷︷ ︸

u7

)
∈ E;

d). to
(
α(2), θ (2), σ (2), τ (2)

)
, there corresponds a unique automorphism defined by
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Ψ2 = Ψ
(
α(2),θ (2),σ (2),τ (2)

)
: Δ7 → Δ7 : (z1, . . . , z7) �→ Ψ2 (z1, . . . , z7) =

(
u5 − 1−5i

6

1− 1+5i
6 u5︸ ︷︷ ︸

w1

,
u4 − 1+4i

5

1− 1−4i
5 u4︸ ︷︷ ︸

w2

,
u3 − 1+3i

4

1− 1−3i
4 u3︸ ︷︷ ︸

w3

,

u7 − 1−7i
8

1− 1+7i
8 u7︸ ︷︷ ︸

w4

,
u6 − 1+6i

7

1− 1−6i
7 u6︸ ︷︷ ︸

w5

,
u1 − 1−i

2

1− 1+i
2 u1︸ ︷︷ ︸

w6

,
u2 − 1+2i

3

1− 1−2i
3 u2︸ ︷︷ ︸

w7

)
∈ E;

e). to
(
α(3), θ (3), σ (3), τ (3)

)
, there corresponds a unique automorphism defined by

Ψ3 = Ψ
(
α(3),θ (3),σ (3),τ (3)

)
: Δ7 → Δ7 : (z1, . . . , z7) �→ Ψ3 (z1, . . . , z7) =

(
eiπ

w7 − 1+7i
8

1− 1−7i
8 w7︸ ︷︷ ︸

v1

, eiπ
w3 − 1+3i

4

1− 1−3i
4 w3︸ ︷︷ ︸

v2

, ei
π
4
w1 − 1+i

2

1− 1−i
2 w1︸ ︷︷ ︸

v3

,

ei
π
3
w5 − 1+5i

6

1− 1+5i
6 w5︸ ︷︷ ︸

v4

, ei
π
4
w2 − 1−2i

3

1− 1+2i
3 w2︸ ︷︷ ︸

v5

, ei
π
4
w4 − 1−4i

5

1− 1+4i
5 w4︸ ︷︷ ︸

v6

, ei
π
3
w6 − 1−6i

7

1− 1+6i
7 w6︸ ︷︷ ︸

v7

)
∈ E.

So, according to these choices, the biholomorphic encryption chain is given by

Ψ (z1, z2, z3, z4, z5, z6, z7) = (Ψ3 ◦ Ψ2 ◦ Ψ1) (z1, z2, z3, z4, z5, z6, z7)

=
(
eiπ

e
i π3

z6− i7
1+ i7 z6

− 1+2i
3

1− 1−2i
3 e

i π3
z6− i7
1+ i7 z6

− 1+7i
8

1− 1−7i
8

e
π
3
z6− i7
1+ i7 z6

− 1+2i
3

1− 1−2i
3 e

i π3
z6− i7
1+ i7 z6︸ ︷︷ ︸

v1

, eiπ

eiπ
z4− i5
1+ i5 z4

− 1+3i
4

1− 1−3i
4 eiπ

z4− i5
1+ i5 z4

− 1+3i
4

1− 1−3i
4

eiπ
z4− i5
1+ i5 z4

− 1+3i
4

1− 1−3i
4 eiπ

z4− i5
1+ i5 z4︸ ︷︷ ︸

v2

,

ei
π
4

e
i π3

z7− i8
1+ i8 z7

− 1−5i
6

1− 1+5i
6 e

i π3
z7− i8
1+ i8 z7

− 1+i
2

1− 1−i
2

e
π
3
z7− i8
1+ i8 z7

− 1−5i
6

1− 1+5i
6 e

i π3
z7− i8
1+ i8 z7︸ ︷︷ ︸

v3

, ei
π
3

eiπ
z5− i6
1+ i6 z5

− 1+6i
7

1− 1−6i
7 eiπ

z5− i6
1+ i6 z5

− 1+5i
6

1− 1+5i
6

eiπ
z5− i6
1+ i6 z5

− 1+6i
7

1− 1−6i
7 eiπ

z5− i6
1+ i6 z5︸ ︷︷ ︸

v4

, ei
π
4

e
i π3

z1− i2
1+ i2 z1

− 1+4i
5

1− 1−4i
5 e

i π3
z1− i2
1+ i2 z1

− 1−2i
3

1− 1+2i
3

e
i π3

z1− i2
1+ i2 z1

− 1+4i
5

1− 1−4i
5 e

i π3
z1− i2
1+ i2 z1︸ ︷︷ ︸

v5

,
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ei
π
4

e
i π3

z3− i4
1+ i4 z3

− 1−7i
8

1− 1+7i
8 e

i π3
z3− i4
1+ i4 z3

− 1−4i
5

1− 1+4i
5

e
π
3
z3− i4
1+ i4 z3

− 1−7i
8

1− 1+7i
8 e

i π3
z3− i4
1+ i4 z3︸ ︷︷ ︸

v6

, ei
π
3

eiπ
z2− i3

1+ i3 z2
− 1−i

2

1− 1+i
2 e

iπ
z2− i3
1+ i3 z2

− 1−6i
7

1− 1+6i
7

eiπ
z2− i3
1+ i3 z2

− 1−i
2

1− 1+i
2 e

iπ
z2− i3
1+ i3 z2︸ ︷︷ ︸

v7

)
.

In particular, we have

Ψ
(
ξE, ξv, ξe, ξl, ξp, ξi, ξs

) = (Ψ3 ◦ Ψ2 ◦ Ψ1)
(
ξE, ξv, ξe, ξl, ξp, ξi, ξs

)

=
(
eiπ

e
i π3

ξi− i7
1+ i7 ξi

− 1+2i
3

1− 1−2i
3 e

i π3
ξi− i7
1+ i7 ξi

− 1+7i
8

1− 1−7i
8

e
π
3
ξi− i7
1+ i7 ξi

− 1+2i
3

1− 1−2i
3 e

i π3
ξi− i7
1+ i7 ξi︸ ︷︷ ︸

v1

, eiπ

eiπ
ξl− i5
1+ i5 ξl

− 1+3i
4

1− 1−3i
4 eiπ

ξl− i5
1+ i5 ξl

− 1+3i
4

1− 1−3i
4

eiπ
ξl− i5
1+ i5 ξl

− 1+3i
4

1− 1−3i
4 eiπ

ξl− i5
1+ i5 ξl︸ ︷︷ ︸

v2

,

ei
π
4

e
i π3

ξs− i8
1+ i8 ξs

− 1−5i
6

1− 1+5i
6 e

i π3
ξs− i8
1+ i8 ξs

− 1+i
2

1− 1−i
2

e
π
3
ξs− i8
1+ i8 ξs

− 1−5i
6

1− 1+5i
6 e

i π3
ξs− i8
1+ i8 ξs︸ ︷︷ ︸

v3

, ei
π
3

eiπ
ξp− i6
1+ i6 ξp

− 1+6i
7

1− 1−6i
7 eiπ

ξp− i6
1+ i6 ξp

− 1+5i
6

1− 1+5i
6

eiπ
ξp− i6
1+ i6 ξp

− 1+6i
7

1− 1−6i
7 eiπ

ξp− i6
1+ i6 ξp︸ ︷︷ ︸

v4

, ei
π
4

e
i π3

ξE− i2
1+ i2 ξE

− 1+4i
5

1− 1−4i
5 e

i π3
ξE− i2
1+ i2 ξE

− 1−2i
3

1− 1+2i
3

e
i π3

ξE− i2
1+ i2 ξE

− 1+4i
5

1− 1−4i
5 e

i π3
ξE− i2

1+ i2 ξE︸ ︷︷ ︸
v5

,

ei
π
4

e
i π3

ξe− i4
1+ i4 ξe

− 1−7i
8

1− 1+7i
8 e

i π3
ξe− i4
1+ i4 ξe

− 1−4i
5

1− 1+4i
5

e
π
3
ξe− i4
1+ i4 ξe

− 1−7i
8

1− 1+7i
8 e

i π3
ξe− i4
1+ i4 ξe︸ ︷︷ ︸

v6

, ei
π
3

eiπ
z2− i3
1+ i3 z2

− 1−i
2

1− 1+i
2 e

iπ
ξv− i3
1+ i3 ξv

− 1−6i
7

1− 1+6i
7

eiπ
ξv− i3
1+ i3 ξv

− 1−i
2

1− 1+i
2 e

iπ
ξv− i3
1+ i3 ξv︸ ︷︷ ︸

v7

)
.

To find the corresponding biholomorphic decryption finite chain, observe that
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Ψ−1
1 (u1, u2, u3, u4, u5, u6, u7) =

(
u1+eiπ i3
eiπ− i3u1︸ ︷︷ ︸

z2

,
u2+ei π3 i7
ei
π
3− i7u2︸ ︷︷ ︸
z6

,
u3+eiπ i5
eiπ− i5u3︸ ︷︷ ︸

z4

,
u4+ei π3 i2
ei
π
3− i2u4︸ ︷︷ ︸
z1

,
u5+ei π3 i3
ei
π
3− i3u5︸ ︷︷ ︸
z7

,
u6+eiπ i6
eiπ− i6u6︸ ︷︷ ︸

z5

,
u7+ei π3 i4
ei
π
3− i4u7︸ ︷︷ ︸
z3

)
,

Ψ−1
2 (w1, w2, w3, w4, w5, w6, w7) =

(
w1 + 1−5i

6

1+ 1+5i
6 w1︸ ︷︷ ︸
u5

,
w2 + 1+4i

5

1+ 1−4i
5 w2︸ ︷︷ ︸
u4

,
w3 + 1+3i

4

1+ 1−3i
4 w3︸ ︷︷ ︸
u3

,
w4 + 1−7i

8

1+ 1+7i
8 w4︸ ︷︷ ︸
u7

,
w5 + 1+6i

7

1+ 1−6i
7 w5︸ ︷︷ ︸
u6

,
w6 + 1−i

2

1+ 1+i
2 w6︸ ︷︷ ︸
u1

,
w7 + 1+2i

3

1+ 1−2i
3 w7︸ ︷︷ ︸
u2

)
,

Ψ−1
3 (v1, v2, v3, v4, v5, v6, v7) =

(
v1 + eiπ 1+7i

8

eiπ + 1−7i
8 v1︸ ︷︷ ︸

w7

,
v2 + eiπ 1+3i

4

eiπ + 1−3i
4 v2︸ ︷︷ ︸

w3

,
v3 + ei π4 1+i

2

ei
π
4 + 1−i

2 v3︸ ︷︷ ︸
w1

,
v4 + ei π3 1+5i

6

ei
π
3 + 1−5i

6 v4︸ ︷︷ ︸
w5

,

v5 + ei π4 1−2i
3

ei
π
4 + 1+2i

3 v5︸ ︷︷ ︸
w2

,
v6 + ei π4 1−4i

5

ei
π
4 + 1+4i

5 v6︸ ︷︷ ︸
w4

,
v7 + ei π3 1−6i

7

ei
π
3 + 1+6i

7 v7︸ ︷︷ ︸
w6

)
.

Thus, the corresponding biholomorphic decryption finite chain is

Ψ−1 (v1, v2, v3, v4, v5, v6, v7) =
(
Ψ−1

1 ◦ Ψ−1
2 ◦ Ψ−1

3

)
(v1, v2, v3, v4, v5, v6, v7)

=
(

v7+ei
π
3 1−6i

7

e
i π3 + 1+6i

7 v7

+ 1−i
2

1+ 1+i
2
v7+ei

π
3 1−6i

7

e
i π3 + 1+6i

7 v7

+ eiπ i3

eiπ − i
3

v7+ei
π
3 1−6i

7

e
i π3 + 1+6i

7 v7

+ 1−i
2

1+ 1+i
2
v7+ei

π
3 1−6i

7

e
i π3 + 1+6i

7 v7︸ ︷︷ ︸
z2

,

v1+eiπ 1+7i
8

eiπ+ 1−7i
8 v1

+ 1+2i
3

1+ 1−2i
3

v1+eiπ 1+7i
8

eiπ+ 1−7i
8 v1

+ ei π3 i7

ei
π
3 − i

7

v1+eiπ 1+7i
8

eiπ+ 1−7i
8 v1

+ 1+2i
3

1+ 1−2i
3

v1+eiπ 1+7i
8

eiπ+ 1−7i
8 v1︸ ︷︷ ︸

z6

,
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v2+eiπ 1+3i
4

eiπ+ 1−3i
4 v2

+ 1+3i
4

1+ 1−3i
4

v2+eiπ 1+3i
4

eiπ+ 1−3i
4 v2

+ eiπ i5

eiπ − i
5

v2+eiπ 1+3i
4

eiπ+ 1−3i
4 v2

+ 1+3i
4

1+ 1−3i
4

v2+eiπ 1+3i
4

eiπ+ 1−3i
4 v2︸ ︷︷ ︸

z4

,

v5+ei
π
4 1−2i

3

e
i π4 + 1+2i

3 v5

+ 1+4i
5

1+ 1−4i
5

v5+ei
π
4 1−2i

3

e
i π4 + 1+2i

3 v5

+ ei π3 i2

eiπ − i
2

v5+ei
π
4 1−2i

3

e
i π4 + 1+2i

3 v5

+ 1+4i
5

1+ 1−4i
5

v5+ei
π
4 1−2i

3

e
i π4 + 1+2i

3 v5︸ ︷︷ ︸
z1

,

v3+ei
π
4 1+i

2

e
i π4 + 1−i

2 v3

+ 1−5i
6

1+ 1+5i
6

v3+ei
π
4 1+i

2

e
i π4 + 1−i

2 v3

+ ei π3 i3

ei
π
3 − i

3

v3+ei
π
4 1+i

2

e
i π4 + 1−i

2 v3

+ 1−5i
6

1+ 1+5i
6

v3+ei
π
4 1+i

2

e
i π4 + 1−i

2 v3︸ ︷︷ ︸
z7

,

v4+ei
π
3 1+5i

6

e
i π3 + 1−5i

6 v4

+ 1+6i
7

1+ 1−6i
7

v4+ei
π
3 1+5i

6

e
i π3 + 1−5i

6 v4

+ eiπ i6

eiπ − i
6

v4+ei
π
3 1+5i

6

e
i π3 + 1−5i

6 v4

+ 1+6i
7

1+ 1−6i
7

v4+ei
π
3 1+5i

6

e
i π3 + 1−5i

6 v4︸ ︷︷ ︸
z5

,

v6+ei
π
4 1−4i

5

e
i π4 + 1+4i

5 v6

+ 1−7i
8

1+ 1+7i
8

v6+ei
π
4 1−4i

5

e
i π4 + 1+4i

5 v6

+ ei π3 i4

ei
π
3 − i

4

v6+ei
π
4 1−4i

5

e
i π4 + 1+4i

5 v6

+ 1−7i
8

1+ 1+7i
8

v6+ei
π
4 1−4i

5

e
i π4 + 1+4i

5 v6︸ ︷︷ ︸
z3

)
.

The arrangement in coordinates of Ψ and Ψ−1 is given in the following table:
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ = Ψ3 ◦ Ψ2 ◦ Ψ1 Ψ−1 = Ψ−1
1 ◦ Ψ−1

2 ◦ Ψ−1
3(

z1
Ψ1→ u4

Ψ2→ w2
Ψ3→ v5

) (
v1

Ψ−1
3→ w7

Ψ−1
2→ u2

Ψ−1
1→ z6

)

(
z2

Ψ1→ u1
Ψ2→ w6

Ψ3→ v7

) (
v2

Ψ−1
3→ w3

Ψ−1
2→ u3

Ψ−1
1→ z4

)

(
z3

Ψ1→ u7
Ψ2→ w4

Ψ3→ v6

) (
v3

Ψ−1
3→ w1

Ψ−1
2→ u5

Ψ−1
1→ z7

)

(
z4

Ψ1→ u3
Ψ2→ w3

Ψ3→ v2

) (
v4

Ψ−1
3→ w5

Ψ−1
2→ u6

Ψ−1
1→ z5

)

(
z5

Ψ1→ u6
Ψ2→ w5

Ψ3→ v4

) (
v5

Ψ−1
3→ w2

Ψ−1
2→ u4

Ψ−1
1→ z1

)

(
z6

Ψ1→ u2
Ψ2→ w7

Ψ3→ v1

) (
v6

Ψ−1
3→ w4

Ψ−1
2→ u7

Ψ−1
1→ z3

)

(
z7

Ψ1→ u5
Ψ2→ w1

Ψ3→ v3

) (
v7

Ψ−1
3→ w6

Ψ−1
2→ u1

Ψ−1
1→ z2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark 6

i. It is clear that due to the absence of biholomorphic equivalence between the ball
and the polydisk, the Step 5 of the proposed framework is crucial, because the
choice of the complex domain (ball or polydisk) for conducting an encryption
process is absolutely substantial. Indeed, if he who makes the cryptanalysis
decides to conduct the cryptanalysis into the ball, while the cryptographer has
conducted his encryption method into the polydisk, then he will certainly come
to erroneous conclusions. And conversely, if he who makes the cryptanalysis
decides to work into the polydisk while the cryptographer has conducted the
encryption method into the ball, then he will also infer incorrectly.

ii. However, the limitation of the reference domains exclusively in the two sets of
the proposed framework (: ball and polydisk) is not binding. One could also,
for instance, choose another open set that is not biholomorphic to the ball, such
as an ellipsoid (see, for instance, [1, 10, 12] and [18]). However, as it has been
pointed above, even with the option of the ball or the polydisk, the possibilities
of cryptanalysis are severely limited, since the ball and the polydisk are not
biholomorphically equivalent and the person who conducts the cryptanalysis
cannot never able to know with certainty the domain of cryptanalysis.

iii. Another crucial choice that shields the result of encryption is the choice of the
parameterM . The choice of this parameter determines the length of the chain of
automorphisms, and hence the number of selected consecutive automorphisms.
If he who makes the cryptanalysis chooses a different number of consecutive
automorphisms than the number chosen by the cryptographer, then he will
certainly be driven to erroneous conclusions.

iv. Determining automorphisms of the ball through effective management of Equa-
tions (E1) and (E2) is often quite difficult. For this reason, it may be preferred
to use automorphisms belonging to a more manageable subset. Towards this
direction, fix a ∈ Bn. According to [24], we consider the orthogonal projection
Pa of Cn onto the subspace [a] generated by a:
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Pa(z) =
{

0, if a = 0
<z,a>
<a,a>

a, if a �= 0.

Let alsoQa = I −Pa be the projection onto the orthogonal complement of [a]:

Qa(z) = z− Pa
{
z, if a = 0
z− <z,a>

<a,a>
a, if a �= 0.

Put sa =
(
1− |a|2) 1

2 and define

φa(z) :=
a − Pa(z)− saQa(z)

1− < z, a > .

It is easily seen that if a ∈ Bn and b ∈ Bn, then φb ◦ φa is an automorphism of
Bn that takes a to b. Put

1. Ω = Bn ⊂ C
n,

2. E = D = {φa(z) := a−Pa(z)−saQa(z)
1−<z,a> , a ∈ Bn} and

3. K = {φ = φa(M) ◦ . . . ◦ φa(1) : M ∈ N and a(1), . . . , a(M) ∈
Bn with a(i) �= a(j) whenever i �= j}. (Remind that if c(i) �= c(j),
then φc(i)

(
φc(j) (z)

) = z, for any z ∈ Bn.)

It is clear that for each keymapping φ ∈ K, there exist a mapping Fφ ∈ E and
a mapping Gφ ∈ D such that Gφ(Fφ(z)) = z for every z ∈ Bn. In particular,
Gφ(Fφ(z)) = z for every plaintext element z ∈ P . Indeed, the finite composite
function Fφ = φa(M) ◦ . . . ◦ φa(2) ◦ φa(1) ∈ E is the biholomorphic encryption
chain, while the finite composite function Gφ = φ−1

a(1)
◦ φ−1

a(2)
◦ . . . ◦ φ−1

a(M)
∈ D

is the corresponding biholomorphic decryption finite chain.

2nd Case: The Unbounded Encryption Environment Let us now turn to the case
where the encryption environment consists of two domains that coincide with C

n.
We may consider the set Aut (Cn) of (holomorphic) automorphisms of Cn.

The automorphisms of the complex plan C are simply the affine maps z �→
az + b, a, b ∈ C, a �= 0. For n > 1, the group of automorphisms of n-dimensional
complex affine space C

n is very large and complicated.
Automorphisms of C

n, n > 1, have been studied starting with Rosay and
Rudin’s seminal paper [22]). In the early 1990s, Andersén and Lempert answered
a question by Rosay and Rudin and showed that the subgroup generated by shears
and overshears is a proper dense subgroup of Aut (Cn) [13]. A shear on C

n is an
element of Aut (Cn) that is obtained by choosing a j (1 ≤ j ≤ n) and adding a
holomorphic function of the other n− 1 variables to zj . For instance, any map
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F
(
z1, . . . , zn

) =
(
z1 + f

(
z2, . . . , zn

)
︸ ︷︷ ︸

w1

, z2︸︷︷︸
w2

, . . . , zn︸︷︷︸
wn

)

is a shear (in the direction of e1) (see p. 49 in [22]). An overshear on C
n is a mapping

F : Cn→ C
n of the form

F
(
z1, . . . , zn

) =
(
z1︸︷︷︸
w1

, . . . , zj−1︸︷︷︸
wj−1

, zj e
g(z1,...,zj−1,zj+1,...,zn) + h(z1, . . . , zj−1, zj+1, . . . , zn

)
︸ ︷︷ ︸

wj

, zj+1︸︷︷︸
wj+1

, . . . , zn︸︷︷︸
wn

)
,

where g and h are entire functions of C
n−1. For instance, an overshear on

C
2 is an automorphism of the form F

(
z1, z2

) =
(
eg(z2)z1 + h(z2, z2

)
or

F
(
z1, z2

) =
(
z1, e

g(z1)z2 + h(z1

)
where g and h are entire functions of one

variable. If g ≡ 0, the overshear becomes a shear.

A First Framework for Constructing Biholomorphic Cryptosystems into
Unbounded Encryption Environment

1. Let

(a) P be the fixed finite set of possible plaintexts;
(b) Σ be a (finite) source alphabet;
(c) σ be an arbitrary mapping σ : Σ→ C.

2. Consider a biholomorphic code on C.
3. Applying the biholomorphic codification, every plaintext χ in the set P is

represented as a point

ζ = ζ (χ) ∈ C
n.

4. Choose E = D = {F : composition of overshears of C
n}.

5. To define the keyspace K, do the following steps.

(a) Choose a finite subset N of the set N of natural numbers;
(b) For any N ∈ N

i. choose two sets GN and HN of entire functions;
ii. for m = 1, 2, . . . , N ,

A. choose jm ∈ {1, 2, . . . , n}, gm ∈ GN and hm ∈ HN ;
B. define the overshear
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F
(gm,hm)
jm

(
z1, . . . , zn

) =
(
z1︸︷︷︸
w1

, . . . , zjm−1︸ ︷︷ ︸
wjm−1

,

zjme
gm

(
z1,...,zjm−1,zjm+1,...,zn

)
+ hm

(
z1, . . . , zjm−1, zjm+1, . . . , zn

)
︸ ︷︷ ︸

wjm

,

zjm+1︸ ︷︷ ︸
wjm+1

, . . . , zn︸︷︷︸
wn

)
;

C. consider the composition F (gN ,hN )jN
◦ . . . ◦ F (g2,h2)

j2
◦ F (g1,h1)

j1
.

(c) Define

K := {
(
F
(gN ,hN )
jN

◦ . . . ◦ F (g2,h2)
j2

◦ F (g1,h1)
j1

;GN ;HN
)
:

g1, . . . , gN ∈ GN, h1, . . . , hN ∈ HN,N ∈ N }.
6. It is clear that for each keymapping

F = F (gN ,hN )jN
◦ . . . ◦ F (g2,h2)

j2
◦ F (g1,h1)

j1
,

we have F ∈ E and there exists a mapping G = FF ∈ D such that G(F(z)) = z
for every z ∈ C

n. In particular, G(F(ζ (χ))) = ζ (χ) for every plaintext χ ∈ P .
Indeed, any finite composition F = F (gN ,hN )jN

◦ . . . ◦ F (g2,h2)
j2

◦ F (g1,h1)
j1

∈ E is a

biholomorphic encryption chain, while the finite compositionG = F (g1,h1)
−1

j1
◦

. . . ◦ F (gN−1,hN−1)
−1

jN−1
◦ F (gN ,hN )−1

jN
∈ D is the corresponding biholomorphic

decryption finite chain.

Let us give a concrete example.

Example 6 By considering the extended ASCII code, each character of the word
Ichor corresponds to the sequence of seven numbers 73 99 104 111 114 . Using
the biholomorphic encoding rule with length 4 of Example 2, we see that

a). the integer 73 is coded to the complex number

ξI =
−4727614320+ i12482969202

22974429922
≈ −(0.2057772199811)+i(0.5433418476272);

b). the integer 99 is coded to the complex number

ξc =
−5950985040+ i12632433842

29184180482
≈ −(0.203911329416)+i(0.4328521011509);
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c). the integer 104 is coded to the complex number

ξh =
−6141757440+ i9366236880

29184180482
≈ −(0.203911329416)+ i(0.4328521011509);

d). the integer 111 is coded to the complex number

ξo =
−6387543729+ i12499079411

32238656741
≈ −(0.1981330605774)+i(0.3877047208082);

e). the integer 114 is coded to the complex number

ξr =
−6473850240+ i12437043872

32967367712
≈ −(0.1963714633378)+i(0.3772531668482).

We take

E = D =
{
F : compositionsof overshearsofC5

}
and N = 2.

Choose

GN = P(C) = the space of holomorphic polynomials in C,

HN = O(C) = the space of entire functions in C and

j1 = 3, j2 = 1.

To define the keymapping, we take

g1(z1, z2, z4, z5), g2(w2, w3, w4, w5) ∈ GN = P(C)and

h1(z1, z2, z4, z5), h2(w2, w3, w4, w5) ∈ HN = O(C)

such that

• g1(z1, z2, z4, z5) = 5
5∑

ν=0

(−2)ν
(5+ ν − 1)!
(5− ν)!(2ν)! (1− z1)

ν

︸ ︷︷ ︸
the Chebyshev Polynomial of degree 5 in z1

× 5z3
2 − 3z2

2︸ ︷︷ ︸
the Legendre Polynomial of degree 3 in z2

× z2
4 − 4z4 + 2

2︸ ︷︷ ︸
the Laguerre Polynomial of degree 2 in z4
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× 16z4
5 − 48z2

5 + 12
︸ ︷︷ ︸

the Hermite Polynomial of degree 4 in z5

• h1(z1, z2, z4, z5) = sin(z1z5)+ cos
(
z

1
4
2

)+ cosh
(
z

1
4
4

)

• g2(w2, w3, w4, w5) =
(

1+i w2
3

)3+
(

1−i w2
3

)3

2 w3

(
1− (w4−6)2

4

)4

(w5 − 18) and

• h2(w2, w3, w4, w5) = exp
(
e−w2

)
cos

(
w

1
8
3

)(∑20
ν=0(2)

−ν2
wν4

)(∑20
ν=2(ν ln ν)−νwν5

)
.

Notice that the Chebyshev polynomial g1(z1, z2, z4, z5) is also equal to

(
z1 −

(
z2

1 − 1
) 1

2
)5 +

(
z1 +

(
z2

1 − 1
) 1

2
)5

2
.

Let F (g1,h1)

3 and F (g2,h2)

1 be the overshears

F
(g1,h1)

3 (z1, z2, z3, z4, z5)

=
(
z1︸︷︷︸
w1

, z2︸︷︷︸
w2

, z3e
g1(z1,z2,z4,z5) + h1(z1, z2, z4, z5)︸ ︷︷ ︸

w3

, z4︸︷︷︸
w4

, z5︸︷︷︸
w5

)
,

F
(g2,h2)

1 (w1, w2, w3, w4, w5)

=
(
w1e

g2(w2,w3,w4,w5) + h2(w2, w3, z4, z5)︸ ︷︷ ︸
v1

, w2︸︷︷︸
v2

, w3︸︷︷︸
v3

, w4︸︷︷︸
v4

, w5︸︷︷︸
v5

)
.

According to this option, our biholomorphic encryption chain is given by the
composition

(
F
(g2,h2)

1 ◦ F (g1,h1)

3

)
(z1, z2, z3, z4, z5) = (v1, v2, v3, v4, v5)

with

• v1 = z1 exp
(
g2

(
z2, z3e

g1(z1,z2,z4,z5) + h1(z1, z2, z4, z5), z4, z5
))

+h2
(
z2, z3e

g1(z1,z2,z4,z5) + h1(z1, z2, z4, z5), z4, z5
)
,

• v2 = z2,
• v3 = z3e

g1(z1,z2,z4,z5) + h1(z1, z2, z4, z5),
• v4 = z4 and
• v5 = z5.

Especially,

• v1 = z1 exp

((
1+i w2

3

)3+
(

1−i w2
3

)3

2

×
(
z3 exp

{
1
8

[(
z1 −

(
z2

1 − 1
) 1

2
)5 +

(
z1 +

(
z2

1 − 1
) 1

2
)5

]
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(
5z3

2 − 3z2
) (
z2

4 − 4z4 + 2
) (

16z4
5 − 48z2

5 + 12)

}
+ sin(z1z5

)
+ cos

(
z

1
4
2

) +

cosh
(
z

1
4
4

)

(
1− (z4−6)2

4

)4

(w5 − 18)+ sin(z1z5)+cos
(
z

1
4
2

)+cosh
(
z

1
4
4

))

+ exp
(− z2

)(∑20
ν=0 2−ν2

zν4

)(∑20
ν=2 (νlnν)

−ν zν5
)

× cos

({
z3 exp

([
z1−

(
z2

1−1
) 1

2
]5

+
[
z1+

(
z2

1−1
) 1

2
]5

8

(
5z3

2 − 3z2
)(
z2

4 − 4z4 +

2
)(

16z4
5 − 48z2

5 + 12
))+ sin(z1z5)+ cos

(
z

1
4
2

)+ cosh
(
z

1
4
4

)} 1
8
)

,

• v3 = z3 exp

{
1
8

[(
z1 −

(
z2

1 − 1
) 1

2
)5 +

(
z1 +

(
z2

1 − 1
) 1

2
)5

]
× (

5z3
2 − 3z2

)(
z2

4 −

4z4 + 2
)(

16z4
5 − 48z2

5 + 12
)}+ sin(z1z5)+ cos

(
z

1
4
2

)+ cosh
(
z

1
4
4

)
.

In particular, we have

(
F
(g2,h2)

1 ◦ F (g1,h1)

3

)
(ξI, ξc, ξh, ξo, ξr) = (−0.116019521095477

−0.149956792269831i, ξc, 1.202171374296308e + 0.09i, ξo, ξr).

Remark 7 In this example, they are encrypted only two (:ξI and ξh) of the coded
values of 5 characters of the word Ichor. Of course, a complete form of encryption
should also include the encryption of the other three coded values (: ξc, ξo and ξr).
Such a process would require the composition of at least five over shears, to cover
all the characters of the word. However, for efficient practical description of the
proposed framework, it was preferred an indicative application showing the typical
target structure of the frame work.

The use of overshears seems that it significantly complicates the construction of
mathematical formulas. For this reason, it arises the substantial need of finding an
alternative method for easier identification of many automorphisms of Cn. To this
end, a good idea is to use polynomial automorphisms. One of the simplest forms of
such automorphisms is described by the lower triangular polynomial mappings (see
p.14 in [20]).

Definition 7 A mapping F = (
f1, . . . , fn

) : C
n → C

n is called a lower
triangular polynomial mapping if there are constants sj ∈ C and polynomial
mappings p2, p3, . . . , pn with pj = (0) = 0 such that

f1 (z) = s1z1 and fj (z) = sj zj + pj
(
z1, . . . , zj−1

)
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for every j = 2, . . . , n.

It is easy to demonstrate the following result.

Proposition 8 If 0 < |sj | < 1 for every j , then F is a polynomial automorphism
of Cn with an attracting fixed point at the origin.

Using Proposition 8, we can give the following general framework for the
construction of a finite biholomorphic cryptosystem into the encryption environment
in which both the two domains coincide with whole of Cn.

A Second Framework for Constructing Biholomorphic Cryptosystems into
Unbounded Encryption Environment

1. Let

(a) P be the fixed finite set of possible plaintexts;
(b) Σ be a (finite) source alphabet;
(c) σ be an arbitrary mapping σ : Σ→ C.

2. Consider a biholomorphic code on C.
3. Applying the biholomorphic codification, every plaintext χ in the set P is

represented as a point

ζ = ζ (χ) ∈ C
n.

4. Choose E = D = {F : composition of lower triangular polynomial
mappings of C

n}.
5. To define the keyspace K, do the following steps.

(a) For every j = 1, 2, . . . , n, choose a set Sj ⊂ {sj ∈ C : 0 < |sj | < 1}
(b) For any j = 23, , . . . , n, choose a set Pj (Cj−1) of polynomial functions pj

in C
j−1 with pj (0) = 0

(c) Define

f1 (z) = s1z1, with s1 ∈ S1

(d) For every j = 2, 3, , . . . , n, define

fj (z) = sj zj + pj
(
z1, z2, . . . , zj−1

)
, with sj ∈ Sj and pj ∈ Pj (C

j−1)

(e) Define

K := {
F (N) ◦ . . . ◦ F (1) : F (ν) = (

f
(ν)
1 , . . . , f (ν)n

) : Cn→ C
n : f (ν)1 (z) =

sν1z1 with s1 ∈ S1 and f (ν)j (z) = sνj zj + pνj ∈ Pj (C
j−1)

}
.
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6. It is clear that for each keymapping F (N) ◦ . . . ◦ F (1), there is a F ∈ E and a
G ∈ D such that F = F (N) ◦ . . . ◦ F (1) and G(F(z)) = z for every z ∈ C

n. In
particular, G(F(ζ (χ))) = ζ (χ) for every plaintext χ ∈ P . Indeed, any mapping
F = F (N)◦. . .◦F (1) ∈ E is a biholomorphic encryption chain, while its inverse
G = (

f−1
1 , . . . , f−1

n

) ∈ D is the corresponding biholomorphic decryption
chain.

Let us give a simple example.

Example 7 By considering the extended ASCII code, each character of the word
Information corresponds to the sequence of seven numbers 73 110 102 111
114 109 97 116 105 111 110. Using the biholomorphic encoding rule with
length 4 of Example 2, we see that

a). the integer 73 is coded to the complex number

ξI =
−4727614320+ i12482969202

22974429922
≈ −(0.2057772199811)+i(0.5433418476272);

b). the integer 110 is coded to the complex number

ξn =
−6349200000+ i12509700000

31946260000
≈ −(0.1987462695164)+i(0.3915857443093);

c). the integer 102 is coded to the complex number

ξf =
−6067351680+ i12610116512

29930434592
≈ −(0.2027151213375)+i(0.4213141801613);

d). the integer 111 is coded to the complex number

ξo =
−6387543729+ i12499079411

32238656741
≈ −(0.1981330605774)+i(0.3877047208082);

e). the integer 114 is coded to the complex number

ξr =
−6473850240+ i12437043872

32967367712
≈ −(0.1963714633378)+i(0.3772531668482);

f). the integer 109 is coded to the complex number

ξm =
−6316305840+ i12525519762

31692315202
≈ −(0.1993008652016)+ i(0.395226172864);
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g). the integer 97 is coded to the complex number

ξa =
−5870308080+ i12642693042

28689775522
≈ −(0.2046132454225)+i(0.4406689425752);

h). the integer 116 is coded to the complex number

ξt =
−6531932160+ i12395077632

33481019392
≈ −(0.1950935867132)+i(0.3702120740972);

i). the integer 105 is coded to the complex number

ξi =
−6347250000+ i13104281250

31376171250
≈ −(0.2022952370264)+i(0.4176507434762);

j). the integer 111 is coded to the complex number

ξo =
−6387543729+ i12499079411

32238656741
≈ −(0.1981330605774)+i(0.3877047208082);

k). the integer 110 is coded to the complex number

ξn =
−6349200000+ i12509700000

31946260000
≈ −(0.1987462695164)+i(0.3915857443093).

We take

E = D =
{
F : composition of lower triangular polynomial mappings of C

11
}

and we define the components
(
f1, . . . , f11

)
of the biholomorphic encryption chain

F as follows:

• f1(z) = 0.577350269189626z1,
• f2(z) = 0.774596669241483z2 + 12155z9

1 − 25740z7
1 + 18018z5

1 − 4620z3
1 +

315z1,
• f3(z) = 0.861136311594053z3 + 13z3

1 − 9z2
1z2 + z2

2 + 2z3
2,

• f4(z) = 0.906179845938664z4+z2
1z

2
2+z2

1z
2
3+z2

2z
2
3+z2

1z2z3+z1z
2
2z3+z1z2z

2
3,

• f5(z) = 0.932469514203152z5 + 6z5
1z3 + z2

1z2 − 2z1z
2
2z

2
4 + 2z3

2 − z4
3,

• f6(z) = 0.949107912342759z6 + 12z2
1z

6
3z

3
4z

8
5 + 10z3

1z
3
2z

3
3z

3
4z

2
5 + z5

1z
2
2z

4
3z

6
4 +

z7
1z

2
2z

2
3z

2
4z

3
5 − 6z6

1z
2
2z

3
3z

6
4z

6
5,

• f7(z) = 0.960289856497536z7 + 8z3
2z

2
3z

6
5z

5
6 + 27z4

1z
9
2z

2
4 − 18z5

1z2z
9
3z

2
4z

6
6 + z7

6,
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• f8(z) = 0.968160239507626z8+ 6z6
1z2z

9
3z

6
4z5z

12
6 z

10
7 − 999z1z

3
5z

7
7+ 16z2

2z
4
4z

6
6−

z11
1 z

3
2z

5
3z

19
4 z

7
5z

13
6 z

17
7 ,

• f9(z) = 0.973906528517172z9+z10
1 z

5
2z

6
3z

8
6z

20
7 z8−z1z

22
2 z3z

31
4 z

12
6 z8+z25

1 z
18
3 z4+

z30
4 z

21
5 z

16
6 z

2
8 − z1z2z

3
4z5z

4
7z8 − z14

2 z
19
6 ,

• f10(z) = 0.978228658146057z10 + z23
2 z

24
9 + z26

4 z
28
6 z

29
7 + z10

1 z
6
3z

8
5 − z7

4z
9
7z

5
8z

4
9 +

z3
1z

15
3 z

2
6z

16
8 z

18
9 and

• f11(z) = 0.981560634246719z11 − 90090z6
1z

9
5z

5
8z

4
10 + 128z3

1z
10
4 z

12
7 z

14
9 z

18
10.

Here, we have taken sj to be the greater zero of the Legendre polynomial of degree
j + 1 (see, for instance, [15]):

• s1 = 0.577350269189626,
• s2 = 0.774596669241483,
• s3 = 0.861136311594053,
• s4 = 0.906179845938664,
• s5 = 0.932469514203152,
• s6 = 0.949107912342759,
• s7 = 0.960289856497536,
• s8 = 0.968160239507626,
• s9 = 0.973906528517172,
• s10 = 0.978228658146057 and
• s11 = 0.981560634246719.

Further, we got

• p2(z1) = 12155z9
1 − 25740z7

1 + 18018z5
1 − 4620z3

1 + 315z1,
• p3(z1, z2) = 13z3

1 − 9z2
1z2 + z2

2 + 2z3
2,

• p4(z1, z2, z3) = z2
1z

2
2 + z2

1z
2
3 + z2

2z
2
3 + z2

1z2z3 + z1z
2
2z3 + z1z2z

2
3 (:the Schur

polynomial) S(2,2,0)(z1, z2, z3)),
• p5(z1, z2, z3, z4) = 6z5

1z3 + z2
1z2 − 2z1z

2
2z

2
4 + 2z3

2 − z4
3,

• p6(z1, z2, z3, z4, z5) = 12z2
1z

6
3z

3
4z

8
5 + 10z3

1z
3
2z

3
3z

3
4z

2
5 + z5

1z
2
2z

4
3z

6
4 + z7

1z
2
2z

2
3z

2
4z

3
5 −

6z6
1z

2
2z

3
3z

6
4z

6
5,

• p7(z1, z2, z3, z4, z5, z6) = 8z3
2z

2
3z

6
5z

5
6 + 27z4

1z
9
2z

2
4 − 18z5

1z2z
9
3z

2
4z

6
6 + z7

6,
• p8(z1, z2, z3, z4, z5, z6, z7) = 6z6

1z2z
9
3z

6
4z5z

12
6 z

10
7 − 999z1z

3
5z

7
7 + 16z2

2z
4
4z

6
6 −

z11
1 z

3
2z

5
3z

19
4 z

7
5z

13
6 z

17
7 ,

• p9(z1, z2, z3, z4, z5, z6, z7, z8) = z10
1 z

5
2z

6
3z

8
6z

20
7 z8−z1z

22
2 z3z

31
4 z

12
6 z8+z25

1 z
18
3 z4+

z30
4 z

21
5 z

16
6 z

2
8 − z1z2z

3
4z5z

4
7z8 − z14

2 z
19
6 ,

• p10(z1, z2, z3, z4, z5, z6, z7, z8, z9) = z23
2 z

24
9 +z26

4 z
28
6 z

29
7 +z10

1 z
6
3z

8
5−z7

4z
9
7z

5
8z

4
9+

z3
1z

15
3 z

2
6z

16
8 z

18
9 and

• p11(z1, z2, z3, z4, z5, z6, z7, z8, z9, z10) = −90090z6
1z

9
5z

5
8z

4
10+128z3

1z
10
4 z

12
7 z

14
9 z

18
10.



96 N. J. Daras

Making substitutions and performing calculations, we obtain

F
(
ξI, ξn, ξn, ξf, ξo, ξr, ξm, ξa, ξt, ξi, ξo, ξn,

)

=
(
f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11

)

(
ξI, ξn, ξn, ξf, ξo, ξr, ξm, ξa, ξt, ξi, ξo, ξn,

)

= (− 0.118805533349187+ 0.313698561989525i,
−2.343204437536524e + 003− 2.526159691928734e + 002i,
0.894305471781336− 0.516891292632848i,
−0.223358439219717+ 0.706281472441953i,
0.105276770297329+ 0.188338893707562i,
−0.189399688549816+ 0.375136254919529i,
−0.196366106091943+ 0.422849701303160i,
0.094640729838655+ 0.395579708885873i,
−0.196813809147348+ 0.406802504494881i,
−0.193819477038854+ 0.379263835097444i,
−0.194944665196051+ 0.385079778780525i

)
.

6 Dynamics of Biholomorphic Cryptosystems

The idea of considering biholomorphic cryptosystems is not new. As a concept, the
biholomorphic cryptosystem is nested in the meaning of the chain of a sequence of
biholomorphic mappings. Already, in 2005, Han Peters in his doctoral thesis exam-
ined the dynamic behaviour of the composition of a sequence of automorphisms, in
the special case in which each mapping which participates in the composition has
a single attracting fixed point. In this section, we discuss the generalization of the
results of Han Peters.

Peters having as a springboard earlier work of Rudin and Rosay raised the
following question. Let f0, f1, . . . be a sequence of automorphisms of a complex
manifold all having a single attracting fixed point. Under what conditions is the
basin of attraction biholomorphically equivalent to a complex Euclidean space?
Here, by a basin of attraction, it is meant the set of p points whose (non-
autonomous) orbits converge to fixed point. This question was motivated by a
question about stable manifolds. A stable manifold is a generalization of a basin of
attraction to the case where there is not a fixed point. Peters proved a more general
proposition.

Theorem 6 A stable manifold is always biholomorphic to complex Euclidean space
if the following conjecture holds:Let f0, f1, . . . be a sequence of automorphisms of
C
n that fix the origin. Assume that there exist a, b ∈ R with 0 < a < b < 1 so that

for any z in the unit ball and any k ∈ N the following holds:
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(C) a|z| < |fk(z)| < b|z|.

Then the basin of attraction of the sequence f0, f1, . . . is biholomorphic to C
n.

Several examples show that a basin of attraction of a sequence of biholomorphic
mappings is not biholomorphic to C

n unless some assumptions are made on the
rate at which different orbits converge to the attracting fixed point. However, it is
showed that given any sequence of automorphisms with a common attracting fixed
point, the basin of attraction is biholomorphic to C

n if the mappings are repeated
often enough.

In what follow we will discuss the extension of the results of Peters in the case
of biholomorphic cryptosystems. To this end, without loss of generality and by
expanding the interpretation of Definition 2, we can extend the concept of a (finite)
holomorphic cryptosystem in the case of an infinite encryption chain.

Definition 8 Let Ω be a domain in the C
n.

An infinite biholomorphic cryptosystem is a four-tuple (P,K, E,D), where
the following conditions are satisfied.

1. P is a fixed finite set of possible plaintexts embedded into Ω.
2. E is the set of infinite biholomorphic encryption rules on Ω with indeterminate

range, that is a subset of the set of compositions F = . . . ◦ fM ◦ . . . ◦ f1 ◦ f0 of
an infinite number of biholomorphic mappings fα : Uα → C

n (Uα=open subset
of Cn and fα (Uα) ∩ U(α+1) �= ∅), such that U0 = Ω. Given an F ∈ E and a
M ∈ N, the finite sequence F (M) = fM ◦ . . . ◦ f1 ◦ f0 defines a biholomorphic
encryption rule on Ω of lengthM subordinate to the chain F .

3. D is the set of infinite biholomorphic decryption chains with range in Ω,
that is a subset of compositions G = . . . ◦ gN ◦ . . . ◦ g1 ◦ g0 of an infinite
number of biholomorphic mappings gβ : Vβ → C

n (Vβ=open subset of Cn and
gβ

(
Vβ

) ∩ V(β+1) �= ∅),with the following property:

For every biholomorphic encryption rule F (M) subordinate to an F ∈ E, there
is a G ∈ D and a section G(N) = gN ◦ . . . ◦ g1 ◦ g0 of G such that

(
G(N) ◦ F (M)

)
(z) = z whenever z ∈ Ω.

The sectionG(N) is said to be a biholomorphic decryption rule on Ω of length
N subordinate to the chain G.

4. K is a subset (not necessarily finite) of the set u = uN ◦. . .◦u1: uα is holomorphic
mapping of Uα , U0 = Ω, uα (Uα) ⊂ Uα+1 ⊂ C

n, N ∈ N. The elements of K
are the keymappings, while K is the keyspace.

5. For each u ∈ K, there exist a biholomorphic encryption rule F (M),u of length
M subordinate to some encryption chain F ∈ E and a biholomorphic decryption
rule G(N),u of length N subordinate to some decryption chain G ∈ D such that

G(M),u
(
F (M),u(z)

) = z for every plaintext element z ∈ P .
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Definition 9 Let F = . . .◦fM ◦. . .◦f1◦f0 be an infinite biholomorphic encryption
chain on an open domain Ω ⊂ C

n. If z ∈ Ω, the orbit of the point z is the sequence
of points

©+(z) := {
z, F1(z), F2(z), . . . , FM(z), . . .

}
,

where we have used the notation F (M) := fM ◦ . . . ◦ f1 ◦ f0.

Recall that if | · | is any norm in C
n, the numbers

||A|| := supz∈Cn\0 |A · z||z|

define a norm in the set of n × n matrices A = (
a(i,j)

) ∈ C. If, for instance,

|z| = ∑n
j=1 |zj |, then ||A|| = max1≤j≤n

∑n
i=1 |ai,j |; if |z| = (|zj |2

) 1
2 , then

||A|| = �
(
AT · A) 1

2 , where � (·) is a notation for the spectral radius; and, if
|z| = max1≤j≤n|zj |, then ||A|| = max1≤i≤n

∑n
j=1 |ai,j |.

Definition 10 Let F = . . .◦fM◦. . .◦f1◦f0 be an infinite biholomorphic encryption
chain on an open domain Ω ⊂ C and let z0 ∈ Ω. Let || · || be any norm in the set of
n× n matrices. Suppose the set

Υz0 :=
{[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
: M = 0, 1, 2, . . .

}

is uniformly bounded.

i. We say that z0 is attracting, if there is a positive constant λ < 1 such that the
modulus of all eigenvalues of

[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
is strictly smaller than

λ, wheneverM = 1, 2, . . .; the orbit©+(z0) of z0 is called an attracting cycle.
ii. We say that z0 is repelling, if there is a positive constant μ > 1 such that the

modulus of all eigenvalues of
[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
is strictly larger than μ,

wheneverM = 1, 2, . . . ; the orbit©+(z0) of z0 is called a repelling cycle.

Proposition 9 Under the assumptions of Definition 10, the point z0 ∈ Ω is
attracting if and only if there exists a neighbourhood Nz0 of z0 such that the orbit
of any z ∈ Nz0 converges to z0. The set of all points z ∈ Ω whose orbits converge
to z0 is called the basin of attraction of F at z0 in Ω:

Bz0(F ) :=
{
z ∈ Ω : F (M)(z) M→∞→ z0

}
.

Proof Choosing local coordinates, we can assume that z0 = 0. Since the set Υ0 :=
Υz0 is bounded, any left-infinite product

� := . . . [fMk
]′ |(fMk−1◦...◦f0

)
(0) . . .

[
fM2

]′ |(fM2−1◦...◦f0
)
(0)

[
fM1

]′ |(fM1−1◦...◦f0
)
(0)
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converges to zero if and only if the joint spectral radius �̂
(
Υ0

)
of the set Υ0 is

less than one: �̂
(
Υ0

)
< 1 (see [11]). Recall that, by definition, the joint spectral

radius of the bounded set Υ0 is defined by �̂
(
Υ0

) := limt→∞�̂t
(
Υ0, || · ||

)
, where

�̂t
(
Υ0, || · ||

) := sup{||A|| 1t : A ∈ Υt0
}

(see [23]). This definition is independent of
the norm used by the equivalence of the norms in C

n, so Daubechies and Lagarias

showed that �̂
(
Υ0

) = limsupt→∞
{
�̂(A)

1
t : A ∈ Υt0

}
. An application of Gelfand’s

formula gives �̂(A)
1
t = �̂(A1A2 . . . At )

1
t ≤ �̂(A1)

1
t �̂(A2)

1
t . . . �̂(At )

1
t , whenever

A = A1A2 . . . At ∈ Υt0. Since z0 is attracting, �̂(A1)
1
t �̂(A2)

1
t . . . �̂(At )

1
t ≤

λ
1
t λ

1
t . . . λ

1
t = λ < 1, whenever A ∈ Υt0. Hence �̂

(
Υ0

)
< 1. This implies that

any left-infinite product � converges to zero. In particular, the infinite product

�M := . . . [fM
]′ |(fM−1◦...◦f0)(0) . . .

[
f2

]′ |(f1◦f0)(0)
[
f1

]′ |(f0)(0)
[
f0

]′ |0

converges to zero. Since, by the chain rule �M = [
fM

]′
(0), we obtain

limM→∞
[
fM

]′
(0) = 0.

By Taylor’s theorem, there is an open ball (in the Euclidean metric) B ⊂ Ω around
0 and 0 < c < 1 such that |F (M)(z)| < c|z| for all z ∈ B wheneverM = 1, 2, . . . It
then follows that, for the neighbourhood N0 = B of 0 ∈ Ω, we have

limM→∞F (M) = 0, uniformly on B.

This means that z ∈ B0(F ) and the proof is complete.

Let us give an interpretation of the significance of this proposition in the frame-
work of biholomorphic cryptosystems. According to the result of Proposition 5, if
some encryption data are within the basin of attraction of a attracting point of the
biholomorphic cryptosystem, then, over time, all these encryption data will tend to
coincide on this point.

It is interesting for our purposes to consider the particular case of biholomorphic
cryptosystems. In such a case, all the rules encryption with finite length M can be
reversed and therefore be decrypted. It is therefore important to know the conditions
under which all mappings fM can be inverted in a neighbourhood of a point z0 ∈ Ω

and there exists the inverse of the entire cryptosystem F = . . . ◦ fM ◦ . . . ◦ f1 ◦ f0
around z0. To examine whether a mapping fM can be inverted in a neighbourhood
of z0, we recall that, according to the inverse function theorem, the matrix inverse
of the Jacobian matrix of an invertible function is the Jacobian matrix of the
inverse function. That is, if the Jacobian

[
fM

]′
is continuous and non-singular

at z0, then fM is invertible when restricted to some neighbourhood of z0 and([
fM

]−1)′ |(fM◦fM−1◦...◦f1◦f0)(z0)
= ([

fM
]′ |(fM◦fM−1◦...◦f1◦f0)(z0)

)−1. Conversely,

if the Jacobian determinant det
[
fM

]′
is not zero at z0, then the function is locally

invertible near this point, i.e., there is neighbourhood of this point, in which the
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function is invertible. Following the above discussion, it is clear that we should
consider sufficient conditions for inversion throughout the length of all of the chain.

Definition 11 Let F = . . .◦fM◦. . .◦f1◦f0 be an infinite biholomorphic encryption
chain on an open domain Ω ⊂ C and let z0 ∈ Ω. For any s ≥ 1, we define

Fs :=
s∏

M=1

[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
.

We say that the infinite product F :=∏∞
M=1 Fs converges invertibly if

• the matrix
[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
is invertible for anyM and

• the matrix lims→∞
∏∞
M=1

[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
exists and is invertible.

The following result is easily verified.

Proposition 10 The product F converges invertibly, if and only if

1. limM→∞
[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
= I [26]

2.
∑∞
M=1 ||

[
fM

]′ |(fM−1◦...◦f1◦f0)(z0)
−I || <∞, where || · || is any p−norm in the

set of n× n matrices (see [27]).

Notation 2 As in Section 2, we use the symbol F (M)n to denote the segment of the
infinite biholomorphic encryption chain F = . . .◦fM ◦ . . .◦f1 ◦f0 that involves the
composition of all mappings which are at the part of F that starts from the function
in the (n+ 1)−th place of F and ends with the function in the (M + 1)−th place of
F . It is clear that

F (M)n = fM ◦ . . . ◦ fn+1 ◦ fn.

If n > 0 andM = ∞, then we set

F (∞)n = . . . ◦ fM ◦ . . . . ◦ f(n+1) ◦ fn

and we say that F (∞)n is a truncated infinite encryption chain. If the segment starts
from the beginning of the codification chain (:n = 0) and ends with the function in
the (M + 1)−th place, then we adopt often the simpler notation

F (M) = fM ◦ . . . ◦ f1 ◦ f0.

We point out that with the notation of Definition 8, we have F (0)(Ω) = U0 = Ω,
F (1)(Ω) ⊂ U1, . . . and in general F (M)(Ω) ⊂ UM , for any k = 0, 1, 2, . . .

Definition 12 Let F = . . .◦fM◦. . .◦f1◦f0 be an infinite biholomorphic encryption
chain on an open domain Ω ⊂ C.
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• A point z0 ∈ F (M)(Ω) is periodic in the chain F , if the value of z0 occurs more
than once in its orbit©+(z0).

• A periodic point p is said to be of restricted periodicity, if the number of times
of its occurrence in the chain is finite; it is said to be of extensive periodicity, if
the number of times of its occurrence is infinite.

Based on this Definition, it is straightforward to show the following two results.

Proposition 11 A point z0 ∈ F (M)(Ω) is periodic in the encryption chain F , if
there is a n ∈ N such that z0 is a fixed point of F (M+n)M , that is, z0 is a solution of

the equation F (M+n)M (z) = z⇐⇒ (
fM+n ◦ . . . ◦ fM+1 ◦ fM

)
(z) = z.

Proposition 12 Let M ∈ N. The infinite biholomorphic encryption chain F has
a restricted (respectively, an extensive) periodicity at the point z0 ∈ F (M)(Ω), if
there is a finite (respectively, an infinite) sequence

(
nj

) ⊂ M,M + 1, . . . so that

n1 = M and the value F (∞)M (z0) of the truncated infinite encryption chain F (∞)M =(
. . . ◦ fM+n ◦ . . . . ◦ f(M+1) ◦ fM

)
at the point z0 can be expressed as infinite

succession of finite segmentation sub-chains F
(nj+1−1)
nj (z0) =

(
fnj+1−1◦. . .◦fnj+1◦

fnj
)
(z0) satisfying F

(nj+1−1)
nj (z0) = F (nj+2−1)

nj+1 (z0). The sequence
(
nj

)
is called the

sequence of periods of the point z0 in the encryption chain F , while the sequence

F
(nj+1−1)
nj (z0)

)
is called the segmentation sequence of F .

Remark 8 With these notations, it is clear that ifM > 0, then we say that the infinite
biholomorphic encryption chain F has a period with late start in position M and
F can be represented as follows:

F = . . . ◦ (fnj+1−1 ◦ . . . ◦ fnj+1 ◦ fnj
)

︸ ︷︷ ︸
F
nj+1−1
nj

◦ . . . ◦

(
fn3−1 ◦ . . . ◦ fn2+1 ◦ fn2

)
︸ ︷︷ ︸

F
n3−1
n2

◦ (fn2−1 ◦ . . . ◦ fn1+1 ◦ fn1

)
︸ ︷︷ ︸

F
n2−1
n1

◦(fM ◦ . . . ◦ f0
)
.

IfM = 1, the encryption chain F takes the simpler form

F = . . . ◦ (fnj+1−1 ◦ . . . ◦ fnj+1 ◦ fnj
)

︸ ︷︷ ︸
F
nj+1−1
nj

◦ . . . ◦

(
fn3−1 ◦ . . . ◦ fn2+1 ◦ fn2

)
︸ ︷︷ ︸

F
n3−1
n2

◦ (fn2−1 ◦ . . . ◦ f1 ◦ f0
)

︸ ︷︷ ︸
F
n2−1
n1

.

Definition 13 Let z0 ∈ F (M)(Ω) be a periodic point with late start in position M .
Suppose

(
nj

)
is the sequence of periods in the infinite biholomorphic encryption

chain F , such that the set
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Υz0 :=
([
F
(nj+1−1)
nj

]′
(z0)

)
j

is bounded.

i. We say that z0 is attracting, if there is a positive constant λ < 1 such that

the modulus of all eigenvalues of
[
F
(nj+1−1)
nj

]′
(z0) is strictly smaller than λ,

whenever j = 1, 2, . . .; the orbit©+(z0) of z0 is called an attracting cycle.
ii. We say that z0 is repelling, if there is a positive constant μ > 1 such that the

modulus of all eigenvalues of
[
F
(nj+1−1)
nj

]′
(z0) is strictly larger than μ, whenever

j = 1, 2, . . . ; the orbit©+(z0) of z0 is called a repelling cycle.

Proposition 13 Under the assumptions of the above Definition, the point z0 ∈
F (M)(Ω) is attracting if and only if there exists a neighbourhood Nz0 of z0 such that
the orbit of any z ∈ mathcalNz0 converges to z0. The set of all points z ∈ F (M)(Ω)
whose orbits converge to p is called the basin of attraction of F at z0 in FM(W) :

Bz0(F
M) := {

z ∈ F (M)(Ω) : F (nj+1−1)
ni (z)

j→∞→ z0
}
.

Proof Choosing local coordinates, we can assume that p = 0. Since the set Υ0 :=
Υz0 is bounded, any left-infinite product

[
F
(nik−1)
nik

]′
(0)

[
F
(nik−1−1)

nik−1

]′
(0) . . .

[
F
(ni2−1)
ni2

]′
(0)

[
F
(ni1−1)
ni1

]′
(0)

converges to zero if and only if the joint spectral radius �̂(Υ)0 < 1 (see
[11]). Recall that, by definition, the joint spectral radius of the bounded set
Υ0 is defined by �̂

(
Υ0

) := limt→∞�̂t
(
Υ0, || · ||

)
, where �̂t

(
Υ0, || · ||

) :=
sup

{||A|| 1t : A ∈ Υt0
}

(see [23]). This definition is independent of the norm
used by the equivalence of the norms in C

n, so Daubechies and Lagarias showed

that �̂
(
Υ0

) = limsupt→∞
{
�̂(A)

1
t : A ∈ Υt0

}
. An application of Gelfand’s

formula gives �̂(A)
1
t = �̂(A1A2 . . . At )

1
t ≤ �̂(A1)

1
t �̂(A2)

1
t . . . �̂(At )

1
t , whenever

A = A1A2 . . . At ∈ Υt0. Since z0 is attracting, �̂(A1)
1
t �̂(A2)

1
t . . . �̂(At )

1
t ≤

λ
1
t λ

1
t . . . λ

1
t = λ < 1, whenever A ∈ Υt0. Hence �̂

(
Υ0

)
< 1. This implies that

any left-infinite product � converges to zero. In particular, the infinite product

�M := . . . [F (nik−1)
nik

]′
(0)

[
F
(nik−1−1)

nik−1

]′
(0) . . .

[
F
(ni2−1)
ni2

]′
(0)

[
F
(ni1−1)
n1

]′
(0)

converges to zero. In particular, the infinite product

�M := . . . [F (nik−1)
nik

]′
(0)

[
F
(nik−1−1)

nik−1

]′
(0) . . .

[
F
(ni2−1)
ni2

]′
(0)

[
F
(ni1−1)
n1

]′
(0)

converges to zero. From the periodicity of 0, it follows that also the product
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[
F
(nj+1−1)
nj

]′
((
F
(nj−1)
nj−1 ◦ . . . ◦ F (n3−1)

n2
◦ F (n2−1)

n1

)
(0)

)

. . .
[
F (n3−1)
n2

]′(
F (n2−1)
n1

(0)
)
big[F (n2−1)

n1

]′
(0)

converges to zero. By the chain rule, this product equals big[F (nj+1−1)
n1

]′
(0). Hence

limj→∞big[F (nj+1−1)
n1

]′
(0) = 0.

By Taylor’s theorem, there is some ball (in the Euclidean metric) B ⊂ FM(W)

around 0 and 0 < c < 1 such that |Fnj+1−1
n1 (z)| < c|z| for all z ∈ B whenever

j = 1, 2, . . . It then follows that, for the neighbourhood N0 = B of 0 ∈ FM(W),
we have

limj→∞F
(nj+1−1)
n1 (z) = 0 uniformly on B.

This means that z ∈ Bz0(F
(M)) and the proof is complete.

Let us give an interpretation of the significance of this proposition in the frame-
work of biholomorphic cryptosystems. According to the result of Proposition 5, if
at some step of the segmentation sequence some encryption data are within the
basin of attraction of a periodic attracting point of this step, then, over time, all
these encryption data will tend to coincide on this point.

It is interesting for our purposes to consider the particular case of biholomorphic
cryptosystems. In such a case, all the rules encryption with finite length M can
be reversed and therefore be decrypted. It is therefore important to know the

conditions under which all mappings F
(nj+1−1)
nj can be inverted in a neighbourhood

of a periodic point z0 and there exists the inverse of the entire segmented chain

F = . . . ◦ F (nj+1−1)
nj ◦ . . . ◦ F (n3−1)

n2 ◦ F (n2−1)
n1 around z0. To examine whether

a mapping F
(nj+1−1)
nj can be inverted in a neighbourhood of z0, we recall that,

according to the inverse function theorem, the matrix inverse of the Jacobian matrix
of an invertible function is the Jacobian matrix of the inverse function. That is, if

the Jacobian
[
F
(nj+1−1)
nj

]′
of the mapping F

(nj+1−1)
nj is continuous and non-singular

at z0, then F
(nj+1−1)
nj is invertible when restricted to some neighbourhood of z0.

Conversely, if the Jacobian determinant det
[
F
(nj+1−1)
nj

]′ is not zero at z0, then the
function is locally invertible near this point, i.e., there is neighbourhood of this point,
in which the function is invertible. Following the above discussion, it is clear that
we should consider sufficient conditions for inversion throughout the length of the
chain.
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Third-Order Fermionic and
Fourth-Order Bosonic Operators

Chao Ding, Raymond Walter, and John Ryan

Abstract This paper continues the work of our previous paper (Ding et al., Higher
Order Fermionic and Bosonic Operators, Springer Series), where we generalize
kth-powers of the Euclidean Dirac operator Dx to higher spin spaces in the case
the target space is a degree one homogeneous polynomial space. To generalize the
results in (Ding et al., Higher Order Fermionic and Bosonic Operators, Springer
Series) to more general cases, i.e., the target space is a degree k homogeneous
polynomial space, we reconsider the generalizations of D3

x and D4
x to higher spin

spaces in the case the target space is a degree k homogeneous polynomial space
in this paper. Constructions of 3rd- and 4th-order conformally invariant operators
in higher spin spaces are given; these are the 3rd-order fermionic and 4th-order
bosonic operators. They are consistent with the 3rd- and 4th-order conformally
invariant differential operators obtained in our paper (Ding et al., J. Geometric
Anal. 27(3), 2418–2452 (2017)) with a different technique. Further, we point out
that the generalized symmetry technique used in (De Bie et al., Potential Analysis
47(2), 123–149 (2017); Eelbode and Roels, Compl. Anal. Oper. Theory, 1–27
(2014)) is not applicable for higher order cases because the computations are

R.W. acknowledges this material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-0957325 and the University of
Arkansas Graduate School Distinguished Doctoral Fellowship in Mathematics and Physics.

C. Ding (�)
Department of Mathematics, University of Arkansas, Fayetteville, AR, USA

Institute of Mathematics/Physics, Bauhaus-Universität Weimar, Weimar, Germany
e-mail: chaoding1985@gmail.com

R. Walter
Department of Mathematics, University of Arkansas, Fayetteville, AR, USA

Department of Physics, University of Arkansas, Fayetteville, AR, USA
e-mail: rwalter@email.uark.edu

J. Ryan
Department of Mathematics, University of Arkansas, Fayetteville, AR, USA
e-mail: jryan@uark.edu

© Springer Nature Switzerland AG 2020
D. Breaz, M. Th. Rassias (eds.), Advancements in Complex Analysis,
https://doi.org/10.1007/978-3-030-40120-7_4

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40120-7_4&domain=pdf
mailto:chaoding1985@gmail.com
mailto:rwalter@email.uark.edu
mailto:jryan@uark.edu
https://doi.org/10.1007/978-3-030-40120-7_4


106 C. Ding et al.

infeasible. Fundamental solutions and intertwining operators of both operators are
also presented here. These results can be easily generalized to cylinders and Hopf
manifolds as in Ding et al. (J. Indian Math. Soc. 83(3-4), 231–240 (2016)). To
conclude this paper, we investigate ellipticity property for our 3rd- and 4th-order
conformally invariant operators.

1 Introduction

The higher spin theory in Clifford analysis began with the Rarita–Schwinger opera-
tor [5], which is named analogously to the Dirac operator and reproduces the wave
equations for a massless particle of arbitrary half-integer spin in four dimensions
with appropriate signature [25]. The former operator takes its name from the 1941
work of Rarita and Schwinger [24] that simply formulated the theory of particles
of arbitrary half-integer spin k + 1

2 and in particular considered its implications for
particles of spin 3

2 . The higher spin theory considers generalizations of classical
Clifford analysis techniques to higher spin spaces [4–6, 12, 15, 20], focusing
on operators acting on functions on R

m that take values in arbitrary irreducible
representations of Spin(m). Generally these are polynomial representations, such as
k-homogeneous monogenic (harmonic) polynomials corresponding to particles of
half-integer spin (integer spin). The highest weight vector of the spin representation
as a whole may even be taken as a parameter [7], but we consider a narrower scope.

Slovák [27] provided a non-constructive classification of all conformally invari-
ant differential operators on locally conformally flat manifolds in higher spin
theory, but this shows only between which vector bundles these operators exist and
what is their order; explicit expressions of these operators are still being found.
Eelbode and Roels [15] noted the Laplace operator �x is no longer conformally
invariant when acting on C∞(Rm,H1), where H1 is the degree one homogeneous
harmonic polynomial space (correspondingly M1 for monogenic polynomials).
They construct a second-order conformally invariant operator on C∞(Rm,H1), the
(generalized) Maxwell operator, reproducing the Maxwell equation for appropriate
dimension and signature [15]. De Bie and his co-authors [6] generalize this Maxwell
operator from C∞(Rm,H1) to C∞(Rm,Hk) to provide the higher spin Laplace
operators, which are the second-order conformally invariant operators generalizing
the Laplace operator to arbitrary integer spins. Our earlier work [10] generalizes
Dkx in higher spin spaces in the case the target space is a degree one homogeneous
polynomial space, encompassing the spin-1 and spin- 3

2 cases, which simplifies the
constructions of our conformally invariant differential operators, since all higher
order derivative terms (≥2) with respect to target spaces disappear. In this paper, we
consider 3rd-order fermionic and 4th-order bosonic operators corresponding to the
appropriate degree-k homogeneous polynomial space (Mk or Hk).

The paper is organized as follows: We briefly introduce Clifford algebras,
Clifford analysis, and representation theory of the Spin group in Section 2. In
Section 3, we introduce the 3rd-order higher spin operators D3 as the generalization
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of D3
x when acting on C∞(Rm,Mk) and 4th-order higher spin operators D4 as

the generalization of D4
x when acting on C∞(Rm,Hk). Nomenclature for general

higher order higher spin operators is given: bosonic and fermionic operators. The
construction and conformal invariance of both operators are given with the help
of the concept of generalized symmetry as in [6, 10, 15]. Then we provide the
intertwining operators for D3 and D4 with similar techniques as in [10], which also
reveal that these operators are conformally invariant. However, from the calculation
of the constructions in this section, we realize that the generalized symmetries
approach used in [6, 10, 15] and here does not apply for other higher order
conformally invariant differential operators, because of the infeasible computation.
A different approach for the higher order cases will be demonstrated elsewhere.

Section 4 presents the fundamental solutions and intertwining operators of D3
and D4 using similar techniques as in [10]. The expressions of the fundamental
solutions also suggest that D3 and D4 are generalizations of D3

x and D4
x in higher

spin spaces and these can be generalized to conformally flat manifolds, for instance,
cylinders and Hopf manifolds, as in [9]. In Section 5, we show the connections
between our third (fourth)-order conformally invariant differential operator and the
first (second)-order conformally invariant differential operator. Section 6 is devoted
to the investigation of ellipticity property for our 3rd-order and 4th-order higher
spin operators with the technique developed in [6].

2 Preliminaries

2.1 Clifford Algebra

A real Clifford algebra, Clm, can be generated from R
m by considering the

relationship

x2 = −‖x‖2

for each x ∈ R
m. We have R

m ⊆ Clm. If {e1, . . . , em} is an orthonormal basis for
R
m, then x2 = −‖x‖2 tells us that

eiej + ej ei = −2δij ,

where δij is the Kronecker delta function. An arbitrary element of the basis of the
Clifford algebra can be written as eA = ej1 · · · ejr , where A = {j1, · · · , jr } ⊂
{1, 2, · · · ,m} and 1 ≤ j1 < j2 < · · · < jr ≤ m. Hence for any element a ∈ Clm,
we have a = ∑

A aAeA, where aA ∈ R. Similarly, the complex Clifford algebra
Clm(C) is defined as the complexification of the real Clifford algebra

Clm(C) = Clm ⊗ C.
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We consider real Clifford algebra Clm throughout this subsection, but in the rest
of the paper we consider the complex Clifford algebra Clm(C) unless otherwise
specified.

The Pin and Spin groups play an important role in Clifford analysis. The Pin
group can be defined as

P in(m) = {a ∈ Clm : a = y1y2 . . . yp, y1, . . . , yp ∈ S
m−1, p ∈ N},

where Sm−1 is the unit sphere in R
m. P in(m) is clearly a group under multiplication

in Clm.
Now suppose that a ∈ S

m−1 ⊆ R
m, if we consider axa, we may decompose x =

xa‖ +xa⊥, where xa‖ is the projection of x onto a and xa⊥ is the rest, perpendicular
to a. Hence xa‖ is a scalar multiple of a and we have axa = axa‖a + axa⊥a =
−xa‖ + xa⊥. So the action axa describes a reflection of x in the direction of a.
By the Cartan–Dieudonné theorem each O ∈ O(m) is the composition of a finite
number of reflections. If a = y1 · · · yp ∈ P in(m), we define ã := yp · · · y1 and
observe that axã = Oa(x) for some Oa ∈ O(m). Choosing y1, . . . , yp arbitrarily
in S

m−1, we see that the group homomorphism

θ : P in(m) −→ O(m) : a �→ Oa, (1)

with a = y1 · · · yp and Oax = axã is surjective. Further −ax(−ã) = axã, so
1, −1 ∈ Ker(θ). In factKer(θ) = {1, −1}. See [23]. The Spin group is defined as

Spin(m) = {a ∈ Clm : a = y1y2 . . . y2p, y1, . . . , y2p ∈ S
m−1, p ∈ N}

and it is a subgroup of P in(m). There is a group homomorphism

θ : Spin(m) −→ SO(m) ,

which is surjective with kernel {1, −1}. It is defined by (1). Thus Spin(m) is the
double cover of SO(m). See [23] for more details.

For a domain U in R
m, a diffeomorphism φ : U −→ R

m is said to be conformal
if, for each x ∈ U and each u, v ∈ T Ux , the angle between u and v is preserved
under the corresponding differential at x, dφx . For m ≥ 3, a theorem of Liouville
tells us the only conformal transformations are Möbius transformations. Ahlfors and
Vahlen show that given a Möbius transformation on R

m ∪ {∞} it can be expressed
as y = (ax + b)(cx + d)−1 where a, b, c, d ∈ Clm and satisfy the following
conditions [1]:

1. a, b, c, d are all products of vectors in Rm;
2. ab̃, cd̃, b̃c, d̃a ∈ R

m;
3. ad̃ − bc̃ = ±1.
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Since y = (ax+b)(cx+d)−1 = ac−1+(b−ac−1d)(cx+d)−1, a conformal trans-
formation can be decomposed as compositions of translation, dilation, reflection,
and inversion. This gives an Iwasawa decomposition for Möbius transformations.
See [20] for more details.

The Dirac operator in R
m is defined to be Dx :=∑m

i=1 ei∂xi . Note D2
x = −�x ,

where �x is the Laplacian in R
m. A Clm-valued function f (x) defined on a domain

U in R
m is left monogenic ifDxf (x) = 0. Since multiplication of Clifford numbers

is not commutative in general, there is a similar definition for right monogenic
functions. Sometimes we will consider the Dirac operator Du in vector u rather
than x.

Let Mk denote the space of Clm-valued monogenic polynomials, homogeneous
of degree k. Note that if hk ∈ Hk , the space of Clm-valued harmonic polynomials
homogeneous of degree k, then Duhk ∈ Mk−1, but Duupk−1(u) = (−m − 2k +
2)pk−1(u), where pk−1 ∈Mk−1. Hence,

Hk =Mk ⊕ uMk−1, hk = pk + upk−1.

This is an Almansi–Fischer decomposition of Hk . See [5] for more details. In this
Almansi–Fischer decomposition, we define Pk as the projection map

Pk : Hk −→Mk.

Suppose U is a domain in R
m. Consider a differentiable function f : U ×

R
m −→ Clm, such that for each x ∈ U , f (x, u) is a left monogenic polynomial

homogeneous of degree k in u, then the Rarita–Schwinger operator [5, 12] is
defined by

Rkf (x, u) := PkDxf (x, u) = ( uDu

m+ 2k − 2
+ 1)Dxf (x, u).

2.2 Irreducible Representations of the Spin Group

The following three representation spaces of the Spin group are frequently used
as the target spaces in Clifford analysis. The spinor representation is the most
commonly used spin representation in classical Clifford analysis and the other two
polynomial representations are often used in higher spin theory.

Spinor Representation of Spin(m)

Consider the complex Clifford algebra Clm(C) with even dimension m = 2n. Then
C
m or the space of vectors is embedded in Clm(C) as
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(x1, x2, · · · , xm) �→
m∑

j=1

xj ej : Cm ↪→ Clm(C).

Define the Witt basis elements of C2n as

fj := ej − iej+n
2

, f
†
j := −

ej + iej+n
2

.

Let I := f1f
†
1 . . . fnf

†
n . The space of Dirac spinors is defined as

S := Clm(C)I.

This is a representation of Spin(m) under the following action:

ρ(s)I := sI, f or s ∈ Spin(m).

Note that S is a left ideal of Clm(C). For more details, we refer the reader to [8]. An
alternative construction of spinor spaces is given in the classical paper of Atiyah,
Bott, and Shapiro [2].

Homogeneous Harmonic Polynomials on Hk(R
m,C)

The space of harmonic polynomials is invariant under the action of Spin(m)
because the Laplacian �m is an SO(m)-invariant operator, but this space is
not irreducible for Spin(m), decomposing into the infinite sum of spaces of k-
homogeneous harmonic polynomials, 0 ≤ k < ∞, each of which is irreducible
for Spin(m). This brings us to a familiar representation of Spin(m), that is
Hk . The following action has been shown to be an irreducible representation of
Spin(m) [29]:

ρ : Spin(m) −→ Aut(Hk), s �−→
(
f (x) �→ s̃f (sys̃)s

)
,

with x = sys̃. This can also be realized as follows:

Spin(m)
θ−−→ SO(m)

ρ−−→ Aut(Hk);
a �−→ Oa �−→

(
f (x) �→ f (Oax)

)
,

where θ is the double covering map and ρ is the standard action of SO(m) on a
function f (x) ∈ Hk with x ∈ R

m. The function φ(z) = (z1 + izm)k is the highest
weight vector for Hk(Rm,C) having highest weight (k, 0, · · · , 0) (for more details,
see [18]). Accordingly, spin representations given by Hk(Rm,C) are said to have
integer spin k; we can either specify an integer spin k or degree of homogeneity k
of harmonic polynomials.
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Homogeneous Monogenic Polynomials on Clm

In Clm-valued function theory, the previously mentioned Almansi–Fischer decom-
position shows that we can also decompose the space of k-homogeneous harmonic
polynomials as follows:

Hk =Mk ⊕ uMk−1.

If we restrict Mk to the spinor-valued subspace, we have another important
representation of Spin(m): the space of k-homogeneous spinor-valued monogenic
polynomials on R

m, henceforth denoted by Mk :=Mk(R
m,S). More specifically,

the following action has been shown to be an irreducible representation of Spin(m):

π : Spin(m) −→ Aut(Mk), s �−→ (f (x) �→ s̃f (sxs̃)).

When m is odd, in terms of complex variables zs = x2s−1 + ix2s for all 1 ≤ s ≤
m−1

2 , the highest weight vector is ωk(x) = (z1)
kI for Mk(R

m,S) having highest
weight (k + 1

2 ,
1
2 , · · · , 1

2 ), where z1 is the conjugate of z1, S is the Dirac spinor
space, and I is defined as in Section 2.2.1; for details, see [29]. Accordingly, the
spin representations given by Mk(R

m,S) are said to have half-integer spin k + 1
2 ;

we can either specify a half-integer spin k + 1
2 or the degree of homogeneity k of

monogenic spinor-valued polynomials.

3 Construction and Conformal Invariance

Slovák [27] established the existence of conformally invariant differential operators
of arbitrary order and spin, provided that operators of odd order (respectively, even
order) have half-integer spin k + 1

2 (integer spin k) and are between spaces of
k-homogeneous monogenic polynomials Mk (harmonic polynomials Hk), more
details can be found in [10]. The spin- 1

2 and spin-0 cases are well established
to arbitrary order: these are the powers of the Dirac and Laplace operators. We
recently established the cases of spin- 3

2 and spin-1 to arbitrary order [10]. In the first-
order case for arbitrary (half-integer) spin, the explicit form of the operator is well
known: the Rarita–Schwinger operators [5]. Preceding our work, Eelbode and Roels
followed by De Bie et al. worked out the second-order case for arbitrary (integer)
spin in the generalized Maxwell operator and higher spin Laplace operators [6, 15].
We push further here, working out the third- and fourth-order cases for arbitrary
spin: in our terminology, these are the 3rd-order fermionic operators and 4th-order
bosonic operators. Our nomenclature emphasizes the motivation by mathematical
physics: particles of half-integer spin are known as fermions and particles of integer
spin are known as bosons, so the operators of half-integer spin take the name
fermionic operators and those of integer spin take the name bosonic operators.
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3.1 3rd-Order Higher Spin Operator D3

The technique used here closely follows the treatment in our paper [10]. Our main
result in the 3rd-order higher spin case is the following theorem.

Theorem 1 Up to a multiplicative constant, the unique 3rd-order conformally
invariant differential operator is D3 : C∞(Rm,Mk) −→ C∞(Rm,Mk), where

D3 = D3
x +

4

m+ 2k
〈u,Dx〉〈Du,Dx〉Dx − 4||u||2〈Du,Dx〉2Dx

(m+ 2k)(m+ 2k − 2)
− 2u〈Du,Dx〉D2

x

m+ 2k

− 8u〈u,Dx〉〈Du,Dx〉2
(m+ 2k)(m+ 2k − 2)

− 8u3〈Du,Dx〉3
(m+ 2k)(m+ 2k − 2)(m+ 6k − 10)

and 〈 , 〉 is the standard inner product in Euclidean space.

Hereafter we may suppress the k index for the operator since there is little risk
of confusion. Note the target space Mk is a function space, so any element in
C∞(Rm,Mk) has the form f (x, u) ∈ Mk for each fixed x ∈ R

m and x is the
variable on which D3 acts.

Our proof of conformal invariance of this operator follows closely the method of
[10, 15]. In order to explain what conformal invariance means, we begin with the
concept of a generalized symmetry (see for instance [13]):

Definition 1 An operator η1 is a generalized symmetry for a differential operator
D if and only if there exists another operator η2 such that Dη1 = η2D. Note that for
η1 = η2, this reduces to a definition of a (proper) symmetry: Dη1 = η1D.

One determines the first-order generalized symmetries of an operator, which span a
Lie algebra [15, 21]. In this case, the first-order symmetries will span a Lie algebra
isomorphic to the conformal Lie algebra so(1,m + 1); in this sense, the operators
we consider are conformally invariant. The operator D3 is so(m)-invariant (rotation-
invariant) because it is the composition of so(m)-invariant (rotation-invariant)
operators, which means the angular momentum operators Lxij + Luij that generate
these rotations are proper symmetries of D3. The infinitesimal translations ∂xj , j =
1, · · · , n, corresponding to linear momentum operators are proper symmetries of
D3; this is an alternative way to say that D3 is invariant under translations that
are generated by these infinitesimal translations. Readers familiar with quantum
mechanics will recognize the connection to isotropy and homogeneity of space,
the rotational and translational invariance of Hamiltonian, and the conservation
of angular and linear momentum [26]; see also [3] concerning Rarita–Schwinger
operators.

The remaining two of the first-order generalized symmetries of D3 are the
Euler operator and special conformal transformations. The Euler operator Ex

that measures degree of homogeneity in x is a generalized symmetry because
D3Ex = (Ex + 3)D3; this is an alternative way to say that D3 is invariant
under dilations, which are generated by the Euler operator. The special conformal
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transformations are defined in Lemma 1 in terms of harmonic inversion for Hk-
valued functions; harmonic inversion is defined in Definition 2 and is an involution
mapping solutions of D3 to D3. Readers familiar with conformal field theory will
recognize that invariance under dilation corresponds to scale-invariance and that
special conformal transformations are another class of conformal transformations
arising on spacetime [17]. An alternative method of proving conformal invariance
of D3 is to prove the invariance of D3 under those finite transformations generated
by these first-order generalized symmetries (rotations, dilations, translations, and
special conformal transformations) to show invariance of D3 under actions of the
conformal group; this may be phrased in terms of Möbius transformations and
the Iwasawa decomposition. However, the first-order generalized symmetry method
emphasizes the connection to mathematical physics and is more amenable to our
proof of a certain property of harmonic inversion. It is also that used by earlier
authors [6, 15].

Definition 2 The monogenic inversion is a conformal transformation defined as

J3 : C∞(Rm,Mk)−→C∞(Rm,Mk) : f (x, u) �→ J3[f ](x, u) := x

||x||m−2
f (

x

||x||2 ,
xux

||x||2 ).

Note that this inversion consists of Kelvin inversion J on R
m in the variable x

composed with a reflection u �→ ωuω acting on the dummy variable u (where

x = ||x||ω) and a multiplication by a conformal weight term
x

||x||m−2 ; it satisfies

J 2
3 = −1.

Then we have the special conformal transformation defined in the following
lemma. The definition is an infinitesimal version of the fact that finite special
conformal transformations consist of a translation preceded and followed by an
inversion [17]: an infinitesimal translation preceded and followed by monogenic
inversion. The second equality in the lemma shares some terms in common with the
generators of special conformal transformations in conformal field theory [17] and
is a particular case of a result in [14].

Lemma 1 The special conformal transformation defined as C3 := J3∂xjJ3
satisfies

J3∂xjJ3 = xej − 2〈u, x〉∂uj + 2uj 〈x,Du〉 − ||x||2∂xj + xj (2Ex +m− 2).

Proof A similar calculation as in Proposition A.1 in [6] will show the conclusion.
�%

Then, we have the main proposition as follows.

Proposition 1 The special conformal transformations C3, with j ∈ {1, 2, . . . , m}
are generalized symmetries of D3. More specifically,

[D3, C3] = 6xjD3,
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where [ , ] is the commutator. In particular, this shows that

J3D3J3 = ||x||6D3, (2)

which is the generalization of D3
x in classical Clifford analysis [22]. This also

implies D3 is invariant under inversion.

If the main proposition holds, then the conformal invariance can be summarized in
the following theorem:

Theorem 2 The first-order generalized symmetries of D3 are given by:

1. The infinitesimal rotations Lxi,j + Lui,j −
1

2
eiej , with 1 ≤ i < j ≤ m.

2. The shifted Euler operator m+ 2Ex − 3.
3. The infinitesimal translations ∂xj , with 1 ≤ j ≤ m.
4. The special conformal transformations J3∂xjJ3, with 1 ≤ j ≤ m.

These operators span a Lie algebra which is isomorphic to the conformal Lie
algebra so(1,m+ 1), whereby the Lie bracket is the ordinary commutator.

Proof The proof is similar as in [14] via transvector algebras. �%

Detailed Proof of Proposition 1

To prove this proposition, we first introduce the following technical lemmas:

Lemma 2 For all 1 ≤ j ≤ m, we have

[D3
x, C3] = 4〈u,Dx〉Dx∂uj − 2u∂ujD

2
x − 4ujDx〈Du,Dx〉 + 6xjD

3
x.

Proof Recall that the special conformal transformation C2 is defined (see [6]
equation (1)) as follows:

C2 = 2〈u, x〉∂uj − 2uj 〈x, ∂u〉 + ||x||2∂xj − xj (2Ex +m− 2).

It is easy to see that C3 = xej − C2. Since

[AB,C] = A[B,C] + [A,C]B, (3)

where A, B, C are operators, then a straightforward calculation shows that

[D3
x, xej ] = −2x∂xj�x + ej (m+ 2Ex + 2)�x,

[D3
x, C2] = −4〈u,Dx〉Dx∂uj + 2u∂ujD

2
x + 4ujDx〈Du,Dx〉 + 2x∂xjD

2
x

−(2Ex +m+ 2)ejD
2
x − 6xjD

3
x.
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Combining above three questions completes the proof. �%
Lemma 3 For all 1 ≤ j ≤ m, we have

[〈u,Dx〉〈Du,Dx〉Dx, C3] = −(m+ 2k)〈u,Dx〉Dx∂uj − eju〈Du,Dx〉Dx
+(m+ 2k − 2)uj 〈Du,Dx〉Dx − 2u〈u,Dx〉〈Du,Dx〉∂uj − 2|u|2〈Du,Dx〉Dx∂uj
+6xj 〈u,Dx〉〈Du,Dx〉Dx.

Proof Similar as in the proof of the previous lemma, we also use the identity (3)
and

[AB,CD] = A[B,C]D + AC[B,D] + [A,C]DB + C[A,D]B, (4)

where A, B, C, D are operators.

[〈u,Dx〉〈Du,Dx〉Dx, xej ]
= 〈u,Dx〉〈Du,Dx〉[Dx, x]ej+〈u,Dx〉〈Du,Dx〉x[Dx, ej ]+[〈u,Dx〉〈Du,Dx〉, x]ejDx
+x[〈u,Dx〉〈Du,Dx〉, ej ]Dx

= −(m+2Ex+2)〈u,Dx〉〈Du,Dx〉ej + 2u〈Du,Dx〉∂xj + 2x〈u,Dx〉〈Du,Dx〉∂xj
−2〈u,Dx〉Dx∂uj − eju〈Du,Dx〉Dx − 2uj 〈Du,Dx〉Dx.

Since we already have (see [6] Lemma A.2.)

[〈u,Dx〉〈Du,Dx〉, C2] = 2‖u‖2∂uj 〈Du,Dx〉 − 4xj 〈u,Dx〉〈Du,Dx〉 + (〈u,Dx〉∂uj
−uj 〈Du,Dx〉)(2Eu +m− 2),

we can obtain that

[〈u,Dx〉〈Du,Dx〉Dx, C2]=〈u,Dx〉〈Du,Dx〉[Dx, C2]+[〈u,Dx〉〈Du,Dx〉, C2]Dx
= (m+ 2k − 2)〈u,Dx〉Dx∂uj−(m+ 2k)uj 〈Du,Dx〉Dx + 2u〈u,Dx〉〈Du,Dx〉∂uj
+2||u||2〈Du,Dx〉Dx∂uj + 2u〈Du,Dx〉∂xj + 2x〈u,Dx〉〈Du,Dx〉∂xj
−(m+ 2Ex + 2)〈u,Dx〉〈Du,Dx〉ej − 6xj 〈u,Dx〉〈Du,Dx〉Dx.

Since C3 = xej − C2, combining above two equations completes the proof. �%
Lemma 4 For all 1 ≤ j ≤ m, we have

[‖u‖2〈Du,Dx〉2Dx, C3]=2‖u‖2〈Du,Dx〉2ej−(2m+4k−4)‖u‖2〈Du,Dx〉Dx∂uj
−2u‖u‖2〈Du,Dx〉2∂uj + 6xj‖u‖2〈Du,Dx〉2Dx.
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Proof Similarly, with the help of (4) and a straightforward calculation, we have

[‖u‖2〈Du,Dx〉2Dx, xej ]
= ‖u‖2〈Du,Dx〉2[Dx, x]ej+‖u‖2〈Du,Dx〉2x[Dx, ej ]+[‖u‖2〈Du,Dx〉2, x]ejDx
+x[‖u‖2〈Du,Dx〉2, ej ]Dx

= −(m+2Ex)‖u‖2〈Du,Dx〉2ej+2x‖u‖2〈Du,Dx〉2∂xj−4‖u‖2〈Du,Dx〉Dx∂uj .

Since (see [6] Lemma A.3.)

[‖u‖2〈Du,Dx〉2, C2] = −4xj‖u‖2〈Du,Dx〉2 + 2‖u‖2∂uj 〈Du,Dx〉(2Eu +m− 4),

we use (3) to get

[‖u‖2〈Du,Dx〉2Dx, C2] = ‖u‖2〈Du,Dx〉2[Dx, C2] + [‖u‖2〈Du,Dx〉2, C2]
= (2m+ 4k − 8)‖u‖2〈Du,Dx〉Dx∂uj + 2x‖u‖2〈Du,Dx〉2∂xj
−(m+ 2Ex + 2)‖u‖2〈Du,Dx〉2ej − 6xj‖u‖2〈Du,Dx〉2Dx.

Combining above two equations completes the proof. �%
Lemma 5 For all 1 ≤ j ≤ m, we have

[u〈Du,Dx〉D2
x, C3] = −2eju〈Du,Dx〉Dx − 4uj 〈Du,Dx〉Dx − (m+ 2k)uD2

x∂uj

+4u〈u,Dx〉〈Du,Dx〉∂uj − 4uju〈Du,Dx〉2 + 6xju〈Du,Dx〉D2
x.

Proof Similarly, we have

[u〈Du,Dx〉D2
x, xej ]

= u〈Du,Dx〉[D2
x, x]ej+u〈Du,Dx〉x[D2

x, ej ]+[u〈Du,Dx〉, x]ejD2
x+x[u〈Du,Dx〉, ej ]D2

x

= −2eju〈Du,Dx〉Dx − 4uj 〈Du,Dx〉Dx + 4u〈Du,Dx〉∂xj − 2u∂uj D
2
x

+2ujx〈Du,Dx〉D2
x − 2〈u, x〉〈Du,Dx〉ejD2

x,

and

[u〈Du,Dx〉D2
x, C2] = u〈Du,Dx〉Dx[Dx, C2] + [u〈Du,Dx〉Dx, C2]Dx

= (m+2k−2)uD2
x∂uj+4u〈Du,Dx〉∂xj−4u〈u,Dx〉〈Du,Dx〉∂uj+4uju〈Du,Dx〉2

−6xju〈Du,Dx〉D2
x − 2ej 〈u, x〉〈Du,Dx〉D2

x + 2ujx〈Du,Dx〉D2
x.

Combining above two completes the proof. �%
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Lemma 6 For all 1 ≤ j ≤ m, we have

[u〈u,Dx〉〈Du,Dx〉2, C3]=−ej‖u‖2〈Du,Dx〉2−(2m+4k−4)u〈u,Dx〉〈Du,Dx〉∂uj
−2u|u|2〈Du,Dx〉2∂uj + (m+ 2k − 2)uju〈Du,Dx〉2 + 6xju〈u,Dx〉〈Du,Dx〉2.

Proof Similarly, we have

[u〈u,Dx〉〈Du,Dx〉2, xej ]
= u〈u,Dx〉[〈Du,Dx〉2, x]ej+u〈u,Dx〉x[〈Du,Dx〉2, ej ]+[u〈u,Dx〉, x]ej 〈Du,Dx〉2

+x[u〈u,Dx〉, ej ]〈Du,Dx〉2

= −4u〈u,Dx〉〈Du,Dx〉∂uj − ej‖u‖2〈Du,Dx〉2 + 2ujx〈u,Dx〉〈Du,Dx〉2

−2ej 〈u, x〉〈u,Dx〉〈Du,Dx〉2,

and

[u〈u,Dx〉〈Du,Dx〉2, C2]=u[〈u,Dx〉〈Du,Dx〉2, C2]+[u, C2]〈u,Dx〉〈Du,Dx〉2
= (2m+ 4k − 8)u〈u,Dx〉〈Du,Dx〉∂uj + 2u‖u‖2〈Du,Dx〉2∂uj
−2ej 〈u, x〉〈u,Dx〉〈Du,Dx〉2−2u〈u, x〉〈Du,Dx〉2∂xj−2uju(Eu−Ex)〈Du,Dx〉2

+2ujx〈u,Dx〉〈Du,Dx〉2+2u〈u, x〉〈Du,Dx〉2∂xj−(m+2Ex+2)uju〈Du,Dx〉2

−6xju〈u,Dx〉〈Du,Dx〉2.

Combining above two equations completes the proof. �%
Lemma 7 For all 1 ≤ j ≤ m, we have

[u3〈Du,Dx〉3, C3] = −(m+ 6k − 10)u3〈Du,Dx〉2∂uj + 6xju
3〈Du,Dx〉3.

Proof Similarly, we have

[u3〈Du,Dx〉3, xej ]
= u3〈Du,Dx〉[〈Du,Dx〉2, x]ej + u3〈Du,Dx〉x[〈Du,Dx〉2, ej ]
+[u3〈Du,Dx〉, x]ej 〈Du,Dx〉2 + x[u3〈Du,Dx〉, ej ]〈Du,Dx〉2

= −4u3〈Du,Dx〉2∂uj−2u3〈Du,Dx〉2∂uj+2xuju
2〈Du,Dx〉3−2eju

2〈u, x〉〈Du,Dx〉3,

and

[u3〈Du,Dx〉3, C2] = u3〈Du,Dx〉[〈Du,Dx〉2, C2] + [u3〈Du,Dx〉, C2]〈Du,Dx〉2
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= (m+6k−16)u3〈Du,Dx〉2∂uj+2u3〈x,Du〉〈Du,Dx〉2∂xj−2eju
2〈u, x〉〈Du,Dx〉3

−6xju
3〈Du,Dx〉3.

Combining above two questions completes the proof. �%
Combining Lemma 2 to 7 gives the results. We use these lemmas to obtain

[D3, C3] = 6xjD3.

Similar arguments as in [10] give that J3D3J3 = ||x||6D3, which can be
rewritten as

D3,y,w
x

||x||m−2 f (y,w) =
x

||x||m+2D3,x,uf (x, u), ∀f (x, u) ∈ C∞(Rm,Mk),

where y = x−1 and w = xux

||x||2 . Therefore, we have proved D3 is invariant under

inversion. The uniqueness is determined by the results given in [27, 28]. More details
on this can also be found in [10].

3.2 4th-Order Higher Spin Operator D4

Now for the main result in the 4th-order higher spin case.

Theorem 3 Up to a multiplicative constant, the unique 4th-order conformally
invariant differential operator is D4 : C∞(Rm,Hk) −→ C∞(Rm,Hk), where

D4 = D2
2 −

8

(m+ 2k − 2)(m+ 2k − 4)
D2�x.

Hereafter we may suppress the k index for the operator since there is little risk
of confusion. The strategy is similar to that used above. It is sufficient to show only
invariance under inversion. We have the definition for harmonic inversion as follows.

Definition 3 Harmonic inversion is a (conformal) transformation defined as

J4 : C∞(Rm,Hk) −→ C∞(Rm,Hk) : f (x, u) �→ J4[f ](x, u) := ||x||4−mf ( x

||x||2 ,
xux

||x||2 ).

Note this inversion consists of the classical Kelvin inversion J on R
m in the variable

x composed with a reflection u �→ ωuω acting on the dummy variable u (where x =
||x||ω) and a multiplication by a conformal weight term ||x||4−m. It satisfies J 2

4 =
1. Then a similar calculation as in Proposition A.1 in [6] provides the following
lemma.
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Lemma 8 The special conformal transformation is defined as

C4 := J4∂xjJ4 = 2〈u, x〉∂uj − 2uj 〈x,Du〉 + ||x||2∂xj − xj (2Ex +m− 4).

Proposition 2 The special conformal transformations C4, with j ∈ {1, 2, . . . , m}
are generalized symmetries of D4. More specifically,

[D4, C4] = −8xjD4.

In particular, this shows J4D4J4 = ||x||8D4, which generalizes the case of the
classical higher order Dirac operator D4

x . This also implies D4 is invariant under
inversion and hence conformally invariant.

If the previous proposition holds, then the conformal invariance of D4 can be
summarized in the following theorem:

Theorem 4 The first-order generalized symmetries of D4 are given by:

1. The infinitesimal rotations Lxi,j + Lui,j , with 1 ≤ i < j ≤ m.
2. The shifted Euler operator m+ 2Ex − 4.
3. The infinitesimal translations ∂xj , with 1 ≤ j ≤ m.
4. The special conformal transformations J4∂xjJ4, with 1 ≤ j ≤ m.

These operators span a Lie algebra which is isomorphic to the conformal Lie
algebra so(1,m+ 1), whereby the Lie bracket is the ordinary commutator.

Proof The proof is similar as in [14] via transvector algebras. �%

Detailed Proof of Proposition 2

The previous proposition follows immediately with the help of the following two
lemmas.

Lemma 9

[
D2

2, C4
] = −8xjD2

2 +
32〈u,Dx〉�x∂uj
(m+ 2k − 2)2

− 32uj 〈Du,Dx〉�x
(m+ 2k − 2)2

− 128〈u,Dx〉2〈Du,Dx〉∂uj
(m+ 2k − 2)2(m+ 2k − 4)

+ 128||u||2〈Du,Dx〉�x∂uj
(m+ 2k − 2)2(m+ 2k − 4)2

− 128||u||2〈Du,Dx〉2∂xj
(m+ 2k − 2)2(m+ 2k − 4)2

+ 128uj 〈u,Dx〉〈Du,Dx〉2
(m+ 2k − 2)2(m+ 2k − 4)

+128||u||2〈u,Dx〉〈Du,Dx〉2∂uj
(m+ 2k − 2)2(m+ 2k − 4)2

− 128uj ||u||2〈Du,Dx〉3
(m+ 2k − 2)2(m+ 2k − 4)2

.
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Proof Similar as in the odd order case, we use the identity

C4 = C2 + 2xj

and (see [6] page 25)

[D2, C2] = −4xjD2, (5)

then, we have

[D2
2, C4]=[D2

2, C2]+[D2
2, 2xj ]=D2[D2, C2]+[D2, C2]D2+2D2

2xj − 2xjD2
2

= −4D2xjD2 − 4xjD2
2 + 2D2

2xj − 2xjD2
2

= 2D2
2xj − 2D2xjD2 − 2D2xjD2 + 2xjD2

2 − 8xjD2
2

= 2[D2, [D2, xj ]] − 8xjD2
2. (6)

It is easy to check that

[D2, xj ]=2∂xj−
4(〈u,Dx〉∂uj+uj 〈Du,Dx〉)

m+ 2k − 2
+ 8‖u‖2〈Du,Dx〉∂uj
(m+ 2k − 2)(m+ 2k − 4)

. (7)

Then we can obtain that

[D2, [D2, xj ]] =
16〈u,Dx〉�x∂uj
(m+ 2k − 2)2

−16uj 〈Du,Dx〉�x
(m+ 2k − 2)2

−64〈u,Dx〉2〈Du,Dx〉∂uj
(m+k2−2)2(m+2k−4)

+ 64‖u‖2〈Du,Dx〉�x∂uj
(m+ 2k − 2)2(m+ 2k − 4)2

− 64‖u‖2〈Du,Dx〉2∂xj
(m+ 2k − 2)2(m+ 2k − 4)2

+ 64uj 〈u,Dx〉〈Du,Dx〉2
(m+ 2k − 2)2(m+ 2k − 4)

+ 64‖u‖2〈u,Dx〉〈Du,Dx〉2∂uj
(m+ 2k − 2)2(m+ 2k − 4)2

− 64‖u‖2uj 〈Du,Dx〉3
(m+ 2k − 2)2(m+ 2k − 4)2

.

We leave the details of the calculation above as an exercise. Plugging the previous
equation into (6) completes the proof. �%
Lemma 10

[D2�x, C4] = −8xjD2�x+4m+8k−16

m+2k−2
〈u,Dx〉�x∂uj−

16〈u,Dx〉2〈Du,Dx〉∂uj
m+2k−2

+ 16||u||2〈Du,Dx〉�x∂uj
(m+ 2k − 2)(m+ 2k − 4)

+ 16||u||2〈u,Dx〉〈Du,Dx〉2∂uj
(m+ 2k − 2)(m+ 2k − 4)
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−4m+ 8k − 16

m+ 2k − 2
uj 〈Du,Dx〉�x + 16uj 〈u,Dx〉〈Du,Dx〉2

m+ 2k − 2

− 16||u||2〈Du,Dx〉2∂xj
(m+ 2k − 2)(m+ 2k − 4)

− 16uj ||u||2〈Du,Dx〉3
(m+ 2k − 2)(m+ 2k − 4)

.

Proof With the help of (3), we have

[D2�x, C4] = [D2�x, C2] + 2[D2�x, xj ]
= D2[�x, C2] + [D2, C2]�x + 2D2[�x, xj ] + 2[D2, xj ]�x. (8)

Since we already have (see [6] Lemma A.1.)

[�x, C2] = −4xj�x + 4〈u,Dx〉∂uj − 4uj 〈Du,Dx〉,

and with the help of (5), (7) and [�x, xj ] = 2∂xj , plugging them into (8), a
straightforward calculation completes the proof. �%
With Lemma 9 and 10, Proposition 2 is followed immediately. The uniqueness is
also determined by results in [27, 28]. For more details, we refer the readers to [10].

4 Fundamental Solutions and Intertwining Operators

Using similar arguments as in [10], we obtain the fundamental solutions (up to a
multiplicative constant) and intertwining operators of D3 and D4 as follows.

Theorem 5 (Fundamental Solutions of D3) Let Zk(u, v) be the reproducing
kernel of Mk , then the fundamental solutions of D3 are

c1
x

||x||m−2Zk(
xux

||x||2 , v),

where the constant c1 is determined from [11]:

(m+ 2k − 4)

2(m− 2)(m− 4)ωm−1
,

where ωm−1 is the surface area of (m− 1)-dimensional unit sphere.

Theorem 6 (Fundamental Solutions of D4) Let Zk(u, v) be the reproducing
kernel of Hk , then the fundamental solutions of D4 are

c2||x||4−mZk( xux||x||2 , v),
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where the constant c2 is also determined from [11]:

(m+ 2k − 2)(m+ 2k − 4)�(m2 − 1)

32(m− 2)(m− 4)π
m
2

.

Theorem 7 (Intertwining Operators) Let y = φ(x) = (ax + b)(cx + d)−1 be a
Möbius transformation. Then

c̃x + d
||cx + d||m+4D3,y,ωf (y, ω) = D3,x,u

c̃x + d
||cx + d||m−2 f (φ(x),

(cx + d)u ˜(cx + d)
||cx + d||2 ),

where ω = (cx + d)u ˜(cx + d)
||cx + d||2 and f (y, ω) ∈ C∞(Rm,Mk);

||cx + d||−m−4D4,y,ωf (y, ω)=D4,x,u||cx + d||4−mf (φ(x), (cx + d)u
˜(cx + d)

||cx + d||2 ),

where ω = (cx + d)u ˜(cx + d)
||cx + d||2 and f (y, ω) ∈ C∞(Rm,Hk).

It is worth pointing out that our above results generalize to conformally flat
manifolds according to the method in our paper on cylinders and Hopf manifolds
[9].

5 Connection with Lower Order Conformally Invariant
Operators

To construct higher order conformally invariant operators, one possible method is
by composing and combining lower order conformally invariant operators. In this
section, we will rewrite our operators D3 and D4 in terms of first-order and second-
order conformally invariant operators. This might help us to construct higher order
conformally invariant differential operators by induction from the lower order ones.

Recall D3 maps C∞(Rm,Mk) to C∞(Rm,Mk). If we fix x ∈ R
m, then for any

f (x, u) ∈Mk , we have D3f (x, u) ∈Mk . In other words, D3 should be equal to
the sum of contributions to Mk of all terms in D3. Notice that if we apply each term
of D3 to f (x, u) ∈ C∞(Rm,Mk), we will get a k-homogeneous polynomial in u
that is in the kernel of�2

u. Hence, we can decompose it by harmonic decomposition
as follows:

Pk = Hk ⊕ u2Hk−2,
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where Pk is the k-homogeneous polynomial space and Hk is the k-homogeneous
harmonic polynomial space. The Almansi–Fischer decomposition provides further

Hk =Mk ⊕ uMk−1,

where Mk is the k-homogeneous monogenic polynomial space; therefore, the
contribution of each term to Mk can be written with two projections. For instance,
the contribution of u3〈Du,Dx〉3f (x, u) to Mk is PkP1u

3〈Du,Dx〉3f (x, u), where

Pk
P1−→ Hk

Pk−→Mk,

and

P1 = 1+ u2�u

2(m+ 2k − 4)
, Pk = 1+ uDu

m+ 2k − 2
.

We also notice that for fixed x ∈ R
m and f (x, u) ∈Mk ,

u3〈Du,Dx〉3f (x, u), ||u||2〈Du,Dx〉2Dxf (x, u) ∈ u2Hk−2,

and u〈Du,Dx〉D2
x ∈ uMk−1. Hence, their contributions to Mk are all zero.

Therefore,

D3 = PkP1

(
D3
x +

4

m+ 2k
〈u,Dx〉〈Du,Dx〉Dx − 8u〈u,Dx〉〈Du,Dx〉2

(m+ 2k)(m+ 2k − 2)

)
.

It is useful to recall some first- and second-order conformally invariant operators in
higher spin spaces [5, 6]:

Rk : C∞(Rm,Mk) −→ C∞(Rm,Mk), Rk = PkDx = (1+ uDu

m+ 2k − 2
)Dx;

Tk : C∞(Rm, uMk−1) −→ C∞(Rm,Mk), Tk=PkDx=(1+ uDu

m+2k−2
)Dx;

T ∗k : C∞(Rm,Mk) −→ C∞(Rm, uMk−1), T
∗
k =(I−Pk)Dx=

−uDu
m+2k−2

Dx;

D2 : C∞(Rm,Hk) −→ C∞(Rm,Hk), D2=P1(�x− 4

m+2k−2
〈u,Dx〉〈Du,Dx〉Dx).

Hence,

D3=PkP1

(
D3
x+

4〈u,Dx〉〈Du,Dx〉Dx
m+2k−2

−8〈u,Dx〉〈Du,Dx〉Dx
(m+2k)(m+2k−2)

−8u〈u,Dx〉〈Du,Dx〉2
(m+2k)(m+2k−2)

)

=−PkP1D2Dx − 8

(m+ 2k)(m+ 2k − 2)
PkP1

(〈u,Dx〉〈Du,Dx〉Dx+u〈u,Dx〉〈Du,Dx〉2
)
.
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Since for f (x, u) ∈ C∞(Rm,Mk), we have [6]

D2 = −R2
k +

4u〈Du,Dx〉
(m+ 2k − 2)(m+ 2k − 4)

Rk.

A straightforward calculation leads to

D3 = R3
k −

4

(m+ 2k)(m+ 2k − 4)
TkT

∗
k Rk.

Recall these conformally invariant second-order twistor and dual-twistor opera-
tors [6]:

Tk,2 = 〈u,Dx〉 − ||u||
2〈Du,Dx〉

m+ 2k − 4
: C∞(Rm,Hk−1) −→ C∞(Rm,Hk),

T ∗k,2 = 〈Du,Dx〉 : C∞(Rm,Hk) −→ C∞(Rm,Hk−1), and

D2 = �x −
4Tk,2T ∗k,2
m+ 2k − 2

.

Hence

D4 = D2
2 −

8D2�x

(m+ 2k − 2)(m+ 2k − 4)

= D2
2 −

8D2

(m+ 2k − 2)(m+ 2k − 4)

(
D2 +

4Tk,2T ∗k,2
m+ 2k − 2

)

= (m+ 2k)(m+ 2k − 6)

(m+ 2k − 2)(m+ 2k − 4)
D2

2 −
32D2Tk,2T

∗
k,2

(m+ 2k − 2)2(m+ 2k − 4)
.

Remark The 3rd-order fermionic and 4th-order bosonic operators constructed
here are consistent with the 3rd- and 4th-order conformally invariant differential
operators obtained from our paper [11]. Further, from the expressions of D3 and D4
obtained previously, we notice that it is hardly to find general expressions for higher
order conformally invariant differential operators by induction. This also reveals the
limit of the generalized symmetries approach used in [6, 15]. Therefore, a different
approach is introduced for other higher order cases in our paper [11].

6 Ellipticity

We start with the definition of ellipticity as follows.

Definition 4 A linear homogeneous differential operator of k-th order Dk :
C∞(Rm, Vλ) −→ C∞(Rm, Vμ) is elliptic if for every non-zero vector x ∈ R

m
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its principal symbol, the linear map σx(Dk) : Vλ −→ Vμ obtained by replacing its
partial derivatives ∂xj with the corresponding variables xj , is a linear isomorphism.

Note Vλ stands for a representation space of Spin(m) with a dominant weight λ.
The proofs below will be extended to their full generality in a subsequent paper.

6.1 Ellipticity for 3rd-Order Higher Spin Operator D3

Theorem 8 The 3rd-order higher spin operator, which is explicitly given by

D3 = R3
k −

4

(m+ 2k)(m+ 2k − 4)
TkT

∗
k Rk,

is an elliptic operator if m > 4.

Proof The technique used here is motivated by [6]. The critical point in this
technique is the following: when proving the principal symbol is a linear map
from Mk to Mk , we choose a basis obtained from the classical CK extension for
monogenic polynomials [19]. This helps us to see that the symbol is an injective
map. On the other hand, the symbol is obviously linear, which completes our proof.

Let Rk(x), Tk(x), and T ∗k (x) be the symbols of Rk, Tk , and T ∗k , respectively.
We will show that for fixed x ∈ R

m, the symbol of D3, which is given by

σx(D3) = Rk(x)3 − 4

(m+ 2k)(m+ 2k − 4)
Tk(x)T

∗
k (x)Rk(x) : Mk −→Mk,

is a linear isomorphism. Since this symbol is obviously a linear map, it remains to
be showed that this map is injective. Notice that

σx(D3) =
(
Rk(x)

2 − 4

(m+ 2k)(m+ 2k − 4)
Tk(x)T

∗
k (x)

)
Rk(x) : Mk −→Mk,

and Rk is an elliptic operator [16]. Therefore, we only need to show what the term
in the parenthesis above

σx(D3)
′ := Rk(x)2 − 4

(m+ 2k)(m+ 2k − 4)
Tk(x)T

∗
k (x)

= −||x||2 + 4ux〈x,Du〉
(m+ 2k)(m+ 2k − 4)

+ 4(m+ 2k − 2)〈u, x〉〈x,Du〉
(m+ 2k)(m+ 2k − 4)

− 4||u||2〈x,Du〉2
(m+ 2k)(m+ 2k − 4)

: Mk −→Mk,
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is injective. To do so, we choose a basis for Mk(R
m,S) as in [6, 19]. First, we need

the monogenic inversion

J :Mk(R
m,S) −→Mk(R

m,S) : f (u) �→ J [f ](u) := u

||u||mf (
u

||u||2 ).

In this case, we also have that

sl(2) ∼= Span(J ∂ujJ , ∂uj ,m+ 2Eu − 1),

where

J ∂ujJ = uej + uj (m+ 2Eu)− ||u||2∂uj .

For fixed x ∈ R
m\{0}, we have

J 〈x,Du〉J = ux + 〈u, x〉(m+ 2Eu)− ||u||2〈x,Du〉. (9)

This means we can rewrite σx(D3)
′ as

||x||2(− 1+ 4

(m+ 2k)(m+ 2k − 4)
J 〈ω,Du〉J 〈ω,Du〉

)
,

where ω = x

||x|| . The branching rules for so(m) state that when we restrict the

action on the irreducible representation with highest weight (k + 1

2
,

1

2
, · · · , 1

2
) to

so(m− 1), we get the following decomposition:

(k + 1

2
,

1

2
, · · · , 1

2
)

∣∣∣∣
so(m)

so(m−1)
=

k⊕

j=0

(k − j + 1

2
,

1

2
, · · · , 1

2
).

This implies that an arbitrary monogenic polynomial fk(u) ∈ Mk(R
m,S) can be

written as

fk(u) =
k∑

j=0

(J 〈ω,Du〉J )j f ∗k−j (u),

where f ∗k−j (u) ∈ Mk−j (Rm,S) and 〈ω,Du〉f ∗k−j (u) = 0. It is obvious that the
right-hand side of the equation above is invariant under the action of so(m − 1),
where so(m− 1) is understood as the Lie algebra corresponding to the subgroup of
SO(m − 1), which contains rotations in the hyperplane perpendicular to ω ∈ R

m.
Now, we claim that
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[〈ω,Du〉, (J 〈ω,Du〉J )j ] = j (J 〈ω,Du〉J )j−1(m+ 2Eu + j − 2).

Indeed, with the expression (9), it is easy to obtain that

[〈ω,Du〉,J 〈ω,Du〉J ] = m+ 2Eu − 1.

Then, suppose it is true for j − 1 and with the identity that [A,BC] = [A,B]C +
B[A,C], where A,B, and C are operators. We have

[〈ω,Du〉, (J 〈ω,Du〉J )j ]
= [〈ω,Du〉, (J 〈ω,Du〉J )j−1]J 〈ω,Du〉J+(J 〈ω,Du〉J )j−1[〈ω,Du〉,J 〈ω,Du〉J ]
= (j−1)(J 〈ω,Du〉J )j−2(m+2Eu+j−3)J 〈ω,Du〉J+(J 〈ω,Du〉J )j−1(m+2Eu−1)

= (j−1)(J 〈ω,Du〉J )j−1(m+ 2Eu+j−1)+(J 〈ω,Du〉J )j−1(m+2Eu−1)

= j (J 〈ω,Du〉J )j−1(m+ 2Eu + j − 2).

This completes the proof for our claim above. Therefore, the equation

||x||2(− 1+ 4

(m+ 2k)(m+ 2k − 4)
J 〈ω,Du〉J 〈ω,Du〉

)
fk(u) = 0

leads to the following equation:

k∑

j=1

(
− 1+ 4j (m+ 2k − j − 2)

(m+ 2k)(m+ 2k − 4)

)
(J 〈ω,Du〉J )j f ∗k−j (u) = 0.

Since the polynomials f ∗k−j (u) ∈ Mk(R
m,S) are linearly independent for 1 ≤

j ≤ k, we have that either f ∗k−j (u) = 0 for all 1 ≤ j ≤ k, which means that
kerσ x(D3)

′ = 0 or that

−1+ 4j (m+ 2k − j − 2)

(m+ 2k)(m+ 2k − 4)
= 0,

⇐⇒ (m+ 2k)(m+ 2k − 4)− 4j (m+ 2k − j − 2) = 0.

It is easy to find the roots are

m1 = −2(k − j) and m2 = −2(k − j)+ 4.

Notice that k ≥ j , it is easy to see that for k ∈ N fixed, only m ≤ 4 causes
trouble. This means that kerσ x(D3)

′ = 0, whenever, m > 4. This also means that
kerσ x(D3) = 0 whenever, m > 4. This completes the proof. �%
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6.2 Ellipticity for 4th-Order Higher Spin Operator D4

Theorem 9 The 4th-order higher spin operator, which is explicitly given by

D4 = (m+ 2k)(m+ 2k − 6)

(m+ 2k − 2)(m+ 2k − 4)
D2

2 −
32D2Tk,2T

∗
k,2

(m+ 2k − 2)2(m+ 2k − 4)
,

is an elliptic operator if m > 6.

Proof Here we use similar argument as in the 3rd-order case and [6]. Let
D2(x), Tk,2(x), and T ∗k,2(x) be the symbols of D2, Tk,2, and T ∗k,2, respectively.
To prove this theorem, we will show that for fixed x ∈ R

m, the symbol of D4, which
is given by

σx(D4)= (m+2k)(m+2k−6)

(m+2k−2)(m+2k−4)
D2(x)

2− 32D2(x)Tk,2(x)T
∗
k,2(x)

(m+2k−2)2(m+2k−4)
: Hk −→ Hk,

is a linear isomorphism. Since this symbol is obviously a linear map, it remains to
be showed that this map is injective. Notice that

σx(D4)=D2(x)
( (m+2k)(m+2k−6)

(m+2k−2)(m+2k−4)
D2(x)−

32Tk,2(x)T ∗k,2(x)
(m+ 2k − 2)2(m+ 2k − 4)

)
,

and D2 is an elliptic operator when m > 4 [6]. Therefore, we only need to show
what the term in the parenthesis above

σx(D4)
′ := (m+ 2k)(m+ 2k − 6)

(m+ 2k − 2)(m+ 2k − 4)
D2(x)−

32Tk,2(x)T ∗k,2(x)
(m+ 2k − 2)2(m+ 2k − 4)

= (m+2k)(m+2k−6)

(m+2k−2)(m+2k−4)
||x||2−4〈u, x〉〈x,Du〉

m+ 2k − 2
+ 4||u||2〈x,Du〉2
(m+2k−2)(m+2k−4)

σ x(D4)
′ : Hk −→ Hk,

is injective. To do so, we choose a basis for Hk(Rm,C) as in [6, 19]. First, we need
the harmonic inversion [6]

J ′ : Hk(Rm,C) −→ Hk(Rm,C) : f (u) �→ J ′[f ](u) := ||u||2−mf ( u

||u||2 ).

In this case, we also have that

sl(2) ∼= Span(J ′∂ujJ ′, ∂uj ,m+ 2Eu − 2),
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where

J ′∂ujJ ′ = ||u||2∂uj − uj (m+ 2Eu − 2),

For fixed x ∈ R
m\{0}, we have

J ′〈x,Du〉J ′ = ||u||2〈x,Du〉 − 〈u, x〉(m+ 2Eu − 2). (10)

This means we can rewrite σx(D4)
′ as

||x||2( (m+2k)(m+2k−6)

(m+2k−2)(m+2k−4)
+ 4

(m+2k−2)(m+ 2k − 4)
J ′〈ω,Du〉J ′〈ω,Du〉

)
,

where ω = x

||x|| . As described in [6], an arbitrary harmonic polynomial gk(u) ∈
Hk(Rm,C) can be written as

gk(u) =
k∑

j=0

(J ′〈ω,Du〉J ′)j g∗k−j (u),

where g∗k−j (u) ∈ Hk−j (Rm,C) and 〈ω,Du〉f ∗k−j (u) = 0. Now, we can prove that

[〈ω,Du〉, (J ′〈ω,Du〉J ′)j ] = −j (J ′〈ω,Du〉J ′)j−1(m+ 2Eu + j − 3),

by induction as we did in the 3rd-order case. Therefore, the equation

(
||x||2( (m+ 2k)(m+ 2k − 6)

(m+ 2k − 2)(m+ 2k − 4)
+ 4J ′〈ω,Du〉J ′〈ω,Du〉
(m+ 2k − 2)(m+ 2k − 4)

)
gk(u) = 0

leads to the following equation:

k∑

j=1

(
(m+2k)(m+2k−6)

(m+2k−2)(m+2k−4)
− 4j (m+2k−j−3)

(m+2k−2)(m+2k−4)

)
(J ′〈ω,Du〉J ′)j g∗k−j (u)=0.

Since the polynomials g∗k−j (u) ∈ Hk(Rm,C) are linearly independent for 1 ≤
j ≤ k, we have that either g∗k−j (u) = 0 for all 1 ≤ j ≤ k, which means that
kerσ x(D4)

′ = 0 or that

(m+ 2k)(m+ 2k − 6)

(m+ 2k − 2)(m+ 2k − 4)
− 4j (m+ 2k − j − 3)

(m+ 2k − 2)(m+ 2k − 4)
= 0,

⇐⇒ (m+ 2k)(m+ 2k − 6)− 4j (m+ 2k − j − 3) = 0.
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It is easy to find the roots are

m1 = −2(k − j) and m2 = −2(k − j)+ 6.

Notice that k ≥ j , it is easy to see that for k ∈ N fixed, only m ≤ 6 causes
trouble. This means that kerσ x(D4)

′ = 0, whenever, m > 6. This also means that
kerσ x(D4) = 0 whenever, m > 6. This completes the proof. �%

Acknowledgements The authors are grateful to Bent Ørsted for communications pointing out that
the intertwining operators of our conformally invariant differential operators can be recovered as
Knapp–Stein intertwining operators in higher spin theory.
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Holomorphic Approximation: The
Legacy of Weierstrass, Runge, Oka–Weil,
and Mergelyan

John Erik Fornæss, Franc Forstnerič, and Erlend F. Wold

Abstract In this paper we survey the theory of holomorphic approximation, from
the classical nineteenth century results of Runge and Weierstrass, continuing with
the twentieth century work of Oka and Weil, Mergelyan, Vitushkin, and others, to
the most recent ones on higher dimensional manifolds. The paper includes some
new results and applications of this theory, especially to manifold-valued maps.

1 Introduction

The aim of this paper is to provide a review and synthesis of holomorphic
approximation theory from classical to modern. The emphasis is on recent results
and applications to manifold-valued maps.

Approximation theory plays a fundamental role in complex analysis, holomor-
phic dynamics, the theory of minimal surfaces in Euclidean spaces, and in many
other related fields of Mathematics and its applications. It provides an indispensable
tool in constructions of holomorphic maps with desired properties between complex
manifolds. Applications of this theory are too numerous to be presented properly in
a short space, but we mention several of them at appropriate places and provide
references that the reader might pursue. We are hoping that the paper will bring a
new stimulus for future developments in this important area of analysis.
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Although this is largely a survey, it includes some new results, especially those
concerning Mergelyan approximation in higher dimension (see Section 6), and
applications of these techniques to manifold-valued maps (see Section 7). We also
mention open problems and indicate promising directions. Proofs are outlined where
possible, especially of those result which introduce major new ideas. More advanced
results are only mentioned with references to the original sources. Of course we
included proofs of the new results.

There exist a number of surveys on holomorphic approximation theory; see,
e.g., [25, 69–72, 75, 77–79, 109, 180], among others. However, ours seems the
first attempt at a unified picture, from the highlights of the classical theory to
results in several variables and for manifold-valued maps. On the other hand,
several of the surveys mentioned above include discussions of certain finer topics
of approximation theory that we do not cover here, also for solutions of more
general elliptic partial differential equations. It is needless to say that the higher
dimensional approximation theory is much less developed and the problems tend
to be considerably more complex. It is also clear that further progress in many
areas of complex analysis and its applications hinges upon developing new and more
powerful approximation techniques for holomorphic mappings.

Organization of the paper. In Sections 2–4 we review the main achievements
of the classical approximation theory for functions on the complex plane C and
on Riemann surfaces. Our main goal is to identify those key ideas and principles
which may serve as guidelines when considering approximation problems in several
variables and for manifold-valued maps. We begin in Section 2 with theorems of
K. Weierstrass, C. Runge, S. N. Mergelyan, and A. G. Vitushkin. In Section 3
we discuss approximation on closed unbounded subsets of C and of Riemann
surfaces. There are two main lines in the literature, one following the work of
T. Carleman on approximation in the fine topology, and another the work of N.
U. Arakelian on uniform approximation. In Section 4 we survey results on C k

Mergelyan approximation of smooth functions on Riemann surfaces. The remainder
of the paper is devoted to the higher dimensional theory. In Section 5 we recall
the Oka–Weil approximation theorem on Stein manifolds and some generalizations;
these are higher dimensional analogues of Runge’s theorem. In Section 6 we discuss
Mergelyan and Carleman approximation of functions and closed forms on C

n and on
Stein manifolds. In Section 7 we look at applications of these and other techniques
to local and global approximation problems of Runge, Mergelyan, Carleman, and
Arakelian type for maps from Stein manifolds to more general complex manifolds;
these are especially interesting when the target is an Oka manifold. Section 7.2
contains very recent results on Mergelyan approximation of manifold-valued maps.
In Section 8 we mention some recent progress on weighted approximation in L2

spaces.
Notation and terminology. We denote by N = {1, 2, 3, . . .} the natural numbers,

by Z the ring of integers, Z+ = {0, 1, 2, . . .}, and by R and C the fields of real and
complex numbers, respectively. For any n ∈ N we denote by R

n the n-dimensional
real Euclidean space, and by C

n the n-dimensional complex Euclidean space with
complex coordinates z = (z1, . . . , zn), where zi = xi + iyi with xi, yi ∈ R and
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i = √−1. We denote the Euclidean norm by |z|2 = ∑n
i=1 |zi |2. Given a ∈ C and

r > 0, we set D(a, r) = {z ∈ C : |z − a| < r} and D = D(0, 1). Similarly, Bn

denotes the unit ball in C
n and B

n(a, r) the ball centered at a ∈ C
n of radius r . The

corresponding balls in R
n are denoted B

n
R

and B
n
R
(a, r).

Let X be a complex manifold. We denote by C (X) and O(X) the Fréchet
algebras of all continuous and holomorphic functions on X, respectively, endowed
with the compact-open topology. Given a compact set K in X, we denote by
C (K) the Banach algebra of all continuous complex valued functions on K with
the supremum norm, by O(K) the set of all functions that are holomorphic in a
neighborhood of K (depending on the function), and by O(K) the uniform closure
of {f |K : f ∈ O(K)} in C (K). By A (K) = C (K) ∩ O(K̊) we denote the
set of all continuous functions K → C which are holomorphic in the interior
K̊ of K . If r ∈ Z+ ∪ {∞}, we let C r (K) denote the space of all functions
on K which extend to r-times continuously differentiable functions on X, and
A r (K) = C r (K) ∩ O(K̊). Given a complex manifold Y , we use the analogous
notation O(X, Y ), O(K, Y ), A r (K, Y ), etc., for the corresponding classes of maps
into Y . We have the inclusions

O(K, Y ) ⊂ O(K, Y ) ⊂ A (K, Y ) ⊂ C (K, Y ). (1)

A compact set K in a complex manifold X is said to be O(X)-convex if

K = K̂O(X) := {p ∈ X : |f (p)| ≤ max
x∈K |f (x)| ∀f ∈ O(X)}. (2)

A compact O(Cn)-convex setK in C
n is said to be polynomially convex. A compact

set K in a complex manifold X is said to be a Stein compact if it admits a basis of
open Stein neighborhoods in X.

2 From Weierstrass and Runge to Mergelyan

In this and the following two sections we survey the main achievements of the
classical holomorphic approximation theory. More comprehensive surveys of this
subject are available in [25, 69–72, 75, 77, 78, 180], among other sources.

The approximation theory for holomorphic functions has its origin in two clas-
sical theorems from 1885. The first one, due to K. Weierstrass [170], concerns the
approximation of continuous functions on compact intervals in R by polynomials.

Theorem 1 (Weierstrass (1885), [170]) Suppose f is a continuous function on a
closed bounded interval [a, b] ⊂ R. For every ε > 0 there exists a polynomial p
such that for all x ∈ [a, b] we have |f (x)− p(x)| < ε.
Proof We use convolution with the Gaussian kernel. After extending f to a
continuous function on R with compact support, we consider the family of entire
functions
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fε(z) = 1

ε
√
π

∫

R

f (x)e−(x−z)2/ε2
dx, z ∈ C, ε > 0. (3)

As ε → 0, we have that fε → f uniformly on R. Hence, the Taylor polynomials
of fε approximate f uniformly on compact intervals in R. If furthermore f is of
class C k , then by a change of variable u = x − z and placing the derivatives on f it
follows that we get convergence also in the C k norm. �%

The paper by A. Pinkus [136] (2000) contains a more complete survey of
Weierstrass’s results and of his impact on the theory of holomorphic approximation.
As we shall see in Section 6.1, the idea of using convolutions with the Gaussian
kernel gives major approximation results also on certain classes of real submanifolds
in complex Euclidean space C

n and, more generally, in Stein manifolds.
One line of generalizations of Weierstrass’s theorem was discovered by M. Stone

in 1937, [154, 155]. The Stone–Weierstrass theorem says that, if X is a compact
Hausdorff space and A is a subalgebra of the Banach algebra C (X,R) which
contains a nonzero constant function, then A is dense in C (X,R) if and only if
it separates points. It follows in particular that any complex valued continuous
function on a compact setK ⊂ C can be uniformly approximated by polynomials in
z and z̄. Stone’s theorem opened a major direction of research in Banach algebras.

Another line of generalizations concerns approximation of continuous functions
on curves in the complex plane by holomorphic polynomials and rational functions.
This led to Mergelyan and Carleman theorems discussed in the sequel.

However, we must first return to the year 1885. The second of the two classical
approximation theorems proved that year is due to C. Runge [144].

Theorem 2 (Runge (1885), [144]) Every holomorphic function on an open neigh-
borhood of a compact set K in C can be approximated uniformly on K by rational
functions without poles inK , and by holomorphic polynomials if C\K is connected.

The maximum principle shows that the condition that K does not separate the
plane is necessary for polynomial approximation on K .

Proof The simplest proof of Runge’s theorem, and the one given in most textbooks
on the subject (see, e.g., [143, p. 270]), goes as follows. Assume that f is a
holomorphic function on an open set U ⊂ C containing K . Choose a smoothly
bounded domain D with K ⊂ D and D ⊂ U . By the Cauchy integral formula we
have that

f (z) = 1

2π i

∫

bD

f (ζ )

ζ − z dζ , z ∈ D.

Approximating the integral by Riemann sums provides uniform of f on K by
linear combinations of functions 1

a−z with poles a ∈ C \ K . Assuming that C \ K
is connected, we can push the poles to infinity as follows. Pick a disc Δ ⊂ C

containingK . Since C\K is connected, there is a path λ : [0, 1] → C\K connecting
a = λ(0) to a point b = λ(1) ∈ C \Δ. Let δ = inf{dist(λ(t),K) : t ∈ [0, 1]} > 0.
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Choose points a = a0, a1, . . . , aN = b ∈ λ([0, 1]) such that |aj − aj+1| < δ for
j = 0, . . . , N − 1. For z ∈ K and j = 0, 1, . . . , N − 1 we then have that

1

aj − z =
1

(aj+1 − z)− (aj+1 − aj ) =
∞∑

k=0

(aj+1 − aj )k
(aj+1 − z)k+1

,

where the geometric series converges uniformly on K . It follows by a finite
induction that 1

a−z is a uniform limit on K of polynomials in 1
b−z . Since b ∈ C \Δ,

the function 1
b−z is a uniform limit on Δ of holomorphic polynomials in z and

the proof is complete. If C \ K is not connected, a modification of this argument
gives uniform approximations of f by rational functions with poles in a given set
Λ ⊂ C \K containing a point in every bounded connected component of C \K .

Another proof uses the Cauchy–Green formula, also called the Pompeiu formula
for compactly supported function f ∈ C 1

0 (C):

f (z) = 1

π

∫

C

∂f (ζ )

z− ζ du dv, z ∈ C, ζ = u+ iv. (4)

Here, ∂f (ζ ) = (∂f/∂ζ̄ )(ζ ). If f is holomorphic in an open set U ⊂ C containing
a compact set K , we choose a smooth function χ : C→ [0, 1] which equals 1 on a
smaller neighborhood V of K and satisfies supp(χ) ⊂ U . Then,

f (z) = 1

π

∫

C

∂χ(ζ ) f (ζ )

z− ζ du dv, z ∈ V.

Since the integrand is supported on supp(∂χ)which is disjoint fromK , approximat-
ing the integral by Riemann sums shows that f can be approximated uniformly on
K by rational functions with poles in C \K , and the proof is concluded as before.

�%
We now digress for a moment to recall the main properties of the Cauchy–Green

operator in (4) which is used in many approximation results discussed in the sequel.
Given a compact set K ⊂ C and an integrable function g on K , we set

TK(g)(z) = 1

π

∫

K

g(ζ )

z− ζ dudv, ζ = u+ iv. (5)

It is well known (see, e.g., L. Ahlfors [1, Lemma 1, p. 51] or A. Boivin and P.
Gauthier [25, Lemma 1.5]) that for any g ∈ Lp(K), p > 2, TK(g) is a bounded
continuous function on C that vanishes at infinity and satisfies the uniform Hölder
condition with exponent α = 1 − 2/p; moreover, TK : Lp(K) → C α(C) is a
continuous linear operator. (A closely related operator is actually bounded from
Lp(C) to C 1−2/p(C) without any support condition.) The key property of TK is
that it solves the nonhomogeneous Cauchy–Riemann equation, that is,
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∂ TK(g) = g

holds in the sense of distributions, and in the classical sense on any open subset on
which g is of class C 1. In particular, TK(g) is holomorphic on C \K . The optimal
sup-norm estimate of TK(g) for g ∈ L∞(K) is obtained from Mergelyan’s estimate

∫

ζ∈K
dudv

|z− ζ | ≤
√

4π Area(K), z ∈ C, (6)

which is sharp when K is the union of a closed disc centered at z and a compact
set of measure zero. (See S. N. Mergelyan [124, 125] or A. Browder [29, Lemma
3.1.1].) The related Ahlfors–Beurling estimate which is also sharp is that

|TK(1)(z)| =
∣∣∣∣

1

π

∫

ζ∈K
dudv

z− ζ
∣∣∣∣ ≤

√
Area(K)

π
, z ∈ C.

Another excellent source for this topic is the book of K. Astala, T. Iwaniec, and G.
Martin [10]; see in particular Sect. 4.3 therein.

Coming back to the topic of approximation, the situation becomes considerably
more delicate when the function f to be approximated is only continuous on
K and holomorphic in the interior K̊; that is, f ∈ A (K). The corresponding
approximation problem for compact sets in C with connected complement was
solved by S. N. Mergelyan in 1951.

Theorem 3 (Mergelyan (1951), [123–125]) If K is a compact set in C with con-
nected complement, then every function in A (K) can be approximated uniformly
on K by holomorphic polynomials.

Mergelyan’s theorem generalizes both Runge’s and Weierstrass’s theorem. It also
contains as special cases the theorems of J. L. Walsh [168] (1926) in whichK is the
closure of a Jordan domain, F. Hartogs and A. Rosenthal [90] (1931) in whichK has
Lebesgue measure zero, M. Lavrentieff [107] (1936) in which K is nowhere dense,
and M. V. Keldysh [99] (1945) in which K is the closure of its interior.

In light of Runge’s theorem, the main new point in Mergelyan’s theorem is to
approximate functions in A (K) by functions holomorphic in open neighborhoods
of K , that is, to show that

A (K) = O(K).

If this holds, we say that K (or A (K)) enjoys the Mergelyan property. Hence,
Mergelyan’s theorem is essentially of local nature, where local now pertains to
neighborhoods of K . This aspect is emphasized further by Bishop’s localization
theorem, Theorem 6, and its converse, Theorem 14.

Some generalizations of Mergelyan’s theorem can be found in his papers [124,
125]. Subsequently to Mergelyan, another proof was given by E. Bishop in 1960,
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[20], and yet another by L. Carleson in 1964, [32]. Expositions are available in many
sources; see, for instance, D. Gaier [70, p. 97], T. W. Gamelin [72], and W. Rudin
[143]. We outline the proof and refer to the cited sources for the details.

Sketch of Proof of Theorem 3. By Tietze’s extension theorem, everyf ∈ A (K)
extends to a continuous function with compact support on C. Fix a number δ > 0.
Let ω(δ) denote the modulus of continuity of f . By convolving f with the function
Aδ : C→ R+ defined by Aδ(z) = 0 for |z| > δ and

Aδ(z) = 3

πδ2

(
1− |z|

2

δ2

)2

, 0 ≤ |z| ≤ δ,

we obtain a function fδ ∈ C 1
0 (C) with compact support such that

|f (z)− fδ(z)| < ω(δ) and
∣∣∂fδ
∂z̄
(z)

∣∣ <
2ω(δ)

δ
, z ∈ C,

and fδ = f on Kδ = {z ∈ K : dist(z,C \ K) > δ}. By the Cauchy–Green
formula (4),

fδ(z) = 1

π

∫

C

∂fδ(ζ )

z− ζ du dv, z ∈ C.

Next, we cover the compact set X = supp(∂fδ) by finitely many open discs Dj =
D(zj , 2δ) (j = 1, . . . , n) with centers zj ∈ C \ K such that each Dj contains a
compact Jordan arc Ej ⊂ Dj \ K of diameter at least 2δ. (Such discs Dj and arcs
Ej exist because C \ K is connected.) The main point now is to approximate the
Cauchy kernel 1

z−ζ for z ∈ C \Ej and ζ ∈ Dj sufficiently well by a function of the
form

Pj (z, ζ ) = gj (z)+ (ζ − bj )gj (z)2,

where gj ∈ O(C \ Ej) and bj ∈ C. This is accomplished by Mergelyan’s lemma
which says that gj and bj can be chosen such that the inequalities

|Pj (z, ζ )| < 50

δ
and

∣∣∣∣Pj (z, ζ )−
1

z− ζ
∣∣∣∣ <

4000 δ2

|z− ζ |3 (7)

hold for all z ∈ C \ Ej and ζ ∈ Dj . (See also [70, p. 104] or [143, Lemma 20.2].)
Set

X1 = X ∩D1, Xj = X ∩Dj \ (X1 . . . ∪Xj−1) for j = 2, . . . , n.

The open set Ω = C \⋃n
j=1 Ej clearly contains K . The function



140 J. E. Fornæss et al.

Fδ(z) =
n∑

j=1

1

π

∫

Xj

∂fδ

∂ζ̄
(ζ )Pj (z, ζ ) du dv

is holomorphic in Ω (since every function Pj (z, ζ ) is holomorphic for z ∈ Ω), and
it follows from (7) that |Fδ(z) − fδ(z)| < 6000ω(δ) for all z ∈ Ω . As δ → 0, we
have that ω(δ)→ 0 and hence Fδ → f uniformly on K . �%

We now consider approximation problems on Riemann surface. Fundamental
discoveries concerning function theory on open Riemann surfaces were made by H.
Behnke and K. Stein [17] in 1949. They proved the following extension of Runge’s
theorem to open Riemann surfaces (see [17, Theorem 6]); the case for X compact
was pointed out by H. L. Royden in 1967, [142, Theorem 10], and again by H.
Köditz and S. Timmann in 1975 [102, Satz 1].

Theorem 4 (Runge’s Theorem on Riemann Surfaces; [17, 102, 142]) If K is
a compact set in a Riemann surface X, then every holomorphic function f on a
neighborhood ofK can be approximated uniformly onK by meromorphic functions
F on X without poles in K , and by holomorphic functions on X if X \ K has no
relatively compact connected components.

In the papers of Royden [142] and Köditz and Timmann [102] the function f is
assumed to be meromorphic on a neighborhood of K (with at most finitely many
poles on K), the approximating meromorphic function F on X has no poles on K
except those of f , and its poles in X \K are located in a set E having one point in
each connected component of X \ K . Furthermore, Royden showed that F can be
chosen to agree with f to a given finite order at a given finite set of points in K .

A relatively compact connected component of X \ K is called a hole of K . A
compact set without holes in an open Riemann surface X is also called a Runge
compact in X. The following is a corollary to Theorem 4 and the maximum
principle.

Corollary 1 Let X be an open Riemann surface.

(a) Holomorphic functions on X separate points, that is, for any pair of distinct
points p, q ∈ X there exists f ∈ O(X) such that f (p) �= f (q).

(b) For every compact setK inX, its O(X)-convex hull K̂O(X) (see (2)) is the union
of K and all holes of K in X; in particular, K̂O(X) is compact.

Conditions (a) and (b) in Corollary 1 were used in 1951 by K. Stein [152] to
introduce the class of Stein manifolds of any dimension. (The third of Stein’s axioms
is a consequence of these two.) Thus, open Riemann surfaces are the same thing as
1-dimensional Stein manifolds. Theorem 4 is a special case of the Oka–Weil theorem
on Stein manifolds; see Section 5.

The proof of Runge’s theorem in the plane is based on Cauchy’s integral formula.
To prove Runge’s theorem on open Riemann surfaces, Behnke and Stein constructed
Cauchy type kernels, the so-called elementary differentials; see [17, Theorem 3]
and Remark 1 below where additional references are given. More precisely, on any
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open Riemann surface X there is a meromorphic 1-form ω on Xz × Xζ which is
holomorphic off the diagonal and which in any pair of local coordinates has an
expression

ω(z, ζ ) =
(

1

ζ − z + h(z, ζ )
)
dζ , (8)

with h a holomorphic function. (Note that ω is a form only in the second variable ζ ,
but its coefficient is a meromorphic function of both variables (z, ζ ).) In particular,ω
has simple poles with residues one along the diagonal ofX×X. For any C 1-smooth
domain Ω � X and f ∈ C 1(Ω) one then obtains the Cauchy–Green formula

f (z) = 1

2π i

∫

∂Ω

f (ζ )ω(z, ζ )− 1

2π i

∫

Ω

∂f (ζ ) ∧ ω(z, ζ ). (9)

By using this formula when f is holomorphic on an open neighborhood of the set
K in Theorem 4, one can approximate f by meromorphic functions with poles on
X \ K , and the rest of the argument (pushing the poles) is similar to the one in
Theorem 2.

Note that, just as in the complex plane, if we consider (0, 1)-forms α with
compact support in Ω , we get that the mapping α �→ T (α), given by

T (α)(z) = − 1

2π i

∫

Ω

α(ζ ) ∧ ω(z, ζ ), (10)

is a bounded linear operator satisfying ∂(T (α)) = α. This will be used below where
we give a simple proof of Bishop’s localization theorem.

A functional analytic proof of Theorem 4 using Weyl’s lemma was given by B.
Malgrange [115] in 1955; see also O. Forster’s monograph [51, Sect. 25].

Remark 1 H. Behnke and K. Stein constructed Cauchy type kernels on relatively
compact domains in any open Riemann surface [17, Theorem 3]; see also H. Behnke
and F. Sommer [16, p. 584]. The existence of globally defined Cauchy kernels (8)
was shown by S. Scheinberg [148] and P. M. Gauthier [74] in 1978–79. Their proof
uses the theorem of R. C. Gunning and R. Narasimhan [89] (1967) which says that
every open Riemann surface X admits a holomorphic immersion g : X → C. The
pull-back by g of the Cauchy kernel on C is a Cauchy kernel on X with the correct
behavior along the diagonal D = {(z, z) : z ∈ X} (see (8)), but with additional
poles if g is not injective. Since the diagonal D has a basis of Stein neighborhoods
in X × X and its complement X × X \ D is also Stein, one can remove the extra
poles by solving a Cousin problem. Furthermore, Gauthier and Scheinberg found
Cauchy kernels satisfying the symmetry condition F(p, q) = −F(q, p). �%

Theorem 4 implies the analogous approximation result for meromorphic func-
tions. Indeed, we may write a meromorphic function f on an open neighborhood
U � X of the compact setK as the quotient f = g/h of two holomorphic functions
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(this follows from the Weierstrass interpolation theorem on open Riemann surfaces;
see [47, 169]) and apply the same result separately to g and h. Since meromorphic
functions are precisely holomorphic maps to the Riemann sphere CP

1 = C ∪ {∞},
this extension of Theorem 4 has the following corollary.

Corollary 2 Let K be a compact set in an arbitrary Riemann surface X. Then,
every holomorphic map from a neighborhood of K to CP

1 may be approximated
uniformly on K by holomorphic maps X→ CP

1.

In 1958, E. Bishop [19] proved the following extension of Mergelyan’s theorem.

Theorem 5 (Bishop–Mergelyan Theorem; Bishop (1958), [19]) If K is a com-
pact set without holes in an open Riemann surface X, then every function in A (K)
can be approximated uniformly on K by functions in O(X).

More generally, if X is an arbitrary Riemann surface, ρ is a metric on X, and
there is a c > 0 such that every hole of a compact subset K ⊂ X has ρ-diameter
at least c, then every function in A (K) is a uniform limit of meromorphic functions
on X with poles off K . This holds in particular if K has at most finitely many holes.

Bishop’s proof depends on investigation of measures on K annihilating the
algebra A (K). This approach was further developed by L. K. Kodama [101] in
1965. In 1968, J. Garnett observed [73, p. 463] that Theorem 5 can be reduced to
Mergelyan’s theorem on polynomial approximation (see Theorem 3) by means of
the following localization theorem due to Bishop [19] (see also [101, Theorem 5]).

Theorem 6 (Bishop’s Localization Theorem; (1958), [19]) Let K be a compact
set in a Riemann surface X and f ∈ C (K). If every point x ∈ K has a compact
neighborhood Dx ⊂ X such that f |K∩Dx ∈ O(K ∩Dx), then f ∈ O(K).

Let us first indicate how Theorems 3, 4, and 6 imply Theorem 5. We cover K by
open coordinate discs U1, . . . , UN of diameter at most c (the number in the second
part of Theorem 5; no condition is needed for the first part). Choose closed discs
Dj ⊂ Uj for j = 1, . . . , N whose interiors still cover K . Then, Uj \ (K ∩ Dj)
is connected. (Indeed, every relatively compact connected component of Uj \ (K ∩
Dj) is also a connected component of X \ Dj of diameter < c, contradicting the
assumption.) Since Uj is a planar set, Theorem 3 implies A (K ∩ Dj) = O(K ∩
Dj). Thus, the hypothesis of Theorem 6 is satisfied, and hence A (K) = O(K).
Theorem 5 then follows from Runge’s theorem (see Theorem 4).

Proof of Theorem 6 The following simple proof, based on solving the ∂-equation,
was given by A. Sakai [146] in 1972. We may assume that f is continuous in a
neighborhood ofK . CoverK by finitely many neighborhoodsDj as in the theorem,
such that the family of open sets D̊j is an open cover of K . Let χj be a partition
of unity with respect to this cover. Now by the assumption we obtain for any ε > 0
functions fj ∈ C (Dj ) ∩ O(K ∩ Dj) such that ‖fj − f ‖C (K∩Dj ) < ε. Set g :=∑m
j=1 χjfj . Then on some open neighborhoodU ofK we have that ‖g−f ‖C (U) =

O(ε) and
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∂g =
m∑

j=1

∂χj · fj =
m∑

j=1

∂χj · (fj − f ) = O(ε).

(We have used that
∑m
j=1 ∂χj = 0 in a neighborhood of K .) Let χ ∈ C∞0 (U) be a

cut-off function with 0 ≤ χ ≤ 1 and χ ≡ 1 near K . Then we have ‖χ · ∂g‖C (U) =
O(ε), and so T (χ ·∂g) = O(ε), where T is the Cauchy–Green operator (10). Hence,
the function g − T (χ · ∂g) is holomorphic on some open neighborhood of K and it
approximates f to a precision of order ε on K . �%
Remark 2 Sakai’s proof also applies to a compact set K in a higher dimensional
complex manifold, provided K admits a basis of Stein neighborhoods on which
one can solve the ∂-equation with uniform estimates with a constant independent
of the neighborhood. This holds, for instance, when K is the closure of a strongly
pseudoconvex domain; see Theorem 24 on p. 165. �%
Remark 3 It was observed by K. Hoffman and explained by J. Garnett [73] in
1968 that Bishop’s localization theorem in the plane is a simple consequence of the
properties of the Cauchy transform. Given a function φ ∈ C∞0 (C) with compact
support and a bounded continuous function f on C, we consider the Vitushkin
localization operator:

Tφ(f )(z) = 1

2π i

∫

C

f (ζ )− f (z)
ζ − z ∂φ(ζ ) ∧ dζ

= f (z)φ(z)+ 1

π

∫

C

f (ζ )

ζ − z
∂φ

∂ζ̄
(ζ ) dudv.

(11)

(We used the Cauchy–Green formula (4).) From properties of the operator TK (5)
we see that Tφ(f ) is a bounded continuous function on C vanishing at ∞, it
is holomorphic where f is holomorphic and in C \ supp(φ), and f − Tφ(f ) is
holomorphic in the interior of the level set {φ = 1}. If f has compact support
and {φj }Nj=1 is a partition of unity on supp(f ), then f = ∑N

j=1 Tφj (f ). Finally, it
follows from (6) that

‖Tφ(f )‖∞ ≤ c0δωf (δ)‖∂φ/∂ζ̄‖∞, (12)

where δ > 0 is the radius of a disc containing the support of φ, ωf (δ) is the δ-
modulus of continuity of f , and c0 > 0 is a universal constant. (See T. Gamelin [72,
Lemma II.1.7] or D. Gaier [70, p. 114] for the details.)

Suppose now that f : K → C satisfies the hypothesis of Theorem 6. By Tietze’s
theorem we may extend f to a continuous function with compact support on C. Let
U1, . . . , UN ⊂ C be a finite covering of supp(f ) by bounded open sets such that,
setting Kj = K ∩ Uj , we have f |Kj ∈ O(Kj ) for each j . Let φj ∈ C∞0 (C) be
a smooth partition of unity on supp(f ) with supp(φj ) ⊂ Uj . By the hypothesis,
given ε > 0 there is a holomorphic function hj ∈ O(Wj ) on an open neighborhood
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of Kj which is uniformly ε-close to f on Kj . Shrinking Wj around Kj , we may
assume that hj is 2ε-close to f on Wj . Choose a smooth function χj : C→ [0, 1]
which equals one on a neighborhood Vj ⊂ Wj of Kj and has supp(χj ) ⊂ Wj .
The function h̃j = χjhj + (1− χj )f then equals hj on Vj (hence is holomorphic
there), it equals f on C \ Wj , and is uniformly 2ε-close to f on C. The function
gj = Tφj (h̃j ) ∈ C (C) is holomorphic on Vj (since gj is holomorphic there) and on
C\supp(φj ). Since the union of the latter two sets containsK , gj is holomorphic in
a neighborhood of K . Furthermore, gj approximates fj = Tφj (f ) in view of (12).

The sum
∑N
j=1 gj is then holomorphic in a neighborhood ofK and uniformly close

to
∑N
j=1 fj = f on C. (Further details can be found in Gaier [70, pp. 114–118].)

By using the Cauchy type kernels in Remark 1, P. Gauthier [74] and S.
Scheinberg [148] adapted this approach to extend Bishop’s localization theorem
to closed (not necessarily compact) sets of essentially finite genus in any Riemann
surface. See also Section 3 and in particular Theorem 15.

Another proof of Mergelyan’s theorem on Riemann surfaces (Theorem 5) can be
found in [98, Chapter 1.11]. It is based on a proof of Bishop’s localization theorem
(Theorem 6) which avoids the use of Cauchy type kernels on Riemann surfaces,
such as those given by Behnke and Stein in [17]. �%

After Mergelyan proved his theorem on polynomial approximation and Bishop
extended it to open Riemann surfaces (Theorem 5), a major challenging problem
was to characterize the class of compact sets K in C, or in a Riemann surface
X, which enjoy the Mergelyan property A (K) = O(K). In view of Runge’s
theorem (Theorem 4), this is equivalent to approximation of functions in A (K) by
meromorphic functions on X with poles off K , and by rational functions if X = C:

A (K)
?= R(K). (13)

The study of this question led to powerful new methods in approximation theory.
There are examples of compact sets of Swiss cheese type (with a sequence of holes
of K clustering on K) for which R(K) � A (K); see D. Gaier [70, p. 110]. An
early positive result is the theorem of F. Hartogs and A. Rosenthal [90] from 1931
which states that if K is a compact set in C with Lebesgue measure zero, then
C (K) = R(K). After partial results by S. N. Mergelyan [124, 125], E. Bishop
[19, 20], and others, the problem was completely solved by A. G. Vitushkin in 1966,
[166, 167]. To state his theorem, we recall the notion of continuous capacity. LetM
be a subset of C. Denote by R(M) the set of all continuous functions f on C with
‖f ‖∞ ≤ 1 which are holomorphic outside some compact subsetK ofM and whose
Laurent expansion at infinity is f (z) = c1(f )

z
+O( 1

z2

)
. The continuous capacity of

M is defined by

α(M) = sup
{|c1(f )| : f ∈ R(M)

}
.
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Theorem 7 (Vitushkin (1966/1967), [166, 167]) Let K be a compact set in C.
Then, R(K) = A (K) if and only if α(D \ K) = α(D \ K̊) for every open disc D
in C.

Vitushkin’s proof relies on the localization operators (11) which he introduced
(see [167, Ch. 2, §3]). Theorem 7 is a corollary of Vitushkin’s main result in [167]
which provides a criterium for rational approximation of individual functions in
A (K). The most advanced form of Vitushkin-type results is due to Paramonov
[134]. Major results on the behavior of the (continuous) capacity and estimates of
Cauchy integrals over curves were obtained by M. Mel’nikov [120, 121], X. Tolsa
[162, 163], and Mel’nikov and Tolsa [122].

3 Approximation on Unbounded sets in Riemann Surfaces

It seems that the first result concerning the approximation of functions on
unbounded closed subsets of C by entire functions is the following generalization
of Weierstrass’s Theorem 1, due to T. Carleman [31].

Theorem 8 (Carleman (1927), [31]) Given continuous functions f : R→ C and
ε : R→ (0,+∞), there exists an entire function F ∈ O(C) such that

|F(x)− f (x)| < ε(x) for all x ∈ R. (14)

This says that continuous functions on R can be approximated in the fine C 0

topology by restriction to R of entire functions on C. The proof amounts to induc-
tively applying Mergelyan’s theorem on polynomial approximation (Theorem 3).

Proof Recall that D = {z ∈ C : |z| ≤ 1}. For j ∈ Z+ = {0, 1, . . .} set

Kj = jD ∪ [−j − 2, j + 2], εj = min{ε(x) : |x| ≤ j + 2}.

Note that εj ≥ εj+1 > 0 for all j ∈ Z+. We construct a sequence of continuous
functions fj : (j + 1/3)D ∪ R → C satisfying the following conditions for all
j ∈ N:

(aj ) fj is holomorphic on (j + 1/3)D,
(bj ) fj (x) = f (x) for x ∈ R with |x| ≥ j + 2/3, and
(cj ) |fj − fj−1| < 2−j−1εj−1 on Kj−1.

To construct f0, we pick a smooth function χ : R→ [0, 1] such that χ(x) = 1 for
|x| ≤ 1/3 and χ(x) = 0 for |x| ≥ 2/3. Mergelyan’s theorem (see Theorem 3) gives
a holomorphic polynomial h such that, if we define f0 to equal h on (1/3)D and set
f0(x) = χh(x)+ (1− χ)f (x) for |x| ≥ 1/3, then f0 satisfies conditions (a0) and
(b0), while condition (c0) is vacuous.
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The inductive step (j − 1) → j is as follows. Mergelyan’s theorem (see
Theorem 3) gives a holomorphic polynomial h satisfying |h− fj−1| < 2−j−1εj−1
on Kj−1. Pick a smooth function χ : R → [0, 1] such that χ(x) = 1 for
|x| ≤ j + 1/3 and χ(x) = 0 for |x| ≥ j + 2/3. Set fj = h on (j + 1/3)D
and fj = χh+ (1− χ)fj−1 on R. It is easily verified that the sequence fj satisfies
conditions (aj ), (bj ), and (cj ). In view of (bj ) we have f0 = f1 = . . . = fk−1
on {|x| ≥ k} for any k ∈ N. From this and (cj ) it follows that the sequence fj
converges to an entire function F ∈ O(C) such that for every k ∈ Z+ the following
inequality holds on {x ∈ R : k ≤ |x| ≤ k + 1}:

|F(x)− f (x)| ≤
∞∑

j=0

|fj+1(x)− fj (x)| <
∞∑

j=k−1

2−j−2εj ≤ εk−1 ≤ ε(x).

This proves Theorem 8. �%
The above proof is easily adapted to show that every function f ∈ C r (R) for

r ∈ N can be approximated in the fine C r (R) topology by restrictions to R of entire
functions, i.e., (14) is replaced by the stronger condition on the derivatives:

|F (k)(x)− f (k)(x)| < ε(x) for all x ∈ R and k = 0, 1, . . . , r.

In 1973, L. Hoischen [93] proved a similar result on C r -Carleman approximation
on more general curves in the complex plane.

When trying to adapt the proof of Carleman’s theorem to more general closed
sets E ⊂ C without holes, a complication appears in the induction step since the
union of E with a closed disc may contain holes. Consider the following notion.

Definition 1 Let D be a domain in C. A closed subset E of D is a Carleman set
if each function in A (E) can be approximated in the fine C 0 topology on E by
functions in O(D). (More precisely, given f ∈ A (E) and a continuous function
ε : E → (0,+∞), there exists F ∈ O(D) such that |F(z) − f (z)| < ε(z) for all
z ∈ E.)

The following characterization of Carleman sets was given by A. A. Nersesyan
in 1971, [127, 128]. Given a domain D � CP

1, let Vε(bD) denote the set of all
points having chordal (spherical) distance less than ε from the boundary bD.

Theorem 9 (Nersesyan (1971/1972), [127, 128]) A closed set E in a domainD �

CP
1 is a Carleman set if and only if it satisfies the following two conditions.

(a) For each ε > 0 there exists a δ, with 0 < δ < ε, such that none of the
components of E̊ intersects both Vδ(bD) and D \ Vε(bD).

(b) For each ε > 0 there is a δ > 0 such that each point of the set (D\E)∪Vδ(bD)
can be connected to bD by an arc lying in (D \ E) ∪ Vε(bD).

We now look at the related problem of uniform approximation of functions in
the space A (E) by holomorphic functions on D. This type of approximation was
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considered by N. U. Arakelian [6–8] who proved the following result characterizing
Arakelian sets.

Theorem 10 (Arakelian (1964), [6–8]) Let E be a closed set in a domain D ⊂ C.
The following two conditions are equivalent.

(a) Every function in A (E) is a uniform limit of functions in O(D).
(b) The complement D∗ \ E of E in the one point compactification D∗ = D ∪ {∗}

of D is connected and locally connected.

When E is compact, condition (b) simply says that D \ E is connected, and in
this case, (a) is Mergelyan’s theorem. Note that local connectivity of D∗ \ E is a
nontrivial condition only at the point {∗} = D∗ \ D. This condition has a more
convenient interpretation. For simplicity, we consider the case D = C. Given a
closed set F in C, we denote by HF the union of all holes of F , an open set in C.
(Recall that a hole of F is a bounded connected components of C \ F .)

Definition 2 (Bounded Exhaustion Hulls Property) A closed set E in C with
connected complement has the bounded exhaustion hulls property (BEH) if the set
HE∪Δ is bounded (relatively compact) for every closed disc Δ in C.

It is well known and easily seen that the BEH property of a closed subset E ⊂ C

is equivalent to CP
1 \E being connected and locally connected at {∞} = CP

1 \C.
Furthermore, this property may be tested on any sequence of closed discs (or more
general compact simply connected domains) exhausting C. For the corresponding
condition in higher dimensions, see Definition 6 on p. 169.

We now present a simple proof of sufficiency of condition (b) for the caseD = C

in Arakelian’s theorem, due to J.-P. Rosay and W. Rudin (1989), [140].

Proof of (b)⇒(a) in Theorem 10 Since the set E ⊂ C has the BEH property (see
Definition 2), we can find a sequence of closed discsΔ1 ⊂ Δ2 ⊂ · · · ⊂⋃∞

i=1Δi =
C such that, setting Hi = HE∪Δi (the union of holes of E ∪Δi), we have that

Δi ∪Hi ⊂ Δ̊i+1, i = 1, 2, . . . .

Set E0 = E and Ei = E ∪ Δi ∪ Hi for i ∈ N. Note that Ei is a closed set with
connected complement in C, Ei ⊂ Ei+1,

⋃∞
i=0 Ei = C, and E \Δi+1 = Ei \Δi+1.

Choose a function f = f0 ∈ A (E) and a number ε > 0. We shall inductively
construct a sequence fi ∈ A (Ei) for i = 1, 2, . . . such that |fi − fi−1| < 2−iε
on Ei−1; since the sets Ei exhaust C, it follows that F = limi→∞ fi is an entire
function satisfying |F − f | < ε on E = E0. Let us explain the induction step
(i−1)→ i. Assume that fi−1 ∈ A (Ei−1). Pick a closed discΔ such thatΔi∪Hi ⊂
Δ ⊂ Δ̊i+1, and a smooth function χ : C → [0, 1] satisfying χ = 1 on Δ and
supp(χ) ⊂ Δi+1. Note that Ei ∪Δ = Ei−1∪Δ. Since the compact set Ei−1∩Δi+1
has no holes, Mergelyan’s Theorem 3 furnishes a holomorphic polynomial h on C

satisfying

|fi−1 − h| < 2−i−1ε on Ei−1 ∩Δi+1,
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and

1

π

∫

ζ∈Ei−1

|fi−1(ζ )− h(ζ )|· |∂χ(ζ )| dudv|z− ζ | < 2−i−1ε, z ∈ C. (15)

Note that the integrand is supported on Ei−1 ∩ (Δi+1 \Δ), and hence the integral is
bounded uniformly on C by the supremum of the integrand (which may be as small
as desired by the choice of h) and the diameter of Δi+1. Let

g(z) = 1

π

∫

ζ∈Ei−1

(fi−1(ζ )− h(ζ ))· ∂χ(ζ )dudv
z− ζ , z ∈ C,

and define the next function fi : Ei ∪Δ→ C by setting

fi = χh+ (1− χ)fi−1 + g. (16)

Note that g is continuous onEi∪Δ, smooth on E̊i∪Δ, it satisfies ∂g = (fi−1−h)∂χ
on E̊i−1∪Δ̊, and |g| < 2−i−1ε in view of (15). Since Ei∪Δ = Ei−1∪Δ, it follows
that fi is continuous on Ei and ∂fi = (h− fi−1)∂χ + ∂g = 0 on E̊i . Furthermore,
on Ei−1 we have fi = fi−1 + χ(h− fi−1)+ g and hence

|fi − fi−1| ≤ |χ |· |h− fi−1| + |g| < 2−iε.

This completes the induction step and hence proves (b)⇒(a) in Theorem 10. �%
Comparing with the proof of Theorem 8, we see that it was now necessary

to solve a ∂-equation since the set Ei−1 ∩ (Δi+1 \ Δ), on which we glued the
approximating polynomial hwith fi−1, might have nonempty interior. This prevents
us from obtaining Carleman approximation in the setting of Theorem 10 without
additional hypotheses on E (compare with Nersesyan’s theorem 9). On the other
hand, the same proof yields the following special case of Nersesyan’s theorem on
Carleman approximation which is of interest in many applications.

Corollary 3 (On Carleman Approximation) Assume that E ⊂ C is a closed set
with connected complement satisfying the BEH property (see Definition 2). If there
is a disc Δ ⊂ C such that E \ Δ has empty interior, then every function in A (E)
can be approximated in the fine C 0 topology by entire functions.

To prove Corollary 3 one follows the proof of Theorem 10, choosing the first disc
Δ1 big enough such that E \ Δ1 has empty interior. This allows us to define each
function fi (16) in the sequence without the correction term g (i.e., g = 0).

The definition of the BEH property (see Definition 2) extends naturally to closed
sets E in an arbitrary domain Ω ⊂ C. For such sets, an obvious modification of
proof of Theorem 10 and Corollary 3 provide approximation of functions in A (E)
by functions in O(Ω) in the uniform and fine topology on E, respectively.
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In 1976, A. Roth [141] proved several results on uniform and Carleman
approximation of functions in A (E), where E is a closed set in a domain Ω ⊂ C,
by meromorphic functions on Ω without poles on E. Her results are based on the
technique of fusing rational functions, given by the following lemma.

Lemma 1 (Roth (1976), [141]) Let K1, K2, and K be compact sets in CP
1 with

K1∩K2 = ∅. Then there is a constant a = a(K1,K2) > 0 such that for any pair of
rational functions r1, r2 with |r1(z)−r2(z)| < ε (z ∈ K) there is a rational function
r such that |r(z)− rj (z)| < aε for z ∈ K ∪Kj for j = 1, 2.

The proof of this lemma is fairly elementary. In the special case of holomorphic
functions, this amounts to the solution of a Cousin-I problem with bounds. As an
application, A. Roth proved the following result [141, Theorem 1] on approximation
of functions in A (E) by meromorphic functions without poles on E.

Theorem 11 (Roth (1976), [141]) Let Ω be open in C, and let E � Ω be a
closed subset of Ω . A function f ∈ A (E) may be uniformly approximated on E
by functions in M (Ω) without poles on E if and only if f |K ∈ R(K) for every
compact K ⊂ E.

The paper [141] of A. Roth also contains results on tangential and Carleman
approximation by meromorphic functions on closed subsets of planar domains.

The following result [141, Theorem 2] was proved by A. A. Nersesyan [128] for
Ω = C; this extends Vitushkin’s theorem (Theorem 7) to closed subsets of C.

Theorem 12 (Nersesyan (1972), [128]; Roth (1976), [141]) Let E ⊂ Ω be as in
Theorem 11. A necessary and sufficient condition that every function in A (E) can
be approximated uniformly on E by meromorphic functions on Ω with poles off E
is that R(E ∩K) = A (E ∩K) holds for every closed disc K ⊂ Ω .

The results presented above have been generalized to open Riemann surfaces
to a certain extent, although the theory does not seem complete. In 1975, P. M.
Gauthier and W. Hengartner [76] gave the following necessary condition for uniform
approximation. (As before, X∗ denotes the one point compactification of X.)

Theorem 13 Let E be a closed subset of a Riemann surface X. If every function in
O(E) is a uniform limit of functions in O(X), then X∗ \E is connected and locally
connected, i.e., E is an Arakelian set.

However, an example in [76] shows that the converse does not hold in general. In
particular, Arakelian’s Theorem 10 cannot be fully generalized to Riemann surfaces.
Further examples to this effect can be found in [25, p. 120].

The situation is rather different for harmonic functions: ifE is a closed Arakelian
set in an open Riemann surface X, then every continuous function on E which is
harmonic in the interior E̊ can be approximated uniformly on E by entire harmonic
functions on X (see T. Bagby and P. M. Gauthier [11, Corollary 2.5.2]).

In 1986, A. Boivin [23] extended Nersesyan’s Theorem 9 to a characterization
of sets of holomorphic Carleman approximation in open Riemann surfaces, and he
provided a sufficient condition on sets of meromorphic Carleman approximation.
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For Carleman approximation of harmonic functions, we refer to T. Bagby and
P. M. Gauthier [11, Theorem 3.2.3]. Furthermore, in [27], A. Boivin, P. Gauthier,
and P. Paramonov established new Roth, Arakelian, and Carleman type theorems
for solutions of a large class of elliptic partial differential operators L with constant
complex coefficients.

We return once more to Bishop’s localization theorem (see Theorem 6). We have
already mentioned (cf. Remark 1) that in the late 1970s, P. M. Gauthier [74] and
S. Scheinberg [148] constructed on any open Riemann surface X a meromorphic
kernel F(p, q) such that F(p, q) = −F(q, p) and the only singularities of F
are simple poles with residues +1 on the diagonal. With this kernel in hand, they
extended Bishop’s localization theorem to closed sets of essentially finite genus in
any Riemann surface. (See also [24, 146].) The most precise results in this direction
were obtained by S. Scheinberg [149] in 1979. Under certain restrictions on the
Riemann surface X and the closed set E ⊂ X, he completely described those sets
P ⊂ X \ E such that every function in A (E) may be approximated uniformly
on E by functions meromorphic on X whose poles lie in P . His theorems provide
an elegant synthesis of all previously known results of this type and a summary of
localization results.

The following converse to Bishop’s localization theorem on an arbitrary Riemann
surface was proved by A. Boivin and B. Jiang [26] in 2004. Recall that a closed
parametric disc in a Riemann surface X is the inverse image D = φ−1(Δ) of a
closed disc Δ ⊂ φ(U) ⊂ C, where (U, φ) is a holomorphic chart on X.

Theorem 14 (Boivin and Jiang (2004), Theorem 1 in [26]) Let E be a closed
subset of a Riemann surface X. If A (E) = O(E), then A (E ∩ D) = O(E ∩ D)
holds for every closed parametric disc D ⊂ X.

Their proof relies on Vitushkin localization operators (11), adapted to Riemann
surfaces by P. Gauthier [74] and S. Scheinberg [149] by using the Cauchy kernels
mentioned above. (See also Remark 1.)

Note that Theorem 14 generalizes one of the implications in Theorem 12 to
Riemann surfaces. A result of this kind does not seem available for compact sets
in higher dimensional complex manifolds. We shall discuss this question again in
connection with the Mergelyan approximation problem for manifold-valued maps
(see Section 7.2, in particular Definition 8 and Remark 9).

The following is an immediate corollary to Theorem 14 and Bishop’s localization
theorem for closed sets in Riemann surfaces [74, 149]. It provides an optimal version
of Vitushkin’s approximation theorem (see Theorem 7) on Riemann surfaces.

Theorem 15 (Boivin and Jiang (2004), Theorem 2 in [26]) Let E be a closed
subset of a Riemann surface X, and assume either that E is weakly of infinite
genus (this holds in particular if E is compact) or E̊ = ∅. Then, the following
are equivalent:

1. Every function in A (E) is a uniform limit of meromorphic functions on X with
poles off E.

2. For every closed parametric disc D ⊂ X we have A (E ∩D) = O(E ∩D).
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3. For every point x ∈ X there exists a closed parametric disc Dx centered at x
such that A (E ∩Dx) = O(E ∩Dx).

4 Mergelyan’s Theorem for C r Functions on Riemann
Surfaces

In applications, one is often faced with the approximation problem for functions of
class C r (r ∈ N) on compact or closed sets in a Riemann surface. Such problems
arise not only in complex analysis (for instance, in constructions of closed complex
curves in complex manifolds, see [44], or in constructions of proper holomorphic
embeddings of open Riemann surfaces into C

2, see [67, 68] and [62, Chap. 9]), but
also in related areas such as the theory of minimal surfaces in Euclidean spaces Rn

(see the recent survey [3]), the theory of holomorphic Legendrian curves in complex
contact manifolds (see [2, 4]), and others. In most geometric constructions it suffices
to consider compact sets of the following type.

Definition 3 (Admissible Sets in Riemann Surfaces) A compact set S in a
Riemann surface X is admissible if it is of the form S = K ∪ M , where K is a
finite union of pairwise disjoint compact domains with piecewise C 1 boundaries in
X and M = S \ K̊ is a union of finitely many pairwise disjoint smooth Jordan arcs
and closed Jordan curves meeting K only in their endpoints (or not at all) and such
that their intersections with the boundary bK of K are transverse.

Clearly, the complement X \ S of an admissible set has at most finitely many
connected components, and hence Theorem 5 applies.

A function f : S = K ∪ M → C on an admissible set is said to be of class
C r (S) if f |K ∈ C r (K) (this means that it is of class C r (K̊) and all its partial
derivatives of order ≤ r extend continuously to K) and f |M ∈ C r (M). Whitney’s
jet-extension theorem (see Theorem 46) shows that any f ∈ A r (S) extends to a
function f ∈ C r (X) which is ∂-flat to order r on S, meaning that

lim
x→S D

r−1(∂f )(x) = 0. (17)

Here, Dk denotes the total derivative of order k (the collection of all partial
derivatives of order ≤ k). We define the C r (S) norm of f as the maximum of
derivatives of f up to order r at points z ∈ S, where for points z ∈ M \ K we
consider only the tangential derivatives. (This equals the r-jet norm on S of a ∂-flat
extension of f .)

We have the following approximation result for functions of class A r on
admissible sets in Riemann surfaces. Corollary 9 in Section 7.2 gives an analogous
result for manifold-valued maps.
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Theorem 16 (C r Approximation on Admissible Sets in Riemann Surfaces) If
S is an admissible set in a Riemann surface X, then every function f ∈ A r (S)

(r ∈ N) can be approximated in the C r (S)-norm by meromorphic functions on X,
and by holomorphic functions if S has no holes.

Proof We give a proof by induction on r , reducing it to C 0 approximation. The
result can also be proved by the method in the proof of Theorems 24 and 25 below.

Pick an open neighborhood Ω � X of S such that there is a deformation
retraction ofΩ onto S. (It follows in particular that S has no holes inΩ .) It suffices
to show that any function f ∈ A r (S) can be approximated in C r (S) by functions
holomorphic onΩ; the conclusion then follows from Runge’s theorem (Theorem 4)
and the Cauchy estimates. We may assume that S (and hence Ω) is connected.
There are smooth closed oriented Jordan curves C1, . . . , Cl ⊂ S generating the
first homology group H1(S,Z) = H1(Ω,Z) ∼= Z

l such that C = ⋃l
i=1 Ci is a

compact Runge set in Ω . Let θ be a nowhere vanishing holomorphic 1-form on Ω .
(Such θ exists by the Oka–Grauert principle, see [62, Theorem 5.3.1]. Furthermore,
by the Gunning–Narasimhan theorem [89] there exists a holomorphic function
ξ : Ω → C without critical points, and we may take θ = dξ .) Consider the period
map P = (P1, . . . , Pl) : C (C)→ C

l given by

Pi(h) =
∫

Ci

hθ, h ∈ C (C), i = 1, . . . , l.

It is elementary to find continuous functions h1, . . . , hl : C → C such that Pi(hj ) =
δi,j (Kronecker’s delta). By Mergelyan’s theorem (Theorem 5) we can approximate
each hi uniformly on C by a holomorphic function gi ∈ O(Ω). Assuming that
the approximations are close enough, the l × l matrix A with the entries Pi(gj ) is
invertible. Replacing the vector g = (g1, . . . , gl)

t byA−1g we obtain Pi(gj ) = δi,j .
Fix an integer r ∈ Z+. Consider the function Φ : A r (S)× S ×C

l → C defined by

Φ(h, x, t) = h(x)+
l∑

j=1

tj gj (x),

where h ∈ A r (S), x ∈ S, and t = (t1, . . . , tl) ∈ C
l . Then, P(Φ(h, · , t)) =

P(h)+∑l
j=1 tjP (gj ), and hence

∂Pi(Φ(h, · , t)
∂tj

∣∣∣∣
t=0
= Pi(gj ) = δi,j , i, j = 1, . . . , l.

This period domination condition implies, in view of the implicit function theorem,
that for every h0 ∈ A r (S) the equation P(Φ(h, · , t)) = P(h0) can be solved on
t = t (h) for all h ∈ A r (S) near h0, with t (h0) = P(h0).

We can now prove the theorem by induction on r ∈ Z+. By Theorem 5, the
result holds for r = 0. Assume that r ∈ N and the theorem holds for r − 1.
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Pick f ∈ A r (S). The function f ′(x) := df (x)/θ(x) (x ∈ S) then belongs to
A r−1(S). (At a point x ∈ S \ K we understand df (x) as the C-linear extension to
TxX of the differential of f |M .) Note that P(f ′) = (∫

Cj
df

)
j
= 0 ∈ C

l . By the

induction hypothesis, we can approximate f ′ in C r−1(S) by holomorphic functions
h ∈ O(Ω). If the approximation is close enough, there is a t = t (h) ∈ C

l near
P(f ′) = 0 such that the holomorphic function h̃ := Φ(h, · , t) on Ω satisfies
P(h̃) = 0. Fix a point p0 ∈ S and define f̃ (p) = ∫ p

p0
h̃θ for p ∈ Ω . Since

the holomorphic 1-form h̃θ has vanishing period, the integral is independent of the
choice of a path of integration. If p ∈ S, then the path may be chosen to lie in S, and
hence f̃ approximates f in C r (S). This completes the induction step and therefore
proves the theorem. �%

The following optimal approximation result for smooth functions on compact
sets in C was proved by J. Verdera in 1986, [165].

Theorem 17 (Verdera (1986), [165]) Let K be a compact set in C, and let f be a
compactly supported function in C r (C), r ∈ N, such that ∂f/∂z̄ vanishes on K to
order r − 1 (see (17)). Then, f can be approximated in C r (C) by functions which
are holomorphic in neighborhoods of K .

Theorem 17 shows that the obstacles to rational approximation of functions
in A (K) in Vitushkin’s theorem (see Theorem 7) are no longer present when
considering rational approximation of C r functions which are ∂-flat of order r for
r > 0. Results in the same direction, concerning rational approximation on compact
sets in C in Lipschitz and Hölder norms, were obtained by A. G. O’Farrell during
1977–79, [129–131].

Verdera’s proof of Theorem 17 is somewhat simpler for r ≥ 2 than for r = 1. In
the case r ≥ 2, he follows Vitushkin’s scheme for rational approximation, using in
particular the localization operators (11); here is the outline. Fix a number δ > 0.
Choose a covering of C by a countable family of discs Δj of radius δ such that
every point z ∈ C is contained in at most 21 discs. Also, let φj ∈ C∞0 (C) be a
smooth function with values in [0, 1], with compact support contained in Δj , such
that

∑
j φj = 1 and |Dkφj | ≤ Cδ−k for some absolute constant C > 0. Set

fj (z) = Tφj (f )(z) =
1

π

∫

C

f (ζ )− f (z)
ζ − z

∂φj (ζ )

∂ζ̄
dudv, z ∈ C.

Then, fj is holomorphic on C \ supp(φj ), fj = 0 if supp(f ) ∩ Δj = ∅, and
f = ∑

j fj (a finite sum). Let g = ∑′
j fj where the sum is over those indices j

for which Δj ∩K = ∅ and h = f − g =∑′′
j fj is the sum over the remaining j ’s.

Thus, g is holomorphic in a neighborhood of K , and Verdera shows that the C r (C)
norm of h goes to zero as δ → 0. The analytic details are considerable, especially
for r = 1.

In conclusion, we mention that many of the results on holomorphic approxi-
mation, presented in this and the previous two sections, have been generalized to
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solutions of more general elliptic differential equations in various Banach space
norms; see in particular J. Verdera [164], P. Paramonov and J. Verdera [135], A.
Boivin, P. Gauthier, and P. Paramonov [27], and P. Gauthier and P. Paramonov [78].

5 The Oka–Weil Theorem and Its Generalizations

The analogue of Runge’s theorem (see Theorems 2 and 4) on Stein manifolds and
Stein spaces is the following theorem due to K. Oka [132] and A. Weil [171]. All
complex spaces are assumed to be reduced.

Theorem 18 (The Oka–Weil Theorem) If X is a Stein space and K is a compact
O(X)-convex subset of X, then every holomorphic function in an open neighbor-
hood of K can be approximated uniformly on K by functions in O(X).

Proof Two proofs of this result are available in the literature. The original one, due
to K. Oka and A. Weil, proceeds as follows. A compact O(X)-convex subset K in a
Stein space X admits a basis of open Stein neighborhoods of the form

P = {x ∈ X : |h1(x)| < 1, . . . , |hN(x)| < 1}

with h1, . . . , hN ∈ O(X). We may assume that the function f ∈ O(K) to be
approximated is holomorphic on P . By adding more functions if necessary, we can
ensure that the map h = (h1, . . . , hN) : X→ C

N embeds P onto a closed complex
subvariety A = h(P ) of the unit polydisc D

N ⊂ C
N . Hence, there is a function

g ∈ O(A) such that g ◦ h = f on P . By the Oka–Cartan extension theorem [62,
Corollary 2.6.3], g extends to a holomorphic function G on D

N . Expanding G into
a power series and precomposing its Taylor polynomials by h gives a sequence of
holomorphic functions on X converging to f uniformly on K .

Another approach uses the method of L. Hörmander for solving the ∂-equation
with L2-estimates (see [94, 96]). We consider the case X = C

n; the general case
reduces to this one by standard methods of Oka–Cartan theory. Assume that f
is a holomorphic function in a neighborhood U ⊂ C

n of K . Choose a pair of
neighborhoods W � V � U of K and a smooth function χ : Cn → [0, 1] such
that χ = 1 on V and supp(χ) ⊂ U . By choosing W ⊃ K small enough, there
is a nonnegative plurisubharmonic function ρ ≥ 0 on C

n that vanishes on W and
satisfies ρ ≥ c > 0 on U \ V . Note that the smooth (0, 1)-form

α = ∂(χf ) = f ∂χ =
n∑

i=1

αi dz̄i

is supported in U \ V . Hörmander’s theory for the ∂-complex (see [96, Theorem
4.4.2]) furnishes for any t > 0 a smooth function ht on C

n satisfying
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∂ht = α and
∫

Cn

|ht |2
(1+ |z|2)2 e

−tρdλ ≤
∫

Cn

n∑

i=1

|αi |2e−tρdλ. (18)

(Here, dλ denotes the Lebesgue measure on C
n.) As t → +∞, the right-hand side

approaches zero since ρ ≥ c > 0 on supp(α) ⊂ U \ V . Since ρ|W = 0, it follows
that limt→0 ‖ht‖L2(W) = 0. The interior elliptic estimates (see [66, Lemma 3.2])
imply that ht |K → 0 in C r (K) for every fixed r ∈ Z+. The functions

ft = χf − ht : Cn −→ C

are then entire and converge to f uniformly on K as t →+∞. �%
We also have the following parametric version of the Cartan–Oka–Weil theorem

which is useful in applications (see [62, Theorem 2.8.4]).

Theorem 19 (Cartan–Oka–Weil Theorem with Parameters) Let X be a Stein
space. Assume that K is an O(X)-convex subset of X, X′ is a closed complex
subvariety of X, and P0 ⊂ P are compact Hausdorff spaces. Let f : P × X → C

be a continuous function such that

(a) for every p ∈ P , f (p, · ) : X → C is holomorphic in a neighborhood of K
(independent of p) and f (p, · )|X′ is holomorphic, and

(b) f (p, · ) is holomorphic on X for every p ∈ P0.

Then there exists for every ε > 0 a continuous function F : P × X → C satisfying
the following conditions:

(i) Fp = F(p, · ) is holomorphic on X for all p ∈ P ,
(ii) |F − f | < ε on P ×K , and

(iii) F = f on (P0 ×X) ∪ (P ×X′).
The same result holds for sections of any holomorphic vector bundle over X.

The proof can be obtained by any of the two schemes outlined above. For the
second one, note that there is a linear solution operator to the ∂-problem (18), and
hence continuous dependence on the parameter comes for free. One needs to include
the interpolation condition into the scheme to take care of the interpolation condition
(iii). We refer to [62, Theorem 2.8.4] for the details.

A similar approximation theorem holds for sections of coherent analytic sheaves
over Stein spaces (see, e.g., H. Grauert and R. Remmert [85, p. 170]).

The extension of the Oka–Weil theorem to maps X → Y from a Stein
space X to more general complex manifolds Y is the subject of Oka theory. A
complex manifold Y for which the analogue of Theorem 19 holds in the absence
of topological obstructions is called an Oka manifold. We discuss this topic in
Section 7.1.



156 J. E. Fornæss et al.

6 Mergelyan’s Theorem in Higher Dimensions

As we have seen in Sections 2–4, the Mergelyan approximation theory in the
complex plane and on Riemann surfaces was a highly developed subject around
mid twentieth century. Around the same time, it became clear that the situation
is much more complicated in higher dimensions. For example, in 1955 J. Wermer
[173] constructed an arc in C

3 which fails to have the Mergelyan property. This
suggests that, in several variables, one has to be much more restrictive about the
sets on which one considers Mergelyan type approximation problems.

There are two lines of investigations in the literature: approximation on sub-
manifolds of Cn of various degrees of smoothness and approximation on closures
of bounded pseudoconvex domains. In neither category the problem is completely
understood, and even with these restrictions, the situation is substantially more
complicated than in dimension one. For example, R. Basener (1973), [14] (gen-
eralizing a result of B. Cole (1968), [39]) showed that Bishop’s peak point criterium
does not suffice even for smooth polynomially convex submanifolds of Cn. Even
more surprisingly, it was shown by K. Diederich and J. E. Fornæss in 1976 [42]
that there exist bounded pseudoconvex domains with smooth boundaries in C

2 on
which the Mergelyan property fails. The picture for curves is more complete; see G.
Stolzenberg [153], H. Alexander [5], and P. Gauthier and E. Zeron [80].

In this section we outline the developments starting around the 1960s, give proofs
in some detail in the cases of totally real manifolds and strongly pseudoconvex
domains, and provide some new results on combinations of such sets.

Definition 4 Let (X, J ) be a complex manifold, and let M ⊂ X be a C 1

submanifold.

(a) M is totally real at a point p ∈ M if TpM ∩ JTpM = {0}. If M is totally real
at all points, we say thatM is a totally real submanifold of X.

(b) M is a stratified totally real submanifold of X if M = ⋃l
i=1Mi , with

Mi ⊂ Mi+1 locally closed sets, such that M1 and Mi+1 \ Mi are totally real
submanifolds.

We now introduce suitable types of sets for Mergelyan approximation. The
following notion is a generalization of the one for Riemann surfaces in Definition 3.
Recall that a compact set S in a complex manifold X is a Stein compact if S admits
a basis of open Stein neighborhoods in X.

Definition 5 (Admissible Sets) Let S be a compact set in a complex manifoldX.

(a) S is admissible if it is of the form S = K∪M , where S andK are Stein compacts
andM = S \K is a totally real submanifold of X (possibly with boundary).

(b) S is stratified admissible if instead M = ⋃l
i=1Mi is a stratified totally real

submanifold such that Si = K ∪Mi is compact for every i = 1, . . . , l.
(c) An admissible set S = K ∪ M is strongly admissible if, in addition to the

conditions in (a),K is the closure of a strongly pseudoconvex Stein domain, not
necessarily connected.
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Remark 4 We emphasize that, in the definition of an admissible set, it is the
decomposition of S into the union K ∪M that matters, so one might think of them
as pairs (K,M) with the indicated properties. We will show (see Lemma 2) that if
in (a) only the set S is assumed to be a Stein compact (and M is totally real), then
K is nevertheless automatically a Stein compact. It follows that if S = K ∪M is a
stratified admissible set and M = ⋃m

i=1Mi is a totally real stratification, then the
set Si = K ∪Mi is a stratified admissible set for every i (see Corollary 4). �%
Remark 5 We wish to compare the class of admissible sets with those considered
by L. Hörmander and J. Wermer [97] and F. Forstnerič [54, Sect. 3], [62, Sects. 3.7–
3.8]. A compact set S in a complex manifoldX is said to be holomorphically convex
if it admits a Stein neighborhoodΩ ⊂ X such that S is O(Ω)-convex. Clearly, such
S is a Stein compact, but the converse is false in general. Let us call a compact set
S = K∪M an HW set (for Hörmander and Wermer) if S is holomorphically convex
andM = S \K is a totally real submanifold ofX. In the cited works, approximation
results similar to those presented here are proved on HW sets. Clearly, every HW
set is admissible. By combining the techniques in the proof of Proposition 2 and
Theorem 20 one can prove the following partial converse.

Proposition 1 If S = K ∪ M is an admissible set in complex manifold X and
U ⊂ X is a neighborhood of K , there exists a Stein neighborhood Ω of S such that

h(S) := ŜO(Ω) \ S ⊂ U.

Thus, taking S′ = ŜO(Ω), K ′ = K ∪ h(S), and M ′ = M \ h(S), we see that
S′ = K ′ ∪ M ′ is an HW set with K ′ ⊂ U . Thus, every admissible set can be
approximated from the outside by HW sets, enlarging K only slightly.

It was shown by L. Hörmander and J. Wermer [97] (see also [62, Theorem 3.7.1])
that if S = K ∪ M is an HW set and S′ = K ∪ M ′ is another compact set, with
M ′ a totally real submanifold, such that S ∩ U = S′ ∩ U holds for some open
neighborhood of K , then S′ is also admissible (i.e., any such S′ is a Stein compact).
In view of the above proposition, the same holds true for admissible sets, i.e., this
class is stable under changes of the totally real part which are fixed near K . �%

We will consider two types of approximations in higher dimensions. On admis-
sible sets S = K ∪ M we will consider Runge–Mergelyan approximation, i.e.,
we assume that the object we want to approximate (function, form, map, etc.) is
holomorphic on a neighborhood of K and continuous or smooth onM . On strongly
admissible sets we will consider true Mergelyan approximation, assuming that the
object to be approximated is of class A r (S) for some r ∈ Z+.
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6.1 Approximation on Totally Real Submanifolds and
Admissible Sets

In this section we present an optimal C k-approximation result on totally real
submanifolds. With essentially no extra effort we get approximation results on
stratified totally real manifolds and on admissible sets (see Theorems 20 and 21).

There is a long history on approximation on totally real submanifolds, starting
with J. Wermer [173] on curves and R. O. Wells [172] on real analytic manifolds.
The first general result on approximation on totally real manifolds with various
degrees of smoothness is due to L. Hörmander and J. Wermer [97]. Their work
is based on L2-methods for solving the ∂-equation, and the passage from L2 to
C k-estimates led to a gap between the order m of smoothness of the manifold
M on which the approximation takes place, and the order k of the norm of the
Banach space C k(M) in which the approximation takes place. Subsequently, several
authors worked on decreasing the gap between m and k, introducing more precise
integral kernel methods for solving ∂ . The optimal result withm = k was eventually
obtained by M. Range and Y.-T. Siu [139]. Subsequent improvements were made
by F. Forstnerič, E. Løw, and N. Øvrelid [66] in 2001. They developed Henkin-type
kernels adapted to this situation and obtained optimal results on approximation of
∂-flat functions in tubes around totally real manifolds by holomorphic functions. In
2009, B. Berndtsson [18] usedL2-theory to give a new approach to uniform approxi-
mation by holomorphic functions on compact zero sets of strongly plurisubharmonic
functions. A novel byproduct of his method is that, in the case of polynomial
approximation, one gets a bound on the degree of the approximating polynomial
in terms of the closeness of the approximation.

We will not go into the details of the L2 or the integral kernel approaches, but
will instead present a method based on convolution with the Gaussian kernel which
originates in the proof of Weierstrass’s Theorem 1 on approximating continuous
functions on R by holomorphic polynomials. This approach is perhaps the most
elementary one, and is particularly well suited for proving Runge–Mergelyan type
approximation results with optimal regularity on (strongly) admissible sets. It
seems that the first modern application of this method was made in 1981 by S.
Baouendi and F. Treves [12] to obtain local approximation of Cauchy–Riemann
(CR) functions on CR submanifolds. The use of this method on totally real
manifolds was developed further by P. Manne [118] in 1993 to obtain Carleman
approximation on totally real submanifolds (see also [119]).

We define the bilinear form 〈· , · 〉 on C
n by

〈z,w〉 =
n∑

i=1

ziwi, z2 = 〈z, z〉 =
n∑

i=1

z2
i . (19)

We consider first the real subspace R
n of Cn. Recall that
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∫

Rn

e−x2
dx =

∫

Rn

e−
∑n
i=1 x

2
i dx1 · · · dxn =

(∫

R

e−t2dt
)n
= πn/2.

It follows that
∫
Rn
e−x2/ε2

dx = εnπn/2, so the family of functions π−n/2ε−ne−x2/ε2

is an approximate identity on R
n. Given f ∈ C k0 (R

n), consider the entire functions

fε(z) = π−n/2
∫

Rn

1

εn
f (x)e−(x−z)2/ε2

dx, z ∈ C
n, ε > 0.

(See (3) for n = 1.) It is straightforward to verify that fε → f uniformly on R
n,

and by a change of variables u = z− x we get convergence also in the C k norm.
It is remarkable that the same procedure gives local approximation in the C k

norm on any totally real submanifold of class C k . Recall that Bn
R
⊂ R

n is the unit
ball and B

n
R
(ε) = εBn

R
for any ε > 0.

Proposition 2 Let ψ : Bn
R
→ R

n be a map of class C k (k ∈ N) with ψ(0) =
(dψ)0 = 0, and set φ(x) = x+ iψ(x) ∈ C

n. Then there exists a number 0 < δ < 1
such that the following holds. Let N ⊂ B

n
R

be a closed set, and letM = φ(Bn
R
(δ) ∩

N) ⊂ C
n and bM = φ(bBn

R
(δ)∩N) ⊂ C

n. Given f ∈ C0(M), there exists a family
of entire functions fε ∈ O(Cn), ε > 0, such that the following hold as ε → 0:

(a) fε → f uniformly onM , and
(b) fε → 0 uniformly on U = {z ∈ C

n : dist(z, bM) < η} for some η > 0.

Moreover, if N is a C k-smooth submanifold of B
n
R

and f ∈ C k
0 (M), then the

approximation in (a) may be achieved in the C k-norm onM .

Remark 6 This proposition is local. However, Condition (b) and Cartan’s theorem
B make it very simple to globalize the approximation in the case thatM is a totally
real piece of an admissible set (see Theorem 20 below). �%
Proof of Proposition 2 Since functions on N extend to B

n
R

in the appropriate
classes, it is enough to prove the proposition in the case N = B

n
R

.
Note that φ′(x) = I + iψ ′(x). We will need (see Hörmander [95, p. 85]) that if

A is a symmetric n× n matrix with positive definite real part, then

∫

Rn

e−〈Au,u〉du = πn/2(det A)−1/2. (20)

We shall use this with the matrix A(x) = φ′(x)T φ′(x) whose real part equals
)A(x) = I − ψ ′(x)T ψ ′(x). Since ψ ′(0) = 0, there is a number 0 < δ0 < 1
such that )A(x) > 0 is positive definite for all x ∈ B

n
R
(δ0), and ψ is Lipschitz-α

with α < 1 on B
n
R
(δ0). By using a smooth cut-off function, we extend ψ to R

n such
that supp(ψ) ⊂ B

n
R

, without changing its values on B
n
R
(δ0). (This does not affect

the lemma.) We will show that the lemma holds for any number δ with 0 < δ < δ0.
SetM = φ(Bn

R
(δ)) andM0 = φ(BnR(δ0)), soM ⊂ M0. Given f ∈ C k0 (M), set
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fε(z) = 1

πn/2εn

∫

M

f (w)e−(w−z)2/ε2
dw, z ∈ C

n, (21)

where dw = dw1 . . . dwn.
We begin by showing that condition (b) holds by inspecting the integral kernel.

Writing z = x + iy ∈ C
n and w = u+ iv = C

n, we have that

∣∣e−(w−z)2
∣∣ = e−)(w−z)2 = e(y−v)2−(x−u)2 .

For a fixed w = u + iv, let Γw = {z = x + iy ∈ C
n : (y − v)2 < (x − u)2}. On

Γw, the function e−(w−z)2/ε2
clearly converges to zero as ε → 0. Since the map ψ

is Lipschitz-α with α < 1 on B
n
R
(δ0), we see that for every w ∈ M0 we have that

M0 \ {w} ⊂ Γw. Hence, there exists and open neighborhood U ⊂ C
n of bM with

U ⊂ Γw for all w ∈ supp(f ). This establishes (b).
Let us now prove (a). Since the function x �→ f (φ(x)) is supported in B

n
R
(δ), we

can extend the product of it with any other function on B
n
R
(δ) to all of Rn by letting

it vanish outside B
n
R
(δ). Fix a point z0 = φ(x0) ∈ M with x0 ∈ B

n
R
(δ). Using the

notation (19), we have that

fε(z0) = π−n/2
∫

M

1

εn
f (w)e−(w−z0)

2/ε2
dw

= π−n/2
∫

Rn

1

εn
f (φ(x)) e−(φ(x)−φ(x0))

2/ε2
detφ′(x) dx

= π−n/2
∫

Rn

f (φ(x0 + εu)) e−(u+i(ψ(x0+εu)−ψ(x0))/ε)
2

detφ′(x0 + εu)du.

(We applied the change of variable x = x0 + εu.) The Lipschitz condition on ψ
gives

∣∣e−(u+i(ψ(x0+εu)−ψ(x0))/ε)
2 ∣∣ ≤ e−(1−α)|u|2

for all x0 ∈ B
n
R
(δ) and 0 < ε < δ0−δ. The dominated convergence theorem implies

lim
ε→0

fε(z0) = π−n/2
∫

Rn

f (φ(x0))e
−〈φ′(x0)u,φ

′(x0)u〉 detφ′(x0) du

= π−n/2
∫

Rn

f (z0)e
−〈φ′(x0)

T φ′(x0)u,u〉 detφ′(x0) du

= f (z0).

The last line follows from (20) applied with the matrix A = φ′(x0)
T φ′(x0), noting

also that detA = detφ′(x0)
2. The estimates are clearly independent of x0 ∈ B

n
R
(δ),

and hence of z0 ∈ M , so the convergence fε → f is uniform onM .
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To get convergence in the C k norm, one replaces partial differentiation of the
kernel in (21) with respect to z by partial differentiation of f with respect to w (see
P. Manne [118, p. 524] for the details). �%

We now globalize Proposition 2 to obtain the approximation of C k functions on
totally real manifolds of class C k and on (stratified) admissible sets.

Theorem 20 Let S = K ∪M be an admissible set in a complex manifold X (see
Definition 5), with M a totally real submanifold (possibly with boundary) of class
C k . Then for any f ∈ C k(S) ∩ O(K) there exists a sequence fj ∈ O(S) such that

lim
j→∞‖fj − f ‖C k(S) = 0.

Proof We begin by considering the case when supp(f ) is contained in the totally
real manifold M = S \ K , that is, supp(f ) ∩ K = ∅. We cover the compact set
supp(f ) ⊂ M \K by finitely many open domains (coordinate balls)M1, . . . ,Mm ⊂
M such that Proposition 2 holds for each Mj and

⋃m
j=1Mj ⊂ M \ K . Let χj ∈

C k0 (Mj ) be a partition of unity on a neighborhood of supp(f ), so f = ∑
j χjf .

Clearly, it suffices to prove the theorem separately for each χjf , so we assume
without loss of generality that f is compactly supported inM1.

Let U ⊂ X be a neighborhood of bM1 satisfying condition (b) in Proposition 2.
Let B ⊂ X be an open set with M1 ⊂ B and let A ⊂ X be an open set containing
S \ M1, such that A ∩ B ⊂ U . Let Ω ⊂ X be a Stein neighborhood of S with
Ω ⊂ A ∪ B, and set ΩA := Ω ∩ A and ΩB = Ω ∩ B. Consider the map Γ :
O(ΩA) ⊕ O(ΩB) → O(ΩA ∩ ΩB) defined by (fA, fB) �→ fA − fB . Then Γ is
surjective by Cartan’s theorem B, and so by the open mapping theorem, Γ is an
open mapping with respect to the Fréchet topologies on the respective spaces. Let
now fε be a family as in Proposition 2. Then fε → 0 on ΩA ∩ ΩB , so there is a
sequence Fε = (fA,ε, fB,ε) ∈ O(ΩA)⊕ O(ΩB) converging to zero in the Fréchet
topology, with Γ (Fε) = fε . Pick a sequence εj → 0, and set fj := fεj + fB,εj on
ΩB and fj := fA,εj on ΩA. The conclusion now follows by restricting fj to any
domain Ω ′ with S ⊂ Ω ′ � Ω .

It remains to consider the general case when the support of f intersects K . To
this end, we note that what we have proved so far gives the following useful lemma.

Lemma 2 If S = K ∪ M is a Stein compact in a complex manifold X, if S \ K
is totally real, and U ⊂ X is an open set containing K , then there exists a Stein
neighborhood Ω ⊂ X of S such that K̂O(Ω) ⊂ U . In particular, K is a Stein
compact.

Proof For each point p ∈ M \ K there is a disc Mp ⊂ M \ K around p on which
Proposition 2 holds. As we have just shown, we may use Theorem 20 to approximate
a continuous function which is zero nearK and one at the point p, and so there exists
a holomorphic function fp ∈ O(S) such that |fp| is as small as desired on K and
|fp| > 1/2 on a neighborhood of p. By taking the sum ρ =∑

j |fpj |2 over finitely
many such functions, we get a plurisubharmonic function ρ ≥ 0 on a neighborhood
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V of S which is> 1 on a neighborhoodW of the compact setM \ U and is close to
0 on a neighborhood ofK . Note that S ⊂ U∪W . By choosing a Stein neighborhood
Ω of S such that Ω ⊂ (U ∪W) ∩ V , it follows that K̂O(Ω) ⊂ U . �%

We now conclude the proof of Theorem 20. Assume that the function f ∈ C k(S)
to be approximated is holomorphic in an open set U ⊃ K . Choose a Stein
neighborhood Ω of S as in Lemma 2 such that K0 := K̂O(Ω) ⊂ U . Pick an O(Ω)-
convex compact set K1 ⊂ U containing K0 in its interior. Choose a smooth cut-off
function χ supported on K1 such that χ = 1 on a neighborhood K0. By the Oka–
Weil theorem (see Theorem 18) there is a sequence gj ∈ O(Ω) such that gj → f

uniformly on K1 as j →∞. Then, we clearly have that

f̃j := χgj + (1− χ)f = gj + (1− χ)(f − gj )→ f as j →∞

in C k(S). As gj ∈ O(Ω), it remains to approximate the functions (1−χ)(f −gj ) ∈
C k(S) whose support does not intersect K0 ⊃ K , so we have our reduction. �%

For approximation on stratified admissible sets, we need the following.

Corollary 4 Let S = K ∪ M be a stratified admissible set, with a totally real
stratification M = ⋃l

i=1Mi . Then Si := K ∪Mi is a Stein compact (and hence a
stratified admissible set) for each i = 1, . . . , l − 1.

Proof Note that the top stratum M̃ := M \Ml−1 is a totally real submanifold and
S = Sl−1 ∪ M̃ is an admissible set. Lemma 2 implies that Sl−1 is a Stein compact.
The result now follows by a finite downward induction on l. �%
Theorem 21 If S = K ∪M is a stratified admissible set in a complex manifold X,
then for any f ∈ C (S) ∩ O(K) there exists a sequence fj ∈ O(S) such that

lim
j→∞‖fj − f ‖C (S) = 0.

Proof By assumption there is a stratification M = ⋃l
i=1Mi with M1 and Mi+1 \

Mi totally real manifolds for i = 1, . . . , l − 1. Let M0 = ∅. It suffices to apply
Theorem 20 successively withKi = K∪Mi and Si = Ki∪Mi+1 (i = 0, . . . , l−1).

�%
Remark 7 It is not possible in general to obtain C k-approximation on stratified
totally real manifolds M , even if M is itself C k-smooth. Suppose, for instance,
that M ⊂ C

n is a C 1-smooth submanifold which is a Stein compact, and which is
totally real except at a point p ∈ M . Then,M has an obvious stratification by totally
real manifolds, but it is clearly impossible to achieve C 1-approximation at the point
p due to the Cauchy–Riemann equations. However, one sees immediately that one
may achieve C k-approximation on compact subsets of eachMi+1 \Mi .

Theorem 21 holds in the more general case when S = K ∪M is a Stein compact
withM =⋃l

i=1Mi a stratified totally real set, meaning thatM1 and each difference
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Mi \Mi−1 (i = 2, . . . , l) is a locally closed totally real set. We refer to P. Manne
[117, 118] and to E. Løw and E. F. Wold [113] for these extensions. �%

A further generalization of Theorem 20 is provided by Theorem 34 in Section 7;
we state it there as it concerns manifold-valued maps.

Although holomorphically convex smooth submanifolds of Cn do not in general
admit Mergelyan approximation, E. L. Stout [156] gave the following general result
in the real analytic setting, also allowing for varieties.

Theorem 22 (E. L. Stout (2006), [156]) Let X be a Stein space. If M ⊂ X is a
compact real analytic subvariety such thatM = spec O(M), then C (M) = O(M).

Recall thatM = spec O(M) means that any continuous character on the algebra
O(M) may be represented by a unique point evaluation on M . An example is if M
is a countable intersection of Stein domains. We will not give a proof of the full
theorem here, but we will use Theorem 21, together with some fundamental results
due to K. Diederich and J. E. Fornæss [43] and E. Bishop [21], to give a relatively
short proof under the stronger assumption thatM is a Stein compact.

Proof of Theorem 22 under the assumption thatM is a Stein compact Without loss
of generality we may assume that M ⊂ C

n. It was proved by K. Diederich and
J.-E. Fornæss [43] that M does not contain a nontrivial analytic disc. Now, M
has a stratification M = ⋃m

i=1Mi such that each difference Vi = Mi+1 \ Mi is
a real analytic submanifold. We claim that every Vi is totally real outside a real
analytic submanifold Ṽi of positive codimension. If not, there is an open subset
U ⊂ Vi such that U is a CR-manifold, and according to Bishop [21] one may attach
families of holomorphic discs to U shrinking towards any given point p ∈ U . By
the assumption about holomorphic convexity, the discs will eventually be contained
in U , but this contradicts the result of Diederich and Fornæss [43]. This argument
may be used repeatedly to refine the initial stratification ofM into a stratification by
totally real submanifolds, and hence the result follows from Theorem 21. �%

6.2 Approximation on Strongly Pseudoconvex Domains
and on Strongly Admissible Sets

As we have seen, proofs of the Mergelyan theorem in one complex variable depend
heavily on integral representations of holomorphic or ∂-flat functions. The single
most important reason why the one-dimensional proofs work so well is that the
Cauchy–Green kernel (4) provides a solution to the inhomogeneous ∂-equation
which is uniformly bounded on all of C in terms of sup-norm of the data and the area
of its support (see (6)). This allows uniform approximation of functions in A (K)
on any compact set K ⊂ C with not too rough boundary by functions in O(K)
(see Vitushkin’s Theorem 7). Nothing like that holds in several variables, and the
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question of uniform approximability is highly sensitive to the shape of the boundary
even for smoothly bounded domains.

The idea of developing holomorphic integral kernels for domains in C
n with

comparable properties to those of the Cauchy kernel in one variable was promoted
by H. Grauert already around 1960; however, it took almost a decade to be realized.
The first such constructions were given in 1969 by G. M. Henkin [92] and E.
Ramírez de Arellano [138] for the class of strongly pseudoconvex domains. These
kernels provide solution operators for the ∂-equation which are bounded in the C k

norms and improve the regularity by 1/2. We state here a special case of their results
for (0, 1)-forms, but in a more precise form which can be found in the works by I.
Lieb and M. Range [112, Theorem 1], I. Lieb and J. Michel [111], and [62, Theorem
2.7.3]. A brief historical review of the kernel method is given in [66, pp. 392–393].

Given a domain Ω ⊂ C
n, we denote by C k(0,1)(Ω) the space of all differential

(0, 1)-forms of class C k on Ω .

Theorem 23 IfΩ is a bounded strongly pseudoconvex Stein domain with boundary
of class C k for some k ∈ {2, 3, . . .} in a complex manifoldX, there exists a bounded
linear operator T : C 0

(0,1)(Ω)→ C 0(Ω) satisfying the following properties:

(i) If f ∈ C 0
0,1(Ω) ∩ C 1

0,1(Ω) and ∂f = 0, then ∂(Tf ) = f .

(ii) If f ∈ C 0
0,1(Ω) ∩ C r

0,1(Ω) for some r ∈ {1, . . . , k} then

‖Tf ‖C l,1/2(Ω) ≤ Cl,Ω‖f ‖C l
0,1(Ω)

, l = 0, 1, . . . , r.

Moreover, the constants Cl,Ω may be chosen uniformly for all domains sufficiently
C k close to Ω .

The kernel method led to a variety of applications to function theory on
strongly pseudoconvex domains. In particular, G. Henkin (1969) [92], N. Kerzman
(1971) [100], and I. Lieb (1969) [110] proved the Mergelyan property for strongly
pseudoconvex domains with sufficiently smooth boundary, and J. E. Fornæss (1976)
[48] improved this to domains with C 2 boundary. Subsequently, J. E. Fornæss and
A. Nagel (1977) [49] showed that the Mergelyan property holds in the presence of
transverse holomorphic vector fields near the set of weakly pseudoconvex boundary
points (the so-called degeneracy set); this holds in particular for any bounded
pseudoconvex domain with real analytic boundary in C

2. F. Beatrous and M.
Range (1980) [15] proved for holomorphically convex domains Ω � C

n with C 2

boundaries that a function f ∈ A (Ω) can be uniformly approximated by functions
in O(Ω) if it can be approximated on a neighborhood of the degeneracy set. This
result appeared earlier in the thesis of F. Beatrous (1978).

On the other hand, K. Diederich and J. E. Fornæss (1976) [42] found an example
of a C∞ smooth pseudoconvex domain Ω ⊂ C

2 for which the Mergelyan property
fails. Their example is based on the presence of a Levi-flat hypersurface in bΩ
having an annular leaf with infinitesimally nontrivial holonomy. This phenomenon
was further explored by D. Barrett [13] who showed in 1992 that the Bergman pro-
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jection on certain Diederich–Fornæss worm domains does not preserve smoothness
as measured by Sobolev norms. In 1996, M. Christ [37] obtained a substantially
stronger result to the effect that the Bergman projection on such domains Ω does
not even preserve C∞(Ω); this provided the first example of smoothly bounded
pseudoconvex domains in C

n on which the Bell–Ligocka Condition R fails.
In 2008, F. Forstnerič and C. Laurent-Thiebaut proved the Mergelyan property

for smoothly bounded pseudoconvex domains Ω � C
n whose degeneracy set

consisting of weakly pseudoconvex boundary points A ⊂ bΩ is of the form
A = {z ∈ M : ρ(z) ≤ 0}, where ρ is a strongly plurisubharmonic function in
a neighborhood of A, M ⊂ C

n is a Levi-flat hypersurface whose Levi foliation is
defined by a closed 1-form, and A is the closure of its relative interior inM (see [65,
Theorem 1.9]). The paper [65] provides several sufficient conditions for a foliation
to be defined by a closed 1-form. This condition implies in particular that every leaf
of M is topologically closed and has trivial holonomy map. On the other hand, in
the worm hypersurface of Diederich and Fornæss [42] the foliation contains a leaf
with nontrivial holonomy to which other leaves spirally approach. In [65] it was
shown under the same hypotheses that the ∂-Neumann operator onΩ is regular. See
E. Straube and M. Sucheston [158, 159] for related results.

We begin with the proof of the Mergelyan property on strongly pseudoconvex
domains, taking for granted the existence of bounded solution operators for the ∂-
equation in Theorem 23. The proof we present here is similar to Sakai’s proof [146]
discussed already in the proof of Theorem 6 (see Remark 2).

Theorem 24 Let X be a Stein manifold, and let Ω ⊂ X be a relatively compact
strongly pseudoconvex domain of class C k for k ∈ {2, 3, . . .}. Then for any f ∈
C k(Ω)∩O(Ω) (k ∈ Z+) there exists a sequence of functions fm ∈ O(Ω) such that
limm→∞ ‖fm − f ‖C k(Ω) = 0.

Proof Let ρ ∈ C 2(U) be a defining function for Ω in an open set U ⊃ Ω , so Ω =
{ρ < 0} and dρ �= 0 on bΩ = {ρ = 0}. For small t > 0, set Ωt = {ρ < t} ⊂ U
and Ωt = {ρ ≤ t}. We cover bΩ by finitely many pairs of open sets Wj ⊂ Vj ,
j = 1, . . . l, with flows φj,t (z) of holomorphic vector fields defined on Vj , such
that

φj,t (Wj ∩Ωt) ⊂ Ω for all small t > 0. (22)

Such vector fields are obtained easily in local coordinates, using constant vector
fields pointing into Ω with a suitable scaling. Set W0 = Ω , and let {χj }lj=0 be a

smooth partition of unity with respect to the cover {Wj }lj=0. Choose m0 ∈ N such

thatΩ1/m0 ⊂
⋃l
j=0Wj and (22) holds for all 0 ≤ t ≤ 1/m0. Note that the functions

χj have bounded C k+1(Ω1/m0) norms. By Whitney’s theorem (see Theorem 46) we
may assume that f is extended to a C k-smooth function on Ω1/m0 . For any integer
m ≥ m0 we set
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Um,0 = Ω, Um,j = Ω1/m ∩Wj for j = 1, . . . , l, (23)

fm,0 = f on Um,0 = Ω, fm,j (z) = f (φj,1/m(z)), z ∈ Um,j , j = 1, . . . , l.
(24)

Consider the function

gm =
l∑

j=0

χj fm,j ∈ C k(Ω1/m).

From the definition of the functions fm,j (24) it follows that

‖fm,j − f ‖C k(Um,j )
= ω(1/m), j = 1, . . . , l, (25)

where ω(1/m) → 0 as m → ∞ (here ω(1/m) is proportional to the modulus of
continuity of the top derivative of f ), and hence ‖gm − f ‖C k(Ω1/m)

= ω(1/m).
We now estimate the C k-norm of ∂gm. Since

∑l
j=0 ∂χj = 0, we have that

∂gm =
l∑

j=0

fm,j ∂χj =
l∑

j=0

(fm,j − f ) ∂χj ,

and it follows from (25) that ‖∂gm‖C k(Ω1/m)
= ω(1/m).

As explained above, there are bounded linear operators Tm : C k(0,1)(Ω1/m) →
C k(Ω1/m), with bounds independent of m ≥ m0 and satisfying ∂Tm(α) = α for
every ∂-closed (0, 1)-form α on Ω1/m. Setting fm = gm − Tm(∂gm) ∈ O(Ω1/m)

we get that ‖fm − f ‖C k(Ω1/m)
= ω(1/m), and this completes the proof. �%

The next result gives C k-approximation on strongly admissible sets.

Theorem 25 Let X be a complex manifold. Assume that Ω � X is a strongly
pseudoconvex Stein domain of class C k for k ∈ {2, 3, . . .}, and that S = Ω ∪
M ⊂ X is a strongly admissible set. Given f ∈ C (S) ∩A (Ω) there is a sequence
fj ∈ O(S) such that limj→∞ ‖fj − f ‖C (S) = 0. Furthermore, if M is a totally
real manifold of class C k and f ∈ C k(S), we may choose fj ∈ O(S) such that
limj→∞ ‖fj − f ‖C k(S) = 0.

Proof We follow the proof of Theorem 24, but cover alsoM with theWj ’s. By the
theorem of Whitney and Glaeser (see Theorem 47 in the Appendix and the remark
following it), we may extend Tm(∂gm) to C k functions hm on some neighborhood
of S, converging to 0 in the C k-norm. Hence, f̃m := gm − hm is holomorphic on
Ω1/m and f̃m→ f in C k(Ω) as m→∞, and the result follows from Theorem 20.

�%
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6.3 Mergelyan Approximation in L2-Spaces

In his thesis from 2015, S. Gubkin [88] investigated Mergelyan approximation in
L2 spaces of holomorphic functions on pseudoconvex domains in C

n:

H 2(Ω) = O(Ω) ∩ L2(Ω).

The following theorem generalizes both his main results [88, Theorems 4.2.2 and
4.3.3]; in the first one the domain is assumed to have C∞-smooth boundary, and in
the second one it is assumed to admit a C 2 plurisubharmonic defining function. We
only assume that the closure of the domain is a Stein compact.

Theorem 26 Assume thatX is a Stein manifold andΩ � X is a relatively compact
pseudoconvex domain with C 1 boundary whose closureΩ is a Stein compact. Then
for any f ∈ H 2(Ω) there exists a sequence fj ∈ O(Ω) such that limj→∞ ‖fj −
f ‖L2(Ω) = 0.

Proof As in the proof of Theorem 24, we find an open cover {Wj }lj=0 of Ω1/m0

for some m0 ∈ N such that (22) holds. (This only requires that bΩ is of class
C 1.) Let {χj }lj=0 be a smooth partition of unity subordinate to {Wj }lj=0. Given an

integer m ≥ m0 we define the cover {Um,j }lj=0 and the functions (fm,j )lj=0 by (23)
and (24), respectively. Consider the function

gm =
l∑

j=0

χj fm,j ∈ L2(Ω1/m).

Fix δ > 0. Since ‖f ‖L2(Ω) <∞, there exists a compact subset K ⊂ Ω such that

‖f ‖L2(Ω\K) < δ. (26)

Choose a compact set K ′ ⊂ Ω such that

K ∪ supp(χ0) ⊂ K̊ ′. (27)

Note that gm→ f in sup-norm onK ′ asm→∞. Furthermore, (22) and (23) imply
φj,1/m(Um,j\K ′) ⊂ Ω \K for all big enough m, and hence (24) and (26) give

‖fm,j‖L2(Um,j \K ′) < 2δ for all m big enough and all j = 1, . . . , l. (28)

(The factor 2 comes from a change of variable; note that φj,t → Id as t → 0.) Since
this holds for every δ > 0, we see that limm→∞ ‖gm − f ‖L2(Ω) = 0.
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Next, we need to estimate ∂gm on Ω1/m. We have that

∂gm =
l∑

j=0

fm,j ∂χj =
l∑

j=0

(fm,j − f ) ∂χj ,

where the second expression holds onΩ . It follows that limm→∞ ‖∂gm‖L2(K ′) = 0.

On Ω \ K ′ we have in view of (27) that ∂gm = ∑l
j=1 fm,j ∂χj , and hence (28)

gives

‖∂gm‖L2(Ω1/m\K ′) < C0δ

for some constantC0 > 0 depending only on the partition of unity {χj }. Since δ > 0
was arbitrary, it follows that limm→∞ ‖∂gm‖L2(Ω1/m)

= 0.

Set αm = ∂gm, and letΩ ′ be a pseudoconvex domain withΩ ⊂ Ω ′ ⊂ Ω1/m. By
Hörmander, there exists a constant C > 0, independent of m and the choice of Ω ′,
such that there exists a solution hm to the equation ∂hm = αm with ‖hm‖L2(Ω ′) ≤
C ·‖αm‖L2(Ω ′). Setting fm = gm−hm we get that limm→∞ ‖fm−f ‖L2(Ω) = 0. �%
Remark 8 A simple example of a pseudoconvex domain on which the L2

Mergelyan property fails is the Hartogs triangleH = {(z, w) ∈ C
2 : |w| < |z| < 1}.

The holomorphic function f (z,w) = w/z on H is bounded by one, and it cannot
be approximated in any natural sense by holomorphic functions in neighborhoods
of H since its restriction to horizontal slices w = const has winding number −1.
Note thatH is not a Stein compact. One can also see that the L2 Mergelyan property
fails on the Diederich–Fornæss worm domain [42]. �%

We shall consider further topics in L2-approximation theory in Section 8.

6.4 Carleman Approximation in Several Variables

Carleman approximation on the totally real affine subspace M = R
n ⊂ C

n was
proved by S. Scheinberg [147] in 1976. Such spaces are obviously polynomially
convex, and, although less obviously so, they satisfy the following condition
(compare with Definition 2). For any compact set C ⊂ C

n we set

h(C) := Ĉ \ C.

Definition 6 A closed set M ⊂ C
n has the bounded exhaustion hulls property if

for any polynomially convex compact set K ⊂ C
n there exists R > 0 such that for

any compact set L ⊂ M we have that

h(K ∪ L) ⊂ B
n(0, R). (29)
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Clearly, it suffices to test this condition on any increasing sequence of compact
setsKj increasing to C

n. This notion extends in an obvious way to closed sets in an
arbitrary complex manifold X, replacing polynomial hulls by O(X)-convex hulls.
For closed sets M in C, this notion is equivalent to the one in Definition 2, and to
the condition that CP1 \ M is locally connected at infinity. (This is precisely the
condition under which Arakelian’s Theorem 10 holds.)

To see that M = R
n has bounded exhaustion hulls in C

n, we consider compact
sets of the form

Kr =
{
z ∈ C

n : |xj | ≤ r, |yj | ≤ r, j = 1, . . . , n
}
.

Let us first look at a point z̃ = x̃ + ıỹ ∈ C
n \ Rn with |x̃j | > (√n + 1)r for some

j . Consider the pluriharmonic polynomial

f (z) = −)((z− x̃)2) =
n∑

i=1

(
y2
i − (xi − x̃i )2

)
, z ∈ C

n.

A simple calculation shows that f (z) < 0 holds for any point z ∈ Kr , and we
clearly have f ≤ 0 on R

n and f (z̃) = (ỹ)2 > 0. This shows that

h(Kr ∪ R
n) ⊂ {

z ∈ C
n : |xj | ≤ (

√
n+ 1)r, j = 1, . . . , n

}
.

Clearly we also have h(Kr ∪ R
n) ⊂ {z ∈ C

n : |yj | ≤ r, j = 1, . . . , n}, and (29)
follows.

By using Theorem 20 it is easy to prove the following result, which by the
argument just given implies Scheinberg’s result in [147]. Fix a norm on the jet-
space J k(X), and denote it by | · |C k(x). Recall that an unbounded closed set M
in a Stein manifold X is called O(X)-convex if M is exhausted by an increasing
sequence of compact O(X)-convex sets.

Theorem 27 (P. E. Manne (1993), [117]) LetX be a Stein manifold. IfM ⊂ X is a
closed totally real submanifold of class C k that is holomorphically convex and has
bounded exhaustion hulls, then M admits C k-Carleman approximation by entire
functions.

Proof For simplicity of exposition we give the proof in the case X = C
n. SinceM

has bounded exhaustion hulls, there exists a normal exhaustion {Kj }j∈N of Cn by
polynomially convex compact sets such thatKj∪M is polynomially convex for each
j ∈ N. Choose a sequence mj ∈ N such that mj < mj+1 and Kj ⊂ B

n(0,mj ) for
each j . Set Mj = M ∩ Bn(0,mj ), and choose a function χj ∈ C∞0 (Bn(0,mj+1))

with χj ≡ 1 near Bn(0,mj ). To prove the theorem we proceed by induction, making
the induction hypothesis that we have found fj ∈ C k(M) ∩ O(Kj ∪Mj) such that

|fj − f |C k(x) < ε(x)/2, x ∈ M.
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It will be clear from the induction step how to achieve this for j = 1. Theorems 20
and 18 furnish a sequence gj,m ∈ O(Kj+1 ∪Mj+2) such that

‖gj,m − fj‖C k(Kj∪Mj+2)
→ 0 as m→∞.

It follows that fj+1 = gj,m + (1 − χj+1)(fj − gj,m) will reproduce the induction
hypothesis for sufficiently large m, and we may furthermore achieve ‖fj+1 −
fj‖Kj < 2−j . It follows that fj converges uniformly on compacts in X to an entire
function approximating f to the desired precision. �%

Prior to Manne’s result, H. Alexander [5] generalized Carleman’s theorem [31] to
smooth unbounded curves in C

n in 1979. By a fundamental work of G. Stolzenberg
[153], such a curve is always polynomially convex and has bounded exhaustion
hulls. In 2002 P. M. Gauthier and E. Zeron [80] improved Alexander’s result to
include locally rectifiable curves with trivial topology.

The situation is rather different for higher dimensional totally real manifolds.
In 2009, E. F. Wold [177] gave an example of a C∞ smooth totally real manifold
M ⊂ C

3 which is polynomially convex, but fails to have bounded exhaustion hulls.
In 2011, P. E. Manne, N. Øvrelid, and E. F. Wold [119] showed that a totally
real submanifold M ⊂ C

n admits C 1 Carleman approximation only if M has
bounded exhaustion hulls. Motivated by the problem of proving that the product of
two totally real Carleman continua is again a Carleman continuum, B. Magnusson
and E. F. Wold [114] gave in 2016 a very simple proof that a closed set admits
C 0 Carleman approximation only if it has bounded exhaustion hulls. Hence, we
have the following characterization of closed totally real submanifolds which admit
Carleman approximation.

Theorem 28 Let M be a closed totally real submanifold of class C k in a Stein
manifold X. Then, M admits C k-Carleman approximation by entire functions if
and only ifM is O(X)-convex and has bounded exhaustion hulls.

On the other hand, for any closed totally real submanifoldM in a Stein manifold
there always exists some Stein open neighborhood Ω of M with respect to which
M admits Carleman approximation, see P. Manne [118].

Problem 1 Let E ⊂ C
n be a closed polynomially convex subset with the bounded

exhaustion hulls property (see Definition 6).

(a) Suppose that k ∈ Z+ and f ∈ C k(Cn) is holomorphic in E̊ and ∂-flat to order
k along E. Is f uniformly approximable on E by entire functions? A positive
answer in dimension n = 1 is given by Arakelian’s Theorem 10.

(b) Suppose further that any f as in part (a) is approximable uniformly on every
compact K ⊂ E by entire functions. Does it follow that E is an Arakelian set?
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7 Approximation of Manifold-Valued Maps

We now apply results of the previous sections to approximation problems of Runge,
Mergelyan, and Carleman type for maps to complex manifolds more general than
Euclidean spaces. Such problems arise naturally in applications of complex analysis
to geometry, dynamics, and other fields. With the exception of Runge’s theorem
which leads to Oka theory and the concept of Oka manifold (see Section 7.1), this
area is fairly unexplored and offers interesting problems.

The most natural generalization of Runge’s theorem to manifold-valued maps
pertains to maps from Stein manifolds (and Stein spaces) to Oka manifolds; see
Theorem 29. This class of manifolds was introduced in 2009 F. Forstnerič [59]
after having proved that all natural Oka properties that had been considered in the
literature, which a given complex manifold Y might or might not have, are pairwise
equivalent. (See also [106].) The simplest one, which is commonly used as the
definition of the class of Oka manifolds, is given by Definition 7 below. Since a
comprehensive account of this subject is available in the monograph [62] and the
introductory surveys [61, 64], we only give a brief outline in Section 7.1, focusing
on the approximation theorem in line with the topic of this survey.

In Section 7.2 we consider the Mergelyan approximation problem for maps
K → Y from a Stein compact K in a complex manifold X to another manifold
Y . Assuming that the map is of class A (K, Y ), the main question is whether it is
approximable uniformly on K by maps holomorphic in open neighborhoods of K .
(The remaining question of approximability by entire maps X → Y is the subject
of Oka theory discussed in Section 7.1.) If this holds for every f ∈ A (K, Y ),
we say that the space A (K, Y ) enjoys the Mergelyan property. Thanks to a Stein
neighborhood theorem due to E. Poletsky (see Theorem 32), it is possible to show
for many classes of Stein compacts K that the Mergelyan property for functions
on K implies the Mergelyan property for maps K → Y to an arbitrary complex
manifold Y .

In Section 7.3 we present some recent results on Carleman and Arakelian type
approximation of manifold-valued maps.

7.1 Runge Theorem for Maps from Stein Spaces to Oka
Manifolds

Oka theory concerns the existence, approximation, and interpolation results for
holomorphic maps from Stein manifolds and, more generally, Stein spaces, to com-
plex manifolds. To avoid topological obstructions one considers globally defined
continuous or smooth maps, and the main question is whether they can be deformed
to holomorphic maps, often with additional approximation and interpolation condi-
tions. Thus, Oka theory may be understood as the theory of homotopy principle in
complex analysis, a point of view emphasized in the monographs [62, 86].
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The classical aspect of Oka theory is known as the Oka–Grauert theory. It
originates in K. Oka’s paper [133] from 1939 where he proved that a holomorphic
line bundle E → X over a Stein manifold X is holomorphically trivial if it is
topologically trivial; the converse is obvious. This is equivalent to the problem of
constructing a holomorphic section X → E without zeros, granted a continuous
section without zeros. (Oka only considered the case when X is a domain of
holomorphy in C

n since the notion of a Stein manifold was introduced only in 1951
[152]; however, the same proof applies to Stein manifolds and, more generally, to
Stein spaces.) It follows that holomorphic line bundles E1 → X, E2 → X over a
Stein manifold are holomorphically equivalent if they are topologically equivalent;
it suffices to apply Oka’s theorem to the line bundle E−1

1 ⊗ E2. In particular, any
holomorphic line bundle over an open Riemann surfaceX is holomorphically trivial.
A cohomological proof of this result is obtained by applying the long exact sequence
of cohomology groups to the exponential sheaf sequence 0 → Z → OX →
O∗X → 0, where O∗X is the sheaf of nonvanishing holomorphic functions and the
map OX → O∗X is given by f �→ e2πif (see, e.g., [62, Sect. 5.2]).

In 1958, Oka’s theorem was extended by H. Grauert [83] to much more general
fiber bundles with complex Lie group fibers over Stein spaces; see also H. Cartan
[33] for an exposition. Grauert’s results apply in particular to holomorphic vector
bundles of arbitrary rank over Stein spaces and show that their holomorphic
classification agrees with the topological classification. The cohomological point
of view is still possible by considering nonabelian cohomology groups with values
in a Lie group. Surveys of Oka–Grauert theory can be found in the paper [108] by
J. Leiterer and in the monograph [62] by F. Forstnerič.

The main ingredient in the proof of Grauert’s theorem is a parametric version of
the Oka–Weil approximation theorem for maps from Stein manifolds to complex
homogeneous manifolds. More precisely, given a compact O(X)-convex set K in
a Stein space X and a continuous map f : X → Y to a complex homogeneous
manifold Y such that f is holomorphic in an open neighborhood ofK , it is possible
to deform f by a homotopy ft : X → Y (t ∈ [0, 1]) to a holomorphic map f1
such that every map ft in the homotopy is holomorphic in a neighborhood ofK and
close to the initial map f = f0 on K . Analogous results hold for families of maps
fp : X → Y depending continuously on a parameter p in a compact Hausdorff
space P , where the homotopy is fixed for values of p ∈ P0 in a closed subset
P0 of P for which the map fp : X → Y is holomorphic on all on X. In other
words, Theorem 19 holds with the target C replaced by any complex homogeneous
manifold Y , provided that all maps fp : X → Y (p ∈ P) in the family are defined
and continuous on all of X. This point of view on Grauert’s theorem is explained in
[62, Sects. 5.3 and 8.2].

After some advances during 1960s, most notably those of O. Forster and K. J.
Ramspott [52, 53], a major extension of the Oka–Grauert theory was made by M.
Gromov [87] in 1989. He showed in particular that the existence of a dominating
holomorphic spray on a complex manifold Y implies all forms of the h-principle,
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also called the Oka principle in this context, for holomorphic maps from any Stein
manifold to Y . The subject was brought into an axiomatic form by F. Forstnerič who
introduced the class of Oka manifolds (see [55, 57, 59, 60] and the monograph [62]).

Definition 7 A complex manifold Y is an Oka manifold if every holomorphic map
K → Y from a neighborhood of any compact convex set K ⊂ C

n for any n ∈ N

can be approximated uniformly on K by entire maps Cn→ Y .

The following version of the Oka–Weil for maps from Stein spaces to Oka
manifolds is a special case of [62, Theorem 5.4.4].

Theorem 29 (Runge Theorem for Maps to Oka Manifolds) Assume that X is
a Stein space and Y is an Oka manifold. Let dist denote a Riemannian distance
function on Y . Given a compact O(X)-convex subset K of X and a continuous
map f : X → Y which is holomorphic in a neighborhood of K , there exists for
every ε > 0 a homotopy of continuous maps ft : X → Y (t ∈ [0, 1]) such that
f0 = f , for every t the map ft is holomorphic on a neighborhood ofK and satisfies
supx∈K dist(ft (x), f (x)) < ε, and the map f1 is holomorphic on X.

A complex manifold Y which satisfies the conclusion of Theorem 29 for every
triple (X,K, f ) is said to satisfy the basic Oka property with approximation (see
[62, p. 258]). A more general version of this result (see [62, Theorem 5.4.4])
includes the parametric case, as well as interpolation (or jet interpolation) on a
closed complex subvariety X0 of X provided all maps fp : X → Y (p ∈ P) in
a given continuous compact family are holomorphic on X0, or in a neighborhood of
X0 when considering jet interpolation. Since a compact convex set in C

n is O(Cn)-
convex, the condition that Y be an Oka manifold is clearly necessary in Theorem 29.

The class of Oka manifolds contains all complex homogeneous manifolds, but
also many nonhomogeneous ones. For example, if the tangent bundle T Y of a
complex manifold Y is pointwise generated by C-complete holomorphic vector
fields on Y (such a manifold is called flexible [9]), then Y is an Oka manifold [62,
Proposition 5.6.22]. For examples and properties of Oka manifolds, see [62, Chaps.
5–7].

Recently, two new characterizations of the class of Oka manifolds have been
found by Y. Kusakabe. In his first paper [104], Kusakabe showed that a complex
manifold Y is Oka if (and only if) for any Stein manifold X, the mapping space
O(X, Y ) is C-connected. In his second paper [105], he showed that Y is Oka if (and
only if) Y satisfies Gromov’s Condition Ell1 [87]. This condition means that for
every holomorphic map f : X → Y there exists a dominating holomorphic spray
F : X × C

N → Y with F(· , 0) = f , where the domination property means that
for any fixed x ∈ X the differential of the map F(x, · ) : CN → Y is surjective at
0 ∈ C

N . Kusakabe’s second result implies that a complex manifold Y is Oka if and
only if every point y0 ∈ Y has a Zariski open Oka neighborhood [105, Theorem
1.4].

In another recent direction, L. Studer proved a homotopy theorem for Oka
property and extended its validity to Oka pairs of sheaves [160], generalizing the
work of Forster and Ramspott [53].
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Theorem 29 has a partial analogue in the algebraic category, concerning maps
from affine algebraic varieties to algebraically subelliptic manifolds. For the
definition of the latter class, see [62, Definition 5.6.13(e)]. The following result is
[62, Theorem 6.15.1]; the original reference is [56, Theorem 3.1].

Theorem 30 Assume that X is an affine algebraic variety, Y is an algebraically
subelliptic manifold, and f0 : X→ Y is a (regular) algebraic map. Given a compact
O(X)-convex subset K of X, an open set U ⊂ X containing K , and a homotopy
ft : U → Y of holomorphic maps (t ∈ [0, 1]), there exists for every ε > 0 an
algebraic map F : X × C→ Y such that F(· , 0) = f0 and

sup
x∈K, t∈[0,1]

dist (F (x, t), ft (x)) < ε.

In particular, a holomorphic map X → Y which is homotopic to an algebraic map
can be approximated uniformly on compacts in X by algebraic maps X→ Y .

Simple examples show that Theorem 30 does not hold in the absolute form, i.e.,
there are examples of holomorphic maps which are not homotopic to algebraic maps
(see [62, Examples 6.15.7 and 6.15.8]).

By [62, Proposition 6.4.5], the class of algebraically subelliptic manifolds
contains all algebraic manifolds which are Zariski locally affine (such manifolds are
said to be of Class A0, see [62, Definition 6.4.4]), and all complements of closed
algebraic subvarieties of codimension at least two in such manifolds. In particular,
every complex Grassmannian is algebraically subelliptic, so Theorem 30 includes
as a special case the result of W. Kucharz [103, Theorem 1] from 1995. Another
paper on this topic is due to J. Bochnak and W. Kucharz [22].

In conclusion, we mention another interesting Runge type approximation theo-
rem of a rather different type, due to A. Gournay [82]. A smooth almost complex
manifold (M, J ) is said to satisfy the double tangent property if through almost
every point p ∈ M and almost every 2-jet of J -holomorphic discs at p, there exists
a J -holomorphic map u : CP1 → M having this jet as its second jet at 0 ∈ CP

1.

Theorem 31 (A. Gournay (2012), [82]) Let (M, J ) be a compact almost complex
manifold satisfying the double tangent property and let R be a compact Riemann
surface. Then, for every open set U ⊂ R and every compact K ⊂ U , every
J -holomorphic map u : U → M which continuously extends to R can be
approximated uniformly on K by J -holomorphic maps from R toM .

7.2 Mergelyan Theorem for Manifold-Valued Maps

In this section, we consider the question for which compact sets K in a complex
manifold X does the approximability of functions in A r (K) (r ∈ Z+) by functions
in O(K) imply the analogous result for maps to an arbitrary complex manifold Y .
Such approximation problems arise naturally in many applications.
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Recall that A (K, Y ) denotes the set of all continuous maps K → Y which
are holomorphic in K̊ , and that if r ∈ N, then A r (K, Y ) is the set of all maps
f ∈ A (K, Y ) which admit a C r extension to an open neighborhood of K in X. We
say that the mapping space A (K, Y ) has the Mergelyan property if

O(K, Y ) = A (K, Y ),

that is, every continuous map K → Y that is holomorphic in the interior K̊ is a
uniform limit of maps that are holomorphic in open neighborhoods of K in X.

Lemma 3 Assume that X is a complex manifold and K ⊂ X is a compact set
satisfying O(K) = A (K). Let Y be a complex manifold, and let f ∈ A (K, Y ).
Then f ∈ O(K, Y ) if one of the following conditions hold:

(a) The image f (K) ⊂ Y has a Stein neighborhood in Y .
(b) The graph Gf =

{
(x, f (x)) : x ∈ K}

has a Stein neighborhood in X × Y .

Proof We will give a proof of (b); the proof of (a) is essentially the same. Assume
that V ⊂ X × Y is a Stein neighborhood of Gf . By the Remmert–Bishop–
Narasimhan theorem (see [62, Theorem 2.4.1]) there is a biholomorphic map
φ : V → Σ ⊂ C

N onto a closed complex submanifold of a Euclidean space. By
the Docquier–Grauert theorem (see [62, Theorem 3.3.3]) there is a neighborhood
Ω ⊂ C

N of Σ and a holomorphic retraction ρ : Ω → Σ . Assuming that
O(K) = A (K), we can approximate the map φ ◦ f : K → Σ ⊂ C

N as closely as
desired uniformly on K by a holomorphic map G : U → Ω ⊂ C

N from an open
neighborhood U ⊂ X of K . The map g = prY ◦ φ−1 ◦ ρ ◦ G : U → Y then
approximates f on K . �%

Given a compact set K in a complex manifold X and a complex manifold Y , let

O loc(K, Y )

denote the set of all continuous maps f : K → Y which are locally approximable by
holomorphic maps, in the sense that every point x ∈ K has an open neighborhood
U ⊂ X such that f |K∩U ∈ O(K ∩ U). Clearly,

O(K, Y ) ⊂ O(K, Y ) ⊂ O loc(K, Y ) ⊂ A (K, Y ).

When Y = C, we simply write O(K) ⊂ O(K) ⊂ O loc(K) ⊂ A (K). We say that
the space A (K, Y ) has the local Mergelyan property if

O loc(K, Y ) = A (K, Y ). (30)

The following theorem was proved by E. Poletsky [137, Theorem 3.1].

Theorem 32 (Poletsky (2013), [137]) Let K be a Stein compact in a complex
manifold X, and let Y be a complex manifold. For every f ∈ O loc(K, Y ), the graph
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of f on K is a Stein compact in X × Y . In particular, if A (K, Y ) has the local
Mergelyan property (30), then the graph of every map f ∈ A (K, Y ) is a Stein
compact in X × Y .

Poletsky’s proof uses the technique of fusing plurisubharmonic functions.
Roughly speaking, we approximate a collection of plurisubharmonic functions
ρj : Uj → R on open sets Uj ⊂ X × Y covering the graph of f by a
plurisubharmonic function ρ on U = ⋃

j Uj , in the sense that the sup-norm
‖ρ− ρj‖Uj for each j is estimated in terms of maxi,j ‖ρi − ρj‖Ui∩Uj and a certain
positive constant which depends on a strongly plurisubharmonic function τ in a
Stein open neighborhood of K in X. This fusing procedure is rather similar to the
proof of Y.-T. Siu’s theorem [151] given by J.-P. Demailly [41] and Colţoiu [40].
(Demailly’s proof can also be found in [62, Sect. 3.2].) The functions ρj alluded to
above are of the form |fj (x)− y|2, where (x, y) is a local holomorphic coordinate
on Uj = Vj ×Wj with Vj ⊂ X andWj ⊂ Y , and fj ∈ O(Uj , Y ) is a holomorphic
map which approximates f on Uj ∩ K . (Such local approximations exist by the
hypothesis of the theorem.) By this technique, one finds strongly plurisubharmonic
exhaustion functions on arbitrarily small open neighborhoods of the graph of f in
X × Y ; by Grauert’s theorem [84] such neighborhoods are Stein.

In the special case when the set K in Theorem 32 is the closure of a relatively
compact strongly pseudoconvex Stein domain, the existence of a Stein neighbor-
hood basis of the graph of any map f ∈ A (K, Y ) was first proved by F. Forstnerič
[58] in 2007. His proof uses the method of gluing holomorphic sprays.

Theorem 32 and Lemma 3 give the following corollary.

Corollary 5 LetK be a Stein compact in a complex manifoldX. If A (K) = O(K),
then O loc(K, Y ) = O(K, Y ) holds for any complex manifold Y .

Proof Note that O(K, Y ) ⊂ O loc(K, Y ). Assume now that f ∈ O loc(K, Y ). By
Theorem 32, the graph of f on K admits an open Stein neighborhood in X × Y .
Assuming that A (K) = O(K), Lemma 3(b) shows that f ∈ O(K, Y ). �%

In light of Theorem 32 and Corollary 5, it is natural to ask when does the space
A (K, Y ) enjoy the local Mergelyan property (30). To this end, we introduce the
following property of a compact set in a complex manifold.

Definition 8 A compact set K in a complex manifold X enjoys the strong local
Mergelyan property if for every point x ∈ K and neighborhood x ∈ U ⊂ X there is
a neighborhood x ∈ V ⊂ U such that A (K ∩ V ) = O(K ∩ V ).

Remark 9 Clearly, the strong local Mergelyan property of K implies the local
Mergelyan property A (K) = O loc(K) of the algebra A (K). However, the former
property is ostensibly stronger since it asks for approximability of functions defined
on small neighborhoods of points in K , and not only of functions in A (K). If K
has empty interior, we have A (K) = C (K) and the two properties are equivalent
by the Tietze extension theorem for continuous functions. Theorem 14 due to A.
Boivin and B. Jiang [26, Theorem 1] shows that, for a compact set K in a Riemann
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surface, the Mergelyan property A (K) = O(K) implies the strong local Mergelyan
property of K . We do not know whether the same holds for compact sets in higher
dimensional manifolds. It is obvious that every compact set with boundary of class
C 1 in any complex manifold has the strong local Mergelyan property. Note also
that the strong local Mergelyan property for functions implies the same property
for maps to an arbitrary complex manifold Y , for the simple reason that locally any
map has range in a local chart of Y which is biholomorphic to an open subset of a
Euclidean space. This is the main use of this property in the present paper. �%
Problem 2 Let K be a compact set in a complex manifold X.

1. Does A (K) = O loc(K) imply the strong local Mergelyan property of K?
2. Does A (K) = O(K) imply the strong local Mergelyan property of K?

We have the following corollary to Theorem 32.

Corollary 6 Let K be a compact set in a complex manifold X.

(a) If K has the strong local Mergelyan property (see Definition 8), then
A (K, Y ) = O loc(K, Y ) holds for every complex manifold Y .

(b) If K is a Stein compact with the strong local Mergelyan property and A (K) =
O(K), then A (K, Y ) = O(K, Y ) holds for every complex manifold Y .

(c) If K is a Stein compact with C 1 boundary such that A (K) = O(K), then
A (K, Y ) = O(K, Y ) holds for every complex manifold Y .

Proof (a) Let f ∈ A (K, Y ). Every point x ∈ K has an open neighborhoodUx ⊂ X
such that f (K ∩ Ux) is contained in a coordinate chart W ⊂ Y biholomorphic to
an open subset of C

n, n = dimY . Since K is assumed to have the strong local
Mergelyan property, there exists a compact relative neighborhood Kx ⊂ K ∩ U of
the point x in K such that f |Kx ∈ O(Kx,W). (See Remark 9.) This means that
f ∈ O loc(K, Y ), thereby proving (a). In case (b), Corollary 5 implies O loc(K, Y ) =
O(K, Y ), and together with part (a) we get A (K, Y ) = O(K, Y ). In case (c), the
set K clearly has the strong local Mergelyan property, so the conclusion follows
from (b). �%

The following case concerning compact sets in Riemann surfaces may be of
particular interest (see [63, Theorem 1.4]).

Corollary 7 If K is a compact set in a Riemann surface X such that A (K) =
O(K), then A (K, Y ) = O(K, Y ) holds for any complex manifold Y . This holds in
particular if X \K has no relatively compact connected components.

Proof Note that any compact set in a Riemann surface is a Stein compact (since
every open Riemann surface is Stein according to H. Behnke and K. Stein [17]).
According to Theorem 14, the hypothesis A (K) = O(K) implies that K has the
strong local Mergelyan property, so the result follows from Corollary 6.

In the special case whenX\K has no relatively compact connected components,
we can give a simple proof as follows. By Theorem 5, every function f ∈ A (K)
is a uniform limit on K of functions in O(X), hence A (K) = O(K). Fix a point
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x ∈ K and let U ⊂ X be a coordinate neighborhood of x with a biholomorphic map
φ : U → D ⊂ C. Pick a number 0 < r < 1. The compact set K ′ = K ∩ φ−1(rD)

does not have any holes in U . (Indeed, any such would also be a hole of K in X,
contradicting the hypothesis.) By Theorem 5 it follows that A (K ′) = O(K ′). This
shows that K enjoys the strong local Mergelyan property, and hence the conclusion
follows from Corollary 6. �%

The following consequence of Corollary 7 and of the Oka principle (see
Theorem 29) has been observed recently in [63, Theorem 1.2].

Corollary 8 (Mergelyan Theorem for Maps from Riemann Surfaces to Oka
Manifolds) IfK is a compact set without holes in an open Riemann surface X and
Y is an Oka manifold, then every continuous map f : X→ Y which is holomorphic
in K̊ can be approximated uniformly onK by holomorphic mapsX→ Y homotopic
to f .

It was shown by J. Winkelmann [175] in 1998 that Mergelyan’s theorem also
holds for maps from compact sets in C to the domain C

2 \ R2; this result is not
covered by Corollary 8. His proof can be adapted to give the analogous result for
maps from any open Riemann surface to C

2 \ R2.

Remark 10 The following claim was stated by E. Poletsky [137, Corollary 4.4]:
(*) If K is a Stein compact in a complex manifold X and A (K) has the Mergelyan
property, then A (K, Y ) has the Mergelyan property for any complex manifold Y .

The proof in [137] tacitly assumes that under the assumptions of the corollary
the space A (K, Y ) has the local Mergelyan property, but no explanation for this
is given. Corollaries 6 and 7 above provide several sufficient conditions for this to
hold. We do not know whether (*) is true for every Stein compact in a complex
manifold of dimension > 1; compare with Remark 9 on p. 176. �%
Corollary 9 If S = K ∪M is a strongly admissible set in a complex manifold X
(see Definition 5), then A (S, Y ) = O(S, Y ) holds for any complex manifold Y .
Furthermore, for each r ∈ N, every map f ∈ A r (S, Y ) is a C r (S, Y ) limit of maps
U → Y holomorphic in open neighborhoods U ⊂ X of S.

Proof It is clear from the definition of a strongly admissible set that for every point
x ∈ S and neighborhood x ∈ U ⊂ X there is a smaller neighborhood U0 � U of
x such that the set S0 = U0 ∩ S is also strongly admissible. By Theorem 25 we
have that A (S) = O(S), and also A (S0) = O(S0) for any S0 as above. This means
that S has the strong local Mergelyan property. The conclusion now follows from
Corollary 6. A similar argument applies to maps of class A r (S, Y ) for any r ∈ N.

�%
In the special case when the strongly admissible set K = S is the closure of

a relatively compact strongly pseudoconvex domain, Corollary 9 was proved by
F. Forstnerič [58] in 2007. His proof is different from those above which rely
on Poletsky’s Theorem 32. Instead it uses the method of gluing sprays, which
is essentially a nonlinear version of the ∂-problem. In the same paper, Forstnerič
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showed that many natural mapping spaces K → Y carry the structure of a Banach,
Hilbert of Fréchet manifold (see [58, Theorem 1.1] and also [62, Theorem 8.13.1]).
The following special case of the cited result is relevant to the present discussion.

Theorem 33 LetK be a compact strongly pseudoconvex domain with C 2 boundary
in a Stein manifoldX. Then, for every r ∈ Z+ and any complex manifold Y the space
A r (K, Y ) carries the structure of an infinite dimensional Banach manifold.

Further and more precise approximation results for maps from compact strongly
pseudoconvex domains to Oka manifolds were obtained by B. Drinovec Drnovšek
and F. Forstnerič in [45].

The proof of Theorem 20 in Section 6.1 is easily generalized to give the following
approximation result for sections of holomorphic submersions over admissible sets
in complex spaces. This plays a major role in the constructions in Oka theory (in
particular, in the proof of [62, Theorem 5.4.4]).

Theorem 34 Assume that X and Z are complex spaces, π : Z → X is a
holomorphic submersion, and X′ is a closed complex subvariety of X containing its
singular locus Xsing. Let S = K ∪M be an admissible set in X (see Definition 5),
where M ⊂ X \ X′ is a compact totally real submanifold of class C k for some
k ∈ N. Given an open set U ⊂ X containingK and a section f : U ∪M → Z|U∪M
such that f |U is holomorphic and f |M ∈ C k(M), there exist for every s ∈ N a
sequence of open sets Vj ⊃ S in X and holomorphic sections fj : Vj → Z|Vj
(j ∈ N) such that fj agrees with f to order s along X′ ∩ Vj for each j ∈ N, and
limj→∞ fj |S = f |S in the C k(S)-topology.

A version of this result, with some loss of derivatives on the totally real
submanifold M (due to the use of Hörmander’s L2 method) and without the
interpolation condition, is [55, Theorem 3.1]. (A proof also appears in [62, Theorem
3.8.1].) The case when Z = X × C (i.e., for functions) and without loss of
derivatives was proved earlier by P. Manne [117] by using the convolution method
(see Proposition 2 in Section 6.1). The general case is obtained from the special
case for functions by following [62, proof of Theorem 3.8.1], noting also that
the interpolation condition on the subvariety X′ is easily achieved by a standard
application of the Oka–Cartan theory. As always in results of this type, one begins
by showing that the graph of the section admits a Stein neighborhood in Z; see [62,
Lemma 3.8.3].

Another case of interest is when K is a compact set with empty interior, so
A (K) = C (K). The following result is due to E. L. Stout [157].

Theorem 35 If K is a compact set in a complex space X such that C (K) = O(K)
(hence K̊ = ∅), then C (K, Y ) = O(K, Y ) holds for any complex manifold Y .

Unlike in the previous results, the set K in Theorem 35 need not be a Stein
compact. Special cases of Stout’s theorem were obtained earlier by D. Chakrabarti
(2007, 2008) [34, 35] who also obtained uniform approximation of continuous maps
on arcs by pseudoholomorphic curves in almost complex manifolds.
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Proof Choose a smooth embedding φ : Y ↪→ R
m for somem ∈ N. Considering R

m

as the real subspace of Cm, the graph Z = {(y, φ(y)) : y ∈ Y } ⊂ Y×Rm ⊂ Y×Cm
is a totally real submanifold of Y × C

m, so it has an open Stein neighborhood Ω in
Y × C

m. Let π : Y × C
m → Y denote the projection onto the first factor. Given a

continuous map f : K → Y , the hypothesis of the theorem together with Lemma 3
implies that the continuous map K * x �→ F(x) = (f (x), φ(f (x))) ∈ Ω can be
approximated by holomorphic maps G : U → Ω in open neighborhoods U ⊂ X of
K . The map g = π ◦G : U → Y then approximates f on K . �%

7.3 Carleman and Arakelian Theorems for Manifold-Valued
Maps

In Sections 3 and 6.4 we have considered Carleman and Arakelian type approxi-
mation in one and several variables, respectively. In this section, we present some
applications and extensions of these results to manifold-valued maps.

The following result has been proved recently by B. Chenoweth.

Theorem 36 (Chenoweth (2019), [36]) Let X be a Stein manifold and Y be an
Oka manifold. If K ⊂ X is a compact O(X)-convex subset andM ⊂ X is a closed
totally real submanifold of class C r (r ∈ N) with bounded exhaustion hulls (see
Definition 6) such that K ∪ M is O(X)-convex, then for any k ∈ {0, 1, . . . , r}
the set K ∪M admits C k-Carleman approximation of maps f ∈ C k(X, Y ) which
are holomorphic on a neighborhood of K .

This is proved by inductively applying Mergelyan’s theorem for admissible sets
(see Theorem 34), together with the Oka principle for maps from Stein manifolds
to Oka manifolds (see [62, Theorem 5.4.4] which is a more precise version of
Theorem 29 above). These two methods are intertwined at every step of the
induction procedure. In view of Theorem 28 characterizing totally real submanifolds
admitting Carleman approximation, the conditions in the theorem are optimal.

Carleman type approximation theorems have also been proved for some special
classes of maps such as embeddings and automorphisms. Typically, proofs of such
results combine methods of approximation theory with those from the Andersén–
Lempert theory concerning holomorphic automorphisms of complex Euclidean
spaces and, more generally, of Stein manifolds with the density property. Space
limitation do not allow us to present this theory here; instead, we refer the reader to
the recent survey in [62, Chapter 4].

We have already seen that Arakelian type approximation on closed sets with
unbounded interior is considerably more difficult than Carleman approximation. In
fact, we are not aware of a single result of this type on subsets of Cn for n > 1.
However, the following extension of the classical one variable Arakelian’s theorem
(see Theorem 10) was proved by F. Forstnerič [63] in 2019.
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Theorem 37 If E is an Arakelian set in a domain X ⊂ C and Y is a compact
complex homogeneous manifold, then every continuous map X → Y which is
holomorphic in E̊ can be approximated uniformly on E by holomorphic maps
X→ Y .

The scheme of proof in [63] follows the proof of Theorem 10, but with
improvements from Oka theory which are needed in the nonlinear setting. The proof
does not apply to general Oka manifolds, not even to noncompact homogeneous
manifolds. Note that the approximation problems of Arakelian type for maps to
noncompact manifolds may crucially depend on the choice of the metrics on both
spaces.

8 Weighted Approximation in L2 Spaces

All approximation results considered so far were in one of the C k topologies on the
respective sets. We now present some results of a rather different kind, concerning
approximation and density in weighted L2 spaces of holomorphic functions.

Let Ω be a domain in C
n, and let φ be a plurisubharmonic function on Ω .

We denote by L2(Ω, e−φ) the space of measurable functions which are square
integrable with respect to the measure e−φdλ, where dλ is the Lebesgue measure:

‖f ‖2φ :=
∫

Ω

|f |2e−φdλ <∞.

By H 2(Ω, e−φ) we denote the space of holomorphic functions on Ω with finite
φ-norm:

H 2(Ω, e−φ) = {
f ∈ O(Ω) : ‖f ‖φ <∞

}
.

Note that if φ1 ≤ φ2, then H 2(Ω, e−φ1) ⊂ H 2(Ω, e−φ2) and the inclusion map is
continuous, in fact, norm decreasing.

Let z = (z1, . . . , zn) be coordinates on C
n and |z|2 = ∑n

i=1 |zi |2. Let φ1 ≤
φ2 ≤ · · · and φ be plurisubharmonic functions on C

n with φj → φ pointwise as
j →∞. Set

ψj = φj + log(1+ |z|2), ψ = φ + log(1+ |z|2).

Assume in addition that
∫
K
e−φ1dλ < ∞ for every compact set K ⊂ C

n. The
following theorem was proved by B. A. Taylor in 1971; see [161, Theorem 1.1].

Theorem 38 (Assumptions as Above.) For every f ∈ H 2(Cn, e−φ) there is a
sequence fj ∈ H 2(Cn, e−ψj ) such that ‖fj − f ‖ψ → 0 as j →∞.

This result was improved in a recent paper by J. E. Fornæss and J. Wu [50].
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Theorem 39 Let φ1 ≤ φ2 ≤ · · · and φ be plurisubharmonic functions on C
n

such that φj → φ pointwise. For any ε > 0, let φ̃j = φj + ε log(1 + |z|2) and

φ̃ = φ + ε log(1+ |z|2). Then
⋃∞
j=1H

2(Cn, e−φ̃j ) is dense in H 2(Cn, e−φ̃ ).

Question 1 Let φ1 ≤ φ2 ≤ · · · and φ be plurisubharmonic functions on Ω ⊂ C
n

such that φj → φ. Is
⋃∞
j=1H

2(Ω, e−φj ) dense in H 2(Ω, e−φ)? �%
Recently, J. E. Fornæss and J. Wu [178] solved this problem in the case of

Ω = C.

Theorem 40 If φ1 ≤ φ2 ≤ · · · and φ are subharmonic functions on C such that
φj → φ a.e. as j →∞, then

⋃∞
j=1H

2(C, e−φj ) is dense in H 2(C, e−φ).

This problem has a rich history in dimension one. Here one considers more
general weights w which are positive measurable functions on a domain Ω ⊂ C,
and one defines for 1 ≤ p <∞ the weighted Lp-space of holomorphic functions:

Hp(Ω,w) =
{
f ∈ O(Ω) :

∫

Ω

|f |pwdλ <∞
}
.

The so-called completeness problem is whether polynomials in Hp(Ω,w) are
dense. There are two lines of investigation. One is about finding sufficient conditions
on the domain and the weight in order for the polynomials to be dense in the
weighted Hilbert space. Another one is to look at specific types of domains and
ask the same question for the weight function. These questions go back to T.
Carleman [30] who proved in 1923 that if Ω is a Jordan domain and w ≡ 1, then
holomorphic polynomials are dense inH 2(Ω) = L2(Ω)∩O(Ω). Carleman’s result
was extended by O. J. Farrell and A. I. Markuševič to Carathéodory domains (see
[46, 126]). It is well known that this property need not hold for non-Carathéodory
regions. The book by D. Gaier [70] (see in particular Chapter 1, Section 3) contains
further results about L2 polynomials approximation on some simply connected
domains in the plane. For weight functions other than the identity, L. I. Hedberg
proved in 1965 [91] that polynomials are dense when Ω is a Carathéodory domain,
the weight function is continuous, and it satisfies some technical condition near
the boundary. For certain non-Carathéodory domains, the weighted polynomial
approximation is usually considered under the assumption that the weight w is
essentially bounded and satisfies some additional conditions. For a more complete
description of the history of this problem and many related references, see the survey
by J. E. Brennan [28].

By using Hörmander’s L2 estimate for the ∂-operator, B. A. Taylor [161] proved
the following result which can be seen as a major breakthrough for general weighted
approximation. (See also D. Wohlgelernter [176].)

Theorem 41 (B. A. Taylor (1971), Theorem 2 in [161]) If φ is a convex function
on C

n such that the space H 2(Cn, e−φ) contains all polynomials, then polynomials
are dense in H 2(Ω, e−φ).
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In 1976 N. Sibony [150] generalized Taylor’s result as follows. Given a domain
Ω ⊂ C

n, we denote by dΩ(z) the Euclidean distance of a point z ∈ Ω to C
n \Ω .

Write δ0(z) = (1+ |z|2)−1/2 and

δΩ(z) = min{dΩ(z), δ0(z)}, z ∈ Ω.

Theorem 42 (N. Sibony (1976), [150]) If Ω is an open convex domain in C
n and

φ is a convex function on Ω satisfying

sup
z∈Ω

e−φ(z)δ−kΩ (z) < +∞, k ∈ N,

then polynomials are dense in Hp(Ω, e−φ) for all 1 ≤ p ≤ +∞.

In the same paper, Sibony also proved the analogous result for homogeneous
plurisubharmonic weights.

Theorem 43 (N. Sibony (1976), [150]) Let φ be a plurisubharmonic function on
C
n which is complex homogeneous of order ρ > 0, that is, φ(uz) = |u|ρφ(z) for all
u ∈ C and z ∈ C

n. Then, polynomials are dense in H 2(Ω, e−φ).

It is well known that every convex function is plurisubharmonic, but the converse
is not true. In view of Theorem 41 it is therefore natural to ask the following
question. Let φ be a plurisubharmonic function on a Runge domain Ω ⊂ C

n.
Suppose that the restrictions of polynomials to Ω belong to H 2(Ω, e−φ). Does it
follow that polynomials are dense inH 2(Ω, e−φ)? Recently, S. Biard, J. E. Fornæss,
and J. Wu [179] found a counterexample in the plane.

Theorem 44 There is a subharmonic function φ on C such that all polynomials
belong to H 2(C, e−φ), but polynomials are not dense in H 2(C, e−φ).

They also proved the following positive result under additional conditions.

Theorem 45 Let φ be plurisubharmonic on a neighborhood of Ω ⊂ C
n, and

suppose that Ω is bounded, uniformly H-convex and polynomially convex. If
H 2(Ω, e−φ) contains all polynomials, then polynomials are dense in H 2(Ω, e−φ).

Recall that a compact set K ⊂ C
n is said to be uniformly H -convex if there

exist a sequence εj > 0 converging to 0, a constant c > 1, and a sequence of
pseudoconvex domains Dj ⊂ C

n such that K ⊂ Dj and

εj ≤ dist(K,Cn \Dj) ≤ cεj , j = 1, 2, . . . .

This terminology is due to E. M. Čirka [38] who showed that uniform H-convexity
implies a Mergelyan-like approximation property for holomorphic functions; how-
ever, the condition was used in L2 approximation results already by L. Hörmander
and J. Wermer [97] in 1968 (see Remark 5). A related notion is that of a strong Stein
neighborhood basis (which holds in particular for strongly hyperconvex domains);
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we refer to the paper by S. Şahutoğlu [145]. It seems an open problem whether any
of these conditions for the closure K = D of a smoothly bounded pseudoconvex
domain D � C

n implies the Mergelyan property for the algebra A (K).

9 Appendix: Whitney’s Extension Theorem

Given a closed set K in a smooth manifold X, the notation f ∈ Cm(K) means that
f is the restriction to K of a function in Cm(X).

Theorem 46 (Whitney (1934), [174]) Let Ω ⊂ R
n be a domain, and assume that

there exists a constant c ≥ 1 such that any two points x, y ∈ Ω can be joined by a
curve in Ω of length less than c|x − y|. If f ∈ Cm(Ω) is such that all its partial
derivatives of order m extend continuously to Ω , then f ∈ Cm(Ω).

In fact, a much stronger extension theorem was proved by Whitney. To state it,
we need to introduce some notation and terminology.

Let K ⊂ R
n be a compact set, and fix m ∈ N. A collection f = (fα) of

functions fα ∈ C (K), where α = (α1, . . . , αn) ∈ Z
n+ is a multiindex with |α| =

α1 + · · · + αn ≤ m, is called an m-jet on K . Let J m(K) denote the vector space
of m-jets on K . Set

‖f ‖m,K = max|α|≤m sup
x∈K
|fα(x)|.

An m-jet f = (fα) ∈J m(K) is said to be a Whitney function of class Cm on K if

fα(x) =
∑

|β|≤m−|α|

fα+β(y)
β! (x − y)β + o(|x − y|m−|α|)

holds for all α ∈ Z
n+ with |α| ≤ m and all x, y ∈ K . We denote by J m

W (K) the
space of all Whitney functions of class Cm on K .

Theorem 47 (Whitney [174], Glaeser [81]) Let K be a compact set in R
n. Given

f ∈ J m(K), there exists f̃ ∈ Cm(Rn) such that J m(f̃ )|K = f if and only if f
is a Whitney function of class Cm, that is, f ∈J m

W (K). Furthermore, there exists
a linear extension operator Λ : J m

W (K) → Cm(Rn) such that J mΛ(f )|K = f
for each f ∈ J m

W (K), and for every compact set L ⊂ R
n with K ⊂ L there is a

constant C > 0 depending only on K,L,m, n such that

‖Λ(f )‖m,L ≤ C‖f ‖m,K, f ∈J m
W (K). (31)

A proof of Whitney’s theorem, including the extensions and simplifications due
to Glaeser [81], can be found in the monograph by Malgrange [116, Theorem 3.2
and Complement 3.5].
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Remark 11 An inspection of the proof in [116] shows that, if the set K in
Theorem 47 is the closure of a domain Ω � R

n with Cm-smooth boundary, then
there are extension operators for all domains sufficiently close to Ω with the same
bound in (31). Furthermore, if Ωj is a sequence of domains such that Ωj → Ω in
Cm topology as j → ∞, we may fix a domain Ω̃ containing Ω and smooth maps
φj : Ω̃ → R

n such that φj (Ωj ) = Ω and φj → Id in the Cm-norm on Ω̃ . �%
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4. A. Alarcón, F. Forstnerič, F.J. López, Holomorphic Legendrian curves. Compos. Math.
153(9), 1945–1986 (2017)

5. H. Alexander, A Carleman theorem for curves in Cn. Math. Scand. 45(1), 70–76 (1979)
6. N.U. Arakelian, Uniform approximation on closed sets by entire functions. Izv. Akad. Nauk

SSSR Ser. Mat. 28, 1187–1206 (1964)
7. N.U. Arakelian, Uniform and tangential approximations by analytic functions. Izv. Akad.

Nauk Armjan. SSR Ser. Mat. 3(4–5), 273–286 (1968)
8. N.U. Arakelian, Approximation complexe et propriétés des fonctions analytiques, in Actes

du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (Gauthier-Villars, Paris,
1971), pp. 595–600

9. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties
and automorphism groups. Duke Math. J. 162(4), 767–823 (2013)

10. K. Astala, T. Iwaniec, G. Martin, Elliptic Partial Differential Equations and Quasiconformal
Mappings in the Plane. Princeton Mathematical Series, vol. 48 (Princeton University Press,
Princeton, 2009)

11. T. Bagby, P.M. Gauthier, Approximation by harmonic functions on closed subsets of Riemann
surfaces. J. Analyse Math. 51, 259–284 (1988)

12. M.S. Baouendi, F. Trèves, A property of the functions and distributions annihilated by a
locally integrable system of complex vector fields. Ann. Math. 113(2), 387–421 (1981)

13. D.E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm. Acta
Math. 168(1–2), 1–10 (1992)

14. R.F. Basener, On rationally convex hulls. Trans. Am. Math. Soc. 182, 353–381 (1973)
15. F. Beatrous, Jr., R.M. Range, On holomorphic approximation in weakly pseudoconvex

domains. Pacific J. Math. 89(2), 249–255 (1980)



186 J. E. Fornæss et al.

16. H. Behnke, F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränder-
lichen. Zweite veränderte Auflage. Die Grundlehren der mathematischen Wissenschaften,
Bd., vol. 77 (Springer, Berlin-Göttingen-Heidelberg, 1962)

17. H. Behnke, K. Stein, Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math.
Ann. 120, 430–461 (1949)

18. B. Berndtsson, A remark on approximation on totally real sets, in Complex Analysis and
Digital Geometry. Acta University Upsaliensis Skrifter Uppsala University C Organizational
History, vol. 86, pp. 75–80 (Uppsala Universitet, Uppsala, 2009)

19. E. Bishop, Subalgebras of functions on a Riemann surface. Pacific J. Math. 8, 29–50 (1958)
20. E. Bishop, Boundary measures of analytic differentials. Duke Math. J. 27, 331–340 (1960)
21. E. Bishop, Differentiable manifolds in complex Euclidean space. Duke Math. J. 32, 1–21

(1965)
22. J. Bochnak, W. Kucharz, Complete intersections in differential topology and analytic

geometry. Boll. Un. Mat. Ital. B (7) 10(4), 1019–1041 (1996)
23. A. Boivin, Carleman approximation on Riemann surfaces. Math. Ann. 275(1), 57–70 (1986)
24. A. Boivin, T-invariant algebras on Riemann surfaces. Mathematika 34(2), 160–171 (1987)
25. A. Boivin, P.M. Gauthier, Holomorphic and harmonic approximation on Riemann surfaces,

in Approximation, Complex Analysis, and Potential Theory (Montreal, QC, 2000). NATO
Science Series, II: Mathematics, Physics and Chemistry, vol. 37, pp. 107–128. (Kluwer
Academic Publication, Dordrecht, 2001)

26. A. Boivin, B. Jiang, Uniform approximation by meromorphic functions on Riemann surfaces.
J. Anal. Math. 93, 199–214 (2004)

27. A. Boivin, P.M. Gauthier, P.V. Paramonov, Approximation on closed sets by analytic or
meromorphic solutions of elliptic equations and applications. Canad. J. Math. 54(5), 945–969
(2002)

28. J.E. Brennan, Approximation in the mean by polynomials on non-Carathéodory domains.
Ark. Mat. 15(1), 117–168 (1977)

29. A. Browder, Introduction to Function Algebras (W. A. Benjamin Inc., Amsterdam, 1969)
30. T. Carleman, Über die Approximation analytischer Funktionen durch lineare Aggregate von

vorgegebenen Potenzen. Ark. Mat. Astron. Fys. 17(9), 30 (1923)
31. T. Carleman, Sur un théorème de Weierstraß. Ark. Mat. Astron. Fys. 20(4), 5 (1927)
32. L. Carleson, Mergelyan’s theorem on uniform polynomial approximation. Math. Scand. 15,

167–175 (1964)
33. H. Cartan, Espaces fibrés analytiques, in Symposium Internacional de Topología Alge-

braica (International Symposium on Algebraic Topology), pp. 97–121 (Universidad Nacional
Autónoma de México and UNESCO, Mexico, 1958)

34. D. Chakrabarti, Coordinate neighborhoods of arcs and the approximation of maps into
(almost) complex manifolds. Mich. Math. J. 55(2), 299–333 (2007)

35. D. Chakrabarti, Sets of approximation and interpolation in C for manifold-valued maps. J.
Geom. Anal. 18(3), 720–739 (2008)

36. B. Chenoweth, Carleman approximation of maps into Oka manifolds. Proc. Am. Math. Soc.
147(11), 4847–4861 (2019)

37. M. Christ, Global C∞ irregularity of the ∂-Neumann problem for worm domains. J. Am.
Math. Soc. 9(4), 1171–1185 (1996)

38. E.M. Čirka, Approximation by holomorphic functions on smooth manifolds in Cn. Mat. Sb.
(N.S.) 78(120), 101–123 (1969)

39. B.J. Cole, One-Point Parts and the Peak Point Conjecture (ProQuest LLC, Ann Arbor, 1968).
(Ph.D.) Thesis–Yale University
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57. F. Forstnerič, Runge approximation on convex sets implies the Oka property. Ann. Math. (2)
163(2), 689–707 (2006)
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A Potapov-Type Approach to a
Truncated Matricial Stieltjes-Type Power
Moment Problem

Bernd Fritzsche, Bernd Kirstein, Conrad Mädler, and Tatsiana Makarevich

Abstract The paper gives a parametrization of the solution set of a matricial
Stieltjes-type truncated power moment problem in the non-degenerate and degener-
ate cases. The key role plays the solution of the corresponding system of Potapov’s
fundamental matrix inequalities. The original matricial moment problem will be
reformulated in a system of interpolation problems for distinguished classes of
holomorphic q × q matrix-valued functions. A key instrument of our strategy is to
use an appropriate synthesis of techniques from the theory of meromorphic matrix-
valued functions with elements from the J -theory due to V. P. Potapov.

1 Introduction and Preliminaries

The starting point of studying power moment problems on semi-infinite intervals
was the famous two parts memoir of T. J. Stieltjes [58, 59]. A complete theory
of the treatment of power moment problems on semi-infinite intervals in the
scalar case was developed by M. G. Krein in collaboration with A. A. Nudelman
(see [50, Section 10], [51], [52, Chapter V]). What concerns an operator-theoretic
treatment of the power moment problems named after Hamburger and Stieltjes and
its interrelations, we refer the reader to Simon [57].

In the 1970s, V. P. Potapov developed a special approach to discuss matrix
versions of classical interpolation and moment problems. The main idea of his
method is based on transforming such problems into equivalent matrix inequalities
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with respect to the Löwner semi-ordering. Using this strategy, several matricial
interpolation and moment problems could successfully be handled (see, e. g., [7,
8, 15, 16, 18, 19, 21, 22, 24–26, 37, 38, 42–49, 53, 60]). L. A. Sakhnovich enriched
Potapov’s method by unifying the particular instances of Potapov’s procedure under
the framework of one type of operator identities [10, 40, 55].

Matrix versions of the classical Stieltjes moment problem were studied
by Adamyan/Tkachenko [1, 2], Andô [4], Bolotnikov [6, 7, 9], Bolot-
nikov/Sakhnovich [10], Chen/Hu [13], Chen/Li [14], Dyukarev [20, 21],
Dyukarev/Katsnelson [24, 25], and Hu/Chen [39]. The considerations of this paper
deal with the more general case of an arbitrary semi-infinite interval [α,∞), where
α is an arbitrarily given real number.

In order to formulate the moment problem, we are going to study, we first review
some notation. Throughout this paper, let p and q be positive integers. Let C, R,
N0, and N be the set of all complex numbers, the set of all real numbers, the set of
all non-negative integers, and the set of all positive integers, respectively. For every
choice of υ, ω ∈ R ∪ {−∞,∞}, let Zυ,ω be the set of all integers k for which
υ ≤ k ≤ ω holds. If X is a non-empty set, then X p×q stands for the set of all
p × q matrices each entry of which belongs to X , and X p is short for X p×1. If
(Ω,A) is a measurable space, then each countably additive mapping whose domain
is A and whose values belong to the set Cq×q≥ of all non-negative Hermitian complex
q × q matrices is called a non-negative Hermitian q × q measure on (Ω,A). By
M

q
≥(Ω,A) we denote the set of all non-negative Hermitian q × q measures on

(Ω,A). For the integration theory for non-negative Hermitian measures, we refer
to [41, 54]. If μ = [μjk]qj,k=0 is a non-negative Hermitian q × q measure on a

measurable space (Ω,A) and if K ∈ {R,C}, then we use L 1(Ω,A, μ;K) to
denote the set of all Borel-measurable functions f : Ω → K for which the integral
exists, i. e., that

∫
Ω
|f |dμ̃jk < ∞ for every choice of j and k in Z1,q , where μ̃jk

is the variation of the complex measure μjk . If f ∈ L 1(Ω,A, μ;K), then let∫
A
f dμ := [∫

Ω
1Af dμjk]qj,k=1 for all A ∈ A and we will also write

∫
A
f (ω)μ(dω)

for this integral.
Let BR (resp. BC) be the σ -algebra of all Borel subsets of R (resp. C). For all

Ω ∈ BR \ {∅}, let BΩ be the σ -algebra of all Borel subsets of Ω , let M
q
≥(Ω) :=

M
q
≥(Ω,BΩ) and, for all κ ∈ N0 ∪ {∞}, let M

q
≥,κ (Ω) be the set of all σ ∈

M
q
≥(Ω) such that for all j ∈ Z0,κ the function fj : Ω → C defined by fj (t) := tj

belongs to L 1(Ω,BΩ, σ ;C). If κ ∈ N0 ∪ {∞} and if σ ∈M
q
≥,κ (Ω), then we set

s
[σ ]
j

:=
∫

Ω

tjσ (dt) for each j ∈ Z0,κ .

The following matricial power moment problem lies in the background of our
considerations:

Problem 1 (MP[Ω; (sj )mj=0,≤]) Let Ω ∈ BR \ {∅}, let m ∈ N0, and let (sj )mj=0

be a sequence of complex q × q matrices. Describe the set M
q
≥[Ω; (sj )mj=0,≤] of
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all σ ∈ M
q
≥,m(Ω) for which the matrix sm − s[σ ]m is non-negative Hermitian and

for which, in the case m > 0, moreover s[σ ]j = sj is fulfilled for all j ∈ Z0,m−1.

Note that we also sometimes turn our attention to the following power moment
problem:

Problem 2 (MP[Ω; (sj )κj=0,=]) Let Ω ∈ BR \ {∅}, let κ ∈ N0 ∪ {∞},
and let (sj )κj=0 be a sequence of complex q × q matrices. Describe the set

M
q
≥[Ω; (sj )κj=0,=] of all σ ∈ M

q
≥,κ (Ω) for which s[σ ]j = sj is fulfilled for all

j ∈ Z0,κ .

The considerations of this paper are mostly concentrated on the case that the set
Ω is a one-sided bounded and closed infinite interval of the real axis. Such moment
problems are called to be of Stieltjes type.

In the case Ω = [α,∞) where α is an arbitrary given real number, in [31, 35],
we have handled both matricial moment problems formulated above via Schur
analysis methods. These moment problems were reformulated via a particular
integral transform. A parametrization of the solution set was given by a certain
linear fractional transformation of matrices, the generating matrix-valued function
of which is a suitable matrix polynomial built explicitly by the prescribed data.

In this paper we treat the problem with the aid of V. P. Potapov’s method of
fundamental matrix inequalities (short FMI method). In the first step it is shown
that the Stieltjes transforms of all solutions of the matricial moment problem are
exactly the solutions of a coupled system of two fundamental matrix inequalities.
This main step was carried out in detail in [36, Theorem 6.20]. For the convenience
of the reader this result is repeated in Theorem 4.3. The main aim of this paper is to
construct an explicit parametrization for the solution set of the system of the FMIs of
V. P. Potapov. The particular feature of the problem under consideration is that we
investigate the most general case which includes all possibilities of degeneracies.
For the case of non-degenerate interpolation or moment problems a machinery
for solving the FMI was developed (see, e. g., [47, 48]). For Ω := [0,∞) the
non-degenerate situation was handled by Yu. M. Dyukarev [20, 23] by use of the
FMI method. The treatment of degenerate problems started with the pioneering
work [18] (see also [19, Section 5.3]) of V. K. Dubovoj connected with the matricial
Schur problem and was continued with the investigations of V. A. Bolotnikov [7, 8]
in the context of degenerate truncated matricial moment problems.

A parametrization of the solution set of the moment problem [MP[[α,∞);
(sj )

m
j=0,≤]], where α is an arbitrarily given real number, by using Schur-type

algorithms is given in [35]. In this paper, we use Potapov’s method for solving
Problem MP[[α,∞); (sj )mj=0,≤]. The key role for solving the moment problem
MP[[α,∞); (sj )mj=0,≤], where α is an arbitrarily given real number, is Theorem 4.3
below. It will turn out that the solution set of the moment problem (obtained via
Stieltjes transformation) coincides with the solution set of a certain system of
Potapov’s fundamental matrix inequalities. The considerations in this paper are
aimed to solve these inequalities. In Section 15, we give a parametrization of
the solution set M

q
≥[[α,∞); (sj )2n+1

j=0 ,≤] of Problem MP[[α,∞); (sj )2n+1
j=0 ,≤],
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where α is an arbitrarily given real number and where n is an arbitrarily given
non-negative integer. Note that Problem MP[[α,∞); (sj )2nj=0,≤] can be discussed
by similar methods (see [56]). Furthermore observe that a parametrization of
the solution set of the moment problem MP[[α,∞); (sj )mj=0,=], where α is an
arbitrarily given real number, was worked out by using Schur algorithms in [31].

In Section 2, we recall necessary and sufficient conditions of solvability of the
moment problems in question. In Section 3, we reformulate these problems in
the language of certain matrix-valued functions. Section 4 is aimed at recalling
that the solutions of the reformulated problem are exactly the solutions of the
corresponding system of Potapov’s fundamental matrix inequalities. Section 5 is
aimed to give some identities for block Hankel matrices. In Section 6, we study
special subspaces of C

q , so-called Dubovoj subspaces against the background of
particular generalized inverses of matrices (see Section 17). These objects turn out
to be a basic tool to handle the degenerate case of the moment problem under
consideration. Section 7 is aimed at realizing first steps on the way to the solution
of the system of FMIs of V. P. Potapov. First the two matricial inequalities will
be handled separately. In a second step (see Proposition 7.16) a coupling will be
established between the two single FMIs of the system. The role of Section 7
is to provide a 2q × 2q matrix polynomial Θn,α which generates via Stieltjes
transform by linear fractional transformation the set of solutions of the original
moment problem. In Section 8 the set of parameters of this linear fractional
transformation is discussed. More precisely, a class of ordered pairs of q × q matrix
functions is studied which are meromorphic in C \ [α,∞). A closer analysis of
the 2q × 2q matrix polynomials Θn,α and Θ̃n,α studied in Section 7 leads us to a
particular class W̃

J̃q ,α
of J̃q -inner functions which is investigated in Section 9 and a

distinguished subclass W
J̃q ,α

of W̃
J̃q ,α

. In Section 10 we consider linear fractional
transformations with generating matrix-valued function belonging to W

J̃q ,α
. In

Section 11, we apply Proposition 10.1 to realize an important intermediate step on
the way to the solution of the system of FMIs of Potapov type. Section 12 handles
particular aspects of the degenerate case of the moment problem. In Section 13,
we are able to construct a parametrization of the solution set of our moment
problem (see Theorem 13.7). In the degenerate case the set of parameters used here
depends on the initial data. In order to improve this situation we carry out a closer
analysis of the phenomenon of degeneracy in Section 14. This leads us to a relevant
classification of the cases of possible kinds of degeneracy. There arise two basically
different situations of degeneracy which will be handled separately in Sections 15
and 16, respectively.

At the end of this section, let us introduce some further notations, which are
useful for our considerations. We will write Iq for the identity matrix in C

q×q ,
whereas 0p×q is the null matrix belonging to C

p×q . If the size of the identity matrix
or the null matrix is obvious, then we will also omit the indexes. The notations
C
q×q
H , Cq×q≥ , and C

q×q
> stand for the set of all Hermitian complex q × q matrices,

the set of all non-negative Hermitian complex matrices, and the set of all positive
Hermitian complex matrices, respectively. If A and B are complex q × q matrices,
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then we will write A ≤ B or B ≥ A to indicate that A and B are Hermitian matrices
such that the matrix B − A is non-negative Hermitian. For each A ∈ C

p×q , let
N (A) be the null space of A, let R (A) be the column space of A, and let rankA
be the rank of A. For each A ∈ C

q×q , we will use ImA to denote the imaginary
part of A: ImA := 1

2i (A − A∗). Furthermore, for each A ∈ C
p×q , let ‖A‖S be the

operator norm of A. For each x ∈ C
q , we write ‖x‖E for the Euclidean norm of

x. If A ∈ C
q×q , then detA stands for the determinant of A. We will often use the

Moore–Penrose inverse of a complex p × q matrix A. This is the unique complex
q × p matrix X such that the four equations AXA = A, XAX = X, (AX)∗ = AX,
and (XA)∗ = XA hold true (see, e. g., [19, Proposition 1.1.1]). As usual, we will
write A† for this matrix X.

If n ∈ N, if (pj )nj=1 is a sequence of positive integers, and if xj ∈ C
pj×q

for each j ∈ Z1,n, then let col(xj )nj=1 :=
⎡

⎣
x1
x2

...
xn

⎤

⎦. If n ∈ N, if (qk)nk=1 is a

sequence of positive integers, and if yk ∈ C
p×qk for each k ∈ Z1,n, then let

row(yk)nk=1 := [y1, y2, . . . , yn]. If n ∈ N, if (pj )nj=1 and (qj )nj=1 are sequences
of positive integers, and if Aj ∈ C

pj×qj for every choice of j in Z1,n, then let
diag(A1, A2, . . . , An) := [δjkAj ]nj,k=1, where δjk is the Kronecker delta: δjk := 1
in the case j = k and δjk := 0 if j �= k. We also use the notation diag(Aj )nj=1

instead of diag(A1, A2, . . . , An). If M is a non-empty subset of Cq , then let M ⊥
be the set of all vectors in C

q which are orthogonal to M (with respect to the
Euclidean inner product). If X , Y , and Z are non-empty sets with Z ⊆X and
if f : X → Y is a mapping, then RstrZ f stands for the restriction of f onto Z .

2 On the Solvability of Matricial Power Moment Problems

In this section, we recall necessary and sufficient conditions for the solvability of the
Stieltjes moment problems MP[[α,∞); (sj )mj=0,≤] and MP[[α,∞); (sj )mj=0,=],
where α is an arbitrarily given real number andm is an arbitrarily given non-negative
integer. First we introduce certain sets of sequences of complex q × q matrices,
which are determined by the properties of particular block Hankel matrices built
of them. For each n ∈ N0, let H ≥

q,2n be the set of all sequences (sj )2nj=0 of
complex q × q matrices such that the block Hankel matrix Hn := [sj+k]nj,k=0 is

non-negative Hermitian. Furthermore, let H ≥
q,∞ be the set of all sequences (sj )∞j=0

of complex q × q matrices such that, for all n ∈ N0, the sequence (sj )2nj=0 belongs

to H ≥
q,2n. The elements of the set H ≥

q,2κ , where κ ∈ N0 ∪ {∞}, are called

Hankel non-negative definite sequences. For all n ∈ N0, let H ≥,e
q,2n be the set

of all sequences (sj )2nj=0 of complex q × q matrices for which there are matrices

s2n+1 ∈ C
q×q and s2n+2 ∈ C

q×q such that (sj )
2(n+1)
j=0 belongs to H ≥

q,2(n+1).
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Furthermore, for all n ∈ N0, we will use H ≥,e
q,2n+1 to denote the set of sequences

(sj )
2n+1
j=0 of complex q × q matrices for which there is some s2n+2 ∈ C

q×q such that

(sj )
2(n+1)
j=0 belongs to H ≥

q,2(n+1). For all m ∈ N0, the elements of the set H ≥,e
q,m

are called Hankel non-negative definite extendable sequences. For technical reasons,
we set H ≥,e

q,∞ :=H ≥
q,∞. Observe that the solvability of the matricial Hamburger

moment problems can be characterized by the introduced classes of sequences of
complex q × q matrices:

Theorem 2.1 (See, e. g., [12, Theorem 3.2] or [26, Theorem 4.16]) Let
n ∈ N0 and let (sj )2nj=0 be a sequence of complex q × q matrices. Then

M
q
≥[R; (sj )2nj=0,≤] �= ∅ if and only if (sj )2nj=0 ∈H ≥

q,2n.

Theorem 2.2 (See [26, Theorem 4.17], [29, Theorem 6.6]) Let κ ∈ N0∪{∞} and
let (sj )κj=0 be a sequence of complex q × q matrices. Then M

q
≥[R; (sj )κj=0,=] �=

∅ if and only if (sj )κj=0 ∈H ≥,e
q,κ .

Let α ∈ C, let κ ∈ N ∪ {∞}, and let (sj )κj=0 be a sequence of complex

p × q matrices. Then let the sequence (sα,j )κ−1
j=0 be defined by

sα,j := −αsj + sj+1 for all j ∈ Z0,κ−1. (1)

The sequence (sα,j )κ−1
j=0 is called the sequence generated from (sj )

κ
j=0 by right-

sided α-shifting. (An analogous left-sided version is discussed in [30, Defini-
tion 2.1].) The sequence (sα,j )κ−1

j=0 is used to define further sets of sequences of
complex matrices, which are useful to discuss the Stieltjes moment problems we
consider. Let K ≥

q,0,α := H ≥
q,0. For every choice of n ∈ N, let K ≥

q,2n,α :=
{(sj )2nj=0 ∈ H ≥

q,2n : (sα,j )2(n−1)
j=0 ∈ H ≥

q,2(n−1)}. For all m ∈ N0, by Sm(C
q×q)

we denote the set of all sequences (sj )mj=0 of complex q × q matrices. Then we

set K ≥
q,2n+1,α := {(sj )2n+1

j=0 ∈ S2n+1(C
q×q) : {(sj )2nj=0, (sα,j )

2n
j=0} ⊆ H ≥

q,2n}.
For all m ∈ N0, let K ≥,e

q,m,α be the set of all sequences (sj )mj=0 of complex
q × q matrices for which there exists a complex q × q matrix sm+1 such that
(sj )

m+1
j=0 belongs to K ≥

q,m+1,α . Obviously, we have K ≥,e
q,2n,α = {(sj )2nj=0 ∈

H ≥
q,2n : (sα,j )2n−1

j=0 ∈ H ≥,e
q,2n−1} for all n ∈ N and K ≥,e

q,2n+1,α = {(sj )2n+1
j=0 ∈

H ≥,e
q,2n+1 : (sα,j )2nj=0 ∈H ≥

q,2n} for all n ∈ N0.

Remark 2.3 Let α ∈ R and let m ∈ N0. Then K ≥,e
q,m,α ⊆ K ≥

q,m,α . Furthermore,
if (sj )mj=0 ∈ K ≥

q,m,α (resp. K ≥,e
q,m,α), then we easily see that (sj )&j=0 ∈ K ≥

q,&,α

(resp. (sj )&j=0 ∈ K ≥,e
q,&,α) holds true for all & ∈ Z0,m.

The essential feature of a sequence (sj )2nj=0 ∈ K ≥
q,2n,α is a specific interplay

between the sequences (sj )2nj=0 ∈ H ≥
q,2n and (sα,j )2n−2

j=0 ∈ H ≥
q,2n−2. An

analogous fact is also essential for a sequence (sj )
2n+1
j=0 ∈ K ≥

q,2n+1,α .
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In view of Remark 2.3, for all α ∈ R, let K ≥
q,∞,α be the set of all sequences

(sj )
∞
j=0 of complex q × q matrices such that (sj )mj=0 belongs to K ≥

q,m,α for allm ∈
N0, and let K ≥,e

q,∞,α := K ≥
q,∞,α . For all κ ∈ N0∪{∞}, we call a sequence (sj )κj=0[α,∞)-Stieltjes right-sided non-negative definite (resp. [α,∞)-Stieltjes right-sided

non-negative definite extendable) if it belongs to K ≥
q,κ,α (resp. to K ≥,e

q,κ,α). Note
that left versions of these notions are used in [30, Definition 1.3].

Using the introduced sets of sequences of complex q × q matrices, we are
able to recall solvability criteria of the problems MP[[α,∞); (sj )mj=0,≤] and
MP[[α,∞); (sj )mj=0,=]:
Theorem 2.4 ([27, Theorem 1.4]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 be a

sequence of complex q × q matrices. Then M
q
≥[[α,∞); (sj )mj=0,≤] �= ∅ if and

only if (sj )mj=0 ∈ K ≥
q,m,α .

Theorem 2.5 Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0 be a sequence

of complex q × q matrices. Then M
q
≥[[α,∞); (sj )κj=0,=] �= ∅ if and only if

(sj )
κ
j=0 ∈ K ≥,e

q,κ,α .

In the case κ ∈ N0, a proof of Theorem 2.5 is given in [27, Theorem 1.3].
If κ = ∞, then the asserted equivalence can be proved using the equation
M

q
≥[[α,∞); (sj )∞j=0,=] =

⋂∞
m=0 M

q
≥[[α,∞); (sj )mj=0,=] and a matricial ver-

sion of the Helly–Prohorov theorem (see [28, Satz 9]). We omit the details of the
proof, the essential idea of which is originated in [3, proof of Theorem 2.1.1].

For the description of the solution set M
q
≥[[α,∞); (sj )mj=0,≤] of Prob-

lem MP[[α,∞); (sj )mj=0,≤], it is essential that one can suppose extendable data
without loss of generality:

Theorem 2.6 ([27, Theorem 5.2]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 ∈
K ≥

q,m,α . Then there is a unique sequence (s̃j )mj=0 ∈ K ≥,e
q,m,α such that

M
q
≥[[α,∞); (s̃j )mj=0,≤] =M

q
≥[[α,∞); (sj )mj=0,≤].

In [33] it was shown that the construction of the sequence (s̃j )mj=0 occurring in
Theorem 2.6 is a consequence of a general principle which also works analogously
for the truncated matricial Hamburger moment problem.

3 Some Classes of Holomorphic Matrix-Valued Functions

The main goal of this section can be summarized as follows. Using particular
integral representations we are going to reformulate the matricial moment prob-
lems MP[[α,∞); (sj )mj=0,≤] and MP[[α,∞); (sj )mj=0,=] into equivalent inter-
polation problems for appropriately chosen classes of holomorphic q × q matrix-
valued functions. The main tool is the following class of matrix-valued func-
tions. For each α ∈ R, let S q;[α,∞) be the set of all matrix-valued functions
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S : C \ [α,∞) → C
q×q which are holomorphic in C \ [α,∞) and which satisfy

Im[S(Π+)] ⊆ C
q×q
≥ as well as S((−∞, α)) ⊆ C

q×q
≥ . In [32, Theorems 3.1 and 3.6,

Proposition 2.16], integral representations of functions belonging to S q;[α,∞) are
proved. Furthermore, several characterizations of the class S q;[α,∞) are given
in [32, Section 4]. For each α ∈ R, let S 0,q;[α,∞) be the class of all F ∈ S q;[α,∞)
which satisfy supy∈[1,∞) y‖F(iy)‖S < ∞. The functions belonging to S 0,q;[α,∞)
admit a particular integral representation. Before we state this, let us note the
following:

Remark 3.1 For every choice of α ∈ R and z ∈ C \ [α,∞), the function
bα,z : [α,∞) → C given by bα,z(t) := 1/(t − z) is a bounded and continuous
function which, in particular, belongs to L 1([α,∞),B[α,∞), σ ;C) for all σ ∈
M

q
≥([α,∞)).

Theorem 3.2 ([32, Theorem 5.1]) Let α ∈ R.

(a) If S ∈ S 0,q;[α,∞), then there is a unique σ ∈M
q
≥([α,∞)) such that

S(z) =
∫

[α,∞)
1

t − zσ (dt) for each z ∈ C \ [α,∞). (2)

(b) If σ ∈ M
q
≥([α,∞)) is such that S : C \ [α,∞) → C

q×q can be represented
via (2), then S belongs to S 0,q;[α,∞).

If F ∈ S 0,q;[α,∞) is given, then the unique σ ∈ M
q
≥([α,∞)) which fulfills

the representation (2) of F is called the [α,∞)-Stieltjes transform of F . If σ ∈
M

q
≥([α,∞)) is given, then F : C \ [α,∞) → C

q×q defined by (2) is said to be
the [α,∞)-Stieltjes transform of σ . In view of Theorem 3.2, the moment problems
MP[[α,∞); (sj )mj=0,≤] and MP[[α,∞); (sj )κj=0,=] admit reformulations in the
language of [α,∞)-Stieltjes transforms:

Problem 3 (S[[α,∞); (sj )mj=0,≤]) Let α ∈ R, let m ∈ N0, and let (sj )mj=0 be a
sequence of complex q × q matrices. Describe the set S 0,q;[α,∞)[(sj )mj=0,≤]
of all F ∈ S 0,q;[α,∞), the [α,∞)-Stieltjes measure of which belongs to
M

q
≥[[α,∞); (sj )mj=0,≤].

Problem 4 (S[[α,∞); (sj )κj=0,=]) Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0
be a sequence of complex q × q matrices. Describe the set S 0,q;[α,∞)[(sj )κj=0,=]
of all F ∈ S 0,q;[α,∞), the [α,∞)-Stieltjes measure of which belongs to
M

q
≥[[α,∞); (sj )κj=0,=].
Following the classical line started by Stieltjes [58, 59] we investigate the

reformulated problems in the sequel.
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4 On the Equivalence of the Stieltjes Moment Problem to a
System of Two Fundamental Matrix Inequalities of
Potapov Type

In this section, we introduce the system of Potapov’s fundamental matrices corre-
sponding to the matricial Stieltjes moment problem MP[[α,∞); (sj )mj=0,≤]. We
will see that each solution of this moment problem fulfills necessarily the system of
Potapov’s fundamental matrix inequalities. First we are going to introduce further
notations and, in particular, several block Hankel matrices which will play a key
role in our considerations.

For each n ∈ N0, we set

Tq,n := [δj,k+1Iq ]nj,k=0, vq,n := col(δj,0Iq)
n
j=0, and vq,n := col(δn−j,0Iq)nj=0,

(3)

where δj,k is again the Kronecker delta. Obviously, T ∗q,n = [δj+1,kIq ]nj,k=0 for each
n ∈ N0.

Remark 4.1 For each n ∈ N0, the matrix-valued functions RTq,n : C →
C
(n+1)q×(n+1)q and RT ∗q,n : C→ C

(n+1)q×(n+1)q given by

RTq,n(z) := (I(n+1)q − zTq,n)−1 and RT ∗q,n (z) := (I(n+1)q − zT ∗q,n)−1 (4)

are well-defined matrix polynomials of degree n, which can be represented, for each
z ∈ C, via RTq,n(z) =

∑n
j=0 z

jT
j
q,n and RT ∗q,n (z) =

∑n
j=0 z

j (T ∗q,n)j , respectively.
In particular, RT ∗q,n (z) = [RTq,n(z)]∗ for all z ∈ C.

For technical reason, let s−1 := 0p×q .
Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex p × q matrices. For

each n ∈ N0 with 2n ≤ κ , let Hn := [sj+k]nj,k=0. If m and n are integers such that
−1 ≤ m ≤ n ≤ κ , then we set

ym,n := col(sj )
n
j=m and zm,n := row(sk)

n
k=m.

Let u0 := 0p×q , u0 := 0p×q , w0 := 0p×q , and w0 := 0p×q . For all n ∈ N with
n ≤ κ + 1, let un := −y−1,n−1, and wn := z−1,n−1. Further, for each n ∈ N0 with
2n ≤ κ , let un := [−yn+1,2n

0p×q
]

and wn := [zn+1,2n, 0p×q ].
If a real number α is additionally given, then we continue to use the notation

given by (1), and we set Hα,n := [sα,j+k]nj,k=0 for each n ∈ N0 with 2n+ 1 ≤ κ .

Notation 4.2 Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0 be a sequence of
complex q × q matrices. Further, let G be a subset of C with G \ R �= ∅ and let
f : G → C

q×q be a matrix-valued function. Then, for each n ∈ N0 with 2n ≤ κ ,
let P [f ]2n : G \ R→ C

(n+2)q×(n+2)q be defined by
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P
[f ]
2n (z) :=

[
Hn b[f ]2n (z)

[b[f ]2n (z)]∗ f (z)−f
∗(z)

z−z

]
(5)

where b[f ]2n : G → C
(n+1)q×q is defined by

b[f ]2n (z) := RTq,n(z)
[
vq,nf (z)− un

]
. (6)

If κ ≥ 1, then, for each n ∈ N0 with 2n+1 ≤ κ , let P [f ]2n+1 : G \R→ C
(n+2)q×(n+2)q

be given by

P
[f ]
2n+1(z) :=

[
Hα,n b[f ]2n+1(z)

[b[f ]2n+1(z)]∗ (z−α)f (z)−[(z−α)f (z)]
∗

z−z

]
(7)

where b[f ]2n+1 : G → C
(n+1)q×q is defined by

b[f ]2n+1(z) := RTq,n(z)
(
vq,n[(z− α)f (z)]− (−αun − y0,n)

)
. (8)

Furthermore, let P [f ]−1 : G \ R→ C
q×q be defined by

P
[f ]
−1 (z) := (z− α)f (z)− [(z− α)f (z)]

∗

z− z .

With respect to the Stieltjes moment problem MP[[α,∞); (sj )mj=0,≤] if G =
C \ [α,∞), then the functions (5) and (7) are called the Potapov fundamental
matrix-valued functions connected to the Stieltjes moment problem (generated
by f ). If these matrices are both non-negative Hermitian, then one says that the
Potapov’s fundamental matrix inequalities for the function f are fulfilled.

The following result indicates the key role of these functions in our concept.

Theorem 4.3 ([36, Theorem 6.20]) Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0
be a sequence of complex q × q matrices. Let D be a discrete subset of Π+ :=
{z ∈ C : Im z ∈ (0,∞)} and let S : C \ [α,∞)→ C

q×q be a holomorphic matrix-
valued function. Then:

(a) Let n ∈ N0 be such that 2n ≤ κ . Then the following statements are
equivalent:

(i) S ∈ S 0,q;[α,∞)[(sj )2nj=0,≤].
(ii) P [S]2n−1(z) ∈ C

(n+1)q×(n+1)q
≥ and P [S]2n (z) ∈ C

(n+2)q×(n+2)q
≥ for all z ∈

Π+ \D .

(b) Let n ∈ N0 be such that 2n + 1 ≤ κ . Then the following statements are
equivalent:
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(iii) S ∈ S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤].

(iv) {P [S]2n (z), P
[S]
2n+1(z)} ⊆ C

(n+2)q×(n+2)q
≥ for all z ∈ Π+ \D .

We interpret now the meaning of each of the two FMIs. In this way, we are led
to two truncated matricial Hamburger moment problems.

Remark 4.4 Let n ∈ N0 and let (sj )2nj=0 ∈ H ≥
q,2n. Consider a complex

q × q matrix-valued function f holomorphic in Π+. Then the matrix P [f ]2n (z)

given via (5) is non-negative Hermitian for all z ∈ Π+ if and only if f
corresponds to a solution σ of the truncated matricial Hamburger moment prob-
lem MP[R; (sj )2nj=0,≤], i. e. f (z) = ∫

R
(t−z)−1σ(dt) for all z ∈ Π+ (see [47, 48]).

Remark 4.5 Let n ∈ N and let (sj )
2n+1
j=0 ∈ K ≥

q,2n+1,α . Then the sequence (s̃j )2nj=0

given by s̃j := −αsj + sj+1 belongs to H ≥
q,2n, i. e. the block Hankel matrix

H̃n := [s̃j+k]nj,k=0 is non-negative Hermitian. Consider a complex q × q matrix-

valued function f holomorphic in C \ [α,∞). Let f̃ : Π+ → C
q×q be defined by

f̃ (z) := (z− α)f (z)+ s0. Since the matrix s0 is non-negative Hermitian, we have

f̃ (z)− [f̃ (z)]∗
z− z = (z− α)f (z)− [(z− α)f (z)]

∗

z− z .

With obvious notation, furthermore

−αun − y0,n = −α
[

0q×q
−y0,n−1

]
−

[
s0

y1,n

]
=

[ −s0
αy0,n−1 − y1,n

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

−s0
αs0 − s1
αs1 − s2

...

αsn−1 − sn

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

−s0
−s̃0
−s̃1
...

−s̃n−1

⎤

⎥⎥⎥⎥⎥⎥⎦
=

[ −s0
−ỹ0,n−1

]
=

[ −s0
0nq×q

]
+

[
0q×q
−ỹ0,n−1

]
= −vq,ns0 + ũn

holds true. Hence,

vq,n[(z− α)f (z)]−(−αun−y0,n) = vq,n[(z− α)f (z)]+vq,ns0−ũn = vq,nf̃ (z)−ũn

and, in view of (8) and (6) with obvious notation, consequently b[f ]2n+1(z) = b̃[f̃ ]2n (z)

for all z ∈ Π+. Taking additionally into account Hα,n = H̃n, in view of (5) and (7)

with obvious notation, then P [f ]2n+1(z) = P̃ [f̃ ]2n (z) for all z ∈ Π+ follows. According
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to Remark 4.4, thus the matrix P [f ]2n+1(z) is non-negative Hermitian for all z ∈ Π+
if and only if f̃ corresponds to a solution σ̃ of the truncated matricial Hamburger
moment problem MP[R; (s̃j )2nj=0,≤], i. e.

(z− α)f (z) = f̃ (z)− s0 = −s0 +
∫

R

1

t − z σ̃ (dt)

for all z ∈ Π+.

Part (b) of Theorem 4.3 determines the direction of the subsequent considerations
of this paper. Using it we want to derive a complete description of the set
S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤].
In order to realize this we will apply the following result on non-negative

Hermitian block matrices which can be found, e. g., in [19, Lemma 1.1.9].

Lemma 4.6 Let E ∈ C
(p+q)×(p+q) and let

E =
[
a b

c d

]
(9)

be the block partition of E with p × p block a.

(a) The following statements are equivalent:

(i) E ∈ C
(p+q)×(p+q)
≥ .

(ii) a ∈ C
p×p
≥ , R (b) ⊆ R (a), c = b∗, and d − ca†b ∈ C

q×q
≥ .

(b) The following statements are equivalent:

(iii) E ∈ C
(p+q)×(p+q)
> .

(iv) a ∈ C
p×p
> , c = b∗, and d − ca†b ∈ C

q×q
> .

Lemma 4.6 shows that the situation is much simpler if the left upper p × p block
a in (9) is positive Hermitian. This case is called the non-degenerate case. In the
first period V. P. Potapov and his associates studied mainly this situation. The key
tool here was an appropriate factorization of the Schur complement (see Koval-
ishina [48], Dubovoj [18] or [19, Section 5.3]). Starting with V. K. Dubovoj [18,
part IV] and continued by V. A. Bolotnikov [8, 9] the treatment of the degenerate
case was handled. Having a closer view to part (a) of Lemma 4.6 it turns out to be
useful to characterize the range condition R (b) ⊆ R (a).

Lemma 4.7 Let a ∈ C
p×p
H and b ∈ C

p×q . Then the following statements are
equivalent:

(i) R (b) ⊆ R (a).
(ii) aa†b = b.

(iii) (Ip − a†a)b = 0p×q .
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Proof (i)⇔(ii): This follows from Remark 17.1.
(ii)⇔(iii): In view of a ∈ C

p×p
H it follows from [19, Lemma 1.1.4] that aa† =

a†a which completes the proof.

An essential tool of our strategy is based on the use of a particular generalized
inverse of matrices. Against this background it is important that it is possible to
replace the Moore–Penrose inverse in Lemma 4.6 by this particular generalized
inverse.

Lemma 4.8 Let a ∈ C
r×p, let b ∈ C

r×q , and let c ∈ C
s×p be such that R (b) ⊆

R (a) and N (a) ⊆ N (c). For each x ∈ C
p×r fulfilling axa = a, then cxb =

ca†b.

Proof Because of R (b) ⊆ R (a) we have aa†b = b, whereas N (a) ⊆ N (c)

implies ca†a = c. Consequently, cxb = ca†axaa†b = ca†aa†b = ca†b.

In the remaining part of this paper we are going to construct a full concept
of constructing the general solution for the here considered system of FMIs of
Potapov type. Our procedure is basically inspired by ideas of Yu. M. Dyukarev
in the non-degenerate case and V. K. Dubovoj and V. A. Bolotnikov what concerns
the degenerate situation. It should be mentioned that in [7, 23] the case α = 0 was
studied. However, in view of arbitrary α ∈ R the concrete considerations are much
more complicated.

In view of Theorems 2.4 and 2.6 we will suppose in our subsequent considera-
tions that we work with a sequence (sj )

2n+1
j=0 ∈ K ≥,e

q,2n+1,α .

Remark 4.9 Let α ∈ R, let n ∈ N0, and let (sj )
2n+1
j=0 ∈ K ≥,e

q,2n+1,α . Further, let G

be a non-empty subset of C and let f : G → C
q×q be a matrix-valued function.

Then:

(a) The matrix Hn is non-negative Hermitian, in particular we have H ∗n = Hn.
Thus, if z ∈ G , then Lemma 4.7 implies that the equations

HnH
†
nb[f ]2n (z) = b[f ]2n (z)

and

(I(n+1)q −H †
nHn)b

[f ]
2n (z) = 0(n+1)q×q

are equivalent.
(b) The matrix Hα,n is non-negative Hermitian. Thus, if z ∈ G , then Lemma 4.7

implies that the equations

Hα,nH †
α,nb[f ]2n+1(z) = b[f ]2n+1(z)

and

(I(n+1)q −H †
α,nHα,n)b

[f ]
2n+1(z) = 0(n+1)q×q

are equivalent.
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Summarizing Theorem 4.3, Lemmas 4.6 and 4.7, and Remark 4.9 we obtain the
following result which determines the direction of our further considerations.

Proposition 4.10 Let α ∈ R, let n ∈ N0, and let (sj )
2n+1
j=0 ∈ K ≥,e

q,2n+1,α . Let

S ∈ C \ [α,∞)→ C
q×q be holomorphic in C \ [α,∞). For z ∈ C \ R let

Σ
[S]
2n (z) := S(z)− [S(z)]

∗

z− z −
[
b[S]2n (z)

]∗
H †
n

[
b[S]2n (z)

]

and

Σ
[S]
2n+1(z) := (z− α)S(z)− [(z− α)S(z)]

∗

z− z −
[
b[S]2n+1(z)

]∗
H †
α,n

[
b[S]2n+1(z)

]
.

Let D be a discrete subset ofΠ+. Then the following statements are equivalent:

(i) S ∈ S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤].

(ii) For all z ∈ Π+ \D the conditions

(I(n+1)q −H †
nHn)b

[S]
2n (z) = 0(n+1)q×q, Σ

[S]
2n (z) ∈ C

q×q
≥

and

(I(n+1)q −H †
α,nHα,n)b

[S]
2n+1(z) = 0(n+1)q×q, Σ

[S]
2n+1(z) ∈ C

q×q
≥

are satisfied.

A closer view to Proposition 4.10 shows that the situation is much more simpler
if we have the so-called non-degenerate case that the block Hankel matrices Hn and
Hα,n are both positive Hermitian. In this case the identities H †

nHn = I(n+1)q and
H

†
α,nHα,n = I(n+1)q are satisfied and the statement (ii) in Proposition 4.10 reduces

to Σ [S]2n (z) ∈ C
q×q
≥ and Σ [S]2n+1(z) ∈ C

q×q
≥ for all z ∈ Π+ \D .

5 Some Considerations on Block Hankel Matrices

The above considerations show that the moment problem under study is essentially
governed by the interplay of several block Hankel matrices. For this reason, we will
summarize in this section several important identities describing this interplay.

Remark 5.1 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex

q × q matrices. If n ∈ N0 is such that 2n ≤ κ , then Hn ∈ C
(n+1)q×(n+1)q
H if

and only if {sj : j ∈ Z0,2n} ⊆ C
q×q
H . Furthermore, if α ∈ R, if κ ≥ 1, and if
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n ∈ N0 is such that 2n + 1 ≤ κ , then {Hn,Hα,n} ⊆ C
(n+1)q×(n+1)q
H if and only if

{sj : j ∈ Z0,2n+1} ⊆ C
q×q
H .

Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex p × q matrices. For
each n ∈ N0 with 2n + 1 ≤ κ , let Kn := [sj+k+1]nj,k=0 and, for each n ∈ N0 with
2n+ 2 ≤ κ , let Gn := [sj+k+2]nj,k=0.

Remark 5.2 Let n ∈ N and let (sj )2nj=0 be a sequence of complex p × q matrices.
Then the block Hankel matrix Hn admits the block representations

Hn =
[
Hn−1 yn,2n−1

zn,2n−1 s2n

]
, Hn =

[
s0 z1,n

y1,n Gn−1

]
, (10)

Hn =
[
y0,n−1 Kn−1

sn zn+1,2n

]
, and Hn =

[
z0,n−1 sn

Kn−1 yn+1,2n

]
.

It seems to be useful to recall the well-known Lyapunov-type identities for
block Hankel matrices. (These equations can be easily proved by straightforward
calculation.)

Remark 5.3 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex
p × q matrices.

(a) For each n ∈ N0 with 2n ≤ κ , then HnT ∗q,n − Tp,nHn = unv∗q,n − vp,nwn and
HnTq,n− T ∗p,nHn = unv

∗
q,n− vp,nwn. In particular, if p = q and if s∗j = sj for

each j ∈ Z0,κ , thenHnT ∗q,n−Tq,nHn = unv∗q,n−vq,nu∗n andHnTq,n−T ∗q,nHn =
unv
∗
q,n − vq,nu

∗
n for each n ∈ N0 with 2n ≤ κ .

(b) For each n ∈ N0 with 2n+1 ≤ κ , we haveHα,n = −αHn+Kn, vp,nv∗p,nHn =[
RTp,n(α)

]−1
Hn − Tp,nHα,n, and, in the case that p = q and s∗j = sj for each

j ∈ Z0,κ hold true, moreover Hα,nT ∗q,n − Tq,nHα,n = (−αun − y0,n)v
∗
q,n −

vq,n(−αun − y0,n)
∗ for each n ∈ N0 with 2n+ 1 ≤ κ .

(c) For each n ∈ N0 with 2n + 2 ≤ κ , we have Hα,nTq,n − T ∗p,nHα,n =
(−αun − yn+2,2n+2)v

∗
q,n − vp,n(−αwn − zn+2,2n+2) and, in particular, if

p = q and if s∗j = sj for each j ∈ Z0,κ , then Hα,nTq,n − T ∗q,nHα,n =
(−αun − yn+2,2n+2)v

∗
q,n − vq,n(−αun − yn+2,2n+2)

∗ for each n ∈ N0 with
2n+ 2 ≤ κ .

(d) The equationsHnvq,n = y0,n and−Tp,nHnvq,n = un hold true for each n ∈ N0
with 2n ≤ κ .

Remark 5.4 Let κ ∈ N0∪{∞} and let (sj )κj=0 be a sequence of Hermitian complex
q × q matrices. In view of Remark 5.3(a), it is readily checked that

[
RT ∗q,n (w)

]−∗
HnT

∗
q,n − Tq,nHn

[
RT ∗q,n (z)

]−1 + (w − z)Tq,nHnT ∗q,n
= vq,nv∗q,nHnT ∗q,n − Tq,nHnvq,nv∗q,n
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and

[
RTq,n(z)

]−1
HnT

∗
q,n − Tq,nHn

[
RTq,n(z)

]−∗ = vq,nv∗q,nHnT ∗q,n − Tq,nHnvq,nv∗q,n
(11)

are fulfilled for every choice of n ∈ N0 with 2n ≤ κ and w, z ∈ C.

Remark 5.5 Let α ∈ R, let κ ∈ N∪{∞}, and let (sj )κj=0 be a sequence of Hermitian
complex q × q matrices. In view of Remarks 5.1 and 5.3, we have then

[
RTq,n(z)

]−1
Hα,nT ∗q,n − Tq,nHα,n

[
RTq,n(z)

]−∗

= vq,nv∗q,nHn
[
RTq,n(α)

]−∗ − [
RTq,n(α)

]−1
Hnvq,nv

∗
q,n (12)

for all n ∈ N0 with 2n + 1 ≤ κ and all z ∈ C. For all n ∈ N0 with 2n ≤ κ ,
Remark 5.3 yields

[
RTq,n(α)

]−1
Hnvq,n =

[
RTq,n(α)

]−1
y0,n,

[
RTq,n(α)

]−1
Hnvq,n = αun + y0,n,

z0,n
[
RTq,n(α)

]−∗ = v∗q,nHn
[
RTq,n(α)

]−∗
, and αwn + z0,n = v∗q,nHn

[
RTq,n(α)

]−∗
.

We will see that certain Schur complements play an essential role for our
considerations. Let L0 := s0 and, for each n ∈ N with 2n ≤ κ , furthermore
Ln := s2n − zn,2n−1H

†
n−1yn,2n−1. For every choice of integers m and n with

0 ≤ m ≤ n ≤ κ−1, let yα,m,n := col(sα,m+j )m−nj=0 and zα,m,n := row(sα,m+k)m−nj=0 .
Let Lα,0 := sα,0 and, for each n ∈ N0 with 2n + 1 ≤ κ , moreover Lα,n :=
sα,2n − zα,n,2n−1H

†
α,n−1yα,n,2n−1.

Remark 5.6 ([26, Remark 2.1]) Let n ∈ N and let (sj )2nj=0 be a sequence of complex
q × q matrices. In view of (10) and a well-known characterization of non-negative
Hermitian block matrices (see, e. g., [19, Lemmas 1.1.9 and 1.1.7]), one can easily
see that (sj )2nj=0 belongs to H ≥

q,2n if and only if the four conditions (sj )
2(n−1)
j=0 ∈

H ≥
q,2(n−1), R (yn,2n−1) ⊆ R (Hn−1), s∗2n−1 = s2n−1, and Ln ∈ C

q×q
≥ hold true. If

(sj )
2n
j=0 belongs to H ≥

q,2n, then rankHn =∑n
j=1 rankLj .

Remark 5.7 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥
q,κ,α . By virtue

of Remark 5.1, one can easily check then that s∗j = sj for each k ∈ Z0,κ and
s∗α,k = sα,k for each k ∈ Z0,κ−1. Furthermore, for each n ∈ N0 with 2n ≤ κ ,
from Remark 5.6 one can see that the matrices s2n, Hn, and Ln are non-negative
Hermitian and, for each n ∈ N0 with 2n + 1 ≤ κ , the matrices sα,2n, Hα,n, and
Lα,n are non-negative Hermitian as well.

Remark 5.8 Let α ∈ R and let κ ∈ N0 ∪ {∞}. According to the definition of
K ≥,e

q,κ,α and [27, Lemma 4.7], one can easily check that K ≥,e
q,κ,α ⊆ K ≥

q,κ,α ∩
H ≥,e

q,κ . In particular, if (sj )κj=0 belongs to K ≥,e
q,κ,α , then, in view of Remark 2.3
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for each m ∈ Z0,κ , the sequence (sj )mj=0 belongs to K ≥,e
q,m,α ∩H ≥,e

q,κ . Further,

if (sj )κj=0 ∈ K ≥,e
q,κ,α , then the definition of the sets K ≥,e

q,κ,α and H ≥,e
q,κ and [27,

Proposition 4.8 and Lemma 4.11] show that, for each m ∈ Z0,κ−1, the sequence
(sα,j )mj=0 belongs to H ≥,e

q,m.

Remark 5.9 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

m ∈ Z0,κ , we have (sj )mj=0 ∈ K ≥,e
q,m,α . In view of Remarks 5.7 and 5.8, from [27,

Lemmas 4.15 and 4.16] one can easily see that N (L0) ⊆ N (Lα,0) ⊆ N (L1) ⊆
· · · ⊆ N (Ln) ⊆ N (Lα,n) and that R (L0) ⊇ R (Lα,0) ⊇ R (L1) ⊇ · · · ⊇
R (Ln) ⊇ R (Lα,n) are valid for each n ∈ N0 with 2n+ 1 ≤ κ and that N (L0) ⊆
N (Lα,0) ⊆ N (L1) ⊆ · · · ⊆ N (Lα,n−1) ⊆ N (Ln) as well as R (L0) ⊇
R (Lα,0) ⊇ R (L1) ⊇ · · · ⊇ R (Lα,n−1) ⊇ R (Ln) hold true for each n ∈ N with
2n ≤ κ .

The interplay between the null spaces and ranges of the sequences
L0, L1, L2, . . . and Lα,0, Lα,1, Lα,2, . . . which is described in Remark 5.9 is
of extreme importance for our subsequent considerations.

6 Dubovoj Subspaces and Associated Generalized
Inverses of Matrices

In this section, we explain one of the cornerstones of the concept which was
developed in order to obtain a general method to solve Potapov’s fundamental
matrix inequality in the case of a degenerate information block. This method
originates in the work of V. K. Dubovoj (see [18, part IV]) on his treatment
of the matricial Schur problem. The basic feature of V. K. Dubovoj’s method
consists of appropriately splitting off the null space of the information block.
This idea of V. K. Dubovoj was taken up and modified by V. A. Bolotnikov
to handle the degenerate matricial Stieltjes problem. More precisely, he treated
Problem MP[[0,∞); (sj )mj=0,≤]. V. A. Bolotnikov observed that V. K. Dubovoj’s
construction is essentially connected with the use of a particular type of generalized
inverses of matrices. In this section, we strive for a systematic treatment of
V. K. Dubovoj’s method including V. A. Bolotnikov’s modification taking into
account the general case of arbitrary real α which requires to overcome some
unforeseen technical difficulties.

Now we are going to present the machinery associated with the basic concept
of this section. If U and W are subspaces of Cq , then we write U + W for the
Minkowski sum of U and W . To indicate that the Minkowski sum U + W is a
direct sum, i. e., that U ∩ W = {0q×1} is fulfilled, we use the notation U � W .
V. K. Dubovoj studied in [18] particular invariant subspaces to discuss the matricial
Schur problem. Having in mind this, we give the following definition:
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Definition 6.1 We call a subspace D of C
p a Dubovoj subspace corresponding

to a given ordered pair (H, T ) of complex p × p matrices if T ∗(D ) ⊆ D and
N (H)� D = C

p are fulfilled.

Now we are going to consider special Dubovoj subspaces adapted to our
situation.

Notation 6.2 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of com-
plex p × q matrices. For each n ∈ N0 with 2n ≤ κ , let D n :=
R (diag(L0, L1, . . . , Ln)). Furthermore, if κ ≥ 1, then, for every choice of α ∈ R

and n ∈ N0 with 2n+ 1 ≤ κ , let D α,n := R (diag(Lα,0, Lα,1, . . . , Lα,n)).

Using the Kronecker delta, we set Vq,n := [δj,kIq ] j=0,...,n
k=0,...,n−1

and Vq,n :=
[δj,k+1Iq ] j=0,...,n

k=0,...,n−1
. In the following we often use the mapping Tq,n given in (3).

Lemma 6.3 Let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ H ≥,e
q,κ . For each n ∈ N with

2n ≤ κ , then T ∗q,n(D n) ⊆ D n, V∗q,n(D n) ⊆ D n−1, and V ∗q,n(D n) ⊆ D n−1.

Proof Because of T ∗q,n · diag(L0, L1, . . . , Ln) =
[

0nq×q diag(L1,L2,...,Ln)

0q×q 0q×nq

]
,

we have T ∗q,n(D n) ⊆ R (diag(L1, L2, . . . , Ln, 0q×q)). From Remark 5.6

we see that {L0, L1, . . . , Ln} ⊆ C
q×q
≥ . Thus, using Remark 17.2 and [26,

Proposition 2.13], we get R (Lj ) = [N (Lj )]⊥ ⊆ [N (Lj−1)]⊥ =
R (Lj−1) for each j ∈ Z1,n, which implies R (diag(L1, L2, . . . , Ln, 0q×q)) ⊆
R (diag(L0, L1, . . . , Ln−1, 0q×q)) ⊆ D n. Consequently, T ∗q,n(D n) ⊆ D n.
Obviously, we have V∗q,n · diag(L0, L1, . . . , Ln) = [0nq×q, diag(L1, L2, . . . , Ln)]
and V ∗q,n · diag(L0, L1, . . . , Ln) = (diag(L0, L1, . . . , Ln−1), 0nq×q). Therefore,
V∗q,n(D n) ⊆ R (diag(L1, L2, . . . , Ln)) ⊆ R (diag(L0, L1, . . . , Ln−1)) = D n−1
and V ∗q,n(D n) ⊆ D n−1.

If n ∈ N0 and if (sj )2nj=0 ∈ H ≥,e
q,2n, then the existence of a Dubovoj subspace

corresponding to (Hn, Tq,n)was proved in [8, Lemma 3.2], [60, Satz 1.24], and [22].
An explicit construction of such a subspace contains the following result:

Proposition 6.4 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 ∈ H ≥,e
q,κ . For each n ∈ N0

with 2n ≤ κ , then D n is a Dubovoj subspace for (Hn, Tq,n), where in particular
dim D n = rankHn and dim D n =∑n

j=0 rankLj .

Proof Let n ∈ N0 be such that 2n ≤ κ . Then (sj )2nj=0 ∈ H ≥,e
q,2n. Furthermore,

Lemma 6.3 shows that T ∗q,n(D n) ⊆ D n. Now we check inductively that

dim D k = dim R (Hk) (13)

holds true for each k ∈ Z0,n. Because of L0 = s0 = H0, equation (13) is valid
for k = 0. Thus, there is an m ∈ Z0,n such (13) is fulfilled for each k ∈ Z0,m. We
consider the case that 2(m+ 1) ≤ κ . Then from Notation 6.2 and (13) we obtain
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dim D m+1 = dim D m+dim R (Lm+1) = dim R (Hm)+dim R (Lm+1). (14)

Since we know from Remark 5.6 that the right-hand side of (14) coincides with
dim R (Hm+1), we see that (13) is true for k = m + 1 as well. Consequently, (13)
holds for each k ∈ Z0,n. This implies dim D n + dim N (Hn) = dimC

(n+1)q .
Furthermore, (13) and Remark 5.6 show that dim D n = ∑n

j=0 rankLj holds true.
It remains to prove that D n ∩ N (Hn) ⊆ {0(n+1)q×1}. We consider an arbitrary
x ∈ D n ∩ N (Hn). Let x = col(xj )nj=0 be the q × 1 block representation of
x. Because of x ∈ N (Hn), from [26, Lemma A.2] we see that xn belongs to
N (Ln). Since we know from Remark 5.6 that Ln is non-negative Hermitian, we
conclude xn ∈ R (Ln)

⊥. On the other hand, we have x ∈ D n, which implies
col(xj )nj=0 ∈ R (diag(L0, L1, . . . , Ln)) and, consequently, xn ∈ R (Ln). Thus,

xn ∈ R (Ln) ∩R (Ln)
⊥ = {0q×1}, i. e., xn = 0q×1. Inductively, then xn−j = 0q×1

follows for each j ∈ Z0,n. Therefore, D n ∩N (Hn) ⊆ {0(n+1)q×1}.
For each n ∈ N0 and each (sj )2nj=0 ∈ H ≥,e

q,2n, we will call D n defined in
Notation 6.2 the canonical Dubovoj subspace corresponding to (Hn, Tq,n).

In [60, Abschnitt 1.4], H. C. Thiele showed that (sj )2j=0 given by s0 := 0, s1 :=
0, and s2 := 1 is a sequence belonging to H ≥

1,2 for which no Dubovoj subspace
corresponding to (H1, T1,1) exists.

Remark 6.5 Let κ ∈ N0 ∪ {∞}, let (sj )κj=0 ∈ H ≥,e
q,κ , and let n ∈ N0 be such that

2n ≤ κ . Let D n be the canonical Dubovoj subspace corresponding to (Hn, Tq,n).
In view of Proposition 6.4, one can easily see that dim D n ≥ 1 if and only if s0 �=
0q×q . Furthermore, it is readily checked that dim D n < (q + 1)n if and only if
detHn = 0.

Remark 6.6 Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . From

Remark 5.8 and Proposition 6.4 one can see then that, for each n ∈ N0 with 2n ≤ κ ,
the subspace D n of C(n+1)q is a Dubovoj subspace corresponding to (Hn, Tq,n).
Furthermore, if κ ≥ 1, then for each n ∈ N0 with 2n + 1 ≤ κ , the subspace D α,n
of C(n+1)q is a Dubovoj subspace corresponding to (Hα,n, Tq,n). To verify this one
has to take into account that Remark 5.8 implies that for m ∈ Z0,κ−1 we have
(sα,j )mj=0 ∈ H ≥,e

q,m. This enables us to apply the preceding considerations to the
sequence (sα,j )mj=0 and the matrices Hα,n and Tq,n.

The following result contains important direct sum decompositions of the spaces
C
(n+1)q and C

nq , respectively.

Proposition 6.7 Let α ∈ R, let κ ∈ N∪{∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Then:

(a) For each n ∈ N0 with 2n+ 1 ≤ κ , then T ∗q,n(D n) ⊆ D α,n ⊆ D n,

N (Hn)� D n = C
(n+1)q , and N (Hα,n)� D α,n = C

(n+1)q . (15)

(b) For each n ∈ N with 2n ≤ κ , furthermore V∗q,n(D n) ⊆ D α,n−1,
Vq,n(D α,n−1) ⊆ D n,
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N (Hn)� D n = C
(n+1)q , and N (Hα,n−1)� D α,n−1 = C

nq . (16)

Proof According to Remark 5.8, we have (sj )mj=0 ∈ K ≥,e
q,m,α for each m ∈ Z0,κ .

Consequently, Remark 5.9 yields

R (Lj+1) ⊆ R (Lα,j ) for each j ∈ N0 with 2j + 2 ≤ κ (17)

and

R (Lα,j ) ⊆ R (Lj ) for each j ∈ N0 with 2j + 1 ≤ κ. (18)

(a) Let n ∈ N0 be such that 2n + 1 ≤ κ . Because of Remark 6.6 and the
definition of a Dubovoj subspace, we get (15). In view of (18), we have
D α,n = R (diag(Lα,j )nj=0) ⊆ R (diag(Lj )nj=0)) = D n. If n = 0, then
Tq,n = 0q×q and, consequently, T ∗q,n(D n) ⊆ D α,n.

Now we assume that n ≥ 1. In view of (17), then it is readily checked that

T ∗q,n(D n) = T ∗q,n
[
R

(
diag(Lj )

n
j=0

)]
⊆ R

(
diag

(
diag(Lj+1)

n−1
j=0, 0q×q

))
= D α,n.

(b) Let κ ≥ 2 and let n ∈ N such that 2n ≤ κ . Because of Remark 6.6 and the
definition of a Dubovoj subspace, we get (16). From V∗q,n · diag(Lj )nj=0 =
[0nq×q, diag(Lj+1)

n−1
j=0] we conclude V∗q,n(D n) ⊆ R (diag(Lj+1)

n−1
j=0).

Using (17), we obtain R (diag(Lj+1)
n−1
j=0) ⊆ R (diag(Lα,j )n−1

j=0) = D α,n−1

and, consequently, V∗q,n(D n) ⊆ D α,n−1. Obviously, Vq,n · diag(Lα,j )n−1
j=0 =

diag(diag(Lα,j )n−1
j=0, 0q×q) · Vq,n and, hence, Vq,n(D α,n−1) = R (diag[diag

(Lα,j )n−1
j=0, 0q×q ]). Since (18) implies R (diag[diag(Lα,j )n−1

j=0, 0q×q ]) ⊆
R (diag(Lj )nj=0) = D n, we get Vq,n(D α,n−1) ⊆ D n.

The proof of Proposition 6.7 shows why it is important for our subsequent
considerations to assume that we start with a sequence (sj )κj=0 ∈ K ≥,e

q,κ,α .
This assumption enables us to apply Remark 5.9 which implies (17) and (18).
Proposition 6.7 allows us to apply a particular generalized inverse of matrices. This
will be explained now in detail.

Remark 6.8 If A ∈ C
p×q and if U and V are subspaces of C

q and C
p,

respectively, such that N (A) � U = C
q and R (A) � V = C

p are fulfilled,
then there is a unique X ∈ C

q×p such that

AXA = A, XAX = X, R (X) = U , and N (X) = V

(see, e. g., [5, Chapter 2, Theorem 12(c)]), and we will use A(1,2)U ,V to denote this
matrix X.
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Remark 6.9 Let A ∈ C
q×q be invertible. Then N (A) = {0q×1} and R (A) = C

q .
Hence, U = C

q and V = {0q×1} is the only possible choice of subspaces U and
V of Cq fulfilling N (A)� U = C

q and R (A)� V = C
q . It is readily checked

that for this choice A(1,2)U ,V = A−1.

Remark 6.10 Let A ∈ C
p×q . Then U = [N (A)]⊥ and V = [R (A)]⊥ is a

particular choice of subspaces U of Cq and V of Cp fulfilling N (A)�U = C
q

and R (A) � V = C
p. According to Remarks 6.8 and 17.2 then X := A

(1,2)
U ,V

satisfies AXA = A and XAX = X as well as R (X) = U = R (A∗) and
N (X) = V = N (A∗). Consequently, X = A† (see [5, Section 6, Ex. 38, p. 73]).

If A is a Hermitian complex q × q matrix and if U is a subspace of Cq with
N (A) � U = C

q , then R (A) � U ⊥ = C
q and we will also write A−U for

A
(1,2)
U ,U ⊥ . (In Section 17, we turn our attention to the Hermitian case, in which a lot

of special equations hold true.)

If κ ∈ N0 ∪ {∞} and a sequence (sj )κj=0 ∈ H ≥,e
q,κ are given, then, for each

n ∈ N0 with 2n ≤ κ , let H−n := H(1,2)
D n,D ⊥n

, where D n is given by Notation 6.2.

(Note that Remark 5.8 shows that K ≥,e
q,κ,α ⊆H ≥,e

q,κ holds true for each α ∈ R and
each κ ∈ N0 ∪ {∞}.) If α ∈ R, κ ∈ N ∪ {∞}, and (sj )κj=0 ∈ K ≥,e

q,κ,α are given,

then, for each n ∈ N0 with 2n + 1 ≤ κ , let H−α,n := H(1,2)
D α,n,D ⊥α,n

, where D α,n is

also given by Notation 6.2. Now we are going to have a closer view on the matrices
H−n and H−α,n and their interrelations.

Remark 6.11 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 ∈H ≥,e
q,κ . In view of Lemma 17.3,

for each n ∈ N0 with 2n ≤ κ , then it is readily checked that H−n ∈ C
(n+1)q×(n+1)q
≥ ,

HnH
−
n Hn = Hn, and H−n HnH−n = H−n . (19)

Lemma 6.12 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let

n ∈ N0 be such that 2n + 1 ≤ κ . Then the matrices H−n and H−α,n are both non-
negative Hermitian and fulfill

(H−n )∗ = H−n , (H−α,n)∗ = H−α,n. (20)

Furthermore, both equations in (19) as well as the following four identities hold
true:

Hα,nH−α,nHα,n = Hα,n, H−α,nHα,nH−α,n = H−α,n, (21)

H−n HnH−α,n = H−α,n, and H−α,nHnH−n = H−α,n. (22)

Proof The matrices Hn and Hα,n are both non-negative Hermitian. Lemma 17.3
yields then that H−n and H−α,n are both non-negative Hermitian and that the
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equations in (19), (20), and (21) hold true. In order to prove (22), we consider
an arbitrary n ∈ N0 such that 2n + 1 ≤ κ . Taking into account H ∗n = Hn,
Proposition 6.7, Lemma 17.3, and Remark 17.7, we conclude

R (H−α,n) = R (H−D α,n) = D α,n

⊆ D n = N (I(n+1)q −H−D n
Hn) = N (I(n+1)q −H−n Hn).

For every choice of x ∈ C
(n+1)q , this implies 0 = (I(n+1)q − H−n Hn)H−α,nx

and, consequently, H−n HnH−α,nx = H−α,nx. Thus, the first equation in (22) is
verified. Hence, H ∗n = Hn, (20), and the first equation in (22) yield H−α,nHnH−n =
(H−n HnH−α,n)∗ = (H−α,n)∗ = H−α,n.

Remark 6.13 Let α ∈ R, let κ ∈ N∪{∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈ N0 be

such that 2n+1 ≤ κ . Then Remarks 5.8 and 5.7 yieldH ∗n = Hn andH ∗α,n = Hα,n.
Thus,

H †
nHn = HnH †

n and H †
α,nHα,n = Hα,nH †

α,n. (23)

In view of Lemma 6.12, thus, (I − H †
nHn)Hn = 0 and (I − H †

α,nHα,n)Hα,n = 0
as well as

(I −HnH−n )(I −H †
nHn) = (I −HnH−n )(I −HnH †

n ) = I −HnH−n ,

and, in view of (23), furthermore

(I −Hα,nH−α,n)(I −H †
α,nHα,n) = I −Hα,nH−α,n.

Remark 6.14 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Further,

let n ∈ N0 be such that 2n + 1 ≤ κ . For every choice of k ∈ N0, Lemma 6.12,
Proposition 6.7, and Lemma 17.9 yield then H−n T kq,n(I(n+1)q − HnH−n ) = 0,
H−α,nT kq,n(I(n+1)q − HnH−n ) = 0, and H−α,nT kq,n(I(n+1)q − Hα,nH−α,n) = 0.
Moreover, H−n T kq,n(I(n+1)q −Hα,nH−α,n) = 0 for all k ∈ N.

Remark 6.15 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α .

In view of Remark 5.7, Lemma 6.12, and Remarks 4.1 and 6.14, it is readily
checked that for each n ∈ N0 with 2n + 1 ≤ κ and every choice of ζ ∈
C and k ∈ N0, then H−n RTq,n(ζ )T kq,n(I(n+1)q − HnH−n ) = 0, (I(n+1)q −
H−n Hn)(T ∗q,n)k[RTq,n(ζ )]∗H−n = 0, H−α,nRTq,n(ζ )T kq,n(I(n+1)q − Hα,nH−α,n) = 0,
and (I(n+1)q − H−α,nHα,n)(T ∗q,n)k[RTq,n(ζ )]∗H−α,n = 0. Furthermore, for each
ζ ∈ C and each k ∈ N, H−n RTq,n(ζ )T kq,n(I(n+1)q − Hα,nH−α,n) = 0 and
(I(n+1)q −H−α,nHα,n)(T ∗q,n)k[RTq,n(ζ )]∗H−n = 0.



A Potapov-Type Approach to a Truncated Matricial Stieltjes-Type Power. . . 215

Remark 6.16 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α .

In view of Remark 5.7, Lemma 6.12, and Remarks 4.1 and 6.15, it is
readily checked that for each n ∈ N0 with 2n + 1 ≤ κ and every
choice of ζ , η ∈ C, that H−n RTq,n(ζ )[RT ∗q,n (η)]−∗(I − HnH−n ) = 0, (I −
H−n Hn)[RT ∗q,n (η)]−1[RTq,n(ζ )]∗H−n = 0 as well as H−α,nRTq,n(ζ )[RT ∗q,n (η)]−∗(I −
Hα,nH−α,n) = 0, and (I −H−α,nHα,n)[RT ∗q,n (η)]−1[RTq,n(ζ )]∗H−α,n = 0 hold true.

Lemma 6.17 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ , then H−n RTq,n(α)(vq,nv∗q,nHnH−α,n + Tq,n) = H−α,n and

H−α,n
[
I(n+1)q −Hnvq,nv∗q,nRT ∗q,n (α)H−n

]
= T ∗q,nRT ∗q,n (α)H−n . (24)

Proof Let n ∈ N0 be such that 2n + 1 ≤ κ . Because of K ≥,e
q,κ,α ⊆ K ≥

q,κ,α ,
Remark 5.7 and Lemma 6.12 show that all the matrices Hn, H−n , Hα,n, and H−α,n
are Hermitian. Remark 5.3, Lemma 6.12, and Remark 6.15 yield

H−n RTq,n(α)(vq,nv∗q,nHnH−α,n + Tq,n)
= H−n RTq,n(α)

[([
RTq,n(α)

]−1
Hn − Tq,nHα,n

)
H−α,n + Tq,n

]

= H−α,n +H−n RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n) = H−α,n.

This implies [I(n+1)q −H−n RTq,n(α)vq,nv∗q,nHn]H−α,n = H−n RTq,n(α)Tq,n. Thus, in

view of {Hn,H−n ,Hα,n,H−α,n} ⊆ C
(n+1)q×(n+1)q
H and [RTq,n(α)]∗ = RT ∗q,n (α), it

follows (24).

Lemma 6.17 contains important coupling identities connecting the generalized
inverses H−n and H−α,n.

7 Construction of a Pair of Coupled J̃q-Inner
2q × 2q Matrix Polynomials

In this section we realize an important step on the way to the description of the
solution set of the system of Potapov’s FMI given in Theorem 4.3. We are going to
construct a pair of 2q × 2q matrix polynomials having the property that the linear
fractional transformation generated by them can be used to parametrize the solution
set of the first and second FMI of V. P. Potapov. After having done this we have
to take into account the coupling between the two FMIs of V. P. Potapov. What
concerns a former application of this strategy we refer to the papers [16, 17] in
which the truncated matricial Hausdorff moment problem is studied by use of the
FMI method of V. P. Potapov.
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A key tool in our construction of 2q × 2q matrix polynomials is an appropriate
use of the particular generalized inverses H−n and H−α,n introduced in Section 6.
These 2q × 2q matrix polynomials will turn out to be closely related with the matrix

J̃q :=
[

0q×q −iIq
iIq 0q×q

]
.

which is obviously a 2q × 2q signature matrix, i.e. J̃ ∗q = J̃q and J̃ 2
q = I2q hold

true. In particular we compute the right and left J̃q -forms of the 2q × 2q matrix
polynomials under consideration. We modify the approach of V. A. Bolotnikov [7]
who considered the particular case α = 0. However, the calculations in the general
case α ∈ R are much more complicated.

Remark 7.1 For every choice of A,B ∈ C
q×q , we have

[
A
B

]∗
(−J̃q )

[
A
B

] =
−i(B∗A− A∗B). In particular,

[
A
Iq

]∗
(−J̃q )

[
A
Iq

] = 2 ImA.

Remark 7.2 For A ∈ C
q×q and z ∈ C \ R, we have

A− A∗
z− z =

[
A

Iq

]∗ ( −J̃q
2 Im z

)[
A

Iq

]
.

In the following we often use the notation introduced in (3) and (4).

Remark 7.3 For each n ∈ N0 and each A ∈ C
(n+1)q×(n+1)q , by direct calculation

the following identities can be verified:

[I(n+1)q , A] diag(vq,n, vq,n)J̃q = i[A,−I(n+1)q ] diag(vq,n, vq,n), (25)

[A,−I(n+1)q ] diag(vq,n, vq,n)J̃q = −i[I(n+1)q , A] diag(vq,n, vq,n),

J̃q [diag(vq,n, vq,n)]∗[I(n+1)q , A]∗ = −i[diag(vq,n, vq,n)]∗[A,−I(n+1)q ]∗, (26)

J̃q [diag(vq,n, vq,n)]∗[A,−I(n+1)q ]∗ = i[diag(vq,n, vq,n)]∗[I(n+1)q , A]∗,
[I(n+1)q , A] diag(vq,n, vq,n)J̃q [diag(vq,n, vq,n)]∗[I(n+1)q , A]∗ = i(Avq,nv

∗
q,n − vq,nv∗q,nA∗),

(27)

[A,−I(n+1)q ] diag(vq,n, vq,n)J̃q [diag(vq,n, vq,n)]∗[A,−I(n+1)q ]∗
= i(Avq,nv

∗
q,n − vq,nv∗q,nA∗), (28)

and

[I(n+1)q , A] diag(vq,n, vq,n)[diag(vq,n, vq,n)]∗[A,−I(n+1)q ]∗
= −(Avq,nv∗q,n − vq,nv∗q,nA∗). (29)
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Now we introduce a 2q × 2q matrix polynomial which will turn out to be
intimately related with the first Potapov-type FMI occurring in Theorem 4.3.

Remark 7.4 Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0 ∈ H ≥,e
q,κ . For each

n ∈ N0 with 2n ≤ κ , Remark 4.1 shows that Un,α : C→ C
2q×2q defined by

Un,α(ζ ) := I2q + (ζ − α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗

× RT ∗q,n (ζ )H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n) (30)

is a matrix polynomial of degree not greater than n + 1, where H ∗n = Hn implies
that, for each ζ ∈ C, the matrix Un,α(ζ ) admits the block representation

Un,α(ζ ) =
[
An(ζ ) Bn(ζ )

Cn(ζ ) Dn(ζ )

]
(31)

with

An(ζ ) := Iq + (ζ − α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n, (32)

Bn(ζ ) := + (ζ − α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)Tq,nHnvq,n, (33)

Cn(ζ ) := − (ζ − α)v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n, (34)

Dn(ζ ) := Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)Tq,nHnvq,n. (35)

In the next step we compute the left and right J̃q -forms of the 2q × 2q matrix
polynomial introduced in Remark 7.4.

Lemma 7.5 Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For all

of n ∈ N0 with 2n ≤ κ and all z,w ∈ C, the function Un,α : C → C
2q×2q given

by (30) fulfills

J̃q−Un,α(z)J̃qU∗n,α(w) = −i(z−w)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n
×

[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n). (36)

Proof Let n ∈ N0 be such that 2n ≤ κ and let z,w ∈ C. Remark 5.7 yields
H ∗n = Hn. Lemma 6.12 yields (20) and (19). Using (30), J̃ 2

q = I2q , and (20), we
conclude
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J̃q − Un,α(z)J̃qU∗n,α(w)

= J̃q −
{
I2q + (z− α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n

× RTq,n (α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

}
J̃q

{
I2q + (w − α)[diag(vq,n, vq,n)]∗

× [I(n+1)q , Tq,nHn]∗
[
RTq,n (α)

]∗
H−n

[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n)

}

= S1(z)+ S2(w)+ S3(z, w)
(37)

where

S1(z) := −(z− α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n
× RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)J̃q , (38)

S2(w) := −(w − α)J̃q [diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗
H−n

×
[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n), (39)

and

S3(z, w)

:= −(z− α)(w − α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n RTq,n(α)
× [I(n+1)q , Tq,nHn] diag(vq,n, vq,n)J̃q [diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗

× [
RTq,n(α)

]∗
H−n

[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n). (40)

Because of (38), (39), (25), (26), and Remark 4.1, we get then

S1(z) = −i(z− α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)

×H−n RTq,n (α)
[
RT ∗q,n (w)

]−∗[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n),

(41)

S2(w) = i(w − α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)
[
RT ∗q,n (z)

]−1

× [
RTq,n (α)

]∗
H−n

[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n), (42)

and, according to (40), (27), and H ∗n = Hn, we have
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S3(z, w) = −i(z−α)(w−α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n
× RTq,n(α)(Tq,nHnvq,nv∗q,n − vq,nv∗q,nHnT ∗q,n)

[
RTq,n(α)

]∗

×H−n
[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n). (43)

In view of H ∗n = Hn, RT ∗q,n (α) = [RTq,n(α)]∗, (11), (249), and (248), it follows

(z− α)(w − α)RTq,n(α)(Tq,nHnvq,nv∗q,n − vq,nv∗q,nHnT ∗q,n)
[
RTq,n(α)

]∗

= (z− α)(w − α)RTq,n (α)
(
Tq,nHn[RTq,n(α)]−∗ −

[
RTq,n(α)

]−1
HnT

∗
q,n

)[
RTq,n(α)

]∗

= (z− α)(w − α)RTq,n (α)Tq,nHn − (z− α)(w − α)HnT ∗q,n
[
RTq,n(α)

]∗

= −(z− α)
(
RTq,n(α)

[
RT ∗q,n (w)

]−∗ − I(n+1)q

)
Hn

+ (w − α)Hn
([
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗ − I(n+1)q

)

= −(z− α)RTq,n(α)
[
RT ∗q,n (w)

]−∗
Hn

+ (w − α)Hn
[
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗ + (z− w)Hn.

Consequently, from (43) we get then

S3(z, w) = −i[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n

×
{
− (z− α)RTq,n(α)

[
RT ∗q,n (w)

]−∗
Hn + (w − α)Hn

[
RT ∗q,n (z)

]−1[RTq,n(α)]∗

+ (z− w)Hn
}
H−n

[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n). (44)

The combination of (37), (41), (42), and (44) provides

J̃q − Un,α(z)J̃qU∗n,α(w) = −i[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)S(z,w)

×
[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n) (45)

where

S(z,w) := (z− α)H−n RTq,n(α)
[
RT ∗q,n (w)

]−∗



220 B. Fritzsche et al.

− (w− α)
[
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗
H−n − (z− α)H−n RTq,n(α)

[
RT ∗q,n (w)

]−∗
HnH

−
n

+ (w − α)H−n Hn
[
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗
H−n + (z− w)H−n HnH−n .

Thus, Remarks 6.16 and 6.11 yield S(z,w) = (z−w)H−n . Hence, (45) implies (36).

Lemma 7.6 Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let

Un,α : C → C
2q×2q be defined by (30). For each n ∈ N0 with 2n ≤ κ and all

z,w ∈ C, then

J̃q − U∗n,α(w)J̃qUn,α(z)

= i(w−z)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n (α)

]∗
H−n

[
RT ∗q,n (w)

]∗[
RTq,n (α)

]−1

×Hn
[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n (α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n). (46)

Proof Let n ∈ N0 be such that 2n ≤ κ . Since (sj )κj=0 ∈ K ≥,e
q,κ,α ⊆ K ≥

q,κ,α

holds true, Remark 5.7 yields H ∗n = Hn and from Lemma 6.12 we get (20). Now
let z,w ∈ C. In view of (30), J̃ 2

q = I2q , and H ∗α,n = Hα,n, we conclude then

J̃q − U∗n,α(w)J̃qUn,α(z)

= J̃q −
{
I2q + (w − α)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗

× [
RTq,n(α)

]∗
H−n

[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n)

}
J̃q

×
{
I2q + (z− α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)

×H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

}

= S1(w)+ S2(z)+ S3(z, w)

(47)
where

S1(w) := −(w − α)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗
H−n

×
[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n)J̃q ,

S2(z) := −(z− α)J̃q [diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)
×H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n),
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and

S3(z, w)

:= −(w−α)(z−α)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗
H−n

[
RT ∗q,n (w)

]∗

× [Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n)J̃q [diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗

× RT ∗q,n (z)H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n).

Keeping in mind the Remarks 7.3 and 4.1, we have

S1(w) = i(w − α)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗
H−n

×
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n),

(48)

S2(z) = −i(z− α)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗[
RTq,n(α)

]−∗

× RT ∗q,n (z)H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n), (49)

and, by virtue of (28) and H ∗n = Hn, furthermore

S3(z, w) = −i(w − α)(z− α)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗
H−n

×
[
RT ∗q,n (w)

]∗
(Tq,nHnvq,nv

∗
q,n − vq,nv∗q,nHnT ∗q,n)RT ∗q,n (z)

×H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n).
(50)

Remark 17.10 shows that

(z− α)T ∗q,nRT ∗q,n (z) =
[
RT ∗q,n (α)

]−1
RT ∗q,n (z)− I(n+1)q (51)

is valid and, because of [RT ∗q,n (w)]∗ = RTq,n(w), that

(w − α)
[
RT ∗q,n (w)

]∗
Tq,n =

[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1 − I(n+1)q (52)

is also true. In view of (11), [RTq,n(α)]−∗ = [RT ∗q,n (α)]−1, (51), and (52), we obtain



222 B. Fritzsche et al.

(w − α)(z− α)
[
RT ∗q,n (w)

]∗
(Tq,nHnvq,nv

∗
q,n − vq,nv∗q,nHnT ∗q,n)RT ∗q,n (z)

= (w − α)(z− α)
[
RT ∗q,n (w)

]∗(
Tq,nHn

[
RT ∗q,n (α)

]−1 − [
RTq,n (α)

]−1
HnT

∗
q,n

)
RT ∗q,n (z)

= (z− α)
([
RT ∗q,n (w)

]∗[
RTq,n (α)

]−1 − I(n+1)q

)
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)

− (w − α)
[
RT ∗q,n (w)

]∗[
RTq,n (α)

]−1
Hn

([
RT ∗q,n (α)

]−1
RT ∗q,n (z)− I(n+1)q

)

= (w − α)
[
RT ∗q,n (w)

]∗[
RTq,n (α)

]−1
Hn − (z− α)Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)

− (w − z)
[
RT ∗q,n (w)

]∗[
RTq,n (α)

]−1
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z),

which together with (50) implies

S3(z, w)

= −i[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗
H−n

×
{
(w − α)

[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hn − (z− α)Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)

− (w − z)
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)

}

×H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n).
(53)

The combination of (47), (48), (49), and (53) provides us

J̃q−U∗n,α(w)J̃qUn,α(z) = i[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(α)

]∗
S(z,w)

× RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n) (54)

where

S(z,w) := (w−α)H−n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1−(z−α)[RTq,n(α)
]−∗
RT ∗q,n (z)H

−
n

− (w − α)H−n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
HnH

−
n

+ (z− α)H−n Hn
[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n

+ (w − z)H−n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n . (55)
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Because of RT ∗q,n (ζ ) = [RTq,n(ζ )]∗, which is true for each ζ ∈ C, Remark 6.16
shows that

H−n
[
RT ∗q,n (ζ )

]∗[
RTq,n(α)

]−1
HnH

−
n = H−n

[
RT ∗q,n (ζ )

]∗[
RTq,n(α)

]−1 (56)

and

H−n Hn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
n =

[
RTq,n(α)

]−∗
RT ∗q,n (ζ )H

−
n (57)

are valid for all ζ ∈ C. Thus, from (55), (56), and (57) we get

S(z,w) = (w − z)H−n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n .

(58)
Taking into account (54) and (58), we obtain (46).

The aim of our next considerations is to introduce a 2q × 2q matrix polynomial
which will turn out to be intimately related to the second FMI of Potapov type
occurring in Theorem 4.3.

Remark 7.7 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ , Remark 4.1 shows then that Ũn,α : C→ C
2q×2q given by

Ũn,α(ζ ) := I2q+(ζ−α)[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (ζ )

×H−α,nRTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n) (59)

is a matrix polynomial of degree not greater that n+ 1, whereH ∗n = Hn shows that,
for each ζ ∈ C, the matrix Ũn,α(ζ ) admits the block representation

Ũn,α(ζ ) =
[
Ãn(ζ ) B̃n(ζ )

C̃n(ζ ) D̃n(ζ )

]

with

Ãn(ζ ) := Iq + (ζ − α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nRTq,n(α)vq,n,

B̃n(ζ ) := + (ζ − α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nHnvq,n,

C̃n(ζ ) := − (ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nRTq,n(α)vq,n,
D̃n(ζ ) := Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nHnvq,n.
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In the next step we compute the left and right J̃q -forms of the matrix polynomial
introduced in Remark 7.7.

Lemma 7.8 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let

Ũn,α : C → C
2q×2q be given by (59). For all n ∈ N0 with 2n + 1 ≤ κ and all

z,w ∈ C, then

J̃q−Ũn,α(z)J̃qŨ∗n,α(w) = −i(z−w)[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗

× RT ∗q,n (z)H−α,n
[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n).

(60)

Proof Let n ∈ N0 be such that 2n + 1 ≤ κ . Because of (sj )κj=0 ∈ K ≥,e
q,κ,α ⊆

K ≥
q,κ,α and Remark 5.7, we have H ∗n = Hn and H ∗α,n = Hα,n. Lemma 6.12

provides us (20) and (21). Let z,w ∈ C. Taking into account (59), J̃ 2
q = I2q ,

and (20), we get then

J̃q − Ũn,α(z)J̃qŨ∗n,α(w)

= J̃q −
{
I2q + (z− α)[diag(vq,n, vq,n)]∗

[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]∗

× RT ∗q,n (z)H−α,nRTq,n (α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

}
J̃q

×
{
I2q + (w − α)[diag(vq,n, vq,n)]∗

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗

× [
RTq,n(α)

]∗
H−α,n

[
RT ∗q,n (w)

]∗[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n)

}

= S̃1(z)+ S̃2(w)+ S̃3(z, w)

(61)

where

S̃1(z) := −(z− α)[diag(vq,n, vq,n)]∗
[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)H

−
α,n

× RTq,n (α)
[
I(n+1)q ,

[
RTq,n (α)

]−1
Hn

]
diag(vq,n, vq,n)J̃q , (62)

S̃2(w) := −(w − α)J̃q [diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n (α)

]−1
Hn

]∗[
RTq,n(α)

]∗
H−α,n

×
[
RT ∗q,n (w)

]∗[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n), (63)
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and

S̃3(z, w) := −(z− α)(w − α)[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗

× RT ∗q,n (z)H−α,nRTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)J̃q

× [diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗
H−α,n

[
RT ∗q,n (w)

]∗

×
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n). (64)

In view of (25), (26), and Remark 4.1, from (62) and (63) we obtain

S̃1(z) = −i(z− α)[diag(vq,n, vq,n)]∗
[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)H

−
α,n

× RTq,n (α)
[
RT ∗q,n (w)

]−∗[
RT ∗q,n (w)

]∗[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n),

(65)

S̃2(w) = i(w − α)[diag(vq,n, vq,n)]∗
[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)

[
RT ∗q,n (z)

]−1

× [
RTq,n (α)

]∗
H−α,n

[
RT ∗q,n (w)

]∗[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n), (66)

and, because of (64), (27), and H ∗n = Hn, furthermore,

S̃3(z, w)

= −i(z−α)(w−α)[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)H

−
α,n

× RTq,n(α)
([
RTq,n(α)

]−1
Hnvq,nv

∗
q,n − vq,nv∗q,nHn

[
RTq,n(α)

]−∗)[
RTq,n(α)

]∗

×H−α,n
[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n). (67)

Using H ∗n = Hn, (12), (248), (249), and RT ∗q,n (α) = [RTq,n(α)]∗, we infer

(z− α)(w − α)RTq,n(α)
×

([
RTq,n(α)

]−1
Hnvq,nv

∗
q,n − vq,nv∗q,nHn

[
RTq,n(α)

]−∗)[
RTq,n(α)

]∗

= (z− α)(w − α)RTq,n(α)
×

(
Tq,nHα,n

[
RTq,n(α)

]−∗ − [
RTq,n(α)

]−1
Hα,nT ∗q,n

)[
RTq,n(α)

]∗
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= (z− α)(w − α)RTq,n(α)Tq,nHα,n − (z− α)(w − α)Hα,nT ∗q,n
[
RTq,n(α)

]∗

= −(z− α)
(
RTq,n(α)

[
RT ∗q,n (w)

]−∗ − I(n+1)q

)
Hα,n

+ (w − α)Hα,n
([
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗ − I(n+1)q

)

= −(z− α)RTq,n(α)
[
RT ∗q,n (w)

]−∗
Hα,n + (w − α)Hα,n

[
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗

+ (z− w)Hα,n.

Consequently, from (67) we get then

S̃3(z, w) = −i[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)H

−
α,n

×
{
− (z−α)RTq,n(α)

[
RT ∗q,n (w)

]−∗
Hα,n+ (w−α)Hα,n

[
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗

+ (z−w)Hα,n
}
H−α,n

[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n).

(68)

The combination of (61), (65), (66), and (68) yields

J̃q − Ũn,α(z)J̃qŨ∗n,α(w) = −i[diag(vq,n, vq,n)]∗
[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)

× S̃(z, w)
[
RT ∗q,n (w)

]∗[[
RTq,n (α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n) (69)

where

S̃(z, w)

:= (z− α)H−α,nRTq,n(α)
[
RT ∗q,n (w)

]−∗ − (w − α)
[
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗
H−α,n

− (z− α)H−α,nRTq,n(α)
[
RT ∗q,n (w)

]−∗
Hα,nH−α,n

+ (w − α)H−α,nHα,n
[
RT ∗q,n (z)

]−1[
RTq,n(α)

]∗
H−α,n + (z− w)H−α,nHα,nH−α,n.

(70)

From (70), Remark 6.16, and Lemma 6.12 we obtain S̃(z, w) = (z − w)H−α,n.
Hence, taking into account (69), we get (60).
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Lemma 7.9 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ and all w, z ∈ C, then

J̃q − Ũ∗n,α(w)J̃qŨn,α(z)
= i(w − z)[diag(vq,n, vq,n)]∗

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗

×H−α,n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)H

−
α,n

× RTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n). (71)

Proof Let n ∈ N0 be such that 2n + 1 ≤ κ . Because of (sj )κj=0 ∈ K ≥,e
q,κ,α ⊆

K ≥
q,κ,α and Remark 5.7, we have H ∗n = Hn and H ∗α,n = Hα,n. Lemma 6.12

shows that (20) holds true. Let w, z ∈ C. In view of (59) and (20), we get

J̃q − Ũ∗n,α(w)J̃qŨn,α(z)

= J̃q −
{
I2q + (w − α)[diag(vq,n, vq,n)]∗

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗

×H−α,n
[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n)

}
J̃q

×
{
I2q+(z− α)[diag(vq,n, vq,n)]∗

[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)H

−
α,n

× RTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

}

= S̃1(w)+ S̃2(z)+ S̃3(z, w),

(72)
where

S̃1(w) := −(w − α)[diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗
H−α,n

×
[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n)J̃q ,

S̃2(z) := −(z− α)J̃q [diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)H

−
α,n

× RTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n),

and

S̃3(z, w) := −(w − α)(z− α)[diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗
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× [
RTq,n(α)

]∗
H−α,n

[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n)

× J̃q [diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗
RT ∗q,n (z)H

−
α,nRTq,n(α)

×
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n).

From Remark 7.3 we obtain

S̃1(w) = i(w − α)[diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗
H−α,n

×
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n),

(73)

S̃2(z) = −i(z− α)[diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗

×[RTq,n(α)
]−∗
RT ∗q,n (z)H

−
α,nRTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n),

(74)

and, in view of (28) and H ∗n = Hn, furthermore

S̃3(z, w)

= −i(w−α)(z−α)[diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗
H−α,n

×
[
RT ∗q,n (w)

]∗([
RTq,n(α)

]−1
Hnvq,nv

∗
q,n − vq,nv∗q,nHn

[
RTq,n(α)

]−∗)
RT ∗q,n (z)

×H−α,nRTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n). (75)

With the aid of Remark 17.10 and [RT ∗q,n (α)]−∗ = [RTq,n(α)]−1, we get (51)
and (52) and, in view of (12) in Remark 5.5, (51), and (52),

(w − α)(z− α)
[
RT ∗q,n (w)

]∗

×
([
RTq,n(α)

]−1
Hnvq,nv

∗
q,n − vq,nv∗q,nHn

[
RTq,n(α)

]−∗)
RT ∗q,n (z)

= (w − α)(z− α)
[
RT ∗q,n (w)

]∗

×
(
Tq,nHα,n

[
RTq,n(α)

]−∗ − [
RTq,n(α)

]−1
Hα,nT ∗q,n

)
RT ∗q,n (z)

= (w − α)(z− α)
[
RT ∗q,n (w)

]∗
Tq,nHα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)

− (w − α)(z− α)
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,nT ∗q,nRT ∗q,n (z)
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= (z− α)
([
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1 − I(n+1)q

)
Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)

− (w − α)
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n

([
RT ∗q,n (α)

]−1
RT ∗q,n (z)− I(n+1)q

)

= (w − α)
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n − (z− α)Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)

− (w − z)
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z),

which, because of (75), implies

S̃3(z, w) = −i[diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗
H−α,n

×
{
(w−α)

[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n−(z−α)Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)

− (w − z)
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)

}

×H−α,nRTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n).

(76)
Combining (72), (73), (74), and (76), we see that

J̃q − Ũ∗n,α(w)J̃qŨn,α(z)
= i[diag(vq,n, vq,n)]∗

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗
S̃(z, w)

× RTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n) (77)

is valid, where

S̃(z, w)

:= (w − α)H−α,n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1 − (z− α)[RTq,n(α)
]−∗
RT ∗q,n (z)H

−
α,n

− (w − α)H−α,n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,nH−α,n

+ (z− α)H−α,nHα,n
[
RTq,n(α)

]−∗
RT ∗q,n (z)H

−
α,n

+ (w − z)H−α,n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)H

−
α,n.

(78)



230 B. Fritzsche et al.

Since [RT ∗q,n (η)]∗ = RTq,n(η) holds true for all η ∈ C, from Remark 6.16 we infer
that

H−α,n
[
RT ∗q,n (ζ )

]∗[
RTq,n(α)

]−1
Hα,nH−α,n = H−α,n

[
RT ∗q,n (ζ )

]∗[
RTq,n(α)

]−1

(79)
and

H−α,nHα,n
[
RTq,n(α)

]−∗
RT ∗q,n (ζ )H

−
α,n =

[
RTq,n(α)

]−∗
RT ∗q,n (ζ )H

−
α,n (80)

are fulfilled for each ζ ∈ C. Using (79), (80), and (78), we get

S̃(z, w) = (w − z)H−α,n
[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n

[
RTq,n(α)

]−∗
RT ∗q,n (z)H

−
α,n

and, because of (77), then (71) follows.

Our next goal is to establish an appropriate coupling between both Potapov-
type FMIs occurring in Theorem 4.3. The key observation to realize this aim is
based on the following remark.

Remark 7.10 LetA ∈ C
q×q
H . Then the matricesB :=

[
Iq 0q×q
A Iq

]
andC :=

[
Iq A

0q×q Iq

]

fulfill B∗J̃qB = J̃q , C∗J̃qC = J̃q , BJ̃qB∗ = J̃q , and CJ̃qC∗ = J̃q .

More precisely, because right multiplication by a J̃q -unitary matrix does not
influence the image of linear fractional transformations with J̃q -contractive matri-
ces, the desired coupling will be produced by right multiplication of the matrix
polynomials introduced in Remarks 7.4 and 7.7 by appropriately chosen J̃q -unitary
matrices of block triangular type. The following choices of J̃q -unitary matrices are
of importance for our subsequent considerations.

Remark 7.11 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n + 1 ≤ κ , in view of the Remarks 7.10 and 5.7 and Lemma 6.12, it
is readily checked that

Bn,α :=
[
Iq v∗q,nHnH−α,nHnvq,n

0q×q Iq

]
(81)

and

B̃n,α :=
⎡

⎣
Iq 0q×q

−v∗q,nRT ∗q,n (α)H−n RTq,n(α)vq,n Iq

⎤

⎦ (82)
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are J̃q -unitary matrices, i. e., that Bn,αJ̃qB∗n,α = J̃q , B∗n,αJ̃qBn,α = J̃q ,

B̃n,αJ̃q B̃
∗
n,α = J̃q , and B̃∗n,αJ̃qB̃n,α = J̃q hold true.

Remark 7.12 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . In view

of (81) and (82), for each n ∈ N0 with 2n+ 1 ≤ κ , then

[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

=
[
I(n+1)q , (vq,nv

∗
q,nHnH

−
α,n + Tq,n)Hn

]
diag(vq,n, vq,n)

and

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α

=[RTq,n(α)
]−1

[[
I(n+1)q −Hnvq,nv∗q,nRT ∗q,n (α)H−n

]
RTq,n(α),Hn

]
diag(vq,n, vq,n).

Remark 7.13 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . In view

of Remark 7.12 and Lemma 6.17, it is readily checked that, for each n ∈ N0 with
2n+ 1 ≤ κ , then

H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

= [
H−n RTq,n(α),H−α,nHn

]
diag(vq,n, vq,n).

Remark 7.14 Let α ∈ R and let n ∈ N0. According to Remark 4.1, the
matrix-valued functions Ωq,n,α : C → C

2(n+1)q×2(n+1)q and Ω̃q,n,α : C →
C

2(n+1)q×2(n+1)q given by

Ωq,n,α(ζ ) :=
⎡

⎣ (ζ − α)T ∗q,n [RT ∗q,n (α)]−1

−(ζ − α)I(n+1)q −(ζ − α)I(n+1)q

⎤

⎦ diag
(
RT ∗q,n (ζ ), RT ∗q,n (ζ )

)

(83)

and

Ω̃q,n,α(ζ ) :=
⎡

⎣ (ζ − α)T
∗
q,n (ζ − α)[RT ∗q,n (α)]−1

−I(n+1)q −(ζ − α)I(n+1)q

⎤

⎦ diag
(
RT ∗q,n (ζ ), RT ∗q,n (ζ )

)

(84)

are both matrix polynomials of degree n+ 1.
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The following result is connected with the right multiplication of the matrix
polynomials introduced in Remarks 7.4 and 7.7, respectively, by the J̃q -unitary
matrices given in (81) and (82), respectively.

Lemma 7.15 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let n ∈ N0

be such that 2n + 1 ≤ κ . In view of (83) and (84), let Θn,α : C → C
2q×2q and

Θ̃n,α : C→ C
2q×2q be given by

Θn,α(ζ ) := I2q + [diag(vq,n, vq,n)]∗ · diag(Hn, I(n+1)q) ·Ωq,n,α(ζ )
× diag(H−n ,H−α,n) · diag

(
RTq,n(α),Hn

) · diag(vq,n, vq,n) (85)

and

Θ̃n,α(ζ ) := I2q + [diag(vq,n, vq,n)]∗ · diag(Hn, I(n+1)q) · Ω̃q,n,α(ζ )
× diag(H−n ,H−α,n) · diag

(
RTq,n(α),Hn

) · diag(vq,n, vq,n). (86)

Then Θn,α and Θ̃n,α are matrix polynomials of degree not greater than n + 1 and,
for each ζ ∈ C, the representations

Θn,α(ζ ) = Un,α(ζ )Bn,α and Θ̃n,α(ζ ) = Ũn,α(ζ )B̃n,α (87)

hold true, where Un,α : C → C
2q×2q and Ũn,α : C → C

2q×2q are defined by (30)
and (59), and where Bn,α and B̃n,α are given by (81) and (82), respectively. If

Θn,α = [Θ(j,k)n,α ]2j,k=1 and Θ̃n,α = [Θ̃(j,k)n,α ]2j,k=1 (88)

are the q × q block representations ofΘn,α and Θ̃n,α , respectively, for each ζ ∈ C,
then

Θ(1,1)n,α (ζ ) = Iq + (ζ − α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n, (89)

Θ(1,2)n,α (ζ ) = v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nH−n vq,n, (90)

Θ(2,1)n,α (ζ ) = −(ζ − α)v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n, (91)

Θ(2,2)n,α (ζ ) = Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nHnvq,n, (92)

Θ̃(1,1)n,α (ζ ) = Iq + (ζ − α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n, (93)

Θ̃(1,2)n,α (ζ ) = (ζ − α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nHnvq,n, (94)
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Θ̃(2,1)n,α (ζ ) = −v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n, (95)

and

Θ̃(2,2)n,α (ζ ) = Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nHnvq,n. (96)

Proof Remark 7.14 shows that Θn,α and Θ̃n,α are matrix polynomials of degree
not greater than n + 1. Let ζ ∈ C. Because of the Remarks 5.8 and 5.7, we
have H ∗n = Hn and H ∗α,n = Hα,n. Using (85) and (83), one can easily check
that (89), (90), (91), and (92) hold true. From (86), (84), and (88) we infer
that (93), (94), (95), and (96) are valid. Let

Φn,α = [Φ(j,k)n,α ]2j,k=1 and Φ̃n,α = [Φ̃(j,k)n,α ]2j,k=1 (97)

be the q × q block representations of

Φn,α := Un,αBn,α and Φ̃n,α := Ũn,αB̃n,α. (98)

By virtue of (31)–(35), (81), and (89), then

Φ(1,1)n,α (ζ ) = Iq+(ζ−α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n = Θ(1,1)n,α (ζ ), (99)

follows, whereas (31)–(35), (81), and (91) show that

Φ(2,1)n,α (ζ ) = −(ζ − α)v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n = Θ(2,1)n,α (ζ ). (100)

From (98), (31)–(35), (81), Lemma 6.17, Remark 17.10, and (90) we conclude

Φ(1,2)n,α (ζ )=
[
Iq+(ζ − α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n

]
v∗q,nHnH−α,nHnvq,n

+ (ζ−α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)Tq,nHnvq,n
=v∗q,nHn

[
H−α,n+(ζ − α)T ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)

(
vq,nv

∗
q,nHnH

−
α,n+Tq,n

)]
Hnvq,n

= v∗q,nHn
[
I(n+1)q + (ζ − α)T ∗q,nRT ∗q,n (ζ )

]
H−α,nHnvq,n

= v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nHnvq,n = Θ(1,2)n,α (ζ )

and, using additionally (92) instead of (90), furthermore
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Φ(2,2)n,α (ζ ) = −(ζ − α)v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,nv∗q,nHnH−α,nHnvq,n
+ Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)Tq,nHnvq,n

= Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−n RTq,n(α)(vq,nv∗q,nHnH−α,n + Tq,n)Hnvq,n
= Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nHnvq,n = Θ(2,2)n,α (ζ ).

Consequently, taking additionally into account (99), (100), (88), (98), and (97), we
obtain the first equation in (87). From (98), Remark 7.7, (82), (97), Lemma 6.17,
Remark 17.10, and (93) we obtain

Φ̃(1,1)n,α (ζ )

= Iq + (ζ − α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nRTq,n(α)vq,n

−(ζ−α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nHnvq,nv∗q,nRT ∗q,n (α)H

−
n RTq,n(α)vq,n

= Iq + (ζ − α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,n

×
[
I(n+1)q −Hnvq,nv∗q,nRT ∗q,n (α)H−n

]
RTq,n(α)vq,n

= Iq + (ζ − α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )T

∗
q,nRT ∗q,n (α)H

−
n RTq,n(α)vq,n

= Iq + (ζ − α)v∗q,nHnT ∗q,nRT ∗q,n (ζ )H−n RTq,n(α)vq,n = Θ̃(1,1)n,α (ζ ),

(101)
whereas (98), Remark 7.7, (82), (97), and (94) show that

Φ̃(1,2)n,α (ζ ) = (ζ − α)v∗q,nHn
[
RT ∗q,n (α)

]−1
RT ∗q,n (ζ )H

−
α,nHnvq,n = Θ̃(1,2)n,α (ζ ).

(102)
Using (98), Remark 7.7, (82), (97), Lemma 6.17, Remark 4.1, and (95), we get

Φ̃(2,1)n,α (ζ )

= −(ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nRTq,n(α)vq,n
−

[
Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nHnvq,n

]
v∗q,nRT ∗q,n (α)H

−
n RTq,n(α)vq,n

= −v∗q,nRT ∗q,n (ζ )
{
(ζ − α)H−α,n

[
I(n+1)q −Hnvq,nv∗q,nRT ∗q,n (α)H−n

]

+
[
RT ∗q,n (ζ )

]−1
RT ∗q,n (α)H

−
n

}
RTq,n(α)vq,n
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= −v∗q,nRT ∗q,n (ζ )
(
(ζ − α)T ∗q,nRT ∗q,n (α)H−n +

[
RT ∗q,n (ζ )

]−1
RT ∗q,n (α)H

−
n

)
RTq,n (α)vq,n

= −v∗q,nRT ∗q,n (ζ )(I(n+1)q − αT ∗q,n)RT ∗q,n (α)H−n RTq,n (α)vq,n
= −v∗q,nRT ∗q,n (ζ )H−n RTq,n (α)vq,n = Θ̃(2,1)n,α (ζ )

(103)
and, in view of (96), furthermore

Φ̃(2,2)n,α (ζ ) = Iq − (ζ − α)v∗q,nRT ∗q,n (ζ )H−α,nHnvq,n = Θ̃(2,2)n,α (ζ ).

Thus, (101), (102), (103), (88), (98), and (97) imply the second equation in (87).

The following result marks one of the crucial points of the whole paper. It
describes the desired coupling between the two single Potapov matrix inequalities
of our system. For analogous results we refer the reader to [16, Proposition 6.10]
and [17, Proposition 6.10].

Proposition 7.16 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For

each n ∈ N0 with 2n+ 1 ≤ κ , the functions Θn,α : C→ C
2q×2q given by (85) and

Θ̃n,α : C→ C
2q×2q given by (86) fulfill for each ζ ∈ C \ {α} the identity

Θ̃n,α(ζ ) = diag
(
(ζ − α)Iq, Iq

) ·Θn,α(ζ ) · diag
(
(ζ − α)−1Iq, Iq

)
.

Proof In view of (83), (84), (85), and (86), the assertion follows by direct
computation (see also [34, Lemma 9.13]).

It should be mentioned that assuming α = 0 and positive Hermitian information
blocks Hn and Hα,n matrix polynomials closely related to Θn,α and Θ̃n,α were
introduced by Yu. M. Dyukarev in [23]. He also computed their J̃q -forms and
observed some coupling relation between them. Now we obtain a generalization of a
result which, for the special case α = 0, corresponds to Bolotnikov [7, Lemma 4.2].

Lemma 7.17 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ and every choice of z ∈ C and w ∈ C, then

J̃q −Θn,α(z)J̃qΘ∗n,α(w) = −i(z− w)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗

× RT ∗q,n (z)H−n
[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n)

and

J̃q−Θ̃n,α(z)J̃qΘ̃∗n,α(w)=−i(z−w)[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗

× RT ∗q,n (z)H−α,n
[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n).
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Proof Let n ∈ N0 be such that 2n + 1 ≤ κ and let z,w ∈ C. Using Lemma 7.15,
Remark 7.11, and Lemma 7.5, we get

J̃q −Θn,α(z)J̃qΘ∗n,α(w) = J̃q − Un,α(z)Bn,αJ̃qB∗n,αU∗n,α(w)
= J̃q − Un,α(z)J̃ ∗q U∗n,α(w)
= −i(z− w)[diag(vq,n, vq,n)]∗

[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n
×

[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n).

Analogously, from Lemma 7.15, Remark 7.11, and Lemma 7.8 we conclude
similarly

J̃q−Θ̃n,α(z)J̃qΘ̃∗n,α(w)=−i(z−w)[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗

× RT ∗q,n (z)H−α,n
[
RT ∗q,n (w)

]∗[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]
diag(vq,n, vq,n).

Remark 7.18 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ and each z ∈ C \R, then Lemmas 6.12 and 7.17 show that

1

2 Im z

[
J̃q −Θn,α(z)J̃qΘ∗n,α(z)

]
≥ 0 and

1

2 Im z

[
J̃q − Θ̃n,α(z)J̃qΘ̃∗n,α(z)

]
≥ 0.

Lemma 7.19 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ , then the following statements hold true:

(a) J̃q −Θn,α(x)J̃qΘ∗n,α(x) = 0 and J̃q − Θ̃n,α(x)J̃qΘ̃∗n,α(x) = 0 hold true for all
x ∈ R.

(b) For all z ∈ C, the matrices Θn,α(z) and Θ̃n,α(z) are both non-singular and
fulfill

Θ−1
n,α(z) = J̃qΘ∗n,α(z)J̃q and Θ̃−1

n,α(z) = J̃qΘ̃∗n,α(z)J̃q . (104)

(c) For every choice of z and w in C, the equations

J̃q −Θ−∗n,α(z)J̃qΘ−1
n,α(w) = J̃q

[
J̃q −Θn,α(z)J̃qΘ∗n,α(w)

]
J̃q

and

J̃q − Θ̃−∗n,α(z)J̃qΘ̃−1
n,α(w) = J̃q

[
J̃q − Θ̃n,α(z)J̃qΘ̃∗n,α(w)

]
J̃q

hold true.
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Proof

(a) Use Lemma 7.17.
(b) We know from Lemma 7.15 that Θn,α and Θ̃n,α are matrix polynomials.

Consequently, Θ∨n,α : C → C
2q×2q and Θ̃∨n,α : C → C

2q×2q defined by

Θ∨n,α(ζ ) := Θ∗n,α(ζ ) and Θ̃∨n,α(ζ ) := Θ̃∗n,α(ζ ) are matrix polynomials as

well. Thus, F := J̃q − Θn,αJ̃qΘ∨n,α and F̃ := J̃q − Θ̃n,αJ̃qΘ̃∨n,α are
holomorphic in C. For each x ∈ R, we see from part (a) that F(x) =
J̃q − Θn,α(x)J̃qΘ∨n,α(x) = J̃q − Θn,α(x)J̃qΘ∗n,α(x) = 0 and, analogously,

that F̃ (x) = 0. The identity theorem for holomorphic functions implies
Θn,α(z)J̃qΘ

∗
n,α(z) = Θn,α(z)J̃qΘ∨n,α(z) = J̃q − F(z) = J̃q and, analogously,

Θ̃n,α(z)J̃qΘ̃
∗
n,α(z) = J̃q for all z ∈ C. Because of J̃ 2

q = I2q , we get

Θn,α(z)J̃qΘ
∗
n,α(z)J̃q = J̃ 2

q = I2q and Θ̃n,α(z)J̃qΘ̃∗n,α(z)J̃q = J̃ 2
q = I2q for

each z ∈ C. For all z ∈ C, then detΘn,α(z) �= 0 and det Θ̃n,α(z) �= 0 and (104)
follows.

(c) Use part (b) and J̃ 2
q = I2q .

Lemma 7.20 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 such that 2n+ 1 ≤ κ and every choice of z and w in C, then

J̃q −Θ−∗n,α(z)J̃qΘ−1
n,α(w) = −i(z− w)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗

× RT ∗q,n (z)H−n RTq,n(w)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

and

J̃q−Θ̃−∗n,α(z)J̃qΘ̃−1
n,α(w) = −i(z−w)[diag(vq,n, vq,n)]∗[I(n+1)q , [RTq,n(α)]−1Hn]∗

× RT ∗q,n (z)H−α,nRTq,n(w)[I(n+1)q , [RTq,n(α)]−1Hn] diag(vq,n, vq,n). (105)

Proof Let n ∈ N0 be such that 2n+1 ≤ κ and let z,w ∈ C. Using Lemma 7.19(b),
Lemma 7.19(c), Lemma 7.17, and Remark 7.3, we obtain

J̃q −Θ−∗n,α(z)J̃qΘ−1
n,α(w)

= J̃q
[
J̃q −Θn,α(z)J̃qΘ∗n,α(w)

]
J̃q

= J̃q
{
− i(z− w)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗RT ∗q,n (z)H−n

×
[
RT ∗q,n (w)

]∗[Tq,nHn,−I(n+1)q ] diag(vq,n, vq,n)

}
J̃q
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= −i(z− w)(i[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗
)
RT ∗q,n (z)H

−
n

× RTq,n(w)
(
(−i) · [I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

)

= −i(z− w)[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗RT ∗q,n (z)H−n
× RTq,n(w)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

and analogously (105).

Lemma 7.21 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ and all w, z ∈ C, then

J̃q −Θ∗n,α(w)J̃qΘn,α(z) = i(w − z)B∗n,α[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗

× [
RTq,n(α)

]∗
H−n

[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α)

× [I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α (106)

and

J̃q−Θ̃∗n,α(w)J̃qΘ̃n,α(z)=i(w−z)B̃∗n,α[diag(vq,n, vq,n)]∗
[
I(n+1)q ,

[
RTq,n (α)

]−1
Hn

]∗

×[RTq,n (α)
]∗
H−α,n

[
RT ∗q,n (w)

]∗[
RTq,n(α)

]−1
Hα,n

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
α,nRTq,n (α)

×
[
I(n+1)q ,

[
RTq,n (α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α. (107)

Proof Let n ∈ N0 be such that 2n + 1 ≤ κ . From Remark 7.11 and Lemma 7.15
we get

J̃q −Θ∗n,α(w)J̃qΘn,α(z) = B∗n,α
[
J̃q − U∗n,α(w)J̃qUn,α(z)

]
Bn,α (108)

and, analogously,

J̃q − Θ̃∗n,α(w)J̃qΘ̃n,α(z) = B̃∗n,α
[
J̃q − Ũ∗n,α(w)J̃qŨn,α(z)

]
B̃n,α (109)

for every choice of z and w in C. Using (108) and Lemma 7.6, we obtain (106).
Because of (109) and Lemma 7.9, then (107) follows.

Lemma 7.22 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ and each z ∈ C \ R, then

1

2 Im z

[
J̃q−Θ∗n,α(z)J̃qΘn,α(z)

]
≥ 0 and

1

2 Im z

[
J̃q − Θ̃∗n,α(z)J̃qΘ̃n,α(z)

]
≥ 0.
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Proof Let n ∈ N0 be such that 2n + 1 ≤ κ . Because of (sj )κj=0 ∈
K ≥,e

q,κ,α ⊆ K ≥
q,κ,α and Remark 5.7, we have Hn ∈ C

(n+1)q×(n+1)q
≥ and

Hα,n ∈ C
(n+1)q×(n+1)q
≥ . Using Lemma 7.21 and Lemma 6.12, for all z ∈ C \R, we

get then

1

2 Im z

[
J̃q −Θ∗n,α(z)J̃qΘn,α(z)

]

= 1

2 Im z

{
i(z− z)B∗n,α[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗

[
RTq,n(α)

]∗

×H−n
[
RT ∗q,n (z)

]∗[
RTq,n(α)

]−1
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n

× RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

}

=
([
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

)∗

×Hn
([
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

)
≥0

and

1

2 Im z

[
J̃q − Θ̃∗n,α(z)J̃qΘ̃n,α(z)

]

= 1

2 Im z

{
i(z− z)B̃∗n,α[diag(vq,n, vq,n)]∗

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(α)

]∗

×H−α,n
[
RT ∗q,n (z)

]∗[
RTq,n(α)

]−1
Hα,n

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
α,n

× RTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α

}

=
{[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
α,nRTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

× diag(vq,n, vq,n)B̃n,α

}∗
Hα,n

{[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
α,nRTq,n(α)

×
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α

}
≥ 0.

The combination of Lemma 7.19(a) with Lemma 7.22 shows in particular that the
2q × 2q matrix polynomials Θn,α and Θ̃n,α are both J̃q -inner. Now we are going
to derive factorizations of the Schur complements occurring in the Potapov-type
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fundamental matrices defined in Notation 4.2. In order to realize this aim we need a
little preparation.

Lemma 7.23 Let α ∈ R, let n ∈ N0, and let (sj )
2n+1
j=0 be a sequence of complex

q × q matrices. Let G be a non-empty subset of C and let f : G → C
q×q be a

matrix-valued function. Let b[f ]2n : G → C
(n+1)q×q and b[f ]2n+1 : G → C

(n+1)q×q be
given by (6) and (8). For each z ∈ G , then

b[f ]2n (z) = RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

[
f (z)

Iq

]
(110)

and

b[f ]2n+1(z) = RTq,n(z)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

[
(z− α)f (z)

Iq

]
.

(111)

Proof Consider an arbitrary z ∈ G . According to Remark 5.3(d) we have
−Tq,nHnvq,n = un. Hence,

[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

[
f (z)

Iq

]
= [vq,n,−un]

[
f (z)

Iq

]
= vq,nf (z)− un.

Taking additionally into account (6), we get then

b[f ]2n (z) = RTq,n(z)
[
vq,nf (z)− un

]

= RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

[
f (z)

Iq

]
.

According to Remark 5.3(d) we have Hnvq,n = y0,n and −Tq,nHnvq,n = un.
Furthermore, form (4) we see [RTq,n(α)]−1 = I(n+1)q − αTq,n. Thus, we obtain

[
RTq,n(α)

]−1
Hnvq,n=(I(n+1)q−αTq,n)Hnvq,n=Hnvq,n−αTq,nHnvq,n=y0,n+αun

and hence

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n) =

[
vq,n,

[
RTq,n(α)

]−1
Hnvq,n

]

= [
vq,n, y0,n + αun

]
,

implying
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[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

[
(z− α)f (z)

Iq

]

= (z− α)vq,nf (z)+ y0,n + αun.

Taking additionally into account (8), we get then

b[f ]2n+1(z) = RTq,n(z)
(
vq,n[(z− α)f (z)]− (−αun − y0,n)

)

= RTq,n(z)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

[
(z− α)f (z)

Iq

]
.

Proposition 7.24 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈

N0 with 2n+1 ≤ κ . Let G be a subset of C with G \R �= ∅ and let f : G → C
q×q

be a matrix-valued function. LetΣ [f ]2n : G \R→ C
q×q andΣ [f ]2n+1 : G \R→ C

q×q
be defined by

Σ
[f ]
2n (z) := f (z)− [f (z)]

∗

z− z −
[
b[f ]2n (z)

]∗
H †
n

[
b[f ]2n (z)

]
(112)

and

Σ
[f ]
2n+1(z) := (z− α)f (z)− [(z− α)f (z)]

∗

z− z −
[
b[f ]2n+1(z)

]∗
H †
α,n

[
b[f ]2n+1(z)

]

(113)
where b[f ]2n : G → C

(n+1)q×q and b[f ]2n+1 : G → C
(n+1)q×q are given by (6) and (8).

For each z ∈ G \ R with R (b[f ]2n (z)) ⊆ R (Hn) and R (b[f ]2n+1(z)) ⊆ R (Hα,n),
then

Σ
[f ]
2n (z) =

[
f (z)

Iq

]∗
Θ−∗n,α(z)

(
−J̃q

2 Im z

)
Θ−1
n,α(z)

[
f (z)

Iq

]

and

Σ
[f ]
2n+1(z) =

[
(z− α)f (z)

Iq

]∗
Θ̃−∗n,α(z)

(
−J̃q

2 Im z

)
Θ̃−1
n,α(z)

[
(z− α)f (z)

Iq

]

=
[
f (z)

Iq

]∗
Θ−∗n,α(z)

[
diag

(
(z− α)Iq, Iq

)]∗

×
(
−J̃q

2 Im z

)
[
diag

(
(z− α)Iq, Iq

)]
Θ−1
n,α(z)

[
f (z)

Iq

]
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Proof Consider an arbitrary z ∈ G \ R with R (b[f ]2n (z)) ⊆ R (Hn) and

R (b[f ]2n+1(z)) ⊆ R (Hα,n). Since Hn and Hα,n are non-negative Hermitian, we
have according to Remark 17.2 then

N (Hn) =
[
R (H ∗n )

]⊥ = [R (Hn)]
⊥ ⊆

[
R

(
b[f ]2n (z)

)]⊥ = N
([

b[f ]2n (z)
]∗)

and analogously N (Hα,n) ⊆ N ([b[f ]2n+1(z)]∗). Remark 6.11 and Lemma 6.12
furthermore yield HnH−n Hn = Hn and Hα,nH−α,nHα,n = Hα,n. By virtue of
Lemma 4.8, then

[
b[f ]2n (z)

]∗
H †
n

[
b[f ]2n (z)

]
=

[
b[f ]2n (z)

]∗
H−n

[
b[f ]2n (z)

]
(114)

and

[
b[f ]2n+1(z)

]∗
H †
α,n

[
b[f ]2n+1(z)

]
=

[
b[f ]2n+1(z)

]∗
H−α,n

[
b[f ]2n+1(z)

]
(115)

follow. Remark 7.2 yields

f (z)− [f (z)]∗
z− z =

[
f (z)

Iq

]∗ ( −J̃q
2 Im z

)[
f (z)

Iq

]
= − 1

2 Im z

[
f (z)

Iq

]∗
J̃q

[
f (z)

Iq

]

(116)
and analogously

(z− α)f (z)− [(z− α)f (z)]∗
z− z = − 1

2 Im z

[
(z− α)f (z)

Iq

]∗
J̃q

[
(z− α)f (z)

Iq

]
.

(117)
According to Lemma 7.23 we have (110) and consequently

[
b[f ]2n (z)

]∗ =
[
f (z)

Iq

]∗ [
diag(vq,n, vq,n)

]∗[I(n+1)q , Tq,nHn]∗
[
RTq,n(z)

]∗
.

Since Remark 4.1 yields RT ∗q,n (z) =
[
RTq,n(z)

]∗, then

[
b[f ]2n (z)

]∗ =
[
f (z)

Iq

]∗ [
diag(vq,n, vq,n)

]∗[I(n+1)q , Tq,nHn]∗RT ∗q,n (z) (118)

follows. Taking into account (118) and (110) we can conclude from Lemma 7.20
then
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[
f (z)

Iq

]∗ [
J̃q −Θ−∗n,α(z)J̃qΘ−1

n,α(z)
] [
f (z)

Iq

]
= −i(z− z)

[
b[f ]2n (z)

]∗
H−n

[
b[f ]2n (z)

]
.

Because of −i(z− z) = −2 Im z, hence

1

2 Im z

[
f (z)

Iq

]∗ [
J̃q −Θ−∗n,α(z)J̃qΘ−1

n,α(z)
] [
f (z)

Iq

]
= −

[
b[f ]2n (z)

]∗
H−n

[
b[f ]2n (z)

]
.

(119)
Combining (112), (114), (116), and (119), we get

Σ
[f ]
2n (z) =

f (z)− [f (z)]∗
z− z −

[
b[f ]2n (z)

]∗
H−n

[
b[f ]2n (z)

]

= − 1

2 Im z

[
f (z)

Iq

]∗
J̃q

[
f (z)

Iq

]
+ 1

2 Im z

[
f (z)

Iq

]∗ [
J̃q −Θ−∗n,α(z)J̃qΘ−1

n,α(z)
] [
f (z)

Iq

]

=
[
f (z)

Iq

]∗
Θ−∗n,α(z)

(
−J̃q

2 Im z

)
Θ−1
n,α(z)

[
f (z)

Iq

]
.

According to Lemma 7.23 we have (111) and consequently

[
b[f ]2n+1(z)

]∗

=
[
(z− α)f (z)

Iq

]∗ [
diag(vq,n, vq,n)

]∗[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗[
RTq,n(z)

]∗
.

Since Remark 4.1 yields RT ∗q,n (z) =
[
RTq,n(z)

]∗, then

[
b[f ]2n+1(z)

]∗=
[
(z−α)f (z)

Iq

]∗[
diag(vq,n, vq,n)

]∗[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]∗
RT ∗q,n (z)

(120)
follows. Taking into account (120) and (111) we can conclude from Lemma 7.20
then

[
(z− α)f (z)

Iq

]∗ [
J̃q − Θ̃−∗n,α(z)J̃qΘ̃−1

n,α(z)
] [
(z− α)f (z)

Iq

]

= −i(z− z)
[
b[f ]2n+1(z)

]∗
H−n

[
b[f ]2n+1(z)

]
.

Because of −i(z− z) = −2 Im z, hence
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1

2 Im z

[
(z− α)f (z)

Iq

]∗ [
J̃q − Θ̃−∗n,α(z)J̃qΘ̃−1

n,α(z)
] [
(z− α)f (z)

Iq

]

= −
[
b[f ]2n+1(z)

]∗
H−n

[
b[f ]2n+1(z)

]
. (121)

Combining (113), (115), (117), and (121), we get

Σ
[f ]
2n+1(z) =

(z− α)f (z)− [(z− α)f (z)]∗
z− z −

[
b[f ]2n+1(z)

]∗
H−α,n

[
b[f ]2n+1(z)

]

= − 1

2 Im z

[
(z− α)f (z)

Iq

]∗
J̃q

[
(z− α)f (z)

Iq

]

+ 1

2 Im z

[
(z− α)f (z)

Iq

]∗ [
J̃q − Θ̃−∗n,α(z)J̃qΘ̃−1

n,α(z)
] [
(z− α)f (z)

Iq

]

=
[
(z− α)f (z)

Iq

]∗
Θ̃−∗n,α(z)

(
−J̃q

2 Im z

)
Θ̃−1
n,α(z)

[
(z− α)f (z)

Iq

]
.

(122)
Proposition 7.16 yields

Θ̃n,α(z) = diag
(
(z− α)Iq, Iq

)
Θn,α(z) diag

(
(z− α)−1Iq, Iq

)
,

implying

Θ̃−1
n,α(z) diag

(
(z− α)Iq, Iq

) = diag
(
(z− α)Iq, Iq

)
Θ−1
n,α(z).

Hence,

diag
(
(z− α)Iq, Iq

)
Θ−1
n,α(z)

[
f (z)

Iq

]
= Θ̃−1

n,α(z)

[
(z− α)f (z)

Iq

]

and consequently

[
(z− α)f (z)

Iq

]∗
Θ̃−∗n,α(z) =

[
f (z)

Iq

]∗
Θ−∗n,α(z)

[
diag

(
(z− α)Iq, Iq

)]∗
.

Taking additionally into account (122), we obtain

Σ
[f ]
2n+1(z) =

[
f (z)

Iq

]∗
Θ−∗n,α(z)

[
diag

(
(z− α)Iq, Iq

)]∗
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×
(
−J̃q

2 Im z

)
[
diag

(
(z− α)Iq, Iq

)]
Θ−1
n,α(z)

[
f (z)

Iq

]
.

Against the background of Proposition 4.10 it becomes clear from Proposi-
tion 7.24 which important role the matrix polynomials Θn,α and Θ̃n,α play in our
approach. The former investigations of Yu. M. Dyukarev [23] and V. A. Bolot-
nikov [8] suggest to study the linear fractional transformation of matrices generated
by Θn,α .

8 Stieltjes Pairs of Meromorphic Matrix-Valued Functions

The main aim of this section is to study the domain of definition of the linear
fractional transformation generated by Θn,α . Against this background we introduce
the class of pairs of meromorphic matrix-valued functions, which will play the role
of the set of parameters in the description of the solution set of the Stieltjes moment
problem under consideration.

Definition 8.1 Let α ∈ R. Let φ andψ be q × q matrix-valued functions meromor-
phic in C \ [α,∞). Then [φ;ψ] is called a q × q Stieltjes pair in C \ [α,∞) if there
exists a discrete subset D of C \ [α,∞) such that the following three conditions are
fulfilled:

(i) φ are ψ are holomorphic in C \ ([α,∞) ∪D ).

(ii) rank
[
φ(z)
ψ(z)

]
= q for each z ∈ C \ ([α,∞) ∪D ).

(iii) For each z ∈ C \ (R ∪D ),

[
φ(z)

ψ(z)

]∗ ( −J̃q
2 Im z

)[
φ(z)

ψ(z)

]
≥ 0 (123)

and

[
(z− α)φ(z)
ψ(z)

]∗ ( −J̃q
2 Im z

)[
(z− α)φ(z)
ψ(z)

]
≥ 0. (124)

The set of all q × q Stieltjes pairs in C \ [α,∞) will be denoted by
P

(q,q)

−J̃q ,≥(C \ [α,∞)).
For a detailed treatment of the just introduced class, we refer to [35, Section 7]

Remark 8.2 Let α ∈ R, let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)), and let g be a

q × q matrix-valued function which is meromorphic in C \ [α,∞) such that
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det g does not vanish identically. Then it is readily checked that [φg;ψg] ∈
P

(q,q)

−J̃q ,≥(C \ [α,∞)).
Remark 8.3 Two q × q Stieltjes pairs [φ1;ψ1] and [φ2;ψ2] in C \ [α,∞) are
said to be equivalent if there exist a q × q matrix-valued function g which is
meromorphic in C \ [α,∞) and a discrete subset D of C \ [α,∞) such that φ1,
φ2, ψ1, ψ2, and g are holomorphic in C \ ([α,∞) ∪ D ) and that det g(z) �= 0
and φ2(z) = φ1(z)g(z) and ψ2(z) = ψ1(z)g(z) hold true for each z ∈ C \
([α,∞) ∪ D ). It is readily checked that this generates an equivalence relation on
P

(q,q)

−J̃q ,≥(C \ [α,∞)). For each [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)), by 〈[φ;ψ]〉 we

denote the equivalence class generated by [φ;ψ].
Remark 8.4 Let α ∈ R and let [φ;ψ] ∈ P

(q,q)

−J̃q ,≥(C \ [α,∞)). Using a classical

result of complex analysis (see, e. g., [11, Theorem 11.46, p. 395]), one can prove
that there is a (C \ {0})-valued function g holomorphic in C \ [α,∞) such that
φ̃ := gφ and ψ̃ := gψ are holomorphic in C \ [α,∞). In particular, [φ̃; ψ̃] belongs
to P

(q,q)

−J̃q ,≥(C \ [α,∞)) with 〈[φ̃; ψ̃]〉 = 〈[φ;ψ]〉.
Now we indicate that there is an intimate connection between the class

P
(q,q)

−J̃q ,≥(C \ [α,∞)) and the class S q;[α,∞) introduced in Section 3.

Definition 8.5 Let α ∈ R. A pair [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) is said to be

a proper q × q Stieltjes pair in C \ [α,∞) if detψ does not vanish identically in
C \ [α,∞). The set of all proper q × q Stieltjes pairs in C \ [α,∞) will be denoted

by P̃
(q,q)

−J̃q ,≥(C \ [α,∞)).
Denote by Oq and Iq the constant Cq×q -valued functions in C \ [α,∞) with

values 0q×q and Iq , respectively.

Proposition 8.6 ([35, Proposition 7.7]) Let α ∈ R and let f ∈ S q;[α,∞).
Then:

(a) The pair [f ;Iq ] belongs to P̃
(q,q)

−J̃q ,≥(C \ [α,∞)).
(b) Let g ∈ S q;[α,∞). Then 〈[f ;Iq ]〉 = 〈[g;Iq ]〉 if and only if f = g.

Proposition 8.6 shows that the class P
(q,q)

−J̃q ,≥(C \ [α,∞)) can be interpreted as

a projective extension of the class S q;[α,∞).

Example 8.7 ([35, Example 7.8]) Let α ∈ R. Then Proposition 8.6 shows

that [Oq;Iq ] belongs to P̃
(q,q)

−J̃q ,≥(C \ [α,∞)). Furthermore, Remark 7.1 yields

[Iq;Oq ] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)).
Remark 8.8 ([35, Remark 7.9]) Let α ∈ R. Then Example 8.7 shows that the set

P̃
(q,q)

−J̃q ,≥(C \ [α,∞)) is non-empty.



A Potapov-Type Approach to a Truncated Matricial Stieltjes-Type Power. . . 247

Proposition 8.9 ([35, Proposition 7.10]) Let α ∈ R. Further, let φ be a
q × q matrix-valued function which is meromorphic in C \ [α,∞) such that the
condition [φ;Iq ] ∈P

(q,q)

−J̃q ,≥(C \ [α,∞)) is satisfied. Then φ ∈ S q;[α,∞).

The following results complement the statements of Propositions 8.6 and 8.9. We
see now that the equivalence class of a proper element of P

(q,q)

−J̃q ,≥(C \ [α,∞)) is

always represented by a function belonging to S q;[α,∞).

Proposition 8.10 ([35, Proposition 7.11]) Let α ∈ R and let [φ;ψ] ∈
P̃

(q,q)

−J̃q ,≥(C \ [α,∞)). Then:

(a) The function S := φψ−1 belongs to S q;[α,∞).
(b) [S;Iq ] ∈P

(q,q)

−J̃q ,≥(C \ [α,∞)) and 〈[φ;ψ]〉 = 〈[S;Iq ]〉.
A matrix-valued function S : Π+ → C

q×q is called q × q Schur function in Π+
if S is both holomorphic and contractive inΠ+. The set of all q × q Schur functions
in Π+ will be denoted by S q×q(Π+). We indicate now an interesting connection

between the class P
(q,q)

−J̃q ,≥(C \ [α,∞)) and the Schur class S q×q(Π+).

Lemma 8.11 Let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)). Then the function det(ψ − iφ)

does not vanish identically and the function F := (ψ + iφ)(ψ − iφ)−1 is
meromorphic in C \ [α,∞) and fulfills RstrΠ+ F ∈ S q×q(Π+). Furthermore,
there exists a discrete subset D of C \ [α,∞) such that φ, ψ , (ψ − iφ)−1, and
F are holomorphic inΠ+∪[C\ ([α,∞)∪D )] and that det[ψ(z)− iφ(z)] �= 0 and

F(z) = [ψ(z)+ iφ(z)][ψ(z)− iφ(z)]−1 (125)

hold true for each z ∈ C \ ([α,∞)∪D ). Moreover, for each z ∈ C \ ([α,∞)∪D ),
the matrix-valued functions φ and ψ admit the representations

φ(z) = i

2
[Iq − F(z)][ψ(z)− iφ(z)] and ψ(z) = 1

2

[
Iq + F(z)

][ψ(z)− iφ(z)].
(126)

The proof of Lemma 8.11 is straightforward. (A detailed proof is given in [53,
Satz 10.19].)

Proposition 8.12 Let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)). Then there exists a discrete

subset D of C \ [α,∞) such that φ and ψ are holomorphic in C \ ([α,∞) ∪
D ) and that R (φ(w)) = R (φ(z)) and R (ψ(w)) = R (ψ(z)) as well as
ψ(w)N (φ(w)) = ψ(z)N (φ(z)) and φ(w)N (ψ(w)) = φ(z)N (ψ(z)) hold
true for every choice of z and w in C \ ([α,∞) ∪D ).

A detailed proof of Proposition 8.12 is given in [34, Proposition 10.15]. Since
we do not use this result in our following considerations, we omit a proof here.
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9 The Class W̃J̃q,α

A closer view on the 2q × 2q matrix polynomials introduced in Lemma 7.15 leads
us to the consideration of the following object.

Notation 9.1 Let α ∈ R. By W̃
J̃q ,α

we denote the set of all 2q × 2q matrix-
valued functions Θ which are meromorphic in C \ [α,∞) and for which there
exists a discrete subset D of C \ [α,∞) such that the following three conditions
are fulfilled:

(I) Θ is holomorphic in C \ ([α,∞) ∪D ).
(II) Θ(z)J̃qΘ∗(z) ≤ J̃q for each z ∈ Π+ \D .

(III) Θ(x)J̃qΘ∗(x) = J̃q for each x ∈ (−∞, α) \D .

Let G be a non-empty open subset of C and let f = [fjk]j=1,...,p
k=1,...,q

be a

p × q matrix-valued function which is meromorphic in G . For every choice of j in
Z1,p and k in Z1,q , then let Hfjk be the set of all z ∈ G in which fjk is holomorphic
and let Pfjk be the set of all poles of fjk . Furthermore, let Hf :=⋂p

j=1

⋂q

k=1 Hfjk

and let Pf :=⋃p

j=1

⋃q

k=1 Pfjk .
Observe that continuity arguments show that conditions (II) and (III) in Nota-

tion 9.1 can be replaced equivalently by the following conditions (I’) and (II’),
respectively:

(I’) Θ(z)J̃qΘ∗(z) ≤ J̃q for each z ∈ Π+ ∩HΘ .
(II’) (−∞, α) ⊆ HΘ and Θ(x)J̃qΘ∗(x) = J̃q for each x ∈ (−∞, α).

The following observation shows the importance of the class W̃
J̃q ,α

for the
purposes of this paper.

Remark 9.2 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . From

Lemma 7.15, Remark 7.18, and Lemma 7.19 we see then that, for each n ∈ N0 with

2n+ 1 ≤ κ , the functions Θ̂n,α := RstrC\[α,∞) Θn,α and ˆ̃Θn,α := RstrC\[α,∞) Θ̃n,α
given by (85) and (86) are holomorphic in C \ [α,∞) and belong both to W̃

J̃q ,α
.

Suggested by Proposition 7.16 and Remark 9.2 we are led to a particular subclass
of W̃

J̃q ,α
which is introduced now.

Notation 9.3 Let α ∈ R and let the matrix-valued function Pα : C \ [α,∞) →
C

2q×2q be defined by Pα(z) := diag((z− α)Iq, Iq). Then let W
J̃q ,α

be the set of all

Θ ∈ W̃
J̃q ,α

for which Θ̃ := PαΘP−1
α belongs to W̃

J̃q ,α
.

Remark 9.4 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . From

Remark 9.2 and Proposition 7.16 one can easily see that, for each n ∈ N0
with 2n + 1 ≤ κ , the matrix-valued function RstrC\[α,∞) Θn,α given by (85) is
holomorphic in C \ [α,∞) and belongs to W

J̃q ,α
.



A Potapov-Type Approach to a Truncated Matricial Stieltjes-Type Power. . . 249

Lemma 9.5 Let α ∈ R and let Θ ∈ W
J̃q ,α

. Then there is a discrete subset D of

C \ [α,∞) such that Θ is holomorphic in C \ ([α,∞)∪D ) and that detΘ(z) �= 0
holds true for each z ∈ C \ ([α,∞) ∪ D ). Furthermore, Θ−1 is meromorphic in
C \ [α,∞) with HΘ−1 ⊇ C \ ([α,∞) ∪D ) and the identity Θ−1(z) = J̃qΘ∗(z)J̃q
holds true for each z ∈ C \ ([α,∞) ∪D ).

Proof Let HΘ∨ := {z ∈ C \ [α,∞) : z ∈ HΘ}. Then Θ∨ : HΘ∨ → C
2q×2q given

by Θ∨(z) := Θ∗(z) is meromorphic in C \ [α,∞) with HΘ∨ = (HΘ)
∨. Thus,

Ω := J̃q −ΘJ̃qΘ∨ is meromorphic in C \ [α,∞) with HΩ ⊇ HΘ ∩HΘ∨ = HΘ .
Because ofΘ ∈W

J̃q ,α
, there is a discrete subset D of C \ [α,∞)with C\([α,∞)∪

D ) ⊆ HΘ such that Ω is holomorphic in C \ ([α,∞) ∪ D ) and that Ω(x) =
J̃q − Θ(x)J̃qΘ∨(x) = J̃q − Θ(x)J̃qΘ∗(x) = J̃q − Θ(x)J̃qΘ∗(x) = 0 holds true
for each x ∈ (−∞, α) \ D . Consequently, the identity theorem for holomorphic
functions shows that Θ(z)J̃qΘ∨(z) = J̃q is valid for each z ∈ HΘ ∩ HΘ∨ , which
implies Θ(z)J̃qΘ∗(z)J̃q = Θ(z)J̃qΘ∨(z)J̃q = J̃ 2

q = I2q for each z ∈ HΘ ∩ HΘ∨
and, in particular, for each z ∈ C \ ([α,∞) ∪D ). The rest is plain.

10 On the Class WJ̃q,α Under the View of Linear Fractional
Transformations

We are interested in linear fractional transformations with generating matrix-valued
function belonging to W

J̃q ,α
. The domain of these transformations is the class

P
(q,q)

−J̃q ,≥(C \ [α,∞)) introduced in Definition 8.1.

The following result plays a key role in our subsequent considerations.

Proposition 10.1 Let α ∈ R, let Θ ∈ W
J̃q ,α

, and let Θ = [Θjk]2j,k=1 be the
q × q block representation of Θ . Then:

(a) The function detΘ does not vanish identically and the matrix-valued function
Θ−1 is meromorphic in C \ [α,∞).

(b) Let f be a q × q matrix-valued function meromorphic in C \ [α,∞). Suppose
that there is a discrete subset D of C \ [α,∞) such that f and Θ are
holomorphic in C \ ([α,∞) ∪ D ), that detΘ(z) �= 0 holds true for each
z ∈ C \ ([α,∞) ∪D ), and that

[
f (z)

Iq

]∗
Θ−∗(z)

(
−J̃q

2 Im z

)
Θ−1(z)

[
f (z)

Iq

]
≥ 0q×q (127)

and

[
f (z)

Iq

]∗
Θ−∗(z)

[
diag

(
(z− α)Iq, Iq

)]∗
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×
(
−J̃q

2 Im z

)
[
diag

(
(z− α)Iq, Iq

)]
Θ−1(z)

[
f (z)

Iq

]
≥ 0q×q (128)

are fulfilled for each z ∈ C \ (R ∪ D ). For every such discrete subset D of
C \ [α,∞), there exists a pair [φ;ψ] ∈P

(q,q)

−J̃q ,≥(C \ [α,∞)) such that φ and

ψ are holomorphic in C \ ([α,∞) ∪D ) and that

det[Θ21(z)φ(z)+Θ22(z)ψ(z)] �= 0 (129)

and

f (z) = [Θ11(z)φ(z)+Θ12(z)ψ(z)][Θ21(z)φ(z)+Θ22(z)ψ(z)]
−1 (130)

hold true for each z ∈ C \ ([α,∞) ∪D ).
(c) Let [φ;ψ] ∈ P

(q,q)

−J̃q ,≥(C \ [α,∞)) be such that det(Θ21φ + Θ22ψ) does not

vanish identically. Then there exists a discrete subset D of C \ [α,∞) such that
the following three statements are valid:

(I) The matrix-valued functionsΘ , φ, andψ are holomorphic in C\([α,∞)∪
D ).

(II) The inequalities detΘ(z) �= 0 and (129) hold true for each z ∈ C \
([α,∞) ∪D ).

(III) The function

f := (Θ11φ +Θ12ψ)(Θ21φ +Θ22ψ)
−1 (131)

is holomorphic in C \ ([α,∞) ∪ D ), the inequalities (127) and (128)
hold true for each z ∈ C \ (R ∪ D ) and (130) is fulfilled for each z ∈
C \ ([α,∞) ∪D ).

(d) For each k ∈ {1, 2}, let [φk;ψk] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) be such that

det(Θ21φk+Θ22ψk) does not vanish identically. Then 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉
if and only if

(Θ11φ1+Θ12ψ1)(Θ21φ1+Θ22ψ1)
−1 = (Θ11φ2+Θ12ψ2)(Θ21φ2+Θ22ψ2)

−1.

Proof

(a) Use Lemma 9.5.
(b) Let D be a discrete subset of C \ [α,∞) such that f andΘ are holomorphic in

C \ ([α,∞) ∪ D ), that detΘ(z) �= 0 is valid for each z ∈ C \ ([α,∞) ∪ D ),
and that (127) and (128) are fulfilled for each z ∈ C \ (R ∪ D ). Then the
functions Θ−1, φ := [Iq, 0q×q ]Θ−1[f ; Iq ], and ψ := [0q×q, Iq ]Θ−1[f ; Iq ]
are holomorphic in C \ ([α,∞) ∪D ) and, for each z ∈ C \ ([α,∞) ∪D ), we
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have

[
φ(z)

ψ(z)

]
= Θ−1(z)

[
f (z)

Iq

]
, (132)

consequently,

Θ11(z)φ(z)+Θ12(z)ψ(z) = [Iq, 0q×q ]Θ(z)
[
φ(z)

ψ(z)

]
= f (z) (133)

and, analogously, Θ21(z)φ(z) + Θ22(z)ψ(z) = Iq . The last equation
implies (129) as well as

q ≥ rank

[
φ(z)

ψ(z)

]
≥ rank

(
[Θ21(z),Θ22(z)]

[
φ(z)

ψ(z)

])
= rank Iq = q.

Hence, rank
[ φ(z)
ψ(z)

] = q for all z ∈ C\([α,∞)∪D ). In view of (132) and (127),
we get

[
φ(z)

ψ(z)

]∗ ( −J̃q
2 Im z

)[
φ(z)

ψ(z)

]
=

[
f (z)

Iq

]∗
Θ−∗(z)(−J̃q)Θ−1(z)

2 Im z

[
f (z)

Iq

]
≥ 0

for each z ∈ C \ (R ∪ D ). From (132) we obtain
[ (z−α)φ(z)

ψ(z)

] = [diag((z −
α)Iq, Iq)]Θ−1(z)

[ f (z)
Iq

]
for each z ∈ C\([α,∞)∪D ), and, according to (128),

consequently, (124) for each z ∈ C \ (R∪D ). Thus, we proved that [φ;ψ] is a
q × q Stieltjes pair in C \ [α,∞). From (133) andΘ21(z)φ(z)+Θ22(z)ψ(z) =
Iq we infer (130) for each z ∈ C \ ([α,∞) ∪D ).

(c) Since Θ belongs to W
J̃q ,α

, Lemma 9.5 shows that there is a discrete subset
D 1 of C \ [α,∞) such that Θ is holomorphic in C \ ([α,∞) ∪ D 1) and that
detΘ(z) �= 0 is valid for each z ∈ C \ ([α,∞) ∪ D 1). Because of [φ;ψ] ∈
P

(q,q)

−J̃q ,≥(C \ [α,∞)), there is a discrete subset D 2 of C \ [α,∞) such that φ

and ψ are holomorphic in C \ ([α,∞) ∪ D 2) and that (123) and (124) hold
true for each z ∈ C \ (R ∪ D 2). Since the meromorphic function det(Θ21φ +
Θ22ψ) does not vanish identically, there is a discrete subset D 3 of C \ [α,∞)
such that det(Θ21φ + Θ22ψ) is holomorphic in C \ ([α,∞) ∪ D 3) and that
det(Θ21φ +Θ22ψ)(z) �= 0 holds true for all z ∈ C \ ([α,∞) ∪D 3). Thus, the
set D := D 1 ∪D 2 ∪D 3 is a discrete subset of C \ [α,∞) and we see that Θ ,
φ, and ψ are holomorphic in C \ ([α,∞) ∪D ) and that the inequalities (123),
and (124) hold true for each z ∈ C \ (R ∪ D ). Furthermore, detΘ(z) �= 0
and (129) are valid for all z ∈ C \ ([α,∞) ∪ D ). Consequently, f defined
by (131) is holomorphic in C \ ([α,∞) ∪ D ) and (130) is valid for each z ∈
C \ ([α,∞) ∪D ). Now we consider an arbitrary z ∈ C \ (R ∪D ). Because of
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part (a), (129), (130), and Θ = [Θjk]2j,k=1, we have

Θ−1(z)

[
f (z)

Iq

]
=

[
φ(z)

ψ(z)

]
[Θ21(z)φ(z)+Θ22(z)ψ(z)]

−1 (134)

and, consequently,

[
f (z)

Iq

]∗
Θ−∗(z)(−J̃q )Θ−1(z)

2 Im z

[
f (z)

Iq

]
=[Θ21(z)φ(z)+Θ22(z)ψ(z)]−∗

[
φ(z)

ψ(z)

]∗

×
(
−J̃q

2 Im z

)[
φ(z)

ψ(z)

]
[Θ21(z)φ(z)+Θ22(z)ψ(z)]−1. (135)

In view of (123), the matrix on the right-hand side of (135) is non-negative
Hermitian. Thus, (127) holds true. Using (134), we get

[
diag

(
(z− α)Iq, Iq

)]
Θ−1(z)

[
f (z)

Iq

]

=
[
(z− α)φ(z)
ψ(z)

]
[Θ21(z)φ(z)+Θ22(z)ψ(z)]

−1,

which implies

[
f (z)

Iq

]∗
Θ−∗(z)

[
diag((z− α)Iq, Iq)

]∗
(
−J̃q

2 Im z

)

[
diag

(
(z− α)Iq, Iq

)]
Θ−1(z)

[
f (z)

Iq

]

= [Θ21(z)φ(z)+Θ22(z)ψ(z)]
−∗

[
(z− α)φ(z)
ψ(z)

]∗

×
(
−J̃q

2 Im z

)[
(z− α)φ(z)
ψ(z)

]
[Θ21(z)φ(z)+Θ22(z)ψ(z)]

−1. (136)

Because of (124), the matrix on the right-hand side of (136) is non-negative
Hermitian. Consequently, (128) is proved as well.

(d) In view of part (c) and Lemma 9.5, the proof of part (d) is straightforward.
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11 On the Solutions of the Schur Complement Matrix
Inequalities

In this section we realize an important intermediate step on the way to the
determination of the set S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤] of all [α,∞)-Stieltjes transforms

of solutions to the moment problem MP[[α,∞); (sj )2n+1
j=0 ,≤]. More precisely, by

application of Proposition 10.1 we will see that the key to determine this set is given
by the linear fractional transformation generated by the restriction onto C \ [α,∞)
of the 2q × 2q matrix polynomial Θn,α introduced in Lemma 7.15. The set of

parameters is given by the class P
(q,q)

−J̃q ,≥(C \ [α,∞)).

Proposition 11.1 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let

n ∈ N0 with 2n+ 1 ≤ κ . Let [Θ̂(j,k)n,α ]2j,k=1 be the q × q block representation of the

restriction Θ̂n,α of Θn,α onto C \ [α,∞). Then:

(a) Let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) be such that det(Θ̂(2,1)n,α φ + Θ̂(2,2)n,α ψ) does

not vanish identically. Then there exists a discrete subset D of C \ [α,∞) such
that

f := (Θ̂(1,1)n,α φ + Θ̂(1,2)n,α ψ)(Θ̂
(2,1)
n,α φ + Θ̂(2,2)n,α ψ)

−1

is holomorphic in C \ ([α,∞) ∪D ) and the inequalities

[
f (z)

Iq

]∗
Θ̂−∗n,α(z)

(
−J̃q

2 Im z

)
Θ̂−1
n,α(z)

[
f (z)

Iq

]
≥ 0q×q (137)

and

[
f (z)

Iq

]∗
Θ̂−∗n,α(z)

[
diag

(
(z− α)Iq, Iq

)]∗

×
(
−J̃q

2 Im z

)
[
diag

(
(z− α)Iq, Iq

)]
Θ̂−1
n,α(z)

[
f (z)

Iq

]
≥ 0q×q (138)

hold true for all z ∈ C \ (R ∪D ). For each z ∈ C \ (R ∪D ) with

R
(

b[f ]2n (z)
)
⊆ R (Hn) and R

(
b[f ]2n+1(z)

)
⊆ R (Hα,n), (139)

furthermore

Σ
[f ]
2n (z) ≥ 0q×q and Σ

[f ]
2n+1(z) ≥ 0q×q (140)

are fulfilled.
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(b) Let f ∈ S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤]. Then (139) holds true for all z ∈ C \ R.

Furthermore there exists a pair [φ;ψ] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) such that φ and

ψ are holomorphic in C \ [α,∞) and det[Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)] �= 0
and

f (z) =
[
Θ̂(1,1)n,α (z)φ(z)+ Θ̂(1,2)n,α (z)ψ(z)

][
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1

are valid for each z ∈ C \ [α,∞).
(c) For each k ∈ {1, 2}, let [φk;ψk] ∈ P

(q,q)

−J̃q ,≥(C \ [α,∞)) be such that

det(Θ̂(2,1)n,α φk + Θ̂(2,2)n,α ψk) does not vanish identically. Then 〈[φ1;ψ1]〉 =
〈[φ2;ψ2]〉 if and only if

(Θ̂(1,1)n,α φ1 + Θ̂(1,2)n,α ψ1)(Θ̂
(2,1)
n,α φ1 + Θ̂(2,2)n,α ψ1)

−1

= (Θ̂(1,1)n,α φ2 + Θ̂(1,2)n,α ψ2)(Θ̂
(2,1)
n,α φ2 + Θ̂(2,2)n,α ψ2)

−1.

Proof First observe that, according to Remark 9.4, the matrix-valued function
Θ̂n,α is holomorphic in C \ [α,∞) and belongs to W

J̃q ,α
. Thus, we can apply

Proposition 10.1 to Θ = Θ̂n,α . Furthermore, observe that Lemma 7.19(b) yields
det Θ̂n,α(z) �= 0 for all z ∈ C \ [α,∞).
(a) By virtue of Proposition 10.1(c), there exists a discrete subset D of C \ [α,∞)

such that f is holomorphic in C \ ([α,∞) ∪ D ) and the inequalities (137)
and (138) hold true for each z ∈ C \ (R ∪ D ). Now consider an arbitrary
z ∈ C\(R∪D )with (139). Then, we can conclude (140) from Proposition 7.24
together with (137) and (138).

(b) By assumption f belongs to S 0,q;[α,∞) and the [α,∞)-Stieltjes measure σ
of f belongs to M

q
≥[[α,∞); (sj )2n+1

j=0 ,≤]. Since f is the [α,∞)-Stieltjes
transform of σ we can apply [36, Proposition 4.9] to conclude that the matrices
P
[f ]
2n (z) and P [f ]2n+1(z) are both non-negative Hermitian for all z ∈ C \ R. In

view of (5), (7), (112), and (113), the application of Lemma 4.6(a) yields for all
z ∈ C \R then (139) and (140). Hence, we can conclude from Proposition 7.24
with G = C \ [α,∞) that (137) and (138) hold true for all z ∈ C \ R.
Since f and Θ̂n,α are holomorphic in C \ [α,∞) and det Θ̂n,α(z) �= 0 for all
z ∈ C \ [α,∞), we can thus apply Proposition 10.1(b) with D = ∅ to complete
the proof of part (b).

(c) This is a direct consequence of Proposition 10.1(d).
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12 On a Closer Analysis of the Range Conditions
in Proposition 4.10

The content of this section is motivated by the wish to get a deeper understanding
of the two range conditions occurring in Proposition 4.10. To realize this aim
we construct an appropriate 2(n+ 1)q × 2q matrix polynomial which contains all
information about these two range conditions. Our strategy to extract this infor-
mation is based on finding a factorization of the relevant 2(n+ 1)q × 2q matrix
polynomial as a product of four matrix polynomials having a simpler block
structure. In order to prepare this factorization we still need some algebraic identities
which form the content of the following two lemmas.

Lemma 12.1 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 with 2n+ 1 ≤ κ and all z ∈ C, then

(I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

=
[
I(n+1)q + (z− α)(I(n+1)q −H †

nHn)Tq,nRTq,n(z)(I(n+1)q −HnH−n )
]

× (I(n+1)q −H †
nHn)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α (141)

and

(I(n+1)q−H †
α,nHα,n)RTq,n(z)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)Θ̃n,α(z)

=
[
I(n+1)q + (z− α)(I(n+1)q −H †

α,nHα,n)Tq,nRTq,n(z)(I(n+1)q −Hα,nH−α,n)
]

×(I(n+1)q−H †
α,nHα,n)RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α.

(142)

Proof Let n ∈ N0 be such that 2n+1 ≤ κ and let z ∈ C. Remarks 5.8 and 5.7 yield
H ∗n = Hn and H ∗α,n = Hα,n. Using (87), (30), and RT ∗q,n (z) = [RTq,n(z)]∗, we have

(I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

= (I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Un,α(z)Bn,α

= (I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

×
{
I2q + (z− α)[diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗

× [
RTq,n(z)

]∗
H−n RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

}
Bn,α

= (I(n+1)q −H †
nHn)Φ(z)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

(143)
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where

Φ(z) := RTq,n(z)
[
RTq,n(α)

]−1+(z−α)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

× [diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗
[
RTq,n(z)

]∗
H−n . (144)

Taking into account equation (29) in Remark 7.3, H ∗n = Hn, and (11), we obtain

RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

× [diag(vq,n, vq,n)]∗[Tq,nHn,−I(n+1)q ]∗
[
RTq,n(z)

]∗

= RTq,n(z)(vq,nv∗q,nHnT ∗q,n − Tq,nHnvq,nv∗q,n)
[
RTq,n(z)

]∗

= RTq,n(z)
([
RTq,n(z)

]−1
HnT

∗
q,n − Tq,nHn

[
RTq,n(z)

]−∗)[
RTq,n(z)

]∗

= HnT ∗q,n
[
RTq,n(z)

]∗ − RTq,n(z)Tq,nHn.

(145)

From (145), (144), (247), and the identity RTq,n(z)Tq,n = Tq,nRTq,n(z) we get

Φ(z)=RTq,n(z)
[
RTq,n(α)

]−1+(z− α)
(
HnT

∗
q,n

[
RTq,n(z)

]∗−RTq,n(z)Tq,nHn
)
H−n

= I(n+1)q + (z− α)Tq,nRTq,n(z)+ (z− α)HnT ∗q,n
[
RTq,n(z)

]∗
H−n

− (z− α)Tq,nRTq,n(z)HnH−n
= I(n+1)q+(z− α)Tq,nRTq,n(z)(I(n+1)q−HnH−n )+(z− α)HnT ∗q,n

[
RTq,n(z)

]∗
H−n .

(146)
In view of Remark 6.13, we have

(z− α)(I(n+1)q −H †
nHn)HnT

∗
q,n

[
RTq,n(z)

]∗
H−n = 0. (147)

By virtue of (146), Remark 6.13, and (147), we conclude

(I(n+1)q −H †
nHn)Φ(z)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

= (I(n+1)q −H †
nHn)

×
[
I(n+1)q+(z− α)Tq,nRTq,n(z)(I(n+1)q−HnH−n )+(z− α)HnT ∗q,n[RTq,n(z)]∗H−n

]

× RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α
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=
{
(I(n+1)q −H †

nHn)

+ (z− α)(I(n+1)q−H †
nHn)Tq,nRTq,n(z)(I(n+1)q−HnH−n )(I(n+1)q −H †

nHn)

+ (z− α)(I(n+1)q −H †
nHn)HnT

∗
q,n

[
RTq,n(z)

]∗
H−n

}

× RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

=
[
I(n+1)q + (z− α)(I(n+1)q −H †

nHn)Tq,nRTq,n(z)(I(n+1)q −HnH−n )
]

× (I(n+1)q −H †
nHn)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

and, in view of (143), consequently (141). Furthermore, using (87) and (59), we
infer

(I(n+1)q −H †
α,nHα,n)RTq,n(z)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)Θ̃n,α(z)

= (I(n+1)q −H †
α,nHα,n)RTq,n(z)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

× Ũn,α(z)B̃n,α
= (I(n+1)q −H †

α,nHα,n)RTq,n(z)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

×
{
I2q+(z−α)[diag(vq,n, vq,n)]∗

[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗[
RTq,n(z)

]∗
H−α,n

× RTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

}
B̃n,α

= (I(n+1)q−H †
α,nHα,n)Φ̃(z)RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

diag(vq,n, vq,n)B̃n,α
(148)

where

Φ̃(z) := RTq,n(z)
[
RTq,n(α)

]−1 + (z− α)RTq,n(z)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

× diag(vq,n, vq,n)[diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗

[
RTq,n(z)

]∗
H−α,n. (149)

Because of identity (29) in Remark 7.3,H ∗n = Hn, and equation (12) in Remark 5.5,
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we obtain

RTq,n(z)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)

× [diag(vq,n, vq,n)]∗
[[
RTq,n(α)

]−1
Hn,−I(n+1)q

]∗[
RTq,n(z)

]∗

= RTq,n(z)
(
vq,nv

∗
q,nHn

[
RTq,n(α)

]−∗ − [
RTq,n(α)

]−1
Hnvq,nv

∗
q,n

)[
RTq,n(z)

]∗

= RTq,n(z)
([
RTq,n(z)

]−1
Hα,nT ∗q,n − Tq,nHα,n

[
RTq,n(z)

]−∗)[
RTq,n(z)

]∗

= Hα,nT ∗q,n
[
RTq,n(z)

]∗ − RTq,n(z)Tq,nHα,n,

which, in view of (149), (247), and the identityRTq,n(z)Tq,n = Tq,nRTq,n(z), implies

Φ̃(z)

= RTq,n(z)
[
RTq,n(α)

]−1+(z− α)
(
Hα,nT ∗q,n

[
RTq,n(z)

]∗−RTq,n(z)Tq,nHα,n
)
H−α,n

= I(n+1)q + (z− α)Tq,nRTq,n(z)+ (z− α)Hα,nT ∗q,n
[
RTq,n(z)

]∗
H−α,n

− (z− α)Tq,nRTq,n(z)Hα,nH−α,n
= I(n+1)q + (z− α)Tq,nRTq,n(z)(I(n+1)q −Hα,nH−α,n)
+ (z− α)Hα,nT ∗q,n

[
RTq,n(z)

]∗
H−α,n.

(150)
From Remark 6.13 we see that

(z− α)(I(n+1)q −H †
α,nHα,n)Hα,nT ∗q,n

[
RTq,n(z)

]∗
H−α,n = 0 (151)

is true. Using (150), Remark 6.13, and (151), we get

(I(n+1)q−H †
α,nHα,n)Φ̃(z)RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α

= (I(n+1)q −H †
α,nHα,n)

{
I(n+1)q + (z− α)Tq,nRTq,n(z)(I(n+1)q −Hα,nH−α,n)

+ (z− α)Hα,nT ∗q,n
[
RTq,n(z)

]∗
H−α,n

}

× RTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α
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=
{
(I(n+1)q −H †

α,nHα,n)+ (z− α)(I(n+1)q −H †
α,nHα,n)Tq,nRTq,n(z)

× (I(n+1)q −Hα,nH−α,n)(I(n+1)q −H †
α,nHα,n)

+ (z− α)(I(n+1)q −H †
α,nHα,n)Hα,nT ∗q,n

[
RTq,n(z)

]∗
H−α,n

}

× RTq,n(α)[I(n+1)q , [RTq,n(α)]−1Hn] diag(vq,n, vq,n)B̃n,α

=
[
I(n+1)q + (z− α)(I(n+1)q −H †

α,nHα,n)Tq,nRTq,n(z)(I(n+1)q −Hα,nH−α,n)
]

× (I(n+1)q−H †
α,nHα,n)RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α.

(152)

The combination of (148) and (152) provides us (142).

Lemma 12.2 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . For each

n ∈ N0 such that 2n+ 1 ≤ κ , then

(I(n+1)q −H †
nHn)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

=(I(n+1)q−H †
nHn)RTq,n(α)

[
I(n+1)q , Tq,n(I(n+1)q−Hα,nH−α,n)Hn

]
diag(vq,n, vq,n)

and

(I(n+1)q −H †
α,nHα,n)RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α

= (I(n+1)q −H †
α,nHα,n)

[
(I(n+1)q −HnH−n )RTq,n(α),Hn

]
diag(vq,n, vq,n).

Proof Let n ∈ N0 be such that 2n + 1 ≤ κ . From Remarks 5.8 and 5.7 we get
H ∗n = Hn and H ∗α,n = Hα,n. Because of the Remarks 5.3 and 6.13, we have

(I(n+1)q −H †
nHn)RTq,n(α)(vq,nv

∗
q,nHnH

−
α,n + Tq,n)

= (I(n+1)q −H †
nHn)RTq,n(α)

[(
[RTq,n(α)]−1Hn − Tq,nHα,n

)
H−α,n + Tq,n

]

= (I(n+1)q −H †
nHn)HnH

−
α,n − (I(n+1)q −H †

nHn)RTq,n(α)Tq,nHα,nH−α,n
+ (I(n+1)q −H †

nHn)RTq,n(α)Tq,n

= (I(n+1)q −H †
nHn)RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n).

(153)
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Applying Remark 7.12 and (153), we conclude

(I(n+1)q −H †
nHn)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

=(I(n+1)q−H †
nHn)RTq,n(α)

[
I(n+1)q , (vq,nv

∗
q,nHnH

−
α,n+Tq,n)Hn

]
diag(vq,n, vq,n)

=
[
(I(n+1)q−H †

nHn)RTq,n(α), (I(n+1)q−H †
nHn)RTq,n(α)(vq,nv

∗
q,nHnH

−
α,n+Tq,n)Hn

]

× diag(vq,n, vq,n)

=(I(n+1)q−H †
nHn)RTq,n(α)

[
I(n+1)q , Tq,n(I(n+1)q−Hα,nH−α,n)Hn

]
diag(vq,n, vq,n).

Taking into account H ∗n = Hn, H ∗α,n = Hα,n, and Remark 5.3, we obtain
Hnvq,nv

∗
q,n = Hn[RTq,n(α)]−∗ −Hα,nT ∗q,n and, hence,

I(n+1)q −Hnvq,nv∗q,n
[
RTq,n(α)

]∗
H−n

= I(n+1)q −
(
Hn

[
RTq,n(α)

]−∗ −Hα,nT ∗q,n
)[
RTq,n(α)

]∗
H−n

= I(n+1)q −HnH−n +Hα,nT ∗q,n
[
RTq,n(α)

]∗
H−n .

(154)

Let P := I(n+1)q −H †
α,nHα,n. From (154) and Remark 6.13 we see that

P
(
I(n+1)q −Hnvq,nv∗q,n

[
RTq,n(α)

]∗
H−n

)
RTq,n(α)

= P
(
I(n+1)q −HnH−n +Hα,nT ∗q,n

[
RTq,n(α)

]∗
H−n

)
RTq,n(α)

= P(I(n+1)q −HnH−n )RTq,n(α)

(155)

holds true. Using Remark 7.12 and (155), we obtain finally

PRTq,n(α)
[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]
diag(vq,n, vq,n)B̃n,α

= PRTq,n(α)
[
RTq,n(α)

]−1

×
[[
I(n+1)q −Hnvq,nv∗q,nRT ∗q,n (α)H−n

]
RTq,n(α),Hn

]
diag(vq,n, vq,n)

=
[
P
[
I(n+1)q −Hnvq,nv∗q,nRT ∗q,n (α)H−n

]
RTq,n(α), PHn

]
diag(vq,n, vq,n)

= P [
(I(n+1)q −HnH−n )RTq,n(α),Hn

]
diag(vq,n, vq,n).

The following lemma contains the announced factorization result for the relevant
2(n+ 1)q × 2q matrix polynomial.

Lemma 12.3 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let n ∈ N0

be such that 2n + 1 ≤ κ and let the matrix-valued functions Pn,α , Qn,α , and Sn,α
be defined on C and, for every choice of z ∈ C, be given by
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Pn,α(z) : =I(n+1)q + (z− α)(I(n+1)q −H †
nHn)Tq,nRTq,n (z)(I(n+1)q −HnH−n ),

(156)

Qn,α(z) : =I(n+1)q+(z− α)(I(n+1)q−H †
α,nHα,n)Tq,nRTq,n (z)(I(n+1)q−Hα,nH−α,n),

(157)

and

Sn,α(z) : =I(n+1)q−(z−α)(I(n+1)q−H †
α,nHα,n)RTq,n (α)Tq,n(I(n+1)q−Hα,nH−α,n).

(158)

For each z ∈ C, then

diag
[
Pn,α(z),Qn,α(z)

]

×
[

I(n+1)q 0(n+1)q×(n+1)q

(z− α)(I(n+1)q −H †
α,nHα,n)(I(n+1)q −HnH−n ) Sn,α(z)

]

×
[

I(n+1)q (I(n+1)q −H †
nHn)RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)

0(n+1)q×(n+1)q I(n+1)q

]

× diag
(
(I(n+1)q −H †

nHn)RTq,n(α)vq,n, (I(n+1)q −H †
α,nHα,n)Hnvq,n

)

=

⎡

⎢⎢⎣

(I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

(I(n+1)q −H †
α,nHα,n)RTq,n(z)[I(n+1)q , [RTq,n(α)]−1Hn] diag(vq,n, vq,n)

×Θ̃n,α(z) diag((z− α)Iq, Iq)

⎤

⎥⎥⎦ .

(159)

Proof Let z ∈ C. Obviously, the matrix on the left-hand side of (159) coincides
with

Rn,α(z) := diag
(
Pn,α(z),Qn,α(z)

)
[
Ψ
(1,1)
n,α (z) Ψ

(1,2)
n,α (z)

Ψ
(2,1)
n,α (z) Ψ

(2,2)
n,α (z)

]
diag(vq,n, vq,n)

where

Ψ (1,1)n,α (z) := (I(n+1)q −H †
nHn)RTq,n(α), (160)

Ψ (1,2)n,α (z) := (I(n+1)q −H †
nHn)RTq,n(α)Tq,n

× (I(n+1)q −Hα,nH−α,n)(I(n+1)q −H †
α,nHα,n)Hn, (161)

Ψ (2,1)n,α (z) := (z− α)(I(n+1)q −H †
α,nHα,n)

× (I(n+1)q −HnH−n )(I(n+1)q −H †
nHn)RTq,n(α), (162)
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and

Ψ (2,2)n,α (z) := (z− α)(I(n+1)q −H †
α,nHα,n)(I(n+1)q −HnH−n )(I(n+1)q −H †

nHn)

× RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)(I(n+1)q −H †
α,nHα,n)Hn

+ Sn,α(z)(I(n+1)q −H †
α,nHα,n)Hn. (163)

Because of (161) and Remark 6.13, we have

Ψ (1,2)n,α (z) = (I(n+1)q −H †
nHn)RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)Hn. (164)

Furthermore, (162) and Remark 6.13 yield

Ψ (2,1)n,α (z) = (z− α)(I(n+1)q −H †
α,nHα,n)(I(n+1)q −HnH−n )RTq,n(α). (165)

From Remarks 6.13 and 6.15 and (158) we conclude

(z− α)(I(n+1)q −H †
α,nHα,n)(I(n+1)q −HnH−n )(I(n+1)q −H †

nHn)

× RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)
= (z− α)(I(n+1)q −H †

α,nHα,n)(I(n+1)q −HnH−n )
× RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)
= (z− α)(I(n+1)q −H †

α,nHα,n)RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)
− (z− α)(I(n+1)q −H †

α,nHα,n)HnH−n RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)
= (z− α)(I(n+1)q −H †

α,nHα,n)RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)
= I(n+1)q − Sn,α(z).

(166)
Combining (163) and (166), we obtain

Ψ (2,2)n,α (z)

=(I(n+1)q−Sn,α(z))(I(n+1)q−H †
α,nHα,n)Hn + Sn,α(z)(I(n+1)q −H †

α,nHα,n)Hn

=(I(n+1)q −H †
α,nHα,n)Hn.

(167)
By virtue of Lemma 12.1, (156), Lemma 12.2, (160), and (164), we get

(I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

=
[
I(n+1)q + (z− α)(I(n+1)q −H †

nHn)Tq,nRTq,n(z)(I(n+1)q −HnH−n )
]

× (I(n+1)q −H †
nHn)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α
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= Pn,α(z)(I(n+1)q −H †
nHn)RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

= Pn,α(z)(I(n+1)q −H †
nHn)RTq,n(α)

× [I(n+1)q , Tq,n(I(n+1)q −Hα,nH−α,n)Hn] diag(vq,n, vq,n)

= Pn,α(z)
[
Ψ (1,1)n,α (z), Ψ

(1,2)
n,α (z)

]
diag(vq,n, vq,n). (168)

Similarly, Lemma 12.1, (157), Lemma 12.2, (165), and (167) provide us

(I(n+1)q −H †
α,nHα,n)RTq,n(z)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

× diag(vq,n, vq,n)Θ̃n,α(z) diag
(
(z− α)Iq, Iq

)

=
[
I(n+1)q + (z− α)(I(n+1)q −H †

α,nHα,n)Tq,nRTq,n(z)(I(n+1)q −Hα,nH−α,n)
]

× (I(n+1)q −H †
α,nHα,n)RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

× diag(vq,n, vq,n)B̃n,α diag
(
(z− α)Iq, Iq

)

= Qn,α(z)(I(n+1)q −H †
α,nHα,n)RTq,n(α)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

× diag(vq,n, vq,n)B̃n,α diag
(
(z− α)Iq, Iq

)

= Qn,α(z)(I(n+1)q −H †
α,nHα,n)

[
(I(n+1)q −HnH−n )RTq,n(α),Hn

]

× diag(vq,n, vq,n) diag
(
(z− α)Iq, Iq

)

= Qn,α(z)(I(n+1)q −H †
α,nHα,n)

× [
(z− α)(I(n+1)q −HnH−n )RTq,n(α),Hn

]
diag(vq,n, vq,n)

= Qn,α(z)
[
Ψ (2,1)n,α (z), Ψ

(2,2)
n,α (z)

]
diag(vq,n, vq,n).

(169)
Since Rn,α(z) coincides with the matrix on the left-hand side of (159) from (168)
and (169), equation (159) follows.

Taking into account our knowledge on the role of the 2q × 2q matrix polyno-
mials Θn,α and Θ̃n,α introduced in Lemma 7.15 the application of Lemma 12.3
leads us now to a deeper understanding of the two range conditions occurring in
Proposition 4.10. If G is a non-empty subset of C and if f : G → C is a function,
then let N f := {z ∈ G : f (z) = 0}.
Proposition 12.4 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e

q,κ,α , and let
n ∈ N0 be such that 2n+ 1 ≤ κ . Then:

(a) The set N detPn,α ∪N detQn,α ∪N det Sn,α is finite.
(b) Let x ∈ C

q×q and let y ∈ C
q×q . Then the following statements are

equivalent:
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(i) For each z ∈ C \ (N detPn,α ∪N detQn,α ∪N det Sn,α ), the equations

(I(n+1)q−H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

[
x

y

]
=0

(170)
and

(I(n+1)q −H †
α,nHα,n)RTq,n(z)

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

× diag(vq,n, vq,n)Θ̃n,α(z) diag
(
(z− α)Iq, Iq

) [x
y

]
= 0 (171)

hold true.
(ii) There exists a number z ∈ C \ (N detPn,α ∪N detQn,α ∪N det Sn,α ) such

that (170) and (171) are valid.
(iii) The equations

(I(n+1)q −H †
nHn)RTq,n(α)vq,nx = 0 (172)

and

(I(n+1)q −H †
α,nHα,n)Hnvq,ny = 0 (173)

are fulfilled.

Proof

(a) By virtue of Remark 4.1, (156), (157), and (158), we see that Pn,α , Qn,α , and
Sn,α are matrix polynomials with Pn,α(α) = I(n+1)q , Qn,α(α) = I(n+1)q ,
and Sn,α(α) = I(n+1)q . In particular, detPn,α , detQn,α , and det Sn,α are
polynomials which do not vanish identically. In view of the fundamental
theorem of algebra, the proof of part (a) is complete.

(b) For each z ∈ C, Lemma 12.3 provides us

⎡

⎢⎢⎣

(I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

[
x
y

]

(I(n+1)q −H †
α,nHα,n)RTq,n(z)[I(n+1)q , [RTq,n(α)]−1Hn]

× diag(vq,n, vq,n)Θ̃n,α(z) diag((z− α)Iq, Iq)
[
x
y

]

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

(I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

(I(n+1)q −H †
α,nHα,n)RTq,n(z)[I(n+1)q , [RTq,n(α)]−1Hn]

× diag(vq,n, vq,n)Θ̃n,α(z) diag((z− α)Iq, Iq)

⎤

⎥⎥⎦

[
x

y

]

= Kn,α(z), (174)
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where

Kn,α(z) := diag
(
Pn,α(z),Qn,α(z)

)

×
[

I(n+1)q 0(n+1)q×(n+1)q

(z− α)(I(n+1)q −H †
α,nHα,n)(I(n+1)q −HnH−n ) Sn,α(z)

]

×
[

I(n+1)q (I(n+1)q −H †
nHn)RTq,n(α)Tq,n(I(n+1)q −Hα,nH−α,n)

0(n+1)q×(n+1)q I(n+1)q

]

×
⎡

⎣ (I(n+1)q −H †
nHn)RTq,n(α)vq,nx

(I(n+1)q −H †
α,nHα,n)Hnvq,ny

⎤

⎦ . (175)

(i)⇒(ii): This implication is trivial.
(ii)⇒(iii): According to (ii), there exists a number z ∈ C \ (N detPn,α ∪

N detQn,α ∪N det Sn,α ) such that (170) and (171) hold true. Using (170), (171),
and (174), we get Kn,α(z) = 02(n+1)q×q . Because of z ∈ C \ (N detPn,α ∪
N detQn,α ∪N det Sn,α ), the first three factors of the matrix product on the right-
hand side of equation (175) are non-singular matrices. Thus, (175) implies (172)
and (173).

(iii)⇒(i): Taking into account (175), (172), (173), and (174), we conclude
that

02(n+1)q×q = Kn,α(z)

=

⎡

⎢⎢⎣

(I(n+1)q −H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

[
x
y

]

(I(n+1)q −H †
α,nHα,n)RTq,n(z)[I(n+1)q , [RTq,n(α)]−1Hn]

× diag(vq,n, vq,n)Θ̃n,α(z) diag((z− α)Iq, Iq)
[
x
y

]

⎤

⎥⎥⎦

and, consequently, (170) and (171) hold true for each z ∈ C.

13 On a First Description of the Set S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤]

The main goal of this section is to derive a parametrization of the set
S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤] on the basis of the linear fractional transformation
generated by the 2q × 2q matrix polynomial Θn,α given by (85). The role of

parameters will be played by a particular subclass of P
(q,q)

−J̃q ,≥(C \ [α,∞)) which

depends on the sequence (sj )
2n+1
j=0 (see Notation 13.3 below). More precisely, from

the set P
(q,q)

−J̃q ,≥(C \ [α,∞)) we select those pairs which are compatible with the

range conditions contained in Proposition 4.10. To prepare this we start with two
technical lemmas.
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Lemma 13.1 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let φ

and ψ be q × q matrix-valued functions which are meromorphic in C \ [α,∞). Let
n ∈ N0 be such that 2n+ 1 ≤ κ and let Θn,α : C→ C

2q×2q be defined by (85). Let
Θ̂n,α := RstrC\[α,∞) Θn,α and let

Θ̂n,α = [Θ̂(j,k)n,α ]2j,k=1 (176)

be the q × q block representation of Θ̂n,α . Let φ̃ := Θ̂(1,1)n,α φ + Θ̂(1,2)n,α ψ and ψ̃ :=
Θ̂
(2,1)
n,α φ + Θ̂(2,2)n,α ψ . Furthermore, let z ∈ (Hφ ∩Hψ) \ R be such that (123) and

(I(n+1)q −H †
nHn)RTq,n(α)vq,nφ(z) = 0 (177)

hold true. Then N (ψ̃(z)) ⊆ N (φ̃(z)). Moreover, if

rank

[
φ(z)

ψ(z)

]
= q (178)

is valid, then det ψ̃(z) �= 0 is fulfilled.

Proof Because of K ≥,e
q,κ,α ⊆ K ≥

q,κ,α and Lemma 6.12, the equations in (20) are
true.

We consider an arbitrary y ∈ N (ψ̃(z)). Because of Remark 7.1, we have then

y∗
[
φ̃(z)

ψ̃(z)

]∗
J̃q

[
φ̃(z)

ψ̃(z)

]
y = iy∗

[
ψ̃
∗
(z)φ̃(z)− φ̃∗(z)ψ̃(z)

]
y = 0. (179)

Obviously, Θn,α(z) = Θ̂n,α(z). By (176) and the definition of φ̃ and ψ̃ , we get

Θ̂n,α(z)

[
φ(z)

ψ(z)

]
=

[
φ̃(z)

ψ̃(z)

]
. (180)

Using (180) and (179), we conclude

y∗
[
φ(z)

ψ(z)

]∗ [
J̃q −Θ∗n,α(z)J̃qΘn,α(z)

] [
φ(z)

ψ(z)

]
y = −y∗

[
φ(z)

ψ(z)

]∗
(−J̃q)

[
φ(z)

ψ(z)

]
y.

(181)
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Because of Lemma 6.12, Remark 4.1, Lemma 7.21, (181), and (123), we obtain

0 ≤
∥∥∥∥
√
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α)

× [I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

[
φ(z)

ψ(z)

]
y

∥∥∥∥
2

E

= y∗
[
φ(z)

ψ(z)

]∗
B∗n,α[diag(vq,n, vq,n)]∗[I(n+1)q , Tq,nHn]∗

[
RTq,n(α)

]∗

×H−n
[
RT ∗q,n (z)

]∗[
RTq,n(α)

]−1
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n

× RTq,n(α)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

[
φ(z)

ψ(z)

]
y

= y∗
[
φ(z)

ψ(z)

]∗
1

i(z− z)
[
J̃q −Θ∗n,α(z)J̃qΘn,α(z)

] [
φ(z)

ψ(z)

]
y

= −y∗
[
φ(z)

ψ(z)

]∗ ( −J̃q
2 Im z

)[
φ(z)

ψ(z)

]
y ≤ 0

and, consequently,

√
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α)

× [I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Bn,α

[
φ(z)

ψ(z)

]
y = 0. (182)

Multiplying equation (182) from the left by
√
Hn and using Remark 7.13, we get

Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)

[
H−n RTq,n(α),H−α,nHn

]
diag(vq,n, vq,n)

[
φ(z)

ψ(z)

]
y = 0

and, setting X := Hn[RT ∗q,n (α)]−1RT ∗q,n (z)H
−
α,nHn, hence

[
Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α),X

]
diag(vq,n, vq,n)

[
φ(z)

ψ(z)

]
y = 0.

(183)
Because of (180), Θn,α(z) = Θ̂n,α(z), Lemma 7.15, and v∗q,nRTq,n(α)vq,n = Iq , we
have
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φ̃(z)y = [Iq, 0q×q ]
[
φ̃(z)

ψ̃(z)

]
y = [Iq, 0q×q ]Θn,α(z)

[
φ(z)

ψ(z)

]
y

=
[
Iq + (z− α)v∗q,nHnT ∗q,nRT ∗q,n (z)H−n RTq,n(α)vq,n, v∗q,nXvq,n

] [
φ(z)

ψ(z)

]
y

= v∗q,n
[
RTq,n(α)+ (z− α)HnT ∗q,nRT ∗q,n (z)H−n RTq,n(α),X

]

diag(vq,n, vq,n)

[
φ(z)

ψ(z)

]
y.

(184)
From Remark 17.10 we see that (51) holds true, which implies

(z− α)HnT ∗q,nRT ∗q,n (z)H−n RTq,n(α)

= Hn
([
RT ∗q,n (α)

]−1
RT ∗q,n (z)− I(n+1)q

)
H−n RTq,n(α)

= Hn
[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α)−HnH−n RTq,n(α). (185)

Taking (184), (185), and (183) into account, we obtain

φ̃(z)y=v∗q,n
[
RTq,n(α)+Hn

[
RT ∗q,n (α)

]−1
RT ∗q,n (z)H

−
n RTq,n(α)−HnH−n RTq,n(α),X

]

× diag(vq,n, vq,n)

[
φ(z)

ψ(z)

]
y

=v∗q,n
[
RTq,n(α)−HnH−n RTq,n(α), 0(n+1)q×(n+1)q

]
diag(vq,n, vq,n)

[
φ(z)

ψ(z)

]
y.

(186)
Thus, using (186), Remark 6.13, and (177), we infer

φ̃(z)y =
[
v∗q,nRTq,n(α)vq,n − v∗q,nHnH−n RTq,n(α)vq,n, 0q×q

] [
φ(z)y

ψ(z)y

]

= v∗q,n(I(n+1)q −HnH−n )RTq,n(α)vq,nφ(z)y
= v∗q,n(I(n+1)q −HnH−n )(I(n+1)q −H †

nHn)RTq,n(α)vq,nφ(z)y = 0

and, consequently, y ∈ N (φ̃(z)). Hence N (ψ̃(z)) ⊆ N (φ̃(z)) is proved.
Now we suppose (178). We consider again an arbitrary y ∈ N (ψ̃(z)). Then we

already know that y ∈ N (φ̃(z)). In view of Lemma 7.19(b) and (180), we get then
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[
φ(z)

ψ(z)

]
y = [

Θn,α(z)
]−1
Θ̂n,α(z)

[
φ(z)

ψ(z)

]
y = [

Θn,α(z)
]−1

[
φ̃(z)y

ψ̃(z)y

]
= 0.

Because of (178), this implies y = 0q×1, and hence, det ψ̃(z) �= 0.

Lemma 13.2 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )
2n+1
j=0 ∈ K ≥,e

q,2n+1,α , let n ∈ N0

with 2n + 1 ≤ κ , and let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) be such that (I(n+1)q −
H

†
nHn)RTq,n(α)vq,nφ = 0(n+1)q×q . Let Θn,α : C→ C

2q×2q be defined by (85) and

let [Θ̂(j,k)n,α ]2j,k=1 be the q × q block partition of the restriction Θ̂n,α of Θn,α onto
C \ [α,∞). Then there is a discrete subset D of C \ [α,∞) such that φ and ψ are
holomorphic in C \ ([α,∞) ∪D ) and that

det
[
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]
�= 0 (187)

holds true for each z ∈ C \ (R ∪D ).

Proof Use Definition 8.1 and Lemma 13.1.

Against the background of Proposition 4.10 we introduce now a particular
subclass of P

(q,q)

−J̃q ,≥(C \ [α,∞)) which is well adapted to the sequence (sj )
2n+1
j=0 .

Notation 13.3 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 be a sequence
of complex q × q matrices. For each n ∈ N0 with 2n + 1 ≤ κ , let
P

(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ] be the set of all [φ;ψ] ∈ P

(q,q)

−J̃q ,≥(C \ [α,∞))
such that

(I(n+1)q −H †
nHn)RTq,n(α)vq,nφ = 0 (188)

and

(I(n+1)q −H †
α,nHα,n)Hnvq,nψ = 0. (189)

Remark 13.4 If in the situation of Notation 13.3 we have detHn �= 0 and
detHα,n �= 0, then P

(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ] =P

(q,q)

−J̃q ,≥(C \ [α,∞)).

Remark 13.5 Let α ∈ R, let (sj )
2n+1
j=0 be a sequence of complex q × q matrices, let

[φ;ψ] ∈ P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ], and let g be a q × q matrix-valued func-

tion which is meromorphic in C \ [α,∞) such that det g does not vanish identically.
Then it is readily checked that [φg;ψg] ∈P

(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].
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Now we are going to derive an important characterization of the elements of the
set P

(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].

Proposition 13.6 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and

let n ∈ N0 be such that 2n + 1 ≤ κ . Let Θn,α : C → C
2q×2q be defined

by (85), let (176) be the q × q block representation of the restriction Θ̂n,α of
Θn,α onto C \ [α,∞) and let R̂Tq,n be the restriction of RTq,n onto C \ [α,∞). Let

[φ;ψ] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) be such that det(Θ̂(2,1)n,α φ+Θ̂(2,2)n,α ψ) does not vanish

identically and let Ŝn,α := (Θ̂(1,1)n,α φ + Θ̂(1,2)n,α ψ)(Θ̂
(2,1)
n,α φ + Θ̂(2,2)n,α ψ)

−1. Further let
Ê : C \ [α,∞) → C be given by Ê (z) := z. Then the following statements (a)
and (b) are equivalent:

(a) The following two equations hold true:

(I(n+1)q−H †
nHn)R̂Tq,n [I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

[
Ŝn,α

Iq

]
= 0 (190)

and

(I(n+1)q −H †
α,nHα,n)R̂Tq,n

[
I(n+1)q ,

[
RTq,n(α)

]−1
Hn

]

× diag(vq,n, vq,n)

[
(Ê − α)Ŝn,α

Iq

]
= 0. (191)

(b) [φ;ψ] ∈P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].

Proof The proof is partitioned into twelve steps.

(I) Since det(Θ̂(2,1)n,α φ + Θ̂(2,2)n,α ψ) does not vanish identically, there is a discrete
subset D of C \ [α,∞) such that the conditions (i), (ii), and (iii) of Defini-
tion 8.1 hold true and that (187) is fulfilled for each z ∈ C \ ([α,∞) ∪D ).

(II) In view of condition (i) of Definition 8.1, Ŝn,α := (Θ̂
(1,1)
n,α φ +

Θ̂
(1,2)
n,α ψ)(Θ̂

(2,1)
n,α φ + Θ̂(2,2)n,α ψ)

−1, and (187), the function Ŝn,α admits the
representation

Ŝn,α(z)=
[
Θ̂(1,1)n,α (z)φ(z)+ Θ̂(1,2)n,α (z)ψ(z)

][
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1

(192)
for all z ∈ C \ ([α,∞) ∪ D ). Because of Definition 8.1(i), (187), (176),
and (192), we get

Θ̂n,α(z)

[
φ(z)

ψ(z)

] [
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1
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=
[
[Θ̂(1,1)n,α (z)φ(z)+ Θ̂(1,2)n,α (z)ψ(z)][Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)]−1

[Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)][Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)]−1

]

=
[
Ŝn,α(z)

Iq

]
(193)

for each z ∈ C \ ([α,∞)∪D ). Let Θ̃n,α : C→ C
2q×2q given by (86). Taking

into account (187), Proposition 7.16, and (193), for each z ∈ C\([α,∞)∪D ),
this implies

[
RstrC\[α,∞) Θ̃n,α(z)

] [[Ê (z)− α]φ(z)
ψ(z)

] [
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1

=
[
diag

([
Ê (z)−α

]
Iq, Iq

)]
Θ̂n,α(z)

[
φ(z)

ψ(z)

] [
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1

=
[
diag

([
Ê (z)− α

]
Iq, Iq

)] [
Ŝn,α(z)

Iq

]
=

[[Ê (z)− α]Ŝn,α(z)
Iq

]
.

(194)
(III) Since the functions Ê and R̂Tq,n are holomorphic in C \ [α,∞), statement (a)

is equivalent to the following statement:

(c) There exists a discrete subset D̃ of C \ [α,∞) such that Ŝn,α is holomorphic in
C \ ([α,∞) ∪ D̃ ) and that, for each z ∈ C \ ([α,∞) ∪ D̃ ), the following two
equations hold true:

(I(n+1)q −H †
nHn)R̂Tq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

[
Ŝn,α(z)

Iq

]
= 0

(195)
and

(I(n+1)q −H †
α,nHα,n)R̂Tq,n(z)

[
I(n+1)q , [RTq,n(α)]−1Hn

]

× diag(vq,n, vq,n)

[[Ê (z)− α]Ŝn,α(z)
Iq

]
= 0. (196)

(IV) In this step of the proof, we suppose (c). We are going to prove that the
following statement holds true:

(d) There is a discrete subset D̂ of C \ [α,∞) such that φ and ψ are holomorphic
in C \ ([α,∞) ∪ D̂ ) and that, for all z ∈ C \ ([α,∞) ∪ D̂ ), the following two
equations hold true:
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(I(n+1)q −H †
nHn)R̂Tq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θ̂n,α(z)

×
[
φ(z)

ψ(z)

] [
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1 = 0 (197)

and

(I(n+1)q−H †
α,nHα,n)R̂Tq,n (z)

[
I(n+1)q , [RTq,n(α)]−1Hn

]
diag(vq,n, vq,n)Θ̃n,α(z)

×
[[Ê (z)− α]φ(z)

ψ(z)

] [
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1 = 0. (198)

First we observe that D # := D ∪ D̃ is a discrete subset of C \ [α,∞). Since (195)
and (196) are valid for each z ∈ C \ ([α,∞) ∪D #) and since (II) shows that (193)
and (194) are fulfilled for each z ∈ C \ ([α,∞) ∪D #), we get that (197) and (198)
hold true for each z ∈ C \ ([α,∞) ∪ D #). Setting D̂ = D #, statement (d) is
proved.

(V) In this step of the proof, we suppose (d). We are going to prove that (c) holds
true. Obviously, D � := D ∪ D̂ is a discrete subset of C \ [α,∞). According
to (I) and (II), we get (187), (193), and (194) for each z ∈ C\ ([α,∞)∪D �).
Using these arguments and (197) and (198), we see that (195) and (196) are
fulfilled for each z ∈ C \ ([α,∞) ∪ D �). Consequently, statement (c) holds
true with D̃ = D �.

(VI) Now we verify that statement (d) implies the following statement:

(e) There is a discrete subset D̃ # of C \ [α,∞) such that the functions φ and ψ are
holomorphic in C \ ([α,∞) ∪ D̃ #) and that, for each z ∈ C \ ([α,∞) ∪ D̃ #),
the following two equations hold true:

(I(n+1)q−H †
nHn)R̂Tq,n (z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θ̂n,α(z)

[
φ(z)

ψ(z)

]
= 0

(199)
and

(I(n+1)q −H †
α,nHα,n)R̂Tq,n(z)

[
I(n+1)q , [RTq,n(α)]−1Hn

]

× diag(vq,n, vq,n)
[
RstrC\[α,∞) Θ̃n,α(z)

] [[Ê (z)− α]φ(z)
ψ(z)

]
= 0. (200)

Let us assume that (d) is fulfilled. Because of (I), we know that D̃ � := D ∪ D̂ is a
discrete subset of C \ [α,∞). From (I) and (d) we see that (187), (197), and (198)
are valid for each C \ ([α,∞) ∪ D̃ �), which implies (199) and (200) for each
z ∈ C([α,∞) ∪ D̃ �). Consequently, (e) holds true with D̃ # = D̃ �.
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(VII) Now we show that (e) implies (d). Let (e) be fulfilled. Obviously, D̂ # :=
D̃ # ∪D is a discrete subset of C \ [α,∞). Because of (I) and (e), we know
that (187), (199), and (200) are valid for each z ∈ C \ ([α,∞) ∪ D̂ #).
Consequently, (197) and (198) hold true for each z ∈ C \ ([α,∞) ∪ D̂ #).
Hence, (d) is fulfilled with D̂ = D̂ #.

(VIII) Since R̂Tq,n is the restriction of RTq,n onto C \ [α,∞), we see that (e) is
equivalent to the following statement:

(f) There is a discrete subset D ′ of C \ [α,∞) such that φ and ψ are holomorphic
in C \ ([α,∞)∪D ′) and that, for all z ∈ C \ ([α,∞)∪D ′), the following two
equations are true:

(I(n+1)q−H †
nHn)RTq,n(z)[I(n+1)q , Tq,nHn] diag(vq,n, vq,n)Θn,α(z)

[
φ(z)

ψ(z)

]
= 0

(201)
and

(I(n+1)q −H †
α,nHα,n)RTq,n(z)

[
I(n+1)q , [RTq,n(α)]−1Hn

]

× diag(vq,n, vq,n)Θ̃n,α(z)
[
diag

(
(z− α)Iq, Iq

)] [φ(z)
ψ(z)

]
= 0. (202)

(IX) Let Pn,α , Qn,α , and Sn,α be the matrix-valued functions defined (on C)
by (156), (157), and (158). According to Proposition 12.4(a), we see that
N := N detPn,α ∪N detQn,α ∪N det Sn,α is a finite and, in particular, discrete
subset of C.

(X) By virtue of (IX), we know that N is a discrete subset of C. We suppose
now (f). Then N ′ := N ∪ D ′ is a discrete subset of C, too. From
Proposition 12.4(b) we see then that the following statement holds true:

(g) There is a discrete subset D ′′ of C \ [α,∞) such that φ and ψ are holomorphic
in C \ ([α,∞) ∪D ′′) and that

(I(n+1)q −H †
nHn)RTq,n (α)vq,nφ(z) = 0, (I(n+1)q −H †

α,nHα,n)Hnvq,nψ(z) = 0

(203)

are fulfilled for each z ∈ C \ ([α,∞) ∪D ′′).

(XI) Conversely, now we suppose (g). We are going to prove (f). From (IX) we
see that N is a discrete subset of C. Hence, Ñ := N ∩ (C \ [α,∞))
and D ′� := D ′′ ∪ Ñ are discrete subsets of C \ [α,∞). Because of (g),
the functions φ and ψ are holomorphic in C \ ([α,∞) ∪ D ′�) and (203)
is valid for each z ∈ C([α,∞) ∪ D ′�). Let us consider an arbitrary z ∈
C \ ([α,∞) ∪ D ′�). From (203) we get then that x := φ(z) and y := ψ(z)
fulfill (172) and (173). Consequently, Proposition 12.4 yields then that (170)
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and (171) hold true. Thus, we see that (201) and (202) are true. Hence, (f) is
valid with D ′ = D ′�.

(XII) In view of Notation 13.3, (g) and (b) are equivalent.

From (III)–(VIII) and (X)–(XII) we see that the statements (a) and (b) are
equivalent.

Now we are able to prove one of the central results of this paper. Namely, we
obtain a full description of the set S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤].
Theorem 13.7 Let α ∈ R, let κ ∈ N∪ {∞}, let (sj )κj=0 ∈ K ≥,e

q,κ,α , and let n ∈ N0

be such that 2n+ 1 ≤ κ . Let [Θ̂(j,k)n,α ]2j,k=1 be the q × q block representation of the

restriction Θ̂n,α of Θn,α onto C \ [α,∞). Then:

(a) For each [φ;ψ] ∈ P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ], the function det(Θ̂(2,1)n,α φ +

Θ̂
(2,2)
n,α ψ) does not vanish identically in C \ [α,∞) and

Ŝn,α := (Θ̂(1,1)n,α φ + Θ̂(1,2)n,α ψ)(Θ̂
(2,1)
n,α φ + Θ̂(2,2)n,α ψ)

−1

belongs to the class S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤].

(b) For each S ∈ S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤], there exists a pair [φ;ψ] ∈

P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ] consisting of two in C \ [α,∞) holomorphic

q × q matrix-valued functions φ and ψ such that (187) and

S(z) =
[
Θ̂(1,1)n,α (z)φ(z)+ Θ̂(1,2)n,α (z)ψ(z)

][
Θ̂(2,1)n,α (z)φ(z)+ Θ̂(2,2)n,α (z)ψ(z)

]−1

(204)
hold true for each z ∈ C \ [α,∞).

(c) Let [φ1;ψ1], [φ2;ψ2] ∈ P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ]. Then 〈[φ1;ψ1]〉 =

〈[φ2;ψ2]〉 if and only if

(Θ̂(1,1)n,α φ1 + Θ̂(1,2)n,α ψ1)(Θ̂
(2,1)
n,α φ1 + Θ̂(2,2)n,α ψ1)

−1

= (Θ̂(1,1)n,α φ2 + Θ̂(1,2)n,α ψ2)(Θ̂
(2,1)
n,α φ2 + Θ̂(2,2)n,α ψ2)

−1.

Proof

(a) Let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ]. According to Notation 13.3, we

have [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) as well as (188) and (189). In view

of (188), we see from Lemma 13.2 that there is a discrete subset D 1 of
C \ [α,∞) such that φ and ψ are holomorphic in C \ ([α,∞) ∪ D 1) and
that (187) holds true for each z ∈ C \ (R ∪ D 1). In particular, the function
det(Θ̂(2,1)n,α φ + Θ̂(2,2)n,α ψ) does not vanish identically in C \ [α,∞). Thus, we
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can apply Proposition 11.1(a) to obtain the existence of a discrete subset
D 2 of C \ [α,∞) such that Ŝn,α is holomorphic in C \ ([α,∞) ∪ D 2).
Proposition 13.6 provides us (190) and (191). Because of Lemma 7.23, then

(I(n+1)q−H †
nHn)b

[Ŝn,α]
2n (z) = 0(n+1)q×q and (I(n+1)q−H †

α,nHα,n)b
[Ŝn,α]
2n+1 (z) =

0(n+1)q×q for all z ∈ C \ ([α,∞) ∪ D 2). The matrices Hn and Hα,n are non-

negative Hermitian. Thus we can apply Lemma 4.7 to obtain R (b[Ŝn,α]2n (z)) ⊆
R (Hn) and R (b[Ŝn,α]2n+1 (z)) ⊆ R (Hα,n) for all z ∈ C \ ([α,∞) ∪ D 2).
Using again Proposition 11.1(a), we can conclude that the Schur complements

Σ
[Ŝn,α]
2n (z) and Σ

[Ŝn,α]
2n+1 (z) are both non-negative Hermitian for all z ∈ C \ (R ∪

D 2). Taking additionally into account (5) and (7), then Lemma 4.6(a) yields

that the matrices P
[Ŝn,α]
2n (z) and P

[Ŝn,α]
2n+1 (z) are both non-negative Hermitian for

all z ∈ C \ (R ∪ D 2). Obviously, D 3 := D 2 ∩Π+ is a discrete subset of Π+
and the restriction fn,α of Ŝn,α onto Π+ \ D 3 is holomorphic in Π+ \ D 3.

For each w ∈ Π+ \ D 3, then the matrices P
[fn,α]
2n (w) and P

[fn,α]
2n+1 (w) are

both non-negative Hermitian. Thus, [36, Theorem 6.5] provides us that there
is a unique S ∈ S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤] such that the restriction of S onto
Π+ \ D 3 coincides with fn,α . Consequently, for each w ∈ Π+ \ D 3, we have
S(w) = fn,α(w) = Ŝn,α(w). Since S is holomorphic in C \ [α,∞), we get
S = Ŝn,α , implying Ŝn,α ∈ S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤].
(b) Now we consider an arbitrary S ∈ S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤]. From Propo-

sition 11.1(b) we see that R (b[S]2n (z)) ⊆ R (Hn) and R (b[S]2n+1(z)) ⊆
R (Hα,n) hold true for all z ∈ C \ R. Since the matrices Hn and Hα,n are
both non-negative Hermitian, we can infer form Lemma 4.7 then (I(n+1)q −
H

†
nHn)b

[S]
2n (z) = 0(n+1)q×q and (I(n+1)q − H †

α,nHα,n)b[S]2n+1(z) = 0(n+1)q×q
for all z ∈ C \ R. Taking into account that S is holomorphic in C \ [α,∞),
then (I(n+1)q − H †

nHn)b
[S]
2n = 0(n+1)q×q and (I(n+1)q − H †

α,nHα,n)b[S]2n+1 =
0(n+1)q×q follow. Consequently, Lemma 7.23 yields

(I(n+1)q −H †
nHn)R̂Tq,n [I(n+1)q , Tq,nHn] diag(vq,n, vq,n)

[
S

Iq

]
= 0(n+1)q×q

(205)
and

(I(n+1)q −H †
α,nHα,n)R̂Tq,n

[
I(n+1)q , [RTq,n(α)]−1Hn

]

× diag(vq,n, vq,n)

[
(Ê − α)S

Iq

]
= 0(n+1)q×q, (206)

where R̂Tq,n is the restriction ofRTq,n onto C \ [α,∞) and Ê : C \ [α,∞)→ C

is given by Ê (z) := z. Using again Proposition 11.1(b) we obtain the existence
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of a pair [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) such that φ and ψ are holomorphic

in C \ [α,∞) and (187) and (204) hold true for all z ∈ C \ [α,∞). In
particular, the function det(Θ̂(2,1)n,α φ + Θ̂(2,2)n,α ψ) does not vanish identically
and S = (Θ̂

(1,1)
n,α φ + Θ̂(1,2)n,α ψ)(Θ̂

(2,1)
n,α φ + Θ̂(2,2)n,α ψ)

−1. Taking additionally
into account (205) and (206), we thus can apply Proposition 13.6 to infer
[φ;ψ] ∈P

(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].

(c) According to Notation 13.3, we have [φ1;ψ1], [φ2;ψ2] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)).
In view of part (a), we furthermore know that, for each k ∈ {1, 2}, the
function det(Θ̂(2,1)n,α φk + Θ̂(2,2)n,α ψk) does not vanish identically in C \ [α,∞).
Consequently, the application of Proposition 11.1(c) provides us the asserted
equivalence.

If we consider Theorem 13.7 for the non-degenerate case detHn �= 0 and
detHα,n �= 0, then Remark 13.4 implies

P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ] =P

(q,q)

−J̃q ,≥(C \ [α,∞)).

Hence Theorem 13.7 provides a satisfactory description of the class
S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤] which corresponds to that one which was obtained by
Dyukarev [23, Theorem 2]. In the following we want to have a closer look
at the degenerate situation. In this case Theorem 13.7 tells us that the set
P

(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ] of parameters depends on the given sequence

(sj )
2n+1
j=0 of moments. Our subsequent considerations are aimed to look for a more

transparent alternate description of the set S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤].

14 A Pair of Subspaces of Cq Which Describes the
Degeneracy of the Moment
Problem MP[[α,∞); (sj )2n+1

j=0 ,≤]

Our strategy to realize the goal formulated at the end of the preceding section is
based on a closer view of the nature of degeneracy of the moment problem under
consideration. For this reason, we introduce a pair of linear subspaces of Cq which
contains all information which is necessary to handle degeneracy. If U is a subspace
of C

q , then by PU we denote the complex q × q matrix which represents the
orthogonal projection onto U , with respect to the standard basis of Cq i. e., PU
is the unique complex q × q matrix which fulfills the three conditions P 2

U = PU ,
P ∗U = PU , and R (PU ) = U . In this case, we have N (PU ) = U ⊥.
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Lemma 14.1 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈ N0

be such that 2n+ 1 ≤ κ . Then:

(a) The sets

U n,α :=
[
N

(
(I(n+1)q −H †

nHn)RTq,n(α)vq,n

)]⊥
(207)

and

V n,α :=
[
N

(
(I(n+1)q −H †

α,nHα,n)Hnvq,n
)]⊥

. (208)

are orthogonal subspaces of C
q with dim U n,α = rank[(I(n+1)q −

H
†
nHn)RTq,n(α)vq,n] and dim V n,α = rank[(I(n+1)q −H †

α,nHα,n)Hnvq,n].
(b) Let A ∈ C

q×p. Then (I(n+1)q − H †
nHn)RTq,n(α)vq,nA = 0 if and only if

PU n,α
A = 0. Moreover, (I(n+1)q − H †

α,nHα,n)Hnvq,nA = 0 if and only if
PV n,α

A = 0.

Proof (a) Because of Remarks 5.8 and 5.7, we have H ∗n = Hn and H ∗α,n = Hα,n.
In particular, H †

nHn = HnH †
n . Obviously, (H †

nHn)
∗ = H †

nHn and (H †
α,nHα,n)∗ =

H
†
α,nHα,n. Thus,

U n,α = R
([
(I(n+1)q −H †

nHn)RTq,n(α)vq,n

]∗)
(209)

and

V n,α = R
([
(I(n+1)q−H †

α,nHα,n)Hnvq,n
]∗) = R

(
v∗q,nHn(I(n+1)q −H †

α,nHα,n)
)
.

(210)

In particular, dim U n,α = rank((I(n+1)q − H †
nHn)RTq,n(α)vq,n) and dim V n,α =

rank((I(n+1)q −H †
α,nHα,n)Hnvq,n) hold true. Let f ∈ U n,α and g ∈ V n,α be

arbitrary chosen. According to (209) and (210), there are x, y ∈ C
(n+1)q such that

f = [(I(n+1)q − H †
nHn)RTq,n(α)vq,n]∗x and g = v∗q,nHn(I(n+1)q − H †

α,nHα,n)y.
By virtue of the Remarks 5.3 and 6.13, we have

f ∗g = x∗(I(n+1)q −H †
nHn)RTq,n(α)vq,nv

∗
q,nHn(I(n+1)q −H †

α,nHα,n)y

= x∗(I(n+1)q−H †
nHn)RTq,n(α)

([
RTq,n(α)

]−1
Hn−Tq,nHα,n

)
(I(n+1)q−H †

α,nHα,n)y

= x∗(I(n+1)q −H †
nHn)Hn(I(n+1)q −H †

α,nHα,n)y = 0.

Consequently, the subspaces U n,α and V n,α are orthogonal.
(b) Use the equations N ((I(n+1)q − H

†
nHn)RTq,n(α)vq,n) = U ⊥

n,α =
N (PU n,α

) and N ((I(n+1)q −H †
α,nHα,n)Hnvq,n) = V ⊥n,α = N (PV n,α

).
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The linear subspaces introduced in (207) and (208) provide the key instruments
to realize our aim. This will be explained now. Let α ∈ R, let κ ∈ N ∪ {∞}, let
(sj )

κ
j=0 ∈ K ≥,e

q,κ,α , and let n be a non-negative integer with 2n+ 1 ≤ κ . According
to Lemma 14.1, the non-negative integers

m := rank
[
(I(n+1)q −H †

nHn)RTq,n(α)vq,n

]
(211)

and

& := rank
[
(I(n+1)q −H †

α,nHα,n)Hnvq,n
]

(212)

fulfill m+ & ≤ q. In particular, 0 ≤ m ≤ q and 0 ≤ & ≤ q. We consider separately
the following three cases:

(I) m+ & = 0, i. e., m = 0 and & = 0.
(II) 1 ≤ m+ & ≤ q − 1.

(III) m+ & = q.

Our next consideration is dedicated to verify that the case (I) coincides with the
above considered non-degenerate situation detHn �= 0 and detHα,n �= 0.

Lemma 14.2 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈ N0

with 2n+ 1 ≤ κ . Suppose that

(I(n+1)q −H †
nHn)RTq,n(α)vq,n = 0(n+1)q×q (213)

and

(I(n+1)q −H †
α,nHα,n)Hnvq,n = 0(n+1)q×q (214)

are fulfilled. For each x ∈ N (Hα,n), then v∗q,n[RTq,n(α)]∗x = 0q×1 and
[RTq,n(α)]∗T ∗q,nx ∈ N (Hα,n).

Proof First observe that the matrices s0, s1, . . . , s2n+1 are Hermitian. Furthermore,
the matrices (I(n+1)q −H †

nHn) and (I(n+1)q −H †
α,nHα,n) correspond to orthogonal

projections and thus are both Hermitian. Remark 5.3(d) yields Hnvq,n = y0,n,
implying v∗q,nH ∗n = z0,n. Hence, from (213) and (214) we obtain

v∗q,n
[
RTq,n(α)

]∗
(I(n+1)q −H †

nHn) = 0q×(n+1)q (215)

and

z0,n(I(n+1)q −H †
α,nHα,n) = 0q×(n+1)q . (216)
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In view of (4) and (3), we have

[
RTq,n+1(α)

]−1
[

Hn

zn+1,2n+1

]
= (I(n+2)q − αTq,n+1)

[
Hn

zn+1,2n+1

]

=
[

Hn

zn+1,2n+1

]
− α

[
0q×(n+1)q

Hn

]
=

[
z0,n

Kn

]
− α

[
0q×(n+1)q

Hn

]

=
[

z0,n

−αHn +Kn
]
=

[
z0,n

Hα,n

]
(217)

and hence

[Hn, yn+1,2n+1]
[
RTq,n+1(α)

]−∗ = [y0,n,Hα,n]. (218)

Consider an arbitrary x ∈ N (Hα,n). According to (216), then z0,nx = 0q×1.

Hence,
[
z0,n
Hα,n

]
x = 0(n+2)q×1. Because of (217), consequently

[
Hn

zn+1,2n+1

]
x =

0(n+2)q×1, implying Hnx = 0(n+1)q×1. From (215), then v∗q,n[RTq,n(α)]∗x = 0q×1
follows. In view of (3), thus f := [RTq,n(α)]∗x satisfies g = 0q×1, where
f = [ g

h

]
is the block representation of f with q × 1 block g. Taking into

account (4) and (3), we can infer [RTq,n+1(α)]−∗ =
[ [RTq,n (α)]−∗ ∗

0q×(n+1)q Iq

]
. Consequently,

[RTq,n+1(α)]−∗
[
f

0q×1

]
=

[ [RTq,n (α)]−∗f
0q×1

]
= [ x

0q×1

]
. Using additionally (3) and

(218), we get

Hα,n
[
h

0q×1

]
= [y0,n,Hα,n]

⎡

⎣
g

h

0q×1

⎤

⎦ = [Hn, yn+1,2n+1]
[
RTq,n+1(α)

]−∗
[
f

0q×1

]

= [Hn, yn+1,2n+1]
[
x

0q×1

]
= Hnx = 0(n+1)q×1.

From (3) and Remark 4.1 we can conclude T ∗q,nf =
[
h

0q×1

]
and T ∗q,n

[
RTq,n(α)

]∗ =
[RTq,n(α)]∗T ∗q,n. Hence,

[
h

0q×1

]
= T ∗q,nf = T ∗q,n[RTq,n(α)]∗x = [RTq,n(α)]∗T ∗q,nx,

which completes the proof.

Lemma 14.3 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈ N0

with 2n+ 1 ≤ κ . Suppose that (213) and (214) are fulfilled. Then detHα,n �= 0.

Proof Consider an arbitrary x ∈ N (Hα,n). Repeated application of
Lemma 14.2 provides then v∗q,n[RTq,n(α)]∗([RTq,n(α)]∗T ∗q,n)&x = 0q×1 and

([RTq,n(α)]∗T ∗q,n)&x ∈ N (Hα,n) for & = 0, 1, 2 . . . , n. Since Remark 4.1 yields

T ∗q,n
[
RTq,n(α)

]∗ = [RTq,n(α)]∗T ∗q,n, we obtain v∗q,n([RTq,n(α)]∗)&+1(T ∗q,n)&x =



280 B. Fritzsche et al.

0q×1 for all & ∈ Z0,n. Let x = col(xj )nj=0 be the q × 1 block representation of x.

Because of (3), then (T ∗q,n)&x =
⎡

⎣
x&

...
xn

0&q×1

⎤

⎦ for all & ∈ Z1,n. From Remark 4.1 we

can conclude ([RTq,n(α)]∗)&+1 =
[

Iq ∗
0nq×q ∗

]
for all & ∈ Z0,n.

We are now going to show by mathematical induction xj = 0q×1 for
j = n, n − 1, . . . , 0. We have 0q×1 = v∗q,n([RTq,n(α)]∗)n+1(T ∗q,n)nx =
v∗q,n([RTq,n(α)]∗)n+1

[
xn

0nq×1

]
= v∗q,n

[
xn

0nq×1

]
= xn. Now suppose that xn =

xn−1 = · · · = xj+1 = 0q×1 holds true for some j ∈ Z0,n−1. Then,

(T ∗q,n)j x =
⎡

⎣
xj

...
xn

0jq×1

⎤

⎦ =
[
xj

0nq×1

]
. Hence 0q×1 = v∗q,n([RTq,n(α)]∗)j+1(T ∗q,n)j x =

v∗q,n([RTq,n(α)]∗)j+1
[
xj

0nq×1

]
= v∗q,n

[
xj

0nq×1

]
= xj follows.

Thus, we have shown x = 0(n+1)q×1. Consequently N (Hα,n) = {0(n+1)q×1},
which completes the proof.

Let α ∈ R. For all n ∈ N0, let K >
q,2n+1,α be the set of all sequences (sj )

2n+1
j=0

of complex q × q matrices for which the block Hankel matrices Hn and Hα,n =
−αHn +Kn are both positive Hermitian.

Remark 14.4 Let α ∈ R and let n ∈ N0. Then from [30, Proposition 2.20] it follows
that K >

q,2n+1,α ⊆ K ≥,e
q,2n+1,α .

Proposition 14.5 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let

n ∈ N0 with 2n+ 1 ≤ κ . Then the following statements are equivalent:

(i) U n,α = {0q×1} and V n,α = {0q×1}.
(ii) (sj )

2n+1
j=0 ∈ K >

q,2n+1,α .

Proof From Lemma 14.1(a) we can easily conclude that (i) is equivalent to the
following statement:

(iii) The equalities (213) and (214) are fulfilled.

Furthermore, we can infer that the sequence (sj )
2n+1
j=0 belongs to K ≥

q,2n+1,α , i. e.
that the matrices Hn and Hα,n are both non-negative Hermitian. Consequently, (ii)
is equivalent to the following statement:

(iv) detHn �= 0 and detHα,n �= 0.

We are now going to show the equivalence of (iii) and (iv).
(iii)⇒(iv): In view of (iii), we can apply Lemma 14.3 to obtain detHα,n �= 0.

According to Remark 5.9, we have N (L0) ⊆ N (Lα,0) ⊆ N (L1) ⊆ · · · ⊆
N (Ln) ⊆ N (Lα,n). From [30, Lemma 4.11] we can conclude detHn =∏n
k=0 detLk and detHα,n = ∏n

k=0 detLα,k . Because of detHα,n �= 0, then
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detLα,n �= 0 follows, implying N (Lα,n) = {0q×1}. For all k ∈ Z0,n, hence
N (Lk) = {0q×1} and consequently detLk �= 0. Thus, detHn �= 0 follows as well.

(iv)⇒(iii): Because of (iv), the matrices Hn and Hα,n are both invertible with
H−1
n = H

†
n and H−1

α,n = H
†
α,n. Consequently, we have I(n+1)q − H †

nHn =
0(n+1)q×(n+1)q and I(n+1)q −H †

α,nHα,n = 0(n+1)q×(n+1)q , implying (iii).

As a consequence of Proposition 14.5 we infer from the consideration at the end
of Section 13 that the case (I) is already treated in Theorem 13.7. It still remains to
consider the cases (II) and (III).

15 A Further Parametrization of the Solution Set of the
Truncated Matricial Stieltjes Moment Problem in the
Degenerate But Not Completely Degenerate Case

In this section, we state a parametrization of the solution set of the matricial trun-
cated Stieltjes moment problem S[[α,∞); (sj )2n+1

j=0 ,≤] in the degenerate but not
completely degenerate cases. First we recall that, in view of Theorems 2.4 and 2.6,
one can suppose that the given sequence (sj )

2n+1
j=0 of complex q × q matrices

belongs to the set K ≥,e
q,2n+1,α . More precisely we turn our attention to case (II).

Remark 15.1 Let α ∈ R. Let V andW be complex q × q matrices withW ∗V = Iq .
Then it is readily checked that the following statements hold true:

(a) If [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)), then the pair [V φ;Wψ] belongs to

P
(q,q)

−J̃q ,≥(C \ [α,∞)).
(b) Let [φ1;ψ1], [φ2;ψ2] ∈ P

(q,q)

−J̃q ,≥(C \ [α,∞)). Then 〈[V φ1;Wψ1]〉 =
〈[V φ2;Wψ2]〉 if and only if 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉.

Lemma 15.2 Let α ∈ R and let r ∈ N be such that r < q. Let U and V be complex
(q − r)× (q − r) matrices with rank

[
U
V

] = q − r and V ∗U = 0(q−r)×(q−r). Let
U (resp. V ) be the constant matrix-valued function (defined on C \ [α,∞)) with
value U (resp. V ). Then:

(a) If [φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)), then the pair [φ�;ψ�] given by φ� :=
diag(φ,U ) and ψ� := diag(ψ,V ) belongs to P

(q,q)

−J̃q ,≥(C \ [α,∞)).
(b) Let [φ1;ψ1], [φ2;ψ2] ∈P (r,r)

−J̃r ,≥(C \ [α,∞)). For each k ∈ {1, 2}, let φ�k :=
diag(φk,U ) and ψ�

k
:= diag(ψk,V ). Then 〈[φ�1 ;ψ�

1 ]〉 = 〈[φ�2 ;ψ�
2 ]〉 if

and only if 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉.
The proof of Lemma 15.2 is straightforward. We omit the details.
In the following, we will use again PU to denote the complex q × q matrix

which represents the orthogonal projection onto a given subspace U of Cq with
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respect to the standard basis of Cq , i. e., for each subspace U of Cq , the matrix PU
is the unique complex q × q matrix P which fulfills the three conditions P 2 = P ,
P ∗ = P , and R (P ) = U .

Lemma 15.3 Letm and & be non-negative integers such that r := q−(m+&) fulfills
1 ≤ r ≤ q − 1. Let U and V be orthogonal subspaces of Cq with dim U = m
and dim V = &. Then:

(a) There exists a unitary complex q × q matrixW such that

W ∗PU W =
{

diag(0r×r , Im, 0&×&), if m ≥ 1 and & ≥ 1

diag(0r×r , Im), if m ≥ 1 and & = 0
(219)

and

W ∗PV W =
{

diag(0r×r , 0m×m, I&), if m ≥ 1 and & ≥ 1

diag(0r×r , I&), if m = 0 and & ≥ 1
. (220)

(b) Let α ∈ R and let W be a unitary complex q × q matrix such that (219)
and (220) are fulfilled.

(b1) If [φ̃; ψ̃] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) is such that

PU φ̃ = 0q×q and PV ψ̃ = 0q×q, (221)

then there exists a pair [φ;ψ] ∈P (r,r)

−J̃r ,≥(C \ [α,∞)) such that φ and ψ

and the functions

φ� :=

⎧
⎪⎪⎨

⎪⎪⎩

W · diag(φ, 0m×m, I&), if m ≥ 1 and & ≥ 1

W · diag(φ, 0m×m), if m ≥ 1 and & = 0

W · diag(φ, I&), if m = 0 and & ≥ 1

(222)

and

ψ� :=

⎧
⎪⎪⎨

⎪⎪⎩

W · diag(ψ, Im, 0&×&), if m ≥ 1 and & ≥ 1

W · diag(ψ, Im), if m ≥ 1 and & = 0

W · diag(ψ, 0&×&), if m = 0 and & ≥ 1

(223)

fulfill the following three conditions:

(i) φ, ψ , φ�, and ψ� are holomorphic in Π+.
(ii) [φ�;ψ�] ∈P

(q,q)

−J̃q ,≥(C \ [α,∞)).
(iii) 〈[φ̃; ψ̃]〉 = 〈[φ�;ψ�]〉.
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(b2) For each pair [φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)), the functions φ� and ψ�

given by (222) and (223) fulfill (ii).
(b3) Let [φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)). Let φ� and ψ� be defined by (222)

and (223). Then every pair [φ̃; ψ̃] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) for which (iii)

holds true fulfills (221).

Lemma 15.4 is substantially proved in [7, Lemma 5.2, p. 459/460]. (A detailed
proof for the case that m ≥ 1 and & ≥ 1 is also given in [53, Lemma 11.7].)

Lemma 15.4 Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈ N0

be such that 2n + 1 ≤ κ . Let m and & be given by (211) and (212) and let r :=
q − (m + &). Suppose r ≥ 1. Let U n,α and V n,α be given by (207) and (208).
Then:

(a) There exists a unitary complex q × q matrix W such that (219) with U =
U n,α and (220) with V = V n,α hold true.

(b) Let W be a unitary complex q × q matrix such that (219) with U = U n,α

and (220) with V = V n,α are valid.

(b1) Let [φ̃; ψ̃] ∈ P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ]. Then there exists a pair

[φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)) such that the conditions (i)–(iii) of

Lemma 15.3 hold true with φ� and ψ� given by (222) and (223).
(b2) If [φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)), then φ� and ψ� be given by (222)

and (223) fulfill condition (ii) of Lemma 15.3.
(b3) Let [φ;ψ] ∈P (r,r)

−J̃r ,≥(C \ [α,∞)) and let φ� and ψ� be given by (222)

and (223). If [φ̃; ψ̃] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) fulfills condition (iii) of

Lemma 15.3, then [φ̃; ψ̃] belongs to P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].

Lemma 15.4 can be easily proved using Lemmas 15.3 and 14.1 (see also [34,
Lemma 12.6]). A closer look at the construction of the unitary matrix W in
Lemma 15.4 shows that this matrix depends on the sequence (sj )

2n+1
j=0 of given

moments. Now we obtain a parametrization of the solution set of the matricial
truncated Stieltjes moment problem in the so-called degenerate, but not completely
degenerate case. In the rest of this section, let Θn,α : C → C

2q×2q be defined
by (85), let Θ̂n,α be the restriction of Θn,α onto C \ [α,∞), and let (176) be the
q × q block partition of Θ̂n,α .

Theorem 15.5 Let α ∈ R, let κ ∈ N∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈ N0

be such that 2n+ 1 ≤ κ . Let the integers m and & be given by (211) and (212) and
let r := q − (m + &). Suppose r ≥ 1. Let U n,α and V n,α be the subspaces of
C
q which are defined in (207) and (208). LetW be a unitary complex q × q matrix

such that (219) with U = U n,α and (220) with V = V n,α hold true. Then:
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(a) Let [φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)) and let φ� and ψ� be defined by (222)

and (223). Then the function det(Θ̂(2,1)n,α φ
�+Θ̂(2,2)n,α ψ

�) does not vanish identi-

cally and the matrix-valued function S := (Θ̂(1,1)n,α φ
�+Θ̂(1,2)n,α ψ

�)(Θ̂(2,1)n,α φ
�+

Θ̂
(2,2)
n,α ψ

�)−1 belongs to the class S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤].

(b) For each S ∈ S 0,q;[α,∞)[(sj )2n+1
j=0 ,≤], there exists a pair [φ;ψ] ∈

P (r,r)

−J̃r ,≥(C \ [α,∞)) such that the function det(Θ̂(2,1)n,α φ
� + Θ̂(2,2)n,α ψ

�) does

not vanish identically and that S fulfills

S = (Θ̂(1,1)n,α φ
� + Θ̂(1,2)n,α ψ

�)(Θ̂(2,1)n,α φ
� + Θ̂(2,2)n,α ψ

�)−1 (224)

where φ� and ψ� are given by (222) and (223).
(c) Let [φ1;ψ1], [φ2;ψ2] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)). For each k ∈ {1, 2}, let φ�k be

defined as in (222) where φ is replaced by φk and let ψ�
k be defined as in (223)

where ψ is replaced by ψk . Then 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉 is equivalent to

(Θ̂(1,1)n,α φ
�
1 + Θ̂(1,2)n,α ψ

�
1 )(Θ̂

(2,1)
n,α φ

�
1 + Θ̂(2,2)n,α ψ

�
1 )
−1

= (Θ̂(1,1)n,α φ
�
2 + Θ̂(1,2)n,α ψ

�
2 )(Θ̂

(2,1)
n,α φ

�
2 + Θ̂(2,2)n,α ψ

�
2 )
−1. (225)

Proof Let us consider the case that m ≥ 1 and & ≥ 1 hold true. (If m = 0 or if
& = 0, then the assertions can be proved analogously.)

(a) Let [φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)). Parts (b3) and (b2) of Lemma 15.4 and

Notation 13.3 yield [φ�;ψ�] ∈ P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ]. Applying

Theorem 13.7(a), part (a) is proved.
(b) Let S ∈ S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤]. According to Theorem 13.7(b), then there is

a pair [φ#;ψ#] ∈P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ], where φ# and ψ# are matrix-

valued functions which are holomorphic in C \ [α,∞) and which fulfill

det
[
Θ̂(2,1)n,α (z)φ#(z)+ Θ̂(2,2)n,α (z)ψ#(z)

]
�= 0 (226)

and

S(z) =
[
Θ̂(1,1)n,α (z)φ#(z)+Θ̂(1,2)n,α (z)ψ#(z)

][
Θ̂(2,1)n,α (z)φ#(z)+Θ̂(2,2)n,α (z)ψ#(z)

]−1

(227)
for all z ∈ C \ [α,∞). In view of Notation 13.3 and Lemma 15.4(b1),
there is a pair [φ;ψ] ∈ P (r,r)

−J̃r ,≥(C \ [α,∞)) such that [φ�;ψ�] ∈
P

(q,q)

−J̃q ,≥(C \ [α,∞)) and 〈[φ#;ψ#]〉 = 〈[φ�;ψ�]〉 hold true. Consequently,

there are a discrete subset D of C \ [α,∞) and a q × q matrix-valued function
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g which is meromorphic in C \ [α,∞) such that φ#, ψ#, φ, ψ , and g are
holomorphic in C \ ([α,∞) ∪D ) and that det g(z) �= 0 as well as

φ#(z) = φ�(z)g(z) and ψ#(z) = ψ�(z)g(z) (228)

hold true for each z ∈ C \ ([α,∞)∪D ). Therefore, for each z ∈ C \ ([α,∞)∪
D ), it follows from (226) that 0 �= det[Θ̂(2,1)n,α (z)ψ

�(z) + Θ̂(2,2)n,α (z)ψ
�(z)] ·

det g(z). In particular, the function det(Θ̂(2,1)n,α φ
� + Θ̂(2,2)n,α ψ

�) does not vanish
identically in C \ [α,∞). Because of (227) and (228), for all z ∈ C \ ([α,∞)∪
D ), we get furthermore

S(z)=
[
Θ̂(1,1)n,α (z)φ

�(z)+Θ̂(1,2)n,α (z)ψ
�(z)

][
Θ̂(2,1)n,α (z)φ

�(z)+Θ̂(2,2)n,α (z)ψ
�(z)

]−1
.

In particular, (224) holds true.
(c) The matrices U := diag(0m×m, I&) and V := diag(Im, 0&×&) fulfill

rank
[
U
V

] = m + & = q − r and V ∗U = 0(q−r)×(q−r). For each k ∈
{1, 2}, let φ#

k = diag(φk, U) and ψ#
k = diag(ψk, V ). From Lemma 15.2

we see that [φ#
1;ψ#

1] and [φ#
2;ψ#

2] belong to P
(q,q)

−J̃q ,≥(C \ [α,∞)) and that

〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉 is equivalent to 〈[φ#
1;ψ#

1]〉 = 〈[φ#
2;ψ#

2]〉. Obvi-
ously, φ�k := Wφ#

k and ψ�
k

:= Wψ#
k for each k ∈ {1, 2}. Taking

into account W ∗W = Iq and Remark 15.1, we get that [φ�1 ;ψ�
1 ] and

[φ�2 ;ψ�
2 ] belong to P

(q,q)

−J̃q ,≥(C \ [α,∞)) and that 〈[φ#
1;ψ#

1]〉 = 〈[φ#
2;ψ#

2]〉
is equivalent to 〈[φ�1 ;ψ�

1 ]〉 = 〈[φ�2 ;ψ�
2 ]〉. Because of Lemma 15.3(b3),

we obtain [φ�k ;ψ�
k ] ∈ P

(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ] for each k ∈ {1, 2}.

Using Theorem 13.7(c), we see that 〈[φ�1 ;ψ�
1 ]〉 = 〈[φ�2 ;ψ�

2 ]〉 and (225) are
equivalent.

16 The Completely Degenerate Case

Finally we consider the so-called completely degenerate case (III). We will see that,
in this situation, the problem under consideration has a unique solution.

Lemma 16.1 Let m, & ∈ N be such that m + & = q. Let U and V be orthogonal
subspaces of Cq with dim U = m and dim V = &. Then:

(a) There exists a unitary complex q × q matrixW such that

W ∗PU W = diag(Im, 0&×&) and W ∗PV W = diag(0m×m, I&). (229)
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(b) LetW be a unitary complex q × q matrix such that (229) is fulfilled. Let φ# and
ψ# be the constant matrix-valued functions defined on C \ [α,∞) given by

φ#(z) := W · diag(0m×m, I&) and ψ#(z) := W · diag(Im, 0&×&) (230)

for all z ∈ C \ [α,∞). Then:

(b1) The pair [φ#;ψ#] belongs to P
(q,q)

−J̃q ,≥(C \ [α,∞)). Furthermore,

PU φ# = 0 and PV ψ# = 0.

(b2) If [φ;ψ] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) fulfills

〈[φ;ψ]〉 = 〈[φ#;ψ#]〉, (231)

then

PU φ = 0 and PV ψ = 0. (232)

(b3) If [φ;ψ] belongs to P
(q,q)

−J̃q ,≥(C \ [α,∞)) and fulfills (232), then (231) is

valid.

Proof

(a) Let {u1, u1, . . . , um} be an orthonormal basis of U and let {v1, v2, . . . , v&}
be an orthonormal basis of V . Let U := [u1, u2, . . . , um], let V :=
[v1, v2, . . . , v&], and let W := [U,V ]. Because of m + & = q and since
U and V are orthogonal subspaces, the matrix W is unitary. Obviously, we
have PU U = U , PU V = 0, U∗U = Im, and V ∗U = 0. Consequently,
W ∗PU W = diag(Im, 0&×&). Analogously, PV U = 0, PV V = V , U∗V = 0,
and V ∗V = I& imply the second equation in (229).

(b1) Clearly, the constant matrix-valued functions φ# and ψ# are holomorphic
in C \ [α,∞). Since the matrixW is non-singular, we have rank

[ φ#(z)
ψ#(z)

] =
rank

[ diag(0m×m,I&)
diag(Im,0&×&)

] = m + & = q for each z ∈ C \ [α,∞). For every
choice of k ∈ {0, 1} and z ∈ C \R, from Remark 7.1 andW ∗W = Iq , we
conclude

[
(z− α)kφ#(z)

ψ#(z)

]∗ ( −J̃q
2 Im z

)[
(z− α)kφ#(z)

ψ#(z)

]

= −i

2 Im z

(
ψ∗#(z)

[
(z− α)kφ#(z)

]
−

[
(z− α)kφ∗#(z)

]
ψ#(z)

)

= −i

2 Im z

{
(z− α)k · diag(Im, 0&×&) ·W ∗W · diag(0m×m, I&)

− (z− α)k · diag(0m×m, I&) ·W ∗W · diag(Im, 0&×&)
} = 0q×q .
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In view of Definition 8.1, then [φ#;ψ#] belongs to P
(q,q)

−J̃q ,≥(C \ [α,∞)).
Further, from (229) we obtain PU φ# = IqPU W · diag(0m×m, I&) =
WW ∗PU W · diag(0m×m, I&) = W · diag(Im, 0&×&) · diag(0m×m, I&) =
0q×q and, analogously, PV ψ# = 0q×q .

(b2) Let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) be such that (231) holds true.

According to Remark 8.3, there are a discrete subset D of C \ [α,∞)
and a matrix-valued function g meromorphic in C \ [α,∞) such that φ,
ψ , and g are holomorphic in C\([α,∞)∪D ) and that det g(z) �= 0 as well
as φ(z) = W · diag(0m×m, I&) · g(z) and ψ(z) = W · diag(Im, 0&×&) · g(z)
hold true for each z ∈ C\([α,∞)∪D ). Because of (229) andWW ∗ = Iq ,
for each z ∈ C \ ([α,∞) ∪D ), we get

PU φ(z) = WW ∗PU W · diag(0m×m, I&) · g(z)
= W · diag(Im, 0&×&) · diag(0m×m, I&) · g(z) = 0

and, analogously PV ψ(z) = 0q×q . This implies (232).

(b3) Let [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) be such that (232) holds true.

According to Lemma 8.11, we see that the function det(ψ − iφ) does not
vanish identically. Let F := (ψ + iφ)(ψ − iφ)−1. Lemma 8.11 shows that
there is a discrete subset D of C \ [α,∞) such that the following three
conditions are fulfilled:

(i) F is holomorphic in Π+ ∪ [C \ ([α,∞) ∪D )].
(ii) The matrix-valued functions φ, ψ , and (ψ − iφ)−1 are holomorphic in

Π+ ∪ [C \ ([α,∞) ∪D )].
(iii) det[ψ(z) − iφ(z)] �= 0 as well as (125) and (126) hold true for all z ∈

C \ ([α,∞) ∪D ).

Obviously, because of (i), the functions φ̃ := i
2 (Iq − F)W and ψ̃ := 1

2 (Iq +
F)W are meromorphic in C \ [α,∞) and holomorphic inΠ+ ∪ [C \ ([α,∞)∪
D )]. In view of (ii), the functions φ,ψ , φ̃, ψ̃ , and (ψ−iφ)−1W are holomorphic
in Π+ ∪ [C \ ([α,∞) ∪D )]. From (iii) we see that

φ̃(z) = φ(z)[ψ(z)− iφ(z)]−1W and ψ̃(z) = ψ(z)[ψ(z)− iφ(z)]−1W

(233)

hold true for each z ∈ C \ ([α,∞) ∪ D ). In view of (ii), the matrix-valued
functions (ψ + iφ) and (ψ − iφ)−1W are meromorphic in C \ [α,∞). Since
the matrix W is unitary, for each z ∈ C \ ([α,∞) ∪ D ), we have det([ψ(z) −
iφ(z)]−1W) �= 0 by (iii). Consequently, (233) and Remark 8.2 imply that [φ̃; ψ̃]
belongs to P

(q,q)

−J̃q ,≥(C \ [α,∞)). Moreover, from Remark 8.3 we get
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〈[φ̃; ψ̃]〉 = 〈[φ;ψ]〉. (234)

By virtue ofW ∗W = Iq , (233), (229), and (232), we conclude

(Im, 0m×&)(Iq −W ∗FW) = (Im, 0m×&)W ∗(Iq − F)W = −2i(Im, 0m×&)W ∗φ̃

= −2i(Im, 0m×&)W ∗φ(ψ − iφ)−1W

= −2i(Im, 0m×&) · diag(Im, 0&×&) ·W ∗φ(ψ−iφ)−1W

= −2i(Im, 0m×&)W ∗PU φ(ψ − iφ)−1W

= −2i(Im, 0m×&)W ∗0q×q(ψ − iφ)−1W = 0m×q
(235)

and, analogously,

(0&×m, I&)(Iq +W ∗FW) = 0&×q . (236)

Because of (i), we see that G := W ∗FW is a matrix-valued function which
is meromorphic in C \ [α,∞) and holomorphic in Π+ ∪ [C \ ([α,∞) ∪ D )].
From (235) and (236) we obtain G(w) = diag(Im,−I&) for each w ∈ Π+.
Hence, G = diag(Im,−I&) by the identity theorem for holomorphic functions.
Thus, since the matrix W is unitary, this implies F = W · diag(Im,−I&) ·W ∗.
Then

φ̃ = i

2
(Iq−F)W = i

2

[
Iq −W · diag(Im,−I&) ·W ∗

]
W = W ·diag(0m×m, iI&)

(237)
and, analogously, ψ̃ = W · diag(Im, 0&×&). Since φ̃ and ψ̃ are holomorphic in
Π+∪[C\ ([α,∞)∪D )], the matrix-valued functions φ� := φ̃ ·diag(Im,−iI&)
and ψ� := ψ̃ · diag(Im,−iI&) are holomorphic in Π+ ∪ [C \ ([α,∞) ∪ D )].
From det(Im,−iI&) �= 0, Remark 8.2, Remark 8.3, and (234) we get

[φ�;ψ�] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) and 〈[φ�;ψ�]〉 = 〈[φ̃; ψ̃]〉 = 〈[φ;ψ]〉.
(238)

Because of (237) and (230), we have φ� = φ̃ · diag(Im,−iI&) = W ·
diag(0m×m, iI&) · diag(Im,−iI&) = φ#. Analogously, ψ̃ = W · diag(Im, 0&×&)
and (230) imply ψ� = ψ#. Thus, (231) follows from (238).

Lemma 16.2 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let n ∈ N0

be such that 2n+1 ≤ κ . Suppose that the integersm and & given by (211) and (212)
fulfill m + & = q, m ≥ 1, and & ≥ 1. Let U n,α and V n,α be given by (207)
and (208). Then:

(a) There exists a unitary complex q × q matrixW such that
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W ∗PU n,α
W = diag(Im, 0&×&) and W ∗PV n,α

W = diag(0m×m, I&).
(239)

(b) Let W be a unitary complex q × q matrix such that (239) holds true. Further-
more, let φ� and ψ� be the matrix-valued functions defined on C \ [α,∞)
given by φ�(z) := W · diag(0m×m, I&) and ψ�(z) := W · diag(Im, 0&×&) for
all z ∈ C \ [α,∞). Then:

(b1) [φ�;ψ�] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)).
(b2) Each pair [φ;ψ] ∈P

(q,q)

−J̃q ,≥(C \ [α,∞)) with

〈[φ;ψ]〉 = 〈[φ�;ψ�]〉 (240)

belongs to P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].

(b3) Each [φ;ψ] ∈P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ] fulfills (240).

Using Lemmas 14.1 and 16.1 the proof is straightforward (see also [34,
Lemma 12.9]).

Remark 16.3 Let W be a non-singular complex q × q matrix and let W be the
constant function with value W defined on C \ [α,∞). Then the pairs [0q×q;W ]
and [W ; 0q×q ] belong to P

(q,q)

−J̃q ,≥(C \ [α,∞)). Furthermore we have:

(a) Each pair [φ;ψ] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) with 〈[φ;ψ]〉 = 〈[0q×q;W ]〉 fulfills

φ = 0q×q . Conversely, if [φ;ψ] ∈P
(q,q)

−J̃q ,≥(C \ [α,∞)) is such that φ = 0q×q
holds true, then detψ does not vanish identically and 〈[φ;ψ]〉 = 〈[0q×q;W ]〉
is valid.

(b) Each pair [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) with 〈[φ;ψ]〉 = 〈[W ; 0q×q ]〉
fulfills ψ = 0q×q . Conversely, if [φ;ψ] ∈ P

(q,q)

−J̃q ,≥(C \ [α,∞)) is such that

ψ = 0q×q holds true, then detφ does not vanish identically and 〈[φ;ψ]〉 =
〈[W ; 0q×q ]〉 is valid.

Lemma 16.4 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let n ∈ N0

be such that 2n+ 1 ≤ κ . Suppose that & given by (212) fulfills & = q. Then m given
by (211) fulfills m = 0 and:

(a) V n,α defined by (208) fulfills V n,α = C
q and, in particular, PV n,α

= Iq .
(b) Let W be a non-singular complex q × q matrix and let W be the con-

stant function with value W defined on C \ [α,∞). Then
[ W

0q×q
]

belongs

to P
(q,q)

−J̃q ,≥(C \ [α,∞)) and each pair [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) with

〈[φ;ψ]〉 = 〈[W ; 0q×q ]〉 belongs to the class P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].
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(c) If [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) fulfills (189), then 〈[φ;ψ]〉 = 〈[W ; 0q×q ]〉
holds true.

Using Lemma 14.1 and Remark 16.3 the proof is straightforward (see also [34,
Lemma 12.11]).

Lemma 16.5 Let α ∈ R, let κ ∈ N ∪ {∞}, and let (sj )κj=0 ∈ K ≥,e
q,κ,α . Let n ∈ N0

be such that 2n+1 ≤ κ . Suppose thatm given by (211) fulfillsm = q. Let U n,α be
defined by (207). Then & given by (212) fulfills & = 0 and the following statements
hold true:

(a) U n,α = C
q and, in particular, PU n,α

= Iq .
(b) Let W be a non-singular complex q × q matrix and let W be the con-

stant function with value W defined on C \ [α,∞). Then [0q×q;W ] ∈
P

(q,q)

−J̃q ,≥(C \ [α,∞)) and each pair [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) with

〈[φ;ψ]〉 = 〈[0q×q;W ]〉 belongs to the class P
(q,q)

−J̃q ,≥[C \ [α,∞), (sj )
2n+1
j=0 ].

(c) If [φ;ψ] ∈ P
(q,q)

−J̃q ,≥(C \ [α,∞)) fulfills (188), then 〈[φ;ψ]〉 = 〈[0q×q;W ]〉
holds true.

The proof is straightforward (see also [34, Lemma 12.12]).

Theorem 16.6 Let α ∈ R, let κ ∈ N∪ {∞}, let (sj )κj=0 ∈ K ≥,e
q,κ,α , and let n ∈ N0

be such that 2n+1 ≤ κ . Suppose that the integersm and & given by (211) and (212)
fulfill m+ & = q. Then:

(a) Suppose m ≥ 1 and & ≥ 1. Let W be a unitary complex q × q matrix
such that the equations in (239) hold true where U n,α and V n,α are given
by (207) and (208). Let U := [U, 0q×&] and V := [0q×m, V ] be built with the
q ×m block U and the q × & block V from the block partition W = [U,V ] of
W . Then the function det(Θ̂(2,1)n,α V + Θ̂(2,2)n,α U) does not vanish identically and
S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤] consists of exactly one element, namely the matrix-

valued function S := (Θ̂(1,1)n,α V+ Θ̂(1,2)n,α U)(Θ̂
(2,1)
n,α V+ Θ̂(2,2)n,α U)−1.

(b) Suppose m = 0. Then the function det(Θ̂(2,1)n,α ) does not vanish identically and
S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤] consists of exactly one element, namely the matrix-

valued function S := Θ̂(1,1)n,α (Θ̂
(2,1)
n,α )

−1.

(c) Suppose & = 0. Then the function det(Θ̂(2,2)n,α ) does not vanish identically and
S 0,q;[α,∞)[(sj )2n+1

j=0 ,≤] consists of exactly one element, namely the matrix-

valued function S := Θ̂(1,2)n,α (Θ̂
(2,2)
n,α )

−1.

Using Lemmas 16.2, 16.4, and 16.5 and Theorem 13.7 the proof is straightfor-
ward (see also [34, Theorem 12.13]).

Remark 16.7 Under the assumptions of Theorem 16.6, we see from Theo-
rem 16.6, [27, Theorems 6.5 and 6.4], [26, Definition 4.10], and [32, Theorem 5.1]
that S given in Theorem 16.6 is exactly the [α,∞)-Stieltjes transform of the
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restriction onto B[α,∞) of the completely degenerate non-negative Hermitian
measure corresponding to (sj )

2n+1
j=0 .

17 A Particular Generalized Inverse of a Complex Matrix

In this section, we state some useful identities for the particular generalized inverse
of a Hermitian complex matrix, which is introduced in Remark 6.8.

Remark 17.1 Let A ∈ C
p×q and let B ∈ C

p×r . Then R (B) ⊆ R (A) if and only
if AA†B = B.

Remark 17.2 If A ∈ C
p×q , then N (A) = R (A∗)⊥ and R (A) = N (A∗)⊥.

Lemma 17.3 LetA be a Hermitian complex q × q matrix and let U be a subspace
of C

q such that N (A) � U = C
q . Then (A−U )

∗ = A−U , R (A−U ) = U ,
N (A−U ) = U ⊥,

AA−U A = A, A−U AA
−
U = A−U , (241)

dim R (A−U ) = rankA, and dim N (A−U ) = q − rankA. (242)

In particular, if A is non-negative Hermitian, then A−U is non-negative Hermitian,
too.

Proof By definition of A−U , we have (241) as well as R (A−U ) = U and
N (A−U ) = U ⊥. In view of N (A)�U = C

q , then (242) follows. SinceA∗ = A
is supposed, (241) implies A(A−U )

∗A = A and (A−U )
∗A(A−U )

∗ = (A−U )
∗.

Moreover, N ((A−U )
∗) = R (A−U )

⊥ = U ⊥ and R ((A−U )
∗) = N (A−U )

⊥ =
(U ⊥)⊥ = U . Consequently, (A−U )

∗ = A(1,2)
U ,U ⊥ = A−U .

Remark 17.4 Let A ∈ C
q×q
H and let U be a subspace of Cq such that N (A) �

U = C
q . Then AA† = A†A and, in view of Lemma 17.3, one can easily check

that

(A−U A)
∗ = AA−U , (AA−U )∗ = A−U A, (A−U A)2 = A−U A, (AA−U )2 = AA−U ,

R (A−U A) = U , R (AA−U ) = R (A), N (AA−U ) = U ⊥, N (A−U A) = N (A),

dim R (A−U A) = dim R (AA−U ) = rankA,

dim N (AA−U ) = dim N (A−U A) = q − rankA,

A†AA−U A=A†A=AA†=AA†A−U A, and AA−U AA
† = AA†=A†A=AA−U A†A.

Parts of the following result are already contained in [7, Lemma 2.3].
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Lemma 17.5 LetA be a Hermitian complex q × q matrix and let U be a subspace
of Cq such that N (A)� U = C

q . Then

(Iq − AA−U )∗ = Iq − A−U A, (Iq − AA−U )2 = Iq − AA−U ,

N (Iq − AA−U ) = R (A), R (Iq − AA−U ) = U ⊥,

(Iq − AA−U )AA† = 0 (Iq − AA−U )A†A = 0,

(Iq − AA−U )(Iq − AA†) = Iq − AA−U , and (Iq − AA−U )(Iq − A†A) = Iq − AA−U .

Proof The first two equations follow from Remark 17.4. From Lemma 17.3 we
know that (241) is true. Using (241), the equation N (Iq −AA−U ) = R (A) can be
easily checked by straightforward calculations. In order to prove R (Iq −AA−U ) =
U ⊥, one shows that (241) implies R (Iq − AA−U ) = N (AA−U ) and one applies
the equation N (AA−U ) = U ⊥ stated in Remark 17.4. Because of A∗ = A, we
haveAA† = A†A. Thus, from (241) we easily see that the remaining equations hold
true.

Lemma 17.6 LetA be a Hermitian complex q × q matrix and let U be a subspace
of Cq such that N (A)� U = C

q . Then

R (Iq − A−U A) = N (A−U A) = N (A), N (Iq − A−U A) = R (A−U A) = U ,

dim R (A−U A) = rankA, A†AA−U A = A†A = AA† = AA†A−U A,

and (Iq − A†A)A−U A = A−U A− A†A = A−U A− AA† = (Iq − AA†)A−U A.

Proof Because of Lemma 17.3, we get (241). From (241) we obtain N (A−U A) =
N (A) and R (A−U A) = R (A−U ) = U . In particular, dim R (A−U A) =
dim U = dimC

q − dim N (A) = rankA. Because of A∗ = A, we have
AA† = A†A. Therefore, (241) shows that A†AA−U A = A†A = AA† and
A†AA−U A = AA†. Thus, the remaining equations immediately follow.

Remark 17.7 Let A be a Hermitian complex q × q matrix and let U be a subspace
of Cq such that N (A) � U = C

q . In view of the Lemmas 17.6 and 17.3, it is
readily checked that

(Iq − A−U A)∗ = Iq − AA−U , (Iq − A−U A)2 = Iq − A−U A,

R (Iq − A−U A) = N (A), N (Iq − A−U A) = U ,

A†A(Iq − A−U A) = 0, AA†(Iq − A−U A) = 0,

(Iq − A†A)(Iq − A−U A) = Iq − A−U A, and (Iq − AA†)(Iq − A−U A) = Iq − A−U A.

Remark 17.8 Let T ∈ C
q×q and let U and V be subspaces of Cq with T ∗(U ) ⊆

V ⊆ U . Then it is readily checked that (T ∗)k(U ) ⊆ V ⊆ U and T k(V ⊥) ⊆
U ⊥ ⊆ V ⊥ is valid for each k ∈ N and that (T ∗)&(V ) ⊆ U and T &(U ⊥) ⊆
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U ⊥ ⊆ V ⊥ for each & ∈ N0 hold true (see also [7, Corollary 3.3], where a special
case is discussed).

The following lemma is a generalization of [7, Lemma 4.1], where special pairs
of block Hankel matrices are considered.

Lemma 17.9 Let A and B be Hermitian complex q × q matrices and let T ∈
C
q×q . Suppose that U and V are subspaces of Cq such that N (A) � U = C

q

and N (B)� V = C
q and T ∗(U ) ⊆ V ⊆ U hold true. Then

A−U T
&(Iq − AA−U ) = 0 and B−V T

&(Iq − AA−U ) = 0 (243)

for each & ∈ N0 and, for each k ∈ N, furthermore

A−U T
k(Iq − BB−V ) = 0 and B−V T

k(Iq − BB−V ) = 0. (244)

Proof Lemma 17.5 yields R (Iq − AA−U ) = U ⊥. Hence, from Remark 17.8 we
conclude

T &
(
R (Iq − AA−U )

) = T &(U ⊥) ⊆ U ⊥ ⊆ V ⊥ (245)

for each & ∈ N0. Since we know from Lemma 17.3 that N (A−U ) = U⊥ is valid,
it follows T &(Iq − AA−U )x ∈ N (A−U ) for each & ∈ N0 and each x ∈ C

q .
Consequently, the first equation in (243) is fulfilled for each & ∈ N0. Lemma 17.3
yields N (B−V ) = V ⊥. Thus, we obtain from (245) that T &(Iq − AA−U )x ∈
N (B−V ) is fulfilled for every choice of & in N0 and x in C

q . Therefore, the
second equation in (243) is proved for each & ∈ N0. Lemma 17.5 provides us
R (Iq − BB−V ) = V ⊥. Hence, Remark 17.8 yields

T k
(
R (Iq − BB−V )

) = T k(V ⊥) ⊆ U ⊥ ⊆ V ⊥ (246)

for each k ∈ N. Since Lemma 17.3 shows that N (A−U ) = U ⊥ is true, we
obtain then T k(Iq − BB−V )x ∈ N (A−U ) for every choice of k ∈ N and x in
C
q . Consequently, the first equation in (244) is true for each k ∈ N. Using (246)

and the equation N (B−V ) = V ⊥, which is proved in Lemma 17.3, we get
T k(Iq − BB−V )x ∈ N (B−V ) for each k ∈ N and each x ∈ C

q . Thus, the second
equation in (244) is verified for each k ∈ N as well.

Now we state some more or less known identities for the matrix-valued functions
defined in Remark 4.1.

Remark 17.10 Let n ∈ N0 and let w, z ∈ C. Then one can easily see that the
equations

RTq,n(z)(I(n+1)q − wTq,n) = (I(n+1)q − wTq,n)RTq,n(z),
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RT ∗q,n (z)(I(n+1)q − wT ∗q,n) = (I(n+1)q − wT ∗q,n)RT ∗q,n (z),
RTq,n(z)− RTq,n(w) = (z− w)RTq,n(w)Tq,nRTq,n(z),
RT ∗q,n (z)− RT ∗q,n (w) = (z− w)RT ∗q,n (z)T ∗q,nRT ∗q,n (w),

[
RTq,n(w)

]−1 − [
RTq,n(z)

]−1 = (z− w)Tq,n,
RTq,n(z)+ (w − z)RTq,n(z)Tq,nRTq,n(w) = RTq,n(w),
zRTq,n(z)+ (w − z)RTq,n(z)RTq,n(w) = wRTq,n(w),

(z− w)
[
RT ∗q,n (w)

]∗
Tq,nRTq,n(z) = RTq,n(z)−

[
RT ∗q,n (w)

]∗
,

(z− w)Tq,nRTq,n(z) = RTq,n(z)
[
RTq,n(w)

]−1 − I(n+1)q ,

(247)

(z− w)T ∗q,nRT ∗q,n (z) =
[
RT ∗q,n (w)

]−1
RT ∗q,n (z)− I(n+1)q ,

(248)

and

(z− w)RTq,n(z)Tq,n = RTq,n(z)
[
RTq,n(w)

]−1 − I(n+1)q

(249)

hold true. Furthermore, for each & ∈ N0, it is readily checked that

T &q,nRTq,n(z)=RTq,n(z)T &q,n, RTq,n(z)T
&
q,nRTq,n(w)=RTq,n(w)T &q,nRTq,n(z),

and

(T ∗q,n)&RT ∗q,n (z)=RT ∗q,n (z)(T ∗q,n)&, RT ∗q,n (z)(T
∗
q,n)

&RT ∗q,n (w)=RT ∗q,n (w)(T ∗q,n)&RT ∗q,n (z).
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Formulas and Inequalities for Some
Special Functions of a Complex Variable

Arcadii Z. Grinshpan

Abstract The presented formulas and inequalities are based on interconnection
of convolution and hypergeometric properties. Some known transformations and
a direct coefficient technique are combined to analyze and structure a parameterized
product identity involving three Gauss hypergeometric functions. A convolution
presentation of this identity is a generalization of the Bateman and Kapteyn integrals
for Bessel functions as well as of the addition theorem for the confluent hyperge-
ometric functions. These results and integral properties of weighted convolutions
lead to multiparameter weighted norm inequalities for generalized hypergeometric
functions and special functions of hypergeometric type, in particular, for Bessel and
Whittaker functions, and Laguerre and Hermite polynomials.
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1 Introduction

Various integral formulas, product identities, and inequalities in terms of the
generalized hypergeometric and related special functions play an important role
for numerous applications [1, 2, 5, 7–9, 21–34]. Such results focused on the Gauss
hypergeometric functions, confluent hypergeometric functions, and Bessel functions
are of particular interest from historical, theoretical, and practical point of view.

In the paper, our approach to derive formulas and inequalities is based on
interconnection of convolution and hypergeometric properties. First, we combine
some known transformations and a direct coefficient technique to analyze and
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structure a parameterized product identity involving three Gauss hypergeometric
functions of the type 2F1(α, μ; 2μ; z) (Section 2). Then we present this identity in a
convolution form, which turns out to be a generalization of the well-known Bateman
and Kapteyn convolution formulas for Bessel functions and of the addition theorem
for the confluent hypergeometric functions. These results and the earlier theorem
on weighted convolutions [14] (Section 3) allow us to derive the multiparameter
weighted norm inequalities for some generalized hypergeometric functions and
special functions of hypergeometric type, in particular, for Bessel and Whittaker
functions, and Laguerre and Hermite polynomials (Sections 4–6, see also [11]).

We use the standard hypergeometric notation (see, e.g., [9, v.I, Chs. 2, 6], [1,
Chs. 6, 13, 15]). The Pochhammer symbol (α)n stands for the shifted factorial:

(α)n = α(α + 1) · · · (α + n− 1) for n ≥ 1 and (α)0 = 1. (1)

For any j, k = 0, 1, . . . , the generalized hypergeometric function jFk of one
complex variable is defined by the power series:

jFk(μ1, . . . , μj ; ν1, . . . , νk; z) =
∞∑

n=0

∏
1≤l≤j (μl)n∏
1≤l≤k(νl)n

· z
n

n! , (2)

provided that (νl)n �= 0 (n ≥ 1, l ≤ k).
For a given power series f (z) = ∑∞

n=0 anz
n and α > 0, the α-convolution of f

denoted by f∗α is defined by the formula [12]:

f∗α(z) =
∞∑

n=0

an

(α)n
zn. (3)

As usual, B(α, β) and �(z) stand for the beta and gamma functions.

2 An Identity for Three Gauss Hypergeometric Functions

Our analysis of the identity for Gauss hypergeometric functions presented in
Proposition 1 involves Euler’s transformation [9, v.I], [1, Ch.15, #15.3.3]:

1F0(μ+ ν − γ ;−; z) 2F1(γ − μ, γ − ν; γ ; z) = 2F1(μ, ν; γ ; z), (4)

two algebraic functions in the 2F1 form [9, v.I], [1, Ch. 15, #15.1.13–14]:
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[
1+ (1− z)1/2

2

]1−2μ

= 2F1(μ− 1/2, μ; 2μ; z)

= (1− z)1/2 2F1(μ+ 1/2, μ; 2μ; z),
(5)

and two simple hypergeometric formulas:

2F1(2μ+ 1, μ; 2μ; z) = (1− z)−μ−1(1− z/2), (6)

2F1(−3, 3ν+1; 6ν+2; z) = 1−3z/2+ (3ν+2)z2/(4ν+2)− (ν+1)z3/(8ν+4).
(7)

Proposition 1 The identity

2F1(α, μ; 2μ; z) 2F1(β, ν; 2ν; z) = 2F1(α + β, γ ; 2γ ; z), (8)

where nonzero α and β are linear functions of μ and ν:

α = a1μ+ b1ν + c1 and β = a2μ+ b2ν + c2 (ak, bk, ck are constants), (9)

holds for any μ, ν, z, and some γ = γ (μ, ν) (2μ �= 0,−1, . . . , if α �= 2μ; 2ν �=
0,−1, . . . , if β �= 2ν; |z| < 1) if and only if (α, β, γ ) is either one of the following
eight combinations of parameters or symmetric to one of those:

1. (2μ+ 1, 2ν, μ+ ν); 2. (2μ,−μ+ ν, ν); 3. (2μ, 2ν, μ+ ν);
4. (μ+ 1/2, ν − 1/2, μ+ ν − 1/2); 5. (μ− 1/2, ν − 1/2, μ+ ν − 1/2);
6. (2μ,−1, μ− 1); 7. (−1, −2, 3ν + 1); 8. (−1, −1, ∞).

(10)

Proof First, by a direct coefficient method we show that combinations of parameters
given in (10) or symmetric to one of those describe all the necessary conditions for
identity (8). Then we use Euler’s transformation (4) and formulas (5), (6), and (7)
to complete the proof.

The equality of coefficients for z2 in (8) implies that

γ =
[
(α2 + α)μ

2μ+ 1
+ (β

2 + β)ν
2ν + 1

+ αβ
]
/

[
α2 + α
2μ+ 1

+ β
2 + β

2ν + 1

]
. (11)

The equality of coefficients for z4 in (8) and formula (11) imply that:



302 A. Z. Grinshpan

− α(α + 1)2(α + 2)(μ+ 1)(2μ+ 3)(2ν + 1)2(2ν + 3)

− β(β + 1)2(β + 2)(ν + 1)(2ν + 3)(2μ+ 1)2(2μ+ 3)

+ 2(α + 1)(β + 1)(αμ+ βν)(2μ+ 1)(2μ+ 3)(2ν + 1)(2ν + 3)

+ (αβ − 2)[α(α + 1)(2μ+ 1)(2μ+ 3)(2ν + 1)2(2ν + 3)

+ β(β + 1)(2ν + 1)(2ν + 3)(2μ+ 1)2(2μ+ 3)]
+ α(α + 1)2(β + 1)(μ2 − 5μν − μ− 3ν)(2μ+ 3)(2ν + 1)(2ν + 3)

+ β(β + 1)2(α + 1)(ν2 − 5μν − 3μ− ν)(2ν + 3)(2μ+ 1)(2μ+ 3)

+ α(α + 1)(α + 2)(α + 3)(μ+ 2)(2μ+ 1)(2ν + 1)2(2ν + 3)

+ β(β + 1)(β + 2)(β + 3)(ν + 2)(2ν + 1)(2μ+ 1)2(2μ+ 3)

+ (α + 1)(β + 1)(μ− ν)[(β + 2)(β + 3)(ν + 2)(2ν + 1)(2μ+ 1)(2μ+ 3)

− (α + 2)(α + 3)(μ+ 2)(2μ+ 1)(2ν + 1)(2ν + 3)] = 0.
(12)

We use formulas (9) for α and β. Equation (12) with ν = 0 implies that −4a3
2(a1 +

2a2)μ
7 + O(μ6) = 0 as μ → ∞. Also (12) with μ = 0 implies that −4b3

1(b2 +
2b1)ν

7 +O(ν6) = 0 as ν →∞. Hence

a2(a1 + 2a2) = b1(b2 + 2b1) = 0. (13)

With μ = ν = 0 in (12) we obtain:

c2
1(1− c2

1)+ c2
2(1− c2

2)+ 3c1c2[c2
1 + c2

2 + c1 + c2] = 0. (14)

If ν = −3/2 in (12), then for any μ:

(β+1)(β+2)(β+3)[β(2μ+1)+(α+1)(μ+3/2)](2μ+1)(2μ+3) = 0, (15)

where α = a1μ− 3b1/2+ c1 and β = a2μ− 3b2/2+ c2.
Equation (12) with ν = −1/2 implies that for any μ:

β(β + 1)2[(α + 1)(3/2− μ)− (β + 2)(2μ+ 1)](2μ+ 1)(2μ+ 3) = 0, (16)

where α = a1μ− b1/2+ c1 and β = a2μ− b2/2+ c2.
Now let μ = −3/2 in (12), then for any ν:

(α+1)(α+2)(α+3)[α(2ν+1)+ (β+1)(ν+3/2)](2ν+1)(2ν+3) = 0, (17)

where α = −3a1/2+ b1ν + c1 and β = −3a2/2+ b2ν + c2.
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Equation (12) with μ = −1/2 implies that for any ν:

α(α + 1)2[(β + 1)(3/2− ν)− (α + 2)(2ν + 1)](2ν + 1)(2ν + 3) = 0, (18)

where α = a1μ− b1/2+ c1 and β = a2μ− b2/2+ c2.
The left-hand side in (15) can be equal to 0 for any μ only if at least one of its

first four factors equals 0 for any μ. The left-hand side in (16) can be equal to 0 for
any μ only if at least one of its first three factors equals 0 for any μ. Using (13) we
conclude that (15) and (16) hold only if a2 �= 0 and a1 + 2a2 = 0, or a2 = 0. One
can make the similar observations for (17) and (18) for any ν.

We show that there is the only admissible combination of parameters (α, β),
namely:

α = 2μ, β = −μ+ ν, (19)

if a2 �= 0. Indeed, in this case only the bracketed factors in (15) and (16) can be
equal to 0 for any μ, which is possible only if the following four equations hold
true:

− 3b2 + 2c2 + a1 − 3b1/2+ c1 + 1 = 0,

− 3b2 + 2c2 − 9b1/2+ 3c1 + 3 = 0,

2a1 + b1/2− c1 − 5+ b2 − 2c2 = 0,

− 3b1/2+ 3c1 − 1+ b2 − 2c2 = 0.

(20)

Equations in (20) imply that

b1 = 0, a1 = 2c1 + 2 = 0, b2 = 1+ c2, and c2 = 3c1. (21)

Using (21) we obtain that in the considered case β = (3c1+ 1)ν+ 9c1/2+ 3/2 and
α = −2c1 − 3 in (17). Hence the left-hand side in (17) can be equal to 0 for any ν
only if c1 equals 0,−1, or −1/2. It follows that only c1 = 0 satisfies equation (14).
Thus, if a2 �= 0 then a1 = 2, a2 = −1, b1 = c1 = c2 = 0, b2 = 1 and we obtain
(19).

If b1 �= 0 then we have the case that is symmetric to (19).
Now let a2 = b1 = 0. If the bracketed factor in (15) equals 0, then a1 = 0 and

the first two equations in (20) imply that c1 = −1 and c2 = 3b2/2. If the bracketed
factor in (16) equals 0, then a1 = 0 and the last two equations in (19) imply that
c1 = −1 and c2 = b2/2− 2. Hence and from (15) it follows that

(1+ c2 − 3b2/2)(2+ c2 − 3b2/2)(3+ c2 − 3b2/2) = 0, (22)

or

a1 = 0, c2 = 3b2/2, and c1 = −1. (23)
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Also from (16) it follows that

(c2 − b2/2)(1+ c2 − b2/2) = 0, (24)

or

a1 = 0, 4+ 2c2 = b2, and c1 = −1. (25)

Equations (22)–(25) lead to the following pairs (b2, c2):

(1, 1/2), (2, 1), (3, 3/2), (0,−1), (1,−1/2), (2, 0); (26)

and, if a1 = 0 and c1 = −1:

(−1,−3/2), (−1,−5/2), (0,−2), (1,−3/2), (−2,−3). (27)

In a similar way we use (17) and (18) to find the possible pairs (a1, c1):

(1, 1/2), (2, 1), (3, 3/2), (0,−1), (1,−1/2), (2, 0); (28)

and, if b2 = 0 and c2 = −1:

(−1,−3/2), (−1,−5/2), (0,−2), (1,−3/2), (−2,−3). (29)

Equation (14) and the possible values of c1 and c2 in (26)–(29) leave us with the
following pairs (c1, c2):

(1/2,−1/2), (1, 0), (−1,−1), (−1, 0), (−1/2,−1/2), (0, 0), (−1,−2)
(30)

and the pairs which are symmetric to one of them. Then we match pairs (c1, c2)

given in (30) and the corresponding values of a1 and b2 given in (26) and (28). We
obtain the following pairs of α = a1μ+ c1 and β = b2ν + c2:

(2μ+ 1, 2ν), (2μ, 2ν), (2μ,−1), (μ+ 1/2, ν − 1/2),

(μ− 1/2, ν − 1/2), (−1, −2), (−1, −1)
(31)

and the pairs which are symmetric to one of them.
Formulas (19), (31), and (11) imply that the triples (α, β, γ ) described in (10)

and those symmetric to them give the necessary conditions for parameters in identity
(8). It remains to show that for these triples of parameters identity (8) reduces to the
known or easily obtainable results. Indeed, cases 1 and 6, (2μ + 1, 2ν, μ + ν) and
(2μ,−1, μ− 1), are based on formula (6):

2F1(2μ+ 1, μ; 2μ; z) 2F1(2ν, ν; 2ν; z) = (1− z)−μ−1(1− z/2)(1− z)−ν

= 2F1(2μ+ 2ν + 1, μ+ ν; 2μ+ 2ν; z)
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and 2F1(2μ,μ; 2μ; z) 2F1(−1, ν; 2ν; z) = (1− z)−μ(1− z/2)

= 2F1(2μ− 1, μ− 1; 2μ− 2; z).

Case 2, (2μ,−μ+ ν, ν), is a special case of Euler’s transformation (4):

1F0(μ;−; z) 2F1(−μ+ ν, ν; 2ν; z) = 2F1(μ+ ν, ν; 2ν; z).

Case 3, (2μ, 2ν, μ+ ν), is based on the product of two binomial series:

2F1(2μ,μ; 2μ; z) 2F1(2ν, ν; 2ν; z) = (1−z)−μ−ν = 2F1(2μ+2ν, μ+ν; 2μ+2ν; z).

Cases 4 and 5, (μ+1/2, ν−1/2, μ+ν−1/2) and (μ−1/2, ν−1/2, μ+ν−1/2),
are based on formulas (5):

2F1(μ+ 1/2, μ; 2μ; z) 2F1(ν − 1/2, ν; 2ν; z)

= (1−z)−1/2[(1+(1−z)1/2)/2]1−2(μ+ν−1/2) = 2F1(μ+ν, μ+ν−1/2; 2μ+2ν−1; z)

and 2F1(μ− 1/2, μ; 2μ; z) 2F1(ν − 1/2, ν; 2ν; z)

= [(1+ (1−z)1/2)/2]1−2(μ+ν−1/2) = 2F1(μ+ν−1, μ+ν−1/2; 2μ+2ν−1; z).

Case 7, (−1,−2, 3ν + 1) is based on formula (7):

2F1(−1, μ; 2μ; z) 2F1(−2, ν; 2ν; z) = (1− z/2)(1− z+ (ν + 1)z2/(4ν + 2))

= 1−3z/2+(3ν+2)z2/(4ν+2)−(ν+1)z3/(8ν+4) = 2F1(−3, 3ν+1; 6ν+2; z).

Case 8, (−1,−1,∞) is generated by the limit:

lim
γ→∞ 2F1(−2, γ ; 2γ ; z) = (1−z+z2/4) = 2F1(−1, μ; 2μ; z) 2F1(−1, ν; 2ν; z).

�%
Remark 1 If α = 0 and β �= 0, or β = 0 and α �= 0 then identity (8) is trivial with
γ = ν or γ = μ, respectively.

Remark 2 The known quadratic transformation [9, v. I, p.111]:

2F1(a, b; 2b; z) = (1− z/2)−a 2F1(a/2, a/2+ 1/2; b + 1/2;w),
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where w = [z/(2− z)]2 allows us to present identity (8) in the following equivalent
form:

2F1(a, a + 1/2; c;w) 2F1(b, b + 1/2; d;w) = 2F1(a + b, a + b + 1/2; λ;w),

where a = α/2, b = β/2, c = μ + 1/2, d = ν + 1/2, λ = γ + 1/2. One can
use this equivalent presentation for an alternative proof of Proposition 1. A standard
approach involving two differential equations and the local exponents of both sides
of (8) does not seem to lead to a simpler proof of Proposition 1.

Corollary 1 Let (α, β, γ ) be any admissible combination of parameters for identity
(8) given in Proposition 1. Then for any complex ω, z, and u, v > 0, the following
convolution formulas hold:

B(u, v) 2F2(α + β, γ ; u+ v, 2γ ; z)

=
∫ 1

0
tu−1(1− t)v−1

2F2(α, μ; u, 2μ; zt)2F2(β, ν; v, 2ν; z(1− t))dt,
(32)

B(u, v) 2F3[α + β, γ ; (u+ v)/2, (u+ v + 1)/2, 2γ ;ωz2]

=
∫ 1

0
tu−1(1− t)v−1

2F3[α,μ; u/2, (u+ 1)/2, 2μ;ω(zt)2]

× 2F3[β, ν; v/2, (v + 1)/2, 2ν;ω(z(1− t))2]dt.

(33)

Formula (32) is a generalization of the well-known Bateman integrals for Bessel
functions [8, v. II, pp. 354–355]. In particular, it contains the famous integral
obtained by H. Bateman in 1905 which is the basis for hundreds of applications [6],
[8, v. II, p. 354, (24)], [28] (case 1 in (10)). These Bateman integrals are implied by
(32), where (α, β, γ ) is any of the first five admissible combinations of parameters
in Proposition 1 (or it is symmetric to one of them) and parameters u and v are
equal to α and β, respectively (see Corollary 4 in Section 4). Both formulas (32)
and (33) are generalizations of the Kapteyn integrals for Bessel and trigonometric
functions [34, p. 380, (1); p. 381, (2)], [21, Ch. 2] (see Section 4). Also formula (32)
is a generalization of the integral addition theorem for the confluent hypergeometric
functions 1F1 [9, v.I, p. 271 (15)], which corresponds to the case γ = (α + β)/2
(case 3 in (10), see Section 5).

Corollary 1 is implied by Proposition 1 and the following simple lemmas which
in turn are implied by the definitions (1)–(3).

Lemma 1 ([17]) Let f (z) = jFk(ωz) and g(z) = jFk(ωz
2) (ω is a constant).

Then f∗α(z) = jFk+1(ωz), where the additional parameter equals α, and g∗α(z) =
jFk+2(ωz

2/4), where the additional parameters are equal to α/2 and (α + 1)/2.
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Lemma 2 ([12, 13]) Let f∗α(z) and g∗β(z) be analytic in a diskDr = {z : |z| < r},
where f and g are some power series and α, β > 0. Then the (α + β)-convolution
(fg)∗(α+β)(z) is analytic in Dr and the integral formula

B(α, β)(fg)∗(α+β)(z) =
∫ 1

0
tα−1(1− t)β−1f∗α(zt)g∗β(z(1− t))dt (34)

holds for any z ∈ Dr .

3 General Convolution Inequalities

The weighted convolution inequality presented in Theorem 1 below is obtained in
[14] as a limit case of the discrete inequality for complex vectors and binomial
weights. The weighted convolution integral on the left-hand side of inequality
(35) can be expressed in terms of various special functions. This inequality being
combined with the suitable convolution formulas is a source of many weighted
norm inequalities for generalized hypergeometric functions and special functions of
hypergeometric type. Some applications of Theorem 1, its discrete predecessor and
special cases are given in [10–13] (case τ = 2) and [14–17] (any τ ≤ min(p, q)).
The probability connections and further generalizations are discussed in [18, 19]. It
is proved in [19] that inequality (35) is a special case of the inequality for multiple
convolutions of complex-valued functions with respect to Dirichlet probability
measure on the standard simplex.

Theorem 1 ([14]) Let φ(x) and ψ(x) be complex-valued continuous functions on
[0, 1]. Then for any numbers α, β, λ > 0, p > 1 (1/p + 1/q = 1), and τ ∈
(0,min(p, q)], the following inequality holds:

[∫ 1

0

∣∣∣∣
∫ 1

0
φ(xt)ψ(x(1− t)) t

α−1(1− t)β−1

B(α, β)
dt

∣∣∣∣
τ
xα+β−1(1− x)λ−1

B(α + β, λ) dx

]1/τ

≤
[∫ 1

0
|φ(x)|p x

α−1(1− x)β+λ−1

B(α, β + λ) dx

]1/p [∫ 1

0
|ψ(x)|q x

β−1(1− x)α+λ−1

B(β, α + λ) dx

]1/q

.

(35)
The equality in (35), provided that φ and ψ are not identically 0, holds if and only
if φ(x) = φ(0)eiθx and ψ(x) = ψ(0)eiθx for x ∈ [0, 1] (θ is real).

Remark 3 The limit of (35) as λ→ 0 corresponds to the integral Hölder inequality
[20]:

∣∣∣∣
∫ 1

0
U(t)V (t)dt

∣∣∣∣ ≤
[∫ 1

0
|U(t)|pdt

]1/p [∫ 1

0
|V (t)|qdt

]1/q

,
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where U(t) = φ(t)[tα−1(1− t)β−1]1/p and V (t) = ψ(1− t)[tα−1(1− t)β−1]1/q .
Indeed, λ(1−x)λ−1 and λ�(λ) give the delta function δ(1−x) and 1 correspondingly
if λ approaches 0.

Remark 4 Inequality (35) holds for any measurable functions φ and ψ on [0, 1],
provided that the integrals in (35) are finite.

When it is convenient we will use the weighted Lp norm notation. For any
α, β, p > 0, real y, and a complex-valued function f (t) on [0, 1], let

‖f ‖[p;α,β,y] =
[∫ 1

0
|f (t)|p t

α−1(1− t)β−1eyt

B(α, β)
dt

]1/p

, (36)

provided that the integral in (36) is finite.
Theorem 2 given in terms of the α-convolutions (3) and Lp norms (36) is implied

by Theorem 1. Inequality (37) in Theorem 2 is especially convenient for dealing
with various generalized hypergeometric functions.

Theorem 2 ([17]) Given α, β > 0, let f (z) = a0 + a1z + . . . and g(z) = b0 +
b1z+ . . . be power series such that convolutions f∗α(z) and g∗β(z) are analytic in
a disk Dr = {z : |z| < r}. Then for any λ > 0, real y, p > 1 (1/p + 1/q = 1),
τ ∈ (0,min(p, q)], and ζ ∈ Dr , the following inequality holds:

‖(fg)∗(α+β)(ζ t)‖[τ ;α+β,λ,yτ ] ≤ ‖f∗α(ζ t)‖[p;α,β+λ,yp] · ‖g∗β(ζ t)‖[q;β,α+λ,yq].
(37)

The equality in (37), provided that f and g are not identically 0 and ζ �= 0,
holds if and only if f (z) = f (0)[1 + (y + iθ)z/ζ ]−α and g(z) = g(0)[1 + (y +
iθ)z/ζ ]−β(θ is real). The limit of (37) as λ→ 0 corresponds to the integral Hölder
inequality.

Corollary 2 For any numbers u, v, λ > 0, p > 1 (1/p + 1/q = 1), τ ∈
(0,min(p, q)], real y, complex z, and any combination of the admissible parameters
(α, β, γ ) for identity (8) that are given in Proposition 1, the following inequalities
hold:

‖2F2(α + β, γ ; u+ v, 2γ ; zx)‖[τ ;u+v,λ,yτ ]
≤ ‖2F2(α, μ; u, 2μ; zx)‖[p;u,v+λ,yp] · ‖2F2(β, ν; v, 2ν; zx)‖[q;v,u+λ,yq],

(38)
‖2F3[α + β, γ ; (u+ v)/2, (u+ v + 1)/2, 2γ ; zx2]‖[τ ;u+v,λ,yτ ]
≤ ‖2F3[α,μ; u/2, (u+ 1)/2, 2μ; zx2]‖[p;u,v+λ,yp]
× ‖2F3[β, ν; v/2, (v + 1)/2, 2ν; zx2]‖[q;v,u+λ,yq].

(39)

The equality in (38) holds if and only if 2F2(α, μ; u, 2μ; zx) = e(−y+iθ)x and
2F2(β, ν; v, 2ν; zx) = e(−y+iθ)x for x ∈ [0, 1](θ is real).
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Inequality (38) in Corollary 2 is implied by Proposition 1 and inequality (37), or
alternatively by Theorem 1, where φ(x) = 2F2(α, μ; u, 2μ; zx)eyx and ψ(x) =
2F2(β, ν; v, 2ν; zx)eyx, and formula (32). The proof of inequality (39) involving
formula (33) is similar.

Corollary 3 For any u, v, λ > 0, γ �= 0,−1, . . . , p > 1 (1/p + 1/q = 1),
τ ∈ (0,min(p, q)], real y, and complex μ, ν, z, the following inequalities hold:

‖2F2(μ, ν; u+ v, γ ; zx)‖[τ ;u+v,λ,yτ ]
≤ ‖1F1(μ+ ν − γ ; u; zx)‖[p;u,v+λ,yp] · ‖2F2(γ − μ, γ − ν; v, γ ; zx)‖[q;v,u+λ,yq],
‖1F1(γ − v; γ ; zx)‖[τ ;u+v,λ,yτ ]
≤ [1F1(u; u+ v + λ; (y +)z)p)]1/p · ‖1F1(γ − u− v; γ ; zx)‖[q;v,u+λ,yq].

(40)

Corollary 3 (see [16, 17]) is implied by Euler’s transformation (4), inequality
(37), and the integral representation for the confluent hypergeometric functions [9,
v.I, p. 255], [1, Ch. 13, # 13.2.1]:

B(u, v) 1F1(u; u+ v; z) =
∫ 1

0
xu−1(1− x)v−1ezxdx (u, v > 0).

4 Inequalities for Bessel Functions

We use Proposition 1 and Theorem 1 as well as Corollaries 1 and 2 to obtain some
weighted convolution inequalities for Bessel functions. It is well known that certain
integrals involving Bessel functions are used for numerous applications [8, 21, 22,
28, 34]. The Bessel function of the first kind of order α is denoted by Jα(z) [9, v.II,
Ch. 7], [1, Ch. 9, 9.1.69]. It can be presented in the 0F1-form,

Jα(z) = (z/2)α

�(α + 1)
0F1(−, α + 1;−(z/2)2), (41)

or in the 1F1-form,

Jα(z) = (z/2)α

�(α + 1)
e−iz1F1(α + 1/2, 2α + 1; 2iz). (42)

Corollary 4 For any complex z, real y, λ > 0, p > 1 (1/p + 1/q = 1), and
τ ∈ (0,min(p, q)], the following inequality holds:
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[∫ 1

0
|Jμ+ν+γ (zx)|τ x

α+β+(μ+ν)(1−τ)−γ τ−1(1− x)λ−1eyτx

B(α + β + μ+ ν, λ) dx

]1/τ

≤ K1

∣∣∣
z

2

∣∣∣
γ
[∫ 1

0
|Jμ(zx)|p x

α+μ(1−p)−1(1− x)β+ν+λ−1eypx

B(α + μ, β + ν + λ) dx

]1/p

×
[∫ 1

0
|Jν(zx)|q x

β+ν(1−q)−1(1− x)α+μ+λ−1eyqx

B(β + ν, α + μ+ λ) dx

]1/q

,

(43)

where

K1 = �(μ+ 1)�(ν + 1)/�(μ+ ν + γ + 1)

and parameters μ, ν, α, β, and γ satisfy any of the following five sets of conditions
or those which are symmetric to one of them:

1. μ > 0, ν > −1, α = 0, β = 1, γ = 0;
2. μ, ν > 0, α = β = γ = 0;
3. μ, ν > −1/2, α = μ+ 1, β = ν + 1, γ = 1/2;
4. μ > −1/2, ν > −1, α = μ+ 1, β = ν + 2, γ = 1/2;
5. ν > μ > −1/2, α = μ+ 1, β = γ = −μ.

(44)

Proof We use inequality (38) in Corollary 2 with the first five admissible combina-
tions of parameters (α, β, γ ) for identity (8) given in Proposition 1. We set u = α,
v = β to reduce 2F2 to 1F1 and replace y with y − /z. Then we use definition (42)
to present the corresponding Bessel functions in the 1F1 terms and we cancel factors
eiz. Finally we replace z, α, β, μ, ν, and γ with 2iz, α+μ, β+ν, μ+1/2, ν+1/2,
and μ+ ν + γ + 1/2, respectively. �%
Corollary 5 The convolution formula for Bessel functions

∫ 1

0
xα−1(1− x)β−1Jμ(zx)Jν(z(1− x))dx = A

( z
2

)−γ
Jμ+ν+γ (z), (45)

where α and β are some linear functions of μ and ν and

A = �(μ+ ν + γ + 1)B(α + μ, β + ν)/[�(μ+ 1)�(ν + 1)],

holds for any complex z if and only if real parameters μ, ν, α, β, and γ satisfy any
of the five sets of conditions given in (44) or those which are symmetric to one of
them.
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Proof We use formula (32) in Corollary 1 with the first five admissible combi-
nations of parameters (α, β, γ ) for identity (8) given in Proposition 1 and we set
u = α, v = β. Definition (42) implies that any representation (45) is equivalent to
formula (32) with positive u = α and v = β. To complete the proof we use (42)
and replace z, α, β, μ, ν, and γ with 2iz, α + μ, β + ν, μ + 1/2, ν + 1/2, and
μ+ ν + γ + 1/2, respectively. �%

Corollary 5 gives a combined Bateman convolution formula for Bessel functions
[8, v. II, pp. 354–355, formulas (24), (26), (28), (29), (30)] (see also [4]). We can
directly combine Corollary 5 and Theorem 1 with φ(x) = Jμ(zx)eyx and ψ(x) =
Jν(zx)e

yx , if both α and β in (45) are positive. The cases 3, 4, and 5 with negative
μ in (44) satisfy this requirement.

Corollary 6 For any λ > 0, p > 1 (1/p + 1/q = 1), τ ∈ (0,min(p, q)], real y,
and complex z, the following inequality holds:

[∫ 1

0
|Jμ+ν+γ (zx)|τ x

α+β−γ τ−1(1− x)λ−1eyτx

B(α + β, λ) dx

]1/τ

≤ K2

∣∣∣
z

2

∣∣∣
γ
[∫ 1

0
|Jμ(zx)|p x

α−1(1− x)β+λ−1eypx

B(α, β + λ) dx

]1/p

×
[∫ 1

0
|Jν(zx)|q x

β−1(1− x)α+λ−1eyqx

B(β, α + λ) dx

]1/q

,

(46)

where

K2 = �(μ+ 1)�(ν + 1)B(α, β)

�(μ+ ν + γ + 1)B(α + μ, β + ν)
and parametersμ, ν, α, β, and γ satisfy any of the following three sets of conditions
or those which are symmetric to one of them:

1. μ, ν > −1/2, α = μ+ 1, β = ν + 1, γ = 1/2;
2. μ > −1/2, ν > −1, α = μ+ 1, β = ν + 2, γ = 1/2;
3. ν > μ > −1/2, α = μ+ 1, β = γ = −μ.

(47)

Finally we mention that the typical Kapteyn integrals which involve both the
Bessel and trigonometric functions [34, p. 380, (1) and p. 381, (2)], [3, 4], [21,
Ch. 2]:

∫ 1

0
J0(zx) cos(z(1− x))dx = J0(z),

∫ 1

0
J0(zx) sin(z(1− x))dx = J1(z)



312 A. Z. Grinshpan

are the special cases of representation (45). These integrals correspond to cases
4 and 3 in (44), respectively, as cos(z) = √

πz/2J−1/2(z) and sin(z) =√
πz/2J1/2(z). Namely, we take μ = 0, α = 1, β = 3/2, γ = 1/2 in both cases,

and ν = −1/2 for the first integral and ν = 1/2 for the second one. At the same
time, one can use representation (41) and formulas: cos(z) = 0F1(−; 1/2;−z2/4)
and sin(z) = z 0F1(−; 3/2;−z2/4) to see that the above Kapteyn integrals
are the special cases of (33) with u = 1 and u = 2, respectively, and
ω = −1/4, α = 2, v = μ = β = 1, ν = 1/2, γ = 3/2 for both cases (see
case 3 in (10)).

5 Inequalities for Laguerre and Hermite Polynomials

We have a relatively simple case of formula (32) in Corollary 1 if 2γ equals
α + β (case 3 in (10)). It results in the integral addition theorem for the confluent
hypergeometric functions, namely:

B(u, v) 1F1(μ+ ν; u+ v; z)

=
∫ 1

0
tu−1(1− t)v−1

1F1(μ; u; zt)1F1(ν; v; z(1− t))dt.
(48)

The related case of inequality (38) is given in Corollary 7 (see [16, 17]).

Corollary 7 For any numbers u, v, λ > 0, p > 1 (1/p + 1/q = 1), τ ∈
(0,min(p, q)], real y, and complex μ, ν, z, the following inequality holds:

‖1F1(μ+ ν; u+ v; zx)‖[τ ;u+v,λ,yτ ]
≤ ‖1F1(μ; u; zx)‖[p;u,v+λ,yp] · ‖1F1(ν; v; zx)‖[q;v,u+λ,yq].

(49)

The equality in (49) holds if and only if 1F1(μ; u; zx) = e(−y+iθ)x and
1F1(ν; v; zx) = e(−y+iθ)x for x ∈ [0, 1] (θ is real).

Inequality (49) is a convenient tool for those special functions of hypergeometric
type that can be expressed in a 1F1-form with the mutually independent parameters,
for example, for Laguerre and Hermite polynomials. The Laguerre polynomials
Lαn(z) are defined by the formula:

Lαn(z) =
1

n!e
zz−α d

n

dzn
(e−zzn+α) =

n∑

k=0

(−1)k
(
n+ α
n− k

)
zk

k! ,

which can be presented as
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Lαn(z) = Lαn(0) 1F1(−n;α + 1; z), (50)

where Lαn(0) = (α + 1)n/n! [9, v.II, 10.12], [1, Ch. 13, 13.6].

Corollary 8 For any m, n = 0, 1, 2, . . . , α, β > −1, λ > 0, p > 1 (1/p + 1/q =
1), τ ∈ (0,min(p, q)], real y, and complex z, the following inequality holds

[∫ 1

0
|Lα+β+1
m+n (zt)|τ t

α+β+1(1− t)λ−1eyτx

B(α + β + 2, λ)
dt

]1/τ

≤ K3

[∫ 1

0
|Lαm(zt)|p

tα(1− t)β+λeypx
B(α + 1, β + λ+ 1)

dt

]1/p

×
[∫ 1

0
|Lβn(zt)|q

tβ(1− t)α+λeyqx
B(β + 1, α + λ+ 1)

dt

]1/q

,

(51)

where

K3 = (α + 1)m(β + 1)nm!n!
(α + β + 2)m+n(m+ n)! .

Corollary 8 is implied by formula (50) and Corollary 7. Alternatively, to prove
inequality (51) one can use Theorem 1 and the known convolution integral for
Laguerre polynomials [8, v. II, p. 293, (7)]:

∫ 1

0
tα(1−t)βLαm(zt)Lβn [z(1−t)]dt =

(
m+ n
m

)
B(α+m+1, β+n+1)Lα+β+1

m+n (z),

(52)
where α, β > −1. Note that (52) is implied by (48) and (50).

Corollary 7 leads to some inequalities involving both the Hermite and Laguerre
polynomials [11]. The Hermite polynomialsHn(z) [9, v.II, 10.13], [1, Ch. 13, 13.6],

Hn(z) = (−1)nez
2 dn

dzn
(e−z2

),

can be presented in the 1F1-form:

H2n(z) = (−1)n
(2n)!
n! 1F1(−n; 1/2; z2),

H2n+1(z) = (−1)n2
(2n+ 1)!
n! z 1F1(−n; 3/2; z2).

(53)

Corollary 9 For any m, n = 0, 1, 2, . . . , λ > 0, p > 1 (1/p + 1/q = 1), τ ∈
(0,min(p, q)], real y, and complex number z, the following inequalities hold
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[∫ 1

0
|L0
n+m(z2t)|τ (1− t)λ−1eyτ tdt

]1/τ

≤ K4

[∫ 1

0
|H2n(zt)|p (1− t2)λ−1/2eypt

2
dt

]1/p

×
[∫ 1

0
|H2m(zt)|q (1− t2)λ−1/2eyqt

2
dt

]1/q

,

(54)

|z|
[∫ 1

0
|L1
n+m(z2t)|τ t (1− t)λ−1eyτ tdt

]1/τ

≤ K5

[∫ 1

0
|H2n(zt)|p (1− t2)λ+1/2eypt

2
dt

]1/p

×
[∫ 1

0
|H2m+1(zt)|q t2−q(1− t2)λ−1/2eyqt

2
dt

]1/q

,

(55)

|z|2
[∫ 1

0
|L2
n+m(z2t)|τ t2(1− t)λ−1eyτ tdt

]1/τ

≤ K6

[∫ 1

0
|H2n+1(zt)|p t2−p(1− t2)λ+1/2eypt

2
dt

]1/p

×
[∫ 1

0
|H2m+1(zt)|q t2−q(1− t2)λ+1/2eyqt

2
dt

]1/q

,

(56)

where

K4 = 21−2n−2m�(λ+ 1)√
πλ1/τ�(λ+ 1/2)(1/2)n(1/2)m

,

K5 = 21/q−2n−2m�(λ+ 2)(n+m+ 1)√
π [λ(λ+ 1)]1/τ (λ+ 1/2)1/p�(λ+ 1/2)(1/2)n(3/2)m

,

K6 = 21/τ−2n−2m−1�(λ+ 3)(n+m+ 1)(n+m+ 2)√
π [λ(λ+ 1)(λ+ 2)]1/τ�(λ+ 3/2)(3/2)n(3/2)m

.

Corollary 9 is implied by formulas (50) and (53) and inequality (49). Note that
inequalities (54)–(56) can be presented in terms of the Laguerre polynomials L0

n,

L
±1/2
n , L1

n, and L2
n.
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6 Inequalities for Whittaker Functions

The Whittaker functions Mγ,μ(z) are defined by the formula [9, v.I, 6.9], [1, Ch.
13,#13.1.32]:

Mν,μ(z) = zμ+1/2e−z/2 1F1(μ− ν + 1/2; 2μ+ 1; z), | arg z| < π. (57)

Corollary 10 For any α, β > −1/2, λ > 0, p > 1 (1/p + 1/q = 1), τ ∈
(0,min(p, q)], real y, and complex number z (| arg z| < π), the following inequality
holds

[∫ 1

0
|Mμ+ν,α+β+1/2(zt)|τ t

(2−τ)(α+β+1)−1(1− t)λ−1eyτx

B(2α + 2β + 2, λ)
dt

]1/τ

≤
[∫ 1

0
|Mμ,α(zt)|p t

(2−p)(α+1/2)−1(1− t)2β+λeypx
B(2α + 1, 2β + λ+ 1)

dt

]1/p

×
[∫ 1

0
|Mν,β(zt)|q t

(2−q)(β+1/2)(1− t)2α+λeyqx
B(2β + 1, 2α + λ+ 1)

dt

]1/q

.

(58)

Corollary 10 is implied by definition (57) and Corollary 7.
Formulas (48) and (57) imply the known formula [8, v. II, p. 402, (7)]:

∫ 1

0
tα−1/2(1− t)β−1/2Mμ,α(zt)Mν,β(z(1− t))dt

= B(2α + 1, 2β + 1)Mμ+ν,α+β+1/2(z) (α, β > −1/2).

(59)

Corollary 11 For any α, β > −1/2, λ > 0, p > 1 (1/p + 1/q = 1), τ ∈
(0,min(p, q)], real y, μ, ν, and complex number z (| arg z| < π), the following
inequality holds:

B(2α + 1, 2β + 1)

[∫ 1

0
|Mμ+ν,α+β+1/2(zt)|τ t

α+β(1− t)λ−1eyτ t

B(α + β + 1, λ)
dt

]1/τ

≤
[∫ 1

0
|Mμ,α(zt)|p t

α−1/2(1− t)β+λ−1/2eypt

B(α + 1/2, β + λ+ 1/2)
dt

]1/p

×
[∫ 1

0
|Mγ,β(zt)|q t

β−1/2(1− t)α+λ−1/2eyqt

B(β + 1/2, α + λ+ 1/2)
dt

]1/q

.

(60)

Corollary 11 is implied by formula (59) and Theorem 1 with φ(t) = etMμ,α(zt),
ψ(t) = etMν,β(zt), and (α + 1/2), (β + 1/2) instead of α, β.
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Formulas (57) and (34), and Euler’s transformation (4) imply the known
convolution integral involving the Whittaker function [8, v. II, p. 402, (6)]:

∫ 1

0
tα−1(1− t)β−1e(1−t)z/2Mα+β,μ(zt)dt = B(α+μ+ 1/2, β)Mα,μ(z), (61)

where α+μ+1/2, β > 0. Theorem 1 with φ(t) = etMα+β,μ(zt) and ψ(t) = ezt/2
as well as (61) and Corollary 3 lead to Corollary 12.

Corollary 12 For any λ > 0, μ > −1/2, p > 1 (1/p + 1/q = 1), τ ∈
(0,min(p, q)], real y, and complex z (| arg z| < π), the following inequalities hold:

[∫ 1

0
|Mα,μ(zt)|τ t

α+β−1(1− t)λ−1eyτ t

B(α + β, λ) dt

]1/τ

≤ B(α, β) [1F1(β;α + β + λ; (y +)z/2)q)]1/q
B(α + μ+ 1/2, β)

×
[∫ 1

0
|Mα+β,μ(zt)|p t

α−1(1− t)β+λ−1eypt

B(α, β + λ) dt

]1/p

(α, β > 0),

(62)

[∫ 1

0
|Mα,μ(zt)|τ t

α+β+(1−τ)(μ+1/2)−1(1− t)λ−1eyτ t

B(α + β + μ+ 1/2, λ)
dt

]1/τ

≤ [1F1(β;α + β + μ+ λ+ 1/2; (y + 3)z/2)p)]1/p

×
[∫ 1

0
|Mα+β,μ(zt)|q t

α+(1−q)(μ+1/2)−1(1− t)β+λ−1eyqt

B(α + μ+ 1/2, β + λ) dt

]1/q

,

where α > −μ− 1/2, β > max(−λ,−α − μ− 1/2).

(63)
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On the Means of the Non-trivial Zeros of
the Riemann Zeta Function

Mehdi Hassani

Abstract In this paper we obtain asymptotic expansion of the sequence with
general term An/Gn, where An and Gn are the arithmetic and geometric means
of the numbers γ 1, γ 2, γ 3, . . . , γ n denoting consecutive ordinates of the imaginary
parts of non-real zeros of the Riemann zeta function.

1 Introduction and Summary of the Results

Assume that (an)n≥1 is a real sequence with an > 0. We denote the arith-
metic and geometric means of the numbers a1, a2, . . . , an by A(a1, . . . , an) and
G(a1, . . . , an), respectively. In this paper we are motivated by several results
studying the ratio A(a1, . . . , an)/G(a1, . . . , an). Stirling’s approximation for n!
gives

A(1, . . . , n)

G(1, . . . , n)
= e

2
+O

( log n

n

)
.

We refer the reader to [4] for more details. The ratio e/2 appears surprisingly
in studying the ratio of the arithmetic to the geometric means of several number
theoretic sequences, including the sequence of prime numbers. More precisely, in
[1] we proved that

A(p1, . . . , pn)

G(p1, . . . , pn)
= e

2
+O

( 1

log n

)
,

where pn denotes the nth prime number. As a further example of this phenomenon,
in [6] we showed that
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A(�1, . . . , �φ(n))

G(�1, . . . , �φ(n))
= e

2
+O

( log n log log n

n

)
,

where {�1, . . . , �φ(n)} is the least positive reduced set of residues modulo n.
In continuation of our studies of the ratio A/G, in this paper we study the ratio

An/Gn with

An := A(γ 1, γ 2, . . . , γ n), and Gn := G(γ 1, γ 2, . . . , γ n),

where 0 < γ 1 < γ 2 < γ 3 < · · · denote consecutive ordinates of the imaginary
parts of non-real zeros of the Riemann zeta function, which is defined by ζ (s) =∑∞
n=1 n

−s for)(s) > 1, and extended by analytic continuation to the complex plane
with a simple pole at s = 1. First we obtain an asymptotic expansion for An/Gn as
follows.

Theorem 1 As n→∞ we have

An
Gn
= e

2

(
1− 1

2 log n
− log log n

2 log2 n
− 1

2 log2 n
+O

( (log log n)2

log3 n

))
. (1)

As an immediate corollary, we deduce that the ratio An/Gn is strictly increasing
for enough large values of n.

Corollary 1 As n→∞ we have

An+1

Gn+1
− An

Gn
= e

2

(
1

2n log2 n
+ log log n

n log3 n
+ 1

2n log3 n

)
+O

( (log log n)2

n log4 n

)
.

We have used Maple software to do several computations running over the
numbers γ n, based on the tables of zeros of ζ (s) due to A. Odlyzko [7]. These
computations, as pictured partially in Figure 1, suggest that the ratio An/Gn
is strictly increasing anywhere. Similar computations suggest that both of the

Fig. 1 Graphs of the points
(
n,

An+1
Gn+1

− An

Gn

)
in several intervals from 1 to 105, with ending points

102, 2× 103, 5× 103, 104, 2× 104, 4× 104, 7× 104, and 105.
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sequences with general terms An and Gn are strictly decreasing. We formulate these
observations in the following.

Conjecture 1 For any integer n ≥ 1 we have

An+1 < An, Gn+1 < Gn, and
An
Gn
<

An+1

Gn+1
.

Remark 1 We note that the appearance of the similar limit value e/2 in the
above results is not trivial and a global property. As an example, we consider the
asymptotic behaviour of the ratio under study for the values of the Euler function.
By using the asymptotic expansions for A(φ(1), . . . , φ(n)) and G(φ(1), . . . , φ(n))
(see [9] for the arithmetic mean, and [2] for the geometric mean), we get

A(φ(1), . . . , φ(n))

G(φ(1), . . . , φ(n))
= 3e

π2

∏

p

(
1− 1

p

)− 1
p +O

( log n

n

)
,

where the product runs over all primes. This gives a limit value different from e/2,
for the case of Euler function. Another example, providing divergent limit value,
regards to the function d(n), which denotes the number of positive divisors of n. In
[5] we showed that

A(d(1), . . . , d(n))

G(d(1), . . . , d(n))
= r0(log n)1−log 2

(
1+

m∑

k=1

rk

logk n
+O

( 1

logm+1 n

))
,

where

r0 = 2−M
∏

pα

α≥2

log
(

1+ 1

α

)− 1
pα

,

is an absolute constant in terms of Meissel–Mertens constantM . The coefficients rk
are computable constants. More precisely, r1 = 2γ − 1+ (1− γ ) log 2.

To prove Theorem 1 we study the arithmetic and geometric means of the
imaginary parts of non-real zeros of ζ (s) satisfying 0 < /(s) ≤ T , which we
denote by A (T ) and G (T ), respectively. We have

A (T ) = 1

N(T )

∑

0<γ≤T
γ , and G (T ) =

( ∏

0<γ≤T
γ
) 1
N(T )
,

where N(T ) denotes the number of non-real zeros of ζ (s), in the rectangular region
assigned by 0 < )(s) < 1 and 0 < /(s) ≤ T . It is known [8] that

N(T ) = M(T )+O(log T ), (2)
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where M(T ) = αT log T − βT , with α = 1/(2π) and β = (1 + log(2π))/(2π).
We obtain the following precise asymptotic expansions.

Theorem 2 Let δ = β/α. For given integer m ≥ 1, as T →∞, we have

A (T ) = T
2

(
1+

m∑

k=1

δk−1

2

1

logk T
+Om

( 1

logm+1 T

))
, (3)

G (T ) = T
e

⎛

⎝1+
m∑

j=1

ηj

logj T
+Om

( 1

logm+1 T

)
⎞

⎠, (4)

and

A (T )

G (T )
= e

2

(
1+

m∑

&=1

λ&

log& T
+Om

( 1

logm+1 T

))
. (5)

where the constants ηj and λ& are computable in terms of δ.

Remark 2 To compute the coefficients λ& in (5), we consider the relation (3) and
forthcoming relation (10), then we apply the recurrence

λ& = lim
T→∞

( 2A (T )

e1+log G (T )
−
&−1∑

i=0

λi

logi T

)
log& T , λ0 := 1, & = 1, 2, . . . , m.

Recalling that δ = β/α, some values of the coefficients λ& in terms of δ are

λ1 = −1

2
,

λ2 = −1

2
δ,

λ3 = −1

2
δ2 + 1

12
,

λ4 = −1

2
δ3 + 1

4
δ − 1

24
,

λ5 = −1

2
δ4 + 1

2
δ2 − 1

6
δ + 1

80
,

λ6 = −1

2
δ5 + 5

6
δ3 − 5

12
δ2 + 1

16
δ − 1

360
,

λ7 = −1

2
δ6 + 5

4
δ4 − 5

6
δ3 + 3

16
δ2 − 1

60
δ + 1

2016
,
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λ8 = −1

2
δ7 + 7

4
δ5 − 35

24
δ4 + 7

16
δ3 − 7

120
δ2 + 1

288
δ − 1

13440
,

λ9 = −1

2
δ8 + 7

3
δ6 − 7

3
δ5 + 7

8
δ4 − 7

45
δ3 + 1

72
δ2 − 1

1680
δ + 1

103680
.

2 Proofs

To approximate A (T ) and G (T ) we provide a method to compute general averages
of the form

1

N(T )

∑

0<γ≤T
g(γ ),

where g(t) ∈ C1(a, b) is a non-negative function and 1 < a ≤ b. We have

∑

a<γ≤b
g(γ ) =

∫ b

a

g(t) dN(t) = g(b)N(b)− g(a)N(a)−
∫ b

a

g′(t)N(t) dt.

Let a = γ 1 − ε with ε ∈ (0, 1), and b = T . Hence

∑

0<γ≤T
g(γ ) = g(T )N(T )−

∫ T

γ 1−ε
g′(t)N(t) dt.

By using (2) and letting ε→ 0+, we obtain

∑

0<γ≤T
g(γ ) = g(T )M(T )−

∫ T

γ 1

g′(t)M(t) dt +R(T ), (6)

where

R(T )0 g(T ) log T +
∫ T

γ 1

∣∣g′(t)
∣∣ log t dt.

The expansion

1

1− x = 1+
m∑

k=1

xk +O(xm+1), (7)

holds as x → 0, for any fixed integer m ≥ 1. Since
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1

N(T )
= 1

αT log T

(
1

1− δ
log T +O

( 1
T

)
)
,

we put in (7)

x = δ

log T
+O

( 1

T

)
,

for which we have

xk = δk

logk T
+O

( 1

T logk−1 T

)

for any integer k ≥ 1. Hence, for any fixed integer m ≥ 1 we obtain

1

N(T )
= 1

αT log T

(
1+

m∑

k=1

δk

logk T
+Om

( 1

logm+1 T

))
, (8)

where Om means that the constant in O-term depends (at most) on m. The relations
(6) and (8) enable us to approximate the general averages.

2.1 Proof of (3)

By using (6) with g(t) = t we get

∑

0<γ≤T
γ = α T log T

(
T

2
+

(1

4
− δ

2

) T

log T
+O(1)

)
.

Let δ′ = 1/4− δ/2. Hence, the relation (8) gives

A (T ) = T
2
+ δ′ T

log T
+ T

2

m∑

k=1

δk

logk T
+ T

m∑

k=1

δ′δk

logk+1 T
+Om

( T

logm+1 T

)
,

and after simplifying

A (T ) = T
2
+

( δ
2
+ δ′

) T

log T
+

m∑

k=2

(δk

2
+ δ′δk−1

) T

logk T
+Om

( T

logm+1 T

)
,

for any integer m ≥ 1. Considering δ/2+ δ′ = 1/4 we obtain (3).
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2.2 Proof of (4)

We have

log G (T ) = 1

N(T )

∑

0<γ≤T
log γ.

The relation (6) with g(t) = log t reads as

∑

0<γ≤T
log γ = αT log2 T − (α + β)T log T + (α + β)T +O(log2 T ). (9)

Hence

∑

0<γ≤T
log γ = αT log T

(
log T − (1+ δ)+ 1+ δ

log T
+O

( log T

T

))
.

Let δ′′ = 1+ δ. Thus, the relation (8) implies that

log G (T ) = log T − δ′′ + δ′′

log T

+
m∑

k=1

( δk

logk−1 T
− δ′′δk

logk T
+ δ′′δk

logk+1 T

)
+Om

( 1

logm T

)
.

Now, we assume that m ≥ 3 is fixed integer. Hence

log G (T ) = log T + (
δ − δ′′)+

(
δ′′ + δ2 − δ′′δ

) 1

log T

+
m−1∑

k=2

(
δk+1 − δ′′δk + δ′′δk−1

) 1

logk T
+Om

( 1

logm T

)
.

We note that δ − δ′′ = −1 and δ′′ + δ2 − δ′′δ = 1. Thus

log G (T ) = log T − 1+
m−1∑

k=1

δk−1

logk T
+Om

( 1

logm T

)
,

for any fixed integer m ≥ 2. Replacing m by m+ 1 gives

log G (T ) = log
T

e
+ Sm(T )+Om

( 1

logm+1 T

)
, (10)
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for any fixed integer m ≥ 1, where

Sm(T ) =
m∑

k=1

δk−1

logk T
.

Let

y = Sm(T )+Om
( 1

logm+1 T

)
.

As T →∞,

ey = eSm(T )
(

1+Om
( 1

logm+1 T

))
= eSm(T ) +Om

( 1

logm+1 T

)
.

Also

eSm(T ) =
m∏

k=1

e
δk−1

logk T .

Note that

e
δk−1

logk T =
∞∑

i=0

1

i!
δ(k−1)i

logki T
= 1+

∑

1≤i≤m
k

1

i!
δ(k−1)i

logki T
+Om

( 1

logm+1 T

)
.

Hence, as T →∞, we get

ey =
m∏

k=1

⎛

⎝1+
∑

1≤i≤m
k

1

i!
δ(k−1)i

logki T
+Om

( 1

logm+1 T

)
⎞

⎠.

Therefore

ey = 1+
m∑

j=1

ηj

logj T
+Om

( 1

logm+1 T

)
, (11)

where the coefficients ηj are computable constants in terms of δ. Finally, we observe
that the relation (10) asserts that G (T ) = (T /e)ey . By using this relation and (11)
we get (4).
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2.3 Proof of (5)

We use (10) to write 1/G (T ) = (e/T )ez, where

z = −Sm(T )+Om
( 1

logm+1 T

)
.

As T →∞,

ez = e−Sm(T )
(

1+Om
( 1

logm+1 T

))
= e−Sm(T ) +Om

( 1

logm+1 T

)
,

and

e−Sm(T ) =
m∏

k=1

⎛

⎝1+
∑

1≤i≤m
k

(−1)i

i!
δ(k−1)i

logki T
+Om

( 1

logm+1 T

)
⎞

⎠.

Hence

ez = 1+
m∑

j=1

κj

logj T
+Om

( 1

logm+1 T

)
, (12)

where the coefficients κj are computable constants in terms of δ. Thus, we obtain

1

G (T )
= e

T

⎛

⎝1+
m∑

j=1

κj

logj T
+Om

( 1

logm+1 T

)
⎞

⎠.

By multiplying this relation and (3) we get (5).

2.4 Proof of Theorem 1

We read the sequences An and Gn as An = A (γ n) and Gn = G (γ n). Corollary 1.1
of [3] asserts that

γ n =
2πn

log n

(
1+ (1+ o(1)) log log n

log n

)
. (13)

We apply the relation (13) and the expansion log(1 + t) = t +O(t2), which holds
as t → 0, with t = (1+ o(1)) log log n

log n . So, as n→∞,
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log γ n = (log n) (1+ E1(n)) ,

where

E1(n) = − log log n

log n
+ log(2π)

log n
+ (1+ o(1)) log log n

log2 n
.

We have (1+ E1(n))
−1 = 1+ E2(n), where

E2(n) = log log n

log n
− log(2π)

log n
+O

(( log log n

log n

)2
)
.

By putting the above relations in (5) we obtain

An
Gn
= e

2

(
1+

m∑

&=1

λ&

(1+ E2(n)

log n

)& +Om
( 1

logm+1 n

))
.

Taking m = 2 gives (1). This completes the proof of Theorem 1.
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Minimal Kernels and Compact Analytic
Objects in Complex Surfaces

Samuele Mongodi and Giuseppe Tomassini

Abstract In this paper, we want to study the link between the presence of
compact objects with some analytic structure and the global geometry of a weakly
complete surface. We begin with a brief survey of some now classic results on the
local geometry around a (complex) curve, which depends on the sign of its self-
intersection and, in the flat case, on some more refined invariants (see the works
of Grauert, Suzuki, Ueda). Then, we recall some results about the propagation of
compact curves and the existence of holomorphic functions (from the works of
Nishino and Ohsawa). With such considerations in mind, we give an overview of
the classification results for weakly complete surfaces that we obtained in two joint
papers with Slodkowski (see Mongodi et al. (Indiana Univ. Math. J., 67(2), 899–935
(2018); Int. J. Math., 28(8), 1750063, 16 (2017))) and we present some new results
which stem from this somehow more local (or less global) viewpoint (see Sections
4.2, 4.3, and 5).
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1 Introduction

The Levi problem, in its broadest formulation, asks for geometric conditions to
guarantee that a given complex space is (a modification of) a Stein space or, from
another point of view, what are the geometric obstructions to the existence of
“many” holomorphic functions.
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The geometric characteristics we look for are usually encoded in the existence
of some particular defining function (for domains contained in an ambient space) or
of some particular exhaustion function. As it is well known the class of functions
that turns out to work well with holomorphic functions is the class of (strictly)
plurisubharmonic functions. The original formulation of the Levi problem, i.e.,
that every domain in C

n with smooth pseudoconvex boundary is a domain of
holomorphy, was solved by Oka [26, 27], Bremermann [1], Norguet [24]. A few
years later, Grauert tackled and proved the generalization of the Levi problem to
a complex manifold, proving that a complex manifold is Stein if and only if it
admits a smooth strictly plurisubharmonic exhaustion function [6], and Narasimhan
generalized the result to complex spaces [20, 21], allowing the exhaustion function
to be just continuous.

A natural question is to ask what happens if we allow the exhaustion to be only
plurisubharmonic, i.e., if we allow its Levi form to degenerate somewhere. The
resulting spaces are called weakly complete. Quite obviously, the class of weakly
complete spaces includes Stein spaces, but it is not limited to them, as any space
which is proper over (i.e., admits a holomorphic proper surjective map onto) a Stein
space is weakly complete. Grauert produced an example of a weakly complete
space whose only holomorphic functions are the constants, thus showing that not
all weakly complete spaces are holomorphically convex (see [22]). As a partial
converse, a result by Ohsawa, generalized to complex spaces by Vajaitu and the
second author (see [25, 34] and Section 3.2), shows that, in dimension 2, a weakly
complete (complex) surface is holomorphically convex if and only if it admits a
nonconstant holomorphic function.

At first sight, it seems that under the hypothesis of weakly completeness there is
no way to tell “how many” holomorphic functions exist on our space. However, a
closer look at some examples (see Section 4.1) reveals that we obtain more precise
information as soon as we look at how far our space X is from being Stein: for
example, if we have a proper surjective holomorphic map p : X→ Y with positive-
dimensional fibers onto a Stein space Y , then every plurisubharmonic function on
X will be constant on each fiber p−1(y) for y ∈ Y and every holomorphic function
on Y will give, by pullback, a holomorphic function on X; on the other hand, in
Grauert’s example, X contains Levi-flat hypersurfaces whose Levi foliation has
dense leaves, therefore O(X) = C.

In order to study the obstructions that prevent the existence of a strictly plurisub-
harmonic function on a complex manifold (or a complex space) X, Slodkowski and
the second author introduced in [32] the concept of the minimal kernel +X, as the
set of points where no exhaustion function for X can be strictly plurisubharmonic
(see Section 2). The crucial property of +X is the following: the intersections of
+X with the regular level sets of a plurisubharmonic exhaustion function enjoy the
so-called local maximum property and, in dimension 2, they are locally a union of
complex discs. These compact sets, obtained by slicing +X with the regular level
sets of a plurisubharmonic exhaustion function, and their complex structure play a
fundamental role in the classification theorem of weakly complete surfaces proved
in [18] (see also Section 4.2). The other fundamental ingredient was the presence
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of a real-analytic plurisubharmonic exhaustion function, which allows us to create
a bridge between the local geometry, the geometry of a level set, and the geometry
of the whole surface.

In the quoted paper [18], on the classification of weakly complete surfaces, two
kinds of compact objects with an analytic structure appeared, playing a significant
role:

• compact complex curves, embedded in X,
• immersed complex curves, with compact closure in X.

They both force the plurisubharmonic functions to have degenerate Levi form,
but they behave quite differently in terms of holomorphic functions. Also, their
contributions to the global geometry of the surface do not immediately seem
equivalent. In particular, by a result of Nishino (see [23] and Section 3.2), the
presence of a “generic enough” compact curve forces the whole weakly complete
surface to be a union of compact curves, hence holomorphically convex with
Remmert reduction of dimension 1. On the other hand, immersed curves with
compact closure can easily force any holomorphic function to be constant, as soon
as the closure is “large enough” (e.g., contains a 3-dimensional stratum, as a real-
analytic set, which is the case in the presence of a real-analytic plurisubharmonic
exhaustion function), but they do not seem to necessarily “propagate” to the whole
surface, without some additional hypothesis. When a real-analytic plurisubharmonic
exhaustion exists, the presence of an immersed curve with compact closure forces
the whole surface (possibly outside an analytic set) to be foliated in 3-dimensional
Levi-flat hypersurfaces, in turn foliated with dense complex leaves. We called such
surfaces “of Grauert type.”

The aim of this paper is twofold.
On one side, we give an account of what is known about the geometry of weakly

complete surfaces, through the study of the compact sets we mentioned above. We
start by recalling the results by Grauert [7] and Suzuki [33] on the neighborhood of a
“negative” curve (i.e., with self-intersection (C2)<0) or a “positive” curve (i.e., with
self-intersection (C2)>0), respectively, and move on to describe the classification of
curves with zero self-intersection obtained by Ueda [35]. Then, we study under
which conditions a compact curve propagates to generate a family of compact
curves, by recalling the works by Nishino [23] and Ohsawa [25]. The link between
the presence of compact curves and the global geometry is made explicit, in terms
of the classification results proved in [18]. We also briefly recall the results about
the geometric structure of the Grauert-type surfaces, proved in [17]. Finally, using
the result of [18] we give a slightly different proof of a statement by Brunella [3] on
the non-existence of a real-analytic plurisubharmonic exhaustion function on some
classes of surfaces.

On the other side, we present some new results which stem from this somehow
more local (or less global) viewpoint.

We show that the classification result from [18] essentially holds when the
hypotheses are true outside of a compact (see Theorem 4.8 and Corollary 4.10).
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We give a classification theorem for coronae (see Section 4.3 for the precise
definition), obtaining, also here, three cases (see Theorem 4.12): Grauert-type
coronae, coronae which are proper over an open complex curve, coronae which
are an increasing union of subcoronae with one strictly pseudoconvex boundary
component. We show, by an example of Rossi [29], that the last case is not always
the complement of a compact set in a (modification of a) Stein space.

We prove some results for weakly complete surfaces with a plurisubharmonic
exhaustion function which is supposed to be only smooth, in the hypothesis that
the minimal kernel coincides with the whole surfaces. In this case, our surface is
either proper over an open complex curve or the regular level sets of the exhaustion
are Levi flat and foliated by dense complex curves, as in Grauert-type surfaces
(Theorem 5.4).

Finally, we introduce some generalizations of the notion of minimal kernel, due
to Slodkowski [31], and employ one of them to give a condition under which the
Levi problem for a pseudoconvex domain in a general complex manifold has a
positive answer (see Theorem 5.14).

The content of the paper is organized in 4 sections. In Section 2, we recall the
basics on the minimal kernel and its slices along the level sets of a plurisubharmonic
exhaustion function. Section 3 is devoted to the study of the nature and the
propagation of compact curves in a complex surface. In Section 4, we collect
some classification results, known and new, and some examples. Finally, Section 5
contains the results on the smooth case, the description of the generalizations of the
minimal kernel and its application to the Levi problem.

2 The Minimal Kernel and Its Slices

A (reduced, connected) complex space X is said weakly complete if there exists a
(smooth, continuous) plurisubharmonic exhaustion function φ : X −→ R which is
plurisubharmonic; obviously, a compact space trivially satisfies the request, so we
will further assume that X is noncompact.

We know, from the results of Grauert and Narasimhan, that when the exhaustion
function can be taken to be everywhere strictly plurisubharmonic, the space is Stein;
in general, it is a famous and hard problem to understand under which weaker
conditions a space is a Stein space or a modification of a Stein space. Therefore, we
study the obstructions that force a plurisubharmonic function to have a degenerate
Levi form.

Definition 2.1 The Ck minimal kernel of X is the set of points x ∈ X such that
every Ck plurisubharmonic exhaustion function fails to be strictly plurisubharmonic
at x and it is denoted by +kX. A Ck minimal function is a function φ ∈ Ck(X) which
is plurisubharmonic on X and strictly so exactly on X \+kX.

We will usually employ the C∞ minimal kernel and we will denote it simply
by +X; the definition and the main properties of the minimal kernel of a weakly
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complete space appeared first in [32]. We recall that a set Y ⊂ X is called a local
maximum set if for every x ∈ Y , there exists a neighborhood U of x with the
following property: for every compactK ⊂ U and every (smooth) plurisubharmonic
function ψ defined in a neighborhood of K ,

max
Y∩K ψ = max

Y∩bK ψ,

where the maximum over an empty set is understood to be −∞. We will say that a
set is a local maximum set or that it has the local maximum property.

Two significant results regarding the minimal kernel of a weakly complete space
are the following.

Proposition 2.2 Let u : X → R be a smooth plurisubharmonic exhaustion
function; then for every c ∈ R

+X ∩
{
x ∈ X : u(x) = c}

is either empty or has the local maximum property.

See [32, Theorem 3.6] for the case when u is a minimal function, [18, Theorem 3.2]
for the general case, [31, Lemma 4.8] for a further generalization.

Proposition 2.3 Let X be a complex surface, u : X → R be a smooth
plurisubharmonic exhaustion function and Y be a connected component of the level
set {x ∈ X : u(x) = c} such that Y ∩+X �= ∅. Then, for every point p ∈ Yreg∩+X,
there exist an open neighborhood U ⊂ X and local coordinates z, w on U such
that U ∼= �z ×�w and

U ∩ Y ∩+X ∼=
⋃

t∈T

{
(z, ft (z)) : z ∈ �z

}

where each ft : �z → �w is a holomorphic function.

See [32, Lemma 4.1] for the case when u is a minimal function, [18, Proposition
3.5] for the general case.

From these two results, there is an obvious relation between the presence of
compact subspaces and the minimal kernel, at least in dimension 2.

In general, one can say that a compact subspace or an immersed complex space
with compact closure belong to the minimal kernel; we do not know examples of
spaces whose minimal kernel has a connected component which is not a union of
the former.

One striking property of the minimal kernel is the following propagation result
(see [32, Theorem 3.9]).

Theorem 2.4 Let X be a weakly complete manifold of dimension ≥ 2 and φ :
X→ R be a C2 plurisubharmonic exhaustion function. Let r > minφ and let Y be
a connected component of {x ∈ X : φ(x) = r}, relatively open in the latter and
that does not contain local minimum points of φ.
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If Y is a local maximum set, there exists s < r such that the topological boundary
of the connected component K of {x ∈ X : s < φ(x) < r} containing Y is
contained in Y ∪ {x ∈ X : φ(x) = s}. Then

(a) K is a connected compact set with nonempty interior,
(b) the forms

(∂∂̄φ)n−1 ∧ ∂φ ∧ ∂̄φ, (∂∂̄φ)n−1 ∧ ∂φ, (∂∂̄φ)n−1 ∧ ∂̄φ

vanish on K and (∂∂̄φ)n vanishes on K \ Y ,
(c) every level set

{
x ∈ K : φ(x) = t},

for s ≤ t ≤ r , has the local maximum property.

An immediate consequence on +X is the following, obtained by assuming that
the level set considered is regular.

Corollary 2.5 Let X be a weakly complete manifold of dimension ≥ 2 and φ :
X→ R be a C2 plurisubharmonic exhaustion function. If there is a regular value r
such that +X contains a connected component of the corresponding level set, then
there is s < r such that +X contains a connected component of the set

{
x ∈ X :

s ≤ φ(x) ≤ r}.

Gaining an understanding about the geometry of +X would give us insights
on the kind of obstructions that prevent a weakly complete space from being (a
modification of) a Stein space.

3 Compact Complex Curves

As we saw, in complex surfaces, the obstruction to having a strictly plurisubhar-
monic exhaustion is linked to the presence of complex curves (embedded compact
curves or immersed curves with compact closure). In this section, we want to
collect and comment some results about the presence of compact curves in complex
surfaces; there are two types of results we are interested in:

• how the presence of a compact curve affects, in a neighborhood, the behavior of
holomorphic and plurisubharmonic functions;

• which conditions guarantee the “propagation” of a compact curve.

In other words, what properties ensure that a compact curve cannot be contained in
a weakly complete surface? What does the presence of the curve tell us about the
surface? When does the curve belong to a family of complex curves, e.g., the fibers
of a proper map?
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3.1 The Neighborhood of a Compact Curve

Grauert Criterium

The first relevant result, in chronological order, is Grauert’s investigation of
exceptional curves or, more generally, exceptional subspaces of a complex space
X.

Recall that a complex compact subspace Y of X is said exceptional if there is
a proper holomorphic map p : X → X0 on a complex space X0, such that p(Y )
is a point x0 and p|X� Y : X � Y → X0 � {x0} is an isomorphism. By definition,
exceptional subspaces are isolated.

A holomorphic vector bundle F → X is said negative if the zero section 0F of
F has a strongly pseudoconvex neighborhood U , in particular U is holomorphically
convex. By Cartan theorem on quotient spaces [4] a neighborhood U ′ � U of 0F is
proper on a Stein space U0 and 0F is exceptional in U .

We have the following (see [7, Satz 8])

Theorem (Grauert Criterion) The normal bundle NY/X is negative (i.e., Y as 0-
section of NY/X is exceptional) then Y is exceptional in X.

If X is a nonsingular complex surface and C is a compact, nonsingular complex
curve, then NC/X is negative if and only if the self-intersection (C2) ofC is negative.

From Grauert criterium we deduce, in particular, that if (C2) < 0, no compact
(possibly singular) complex curve can be present near C.

The remaining cases (C2) > 0, (C2) = 0 were studied by Suzuki (see [33]) and
Ueda (see [35]), respectively.

We say that C is negative, positive, flat if (C2) < 0, (C2) > 0, (C2) = 0,
respectively.

Positive Curves

The case of positive curves was studied by Suzuki; he obtained, as it may be
expected, the opposite of Grauert’s result (see [33, Proposition 2.2]).

Theorem (Suzuki) IfX is a nonsingular complex surface and C ⊂ X is a compact
nonsingular complex curve such that (C2) > 0, then C has a fundamental system
of strongly pseudoconcave neighborhoods. In particular, O(X) = C.

In this case many compact complex curves can be present in an arbitrary
neighborhood of C (e.g., CP ⊂ CP

2); however, no nonconstant holomorphic or
plurisubharmonic function exists in a neighborhood of C, by pseudoconcavity.
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Ueda’s Paper

In [35], Ueda considers compact nonsingular complex curves C which are flat, i.e.,
such that NC/X is topologically trivial. It is well known that NC/X is represented by
an element of H 1(C,S1), the Picard variety Pic 0(C).

The paper of Ueda is very deep. In order to state the main results of [35] we need
some preliminary definitions

Definition 3.1 A line bundle L → C is said to be of finite order m if L−m is
holomorphically trivial and m is the minimum integer with this property. If no such
m exists, L is said to be of infinite order. The order of C is the order of its normal
bundle NC/X. It is denoted by ord(C), 1 ≤ ord(C) ≤ +∞.

The next fundamental concept is the type of the curve C.
Let {Vj }1≤j≤m be a covering of C by bidiscs Vj = {|zj | < 1, |wj | < 1}, where

zj and wj are local holomorphic coordinates and Cj := C ∩ Vj = {wj = 0}. Let
Uj = Vj ∩C and U = {Uj }1≤j≤m. Then the coordinates w(j) can be chosen in such
a way that NC/X can be represented by a cocycle

tjk =
(
wj/wk

)
|Uj∩Uk ∈ Z1(U ,S) (3.1)

Let {tjk}, {wj } be fixed; then wj − tjkwk is vanishing on Uj ∩Uk so wj − tjkwk =
fjk(zj )w

ν+1
j with fjk(zj ) �= 0 holomorphic. The system {wj } is then said of type ν.

One check easily that {fjk} is a cocycle with values in N−νC/X: {fjk} ∈ Z1(U ,N−νC/X).
The cocycle {fjk} is called the νth obstruction associated to the system {wj }.

Definition 3.2 The curve C is said of finite type n (type(C) = n) if there exists
a system {wj } of type n such that nth obstruction associated to {wj } is not
cohomologous to zero. The curve C is said of infinite type (type(C) = +∞) if
the obstruction associated to every system {wj } is cohomologous to zero.

The idea under the previous computations is to measure the degree of coincidence
of the extension of NC/X to a neighborhood of C as a flat bundle and the line bundle
[C], corresponding to the divisor of C.

It is a simple matter to prove that the previous definition is well posed; namely,
that

1) if there exists a system of type n whose nth obstruction is not cohomologous to
zero, then no system {wj } exists of type ν > n;

2) if there exists a system of type n whose nth obstruction is not cohomologous to
zero, for every system of type ν < n, the νth obstruction is cohomologous to 0;

3) if the obstruction associated to every system {wj } is cohomologous to zero, then
for every ν there exists a system of type ν;

4) the type of a curve does depend neither on the covering U nor on the cocycle
{tjk}.

Remark If the order is infinite, the type is infinite as well.
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The type and the order allow us to divide compact nonsingular complex curves
into four classes:

• if ord(C) is finite and type(C) is finite, we say that C belongs to Class α
• if ord(C) is finite, but type(C) is infinite, we say that C belongs to Class β ′
• if ord(C) is infinite, then also type(C) is infinite and we identify two classes

– if there exist a neighborhood V of C and a holomorphic function u on a
covering manifold of V such that |u| defines a single-valued function on V
and the support of the divisor of u is C, then we say that C belongs to Class
β ′′

– otherwise, we say that C belongs to Class γ .

The situation near a curve C in Class α is summarized by the following results.

(α1) For every n′ > type(C) there exists a neighborhood V0 of C and a strongly
plurisubharmonic function- : V0 �C −→ R such that-(p) ∼ dist((p)−n′

as p → C. It follows that, for c → +∞ the sets {φ > c} ∪ C give
a fundamental system of strongly pseudoconcave neighborhoods of C. In
particular O(X) = C.

(α2) Let V an open (connected) neighborhood of C and 0 : V � C → R a
strongly plurisubharmonic function such that 0(p) = o(dist((p)−n”), 0 <
n” < n, as p→ C. Then 0 is constant near C. In particular, if f ∈ O(V �

C) and log+ |f (p)| = o(dist((p)−n”), then f is constant.

For the curves in Class β ′, we have the following.

(β ′) If ord(C) = m, on a neighborhood V of C, there is a multivalued
holomorphic function u such that um ∈ O(V ) and whose divisor is mC.

Conversely, it is easy to show that if there is a nonconstant holomorphic function on
a neighborhood of C, then C belongs to Class β ′.

Finally, by definition, if C belongs to Class β ′′

(β ′′) on a neighborhood V of C, there is a multivalued holomorphic function u
such that |u| is single-valued on V and whose divisor is mC.

We analyze more closely what happens near a curve of Class β ′ or Class β ′′.
If C ∈ Classβ ′ ∪Classβ ′′, then there exists a multivalued holomorphic function

in a neighborhood V of C. Let ε > 0 such that Vε :=
{
p ∈ V : |u(p)| > ε} � V .

For all r with 0 < r < ε, the boundary bVε of Vε is defined by the pluriharmonic
function log |u| − log ε = 0, so it is Levi flat. The neighborhoods Vε ′s are said
pseudoflat.

Observe that, due to the presence of the nonconstant pluriharmonic function
log |u| no neighborhood W � V can be strictly pseudoconcave. Moreover, if C
belongs to Class β ′ for |c| ≤ εm the curves um = const are compact and irreducible.

Suppose now that C is in Class β ′′ and let+r := {p ∈ V : |u(p)| > ε} � V , 0 <
r < ε.+r is Levi flat hence foliated by holomorphic curves. Then (see [35, Sections
2 and 3]) u defines a holomorphic foliation F on V such that every leaf of F , except
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forC, is contained in some+r and dense in it. It follows that every plurisubharmonic
function on a neighborhood of a +r is constant on +r . Consequently, O(V ) = C.

Curves Near C

Saving the same notations, let V be a fixed tubular neighborhood of C and � a
2-cycle. Since NC/X is topologically trivial, � ∼ mC for some m ∈ Z, hence
(�,C) = 0. In particular, if � �= C is a compact, irreducible complex curve, then
� ∩ C = ∅, i.e., � ⊂ V � C.

i) in view of (α1), C does not belong to Class α
ii) if C belongs to Class β ′, then by (β ′1) the compact curves um = const are the

only ones belonging to V � C

iii) by similar arguments one proves that if C is in Class β ′′, then in a neighborhood
of C there is no compact complex curve other than C.

The situation concerning the curves belonging to Class γ is rather mysterious (see
[35]).

Remark 3.3 There are at most countably many curves of Class α or Class β ′′;
indeed, every such curve has an open neighborhood where no other curve is present,
hence there can be at most countably many.

3.2 Propagation of Compact Curves

Nishino’s Paper

In the paper [23] the existence of a nonconstant holomorphic function f : X → C

(and more generally of holomorphic maps X → R where R is a Riemann surface)
is proved under the condition that X contains at least a generic curve. Let us recall
some preliminary results proved in [23].

We start from the definition of a generic curve: morally, a curve S is called
generic if it is locally “movable,” i.e., if there are a neighborhood U of S and a
holomorphic function F ∈ O(U) such that {x ∈ U : F(x) = 0} = S. However,
the original definition by Nishino is more involved.

Let S ⊂ X be a compact, nonsingular complex curve, {Vj }1≤j≤m a covering of
S by bidiscs Vj = {|z(j)| < 1, |w(j)| < 1}, where z(j), w(j) are local holomorphic
coordinates and Sj := S ∩ Vj = {w(j) = 0}. Such a covering is said canonical.

Let (P) = {fj }1≤m, fj : Vj → C meromorphic, be a datum for the additive
Cousin problem on V := ∪mj=1Vj , so fij = fi − fj ∈ O(Vi ∩ Vj ) for all i, j , and
let (Z) = {gj }1≤m, gj : Vj → C holomorphic, be a datum for the multiplicative
Cousin problem on V , so gij = gi/gj ∈ O(Vi ∩ Vj ) for all i, j .
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• (P) is said to be solvable on X if there exist holomorphic functions φj ∈ O(Sj )
such that fjk |Sj∩Sk = φj − φk for all 1 ≤ j, k ≤ m.

• (Z) is said to be solvable on X if there exist nowhere vanishing holomorphic
functions ψj ∈ O∗(Sj ) such that gjk |Sj∩Sk = ψj/φk .

Definition 3.4 The complex curve S is said generic if

a) every datum (P) = {fj }1≤m on V which has S as the only pole (i.e., for every j ,
S ∩ Vj is the polar set of the meromorphic function fj ) is solvable on S;

b) every datum (Z) = {gj }1≤m on V which has S as the only zero (i.e., for every j ,
S ∩ Vj is the zero set of the holomorphic function gj ) is solvable on S;

About the interplay between generic curves and holomorphic or meromorphic
functions, the main results of Nishino are the following

1) A generic curve S of a complex surface X is the zero set of a function f which
is holomorphic on a neighborhood U of S. (see [23, Proposition 7]). In other
words a generic curve propagates locally.

2) Assume that a domain D � X contains a non-countable family F of connected
compact complex curves S such that S ∩ S′ = ∅ whenever S �= S′. Then F
contains at least one generic curve (see [23, Proposition 9]).

These results globalize via the study of normal families of compact curves.

3) LetX be a weakly complete or compact surface that contains at least one generic
curve. Then there exist a Riemann surfaceR and a meromorphic map f : X→ R

with compact fibers.
4) If X is weakly complete and contains at least one generic curve, then it contains

at least one nonconstant holomorphic function with compact fibers. In particular,
X is holomorphically convex.

See [23, Section 5].
It is clear, a posteriori, that a curve is generic in the sense of Nishino only if

it belongs to Ueda’s Class β ′. Moreover, using the solvability of the two Cousin’s
problems along S, it is easy to show that a generic curve has to be flat, of infinite
type and finite order, hence it has to belong to Ueda’s Class β ′.

Ohsawa’s Paper and Its Generalization

In [25] Ohsawa proved the following result (see [25, Proposition 1.4]).

Theorem 3.5 Let X be a (connected ) weakly complete nonsingular complex
surface such that O(X) � C. Then X is holomorphically convex.

This result was generalized to weakly 1-complete complex surfaces in [34].
The main tool used by Ohsawa was an observation on the topology of the

level sets of a holomorphic function, which holds in every dimension, not only for
surfaces (see [25, Theorem 1.1]).
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Proposition 3.6 Let X be a weakly complete manifold, with a plurisubharmonic
exhaustion function φ : X → R, and let f ∈ O(X) be a nonconstant holomorphic
function, then either

i) f−1(z) ∩ {x ∈ X : φ(x) < c} is empty or noncompact for all z ∈ C and c ∈ R

or

ii) f−1(z) ∩ {x ∈ X : φ(x) < c} is compact for all z ∈ C and c ∈ R.

The key fact to get the first result from this observation is that ifX is of dimension
2, the fibers of f are of dimension 1, hence they are Stein if and only if they are
noncompact.

Observe that the condition M(X) � C for weakly complete surface X does
not imply that X is holomorphically convex (take for X the surface U of the
Example 4.4 below).

In higher dimension the existence of one holomorphic function is not enough
to grant holomorphic convexity. As a trivial example take Z = X × Y where
X is again the surface U of the Example 4.4 and Y is a Stein curve; we think
the following statement could be a suitable generalization of Ohsawa’s theorem in
higher dimensions.

Conjecture Let Z be a weakly complete complex space of dimension n + 1, n ≥
1, and f1, . . . , fn ∈ O(Z) analytically independent (i.e., df1 ∧ . . . ∧ dfn �= 0)
holomorphic functions. Then Z is holomorphically convex.

4 Weakly Complete Surfaces

In this section we look into the geometry of weakly complete surfaces. As we saw,
in dimension two the minimal kernel carries a natural analytic structure and the
presence of compact curves affects quite heavily the global geometry of the surface.

As we will see in the next pages, however, there are examples where the minimal
kernel is not composed of compact curves, but of immersed complex curves with
compact closure or, more precisely, of Levi-flat 3-dimensional hypersurfaces whose
Levi foliation has dense complex leaves. This kind of phenomenon does not have
the same “propagation” property as the presence of compact curves; therefore,
we need some hypothesis that ensures us that we can extend this information
from a level set to the whole surface. This is why we ask for the existence of a
real-analytic plurisubharmonic exhaustion function and, under such hypothesis, we
prove a classification result.

This hypothesis is not always verified, as an example taken from [3] shows.
In that case, our classification holds where the exhaustion can be taken to be real
analytic. We also study the case of coronae, where our classification result carries
over with minimal modifications.
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4.1 Examples and Remarks

We present some examples of weakly complete surfaces, studying their geometry
and the presence of holomorphic and meromorphic functions.

Example 4.1 Let a1, a2 be complex numbers such that

0 < |a1| ≤ |a2| < 1, ak1 �= al2
for all (k, l) ∈ N

2
� {(0, 0)} and define τ by |a1| = |a2|τ ; by hypothesis τ /∈ Q.

Consider on C
2
� {(0, 0)} the equivalence relation ∼: (z1, z2) ∼ (a1z1, a2z2).

The quotient space C
2
� {(0, 0)}/ ∼ is the Hopf manifold H. Let π denote the

projection C
2
� {(0, 0)} → H. The complex lines Cz1 = {z2 = 0}, Cz2 = {z1 = 0}

project into complex compact curves C1, C2, respectively. We note that the curves
C1 and C2 are the only compact complex curves in H.

Let X = H� C2. The function

-(z1, z2) = |z2|2τ
|z1|2

on C
2
� {(0, 0)} is ∼-invariant and so defines a function φ : X → R{≥0}; φ is

proper and log φ is pluriharmonic on X � C1.The level sets {φ = c} contained in
X � C1 are the projections of the sets |z1| = c|z2|τ , c > 0, and so foliated by the
projections of the complex sets {z1 = ceiθ zτ2} which are everywhere dense leaves,
τ being irrational. If f ∈ O(X), then by the maximum principle, f is constant on a
set {φ = c} which is of dimension 3 and this implies that f is constant on X. In the
same way one shows that no strongly plurisubharmonic function exists on X. We
also have M(H) = C. Indeed let f ∈M(H) and f̃ = f ◦π : f̃ ∈M(C2

�{(0, 0)})
so it extends as meromorphic function on C

2. Then f̃ = P/Q with P,Q ∈ O(C2).
Set

P(z1, z2) =
∞∑

j,k=0

Pjkz
j

1z
k
2, Q(z1, z2) =

∞∑

α,β=0

Qαβz
α
1 z
β
2 .

Because of the ∼-invariance

P(a1z1, a2z2)Q(z1, z2) = P(z1, z2)Q(a1z1, a2z2)

and from this we derive the identities

PjkQαβa
j

1a
k
2 = PjkQαβaα1 aβ2

for all j, k, α, β ∈ N. Since, by hypothesis, ak1 �= al2 for all (k, l) ∈ N
2
� {(0, 0)}

we get Pjk = 0 for j + k > 0,Qαβ = 0 for α+ β > 0, i.e., P = const,Q = const.
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We can also prove that X does not carry meromorphic function. Indeed, let f ∈
M(X) and f̃ = f ◦π : f̃ ∈M(C2

� {z1 = 0}). Then, since C2
� {z1 = 0} is Stein

f̃ (z1, z2) =
∞∑

j=0

f̃j (z1, z2)z
−j
1

with f̃j (z1z2) entire. Again, using the ∼-invariance of f̃ , we conclude that f̃j = 0
for j > 0.

The curve C1 is the minimum set of φ and it is the only compact curve of X.
Since O(X) = C the line bundle associated to C1 is not trivial.

Example 4.2 With the notation of the previous example, we consider X1 = H \
(C1 ∪C2) with plurisubharmonic exhaustion function α = (logφ)2. X1 is a weakly
complete surface, obviously of Grauert type. Here, however, the plurisubharmonic
function α1 has a 3-dimensional minimum set, namely the quotient of the Levi-flat
surface of (C∗)2 given by

H0 = {(z1, z2) ∈ (C∗)2 : |z2|τ = |z1|}.

The pluriharmonic function on X1 is, obviously, log(φ), i.e., a befitting choice of
the square root of α1.

Another class of example is provided by total spaces of some complex line
bundles over compact Riemann surfaces (see also [35]).

Example 4.3 LetM be a compact Riemann surface of genus g > 0. It is well known
that every topologically trivial line bundle can be represented by a flat unimodular
cocycle, i.e., an element of H 1(M,S1).

Consider a line bundle L → M with trivialization given by the open covering
{Uj }nj=1 and transition functions {ξ ij }i,j which represent a cocycle ξ ∈ H 1(M,S1).
We can define a function α : L → R by defining it on each trivialization as αj :
Uj×C, αj (x,w) = |w|2. As |ξ ij | = 1, these functions glue into α : L→ R, which
is readily seen to be plurisubharmonic and exhaustive.

Now, consider r > 0 and the section f1 ∈ �(U1, ξ) given by f (x) ≡ r for all
x ∈ U1; taking all possible analytic continuations of f1 as a section of the bundle
L, we construct , for every chain {Ujk }k∈N with j0 = 1 and Ujk ∩ Ujk+1 �= ∅,
the sections fk ≡ ξjkjk−1

ξjk−1jk−2
· · · ξj1j0r ∈ �(Ujk , ξ) . Representing ξ as a

multiplicative homomorphism ψξ : π1(M) → S
1, it is easy to see that the graphs

of such sections glue into a compact complex manifold if and only if ψ(π1(M))

is contained in the roots of unity, i.e., if and only if L⊗n is (analytically) trivial for
some n, i.e., if and only if ξ (as an element of the group H 1(M,S1)) is unipotent.

If that is not the case, the graphs of such sections glue into an imbedded,
nonclosed, complex manifold, contained in the Levi-flat hypersurface α−1(r2) and
dense in it. The other leaves of the Levi foliation are obtained by the one constructed
multiplying it by eiθ .
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Finally, we have a pluriharmonic function χ : L \ M → R given by χ(p) =
logα(p).

Example 4.4 Let � ⊂ C × R be the lattice generated by e1 = (0, 0, 1), e3 =
(1, 0, 0), e4 = (0, 1,

√
2) and T the real torus C × R/�. T is foliated by

complex curves which are everywhere dense. Let �̃ be the lattice generated by
ẽ1 = (0, 0, 1, 0), ẽ2 = (0, 0, 0, 1), ẽ3 = (1, 0, 0, , 0), ẽ4 = (0, 1,

√
2, 0) and T̃ the

complex torus C2/�̃: T̃ is the complexification of T, which is a subfoliation of T̃. T̃
is not algebraic [30]. Following [8, Sections 5 and 6]) we consider the matrix E =
(E(ẽjk)) where E(ẽ12) = 1, E(ẽ21) = −1, E(ẽjk) = 0 if (j, k) �= (1, 2), (2, 1)
and define the Hermitian formH on C

2 byH(ζ , ζ ′) = E(iζ , ζ ′)+ iE(ζ , ζ ′). ToH
corresponds a line bundle L −→ T̃ whose restriction to T is positive. It follows that
there exist a (connected) weakly complete neighborhood U of T and a positive line
bundle L̃ −→ U which extends L. By a theorem of Hironaka (see [19]) U embeds
in some PN (see [8, Sections 5 and 6]). In particular M(U) �= C. On the other hand
O(U) = C since every holomorphic function in U must be constant on T whence
on U .

Remark 4.5 In the first two examples one has O(X) =M(X) = C, while for the
third O(X) = C but M(X) contains many meromorphic functions. Moreover, in
the Example 4.1 X′ = X � C1 is a corona (see Section 4.3) for which O(X′) = C.

4.2 Classification Results

In the previous examples the weakly complete surfaces have an exhaustion function
which is real analytic, but this is not true in general. Indeed, an example by Brunella
(see [3, Theorem 1] and Section 4.4) shows that there exist weakly complete
surfaces which do not admit a real-analytic exhaustion function. Without the real-
analyticity as a bridge from local to global, a “classification” of weakly complete
surfaces in the general case seems to be very hard, so we restrict ourselves to the
real-analytic case.

We consider a complex surface X endowed with a real-analytic, plurisubhar-
monic exhaustion function α : X → R. In a joint paper with Slodkowski [18],
we classified such complex surfaces. By passing to a desingularization, the theorem
stated for a complex surface X covers also the case of singular spaces.

Before getting involved in the main results of [18], we point out some conse-
quences of the results we presented in the previous section.

• Clearly, there are no obstruction for X to contain compact negative curves.
• No compact positive curve and no compact curve belonging to Class α are

present on X. Indeed, by Suzuki (see section “Positive Curves”) and Ueda
(section “Ueda’s Paper”) such a curve should have strongly pseudoconcave
neighborhoods and this would force α : X→ R to be constant.
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• If X contains a curve C of Class β ′, there exist uncountably many compact
complex curves near C (see Section 3.1, and property (β ′1)). Then by Nishino
results (see section “Nishino’s Paper”) X is proper over an open holomorphic
curve.

• If X contains C belonging to Class β ′′, then there is a neighborhood of C which
is of Grauert type (see section “Curves Near C”)

• If O(X) �= C, then, by Ohsawa’s result, X is either a modification of a Stein
space or, if it contains a non-negative curve, is proper over an open complex
curve.

Question 1 Is it possible to have a weakly complete space that contains a compact
curve belonging to Class γ ? How do plurisubharmonic functions behave in the
neighborhood of such curve?

We now turn our attention to the classification result for weakly complete
complex surfaces X, endowed with a real-analytic plurisubharmonic exhaustion
function α : X→ R.

Theorem 4.6 Consider a nonsingular complex surface X as above. Then, one of
the following three cases occurs:

i) X is a modification of a Stein space of dimension 2
ii) X is proper over a (possibly singular) open Riemann surface

iii) the regular level sets of α are compact Levi-flat surfaces foliated with dense
complex leaves.

A weakly complete surface X which carries a smooth plurisubharmonic exhaustion
function ϕ whose regular level sets are Levi-flat hypersurfaces, foliated by dense
complex leaves (along which the Levi form of ϕ degenerates) is said to be a space
of Grauert type (see [17, 18]) as their structure generalizes an example by Grauert
(see, for instance [22]);

Cases i) and ii) end up being holomorphically convex, with Remmert reductions
of dimension 2 and 1, respectively, whereas, in the third case iii), no nonconstant
holomorphic function exists: indeed, any holomorphic function would be constant
along the complex leaves that foliate the regular levels of α, but then it would be
constant on the whole level, which is of real dimension 3, so it would be constant
on X.

The peculiar geometry of Grauert-type surfaces does not only affect holomorphic
functions, but also plurisubharmonic functions. We have the following result.

Proposition 4.7 Let X be a Grauert-type surface with a real-analytic plurisubhar-
monic exhaustion function α : X→ R and let

M = {
x ∈ X : α(x) = min

X
α
}
.

Then, we have two possibilities:
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iii-a) M is a compact complex curve and there exists a proper pluriharmonic
function χ on X \M such that every plurisubharmonic function on X \M is
of the form γ ◦ χ

iii-b) M has real dimension 3 and there exist a double holomorphic covering map
π : X∗ → X and a proper pluriharmonic function χ∗ : X∗ → R such that
every plurisubharmonic function on X∗ is of the form γ ◦ χ∗.

In both cases, γ is a convex, increasing real function.

In addition, it is also true that the set Crt(α) of critical points of α has the same
dimension ofM .

The two previous statements are the content of the Main Theorem in [18].
Moreover, in [17], we analyze further the geometry of Grauert-type surfaces,
obtaining the following results:

• the level sets of the pluriharmonic function χ (or χ∗) are connected, hence the
function is somehow minimal,

• any compact curve not contained inM is negative in the sense of Grauert,
• there are examples of Grauert-type surfaces which do not possess any plurihar-

monic function, but their double covering does.

We do not want to enter the details of the proofs, for which we refer the reader to
the papers [17, 18] and the introductory note [16].

Here, we only want to remark that most of the methods used are of a “local”
nature, i.e., they work in a neighborhood of a level of the exhaustion function. The
main tool in our investigation was the minimal kernel +X, defined in [32], and its
intersections with the level sets of an exhaustion function.

As an example of the consequences of this “local” nature, we examine the case
when all our hypotheses hold outside of a compact set.

We first observe that if X carries an exhaustion function φ which is plurisubhar-
monic away from a compact subset K , then X is weakly complete. Indeed, let c
such thatK ⊂ {φ < c} and take as a new exhaustion function ψ := max(φ, c′) with
c′ > c.

Then we deduce the following

Theorem 4.8 Let X be a complex surface, φ : X→ R an exhaustion function and
K � X a compact set such that φ is real analytic and plurisubharmonic outside K .
Then, one of the following cases occurs:

1) X is a modification of a Stein space
2) X is proper over a (possibly singular) open Riemann surface
3) X \K is of Grauert type.

Proof By the above remark X is weakly complete so we can repeat verbatim the
proof of [18, Theorem 4.4], restricting ourselves to X \ K . If we have a sequence
cn → +∞ such that {φ = cn} is contained in X \ K and is strictly pseudoconvex,
then we obtain that X is a modification of a Stein space; if we have a regular level
of φ in X \K containing a compact curve, then, by [18, Theorem 4.2], X would be
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foliated in compact complex curves. So, by [18, Corollary 4.3], all the regular level
sets of φ contained inX\K are Levi-flat hypersurfaces foliated with dense complex
leaves. �%

One striking difference between the first two cases and the Grauert-type surfaces
is the “propagation” of the information, when there is no real analyticity to act as a
bridge from local to global.

If there exists c ∈ R such that the level set {x ∈ X : α(x) = c} is strictly
pseudoconvex, then the sublevel set {x ∈ X : α(x) < c} is a modification of a
Stein space; even more, if {x ∈ X : α(x) = c} ∩ +X = ∅, then we can find a
strictly pseudoconvex hypersurface, arbitrarily close to the level set of α; therefore,
we can approximate the sublevel set with strictly pseudoconvex domains (which are
modifications of Stein spaces), implying that also our sublevel is a modification of
a Stein space.

If there exists c ∈ R such that the level set {x ∈ X : α(x) = c} contains
uncountably many compact complex curves, or, equivalently, a generic compact
complex curve (in the sense of Nishino, see section “Nishino’s Paper”), then
the whole manifold X is proper over an open complex curve; in this case, the
information does not only extend to “fill the hole” in the sublevel set, but also to
the whole of X.

If there exists c ∈ R such that {x ∈ X : α(x) = c} is of Grauert type, we are sure
that no generic curves are present in X (otherwise X would be union of compact
complex curves, by Nishino); we are also sure that all the level sets {x ∈ X :
α(x) = c′}with c′ > c intersect+X, otherwise the corresponding sublevel would be
a modification of a Stein space containing a compact Levi-flat hypersurface, which
is absurd. However, we are not able to say much about the level sets with c′ < c.

This difference is at the core of the example by Brunella (see Section 4.4)
of a weakly complete surface without real-analytic plurisubharmonic exhaustion
functions; as a partial result, we note that we can exploit the existence of some
particular pluriharmonic functions on a Grauert-type surface, in order to extend the
information to a sublevel, given the appropriate topological condition.

By standard cohomologicaly techniques, we have the following extension result
for pluriharmonic functions:

Proposition 4.9 Suppose W is a complex manifold with H 2
c (W,R) = 0, U ⊆ W

an open domain and K � U a compact set. Then every pluriharmonic function
χ : U \K → R has a pluriharmonic extension χ̃ : U → R.

Corollary 4.10 Suppose X is a complex surface such that H 2(X,R) = 0. If there
exist an exhaustion function φ : X→ R and c ∈ R such that

1) Xc = {φ ≤ c} � X is connected
2) X \Xc is of Grauert type
3) φ is real analytic and plurisubharmonic on X \Xc
then X is of Grauert type.
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Proof For every ε > 0 we can find c′ ∈ (c, c+ ε) such that {φ = c′} is a connected
regular level, so, by [18, Corollary 4.3], we have a neighborhood V of {φ = c′} and
a pluriharmonic function χ : V → R, which is given by χ = λ ◦ φ on V .

Therefore, there exists c′′ ∈ (c, c′) such that {c′′ < φ < c′} ⊆ V ; we set
U = {φ < c′} and K = {φ ≤ c′′}. By duality H 2

c (X,R) = 0, so Proposition 4.9
applies giving that χ extends to a pluriharmonic function on U . Its level sets in K
are compact and Levi flat. If there is a compact complex curve in a regular level of
χ , X is foliated in complex curves, by [18, Theorem 4.2], so, as X \K is of Grauert
type, this is not the case. Hence, by [18, Corollary 4.3], the regular level sets of χ
have dense complex leaves. �%

This, in particular, implies that, in the situation described in Corollary 4.10, there
is a global real-analytic plurisubharmonic exhaustion function.

4.3 Coronae of Dimension 2

Many of the results of [18] are “local,” i.e., hold in a neighborhood of a level, and the
topological condition needed on the plurisubharmonic function is the properness,
i.e., the fact that the level sets are compact. LetX be a complex space with a smooth
plurisubharmonic function φ : X→ (0,+∞) such that

• infX φ = 0, supX φ = +∞
• for every 0 < ε ≤ m < +∞ the subcorona

Xε,m = {x ∈ X : ε < φ(x) < m}

is relatively compact in X.

Such a function is called a corona exhaustion and X is called a corona. We
define +X as the set of points x ∈ X such that every smooth plurisubharmonic
corona exhaustion is not strictly plurisubharmonic; it is easy to see that all the
“local” results on the minimal kernel used or proved in [18] extend to this
setting. We would like to obtain a classification theorem for coronae admitting a
real-analytic plurisubharmonic corona exhaustion; one of the ingredients that use
pseudoconvexity in a global way is the result by Nishino. We show how to adapt it
to the case of a corona.

Lemma 4.11 Let X be a complex surface, with a real-analytic plurisubharmonic
corona exhaustion α : X → (0,+∞). Suppose c ∈ R is a regular value for α,
Y ⊆ {x ∈ X : α(x) = c} a connected component containing a compact complex
curve C and W a neighborhood of Y with a pluriharmonic function χ : W → R

such that Y = {x ∈ W : χ(x) = 0}.
Then, X is proper over an open complex curve.
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Proof We can assume that C is connected and that χ does not have critical points in
W . By [18, Lemma 4.1], there exist a neighborhood V of C inW and a holomorphic
function f : V → C such that C = {x ∈ V : f (x) = 0}; therefore, the open set V
is foliated in compact curves. This means that

∂∂̄α ∧ ∂α ∧ ∂̄α = 0

on V , hence on X, by real analyticity. Therefore, every regular level set of α is Levi
flat and foliated by immersed complex curves.

Let {an}n∈N, {bn}n∈N be sequences of regular values for α such that an decreases
to 0 and bn increases to +∞; then the coronae

Xn = {x ∈ X : an < α(x) < bn}

have Levi-flat boundaries, therefore they give an exhaustion of X by relatively
compact pseudoconvex sets.

We now apply [23, III.5.B] to obtain that X is proper over an open complex
curve. �%

In the previous Lemma, we actually proved thatX is a false corona, meaning that
it admits not only the function α, but also some other real-analytic plurisubharmonic
function β which is exhaustive on X.

We derive the following structure theorem

Theorem 4.12 Let X be a complex surface, α : X → R a real-analytic
plurisubharmonic corona exhaustion function. Then the following three cases can
occur:

1) X is an increasing union of subcoronae with one strictly pseudoconvex boundary
and +X is contained in countably many level sets of α,

2) X is proper over a complex curve (therefore a false corona)
3) X is of Grauert type

Proof First, we assume that there exists a ∈ R such that [a,+∞) ⊆ α(+X); if
every regular level {x ∈ X : α(x) = b}, for b ≥ a, contains a compact curve, then
we have uncountably many compact curves in X and, by [23, Proposition 9 and 7],
one of these curves has a neighborhood foliated with compact curves; therefore,
reasoning as in the proof of Lemma 4.11, one regular level set is foliated and
Levi flat, hence by [18, Lemma 3.7] it is the level set of a pluriharmonic function.
Applying Lemma 4.11, we obtain that X is proper over an open (possibly singular)
complex curve.

Let us suppose that there is a regular value c ∈ R for α such that the level set Y =
{x ∈ X : α(x) = c} does not contain any compact complex curve and Y ∩+X �= ∅.
Then, by [18, Theorem 3.6], +X ⊇ Y , Y is Levi flat and ∂∂̄α ∧ ∂α ∧ ∂̄α = 0 on
X. Hence, every regular level is Levi flat and, by [18, Lemma 3.7], is the (regular)
level set of a pluriharmonic function; by the same reasoning used in the proof of
[18, Corollary 3.8], Y is foliated with dense complex curves.
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Therefore, if such c exists, no regular level set can contain a compact curve,
otherwise it would propagate as we described earlier, by Lemma 4.11; so, every
regular level is foliated with dense complex curves, i.e., X is of Grauert type.

The last remaining case to consider is when there exists a sequence of regular
values that do not intersect +X.

We note that if +X intersects a regular level which does not contain a compact
curve, then +X = X; likewise, if there are uncountably many levels that contain a
compact curve, then +X = X. Therefore, there are at most countably many regular
level intersecting+X and they all contain a compact curve; let us denote by {cn}n∈N
the sequence of associated regular values.

By [18, Proposition 3.5], +X ∩ {x ∈ X : α(x) = cn} can locally be written as
a union of holomorphic discs; reasoning as in [18, Theorem 3.6], we see that there
are only two cases: either {x ∈ X : α(x) = cn} is Levi flat and foliated in complex
curves or +X ∩ {x ∈ X : α(x) = cn} is the union of finitely many connected
compact complex curves. Were the level set Levi flat, it would be the zero set of
a pluriharmonic function, but as it contains at least one compact curve, this would
imply +X = X, which is not the case.

Therefore, +X ∩ {x ∈ X : α(x) = cn} is a union of finitely many compact
curves, for every n. Finally, if d ∈ R is a singular value of α such that +X ∩ {x ∈
X : α(x) = d} �= ∅, then for every p regular point in {x ∈ X : α(x) = d} there
exists a neighborhood U such that U ∩ +X ∩ {x ∈ X : α(x) = d} is a union of
finitely many complex discs.

In conclusion, if +X �= X, then +X is a countable union of compact curves
and curves immersed in the singular levels, plus, maybe, the critical points of α;
moreover, α(+X) is countable and (as α is proper) closed. Therefore we can find
intervals In of regular values, containing arbitrarily large real numbers, such that
α(+X) ∩ In = ∅, so we can write X as a union of open domains 1n = {x ∈ X :
α(x) < tn} with a strictly pseudoconvex boundary such that +X ∩1n is a union of
compact curves, immersed curves in singular levels and critical points of α. �%

One could ask whether, in cases 1 and 3, it could be possible to “fill the hole”
and see the corona as a subdomain of a weakly complete surface. We show that, at
least in the first case, it is not possible, in general.

We consider an example taken from Section 6 of [29]; we will briefly recall the
construction. Let M be the complex manifold diffeomorphic to C

2 \ {(0, 0)} and
endowed with the unique complex structure such that the 2-form

φ = dz1 ∧ dz2 + ε∂∂ log(|z1|2 + |z2|2)

is holomorphic (such a complex structure exists and is unique by a theorem of
Andreotti). A function f : M → C is holomorphic if and only if df ∧ φ = 0
and one can verify that the functions

v1 = z
2
1

2
− εz1z2

|z1|2 + |z2|2 v2 = z
2
2

2
− εz2z1

|z1|2 + |z2|2 v3 = z1z2

2
− εz2z2

|z1|2 + |z2|2
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are holomorphic on M and satisfy v2
1 = v2v3. Hence, the map v : M → C

3 given
by v = (v1, v2, v3) sends M on the quadratic cone K = {(x, y, z) ∈ C

3 : x2 =
yz} minus the origin; it is easy to check that v(z1, z2) = v(w1, w2) if and only if
z1 = ±w1, z2 = ±w2, hence v is a 2-to-1 covering map.

If one considers the blow-upsQ of C2 in (0, 0) andQ′ of K in (0, 0, 0), then we
have a 2-to-1 map fromQ\Z toQ′ \Z′, where Z, Z′ are the respective exceptional
divisors; however, the induced mapM �→ Q′ \ Z′ is not holomorphic. We consider
Q′ as the total space of a line bundle over CP1, choosing coordinates [x1 : x2] on
CP

1 and coordinates yi for the fibers on Ui = {xi �= 0}; the transition function is
then y2 = x2

1y1 on U1 ∩ U2. We define new coordinates

ỹ1 = y1

2
− εx̄1

1+ |x1|2 on U1

ỹ2 = y2

2
− εx̄2

1+ |x2|2 on U2

with transition function ỹ2 = (x2
1 + ε)ỹ1. Let Q̃ be the complex manifold obtained

fromQ′ with this new choice of holomorphic coordinates, then the mapM → Q̃ is
holomorphic and Q̃ is Stein. Indeed, Q̃ can be embedded in C

3 as the hypersurface
{(w1, w2, w3) ∈ C

3 : w3(w3 + ε) = w1w2}.
The zero section Z′ ofQ′ becomes a real-analytic submanifold A of Q̃, which is

no longer complex and, actually, totally real: in a chart Ui , it is the graph of one of
the functions f± : C→ C,

f±(z) = ± εz̄

1+ |z|2 .

Therefore, the function φ(w) = dist(w,A)2 is zero only on A, together with its
gradient, and is strictly plurisubharmonic on Q̃ \ A; the pullback ψ to M is a real-
analytic strictly plurisubharmonic function with no critical points on M . The level
sets {p ∈ M : ψ(p) = t} for t small enough are compact, as they bound a basis of
neighborhoods of (0, 0) in C

2, therefore every level set of ψ is compact.
Therefore, M is a corona with a real-analytic strictly plurisubharmonic corona

exhaustion function and, by [29], M cannot be embedded as an open domain in a
Stein space M̃ such that the complement is compact.

Question 2 Is it true that, in case 1,+X is the union of countably many curves? Are
these curve negative in the sense of Grauert?

Question 3 Can one produce a similar example for case 3, i.e., for Grauert-type
coronae?
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4.4 Brunella’s Example

In [3], Brunella gives an example of a family of weakly complete complex surfaces
which do not admit any real-analytic plurisubharmonic exhaustion function; the
main idea of his construction is the following.

Proposition 4.13 Let us consider a compact complex surface S containing a
compact curve C which belongs to Ueda’s Class β ′′ and suppose that S does not
admit any holomorphic foliation tangent toC and free of singularities alongC. Then
S \ C is weakly complete, but does not admit any real-analytic plurisubharmonic
exhaustion function.

Proof By [35], there exist a neighborhood V of C in S and a function u : V → R

such that u is pluriharmonic and C = {p ∈ V : u(p) = 0}; moreover, the levels
of u are Levi flat and foliated with dense leaves. We consider the function − log u,
defined on V \ C and we extend it to S \ C setting it constant outside of some set
{p ∈ V : log u(p) ≥ c}; we can do so in a smooth way.

Therefore, S \ C is weakly complete. On the other hand, were it possible
to produce a real-analytic plurisubharmonic exhaustion function, we could apply
our Theorem 4.6 and deduce that, as S \ C contains some compact Levi-flat
hypersurfaces with dense complex leaves, S \ C has to be a Grauert-type surface.
The leaves of the Levi foliation give a holomorphic foliation of S \ C which is
tangent to C and free of singularities along it. As this is impossible, we cannot have
any real-analytic plurisubharmonic exhaustion function on S \ C. �%

An extensive classification of foliation on surfaces was carried on in [13] and
we also refer to [2] for the case of projective surfaces; Brunella in [3] considers the
following explicit example. Let C0 ⊂ CP

2 be a smooth elliptic curve and define S
as the blow-up of CP2 in 9 points belonging to C0 and C ⊂ S as the strict transform
of C0; obviously, (C2) = 0. Moreover, if the 9 points are generic, then C ⊂ S

belongs to Ueda’s Class β ′′.
From the classification of foliations mentioned above, we know that on S there

is no foliation tangent to C with no singularities along it (see also Proposition 8 in
[3]).

This example by Brunella tells us that the existence of real-analytic plurisubhar-
monic exhaustion is not ensured by weakly completeness; however, the surface S\C
could still be of Grauert type, i.e., union of Levi-flat hypersurfaces, where the leaves
of the Levi foliations are dense, but they do not constitute a holomorphic foliation
of the whole S � C.

In S \ C, we have a compact set + � S � C such that, for every neighborhood
1 � S � C of +, we can produce a smooth plurisubharmonic exhaustion which
is real analytic outside 1 and vanished on +, for every neighborhood of +. The
complement of + is the maximal pseudoflat neighborhood of C in S.
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Question 4 What can we say about +? Does it have an interior? If so, what can we
say about the interior? Is it weakly complete, holomorphically convex, Stein, none
of the previous? Does its boundary carry any kind of analytic structure?

5 Minimal Kernels and the Structure of Complex Manifolds

The nature of the minimal kernel of a weakly complete manifold seems to be strictly
linked to its geometry and to the presence of analytic objects, at least in dimension 2;
as we recounted in the previous pages, precise global results are known only in the
presence of a real-analytic exhaustion. However, there are some observations that
can be made for a general weakly complete surface, for example, in the particular
case when the minimal kernel is the whole surface.

Moreover, the notion of minimal kernel has been generalized by Slodkowski
in [31] to an arbitrary complex manifold and to other classes of plurisubharmonic
function, retrieving in the process also the notion of core of a domain; Slodkowski
managed to show a decomposition theorem for these generalizations of the minimal
kernel, where the components are pseudoconcave and every plurisubharmonic
function in the considered class is constant along each such component.

We present yet another “kernel” and we employ the construction and the
computations in [5] to show that, if such kernel is empty, a bounded, smooth,
pseudoconvex domain is a modification of a Stein space.

5.1 Complex Surfaces with a Smooth Exhaustion

As already observed, the classification of weakly complete surfaces in the general
case is very hard and it is not even clear that the three cases of Theorem 4.6 are the
only possible.

We can nonetheless say something in some particular cases. In [14, 15], the
following situation was studied: X is a weakly complete surface with a real-analytic
plurisubharmonic exhaustion function and 1 ⊂ X is a domain with a smooth
(in [14]), or continuous (in [15]), plurisubharmonic exhaustion function. Then, 1
falls into one of the three cases of Theorem 4.6, so it possesses a real-analytic
plurisubharmonic exhaustion function.

If +X is compact in X, it is quite easy and classical to prove that X is a
modification of a Stein space (see [15, Lemma 2.1]). At the other end of the
spectrum, we have the case when all the plurisubharmonic exhaustion functions on
X have everywhere degenerate Levi form. SupposeX is a complex surface endowed
with a smooth plurisubharmonic exhaustion φ : X → R, moreover assume that
+X = X.

We recall that, given a k-form α on a vector space E, the kernel of α is defined
as
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ker(α) = {v ∈ E : α(v, v2, . . . , vk) = 0 for all v2, . . . , vk ∈ E} .

We have the following elementary lemma.

Lemma 5.1 Let M be a real manifold, ω a k-form and α a 1-form; if α ∧ ω = 0,
then for every p ∈ M such that ω(p) �= 0 as a k-linear alternating form on TpM ,
kerα(p) ⊃ kerω(p) as vector spaces in TpM .

Proof Let X0 ∈ kerω(p) and take any X1, . . . , Xk ∈ TpM; denote by S the set of
permutations σ of {0, . . . , n} such that σ(0) �= 0 and by T the set of permutations
τ of {1, . . . , n}. Then

0 = (α ∧ ω)(p)[X0, X1, . . . , Xk] =
∑

τ∈T
(−1)|τ |α(p)[X0]ω(p)[Xτ(1), . . . , Xτ(n)]+

+
∑

σ

α(p)[Xσ(0)]ω(p)[Xσ(1), . . . , Xσ(n)] =

=
∑

τ∈T
(−1)|τ |α(p)[X0]ω(p)[Xτ(1), . . . , Xτ(n)] = n!α(p)[X0]ω(p)[X1, . . . , Xn]

therefore, asX1, . . . , Xn are generic and ω(p) �= 0, we need to have α(p)[X0] = 0,
so kerα(p) ⊃ kerω(p). �%

We have an analogue of [18, Lemma 5.3] for the smooth case.

Lemma 5.2 LetW be a complex manifold of complex dimension 2 and β : W → R

a smooth function such that

∂∂̄β ∧ ∂β = ∂∂̄β ∧ ∂̄β = 0 .

Suppose |dβ| �= 0 onW , then there exists μ : W → R such that

∂∂̄β = μ∂β ∧ ∂̄β .

Proof Applying Lemma 5.1, we have that

ker(∂∂̄β) ⊆ ker(∂β) ∩ ker(∂̄β) = ker(∂β ∧ ∂̄β)

whenever ∂∂̄β �= 0. Therefore, as they both are real (1, 1)-forms, they differ by a
smooth function μ : W → R. �%
Remark 5.3 If β is plurisubharmonic, then μ is non-negative and there exists θ :
R → R such that θ ◦ μ is plurisubharmonic; moreover, the levels of β are Levi
flat and, by the last observation, μ is constant on the leaves of the Levi foliation,
therefore also the levels of μ are Levi flat.

We are now in the position to state and prove our result about the structure of X.
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Theorem 5.4 LetX be a complex surface with a smooth plurisubharmonic exhaus-
tion function φ; suppose that +X = X. Then, either X is proper on an open
Riemann surface or the connected components of the regular level sets of φ are
Levi flat and foliated in dense complex curves (i.e., X is of Grauert type). In the
latter case, whenever r, s ∈ R are such that (r, s) is an interval of regular values
andW ⊂ {r < φ < s} is such that φ|W is proper and has connected level sets, there
exists a pluriharmonic function χ : W → R such that χ = λ ◦ φ.

Proof As +X = X, the Levi form of φ is degenerate everywhere on X, so every
connected component of a regular level of φ is a local maximum set, hence by [32,
Theorem 3.9], the forms ∂∂̄φ ∧ ∂φ and ∂∂̄φ ∧ ∂̄φ vanish. We consider a connected
componentW of {p ∈ X : r < φ(p) < s} such that all the level sets of φ contained
inW are regular and connected.

By Lemma 5.2 and the subsequent Remark, we have a non-negative function μ
onW such that ∂∂̄φ = μ∂φ ∧ ∂̄φ.

Suppose now that dμ∧ dφ does not vanish identically; we want to show that the
generic levels of φ and μ intersect transversally.

We note that ker(dμ ∧ dφ) ⊃ ker(∂φ ∧ ∂̄φ).
We define F : W → R

2 by F(p) = (φ(p), μ(p)); obviously, dμ ∧ dφ(p) �= 0
if and only if rkDF(p) = 2. Therefore, there is an open set U ⊂ W such that DF
has rank 2, i.e., F(U) is an open set in R

2. By Sard’s theorem, there are uncountably
many regular values of F in U . Let c ∈ R

2 be such a regular value; then,

{
p ∈ W : F(p) = c} = C

is a 2-dimensional compact manifold (as the level sets of φ are compact), whose
tangent space at every point is ker(∂φ) ∩ ker(∂̄φ), i.e., a complex subspace of the
tangent space of X; therefore, C is a compact complex curve.

This produces uncountably many compact complex curves. By Nishino, we have
that X is foliated by compact curves.

If dμ ∧ dφ = 0, then μ is constant on the level sets of φ, which are connected;
therefore, we can define m : R → R such that m ◦ φ = μ. An easy check in a
coordinate patch shows us that m is smooth.

We set χ = λ ◦ φ and we compute

∂∂̄χ = (λ′′ ◦ φ)∂φ ∧ ∂̄φ + (λ′ ◦ φ)∂∂̄φ = (λ′′ ◦ φ)∂φ ∧ ∂̄φ + (λ′ ◦ φ)μ∂φ ∧ ∂̄φ =

= (λ′′ ◦ φ)∂φ ∧ ∂̄φ + (λ′ ◦ φ)(m ◦ φ)∂φ ∧ ∂̄φ .

Let t = φ(p), then χ is pluriharmonic if

λ′′(t)+ λ′(t)m(t) = 0. (5.1)

We can find a solution such that λ′ > 0. For such a choice of λ, χ is pluriharmonic
onW .
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If there is any compact complex curve in W , by the argument in [18, Section
4], we propagate the curve and, by Nishino’s theorem we conclude again that X is
proper on an open Riemann surface.

If there are no compact complex curves, we have that, on the manifold Y = {χ =
χ(p)} for p ∈ W , the Levi foliation is defined by the form dcχ , which is closed.
Hence, the argument used in the proof of [18, Corollary 3.8] implies that Y , which
does not contain any compact curve, is foliated in dense complex leaves. �%

With no effort, we obtain also a “local” version of the previous result, employing
the full statement of [32, Theorem 3.9].

Corollary 5.5 Let X be a complex surface with a smooth plurisubharmonic
exhaustion function φ. Suppose that r ∈ R is such that there exists a connected
component Y of {p ∈ X : φ(p) = r} which is relatively open in the level set and
is contained in +X. Then, either X is proper on an open Riemann surface or there
is s < r such that for every regular value t ∈ (s, r), the corresponding level set is
Levi flat and foliated with dense complex curves.

Moreover, recalling the homological condition used in Section 4, we have the
following.

Corollary 5.6 Suppose X is a complex surface of Grauert type, endowed with a
smooth plurisubharmonic exhaustion φ, such that H 2(X,R) = 0. Suppose that
there exists c ∈ R such that the level sets of φ contained in X \ {φ ≤ c} are
connected and contain at least one regular point of φ. Then there exists a real-
analytic plurisubharmonic exhaustion function on X.

Proof We note that the regular values of φ are an open set in R, because the set
of critical points is closed and the function φ is proper, hence closed. So, by Sard’s
theorem, the set of critical values has measure 0, so we have a sequence of regular
values growing to +∞; moreover, the closure of the regular values is the image of
φ.

For any interval I = (a, b), constituted only of regular values, with a > c, we
consider the set W = {a < φ(p) < b}. Since X is of Grauert type, +X = X and,
following the proof of Theorem 5.4, we have a pluriharmonic function χ : W → R,
which is obviously constant on (the connected components of) the level sets of φ.
Moreover, such a function χ is obtained via a functionm : I → R; the construction
of the function m is local and works around every regular point, so we can extend
it to the whole of X \ {φ ≤ c} by continuity. Therefore, we obtain a function λ
satisfying (5.1) and, subsequently, a pluriharmonic function χ : X \ {φ ≤ c} → R.

As H 2(X,R) = 0, by Proposition 4.9, we can extend χ as a pluriharmonic
function on X and we obtain the desired exhaustion. �%
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5.2 The Singular Locus of an Admissible Class

In a series of papers, Harz, Shcherbina, and the second author introduced a concept
analogous to the minimal kernel, dealing with bounded plurisubharmonic functions,
see [10–12]. The core of a complex manifold X is defined as the set c(X) of points
where every bounded plurisubharmonic function has a degenerate Levi form; as
for the minimal kernel, such definition can be given in any regularity class, from
continuous to smooth or real analytic.

The presence of the core of a domain in a complex manifold is obviously linked
to the existence of strictly plurisubharmonic defining functions; as in the case of
the minimal kernel, in dimension 2 the nature of the core is better understood and
linked to the presence of some analytical objects, namely complex curves in the
intersections of the core with level sets of a minimal function, where all the bounded
plurisubharmonic functions are constant. For further details we refer the interested
reader to the papers cited before or to the electronic preprint [9].

The existence of such objects is meaningful, as they, in some sense, explain the
failure at being strictly plurisubharmonic because they force such functions to be
constant; this point of view has been examined and studied in detail by Slodkowski
in [31], where he generalizes the constructions of the minimal kernel and the core
to what he calls singular locus of an admissible class of functions.

Definition 5.7 Let X be a complex manifold and let U be the set of all the open
sets U ⊂ X such that at least one between U and X \ U is relatively compact. An
admissible class F is the datum, for every U ∈ U , of a set F(U) of continuous
plurisubharmonic functions on U with the following properties:

(1) if φ ∈ F(U) andW ∈ U ,W ⊂ U , then φ|W ∈ F(W)
(2) if φ : X → R, U1, . . . , Un ∈ U form a covering of X and φ|Ui ∈ F(Ui) for

i = 1, . . . , n, then φ ∈ F(X)
(3) F(U) is a convex cone and contains every bounded smooth plurisubharmonic

function on U
(4) if φ1, . . . , φn ∈ F(U) and v : Rn → R is smooth, convex, of at most linear

growth and with non-negative partial derivatives, then φ = v(φ1, . . . , φn)

belongs to F(U)
(5) if φ ∈ F(U) is strongly plurisubharmonic and if ρ ∈ C∞(U) with supp ρ ⊂ U ,

then there is t > 0 such that φ + tρ ∈ F(U)
(6) for every sequence φn ∈ F(X), there are positive numbers εn such that∑

n εnφn converges uniformly on compact subsets of X to a function in F(X).
Examples of admissible classes are the class of plurisubharmonic exhaustion

function (of a given regularity), the class of bounded plurisubharmonic functions
(of a given regularity), the class of all plurisubharmonic functions (of a given
regularity); other examples can be obtained by adding any kind of growth condition.

Definition 5.8 Let F be an admissible class, then the singular locus +F of F
is defined as the set of points of X where no function of F(X) is strongly
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plurisubharmonic. A function φ ∈ F(X) is called F-minimal if it is strongly
plurisubharmonic exactly on X \+F .

As it is proved in [31, Section 4], the singular locus, if nonempty, is pseu-
doconcave, since its intersection with a ball in X is a local maximum set (see
[31, Proposition 4.4 and Lemma 4.5]). Moreover, +F can be decomposed in
pseudoconcave parts where all the functions in F(X) are constant [31, Theorem
4.7]. For the minimal kernel, we can also prove that such pseudoconcave parts are
compact (see [31, Theorem 5.2]).

We give the following definition (see [31, Section 5]).

Definition 5.9 Let X be a complex manifold, k ∈ N ∪ {∞} and consider the
admissible class F such that, for U ∈ U , F(U) is the set of all Ck plurisubharmonic
functions on U . We define the minimal kernel of X as the singular locus of F and
we denote it by +X.

It is easy to see that, if X admits a Ck plurisubharmonic exhaustion function,
then+X coincides with the previously defined minimal kernel of a weakly complete
space. The decomposition in pseudoconvex parts still holds; however, they may not
be compact anymore.

5.3 A Levi Problem

LetM be a complex manifold.

Definition 5.10 For U ⊆ M open domain with smooth boundary, we define the
boundary kernel of U as

b+U = +U ∩ bU,

where the closure is taken with respect to the topology ofM .

Definition 5.11 For Y ⊆ M closed, let U(Y ) be a basis of open neighborhoods of
Y inM . We define the psh kernel of Y as

+Y =
⋂

U∈U(Y )
+U .

The definition of some kind of minimal functions for the boundary kernel is not
obvious and we do not know any results in this direction.

Question 5 Is there any kind of minimal function for the boundary kernel of a
smoothly bounded domain?

In the case of the psh kernel of a closed set Y , a reasonable definition would
be a plurisubharmonic function defined in a neighborhood Y which is strongly
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plurisubharmonic exactly outside of +Y ; this is equivalent to ask that there exists
a neighborhood U of Y such that +U = +Y . If +Y = ∅, the existence of such a
function follows from the definition of the psh kernel. In general, we do not know if
such a function exists.

Another interesting question is the following.

Question 6 Are there any relations between b+U and +bU ?

In general, they do not coincide, as the following example shows.

Example 5.12 LetM be the blow-up of C2 at the origin {z = w = 0}, π : M → C
2

the reduction map, E = π−1(0, 0) the exceptional divisor. Let U = {|z − 1|2 +
|w|2 < 1} and 1 = π−1(U). Then, U is Stein, so 1, which is biholomorphic to U ,
is Stein and φ := ψ ◦ π with ψ(z,w) = |z − 1|2 + |w|2 − 1 is a defining function
for 1. It follows that b+1 = ∅. On the other hand b1 contains E, where every
plurisubharmonic function has a degenerate Levi form, hence E ⊆ +b1.

We do not know if the inclusion b+U ⊆ +bU holds in general; however, if we
consider the kernels +0 given by continuous plurisubharmonic functions, we have
the following result.

Lemma 5.13 Suppose U is relatively compact in M . If there exists a function u
defined in a neighborhood ofU and plurisubharmonic there such thatU = {u < 0},
then b+0

U ⊆ +0
bU .

Proof Let us consider the open set V , neighborhood of bU inM and ψ continuous
and plurisubharmonic on U . We can suppose that min

bU
ψ ≥ 1. Let c < 0 be such

that L = {c ≤ u ≤ 0} is compact in U and denote by S the level set {u = c}. .
Consider a function θ : (−∞, 0] → (−∞, 0] satisfying

(1) θ(x) < 0 if x < 0 and θ(0) = 0
(2) θ ◦ u is continuous and plurisubharmonic on int(L)
(3) if x ∈ int(L) is a point of strong plurisubharmonicity for u, then it is also a

point of strong plurisubharmonicity for ũ = θ ◦ u
(4) θ(c) < c −maxL ψ .

and let ũ = θ ◦ u. Then

(ψ + ũ)(x) < u(x) ∀x ∈ S

(ψ + ũ)(x) ≥ 1 > u(x) ∀x ∈ bU.

The function

v = max{u,ψ + ũ, c}

is continuous and plurisubharmonic on U .
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Now, if x �∈ +0
bU , then we can find a ψ which is strongly plurisubharmonic

in a neighborhood of x, which implies that v is strongly plurisubharmonic in the
intersection of a neighborhood of x ∈ bU with U , so x �∈ b+0

1. �%
The boundary kernel is clearly linked only with the geometry of the domain U

near its boundary, whereas the psh kernel of the boundary bU also takes into account
what happens on the boundary, as it is clearly outlined in Example 5.12. This leads
us to conjecture that the conclusion of the previous Lemma should hold in greater
generality.

Considering the greater quantity of information encoded in the psh kernel of the
boundary, it is reasonable to think that its presence or absence have a strong role in
determining the geometry of the domain. Indeed, we have the following result.

Theorem 5.14 Let 1 � M be a smoothly bounded, pseudoconvex domain; if
+b1 = ∅, then 1 is a modification of a Stein space.

Proof If +b1 is empty, then there exists a strongly pseudoconvex function ψ
defined in a neighborhood of b1, so, by [28], ψ can be taken to be C∞. Since
1 is pseudoconvex, then there is a C∞ function ρ : M → R such that

(1) 1 = {x ∈ M : ρ(x) < 0}
(2) dρ �= 0 on b1 = {ρ = 0}
(3) i∂∂̄ρ(x) is positive semidefinite on T 1,0

x b1⊕ T 0,1
x b1 for every x ∈ b1.

We follow closely the approach and the computations of [5, Theorem 1].
We define u = −(−ρe−Cψ)α , where C, α are positive real constants to be

determined later. Up to shrinking U , we can suppose that ψ is bounded, so we
can also assume ψ ≥ 0.

In order to make the computations easier, we take an Hermitian metric ω on M ,
such that i∂∂̄ψ ≥ ω in a neighborhood of b1.

Following [5], we calculate

∂̄u = α(−ρe−Cψ)α−1(e−Cψ ∂̄ρ − Cρe−Cψ ∂̄ψ)

and

∂∂̄u = −α(α − 1)(−ρe−Cψ)α−2(e−Cψ∂ρ − Cρe−Cψ∂ψ)∧

∧(e−Cψ ∂̄ρ − Cρe−Cψ ∂̄ψ)+

+α(−ρe−Cψ)α−1(e−Cψ∂∂̄ρ − Ce−Cψ∂ψ ∧ ∂̄ρ−

−Cρe−Cψ∂∂̄ψ − Ce−Cψ∂ρ ∧ ∂̄ψ + C2ρe−Cψ∂ψ ∧ ∂̄ψ) .

We factor out the term α(−ρe−Cψ)α−2e−2Cψ , which is always positive in U ∩ 1,
and we obtain
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−(α− 1)∂ρ ∧ ∂̄ρ+ 2αCρRe (∂ρ ∧ ∂ψ)−αC2ρ2∂ψ ∧ ∂̄ψ − ρ∂∂̄ρ+Cρ2∂∂̄ψ =

= Cρ2(∂∂̄ψ − Cα∂ψ ∧ ∂̄ψ)− ρ(∂∂̄ρ − 2αCRe (∂ρ ∧ ∂̄ψ))+ (1− α)∂ρ ∧ ∂̄ρ .

We note that

|2αρRe (∂ρ ∧ ∂̄ψ)| ≤ (α2|∂ρ|2 + C2ρ2|∂ψ |2)ω .

The pseudoconvexity of b1 can be stated by saying that i∂∂̄ρ is positive semidefi-
nite on ker ∂ρ in T 1,0

z M for z ∈ b1; therefore, we can find C1 > 0 such that

i∂∂̄ρ ≥ −C1|∂ρ|ω

on b1. Now, if z is close enough to b1, we can find a point w ∈ b1 such that

i∂∂̄ρ(z) ≥ i∂∂̄ρ(w)− C2|ρ(z)|ω

as ρ(z) is comparable with the distance (with respect to ω) from z to w. Therefore,
we have a constant D > 0 such that

i∂∂̄ρ(z) ≥ −D(|∂ρ| + |ρ|)ω .

Therefore

Cρ2(∂∂̄ψ − Cα∂ψ ∧ ∂̄ψ)− ρ(∂∂̄ρ − 2αCRe (∂ρ ∧ ∂̄ψ))+ (1− α)∂ρ ∧ ∂̄ρ ≥

≥ Cρ2(∂∂̄ψ − C(1+ α)|∂ψ |2ω)+ (1− α − α2)|∂ρ|2 +Dρ|∂ρ|ω −Dρ2ω

and, as D|ρ||∂ρ| ≤ δD(|∂ρ|2 + δ−1ρ2)), we get the lower bound

Cρ2(∂∂̄ψ − C(1+ α)|∂ψ |2ω − C−1D(1+ δ−1)ω)+ (1− α − α2 −Dδ)|∂ρ|2ω .

As 0 ≤ ψ ≤ m, by replacing ψ with ψ2/M , we have that i∂∂̄ψ ≥ iM ′∂ψ ∧ ∂̄ψ ,
hence

∂∂̄ψ−C(1+α)|∂ψ |2ω−D
C
(1+δ−1)ω ≥ (|∂ψ |2(M ′ −C(1+α))−D

C
(1+δ−1))ω

and |∂ψ |2 can be supposed to be greater than a positive constant K along b1. We
can choose M ′, C, α, and δ such that C ∼ δ−1 ∼ α−2 and M ′ > 2C + 2DK and,
finally, α small enough so that (1− α − α2 −Dδ) > 0.

Hence u is strictly plurisubharmonic in U ∩ 1 and {u = 0} = b1. Therefore,
{u = c}, for c < 0 and small enough in absolute value, is compact in U ∩1; so, we
define an exhaustion function ũ = θ ◦ max{u, c}, where θ is a convex, increasing
real function. Then, 1 is a modification of a Stein space. �%
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Remark 5.15 We note that +b1 = ∅ is not a necessary condition for 1 to be a
modification of a Stein space, as Example 5.12 shows.

The previous remark leads us to formulate a conjecture.

Conjecture 1 is a modification of a Stein space if and only if b+1 = ∅.
Remark 5.16 If 1 is weakly complete and b+1 = ∅, then 1 is a modification of a
Stein space, by [15].
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On the Automorphic Group of an Entire
Function

Ronen Peretz

Abstract This paper develops further the theory of the automorphic group of non-
constant entire functions. This theory has already a long history that essentially
started with two remarkable papers of Tatsujirô Shimizu that were published in
1931. The elements φ(z) of the group are defined by the automorphic equation
f (φ(z)) = f (z), where f (z) is entire. Tatsujirô Shimizu also refers to the functions
of this group as those functions that are determined by f−1 ◦ f . He proved
many remarkable properties of those automorphic functions. He indicated how they
induce a beautiful geometric structure on the complex plane. Those structures were
termed by Tatsujirô Shimizu, the system of normal polygonal domains, and the
more refined system of the fundamental domains of f (z). The last system if exists
tiles up the complex plane with remarkable geometric tiles that are conformally
mapped to one another by the automorphic functions. In the Ph.D thesis of the
author, those tiles were also called the system of the maximal domains of f (z).
One cannot avoid noticing the many similarities between this automorphic group
and its accompanying geometric structures and analytic properties, and the more
tame discrete groups that appear in the theory of hyperbolic geometry and also the
arithmetic groups in number theory. This paper pursues further the theory initiated
by Tatsujirô Shimizu, towards understanding global properties of the automorphic
group, rather than just understanding the properties of the individual automorphic
functions. We hope to be able in sequel papers to generalize arithmetic and analytic
tools such as the Selberg trace formula, to this new setting.
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1 Some Background and the Contribution of Tatsujirô
Shimizu

In 1931 Tatsujirô Shimizu published two remarkable papers having the titles: On
the Fundamental Domains and the Groups for Meromorphic Functions. I and II.
[14, 15]. Here are quotations from Shimizu’s [14] that describe few of the main
notions of the theory:

1. (p. 179) “We call an open domain of the Riemann surface of the inverse function
z = f−1(w) of an integral or a meromorphic function w = f (z) “a leaf” if it
satisfies the following three conditions:

1) It covers almost all the whole w-plane without leaving any complementary
domain.

2) It does not cover the w-plane more than once in any part.
3) Each part of the boundaries is common to certain domains of the surface which

is exterior to the considered domain.”

2. (p. 179) “To each leaf so defined on the Riemann surface of the meromorphic
function w = f (z) there corresponds an open domain on the z-plane which we
call a “polygonal domain.” In the polygonal domain of a meromorphic function the
function is mono-valued and it takes all values except a set of values not forming a
domain. We call such a leaf whose boundary consists of only accessible points from
the inside of it “a leaf with accessible boundary” and the corresponding polygonal
domain “a polygonal domain with accessible boundary.” By mapping the sequence
of leaves with accessible boundaries on the z-plane, the z-plane of the meromorphic
function w = f (z) is divided into a system of polygonal domains for the function,
whose boundaries consist only of accessible points from the inside of each domain,
respectively.”

3. (p. 185) “I will here call that the z-plane is divided into “a system of normal
polygonal domains”, if the z-plane is divided into a system of polygonal domains
whose boundaries consist of only accessible points from the inside of them so
that an infinite number of the boundaries of different polygonal domains may not
accumulate in the finite part of the z-plane.

Further we call that the z-plane is divided into “a system of fundamental
domains” if the plane is divided into a system of normal polygonal domains so that
the boundary of each normal polygonal domain may be all transformed into all the
boundary of another normal polygonal domain by the transformation of the group of
the function which I shall consider in section VII, that is, the transformation defined
by f (z′) = f (z), where z runs over the boundary of some polygonal domain.”

4. (p. 185) We show that:

Theorem 1 “For any meromorphic function f (z) we can divide the z-plane into
a system of normal polygonal domains, that is, we can divide the Riemann surface
for the inverse function of f (z) into a system of leaves without leaving any elements



On the Automorphic Group 365

(belonging to the surface) except point sets containing no domain such that each
leaf covers almost all the w-plane except point sets not forming domains and the
boundary of each leaf consists of only accessible points from the inside and further,
when all the leaves thus obtained are mapped conformally on the z-plane, there
exists no point set in the finite part of the z-plane which is a limiting set of an
infinite number of boundaries of the images of the leaves.”

In this basic theorem of the theory, Shimizu demonstrates that any meromorphic
function carries with it the geometric structure of a system of normal polygonal
domains. However as he later on proves there are entire functions that have no
system of fundamental polygonal domains. Gross constructed an entire function
whose set of all asymptotic values is the whole of C. Shimizu proves that Gross’
function has no system of fundamental polygonal domains. Thus any meromorphic
function induces those remarkable tilings of the complex plane by systems of normal
polygonal domains. But there are entire functions for which the boundaries of the
different tiles are mapped to one another (infinity included) by the automorphic
functions, in a rather complicated manner.

A large portion of Tatsujirô Shimizu’s papers was dedicated to understand the
analytic and the geometric properties of the individual elements of the group that
are defined by

f (z′) = f (z). (1)

In our paper we will call this defining equation, the automorphic equation of f (z).

Remark 1 In our manuscript we will call this group of Shimizu, “the automorphic
group of f (z)” and we will use the notation Aut(f ) to designate it. The binary
operation is composition of mappings.

Remark 2 As mentioned in Remark 1 we will use the term “automorphic function
of f (z)” instead of Shimizu’s “fundamental function with respect to f (z)”.

For example, very simple such groups are Aut(zn) = {e2πik/nz| k = 0, . . . , n − 1}
and Aut(ez) = {z + 2πik| k ∈ Z}. Possible tilings of the complex plane that
correspond to these groups (and functions) are Ωj(zn) = {z ∈ C| 2πij < arg z <
2πi(j + 1)}, j = 0, . . . , n − 1 and Ωj(ez) = {z ∈ C| 2πj < /z < 2π(j + 1)},
j ∈ Z, respectively. However, these two examples are exceptional, having all
of the automorphic functions entire. A remarkable property proved by Shimizu
asserts that the only possible automorphic functions which are entire have the
form eiθ z + b, where θ ∈ 2π · Q. More complicated entire functions do not
qualify being automorphic. In general those automorphic functions are multi-valued
or “leaves” thereof with a complicated structure. Further research on this topic
was carried on, for example, in [10] and [11]. Systems of fundamental domains
(and their automorphic groups) for specific important functions, in particular in
number theory (such as the Riemann Zeta function and the Gamma function), were
computed in the past. It is clear that a lot of further research is needed in order
to better understand the automorphic functions. In particular we clearly have to
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understand more global properties of the groups Aut(f ) and of their induced normal
(or fundamental if exist) polygonal domains {Ωj(f )}j . For example, it is clearly
important to understand if tools parallel to Selberg Trace Formula could be extended
to the automorphic groups of entire functions.

Here is a brief summary of the results and the ideas in the paper. In Section 2 we
use the Weierstrass representation as (generically) an infinite product for f (w) −
f (z). Here w ∈ C is the variable while the parameter z lies in C− f−1(f (0)). We
have:

f (w)− f (z) = exp (g(w, z))
∞∏

n=1

E

(
w

φ0n(z)
, λn

)
=

= exp (g(w, z))
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)),

where if λn > 0, then:

Qλn

(
w

φ0n(z)

)
=

(
w

φ0n(z)

)
+ 1

2

(
w

φ0n(z)

)2

+ . . .+ 1

λn

(
w

φ0n(z)

)λn
,

and Q0(w/φ0n(z)) ≡ 0. Weierstrass representation parameters are the function
g(w, z)which is entire inw and z-holomorphic off f−1(f (0)), and the non-negative
integers λn that depend on z. Clearly f (w) − f (z) is z-Aut(f ) invariant. But this
happens due to a complicated interaction of the infinite product and the exponential
exp (g(w, z)). In the case that f has a finite order it follows that the infinite product
as well as the exponential part are separately z-Aut(f ) invariant. Thus in this case
the behavior of the Weierstrass representation is tame, for the group invariance is not
requiring any interaction between the two parts of the Weierstrass representation.
This is proved in Proposition 3. We prove that the description of the Weierstrass
representation of f (w) − f (z) can be refined in that the exponential part has the
form exp(F (w, f (z))) where F(w, t) is holomorphic in each variable separately.
This depends among other things on Lemma 1. This lemma also implies the cycle
relation, Corollary 3 and the chain relation, Corollary 4. However the proof of
Lemma 1 follows by a result of Eremenko and Rubel, [3], which makes the use
of the monodromy principle.

In Section 3 we indicate what conclusions can be reached when we have no mon-
odromy. In particular the proof of Corollary 7 defines the mapping T : Aut(f )→
Z, which will later on be used in Section 6 (for example, in Corollary 19). Most
of the results in this section deal with the arithmetic of the compositions of
automorphic functions. The mapping T provides means to induce from any such
a composition an appropriate factorization of a natural number over Z

+. Thus
we can use the multiplicative theory of numbers in order to deduce results on
factorizations of an automorphic function into a composition of other automorphic
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functions. Theorem 2 gives the general picture by describing the finiteness of the
decomposition of automorphic functions.

In Section 4 the cycle relation and the chain relation are discussed in the general
case where no assumption on the finiteness of the order is assumed. Corollary 14
deals with the cycle relation while Corollary 15 and Corollary 16 deal with the chain
relation.

In Section 5 we compute the example of the exponential function. We use our
method of computation to arrive at a general result, Theorem 3 which indicates
how to construct the entire function f (w) from its automorphic group Aut(f ). This
construction depends on the assumption that has no justification at the moment, that
we have some summation method for the infinite series:

∞∑

n=1

Qλn

(
w

φ0n(z)

)
.

The right summation method for this infinite sum of polynomials in w which are
multi-valued functions of z is an open problem.

Section 6 gives among other things other types of reconstruction formulas both
to f (z) and to f ′(z) in terms of approximating automorphic functions. These are the
automorphic functions of the partial sums of the power series expansion of f (w).
Proposition 4 gives the formulas: f (z) = f (w)− limn→∞ an

∏n
j=1(w−φj (n)(z)),

and f ′(z) = limn→∞ an
∏n−1
j=1(z − φ(n)j (z)). The remarkable thing here is that

an → 0 as a sequence of numbers while both products blow up but as sequences of
functions, but just in the right pace so that the limits converge and reconstruct the
function and its derivative. As mentioned above this section gives also properties
of ker(T ), where the mapping T was defined in Section 3 within the proof of
Corollary 7. For example, Corollary 19 indicates relations between ker(T ) and
the automorphic group. In fact when f has a finite order as an entire function
then ker(T ) = Autz(g(w, z)), and all the automorphic functions in Aut(f ) −
Autz(g(w, z)) have infinite order in the sense of group members. We recall that
Aut(f (z)) ⊆ Autz(exp(g(w, z)). So Aut(f (z)) is “trapped” between Autz(g(w, z))
and Autz(exp(g(w, z)) and the automorphic functions of f outside the smaller
group Autz(g(w, z)) all have infinite order as group elements of the automorphic
group of f , Aut(f ).

In Section 7 we show how the function g(w, z) − g(0, z), where g(w, z) is
the function that participates in the Weierstrass representation of f (w) − f (z)
is determined by negative moments of the automorphic functions. Theorem 4

determines ∂kg

∂wk
(0, z) in terms of

∑
(φ0n(z))

−k . In fact for k = 1, 2, 3, . . . we have
the identities:

1

k!
∂kg

∂wk
(0, z) = −1

k

∑
⎧
⎨

⎩
n

λn ≥ k

(
1

φ0n(z)

)k
.
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The left-hand side is the k + 1’st Maclaurin coefficient in the expansion of
g(w, z)−g(0, z). The right hand side is (−1/k)multiplying the (−k)-moment of all
the relevant automorphic functions of f . That explains the title of this section. The
whole argument is based on the assumption that we have some summation method
for the infinite series:

∞∑

n=1

Qλn

(
w

φ0n(z)

)
.

This assumption was also needed for deducing an essential part of Theorem 3 in
Section 5. As mentioned in Section 5 this summation problem is an open problem.

In Section 8 an infinite product representation of f ′(w) in terms of automorphic
functions is given. Proposition 5 shows that Aut(f ) ⊆ Aut(g) implies that
∃G(w, z), entire in w and holomorphic in z ∈ C − g−1(g(0)) − f−1(f (0)) such
that g(w)−g(z) = (f (w)−f (z)) ·G(w, z). In particular ∃H(z), an entire function
such that g′(z) = H(z) · f ′(z). Lemma 3 points out to a relation between the fixed
points of the non-identity automorphic functions (φ0n(w) = w for φ0n �≡ id.), and
the zeros of f ′(z), i.e. Z(f ′). Accordingly Z(f ′) might contain on the top of these
fixed-points also elements from the fiber f−1(f (0)). Theorem 5 gives a formula for
Z(f ′) in terms of the fixed-point sets of the non-identity automorphic functions of
f (w). Theorem 6 uses the Laguerre Theorem on separation of zeros and the formula
of Theorem 5 to show the reality and the separation property of Fix(Aut(f )) by
Z(f ).

Section 9 deals with entire functions of the form f (z) = P(z)eg(z) where P(z) ∈
C[z] and where g ∈ E. Let d := degp > 0 and Z(p) = {α1, . . . , αd} ⊆ C.
Then ∀ j = 1, . . . , d, αj is a common zero of almost all the reciprocals of the
automorphic functions of f (z).

The main issue in Section 10 are formulas for the derivatives of the automorphic
functions. Theorem 8 gives a kind of integral formula for

∑
|φ0n(z)|<R φ

(k)
0n (z).

Proposition 6 gives a kind of a partial fractions expansion in terms of 1/(w−φ0n(z))

to thew-logarithmic derivative of f (w)−f (z). In Proposition 7 a parallel expansion
is given for the z-logarithmic derivative of f (w) − f (z) (recall that w is the
function’s variable while z �∈ f−1(f (0)) is a parameter).

In Section 11 we apply the Jensen Theorem to compute the absolute value of
products of automorphic functions in terms of an integral of:

log |f (|φ0n(z)|eiθ )− f (z)|dθ

These products are further discussed in Section 13.
Section 14 deals with order and type estimates of f (w) in terms of the

convergence exponent of the automorphic group Aut(f ). See Theorem 9. Some
of the results are related to low order (less than 1) (Theorem 10). There are in
this section also density estimates for Aut(f ) for an entire f (w) of a finite order.



On the Automorphic Group 369

Theorems 13 and 14 deal with entire functions of a finite and non-integral order and
tie the convergence exponent of the Aut(f )-orbits to this order.

Section 15 is preparing for a future research on extending scattering theory, Sel-
berg Trace formula, etc. . . to the setting of the discrete groups Aut(f ). Theorem 15
suggests what should be some of the counterparts of the classical theory in the
setting of Aut(f ). This is far from being final and conclusive!

In the short Section 16 we bring the basics of the notion of local groups. This
notion is clearly relevant to the theory of the automorphic group of an entire
function. The material is mostly taken from Terrence Tao’s book [16].

In Section 17 we prove the remarkable identities

lim
j→∞

∑

φ0n(w)|<Rj
φ
(k)
0n (w) ≡ 0, ∀w ∈ C,

for certain sequences 0 < R1 < R2 < . . . < Rn < . . . (Rn → ∞). Each of
these sequences fits simultaneously all the values of k ∈ Z

+. This is done for low
order functions (0 < ρ < 1

2 ). The main tools used in the proof are Wiman’s-

cosπρ Theorem and our integral formulas for
∑
|φ0n(z)|<R φ

(k)
0n (z) in Theorem 8.

See Theorem 16. Few examples are elaborated to demonstrate the sharpness of our
results here.

In Section 18 we give in Theorem 17 some density estimates on {|φ0n(z)|}n for
functions of a low order (0 < ρ < 1

2 ). Again Wiman’s-cosπρ Theorem is a main
tool in our proof.

Vieta type formulas for Aut(f ), 0 ≤ ρ < 1, are given in Section 19. Theorem 18
gives a formula for the Maclaurin coefficients of f (w) in terms of f (0)− f (z) and
Aut(f ).

A reasonable approach to try and extend the classical scattering theory results
and the Selberg Trace formula to Aut(f ) is to naturally embed the automorphic
group in a larger group, the way SLn(Z) is embedded in GLn(R). In Section 20 and
in Section 21 we try such an approach. Our initial embedding uses an ascending
sequence of automorphic groups and a major problem is to try and understand what
is the direct limit that is constructed. A typical example originates in the Tuen Wai
NG construction of entire functions which have factorizations of unlimited number
of prime factors, [17]. Theorem 19 gives the structure of the direct limit group of
the ascending automorphic groups. That is done in a certain important case where
a Tuen Wai NG function underlies the direct limit. Non-trivial consequences follow
in Theorem 20 and in Theorem 21.

Section 22 gives continuity relations between the group Aut(f ) and the sequence
of groups Aut(fn), where fn→ f uniformly on compact subsets of C. The proof of
that theorem (Theorem 25) is tricky. It uses the elementary Newton’s identities for
moments and symmetric functions of finite sets, and it uses one of the partial fraction
expansions we found before for thew-logarithmic derivative f ′(w)/(f (w)−f (z)),
in Section 10, Proposition 6.
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Those results are used in Section 23 to prove some results on the amenability
of Aut(f ). In Theorem 27 the assumptions are analytical while in Theorem 29
the assumptions are geometrical, i.e. they use the generations counting functions
for systems of fundamental domains of f (w). Some applications to cases where
we have control on the growth of the generations counting functions are given in
Corollary 21.

2 The Weierstrass Representation of the Automorphic
Group of an Entire Function, and the Extra Properties in
the Case of a Finite Order

We will use (and for no particular reasons) the following two books: [5], Chapter
IV, page 56, and [12], Chapter 15, page 87. This material is classical.

Let f (z) be a non-constant entire function, and let {Ωi} be a normal system of
maximal domains of f (z) (“fundamental domains” in Shimizu’s terminology), and
{φij } is the corresponding automorphic group. We view the difference f (w)−f (z)
as an entire function in w, and we view z as a complex parameter. We have the
power series expansion f (w) = a0 + a1w + a2w

2 + . . .. Hence f (w) − f (z) =
a1w + a2w

2 + . . . − (a1z + a2z
2 + . . .). As a function of w, it has a zero at the

origin, w = 0, if and only if a1z+ a2z
2 + . . . = f (z)− f (0) = 0 for the particular

value z of the complex parameter. This is the case if z = 0 (the trivial case). In all
other cases (where f (z) − f (0) �= 0), the function f (w) − f (z) (of w) does not
vanish at the origin, w = 0. Hence the Weierstrass factorization theorem implies the
following:

1) If f (z) − f (0) �= 0, then there is a function g(w, z), entire in w and there
are non-negative integers λn(w, z) which we will sometimes denote by λn, such
that:

f (w)− f (z) = exp (g(w, z))
∞∏

n=1

E

(
w

φ0n(z)
, λn

)
=

= exp (g(w, z))
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)),

where if λn > 0, then:

Qλn

(
w

φ0n(z)

)
=

(
w

φ0n(z)

)
+ 1

2

(
w

φ0n(z)

)2

+ . . .+ 1

λn

(
w

φ0n(z)

)λn
,

andQ0(w/φ0n(z)) ≡ 0.
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2) If f (z) − f (0) = 0, then there is a natural number m, and there is an entire
function in w, h(w, z) (depending on each zero of f (z) − f (0)) and there are
non-negative numbers λ′n(z),such that:

f (w)− f (z) = wm exp (h(w, z))
∞∏

n=1,φ0n(z) �=0

E

(
w

φ0n(z)
, λ′n

)
,

where z satisfies: (a) f (z)− f (0) = 0, (b) φ0n(z) �= 0.

Next, we flip the roles of the variable w and the complex parameter z. We obtain:

1) If f (w) − f (0) �= 0, then there is a function g1(z, w), entire in z and there are
non-negative integers μn(z,w) which we will sometimes denote by μn, such
that:

f (z)− f (w) = exp (g1(z, w))

∞∏

n=1

E

(
z

φ0n(w)
, μn

)
=

= exp (g1(z, w))

∞∏

n=1

(
1− z

φ0n(w)

)
eQμn(z/φ0n(w)),

2) If f (w)− f (0) = 0, then with exactly the same values as in case 2 for f (w)−
f (z) above we have:

f (z)− f (w) = zm exp (h(z,w))
∞∏

n=1,φ0n(w) �=0

E

(
z

φ0n(w)
, λ′n

)
,

where w satisfies: (a) f (w)− f (0) = 0, (b) φ0n(w) �= 0.

Cases 1 are the generic cases (because cases 2 apply either to a discrete set of z or
to a discrete set of w). By f (w)− f (z) = −(f (z)− f (w)) we obtain:

Proposition 1 If (f (w)− f (0))(f (z)− f (0)) �= 0, then:

exp (g(w, z))
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn(w/φ0n(z)) =

= − exp (g1(z, w))

∞∏

n=1

(
1− z

φ0n(w)

)
e
Qλ′n (z/φ0n(w)),

where g(w, z) is entire in w, and g1(z, w) is entire in z. Moreover by the discussion
in [14] that starts on page 229 we may assume that all the automorphic functions
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φ0n are holomorphic in the (interior) maximal domains Ωi of the system we fixed.
Hence g(w, z) is z-holomorphic in the Ωi’s and g1(z, w) is w-holomorphic there.

Proposition 2 If (f (w)− f (0))(f (z)− f (0)) �= 0, then:

∂g(w, z)

∂w
+
∞∑

n=1

(w/φ0n(z))
λn

w − φ0n(z)
= ∂g1(z, w)

∂w
+
∞∑

n=1

(
φ′0n(w)
φ0n(w)

)
z
(z/φ0n(w))

λ′n

φ0n(w)− z
.

Proof Take the logarithm of the two sides in the identity of proposition 1, and
then ∂/∂w both sides and simplify. We note that both g(w, z) and g1(z, w) are
holomorphic (usually not entire) in both variables in the appropriate domains of the
C× {C− discrete set}. �%
Remark 3 If we ∂/∂w both sides of f (φ0n(w)) = f (w), then we obtain
f ′(φ0n(w))φ

′
0n(w) = f ′(w) in the appropriate domainΩ . By Shimizu this domain

is such that C−Ω contains no continuum.

Remark 4 If we take ∂/∂z instead of ∂/∂w, we get the symmetric identity:

∂g(w, z)

∂z
+
∞∑

n=1

(
φ′0n(z)
φ0n(z)

)
w
(w/φ0n(z))

λn

φ0n(z)− w
=

= ∂g1(z, w)

∂z
+
∞∑

n=1

(z/φ0n(w))
λ′n

z− φ0n(w)
.

The entire w-functions g(w, z) in the generic Weierstrass factorization of f (w) −
f (z) are special regarding their relation to the action of the automorphic group of
f (z) (note that here we take z as the variable).

Proposition 3 If f (z)−f (0) �= 0, then there is a function g(w, z), entire in w and
there are non-negative integers λn = λn(w, φ0n(z)) such that:

f (w)− f (z) = exp (g(w, z))
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)).

If ∀ n we have λn = λ, a constant value independent of n, then the function
exp (g(w, z)) is z-invariant with respect to the action of the automorphic group of
f (z). This means that exp

(
g(w, φij (z))

) = exp (g(w, z)) for every element φij in
the automorphic group. Our assumption on the λn ≡ λ is valid whenever the entire
function f (w) has a finite order.

Proof The first part is just Weierstrass factorization theorem applied to f (w)−f (z)
(as an entire function of w). Let φij be any automorphic function of f (z). This
means that f (φij (z)) = f (z). We note that:



On the Automorphic Group 373

∞∏

n=1

(
1− w

φ0n(φij (z))

)
e
Qλn(w,φ0n(φij (z)))(w/φ0n(φij (z))) =

=
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn(w/φ0n(z)),

because the left-hand side product is a product of a permutation of the factors of the
right-hand side. This follows by the assumption on the λn ≡ λ, independent of n. By
the convergence uniformly on compacta the two products are equal to one another.
Hence the quotient function:

(f (w)− f (z))
/ ∞∏

n=1

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z))

is invariant with respect to the action of the elements {φij } of the automorphic
group of f (z). But by the Weierstrass identity above, this quotient function equals
exp (g(w, z)). �%
We now indicate conclusions of this proposition which are of a different character
than the ones above. We will use the following:

Lemma 1 If u(z) and v(z) are non-constant entire functions and if Aut(v) is a
subgroup of Aut(u), then there exists a function h(w), holomorphic on the image of
v (i.e., on v(C)) such that u(z) = h(v(z)).
Proof That follows using the methods in [10], however, we will prove it using
a result in [3]. Namely, we will make use of the result that appears on the last
paragraph on page 334 and continues on the first paragraph on the next page,
335 in [3]. Thus we claim that v ≤ u, where the partial order is defined in [3]
(where we indicated). To prove that we need to show that v(z) = v(w) implies
that u(z) = u(w), ∀ z,w ∈ C. Thus assuming that v(z) = v(w), it follows that
∃Φ ∈ Aut(v), such that w = Φ(z). By an assumption we have, it follows that
Φ ∈ Aut(u). Hence it indeed follows that u(z) = u(w), and we proved that v ≤ u.
The claim in our lemma now follows by [3]. �%
Using the Shimizu’s [14] (or [10]) we can re-write Lemma 1 in a geometric manner:

Lemma 2 If u(z) and v(z) are non-constant entire functions and if Aut(v) is a
subgroup of Aut(u), then a normal system of maximal domains {Ωj } of v(z) is
composed of maximal domains Ωj each of which is tiled by some elements of the
same normal system of maximal domains of u(z).

Specializing Lemma 2 to the setting of Proposition 3 we obtain:

Corollary 1 Under the assumptions of Proposition 3: The normal system of
maximal domains {Ωj } of f (z) which induces the Weierstrass factorization of
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f (w) − f (z) is composed of maximal domains Ωj , each of which is tiled by some
elements of the same normal system of maximal domains of exp (g(w, z)) as a
function of z and for a fixed w.

Specializing Lemma 1 to the setting of Proposition 3 we obtain:

Corollary 2 Under the assumptions of Proposition 3: There is a function
F(w,w1), holomorphic in C× f (C) such that exp (g(w, z)) = exp (F (w, f (z))).

So the Weierstrass factorization of f (w)−f (z) that is described in Proposition 3 is
special, and we add the extra information in the following:

Theorem 1 Let f be a non-constant entire function of a finite order, and assuming
that f (z)− f (0) �= 0 we have the following expansion:

f (w)− f (z) = exp (F (w, f (z)))
∞∏

n=1

(
1− w

φ0n(z)

)
eQλ(w/φ0n(z)).

In particular, the canonical infinite product is in fact a holomorphic function of
(w, f (z)), for all w ∈ C and z ∈ (C− Z(f − f (0))).
Corollary 3 Let f be a non-constant entire function of a finite order, then we have
the following cycle relation:

N∑

j=1

exp
(
F(zj , f (zj+1))

) ∞∏

n=1

(
1− zj

φ0n(zj+1)

)
eQλ(zj /φ0n(zj+1)) ≡ 0,

for any N independent variables: z1, . . . , zN , where we agree that zN+1 = z1.

Proof

Method 1: Using the identity in Theorem 1 we have the following:

f (z1) = f (z2)+ exp (F (z1, f (z2)))

∞∏

n=1

(
1− z1

φ0n(z2)

)
eQλ(z1/φ0n(z2)),

f (z2) = f (z3)+ exp (F (z2, f (z3)))

∞∏

n=1

(
1− z2

φ0n(z3)

)
eQλ(z2/φ0n(z3)),

...

f (zN−1)=f (zN)+ exp (F (zN−1, f (zN)))

∞∏

n=1

(
1− zN−1

φ0n(zN)

)
eQλ(zN−1/φ0n(zN )),

f (zN) = f (z1)+ exp (F (zN, f (z1)))

∞∏

n=1

(
1− zN

φ0n(z1)

)
eQλ(zN/φ0n(z1)).
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We plug these identities successively each in its predecessor and eventually
cancel out f (z1) from both sides of the equation.

Method 2: The cycle relation is merely the Weierstrass factorization of each term
in the following telescopic identity:

(f (z1)−f (z2))+(f (z2)−f (z3))+. . .+(f (zN−1)−f (zN))+(f (zN)−f (z1)) ≡ 0.

�%
Corollary 4 Let f be a non-constant entire function of a finite order, then we have
the following chain relation:

f (z1)−f (zN+1) =
N∑

j=1

exp
(
F(zj , f (zj+1))

) ∞∏

n=1

(
1− zj

φ0n(zj+1)

)
eQλ(zj /φ0n(zj+1))

for any N + 1 independent variables z1, z2, . . . , zN+1.

Proof It is clear how to adopt any of the two methods of the proof we gave to
Corollary 3. �%
Corollary 5

N∑

j=1

exp
(
F(zj , f (zj+1))

) ∞∏

n=1

(
1− zj

φ0n(zj+1)

)
eQλ(zj /φ0n(zj+1)) ≡

≡ exp (F (z1, f (zN+1)))

∞∏

n=1

(
1− z1

φ0n(zN+1)

)
eQλ(z1/φ0n(zN+1))

for any N + 1 independent variables z1, z2, . . . , zN+1.

Remark 5 The results that begin in our Corollary 1 and end in Corollary 5 should
be carefully interpreted, because exp (g(w, z)) is entire in w, but is not known to be
entire in z. This is because we are dealing only with those values of the parameter
z for which f (z) − f (0) �= 0. Thus a priori it is not clear what is the meaning of
“elements of a normal system of maximal domains of exp (g(w, z) for a fixed w.”
This notion was defined by Shimizu only for meromorphic functions, but we do not
know that exp (g(w, z)) is meromorphic in z.

Remark 6 The cycle relation in Corollary 3 and the chain relation in Corollary 4
and in Corollary 5 resemble the fact that the value of a path integral is independent
of the path that connects the two endpoints for a conservative field. In our setting
one may think of f (z) as the “potential” of the complicated Weierstrass products
that appear within the sum. This resemblance originates in the elementary fact that
the sum of telescopic series depends only on the initial and the terminal points.
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3 Conclusions from Proposition 3 in Case We Have No
Monodromy

The conclusions from Proposition 3 that were derived in the previous section
originated in Lemmas 1 and 2. These, in turn, were based on a result of Eremenko
and Rubel in [3]. However, their result used the monodromy principle that was
available in their setting. What if we have no monodromy? Of course the conclusion
of Proposition 3 is still valid but we have no composition relations between f and
the Weierstrass factor exp (g(w, z)). We will outline in this section what can we still
conclude.

Corollary 6 For any element φij (z) of the automorphic group of f (z), a non-
constant entire function of a finite order, there exists an integer nij ∈ Z so that
g(w, φij (z)) = g(w, z)+ 2πnij · i.
Remark 7 It would be nice to compute g(w, z) for different entire functions and to
check the various identities we obtained. Later on we will carry such a computation
for the exponential function.

Remark 8 The g(w, z) function translates the group of automorphic functions
(composition of mappings is its binary operation) into a subgroup of (Z,+).
Proof Let us take two automorphic functions φij and φα,β . Then: g(w, φij (z)) =
g(w, z)+ 2πnij · i and g(w, φαβ(z)) = g(w, z)+ 2πnαβ · i.

g(w, φij (φα,β(z))) = g(w, φα,β(z))+ 2πnij · i =

= (g(w, z)+ 2πnαβ · i)+ 2πnij · i = g(w, z)+ 2π(nαβ + nij ) · i.

�%
Corollary 7 The automorphic group of a non-constant entire function of a finite
order is homomorphic to a subgroup of (Z,+) (which is not always the trivial
homomorphism).

Proof Let f be a non-constant entire function. Let us denote by Aut(f ) its group of
automorphic functions. Let us define the mapping T : Aut(f )→ Z by the formula
suggested by Corollary 6, i.e.

T (Φ) = 1

2π · i (g(w,Φ(z))− g(w, z)) .

Here the complex numbers w, z ∈ C are completely arbitrary within the domain
of the definition of g(w, z). Then ∀Φ1, Φ2 ∈ Aut(f ) we have the identity T (Φ1 ◦
Φ2) = T (Φ1)+ T (Φ2) (by Remark 8). �%
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Corollary 8 Let f be a non-constant entire function of a finite order. IfΦ ∈ Aut(f )
is an element of a finite order, then Φ ∈ ker(T ).

Proof The only finite subgroup of the infinite cyclic group (Z,+) is the trivial
subgroup {0}. �%

We deduce a family of functional-arithmetical identities from Corollary 7. For
that we will use the obvious short notation for repeated composition of functions.

Definition 1 Let hj (z), j = 1, . . . , n be n complex valued functions for which the
repeated composition makes sense. We will denote:

(h1 ◦ . . . ◦ hn) = ©nj=1hj .

Corollary 9 Let f be a non-constant entire function of a finite order, and let
Φ1, . . . , Φn ∈ Aut(f ) (n ≥ 2). Then whenever the repeated composition makes
sense we have the identity:

g
(
w,

(
©nj=1Φj

)
(z)

)
−

n∑

j=1

g
(
w,Φj (z)

)+ (n− 1)g(w, z) ≡ 0,

∀ (w, z) ∈ C× (C− a discrete set).

Proof The proof is inductive on n ∈ Z≥2. For n = 2 we have (using the map T in
the proof of Corollary 7: T (Φ1 ◦Φ2) = T (Φ1)+ T (Φ2), i.e.:

1

2π · i (g(w, (Φ1 ◦Φ2)(z))− g(w, z)) =

= 1

2π · i (g(w,Φ1(z))− g(w, z))+ 1

2π · i (g(w,Φ2(z))− g(w, z)) .

Hence:

g(w, (Φ1 ◦Φ2)(z))− g(w,Φ1(z))− g(w,Φ2(z))+ g(w, z) ≡ 0.

This completes the case n = 2. Similarly the case n = 3 follows in a very similar
manner from: T (Φ1 ◦Φ2 ◦Φ3) = T (Φ1)+ T (Φ2)+ T (Φ3), i.e.:

1

2π · i (g(w, (Φ1 ◦Φ2 ◦Φ3)(z))− g(w, z)) =

= 1

2π · i (g(w,Φ1(z))− g(w, z))+ 1

2π · i (g(w,Φ2(z))− g(w, z))

+ 1

2π · i (g(w,Φ3(z))− g(w, z)) .
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Hence:

g(w, (Φ1◦Φ2◦Φ3)(z))−g(w,Φ1(z))−g(w,Φ2(z))−g(w,Φ3(z))+2·g(w, z) ≡ 0.

This completes the case n = 3, etc. . . �%
We have now a direct connection between composition arithmetic and lattice
(integral) arithmetic. Here is a straightforward example. We might think of |T (Φ)|
has the distance between g(w,Φ(z)) and g(w, z). Given two non-trivial elements
Φ1, Φ2 ∈ Aut(f ), i.e. elements for which the corresponding distances are not 0
(|T (Φ1)T (Φ2)| > 0) we can find an non-trivial element with a shorter distance.
Here is a possible way to go about solving that:

Corollary 10 Let f be a non-constant entire function of a finite order and let
Φ1, Φ2 ∈ Aut(f ). Suppose that we have:

m = 1

2π · i (g(w,Φ1(z))− g(w, z)) , n = 1

2π · i (g(w,Φ2(z))− g(w, z)) ,

where m · n �= 0. Let d = a · m + b · n = (m, n) the lcm of the integers m and n.
Here d can be the positive or the negative lcm. Then if we define:

Φ = Φ◦a1 ◦Φ◦b2 ,

then we have:

d = 1

2π · i (g(w,Φ(z))− g(w, z)) .

Proof We clearly define

Φ◦a1 =
{
Φ1 ◦ . . . ◦Φ1 if a > 0
(Φ1)

−1 ◦ . . . ◦ (Φ1)
−1 if (−a) > 0

.

We note that we have: T (Φ◦a1 ) = a · T (Φ1). Hence T (Φ) = T (Φ◦a1 ◦ Φ◦b2 ) =
a · T (Φ1)+ b · T (Φ2) = a ·m+ b · n = d. �%
Corollary 11 Let f be a non-constant entire function of a finite order and let
Φ1, Φ2 ∈ Aut(f ). Then we have:

1

2π · i
(
g(w,Φ1(z)

◦T (Φ2))− g(w, z)
)
= 1

2π · i
(
g(w,Φ2(z)

◦T (Φ1))− g(w, z)
)
.

Proof This follows by the fact that:

T (Φ
◦T (Φ2)
1 ) = T (Φ2)T (Φ1) = T (Φ1)T (Φ2) = T (Φ◦T (Φ1)

2 ).

�%
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Corollary 12 Let f be a non-constant entire function of a finite order and let Φ ∈
Aut(f ) satisfy the condition that the number

1

2π · i (g(w,Φ(z))− g(w, z))

is a prime number p. If Φ = Ψ ◦k for some Ψ ∈ Aut(f ), then either T (Ψ ) equals 1
or equals p.

Corollary 13 Let f be a non-constant entire function of a finite order and let Φ ∈
Aut(f ) satisfy the condition that the number

of
1

2π · i (g(w,Φ(z))− g(w, z))

is a prime number p. If Φ = Φ1 ◦ . . . ◦ Φn, where n ∈ Z
+, and where for j =

1, . . . , n, Φj ∈ Aut(f ), then there is a single index k, between 1 and n such that
T (Φk) = p while for j ∈ {1, . . . , n} − {k}, T (Φj ) = 1.

Corollaries 10, 11, 12, and 13 are all particular cases of the principle that
the arithmetic of composition of automorphic functions of a non-constant entire
function has an analog in the arithmetic of the integers, Z. We can describe the
general principle in the following:

Theorem 2 (The Finiteness of the Decomposition of Automorphic Functions)
Let f be a non-constant entire function of a finite order and let Φ ∈ Aut(f ) satisfy
the condition:

1

2π · i (g(w,Φ(z))− g(w, z)) = N ∈ Z− {0}.

Then any decomposition of Φ into a composition of automorphic functions of f :

Φ = Φ1 ◦ . . . ◦Φn, Φ1, . . . , Φn ∈ Aut(f ),

has the following properties:

1) n could be any natural number with no a priori upper bound.
2) We have the Diophantine identity:

1

2π · i (g(w,Φ(z))− g(w, z)) =
n∏

j=1

(
1

2π · i
(
g(w,Φj (z))− g(w, z)

))
.

If we call an automorphic function Φj an arithmetical unit, if it satisfies:

∣∣∣∣
1

2π · i
(
g(w,Φj (z))− g(w, z)

)∣∣∣∣ = 1,
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then in any such decomposition of Φ, the set:

{
1

2π · i
(
g(w,Φj (z))− g(w, z)

) �= ±1

}
,

is a set of non-unit divisors of N whose product is N , and all the other factors
belong to arithmetical units. In particular for any Φ ∈ Aut(f ), the number of
different decompositions that differ in their non-units is bounded above by:

∑
m! · |{{k1, . . . , km} | k1 · . . . · km = N, |k1|, . . . , |km| > 1}|.

The weights m! must be present because of composition of functions, unlike
multiplication of integers in a non-commutative binary operation.

4 The Cycle Relation and the Chain Relation in the General
Case

The results in Section 2 dealt mostly with entire functions of a finite order. The
key result was Proposition 3 and we assumed that λn ≡ λ independent of n. This
essentially is the assumption that f has a finite order. In this section we point out
the results if this assumption is dropped out.

Corollary 14 Let f be a non-constant entire function, then we have the following
cycle relation:

N∑

j=1

exp
(
g(zj , zj+1)

) ∞∏

n=1

(
1− zj

φ0n(zj+1)

)
eQλn (zj /φ0n(zj+1)) ≡ 0,

for any N independent variables: z1, . . . , zN , where we agree that zN+1 = z1.

Proof

Method 1: Using the first identity in Proposition 3 where no finite order assump-
tion is needed, we have the following:

f (z1) = f (z2)+ exp (g(z1, z2))

∞∏

n=1

(
1− z1

φ0n(z2)

)
eQλn (z1/φ0n(z2)),

f (z2) = f (z3)+ exp (g(z2, z3))

∞∏

n=1

(
1− z2

φ0n(z3)

)
eQλn (z2/φ0n(z3)),
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...

f (zN−1) = f (zN)+ exp (g(zN−1, zN))

∞∏

n=1

(
1− zN−1

φ0n(zN)

)
eQλn (zN−1/φ0n(zN )),

f (zN) = f (z1)+ exp (g(zN , z1))

∞∏

n=1

(
1− zN

φ0n(z1)

)
eQλn(zN/φ0n(z1)).

We plug these identities successively each in its predecessor and eventually
cancel out f (z1) from both sides of the equation.

Method 2: The cycle relation is merely the Weierstrass factorization of each term
in the following telescopic identity:

(f (z1)−f (z2))+(f (z2)−f (z3))+. . .+(f (zN−1)−f (zN))+(f (zN)−f (z1))≡0.

�%
Corollary 15 Let f be a non-constant entire function, then we have the following
chain relation:

f (z1)− f (zN+1) =
N∑

j=1

exp
(
g(zj , zj+1)

) ∞∏

n=1

(
1− zj

φ0n(zj+1)

)
eQλn (zj /φ0n(zj+1))

for any N + 1 independent variables z1, z2, . . . , zN+1.

Proof It is clear how to adopt any of the two methods of the proof we gave to
Corollary 14. �%
Corollary 16

N∑

j=1

exp
(
g(zj , zj+1)

) ∞∏

n=1

(
1− zj

φ0n(zj+1)

)
eQλn (zj /φ0n(zj+1)) ≡

≡ exp (g(z1, zN+1))

∞∏

n=1

(
1− z1

φ0n(zN+1)

)
eQλn (z1/φ0n(zN+1))

for any N + 1 independent variables z1, z2, . . . , zN+1.
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5 Examples (Mostly the Exponential Function) and the Role
Played by the Assumption That We Have Some
Summation Method for the Infinite Series:∞∑
n=1

Qλn

(
w

φ0n(z)

)
, for the Reconstruction of f from Aut(f )

Let f (z) = ez. We consider the following natural system of maximal domains of
f (z):

{Ωn = {z ∈ C | 2π · i · n < /z < 2π · i · (n+ 1)} | n ∈ Z}.

This induces the infinite cyclic automorphic group:

Aut(ez) = {z+ 2π · i · n | n ∈ Z} =< z+ 2π · i > .

The discrete exceptional set of z is the solution set of the equation ez − e0 = 0. So
this is the discrete set {2π · i · n | n ∈ Z}. Using the representation of Proposition 3
we clearly can choose the sequence λn ≡ 1, ∀ n ∈ Z. Thus for z �∈ {2π ·i ·n | n ∈ Z},
we have:

ew − ez = exp (g(w, z))
∏

n∈Z

(
1− w

z+ 2π · i · n
)
e(w/(z+2π ·i·n)).

We can group together symmetric pairs n and −n, where n ∈ Z
+. We compute the

corresponding products:

(
1− w

z+ 2π · i · n
)
e(w/(z+2π ·i·n)) ×

(
1− w

z− 2π · i · n
)
e(w/(z−2π ·i·n))

and we can write the final result in two forms as follows:

ew − ez = exp (g(w, z))

(
1− w

z

)
ew/z

∞∏

n=1

(
(z− w)2 + 4π2n2

z2 + 4π2n2

)
e2zw/(z2+4π2n2)=

= exp (g(w, z))

(
1− w

z

)
ew/z

∞∏

n=1

(
1− z

2 − (z− w)2
z2 + 4π2n2

)
e2zw/(z2+4π2n2),

∀w ∈ C, ∀ z ∈ C−{2π · i · n | n ∈ Z}. Here g(w, z) is entire in w and holomorphic
in z �∈ {2π · i · n | n ∈ Z}. Next, we note that if we replace z by z + 2π · i · k for
some k ∈ Z, then clearly:
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∏

n∈Z

(
1− w

(z+ 2π · i · k)+ 2π · i · n
)
e(w/((z+2π ·i·k)+2π ·i·n)) =

=
∏

n∈Z

(
1− w

z+ 2π · i · (n+ k)
)
e(w/(z+2π ·i·(n+k))) =

=
∏

n∈Z

(
1− w

z+ 2π · i · n
)
e(w/(z+2π ·i·n)).

Also ew − ez+2π ·i·k = ew − ez. Hence the basic Weierstrass factorization:

ew − ez = exp (g(w, z))
∏

n∈Z

(
1− w

z+ 2π · i · n
)
e(w/(z+2π ·i·n)),

implies that indeed we have exp (g(w, z+ 2π · i · k)) = exp (g(w, z)). Next, let us
consider ew − 1. This entire function has simple zeros at {2π · i · n | n ∈ Z} and
only there. So using the standard Weierstrass factorization we obtain an identity of
the following form:

ew − 1 = exp (h(w)) · w ·
∞∏

n=1

(
1− w2

4π2n2

)
.

This follows by taking the symmetric order of factors in:

ew − 1 = exp (h(w)) · w ·
∏

n∈Z−{0}

(
1− w

2π · i · n
)
ew/(2π ·i·n).

Using this identity we obtain:

ew − ez = ez(ew−z − 1) = ez exp (h(w − z)) · (w − z)
∞∏

n=1

(
1+ (w − z)

2

4π2n2

)
=

= ez exp (h(w − z)) · (w − z)
∏

n∈Z−{0}

(
1− w − z

2π · i · n
)
e(w−z)/(2π ·i·n).

Thus we obtained two different identities:

ew − ez = exp (g(w, z))
∏

n∈Z

(
1− w

z+ 2π · i · n
)
ew/(z+2π ·i·n) =
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= ez exp (h(w − z)) · (w − z)
∏

n∈Z−{0}

(
1− w − z

2π · i · n
)
e(w−z)/(2π ·i·n),

or by symmetric multiplication:

ew − ez= exp (g(w, z))

(
1−w
z

)
ew/z

∞∏

n=1

(
1−z

2−(w − z)2
z2 + 4π2n2

)
e(2zw)/(z

2+4π2n2) =

= ez exp (h(w − z)) · (w − z)
∞∏

n=1

(
1+ (w − z)

2

4π2n2

)
.

This is different from the unique factorization of polynomials. We have no unique-
ness of product representation. A well-known phenomenon. Before proceeding to
the computation of the Weierstrass factor g(w, z), which is not trivial even for
the exponential function, let us solve first the polynomial case. We start with the
following quadratic f (z) = z2 + z and we note that f (w) − f (z) = (w − z)(w +
z+ 1), so that Aut(f ) = {z,−z− 1}, and the product part is:

(
1− w

z

)(
1− w

−z− 1

)
=

(
z− w
z

)(
w + z+ 1

z+ 1

)
= f (z)− f (w)

f (z)
.

Thus we get the representation:

f (w)− f (z) = (−1) · f (z)
(

1− w
z

)(
1− w

−z− 1

)
=

= (−1) · f (z)
(

1− w

φ0(z)

)(
1− w

φ1(z)

)
.

Now, let us consider a general polynomial: f (z) = pd(z) = adzd + ad−1z
d−1 +

. . . + a1z + a0, ad �= 0. Then Aut(pd) = {φ0(z), . . . , φd−1(z)}, where φ0(z) = z.
Clearly:

pd(w)− pd(z) = ad
d−1∏

n=0

(w − φn(z)) = (−1)dad

{
n−1∏

n=0

φn(z)

}
d−1∏

n=0

(
1− w

φn(z)

)
.

By pd(w) − pd(z) = ad
∏d−1
n=0(w − φn(z)) it follows that the free term of

this w-polynomial is given by pd(0) − pd(z) = ad
∏d−1
n=0(0 − φn(z)) =

(−1)dad
∏d−1
n=0 φn(z). So we proved that the Weierstrass factorization representation

of the automorphic group of a general monic polynomial is:
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pd(w)− pd(z) = (pd(0)− pd(z))
d−1∏

n=0

(
1− w

φn(z)

)
.

A full generalization of the quadratic case. Is that formula valid for any entire
function? Unfortunately it is not the case. One might have falsely suspected at
first that we can approximate an entire f (z) by the polynomials pd(z) which are
the partial sums of the power series expansion of f . Each pd as the above simple
Weierstrass factorization of pd(w) − pd(z), and then when d → ∞ we clearly
have pd(w) − pd(z)→ f (w) − f (z). We might have hoped that the automorphic
functions φdn converge when d →∞ to the automorphic functions φ0n of f , and if
we are lucky also

lim
d→∞

d−1∏

n=0

(
1− w

φdn(z)

)
=
∞∏

n=0

(
1− w

φ0n(z)

)
,

thus proving that:

f (w)− f (z) = (f (0)− f (z))
∞∏

n=0

(
1− w

φ0n(z)

)
.

However, this clearly is wrong for the last infinite product is usually divergent
unless we multiply each term by the corresponding normalizing Weierstrass factor
exp (Qλn(w/φ0n(z))). This simple formula has a chance of being correct only if f
is of order 0 and ∀ n, λn = 0. For the sake of completeness let us give a concrete
example which proves that this simplistic formula is wrong. If this formula were
true for f (z) = ez, we would have something like the following:

ew − ez = (1− ez)
∏

n∈Z

(
1− w

z+ 2π · i · n
)
ew/(z+2π ·i·n) =

= (1− ez)
(

1− w
z

)
ew/z

∞∏

n=1

(
1− z

2 − (z− w)2
z2 + 4π2n2

)
e2zw/(z2+4π2n2).

If this was true then:

ew − ez
w − z = (e

z − 1)
ew/z

z

∞∏

n=1

(
1− z

2 − (z− w)2
z2 + 4π2n2

)
e2zw/(z2+4π2n2).

Taking the limits of both sides, when w→ z we get:
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ez = (ez − 1)
e

z

∞∏

n=1

(
1− z2

z2 + 4π2n2

)
e2z2/(z2+4π2n2).

We note that the convergent infinite product has no zero, as to be expected. Thus it
looks promising, till we specialize to z = iπ :

−1 = −2

iπ
e

∞∏

n=1

(
1+ π2

4π2n2 − π2

)
e−2π2/(4π2n2−π2).

That is nonsense, of course, because the left-hand side is a real number while the
right-hand side is a pure imaginary number! Can we fix this wrong? Let us denote
the partial sums of the power series expansions of f (z) = ez by:

pd(z) =
d∑

n=0

zn

n! .

Let us denote the automorphic functions of pd(z) by φdn(z), n = 0, . . . , d− 1. Then
we proved that:

pd(w)− pd(z) = (1− pd(z))
d−1∏

n=0

(
1− w

φdn(z)

)
.

The idea now is to mimic at the polynomial level the form of the Weierstrass
factorization of the limiting function ew−ez. This means that we multiply the factors
by the Weierstrass normalizing factors. The result is:

pd(w)−pd(z) = (1−pd(z)) exp

(
−w

d−1∑

n=0

(
1

φdn(z)

)) d−1∏

n=0

(
1− w

φdn(z)

)
ew/φ

d
n(z).

At this point we take the limit d →∞ and assume that all the automorphic functions
of the partial sums converge to those of ez and that the finite normalized products of
the pd ’s converge to the Weierstrass canonical product of ew − ez. Here is what we
get:

ew − ez = (1− ez)
(

1− w
z

)
ew/z exp

(
−2zw

∞∑

n=1

(
1

z2 + 4π2n2

))
× (2)

×
∞∏

n=1

(
1− z

2 − (z− w)2
z2 + 4π2n2

)
e2zw/(z2+4π2n2).
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In other words, this formula suggests the following identity using the notation of
our Theorem 1:

exp
(
F(w, ez)

) = (1− ez) exp

(
−2zw

∞∑

n=1

(
1

z2 + 4π2n2

))
. (3)

If true then it is interesting because it is not clear why the infinite sum of equation
(3) is a holomorphic function of ez. We can evaluate this infinite sum. The following
formula is well-known:

2z
∞∑

n=1

(
1

z2 − n2

)
= π cotπz− 1

z
.

We make use of it. We let z = iu below.

−2zw
∞∑

n=1

(
1

z2 + 4π2n2

)
= −

( z
2π

) ( w
2π

) ∞∑

n=1

(
1

(z/2π)2 + n2

)
=

= i
( w

2π

)
· 2

( u
2π

) ∞∑

n=1

(
1

(u/2π)2 − n2

)
= i

(w
2

){
cot

(u
2

)
−

(
2

u

)}
=

=
(
w

z

)
−

(w
2

)(
ez + 1

ez − 1

)
.

The element w/z seems to be an obstacle for in order to make it a holomorphic
function of ez we might write it as w/ log ez, which at least is not singular because
ez �= 1. Plugging our result into equation (2) gives us finally the following
interesting identity:

ew − ez = ew/z(1− ez)
(

1− w
z

)
ew/z exp

(
−

(w
2

)(
ez + 1

ez − 1

))
× (4)

×
∞∏

n=1

(
1− z

2 − (z− w)2
z2 + 4π2n2

)
e2zw/(z2+4π2n2).

We recall that the last identity was derived using the idea outlined before equation
(2), namely approximating the entire function f (z) by a sequence of polynomials,
the partial sums of its power series expansion, using the identity we proved for
polynomials:

pd(w)− pd(z) = (pd(0)− pd(z))
d−1∏

n=0

(
1− w

φn(z)

)
.
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Then multiplying the last identity by the Weierstrass normalization factors that
correspond to the Weierstrass expansion of f and letting d →∞ assuming we have
convergence of the automorphic functions of the polynomials pd to the automorphic
functions of f , and also convergence of the finite products of the pd(w)− pd(z) to
the (generically) infinite product of f (w) − f (z). Remarkably all of that actually
works! We now give an independent proof of the identity (4) which does not rely
on any of the above “convergences assumptions.” Let us write our skeleton identity
using the variables iπw and iπz instead of w and z:

eiπw − eiπz = exp (g(iπw, iπz))

(
1− w

z

)
ew/z×

×
∞∏

n=1

(
1+ z

2 − (z− w)2
4n2 − z2

)
exp

( −2zw

4n2 − z2

)

Now we use the cotangent fractional series expansion to compute:

∞∏

n=1

exp

( −2zw

4n2 − z2

)
= exp

((πw
2

)
cot

(πz
2

)
−

(
w

z

))
.

Next we use the well-known expansion:

πz

sin(πz)
=
∞∏

n=1

(
n2

n2 − z2

)
,

to compute the infinite product:

∞∏

n=1

(
1+ z

2 − (z− w)2
4n2 − z2

)
=
∞∏

n=1

(
4n2 − (z− w)2

4n2

) ∞∏

n=1

(
4n2

4n2 − z2

)
=

=
(

z

z− w
)

sin(π(z− w)/2)
sin(πz/2)

.

Putting together the last three identities we proved gives:

eiπw−eiπz= exp (g(iπw, iπz))ew/z
sin(π(z− w)/2)

sin(πz/2)

exp

((πw
2

)
cot

(πz
2

)
−

(
w

z

))
.

We solve for exp (g(iπw, iπz)) and replace iπw, iπz by w and z, respectively.
This gives:
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exp (g(w, z)) = (ew − ez) sin(z/2i)

sin((z− w)/2i) exp
(
−w

2i
cot

( z
2i

))
.

This concludes the proof of identity (4).
Using Proposition 1 we deduce that if (ew − 1)(ez − 1) �= 0, then:

ew/z(1− ez)
(

1− w
z

)
ew/z exp

(
−

(w
2

)(
ez + 1

ez − 1

))
×

×
∞∏

n=1

(
1− z

2 − (z− w)2
z2 + 4π2n2

)
e2zw/(z2+4π2n2) =

= −ez/w(1− ew)
(

1− z

w

)
ez/w exp

(
−

( z
2

)(
ew + 1

ew − 1

))
×

×
∞∏

n=1

(
1− w

2 − (w − z)2
w2 + 4π2n2

)
e2wz/(w2+4π2n2).

It is interesting to note that both sides are entire in w (left) and in z (right). That
agrees with the Gronwall-Hahn Theorem. The left side is clearly z-holomorphic in
z ∈ C − 2πiZ, and the right side is w-holomorphic in w ∈ C − 2πiZ. Thus both
sides are entire in (w, z). The essential singularities of

exp

(
−

(w
2

)(
ez + 1

ez − 1

))
,

and of ew/z are somehow canceled out by the infinite product.
We end this section by pointing at two findings that seem to emerge from our

computations. The first is the extent to which an entire function f (z) is determined
by a partial knowledge of its fibers. The notion of the fiber is very close to the notion
of the automorphic group, namely ∀w ∈ C the fiber f−1(w) = {zj | f (zj ) = w}
is the discrete subset of C (we assume that f is non-constant) of all the f -pre-
images of w. We note that if z0 ∈ f−1(w), then f−1(w) is simply the Aut(f )-orbit
of z0, i.e. we have the identity f−1(w) = {φ(z0) |φ ∈ Aut(f )}. For a general
function (not necessarily holomorphic or even continuous) the knowledge of the
pairs (w, f−1(w)) determines f (uniquely). The mere knowledge of all the fibers
f−1(w), without knowing the w itself clearly does not determine f . This is very
close to knowing the automorphic group of f (for that partitions C into the f -
fibers without the knowledge of the w). So far for general functions f . Even if
we know in advance that f is continuous, the automorphic group, i.e. the fibers
f−1(w) do not determine f . If G is a continuous injection, then f and G ◦ f
have identical family of fibers. But our case is very different from the continuous
case. Our functions f are entire and hence are rigid. The case that shows how this
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holomorphic rigidity makes the difference is the case of polynomials. we already
noted that if p(z) = adzd+. . .+a0, ad �= 0, and if Aut(p) = {φ0(z), . . . , φd−1(z)},
then

p(z) = p(0)+ (−1)d+1ad

d−1∏

j=0

φj (z).

Thus the product φ0 ·. . .·φd−1, i.e. the product of the p-fiber determines the function
p(z) up to a multiplicative constant ad different from 0 and an additive constant
p(0). Thus we do not have to know the fiber, just the product of its elements, a very
partial information indeed, suffice to essentially reconstruct the function.

The second finding is closely related to the first one, but here we want to
handle entire not necessarily polynomials. since in this case the group Aut(f ) is
usually infinite, it does not make sense to multiply its elements. Thus in this more
complicated situation we ask the following: Given Aut(f )where f is a non-constant
entire function, can we reconstruct the function f (up to minor parameters)? The
way we outlined how to handle the case f (z) = ez might give us the way to solve
this problem.

Theorem 3 If f (z) − f (0) �= 0, then there is a function g(w, z), entire in w and
there are non-negative integers λn = λn(w, φ0n(z)) such that:

f (z) = f (w)− exp (g(w, z))
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)).

Here as usual:

Qλ

(
w

φ(z)

)
=

(
w

φ(z)

)
+ 1

2

(
w

φ(z)

)2

+ . . .+ 1

λ

(
w

φ(z)

)λ
.

Here the non-negative integers λn are chosen so that the infinite product converges
on uniformly on compact subsets of C. For example, we might take the canonical
product of the automorphic group {φ0n}. If we can sum up by some summation
method for the infinite series:

∞∑

n=1

Qλn

(
w

φ0n(z)

)
,

to give a holomorphic sum, and that problem is at the moment an open problem,
then:

exp (g(w, z)) = (f (0)− f (z)) exp

(
−
∞∑

n=1

Qλn

(
w

φ0n(z)

))
.
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In this case we can reconstruct f (z) from Aut(f ) by the formula:

f (z) = f (0) · L− f (w)
L− 1

,

where

L = exp

(
−
∞∑

n=1

Qλn

(
w

φ0n(z)

))
·
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn(w/φ0n(z)),

and where w ∈ C can be any number for which L �= 1.

6 Reconstruction Formulas for f (z) and for f ′(z) in Terms
of Approximating Automorphic Functions: Relations
Between the Groups Aut(f ) and Autz(g(w, z))

The difference between the very simple reconstruction of a polynomial p(z) =
adz

d + . . . + a0, ad �= 0 from its automorphic group Aut(p) = {φj (z) | j =
0, . . . , d − 1}, p(z) = p(0) + (−1)d+1ad

∏d−1
j=0 φj (z), on the one hand, and the

reconstruction of a general non-constant entire function f (z), in Theorem 3, on
the other hand, gives the feeling of a possibility of a simpler reconstruction (in the
general entire case). Indeed we can point at such a formula, seemingly simpler than
the one in Theorem 3. However, the hidden complication is in the approximating
procedure within that formula.

The setting is that we have an entire non-constant function f (z) represented in
terms of its Maclaurin’s series: f (z) = ∑∞

n=0 anz
n, lim supn→∞ |an|1/n = 0. We

denote the sequence of the partial sums by fn(z) = ∑n
k=0 akz

k . Practically we
consider those partial sums for which (in the notation above) an �= 0. We denote the
automorphic groups: Aut(fn) = {φ(n)0 (z), . . . , φ

(n)
n−1(z)}. These are all the solutions

of the automorphic equation: fn(φ
(n)
j (z)) = fn(z), j = 0, . . . , n−1. Thus fn(w)−

fn(z) = an
∏n−1
j=0(w − φ(n)j (z)). The automorphic functions of fn(z) satisfy the

Vieta identities:

(−1)kan
∑

0≤i1<i2<...<ik≤n−1

k∏

j=1

φ
(n)
ij
(z) =

{
an−k , k < n

a0 − fn(z) , k = n .

As usual we denote Aut(f ) = {φ0(z), φ1(z), φ2(z), . . .}, and we note that:

f (w)− fn(w) =
∞∑

k=n+1

akw
k, f (z)− fn(z) =

∞∑

k=n+1

akz
k.
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Hence:

f (w)− f (z) = (f (w)− fn(w))+ (fn(w)− fn(z))− (f (z)− fn(z)) =

=
∞∑

k=n+1

ak(w
k − zk)+ an

n−1∏

j=0

(w − φ(n)j (z)).

If we fix R > 0, then limn→∞
∑∞
k=n+1 ak(w

k − zk) = 0 uniformly in w, z. So that

f (w) − f (z) = limn→∞ an
∏n−1
j=0(w − φ(n)j (z)) uniformly on compact subsets of

C. Thus it is straightforward to prove that we can divide by (w− z) and take w→ z

and obtain: f ′(z) = limn→∞ an
∏n−1
j=1(z−φ(n)j (z)). Finally let us fix N and replace

the first N factors
∏N−1
j=1 (z − φ(n)j (z)) when n → ∞ by

∏N−1
j=1 (z − φj (z)). We

obtain:

f (w)− f (z)
aN

∏N−1
j=1 (z− φj (z))

= lim
n→∞

an

aN

n∏

j=N
(z− φ(n)j (z)).

This proves the following:

Proposition 4 We have f (w)− f (z) = limn→∞ an
∏n−1
j=0(w − φ(n)j (z)) uniformly

on compact subsets of C. Also f ′(z) = limn→∞ an
∏n−1
j=1(z−φ(n)j (z)) uniformly on

compact subsets of C and likewise for any fixed N :

f (w)− f (z)
aN

∏N−1
j=1 (z− φj (z))

= lim
n→∞

an

aN

n∏

j=N
(z− φ(n)j (z)).

Remark 9 The reconstruction formulas given in Proposition 4:

f (z) = f (w)− lim
n→∞ an

n−1∏

j=0

(w − φ(n)j (z)),

and

f ′(z) = lim
n→∞ an

n−1∏

j=1

(z− φ(n)j (z)),

seem to be simpler than that in Theorem 3, but the cost lies in the sequential limit
limn→∞, which describes an auxiliary approximation of the entire functions by
polynomials (the partial sums fn).
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We now bring few properties of the automorphic functions of a non-constant entire
function f of a finite order. These are related to the results in Section 3. First it will
be convenient to rephrase Proposition 3:

Corollary 17 If f is a non-constant entire function of a finite order, then the auto-
morphic group of f (z) is a subgroup of the automorphic group of exp (g(w, z)) as
a function of z (for any fixed w ∈ C). In symbols: Aut(f (z)) ⊆ Autz(exp (g(w, z)),
∀w ∈ C.

We noticed in Corollary 8 that any finite order element of Aut(f ) (f a non-
constant entire of a finite order) belongs to ker(T ). Our next result gives a non-trivial
characterization of the elements in ker(T ).

Corollary 18 Let f (z) be a non-constant entire function of a finite order. Then:
ker(T ) ≡ Autz(g(w, z)), for any fixed w ∈ C.

Proof The automorphic function Φ ∈ Aut(f (z)) belongs to ker(T ), where the
homomorphism T was defined in Corollary 7 ⇐⇒ T (Φ) = 1

2π ·i (g(w,Φ(z))−
g(w, z)) = 0 ⇐⇒ g(w,Φ(z)) = g(w, z), ∀w ∈ C ⇐⇒ Φ ∈ Autz(g(w, z)),
∀w ∈ C. �%
Corollary 19 Let f be a non-constant entire function of a finite order. Then:

(a) Any Φ ∈ Aut(f (z))− Autz(g(w, z)) is of an infinite order.
(b) Let Φi0j0 ∈ Aut(f (z)) be such that |T (Φi0j0)| = min{|T (Φ)| |Φ ∈

Aut(f (z)) − ker(T )}. Then T (Aut(f (z))) =< Φi0j0 >. We have ∀ k ∈ Z,
T (Φ◦ki0j0) = k · T (Φi0j0). If Aut(f (z)) − ker(T ) = ∅, we agree to define
< Φi0j0 >= {0}.

(c) If T (Φij ) = T (Φαβ) then Φij ◦ Φ−1
αβ ∈ Autz(g(w, z)). This could be

written as g(w,Φij ◦ Φ−1
αβ (z)) = g(w, z) or, equivalently as g(w,Φij (z)) =

g(w,Φαβ(z)).

Remark 10 The automorphic group of a non-constant entire function of any order
can contain elements of a finite order and elements of infinite order. For example,
if Aut(f (z)) contains elements of infinite order, then so does the group Aut(f (z2))

but this last group contains also the order 2 element Φ(z) = −z.
Remark 11 We point out that the construction of a Dirichlet fundamental domain
for Fuchsian groups could be used to construct a fundamental domain (maximal
domain) for a non-constant entire function. Let f (z) be a non-constant entire
function, z0 ∈ C a regular point of f (i.e., f ′(z0) �= 0) and ρ(·, ·) a metric on
C. Mostly we have in mind the f -path metric, ρf that is induced by f . We recall
what that is: let z,w ∈ C and let γ : [0, 1] → C be a continuous path from z to w.
Thus γ (0) = z and γ (1) = w. Then the length of γ is given by the standard length
of the f -image path f ◦ γ . We will denote this length by lf (γ ).

lf (γ ) =
∫ 1

0

∣∣f ′ (γ (t))
∣∣ ∣∣γ ′(t)

∣∣ dt.
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The f -path metric is given by: ρf (z,w) = infγ lf (γ ), where the infimum is taken
over all the piecewise differentiable paths γ from z to w. The Dirichlet fundamental
domain of f (z), centered at z0, with respect to the f -path metric is:

{z ∈ C | ρf (z, z0) ≤ ρf (Φij (z), z0) ∀Φij ∈ Aut(f )}.

An alternative way to define that, which avoids using the notion of the automorphic
group of f is as follows:

{z ∈ C | ρf (z, z0) ≤ ρf (w, z0) ∀w ∈ f−1(f (z))}.

The interior of the set above is a domain (an open connected subset of C), and the
function f is one-to-one in this domain and the domain is maximal with respect to
this property (of f being injective).

7 The Function g(w, z) − g(0, z) Is Determined by the
Negative Moments of the Elements in Aut(f (z))

Theorem 4 Let f be a non-constant entire function. Let us denote Aut(f ) =
{φ0n(z) | n = 0, 1, 2, . . .} (φ00 ≡ id.) and let g(w, z) be the function in the
exponential of the Weierstrass (canonical) factorization of f (w) − f (z). g(w, z)
is entire in w and holomorphic in z �∈ f−1(f (0)). Then for k = 1, 2, 3, . . . we have
the identities:

1

k!
∂kg

∂wk
(0, z) = −1

k

∑
⎧
⎨

⎩
n

λn ≥ k

(
1

φ0n(z)

)k
.

The left-hand side is the k+1’st Maclaurin coefficient in the expansion of g(w, z)−
g(0, z). The right hand side is −1/k multiplying the −k-moment of all the relevant
automorphic functions of f . That explains the title of this section. Like in Theorem 3
we assume that we have some summation method for the infinite series:

∞∑

n=1

Qλn

(
w

φ0n(z)

)
.

Remark 12 Thus the proof below is based on a vague summability assumption! It
is mostly supported by formal computational steps, and not justified. However, this
already interesting sketch points to the fact that a true proof if exists will not be an
easy one, and probably it will have to utilize summability theoretical arguments.
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Proof By Theorem 3 we have the following identity:

exp (g(w, z)) = (f (0)− f (z)) exp

(
−
∞∑

n=1

Qλn

(
w

φ0n(z)

))
.

It is assuming that we have a summability method for the infinite series:

∞∑

n=1

Qλn

(
w

φ0n(z)

)
,

which results in a holomorphic function. Here, as usual:

Qλn

(
w

φ0n(z)

)
=

(
w

φ0n(z)

)
+ 1

2

(
w

φ0n(z)

)2

+ . . .+ 1

λn

(
w

φ0n(z)

)λn
.

When we substitutew = 0 into the identity above, we obtain exp (g(0, z)) = f (0)−
f (z). So we can rewrite our identity as follows:

exp (g(w, z)− g(0, z)) = exp

(
−
∞∑

n=1

Qλn

(
w

φ0n(z)

))
.

We deduce that there is an integer N ∈ Z, such that:

g(w, z)− g(0, z) = 2π · i ·N −
∞∑

n=1

Qλn

(
w

φ0n(z)

)
.

If we plug in w = 0, we obtain 0 = 2π · i ·N , so that N = 0 and we have:

g(w, z)− g(0, z) = −
∞∑

n=1

Qλn

(
w

φ0n(z)

)
.

On the other hand, g(w, z) is an entire function in w and so it has a power series
expansion that converges in the whole w-plane:

g(w, z)− g(0, z) =
∞∑

n=1

1

n!
∂ng

∂wn
(0, z) · wn.

Hence we conclude that we have the following identity:

∞∑

n=1

1

n!
∂ng

∂wn
(0, z) · wn = −

∞∑

n=1

Qλn

(
w

φ0n(z)

)
.
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Let us write the series on the right-hand side, as power series in w. We recall that:

Qλn

(
w

φ0n(z)

)
=

(
w

φ0n(z)

)
+ 1

2

(
w

φ0n(z)

)2

+ . . .+ 1

λn

(
w

φ0n(z)

)λn
,

when λn ∈ Z
+. Otherwise Q0(u) ≡ 0. We would like to compute the coefficient

of wk on the right-hand side of our identity. It is the sum of all the elements of the
following form:

1

k

(
w

φ0n(z)

)k
,

provided, of course, that the condition λn ≥ k is fulfilled. Thus we obtain the
following identity:

−
∞∑

n=1

Qλn

(
w

φ0n(z)

)
= −

∞∑

k=1

1

k

∑
⎧
⎨

⎩
n

λn ≥ k

(
1

φ0n(z)

)k
· wk.

By the uniqueness of the coefficients in a power series we conclude that for k =
1, 2, 3, . . . we have:

1

k!
∂kg

∂wk
(0, z) = −1

k

∑
⎧
⎨

⎩
n

λn ≥ k

(
1

φ0n(z)

)k
.

Indeed we note that the sum on the right side of the last identity is the (−k)-moment
of φ0n(z), where, of course, λn ≥ k. �%

8 An Infinite Product Representation of f ′(w)

In this section we will explore how the Weierstrass factorization of a non-constant
entire function induces an infinite product representation on its derivative. This will
reveal a connection between the zeros of the derivatives and the fixed-points of the
elements of the automorphic group of the function. We begin with a peculiar division
property of entire functions and of their derivatives which follows by a composition
relation between these functions.

Proposition 5 Let f (z) and g(z) be two non-constant entire functions. If
Aut(f (z)) ⊆ Aut(g(z)), then f ′(z) divides g′(z) over the algebra of entire
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functions, i.e. ∃H(z), an entire function such that g′(z) = H(z) · f ′(z). In fact
∃G(w, z), entire in w and holomorphic in z ∈ C − g−1(g(0)) − f−1(f (0)) such
that g(w)− g(z) = (f (w)− f (z)) ·G(w, z).
Proof By Lemma 1 it follows that there exists a function h(w), holomorphic on
f (C) such that g(z) = h(f (z)). Hence g′(z) = h′(f (z)) · f ′(z) which proves
the first assertion with the entire function H(z) = h′(f (z)). Next we denote
Aut(f (z)) = {φ0n(z)}, and Aut(g(z)) = {ψ0n(z)}. By the Weierstrass factorization
theorem we have:

g(w)− g(z) = eL(w,z)
∏

n

(
1− w

ψ0n(z)

)
eQδn (w/ψ0n(z)), g(0)− g(z) �= 0,

f (w)− f (z) = el(w,z)
∏

n

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)), f (0)− f (z) �= 0,

where {φ0m(z)} ⊆ {ψ0m(z)}. Hence:

g(w)−g(z) = (f (w)−f (z))eL(w,z)−l(w,z)
∏

ψ0n �∈{φ0m}

(
1− w

ψ0n(z)

)
eQδn (w/ψ0n(z))×

×
∏

n

(
1− w

φ0n(z)

)
e(Qδn−Qλn)(w/φ0n(z)).

�%
We recall the reconstruction formula given in Proposition 4 for the derivative:

f ′(z) = lim
n→∞ an

n−1∏

j=1

(z− φ(n)j (z)),

This formula suggests a possible relation between the zeros of f ′(z) and the fixed
points of the automorphic functions of f (z). Indeed we will prove that this is the
case.

Let f (w) be a non-constant entire function. Let our z-parameter space be C −
f−1(f (0)). We consider the Weierstrass factorization of f (w) − f (z) as an entire
function of w. By our choice of the parameter z, we have f (0) − f (z) �= 0. Thus
0 �∈ Zw(f (w)− f (z)) and hence:

f (w)− f (z) = eg(w,z)
∏

n

(
1− w

φ0n(z)

)
eQλn(w/φ0n(z)).
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Here g(w, z) is entire in w and holomorphic for any z ∈ C − f−1(f (0)). Also
Aut(f (w)) = {φ0n(w)}n, and we agree that φ00(w) ≡ w. The numbers λn ∈
Z
+ ∪ {0} and:

Qλ(u) =
{
u+ u2/2+ . . .+ uλ/λ , λ ∈ Z

+
0 , λ = 0

, λ0 = 0.

So:

f (w)− f (z) =
(

1− w
z

)
eg(w,z)

∏

n �=0

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)) =

=
(
z− w
z

)
eg(w,z)

∏

n �=0

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)).

Hence, assuming that w �= z, we obtain:

f (w)− f (z)
w − z = −1

z
eg(w,z)

∏

n �=0

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)).

Assuming that w ∈ C − f−1(f (0)), and that z and w are close enough so that in
the limit process z→ w, the non-negative integers λn do not change, we get:

f ′(w)= lim
z→ w

z �∈ f−1(f (0))

f (w)− f (z)
w − z =− 1

w
eg(w,w)

∏

n �=0

(
1− w

φ0n(w)

)
eQλn(w/φ0n(w)).

This shows that the zero set of the derivative function, Z(f ′(w)) originates in three
possible locations:

a) The fiber f−1(f (0))might contain zeros of f ′(w).
b) Any fixed-point w of a (non-identity) automorphic function φ0n must be a zero

of f ′(w). Thus:

{w ∈ C− f−1(f (0)) | ∃ n �= 0, φ0n(w) = w} ⊆ Z(f ′).

c) The zeros (if any) of the functions eQλn (w/φ0n(w) for n �= 0 and off the fiber
f−1(f (0)). Thus:

⋃

n �=0

Z
(
eQλn(w/φ0n(w)

)
∩
(
C− f−1(f (0))

)
⊆ Z(f ′).
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Let us look at any automorphic equation in the domain of the definition of the
corresponding automorphic function: f (φ0n(w)) = f (w). By differentiation
(assuming that φ0n(w) has a derivative there): φ′0n(w) · f ′(φ0n(w)) = f ′(w).
This implies that if f ′(w) = 0, then either φ′0n(w) = 0 or f ′(φ0n(w)) = 0. If w
is of type b, i.e. a fixed-point of the above automorphic function, φ0n(w) = w,
then clearly f ′(φ0n(w)) = f ′(w) = 0 and a consideration of the order of this
zero of f ′ implies that φ′0n(w) �= 0. Thus w is a regular point of the automorphic
function.

Remark 13 If f ′(φ0n(w)) = f ′(w) = 0, then φ′0n(w) �= 0 and also for its inverse
(φ−1

0n )
′(φ0n(w)) �= 0.

If f ′(φ0n(w)) �= 0, then necessarily φ′0n(w) = 0. In this case (assuming it is not
type b) we either have f (w) = f (φ0n(w)) = f (0) (type a) or eQλn (w/φ0n(w)) = 0.
What Are the Type c Points? These are zeros of eQλn(w/φ0n(w)) outside the fiber

f−1(f (0)). This implies that λn > 0 and that locally the function:

Qλn

(
w

φ0n(w)

)
=

(
w

φ0n(w)

)
+ 1

2

(
w

φ0n(w)

)2

+ . . .+ 1

λn

(
w

φ0n(w)

)λn
,

is the logarithm of a function that vanishes at w. Hence:

Qλn

(
w

φ0n(w)

)
=

(
w

φ0n(w)

)
+ 1

2

(
w

φ0n(w)

)2

+ . . .+ 1

λn

(
w

φ0n(w)

)λn
=

= log((w − w0) · h(w)).

But this implies that:

lim
w→w0

∣∣∣∣∣Qλn
(

w

φ0n(w)

)
=

(
w

φ0n(w)

)
+1

2

(
w

φ0n(w)

)2

+ . . .+ 1

λn

(
w

φ0n(w)

)λn
∣∣∣∣∣=+∞.

So limw→w0 φ0n(w) = 0 and hence φ0n(w0) = 0, which implies that the point
w0 ∈ f−1(f (0)) in the forbidden fiber f−1(f (0)). So type c points do not exist.
We completed the proof of the following:

Lemma 3 If f (w) is a non-constant entire function, then:

Z(f ′)=
⋃

φ0n∈Aut(f )−{id}
{w ∈ C−f−1(f (0)) |φ0n(w)=w}∪

(
Z(f ′) ∩ f−1(f (0))

)
.

We can now prove the simple relation that exists between the zeros of the derivative
and the fixed-point of the automorphic function.
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Theorem 5 Let f (w) be a non-constant entire function. Then:

Z(f ′) =
⋃

φ0n∈Aut(f )−{id}
{w ∈ C |φ0n(w) = w} := Fix(Aut(f )).

Proof Let t ∈ C be any complex number. It is clear that the number 0 that appears
in the formula of Lemma 3 in f−1(f (0)) has no special significance. Indeed we
could have expanded f (w)− f (z) in a Weierstrass product centered at t instead of
0 and obtain in Lemma 3 the t’th version:

Z(f ′)=
⋃

φ0n∈Aut(f )−{id}
{w ∈ C−f−1(f (t)) |φ0n(w)=w} ∪

(
Z(f ′) ∩ f−1(f (t))

)
.

The fibers f−1(f (t)) are discrete subsets of C for any such a t ∈ C. Even more is
true, namely: t1 �= t2 ⇔ f−1(f (t1)) ∩ f−1(f (t2)) = ∅. Thus the claim of our
theorem follows. �%
Theorem 6 If f is a non-constant entire function with only real zeros, has genus
0 or 1, and is real on the real axis, then the points of Fix(Aut(f )) are real and
are separated by the zeros of f , and the zeros of f are separated by the points of
Fix(Aut(f )).

Proof This follow by Laguerre’s Theorem on Separation Zeros [12] (p. 89) and by
Theorem 5. �%

9 Common Zeros of the Reciprocals of Almost All the
Automorphic Functions

Definition 2 Let f (z) be a non-constant entire function, let P be a property that
an element in the automorphic group φ ∈ Aut(f ) can have or does not have. We say
that the property P is common to almost all the automorphic functions of f (z) if
except for a finite number of them, all the automorphic functions φ ∈ Aut(f ) have
the property P .

We give in the current section a non-trivial such a property. The property will be:
having a common zero for 1/φ, where φ ∈ Aut(f ).

Theorem 7 Let g(z) be an entire function. Let p(z) be a polynomial, d := degp >
0 and Z(p) = {α1, . . . , αd} ⊆ C. Let f (z) = p(z)eg(z). Then ∀ j = 1, . . . , d, αj is
a common zero of almost all the reciprocals of the automorphic functions of f (z).

Proof Let us denote Aut(f ) = {φn(z)}n and we consider a Weierstrass representa-
tion:
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f (w)− f (z) = eg(w,z)
∏

n

(
1− w

φn(z)

)
eQλn (w/φn(z)).

Thus we have:

p(w)eg(w) − p(z)eg(z) = eg(w,z)
∏

n

(
1− w

φn(z)

)
eQλn (w/φn(z)).

For the sake of simplicity, let us assume that f (0) �= 0. Consider any integer j ,
1 ≤ j ≤ d, and let us take the parameter value z = αj . This is a legitimate
value of the parameter z for which the above Weierstrass representation holds true.
The reason is that with this parameter we have f (0) − f (z) = f (0) − f (αj ) =
f (0) − 0 = f (0) �= 0. This follows by: f (αj ) = p(αj )eg(αj ) = 0 · eg(αj ) = 0.
Hence at least one n exists for which φn(αj ) = αk for some 1 ≤ k ≤ d. We note
that Z(f (w)) = Z(p(w)) = {α1, . . . , αd}, because the only solutions of f (w) = 0
, i.e. p(w)eg(w) = 0 are (exactly) the solutions of p(w) = 0 and vice versa. So in
the Weierstrass product of f (w) − f (αj ) = f (w) there are exactly d factors. All
the other factors are “phantom” factors, i.e.

1− w

φn(αj )
≡ 1.

Thus except for d factors we have:

∣∣∣∣
w

φn(αj )

∣∣∣∣ = 0.

This means that |φn(αj )| = ∞, for all n, except for d of them. �%

10 Sums of the Derivatives of the Automorphic Functions

Definition 3 Let f (z) be a holomorphic function in some domain D ⊆ C. A
differential monomial of f is a function of the form:

mn1,...,nk;m1,...,mk (z) = a ·
(
f (n1)(z)

)m1
. . .

(
f (nk)(z)

)mk
.

Here k, n1, . . . , nk,m1 . . . , mk ∈ Z
+ and a ∈ C

×. The weight of the monomial
mn1,...,nk;m1,...,mk (z) is w(mn1,...,nk;m1,...,mk (z)) = n1 ·m1 + . . .+ nk ·mk .
In this section we will discuss the following result:

Theorem 8 Let f (z) be a non-constant entire function, Aut(f ) = {φ0n(z)}n, k ∈
Z
+ and R > 0. Then there is an identity (independent of f ) of the form:
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2π · i ·
∑

|φ0n(z)|<R
φ
(k)
0n (z) =

k∑

j=1

mj(z) ·
∮

|w|=R
dw

(f (w)− f (z))j ,

where w(mj (z)) = k and in particular: m1(z) = f (k)(z) and mk(z) = (f ′(z))k .
We start by writing explicit formulas for the results already obtained in Section 2,
Proposition 2, and Remark 4.

Proposition 6 Let f (w) be a non-constant entire function, Aut(f (z)) = {φ0n(z)}n
and let us assume that f (z)− f (0) �= 0. Then

f ′(w)
f (w)− f (z) =

∂g

∂w
(w, z)+

∑

n

(
w

φ0n(z)

)λn ( 1

w − φ0n(z)

)
.

Here g(w, z) and the λn are the data of the Weierstrass presentation of f (w)−f (z)
(Proposition 3).

Proof If f (z)−f (0) �= 0, then there is a function g(w, z), entire in w and there are
non-negative integers λn(w, z) which we will sometimes denote by λn, such that:

f (w)− f (z) = exp (g(w, z))
∞∏

n=1

E

(
w

φ0n(z)
, λn

)
=

= exp (g(w, z))
∞∏

n=1

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)),

where if λn > 0, then:

Qλn

(
w

φ0n(z)

)
=

(
w

φ0n(z)

)
+ 1

2

(
w

φ0n(z)

)2

+ . . .+ 1

λn

(
w

φ0n(z)

)λn
,

andQ0(w/φ0n(z)) ≡ 0. Taking the logarithm of both sides of the identity we obtain:

log (f (w)− f (z)) = (5)

= g(w, z)+
∑

n

(
log

(
1− w

φ0n(z)

)
+Qλn

(
w

φ0n(z)

))
.

We ∂w both sides of the last identity, equation (5) and obtain our result:

f ′(w)
f (w)− f (z) =

∂g

∂w
(w, z)+

∑

n

(
w

φ0n(z)

)λn ( 1

w − φ0n(z)

)
.

�%
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Proposition 7 Let f (w) be a non-constant entire function, Aut(f (z)) = {φ0n(z)}n
and let us assume that f (z)− f (0) �= 0. Then

f ′(z)
f (w)− f (z) = −

∂g

∂z
(w, z)+

∑

n

(
wφ

′
0n(z)

φ0n(z)

)(
w

φ0n(z)

)λn ( 1

w − φ0n(z)

)
.

Here g(w, z) and the λn are the data of the Weierstrass presentation of f (w)−f (z)
(Proposition 3).

Proof We ∂z both sides of equation (5) and obtain our result:

f ′(z)
f (w)− f (z) = −

∂g

∂z
(w, z)+

∑

n

(
wφ

′
0n(z)

φ0n(z)

)(
w

φ0n(z)

)λn ( 1

w − φ0n(z)

)
.

�%
Let us write the identity of Proposition 7 in the following form:

f ′(z)
f (w)− f (z) +

∂g

∂z
(w, z) =

∑

n

φ
′
0n(z)

(φ0n(z))
λn+1 ·

(
wλn+1

w − φ0n(z)

)
.

Let R > 0, z ∈ C be fixed so that the circle |w| = R does not contain {φ0n(z)}n.
In that event we have f (z)− f (w) �= 0, ∀ |w| = R (because f (z)− f (w) = 0⇔
w = φ0n(z) for some n ∈ Z). Thus we can path integrate our identity on |w| = R
and obtain:

f ′(z)
∮

|w|=R
dw

f (w)− f (z) +
∮

|w|=R
∂g

∂z
(w, z)dw

=
∑

n

φ
′
0n(z)

(φ0n(z))
λn+1 ·

∮

|w|=R
wλn+1dw

w − φ0n(z)
.

Since the function ∂g(w, z)/∂z is entire in w ∈ C, it follows by the Theorem of
Cauchy that:

∮

|w|=R
∂g

∂z
(w, z)dw = 0.

By the generalized argument principle we have:

∑

n

φ
′
0n(z)

(φ0n(z))
λn+1 ·

∮

|w|=R
wλn+1dw

w − φ0n(z)
= 2π · i

∑

|φ0n(z)|<R
φ
′
0n(z).
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Putting what we have so far together:

f ′(z)
∮

|w|=R
dw

f (w)− f (z) = 2π · i
∑

|φ0n(z)|<R
φ
′
0n(z). (6)

We just proved Theorem 8 for the case k = 1.

Remark 14 If we add the assumption on z, that f (z)− f (0) �= 0, then we have the
Weierstrass presentation (Proposition 3):

f (w)− f (z) = exp (g(w, z))
∏

n

(
φ0n(z)− w
φ0n(z)

)
eQλn(w/φ0n(z)).

In other words,Zw(f (w)−f (z)) = {φ0n(z)}n. So 1/(f (w)−f (z)) is meromorphic
in w, it has no zeros, and its total set of poles are {φ0n(z)}n. What is the residue:

Res

(
1

f (w)− f (z) , φ0n(z)

)
?

Let us assume for simplicity that all the zeros of f (w)− f (z) are simple. Then this
residue is:

lim
w→φ0n(z)

(w − φ0n(z)) ·
1

f (w)− f (z) =
1

f ′(φ0n(z))
.

We conclude that:
∮

|w|=R
dw

f (w)− f (z) = 2π · i
∑

|φ0n(z)|<R

1

f ′(φ0n(z))
.

By equation (6):

f ′(z)

⎛

⎝2π · i
∑

|φ0n(z)|<R

1

f ′(φ0n(z))

⎞

⎠ = 2π · i
∑

|φ0n(z)|<R
φ
′
0n(z).

By the automorphic equation f (φ0n(z)) = f (z) and the chain rule, we get:
φ
′
0n(z)f

′(φ0n(z)) = f ′(z). Hence:

1

f ′(φ0n(z))
= φ

′
0n(z)

f ′(z)
.

This agrees with our equation (6). However, we proved equation (6) without the
extra assumption on the simplicity of the zeros of f (w)− f (z).
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Let us show how to compute the next case, k = 2, of Theorem 8 and in fact any case
follows just as simple using inductive argument. We do the obvious and apply the
operator ∂z:

(
f ′(z)

f (w)− f (z)
)′

z

= f ′′(z)
f (w)− f (z) +

(f ′(z))2

(f (w)− f (z))2 .

Hence using equation (6) we obtain:

f ′′(z)
∮

|w|=R
dw

f (w)− f (z) + (f
′(z))2

∮

|w|=R
dw

(f (w)− f (z))2 = (7)

= 2π · i
∑

|φ0n(z)|<R
φ
′′
0n(z).

This proves the second case, k = 2 of Theorem 8. Let us do one more explicit
computation and prove (explicitly) the third case, k = 3 too. Once more we do the
obvious and apply the operator ∂z to the case k = 2:

(
f ′′(z)

f (w)− f (z)
)′

z

+
(

(f ′(z))2

(f (w)− f (z))2
)′

z

=

= f (3)(z)

f (w)− f (z) +
3f ′(z)f ′′(z)
(f (w)− f (z))2 +

(f ′(z))3

(f (w)− f (z))3 .

Using equation (7) we finally get:

f (3)(z)

∮

|w|=R
dw

f (w)− f (z) + 3f ′(z)f ′′(z)
∮

|w|=R
dw

(f (w)− f (z))2+

(8)

+(f ′(z))3
∮

|w|=R
dw

(f (w)− f (z))3 = 2π · i
∑

|φ0n(z)|<R
φ′′′0n(z).

This proves the third case, k = 3 of Theorem 8. It is clear how to proceed inductively
by repeatedly applying the operator ∂z and forming a simple weight calculation on
the resulting differential monomials. �%
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11 An Application of Jensen’s Theorem to the Automorphic
Group of an Entire Function

Here is one of the most important theorems in analysis.

Theorem (Jensen’s Theorem) Let f (z) be analytic for |z| < R. Suppose that f (0)
is not zero, and let r1, r2, . . . , rn, . . . be the moduli of the zeros of f (z) in the disk
|z| < R, arranged in a non-decreasing sequence. Then if rn ≤ r ≤ rn+1,

log
rn|f (0)|
r1r2 . . . rn

= 1

2π

∫ 2π

0
log |f (reiθ )|dθ,

where every zero is counted the number of its multiplicity.

Let f (w) be a non-constant entire function, let z ∈ C − f−1(f (0)), and let us
apply the Theorem of Jensen to the entire function f (w) − f (z) of the variable w.
Then indeed f (0)− f (z) is not zero, and the parameter R in Jensen’s Theorem can
be an arbitrary positive number. The zero set of f (w) − f (z) is the Aut(f (w))-
orbit of z. Thus: Z(f (w)− f (z)) = {φ0n(z)}n and we may assume that the moduli
of the zeros are arranged in a non-decreasing order. Thus |φ00(z)| ≤ |φ01(z)| ≤
|φ02(z)| ≤ . . .. In other words, in terms of the notation in Jensen’s Theorem we
have rj = |φ0,j−1(z)|. We conclude that if |φ0n(z)| ≤ r < |φ0,n+1(z)|, then we
have the following identity:

log
rn+1|f (0)− f (z)|

|φ00(z)φ01(z) . . . φ0n(z)|
= 1

2π

∫ 2π

0
log

∣∣∣f (reiθ )− f (z)
∣∣∣ dθ.

Equivalently:

∣∣∣∣∣∣

n∏

j=0

φ0j (z)

∣∣∣∣∣∣
= rn+1|f (0)− f (z)| exp

{
− 1

2π

∫ 2π

0
log

∣∣∣f (reiθ )− f (z)
∣∣∣ dθ

}
.

If we take (as is possible) r = |φ0n(z)|, then:

∣∣∣∣∣∣

n−1∏

j=0

φ0j (z)

∣∣∣∣∣∣
=|φ0n(z)|n|f (0)−f (z)| exp

{
− 1

2π

∫ 2π

0
log

∣∣∣f (|φ0n(z)|eiθ )−f (z)
∣∣∣ dθ

}
.

This gives a recursion between |φ0n(z)|, on the one hand, and the product of the
previous terms |∏n−1

j=0 φ0j (z)|, on the other hand. Does this determine |φ0n(z)|
uniquely? Let us consider the following function of r:

ψn(r) = rn |h(0)| exp

{
− 1

2π

∫ 2π

0
log

∣∣∣h(reiθ )
∣∣∣ dθ

}
.
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Here h(z) is a non-constant entire function such that h(0) �= 0. If this function
ψn(r) turns out to be a strictly monotone function of r (in our case, necessarily
increasing), then our recursion uniquely determines |φ0n(z)| (up to multiplicity in
r). We might go about as follows:

rn exp

{
− 1

2π

∫ 2π

0
log

∣∣∣h(reiθ )
∣∣∣ dθ

}
= elog rn exp

{
− 1

2π

∫ 2π

0
log

∣∣∣h(reiθ )
∣∣∣ dθ

}
=

= exp

{
log rn − 1

2π

∫ 2π

0
log

∣∣∣h(reiθ )
∣∣∣ dθ

}
= exp

{
1

2π

∫ 2π

0
log

(
rn

|h(reiθ )|
)
dθ

}
=

= exp

{
1

2π

∫ 2π

0
log

∣∣∣∣
(reiθ )n

h(reiθ )

∣∣∣∣ dθ
}

The point is that zn/h(z) is not holomorphic for |z| < r + ε because of the zeros of
h(z)with moduli smaller than r+ε, but, as in the proof of the Theorem of Jensen we
divide out those zeros by dividing h(z) by the corresponding finite Blaschke product
Bn(z), without changing the modulus of h(z) on |z| = r + ε. Thus we have for all
the z ∈ C, |z| = r + ε < |φ0,n+1(z)|:

∣∣∣∣
h(z)

Bn(z)

∣∣∣∣ = |h(z)| .

So on that circle of integration we have:

∣∣∣∣
zn

h(z)

∣∣∣∣ =
∣∣∣∣
znBn(z)

h(z)

∣∣∣∣ ,

and this function is analytic. The monotonicity now follows. A better approach: We
have (write the recursion a bit different),

∣∣∣∣∣∣

n−1∏

j=0

φ0j (z)

∣∣∣∣∣∣

1/n

= ∣∣φ0n(z)
∣∣ |f (0)− f (z)|1/n

× exp

{
− 1

2πn

∫ 2π

0
log

∣∣∣f (|φ0n(z)|eiθ )− f (z)
∣∣∣ dθ

}
.

So the right-hand side equals the geometric mean of the sequence |φ00(z)|, . . . , |
φ0,n−1(z)| and this is a part of a non-decreasing sequence so those means are also
non-decreasing.
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12 A Computation of the Integral
1

2π

∫ 2π
0 log

∣
∣f (reiθ ) − f (z)

∣
∣ dθ

Assuming z ∈ C− f−1(f (0)), i.e. f (0)− f (z) �= 0, we have:

f (w)− f (z) = eg(w,z)
∞∏

n=0

(
1− w

φ0n(z)

)
eQλn (w/φ0n(z)). (9)

So

|f (w)− f (z)| = e) g(w,z)
∞∏

n=0

∣∣∣∣1−
w

φ0n(z)

∣∣∣∣ e
)Qλn(w/φ0n(z)).

Hence

log |f (w)− f (z)| = ) g(w, z)+
∞∑

n=0

{
log

∣∣∣∣1−
w

φ0n(z)

∣∣∣∣+)Qλn
(

w

φ0n(z)

)}
.

The function ) g(w, z) is harmonic in all of the w-plane. Hence:

1

2π

∫ 2π

0
) g(reiθ , z)dθ = ) g(0, z).

If we substitute w = 0 in equation (9) we get f (0) − f (z) = eg(0,z), so
|f (0) − f (z)| = e) g(0,z) and log |f (0) − f (z)| = ) g(0, z). Hence, we proved
the following:

1

2π

∫ 2π

0
) g(reiθ , z)dθ = log |f (0)− f (z)|.

Similarly (and in fact much simpler):

1

2π

∫ 2π

0
)Qλn

(
reiθ

φ0n(z)

)
dθ = 0.

We are left with the computation of:

1

2π

∫ 2π

0
log

∣∣∣∣1−
reiθ

φ0n(z)

∣∣∣∣ dθ.
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If r < |φ0n(z)|, then 1 − (reiθ )/φ0n(z) never vanishes on 0 ≤ θ < 2π , and so
the function log |1− (reiθ )/φ0n(z)| is harmonic for |reiθ | < |φ0n(z)| and again the
mean value property implies that:

1

2π

∫ 2π

0
log

∣∣∣∣1−
reiθ

φ0n(z)

∣∣∣∣ dθ = log |1− 0| = 0.

Thus we are left with computing the integral

1

2π

∫ 2π

0
log

∣∣∣∣1−
reiθ

φ0n(z)

∣∣∣∣ dθ,

for the case |φ0n(z)| ≤ r . In this case the integrand log |1 − w/φ0n(z)| is singular
exactly in w = φ0n(z) which lies within |w| ≤ r . Here is formula 15 on page 531
of the book [4]:

∫ nπ

0
log

(
1− 2a cos θ + a2

)
dθ =

{
0 , a2 ≤ 1
nπ log a2 , a2 ≥ 1

. (10)

We need to evaluate:

1

2π

∫ 2π

0
log

∣∣∣1− Reiθ
∣∣∣ dθ =(1≤R) 1

2π

∫ 2π

0
log

∣∣∣∣
1

R
− eiθ

∣∣∣∣ dθ + logR =

= 1

2π

∫ 2π

0
log

∣∣∣a − eiθ
∣∣∣ dθ + logR =(0<a=1/R≤1)

= 1

2π
· 1

2

∫ 2π

0
log

(
1+ a2 − 2a cos θ

)
dθ + logR = logR,

where in the last step we used the formula (10). The conclusion is:

1

2π

∫ 2π

0
log

∣∣∣∣1−
reiθ

φ0n(z)

∣∣∣∣ dθ =
{

0 , r < |φ0n(z)|
log(r/|φ0n(z)|) , r ≥ |φ0n(z)| .

Finally we get:

1

2π

∫ 2π

0
log

∣∣∣f (reiθ )− f (z)
∣∣∣ dθ =

= 1

2π

∫ 2π

0

{
) g(reiθ , z)+

∞∑

n=0

(
log

∣∣∣∣1−
reiθ

φ0n(z)

∣∣∣∣+)Qλn
(
reiθ

φ0n(z)

))}
dθ =
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= log |f (0)− f (z)| +
∑

|φ0n(z)|≤r
log

r

|φ0n(z)|
+ 0 =

= log

⎛

⎝|f (0)− f (z)| ×
∏

|φ0n(z)|≤r

r

|φ0n(z)|

⎞

⎠.

We note that in fact our computation proved the Theorem of Jensen.

13 The Product of the Automorphic Functions

Let f (w) be a non-constant entire function, and let z ∈ C − f−1(f (0)). Let
Aut(f ) = {φ0n(z

′)}n and let us suppose that we arranged the automorphic functions
in a non-decreasing order of their orbit at z. Thus: |φ00(z)| ≤ |φ01(z)| ≤ . . .. Then
we have the following identity:

∣∣∣∣∣∣

n−1∏

j=0

φ0j (z)

∣∣∣∣∣∣
= ∣∣φ0n(z)

∣∣n |f (0)− f (z)|

exp

{
− 1

2π

∫ 2π

0
log

∣∣∣f (
∣∣φ0n(z)

∣∣ eiθ )− f (z)
∣∣∣ dθ

}
.

One is tempted to compare this formula with the Vieta formula that corresponds to
the special case of a non-constant polynomial of degree d ≥ 1, f (w) = pd(w).
We recall that if pd(w) = adwd + . . . + a1w + a0, where ad ∈ C − {0}, then:
pd(w)−pd(z) = ad(w−φ00(z)) . . . (w−φ0,d−1(z)). Plugging into the last formula
the value w = 0, we obtain:

φ00(z) . . . φ0,d−1(z) = (−1)da−1
d (pd(0)− pd(z)) . (11)

Taking absolute values we get:

∣∣φ00(z) . . . φ0,d−1(z)
∣∣ = |ad |−1 |pd(0)− pd(z)|.

Let N be an integer such that 0 ≤ N ≤ d − 1. Then:

∣∣∣∣∣∣

N−1∏

j=0

φ0j (z)

∣∣∣∣∣∣
=

∣∣∣∣∣

d−1∏

k=N
φ0k(z)

∣∣∣∣∣

−1

|ad |−1 |pd(0)− pd(z)|.
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We note that ∀ j , φ0j (z) �= 0 so that the expression on the right-hand side is defined.
Comparing that to the more general expression:

∣∣∣∣∣∣

N−1∏

j=0

φ0j (z)

∣∣∣∣∣∣
= ∣∣φ0N(z)

∣∣N |pd(0)− pd(z)|

exp

{
− 1

2π

∫ 2π

0
log

∣∣∣pd(
∣∣φ0N(z)

∣∣ eiθ )− pd(z)
∣∣∣ dθ

}
,

we deduce the following identity:

exp

{
− 1

2π

∫ 2π

0
log

∣∣∣pd(
∣∣φ0N(z)

∣∣ eiθ )−pd(z)
∣∣∣ dθ

}
=

∣∣∣∣∣

d−1∏

k=N
φ0k(z)

∣∣∣∣∣
∣∣φ0N(z)

∣∣N |ad |.

If z has the smallest modulus in its Aut(pd)-orbit and N = 0, we obtain the
following interesting identity:

exp

{
1

2π

∫ 2π

0
log

∣∣∣pd(zeiθ )− pd(z)
∣∣∣ dθ

}
=

∣∣∣∣∣

d−1∏

k=0

φ0k(z)

∣∣∣∣∣ |ad |.

Using the identity in equation (11) this proves that:

exp

{
1

2π

∫ 2π

0
log

∣∣∣pd(zeiθ )− pd(z)
∣∣∣ dθ

}
= |pd(0)− pd(z)|.

This last identity could be seen to be true because of the mean value property of
the harmonic function: log |pd(w) − pd(z)| in the disk |w| < |z|. This reproduces
the Vieta identity and shows that we generalized it even in the special case of non-
constant polynomials.

14 Consequences to Aut(f ) That Follow from the Classical
Theory of Entire Functions

Let f be a non-constant entire function of a single complex variable. The basic
observation that the set of all the zeros of the entire function of w, f (w) − f (z),
where z ∈ C is a parameter, is the Aut(f )-orbit of z, plus the fact that for a fixed z,
the functions f (w) and f (w)−f (z) differ by a constant suggest that the elements of
Aut(f (z)) = {φ0n(z)}n share properties with the zeros of f (w)+c for any (generic)
constant. In this section we will repeatedly refer to the classical book [7].
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Remark 15 For a fixed value of the parameter z ∈ C the w-entire functions f (w)
and f (w)− f (z) have the same order ρ and the same type σ .

An immediate consequence that follows by the result on (page 16 of [7]) is:

Theorem 9 Let f (w) be a non-constant entire function, and let Aut(f ) =
{φ0n(z)}n. Then the convergence exponent of the sequence {φ0n(z)}n for any z ∈ C

does not exceed the order of f (w).

Remark 16 This theorem is interesting only in the case of entire functions of a finite
order ρ <∞.

Using Theorem 7 on page 16 of [7] and the representation formula in the first
equation in the proof of the Theorem of Wiman (page 72, [7]) we deduce some
interesting consequences on the automorphic group of a non-constant entire function
of order less than one.

Theorem 10 Let f (w) be a non-constant entire function of order less than one, and
let Aut(f ) = {φ0n(w)}n. Then ∀ z ∈ C, the convergence exponent of the sequence
{φ0n(z)}n equals the order of f . In addition, if the order of f is not zero, then it is
of maximal, minimal or of a normal type according to whether the upper density of
any Aut(f )-orbit of any z ∈ C:

1 ({φ0n(z)}n
) = limr→∞

n{φ0n(z)}n(r)
rρ

,

equals infinity, zero or equals a number different from zero or infinity. Here we use
the notation:

n{φ0n(z)}n(r) =
∣∣{n | |φ0n(z)| < r}

∣∣ ,

i.e. the counting function of the elements in the Aut(f )-orbit of z of modulus
less than r . In particular the upper density of any Aut(f )-orbit of any z ∈ C is
independent of z.

Proof ∀ z ∈ C, the order ρ and the type σ of the entire function of w, f (w)− f (z)
equal those of f (w). Hence (like in the first equation in the proof above of the
Theorem of Wiman) we have:

f (w)− f (z) = C · wm
∞∏

k=1

(
1− w

φ0n(z)

)
.

Here C = C(z) is a function of z only, and C(z) �= 0 ∀ z ∈ C. So f (w)− f (z) is a
canonical product and Theorem 7 of [7] applies. �%
We will quote few results from [2]. We will use those to extract information on the
function C(z) that appears in the proof of Theorem 10. On page 207 of [2]:
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Theorem A.2 (Clunie) Let f (z) and g(z) be entire with g(0) = 0. Let ρ satisfy
0 < ρ < 1 and c(ρ) = (1− ρ)2/48. Then for R ≥ 0,M(R, f ◦ g) ≥ M(cρM(ρ ·
R, g), f ).

On page 208 of [2]:

Corollary A.1 (Pölya) Let f (z), g(z) and h(z) be entire functions with h(z) =
f (g(z)). If g(0) = 0, then there exists an absolute constant c, 0 < c < 1, such that
for all r > 0 the following inequality holds:

M(r, h) ≥ M
(
c ·M

( r
2
, g

)
, f

)
.

When g(0) �= 0, the corresponding inequality should read:

M(r, f ◦ g) ≥ M
(
c ·M

( r
2
, g

)
− |g(0)|, f

)
.

The constant c can be chosen to be 1/8.

On page 209 of [2]:

Theorem A.3 If f (z) and g(z) are two entire functions such that f ◦g is of a finite
order (lower order), then either: (i) g(z) is a polynomial and f (z) is of a finite order
(lower order), or (ii) g(z) is not a polynomial but a function of a finite order (lower
order) and f (z) is of zero order (lower order).

We conclude the following:

Remark 17 If f (w) is an entire function of order less than one, and greater than
zero, then f (w) has infinitely many zeros.

A Proof of the claim in Remark 17 If f (w) has no zeros, then f (w) = eg(w) for
some entire function g. This corresponds in Theorem A.3. in [2] to case (i) with
ew ◦ g(w). Here g(w) is a non-constant polynomial of degree d ≥ 1. Hence the
order of f (w) equals to d ≥ 1 and this contradicts the assumption that f (w) has
order less than one. If f (a1) = 0, then f (w) · (w − a1)

−1 is a non-constant entire
function of the same order as the order of f (w). So if f (w) had finitely many zeros,
then we could have found a polynomial p(w) such that f (w)/p(w) had non zeros
and was of the same order as that of f (w). This contradicts the first part of our proof
and thus the proof of the claim in Remark 17 is now completed. �%

Finally, the functionC(z) in the proof of Theorem 10 is entire because the infinite
product is, and it never vanishes and since f (w) − f (z) is symmetric in w and z,
C(z) must be a constant, i.e. independent of z (because its order is less than one).

Theorem 11 Let f (w) be a non-constant entire function of a finite order ρ and
let Aut(f ) = {φ0n(w)}n. Then ∀ z ∈ C, the upper density of the Aut(f )-orbit of z
satisfies:

1. If f (w) is of type not greater than σ with respect to the order ρ, then
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1 ({φ0n(z)}n
) = limr→∞

n{φ0n(z)}n(r)
rρ

≤ σ · e · ρ.

The lower density:

1 ({φ0n(z)}n
) = limr→∞

n{φ0n(z)}n(r)
rρ

satisfies 1 ({φ0n(z)}n
) ≤ σρ.

2. We have the following two identities for these densities:

1 ({φ0n(z)}n
) = limn→∞

n

|{φ0n(z)}n|ρ
, 1 ({φ0n(z)}n

) = limn→∞
n

|{φ0n(z)}n|ρ
.

Proof Part 1 follows by Theorem 3 on page 19 of [6]. Part 2 follows by Problem 2
on page 17 of [6]. �%
We can refine Part 1 of Theorem 11:

Theorem 12 Let ρ > 0, A > 0 and let f (w) be a non-constant entire function for
which there exists a constant M > 0 such that |f (w)| ≤ M · eA|z|ρ , ∀w ∈ C. Let
Aut(f ) = {φ0n(w)}n. We assume that z ∈ C−f−1(f (0)) and that the automorphic
functions are arranged so that |φ00(z)| ≤ |φ01(z)| ≤ |φ02(z)| ≤ . . .. Then:

(ρ·e·A)−1/ρ ·M
(

1+ eA|z|ρ
f (0)−f (z)

)−1/n

n1/ρ≤
(
n∏

k=1

|φ0k(z)|
)1/n

≤ |φ0n(z)|, ∀ n ∈ Z
+.

If

M

(
1+ eA|z|ρ
f (0)− f (z)

)
< 1,

then the left-hand side in the double inequality is (ρ · e · A)−1/ρ · n1/ρ .

Proof We define an auxiliary non-constant entire function of w:

F(w) = f (w)− f (z)
f (0)− f (z) .

Then F(0) = 1, and

|F(w)| ≤ |f (w)|+|f (z)||f (0)−f (z)| ≤
MeA|w|ρ+MeA|z|ρ
|f (0)−f (z)| =

(
M

(
1+eA(|z|ρ−|w|ρ)
|f (0)−f (z)|

))
eA|w|ρ≤

≤
(
M

(
1+ eA|z|ρ
|f (0)− f (z)|

))
eA|w|ρ ≤ M1 · eA|w|ρ ,
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where:

M1 = max

{
1,M

(
1+ eA|z|ρ
|f (0)− f (z)|

)}
.

The function F(w) satisfies the conditions of Proposition 1, in [13], withM instead
ofM1. The result now follows. �%
We recall the following result:

Theorem 1 ([6]) The convergence exponent of the zero set of an entire function f
of non-integer order is equal to the order of growth of f .

This theorem implies:

Theorem 13 Let f (w) be a non-constant entire function of non-integer order ρ.
Let the Aut(f )-orbit of a point z ∈ C be {φ0n(z)}n}, then the convergence exponent
of this orbit equals ρ.

Next we have:

Theorem 2 ([6]) If the order ρ of an entire function f (z) is not an integer, then its
type σf and the upper density of its zeros 1f simultaneously are equal either to
zero, or to infinity, or to positive numbers.

This immediately implies:

Theorem 14 If the order ρ of an entire function f (w) is not an integer, then its type
σf and the upper density of any Aut(f )-orbit, {φ0n(z)}n (z ∈ C) are equal either
to zero, or to infinity, or to positive numbers.

15 The Relations Between Scattering Theory and
Automorphic Functions

The book [8] deals with a discrete subgroup Γ of the group of the fractional linear
transformations,

w→ aw + b
cw + d , ad − bc = 1, a, b, c, d ∈ R.

The Riemannian metric (dx2 + dy2) · y−2 is invariant under this group of motions.
The invariant Dirichlet integral for functions is:

∫∫
(U2
x + U2

y )dxdy,

and the Laplace-Beltrami operator associated with this is:
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L0 = y2 · 1 = y2 · (∂2
x + ∂2

y ).

A function f defined on the Poincaré plane
∏

, that is the upper half plane: y > 0,
−∞ < x < ∞, w = x + iy is called automorphic with respect to Γ (a discrete
subgroup as above) if f (γw) = f (w) ∀ γ ∈ Γ . The Laplace-Beltrami operator L0
maps automorphic functions into automorphic functions. A fundamental domain
F of Γ is a sub-domain of the Poincaré plane such that every point of

∏
can be

carried into a point of the closure F of F by a transformation in Γ and no point of
F is carried into another point of F by such a transformation. F can be regarded
as a manifold where those boundary points which can be mapped by a γ ∈ Γ to
each other are identified. The restriction of f (automorphic with respect to Γ ) to
the fundamental domain F has to satisfy the above-mentioned boundary relations
imposed by f (γw) = f (w). These relations serve as boundary conditions for the
operator L0. In fact, they define L0 as a self-adjoint operator acting on L2(F ), the
space of functions on F square integrable with respect to the invariant measure. Our
setting is different but similar. We have a non-constant entire function f (w), and its
automorphic group Aut(f ) = {φ0n(w)}n which is a discrete group. Its elements are
defined by all the maximal leaves of f−1(f (w)). The function f is automorphic
with respect to the discrete group Aut(f ). The normal maximal domains of f (w)
are the parallels of the fundamental domains F of Γ . What can be the parallel of
the Laplace-Beltrami operator L0? It should be an operator that maps automorphic
functions with respect to the discrete group Aut(f ) into automorphic functions. We
already know that the set of all the automorphic functions are the compositions h◦f
where h is a non-constant function. Thus it is reasonable to take as a parallel to L0
the right-shift operator induced by f , Rf , [11]. It has as its domain of definition the
algebra E of all the non-constant entire functions and it maps them onto the sub-
class E ◦ f = {h ◦ f |h ∈ E}, i.e. onto all the automorphic functions with respect
to Aut(f ). Thus:

Rf : E→ E ◦ f, Rf (h) = h ◦ f.

The operator Rf is not only a linear operator, but it is also an algebra morphism.
For let h, g ∈ E and let c ∈ C. Then:

Rf (c · h) = (c · h) ◦ f = (c · h)(f (w)) = c · h(f (w)) = c · (h ◦ f ) = c · Rf (h),

and

Rf (g + h) = (g + h) ◦ f = (g + h)(f (w)) = g(f (w))+ h(f (w))
= (g ◦ f )+ (h ◦ f ) = Rf (g)+ Rf (h),

and similarly
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Rf (g · h) = (g · h) ◦ f = (g · h)(f (w)) = g(f (w)) · h(f (w))
= (g ◦ f ) · (h ◦ f ) = Rf (g) · Rf (h).

Another important property of the f right-shift operator is: Rf is an injective
mapping on E, [11].

Also: the image of Rf , Rf (E) is a closed subset of the topological space
(E, τ cc). The topology τ cc is the topology of compact convergence on the space
E. For each compact K ⊂ C and for each ε > 0 and each h ∈ E we define the
corresponding open ball centered at h by the standard formula:

BK(h, ε) = {g : C→ C ∈ E | |g(z)− h(z)| < ε, ∀ z ∈ K}.

The family {BK(h, ε) |K ⊂ C a compact, h ∈ E, ε > 0} forms a sub-basis for the
topology τ cc. The sequence gn ∈ E converges to the limit g ∈ E if and only if for
restrictions to compacta we have gn|K → g|K uniformly on K , ∀ compact K ⊂ C.

Remark 18 The space (E, τ cc) is a path connected space, [11]. We know that the
mapping Rf : E → E is a continuous and an injective mapping [11]. Its image
Rf (E) is a closed subset of (E, τ cc). Hence Rf (E) is also open⇔ Rf (E) = E.
This is equivalent to f (w) = aw + b, for some a ∈ C

× and some b ∈ C.

Another interesting property of Rf is ∀ f ∈ E−{aw+b | a ∈ C
×, b ∈ C} we have

the identity ∂Rf (E) = Rf (E). Thus the image Rf (E) is its own boundary.
What can be the parallel of the hyperbolic metric? It should be a metric df (·, ·) :

C
2 → R≥0 which is invariant under the action of the automorphic group Aut(f ).

We give it with other facts that were mentioned above in the following:

Theorem 15 Let f ∈ E. Then the parallel of the discrete group Γ of hyperbolic
motions in the plane is Aut(f ). The parallel of the Laplace-Beltrami operator, L0, is
the f right-shift operator. The parallel of the hyperbolic metric (dx2+dy2) ·y−2 is
the f path-metric, df (·, ·) : C2 → R≥0 given by the following formula: ∀ a, b ∈ C,

df (a, b) = inf{lf (γ ) | γ : [0, 1] → C is a smooth path from γ (0) = a to γ (1) = b
and

lf (γ ) is the length of the path f ◦ γ : [0, 1] → C from (f ◦ γ )(0) = f (a) to (f ◦ γ )
(1) = f (b)}.

We further have the following:

1) Rf : E → E ◦ f is continuous, injective, and surjective mapping in the
topological space (E, τ cc).

2) Rf is a linear operator on E which also preserves multiplication of functions.
3) Rf (E) is closed in (E, τ cc), and Rf (E) = E if and only if f (w) = aw+ b, for

some a ∈ C
× and b ∈ C.

4) ∀ f ∈ E − {aw + b | a ∈ C
×, b ∈ C}, ∂Rf (E) = Rf (E).
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Proof The only assertions we need to prove are those related to the metric df .
Namely we need to prove two things:

(a) df is a metric on C, (b) ∀φ ∈ Aut(f ) we have invariance of df , i.e. ∀ a, b ∈ C,
df (a, b) = df (φ(a), φ(b)).

A Proof of (a) Let a, b, c ∈ C, then clearly df (a, b) = df (b, a) because each path
γ (t) from a to b induces the reverse path γ (1− t) from b to a and the f images of
both are the same hence have equal length.

Also df (a, a) = 0 by using the constant path. Moreover, if df (a, b) = 0 then
for each ε > 0 there is a path γ from a to b such that the length of its f image
f ◦ γ is smaller than ε > 0. Since the entire function f is non-constant we can
find a positive but small enough number r > 0 such that it has the following two
properties:

(i) Any path γ (t) from a to b must intersect the circle {w ∈ C | |w − a| = r}.
(ii) f

′
(w) has no zero on that circle.

Since the circle is compact we have min{|f ′(w)| | |w − a| = r} = δ > 0. This
implies that the length lf (γ ) of the image path f ◦ γ is bounded from below by
some fixed number m(δ) > 0 and hence df (a, b) ≥ m(δ > 0 which contradicts the
assumption df (a, b) = 0 unless a = b.

Finally, df satisfies the triangle inequality: df (a, c) ≤ df (a, b) + df (b, c),
because the set of paths from a to c through b is a subset of the set of paths from a
to c. This concludes the proof of (a).

A Proof of (b) We now prove the invariance of the metric df (·, ·) with respect to
the discrete group Aut(f ). This follows directly from the definitions of df (·, ·) and
of Aut(f ), namely:

df (a, b) = inf{lf (γ ) | γ : [0, 1] → C is a smooth path from γ (0) = a to γ (1) = b
and

lf (γ ) is the length of the path f ◦ γ : [0, 1] → C from (f ◦ γ )(0) = f (a) to (f ◦ γ )
(1) = f (b)} =

= inf{lf (γ ) | γ : [0, 1] → C is a smooth path from γ (0) = φ(a) to γ (1) = φ(b) and

lf (γ ) is the length of the path f ◦ γ : [0, 1] → C from f (φ(a)) = f (a) to

f (φ(b)) = f (b)} = df (φ(a), φ(b)).

�%
The next obvious step is to look for the eigenvalues of the operatorRf . If we think of
the f right composition operator Rf as a possible parallel of the Laplace-Beltrami
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operator, then it is natural to require about its eigenvalues, eigenfunctions and maybe
try to come up with a kind of a Selberg-trace formula.

We recall that in our setting the underlying linear space, E contains all of the
non-constant entire functions, and the right composition operators Rf of interest are
those for which f (w) is not an entire automorphism, i.e. f (w) �= a ·w+b, ∀ a ∈ C

×
and ∀ b ∈ C. It turns out that the result of this search is disappointing because
the order of growth of entire functions imposes (within the class of functions of
our interest) too much rigidity. Looking in the corresponding defining equation of
the eigenvalues for Rf leads us to ask for which values of λ ∈ C, the operator
Rf − λ · I is not an invertible operator. Thus if we look for entire functions h that
satisfy (Rf − λ · I )(h) = 0, that is h(f (w)) ≡ λh(w), then because f is not affine
and due to Theorem A.2. of Clunie, on page 207 of [2], and to Corollary A.1. of
Pölya, on page 208 of [2], we deduce that the last equation can have only constant
solutions 9w). If the value of the constant is not zero, then λ = 1, and if h(w) ≡ 0,
then λ can be any complex number. However, non-zero constant function does not
belong to E by its definition. This takes care of those cases in which the order of the
growth of h ◦ f is larger than that of h.

If we adopt a different definition of eigenvalues, and we are interested in those λ
for which Rf − λ · I is not injective on E, then we are led to consider the situation
where g, h ∈ E and: (Rf −λ·I )(h) = (Rf −λ·I )(g), that is h(f (w))−g(f (w)) ≡
λ · (h(w)−g(w)), and again we deduce that h(w)−g(w)must be a constant. If the
constant difference between h(w) and g(w) is not zero, then λ = 1, and, of course
if h(w) ≡ g(w) then λ can be any complex number.

Remark 19 (1) An equation of the form h(f (w)) ≡ λh(w) resembles very much
the equation that determines the automorphic functions of h(w). When λ = 1 it is
exactly that equation. By Theorem 10 of Shimizu, on page 237 of [15], the only
possible automorphic functions which are also entire functions, are affine functions
of a very special kind: eθπ ·w+b, where θ ∈ Q, and where b ∈ C. This is consistent
with our findings prior to this Remark 19.

Remark 20 We know that the operator Rf is injective. Hence Rf −λ · I is injective
for λ = 0.

16 Local Groups

A good source for the theory of topological groups is the relatively new book [1].
It will be convenient to have the notion of local groups handy in our setting of the
automorphic group. This is because the automorphic functions of an entire function
are generically multivalued. Thus they naturally are defined and uniform on the
corresponding Riemann surfaces. It can be useful occasionally to restrict them to a
leaf, i.e. to a sub-domain of the complex plane whose complementary set contains
no continuum. In those cases the different restricted automorphic functions might
be defined on different sub-domains of the plane, that differ by small sets. Thus we
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might need the notion of a local group. We refer to [16] to definition 2.1.1 on page
26. In that book the need in local groups arise because the connection between Lie
groups and Lie algebras are local. The only portion of the Lie group which is of
importance in that respect is the portion that is close to the group identity 1. We will
adopt here the notions and the notations from [16].

Definition 4 A local topological group G = (G,Ω,Λ, 1, ·, ()−1), or a local group
for short, is a topological space G, equipped with an identity element 1 ∈ G, a
partially defined but continuous multiplication operation · : Ω → G for some
domain Ω ⊆ G × G, and a partially defined but continuous inversion operation
()−1 : Λ→ G, where Λ ⊆ G, obeying the following axioms:

(1) Ω is an open neighborhood ofG×{1}∪{1}×G, andΛ is an open neighborhood
of 1.

(2) If g, h, k ∈ G are such that (g · h) · k and g · (h · k) are both well-defined in G,
then they are equal.

(3) For all g ∈ G, g · 1 = 1 · g = g.
(4) If g ∈ G and g−1 are well-defined in G, then g · g−1 = g−1 · g = 1.

A local group is said to be symmetric if Λ = G, i.e. if every element of G has an
inverse g−1 that is also in G. Clearly, every topological group is a local group. This
the reason that sometimes the former are called global topological groups. A model
class of examples of a local group comes from restricting a global group to an open
neighborhood of the identity. Here is the definition from [16]:

Definition 5 IfG is a local group, and U is an open neighborhood of the identity in
G, then we define the restriction G|U of G to U to be the topological space U with
domains:

Ω|U := {(g, h) ∈ Ω | g, h, g · h ∈ U} and Λ|U := {g ∈ Λ | g, g−1 ∈ U}

and with the group operations ·, ()−1 being the restriction of the group operations
of G to Ω|U , Λ|U , respectively. If U is symmetric (in the sense that g−1 is well-
defined and lies in U , ∀ g ∈ U , then this restriction G|U will also be symmetric.
Sometimes the notation is abused and one refers to the local group G|U simply as
U .

Remark 21 The natural question as to whether every local group arises as the
restriction of a global group is not simple. The answer can be vaguely summarized
as “essentially yes in certain circumstances, but not in general.” That is from [16].

Pushing forward a topological group via a homeomorphism near the identity: Let
G be a global or local group and let Phi : U → V be a homeomorphism from
a neighborhood U of the identity in G to a neighborhood V of the origin 0 in R

d ,
such that Phi(1) = 0. Then we can define a local group Phi∗G|U which is the
set V (viewed as a submanifold of Rd ) with the local group identity 0, the local
group multiplication law ∗ defined by the formula: x ∗ y = Φ(Φ−1(x) · Φ−1(y))

which is defined wheneverΦ−1(x),Φ−1(y),Φ−1(x) ·Φ−1(y) are well-defined and
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lie in U , and the local group inversion law ()∗−1 defined by the formula: x∗−1 =
Φ(Φ−1(x)−1), defined whenever Φ−1(x), Φ−1(x)−1 are well-defined and lie in U .
One easily verifies thatΦ∗G|U is a local group. Sometimes this group is denoted by
(V , ∗). It is different from the additive local group (V ,+) arising by the restriction
of (Rd ,+) to V .

Next we generalize the notion of homomorphism.

Definition 6 A continuous homomorphismΦ : G→ H between two local groups
G,H is a continuous map from G to H with the following properties:

(i) Φ(1G) = 1H , 1G is the neutral element of G.
(ii) If g ∈ G is such that g−1 is well-defined in G, then Φ(g)−1 is well-defined in

H , and Φ(g)−1 = Φ(g−1).
(iii) If g, h ∈ G are such that g · h is well-defined in G, then Φ(g) · Φ(h) is well-

defined in H and Φ(g) ·Φ(h) = Φ(g · h).

17 The Sums of the k’th Derivatives of All the Elements of
the Automorphic Group Aut(f ), for Any f ∈ E of Order
0 < ρ < 1

2 , k = 1, 2, 3, . . .

Theorem 16 Let f ∈ E have a positive order ρ, which is smaller than 1
2 , i.e.

0 < ρ < 1
2 . Let Aut(f ) = {φ0n}n. Then there exists a sequence of positive numbers,

tending to infinity: R1 < R2 < . . . < Rn < . . . (Rn →∞), such that ∀ k ∈ Z
+ we

have the following identities:

lim
j→∞

∑

|φ0n(w)|<Rj
φ
(k)
0n (w) ≡ 0, ∀w ∈ C.

Equivalently:

lim
j→∞

dk

dwk

⎧
⎨

⎩
∑

|φ0n(w)|<Rj
φ0n(w)

⎫
⎬

⎭ ≡ 0, ∀w ∈ C.

Proof We proved that ∀ f ∈ E, regardless of its order ρ, we have the following
infinitely many identities:
∀R > 0 such that {|w| = R} ∩ {φ0n(z)}n = ∅,

∑

|φ0n(z)|<R
φ
′
0n(z) =

(
f ′(z)
2πi

)∮

|w|=R
dw

f (w)− f (z) , (12)
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∑

|φ0n(z)|<R
φ
′′
0n(z) =

(
f ′′(z)
2πi

)∮

|w|=R
dw

f (w)− f (z)+ (13)

+
(
f ′(z)2

2πi

)∮

|w|=R
dw

(f (w)− f (z))2 ,

∑

|φ0n(z)|<R
φ
′′′
0n(z) =

(
f ′′′(z)

2πi

)∮

|w|=R
dw

f (w)− f (z)+ (14)

+
(

3f ′(z)f ′′(z)
2πi

)∮

|w|=R
dw

(f (w)− f (z))2 +
(
f ′(z)3

2πi

)∮

|w|=R
dw

(f (w)− f (z))3 ,

etc. . . . In the identities above, the radius R of the circle of integration is such that
for a fixed value of the parameter z, we have f (w) − f (z) �= 0 ∀ |w| = R. In
other words, the radius R is chosen so that the circle of integration |w| = R

does not contain any element of the Aut(f )-orbit of z, {φ0n(z)}n. Also, since we
used the one-dimensional Weierstrass product representation of f (w) − f (z), the
fixed value of the parameter z belongs to C − f−1(f (0)). We will prove that there
exists a sequence of positive numbers tending to infinity: R1 < R2 < R3 <

. . . < Rn < . . . (Rn → ∞) such that limj→∞
∑
|φ0n(z)|<Rj φ

′
0n(z) = 0 for any

value of the parameter z �∈ f−1(f (0)). It will follow by continuity arguments
that the identity is also true for the “forbidden values” of z, i.e. on the fiber
f−1(f (0)). Also it will be clear that a similar proof will apply for the second
identity limj→∞

∑
|φ0n(z)|<Rj φ

′′
0n(z) = 0 ∀w ∈ C, and another similar proof will

apply for the third identity limj→∞
∑
|φ0n(z)|<Rj φ

′′′
0n(z) = 0 ∀w ∈ C, and all with

the same sequence of positive numbers 0 < R1 < R2 < R3 < . . . < Rn <

. . . (Rn→∞). That procedure of giving a separate proof for each identity will save
us arguments about differentiations under the limit operator and inquiring whether
formulas like this:

lim
j→∞

∑

|φ0n(z)|<Rj
φ
′′
0n(z) =

⎛

⎝ lim
j→∞

∑

|φ0n(z)|<Rj
φ
′
0n(z)

⎞

⎠

′

, etc . . .

are valid. Up to this point restricting the value of the order ρ seem not come up.
However, in order to prove that we have limj→∞

∑
|φ0n(z)|<Rj φ

′
0n(z) ≡ 0 ∀ z ∈ C−

f−1(f (0)) we will need the assumption 0 < ρ < 1
2 . That assumption will enable us

to make the use of the cosπρ-Theorem of Wiman, where the power cosπρ in the
inequality of this theorem satisfies 0 < cosπρ < 1, by the assumption 0 < ρ < 1

2 .
The value ρ = 0 is taken out due to another argument we need (an elementary one).
A classical reference to the Wiman’s cosπρ-Theorem is in the book [7], Theorem
30 on page 72. Using Wiman’s cosπρ-Theorem, we conclude that there exists a
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sequence r1 < r2 < r3 < . . . < rn < . . . (rn → ∞) such that for arbitrary ε > 0
and n > nε we have:

mf (rn) >
(
Mf (rn)

)cosπρ−ε
,

where

mf (r) = min
0≤θ<2π

|f (reiθ )| and Mf (r) = max
0≤θ<2π

|f (reiθ )|.

One can get many more (uncountably many on each radius) such sequences r1 <
r2 < r3 < . . . < rn < . . . by perturbations. We recall that our first identity to be
used is equation (12). We are going to prove that:

lim
j→∞

(
f ′(z)
2πi

)∮

|w|=Rj
dw

f (w)− f (z) = 0,

for an appropriate Wiman’s-type of a sequence R1 < R2 < R3 < . . . < Rn <

. . . (Rn→∞). This will imply that we have:

lim
j→∞

∑

|φ0n(z)|<Rj
φ
′
0n(z) ≡ 0 ∀ z ∈ C− f−1(f (0)).

Using the flexibility in choosing Wiman’s-type sequences (invoking perturbations),
we are going to choose sequences of radii {Rj }j that satisfy the requirements {|w| =
Rj } ∩ {φ0n}n = ∅, as well as the conclusion of the Wiman’s cosπρ-Theorem,
namely that:

mf (Rj ) > (Mf (Rj ))
cosπρ−ε .

By the triangle inequality we have:

∣∣∣∣∣

(
f ′(z)
2πi

)∮

|w|=Rj
dw

f (w)− f (z)

∣∣∣∣∣ ≤
( |f ′(z)|

2π

)∮

|w|=Rj
|dw|

|(Mf (Rj ))cosπρ − |f (z)|| ,

for a large enough j . On the circle |w| = Rj we have w = Rjeiθ , dw = iRj eiθ dθ ,
|dw| = Rjdθ , 0 ≤ θ < 2π . We conclude that:

∣∣∣∣∣

(
f ′(z)
2πi

)∮

|w|=Rj
dw

f (w)− f (z)

∣∣∣∣∣ ≤
|f ′(z)|Rj

|(Mf (Rj ))cosπρ − |f (z)|| .

We recall that for a large j we have:Mf (Rj ) ≈ eR
ρ
j , and since we have both ρ > 0

and 0 < cosπρ, by our assumption on the order, 0 < ρ < 1
2 , we conclude that:
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lim
j→∞

|f ′(z)|Rj
|(Mf (Rj ))cosπρ − |f (z)|| = 0.

Hence we proved our first identity on the restricted domain of the values of the
parameter z:

lim
j→∞

∑

|φ0n(z)|<Rj
φ
′
0n(z) ≡ 0 ∀ z ∈ C− f−1(f (0)).

Now the theorem follows as explained above. �%
Remark 22 Theorem 16 deals with the sums

∑
|φ0n(w)|<Rj φ

(k)
0n (w), ∀w ∈ C

for values of k which are natural numbers. There is no claim for the value
k = 0, i.e.

∑
|φ0n(w)|<Rj φ0n(w), ∀w ∈ C. One might be expecting naively that

limj→∞
∑
|φ0n(w)|<Rj φ0n(w) ≡ Const., ∀w ∈ C, but this turns out to be false also

within the restricted domain of the order ρ.

Examples The first two examples are of entire functions of order ρ, where ρ is off
the domain (0, 1

2 ).

(1) We consider the exponential function f (w) = ew. Here ρ = 1 and Aut(ew) =
{w + 2πin}n∈Z. Thus φ

′
0n(w) = 1 and hence we have

∑

|φ0n(w)|<R
φ
′
0n(w) = |{n ∈ Z | |w + 2πin| < R}| ≥

[
R − |w|

2π

]
→R→∞ ∞.

Thus clearly for the conclusions of Theorem 16 to hold, some assumptions on
the order ρ are needed.

(2) Let us consider the case of a non-constant polynomial:

PN(w) = aNwN + . . .+ a1w + a0, aN �= 0, N ≥ 1.

Here ρ = 0 and Aut(PN(w)) = {w, . . . , φN−1(w)}. Hence:

PN(w)− PN(z) = aN(w − z) · . . . · (w − φN−1(z)) =

= aN(wN − (z+ . . .+ φN−1(z))w
N−1 + . . .+ (−1)N · (z · . . . · φN−1(z))).

We conclude that:

z+ . . .+ φN−1(z) =
{
− aN−1

aN
if N > 1

z if N = 1
.

Thus in the simplest case N = 1,
∑
|φ0n(z)|<R φ

′
0n(z)→R→∞ 1.
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Next we give an example that shows that the domain 0 < ρ < 1
2 is sharp

for the conclusion of Theorem 16 to be valid. We already know that necessarily
0 < ρ (Example (2), the case N = 1). We now show that ρ = 1

2 is out of the
admissible domain.

(3) Let f (w) = cos
√
w = 1

2 (e
i
√
w + e−i√w). Since cosw is an even entire

function, it follows that f (w) is an entire function. We have |f (w)| ≤
1
2 (|ei

√
w| + |e−i√w|) ≤ 1

2 (e
√|w| + e

√|w|) = e
√|w|. If r > 0, then: f (−r) =

1
2 (e
−√r + e√r ) ≥ 1

2e
√
r . The two inequalities above prove that ρ = 1

2 . We
next compute Aut(cos

√
w). For that purpose we first solve for θ the following

equation: eiθ + e−iθ = eiψ + e−iψ . This gives the quadratic e2iθ − (eiψ +
e−iψ )eiθ + 1 = 0. We obtain the following solution:

eiθ =
{
eiψ if +
e−iψ if − .

Hence:

{
iθ = iψ + 2πik
iθ = −iψ + 2πik, k ∈ Z

So:

{
θ = ψ + 2πk
θ = −ψ + 2πk, k ∈ Z

In our case cos
√
w = cos

√
z, so θ = √w,ψ = √z. Thus:

√
w = ±√z+2πk,

k ∈ Z. Squaring: φk(z) = z+ 4πk
√
z+ aπ2k2, k ∈ Z. We proved that:

Aut(cos
√
w) =

{
w + 4πk

√
w + 4π2k2 | k ∈ Z

}
.

In particular we have f−1(f (0)) = {4π2k2 | k ∈ Z}. Also we have:

φ
′
k(z) = 1+ 2πk√

z
, φ

′′
k(z) = −

πk

z
√
z
, . . . .

So the identities:
∑
|φk(z)|<R φ

(j)
k (z)→R→∞ 0, j ≥ 2 are equivalent to:

lim
R→∞

∑

|z+4πk
√
z+4π2k2|<R

k = 0.

The identity:
∑
|φk(z)|<R φ

′
k(z)→R→∞ 0 is equivalent to:
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lim
R→∞

∑

|z+4πk
√
z+4π2k2|<R

(
1+ 2πk√

z

)
= 0.

But this last identity is not consistent with the identities that correspond to j ≥
2. For the two identities together imply that:

limR→∞
∑

|z+4πk
√
z+4π2k2|<R

1 ≡ 0,

which is clearly false.
(4) Our last example is a straightforward application of Theorem 16.

Let f (w) = 1
2 (cosw1/4 + coshw1/4). Using the identities: cosw = 1

2 (e
iw +

e−iw) and coshw = 1
2 (e

w + e−w), we obtain the following power series
representation of f (w):

f (w) =
∞∑

k=0

wk

(4k)! .

This shows that f (w) is an entire function. Next, by the triangle inequality we
obtain:

|f (w)| ≤ 1

2

(
1

2

(
|eiw1/4 | + |e−iw1/4 |

)
+ 1

2

(
|ew1/4 | + |e−w1/4 |

))
≤

≤ 1

4

(
e|w|1/4 + e|w|1/4 + e|w|1/4 + e|w|1/4

)
= e|w|1/4 .

Also, for r > 0 large enough we have:

|f (r)| = 1

2

∣∣∣∣∣cos r1/4 + e
r1/4 + e−r1/4

2

∣∣∣∣∣ ≥
1

2

∣∣∣∣−1+ 1

2
er

1/4
∣∣∣∣ ≥

1

8
er

1/4
.

The last two inequalities imply that ρ = 1
4 for our entire function f (w) and so

Theorem 16 applies. Thus if for a fixed z the solutions of the following equation
in the unknown w:

cosw1/4 + coshw1/4 = cos z1/4 + cosh z1/4,

are given by {w} = {φ0n(z)}n, then ∀ k ∈ Z
+ we have:

lim
j→∞

∑

|φ0n(z)|<Rj

(k)∑

0n

(z) ≡ 0, ∀ z ∈ C,
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for some Wiman’s type sequence 0 < R1 < R2 < R3 < . . . < Rn <

. . . (Rn → ∞). The task of actually computing the automorphic functions
φ0n(z) for this function f (w) is probably not an easy task.

18 The Circular Density of the Orbits of the Automorphic
Group Aut(f ), for Any f ∈ E of Order 0 < ρ < 1

2

Theorem 17 Let f ∈ E have a positive order ρ, which is smaller than 1
2 , i.e.

0 < ρ < 1
2 . Let Aut(f ) = {φ0n}n. For any z ∈ C we arrange the Aut(f )-orbit of z,

Z(f (w) − f (z)) = {φ0n(z)}n in a non-decreasing order of the moduli: |φ00(z)| ≤
|φ01(z)| ≤ |φ02(z)| ≤ . . . and for any r satisfying |φ0n(z)| ≤ r ≤ |φ0,n+1(z)|
we denote the corresponding index n = n(r, z). If |φ0n(z)| = |φ0,n+1(z)| we may
denote anything within reason, for example n(r, z) = n or n+ 1. Then we have the
following asymptotic circular (or radial, if one prefers) density estimate:

lim
rj→∞

((
n(rj , z)+ 1

)
log rj − rρj cosπρ

)
= ∞,

for some Wiman’s sequence {rj }j and ∀C.

Proof We have proved (see Section 11) that if |φ0n(z)| ≤ r ≤ |φ0,n+1(z)|, then by
the Jensen’s Theorem applied to f (w)−f (z), where as usual f (0)−f (z) �= 0, we
have:

∣∣∣∣∣∣

n∏

j=0

φ0j (z)

∣∣∣∣∣∣
= rn+1|f (0)− f (z)| exp

{
− 1

2π

∫ 2π

0
log

∣∣∣f (reiθ )− f (z)
∣∣∣ dθ

}
.

Using Wiman’s cosπρ-Theorem, as in the proof of Theorem 16, we conclude that
there exists a sequence r1 < r2 < r3 < . . . < rn < . . . (rn → ∞) such that for
arbitrary ε > 0 and n > nε we have:

mf (rn) >
(
Mf (rn)

)cosπρ−ε
.

By the triangle inequality we have for any rj > 0 that satisfies (f (rj eiθ ) −
f (z))(Mf (rj )

cosπρ − |f (z)|) �= 0, the following estimate:

log |f (rj eiθ )− f (z)| ≥ log |mf (rj )− |f (z)|| ≥ log |Mf (rj )cosπρ − |f (z)||.

Hence:

exp

{
− 1

2π

∫ 2π

0
log

∣∣∣f (rj eiθ )−f (z)
∣∣∣ dθ

}
≤ exp

{− log |Mf (rj )cosπρ−|f (z)||} .
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Since we have:

Mf (rj )
cosπρ − |f (z)| ≈ erρj cosπρ

,

for a large enough rj , we conclude that for some c = c(z), depending only on z, we
have for |φ0,n(rj ,z)(z)| ≤ rj ≤ |φ0,n(rj ,z)+1(z)|, the following estimate:

∣∣∣∣∣∣

n(rj ,z)∏

k=0

φ0k(z)

∣∣∣∣∣∣
≤ rn(rj ,z)+1

j e
−rρj cosπρ · c.

But 0 < ρ, so f (w) is transcendental and hence:

lim
rj→∞

∣∣∣∣∣∣

n(rj ,z)∏

k=0

φ0k(z)

∣∣∣∣∣∣
= +∞.

Thus:

lim
rj→∞

r
n(rj ,z)+1
j e

−rρj cosπρ = +∞.

Since we have the elementary identity:

r
n(rj ,z)+1
j e

−rρj cosπρ = e(n(rj ,z)+1) log rj−rρj cosπρ
,

it follows that:

lim
rj→∞

((
n(rj , z)+ 1

)
log rj − rρj cosπρ

)
= +∞

�%

19 The Vieta Formulas for Aut(f ), f ∈ E of Order
0 ≤ ρ < 1

For f ∈ E of low order ρ, i.e. 0 ≤ ρ < 1, the formulas for the symmetric functions
of the reciprocals of the automorphic functions of f can be derived algebraically as
easy as for polynomials. The reason is the fact that for those orders the Weierstrass
canonical representations are exactly the factorization of f (w)− f (z), because the
Weierstrass factors reduce to the simplest form (1−u). This follows by the fact that
there is no need in the Weierstrass auxiliary exponentials that cause the convergence
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of the infinite product. In low order, the infinite product converges automatically
already at the level of (1− u).
Theorem 18 Let f (w) = ∑∞

n=0 anw
n ∈ E be of order ρ, where 0 ≤ ρ < 1. Let

the automorphic group of f be Aut(f ) = {φ0n}n. Then for any z ∈ C− f−1(f (0))
and for any n ∈ Z

+ we have:

an = (−1)n (f (0)− f (z))
∑

0≤i1<i2<...<in

⎛

⎝
n∏

j=1

φ0ij (z)

⎞

⎠
−1

.

Proof The assumption of low order, 0 ≤ ρ < 1 implies that:

f (w)− f (z) = (f (0)− f (z))
∏

n

(
1− w

φ0n(z)

)
=

= (f (0)− f (z))
∞∑

n=0

(−1)n
∑

0≤i1<i2<...<in

⎛

⎝
n∏

j=1

φ0ij (z)

⎞

⎠
−1

.

�%
Example We computed previously, in example 3 after Theorem 16, that for f (w) =
cos
√
w ∈ E, we have ρ = 1

2 , Aut(cos
√
w) = {w + 4πk

√
w + 4π2k2 | k ∈ Z},

cos
√
w = ∑∞

n=0(−1)n w
n

(2n)! , an = (−1)n

(2n)! . The simplest case of Theorem 18 is the
case n = 1:

−1

2! = (−1)1
(

cos
√

0− cos
√
z
)(

1

z
+ 1

z+ 4π
√
z+ 4π2

+ 1

z− 4π
√
z+ 4π2

+

+ 1

z+ 4π · 2√z+ 4π222 +
1

z− 4π · 2√z+ 4π222 + . . .
)
=

= − (
1− cos

√
z
)
(

1

z
+
∞∑

k=1

(
1

z+ 4πk
√
z+ 4π2k2 +

1

z− 4πk
√
z+ 4π2k2

))
=

= − (
1− cos

√
z
)
(

1

z
+ 2

∞∑

k=1

z+ 4π2k2

(z− 4π2k2)2

)
.

Thus we obtain the following identity:

1

2(1− cos
√
z)
= 1

z
+ 2

∞∑

k=1

z+ 4π2k2

(z− 4π2k2)2
.
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For instance, by substituting z = π2 we obtain:

1

4
= 1

π2 + 2
∞∑

k=1

π2 + 4π2k2

(π2 − 4π2k2)2
,

π2

4
= 1+ 2

∞∑

k=1

1+ 4k2

(1− 4k2)2
.

20 Embedding the Automorphic Group Within a Larger
Group

Let f ∈ E. If g ∈ E then Aut(f ) ⊆ Aut(g ◦ f ). For φ ∈ Aut(f )⇒ f ◦ φ = f , on
the domain of definition of φ. Hence g◦(f ◦φ) = g◦f , on the domain of definition
of φ. Thus (g ◦ f ) ◦ φ = g ◦ f , on the domain of definition of φ. This implies that
φ ∈ Aut(g ◦ f ). Using this observation we deduce that if {gn}n is a sequence of
elements in E, then it induces the following ascending sequence of discrete groups:

Aut(f ) ⊆ Aut(g1 ◦ f ) ⊆ Aut(g2 ◦ g1 ◦ f ) ⊆ . . . .

Definition 7 Let (Xj , τ j ) be a sequence of topological spaces such that for any
two indices i, j we have Xi ∩ τ j ⊆ τ i . This means that for any V ∈ τ j we have
Xi ∩V ∈ τ i . We will define the direct limit topological space lim−→(Xj , τ j ) = (X, τ)
in this particular setting by:

{
X = ⋃

j Xj

τ = {U ⊆ X | ∀ j, U ∩Xj ∈ τ j } . (15)

Remark 23 The definition above is the standard definition of the final topology on
the set X = ⋃

j Xj with respect to the family of the inclusion mappings: fj :
Xj → X, fj (x) = x. Explicitly, a subset U ⊆ X is open in the final topology if and
only if ∀ j, f−1

j (U) is open in (Xj , τ j ). For in our case we have ∀U ⊆ X and for

any index j , f−1
j (U) = U ∩Xj . Thus a set U ⊆ X is open in the final topology on

X if and only if ∀ j, U ∩Xj ∈ τ j . This is exactly the definition of the topology τ in
equation (15). We note that (

⋃
j Xj , τ ) is a discrete topological space if and only if

∀ j, (Xj , τ j ) is a discrete topological space. For ∀ x ∈ X we have by the definition
of τ : {x} ∈ τ if and only if ∀ j, {x} ∩Xj ∈ τ j . Clearly we have:

{x} ∩Xj =
{∅ if x �∈ Xj
{x} if x ∈ Xj .
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The topological groups Aut(gn ◦ . . . ◦ g1 ◦ f ) are discrete ∀ n ∈ Z
+ ∪ {0}. Hence if

we use the topology of Definition 7, the topological group

∞⋃

n=0

Aut(gn ◦ . . . ◦ g1 ◦ f )

is a discrete topological group. It will be useful to know when is it true that:

∞⋃

n=0

Aut(gn ◦ . . . ◦ g1 ◦ f ) = Aut(F ),

for some F ∈ E? Let us assume that limn→∞ gn ◦ . . . ◦ g1 ◦ f = F uniformly on
compact subsets of C. Will the answer to the question above be affirmative under
this assumption? Let φ ∈⋃∞

n=0 Aut(gn ◦ . . .◦g1 ◦f ). Then for some N ∈ Z
+ ∪{0}

we have φ ∈ Aut(gN ◦ . . . ◦ g1 ◦ f ). By the ascending property mentioned above
(prior to Definition 7) this implies that φ ∈ Aut(gk ◦ . . . ◦ g1 ◦ f ), ∀ k ≥ N . This is
equivalent to (gk ◦ . . . ◦ g1 ◦ f ) ◦φ = (gk ◦ . . . ◦ g1 ◦ f ) on the domain of definition
of φ, ∀ k ≥ N . Hence:

lim
k→∞((gk ◦ . . . ◦ g1 ◦ f ) ◦ φ) = lim

k→∞(gk ◦ . . . ◦ g1 ◦ f ) = F,

uniformly on compact subsets of C. But:

lim
k→∞((gk ◦ . . . ◦ g1 ◦ f ) ◦ φ) =

(
lim
k→∞(gk ◦ . . . ◦ g1 ◦ f )

)
◦ φ = F ◦ φ,

uniformly on compact subsets of C. Hence F ◦ φ = F on the domain of definition
of φ. Hence φ ∈ Aut(F ). We proved the following:

Proposition 8 If limn→∞(gn ◦ . . . ◦ g1 ◦ f ) = F uniformly on compact subsets of
C, then

∞⋃

n=0

Aut(gn ◦ . . . ◦ g1 ◦ f ) ⊆ Aut(F ).

Remark 24 We note that by a variant of Hurwitz Theorem, the limit function F in
Proposition 8 is either in E or F ≡ Const. in which case it makes sense to define
Aut(F ) as the set of all functions φ. For in that case F ◦φ = (Const.)◦φ = Const. =
F for any φ, on its domain of definition. Thus in this case (when F ≡ Const.)
Proposition 8 is clearly true.

When trying to find if equality sign can hold in Proposition 8, we clearly must
assume that F ∈ E, for there can be no equality if F ≡ Const.. So we may assume
that limn→∞(gn ◦ . . . ◦ g1 ◦ f ) = F ∈ E uniformly on compact subsets of C. Let
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ψ ∈ Aut(F ). Then F ◦ψ = F on the domain of definition ofψ . Thus (limn→∞(gn◦
. . . ◦ g1 ◦ f )) ◦ ψ = limn→∞(gn ◦ . . . ◦ g1 ◦ f ). By the continuity argument:

lim
n→∞((gn ◦ . . . ◦ g1 ◦ f ) ◦ ψ) = lim

n→∞(gn ◦ . . . ◦ g1 ◦ f ).

If ∀ k ∈ Z
+, ψ �∈ Aut(gk ◦ . . . ◦ g1 ◦ f ), then (gk ◦ . . . ◦ g1 ◦ f ) ◦ ψ cannot be

extended to become an entire function. At least there seems to be no reason for such
an extension to exist, because ψ may not be entire. However, ψ is analytic on its
domain of definition because it is a branch of F−1(F (w)). So we have a sequence of
functions {(gn◦ . . .◦g1◦f )◦ψ}n, analytic on (at least) a fixed open subset of C (the
domain of the definition of ψ). The complement of the domain of definition of ψ is
a closed subset of C that contains no continuum (by a theorem of Julia). In that sense
the open set is large. This sequence of analytic functions converges to a function F
which can be extended to an entire function. Thus the limit process limn→∞((gn ◦
. . . ◦ g1 ◦ f ) ◦ ψ) desingularizes the full set of singularities that originated in the
automorphic function ψ ∈ Aut(F ). By results of Shimizu those singularities are
branch points and cannot include poles or algebraic poles. Thus at each singular
point the function ((gn ◦ . . .◦g1 ◦f )◦ψ) is many valued. If there is a corresponding
Hurwitz principle that holds true, then the limit function is either multivalued at
such a singular point, or a constant. We recall that the convergence is uniform on
compact subsets of the domain of the definition ofψ . Henceψ �∈ Aut(gk◦. . .◦g1◦f )
∀ k ∈ Z

+, but ∃ n0 such that for n > n0, the function (gn ◦ . . . ◦ g1 ◦ f ) ◦ ψ has
no singularity and is analytic at a fixed singular point (a branch point) of ψ . So if
the number of singular points of ψ is finite, then ∃ n1 such that for n > n1, the
function (gn ◦ . . .◦g1 ◦f )◦ψ is an entire function. So we have a sequence of entire
functions {(gn ◦ . . . ◦ g1 ◦f ) ◦ψ}n>n1 that converges uniformly on compact subsets
of C to the entire function F . This gives a sequence of non-zero entire functions
{((gn ◦ . . . ◦ g1 ◦ f ) ◦ ψ) − (gn ◦ . . . ◦ g1 ◦ f )}n>n1 that converges uniformly on
compact subsets of C to the zero function F ◦ψ −F ≡ 0. This, of course, is a valid
possibility by the Hurwitz Theorem. We recall the following:

Lemma ([3]) ∀ f, g ∈ E, Aut(f ) ⊆ Aut(g)⇔ ∃h ∈ E such that g = h ◦ f .

We conclude that if
⋃∞
n=0 Aut(gn ◦ . . . ◦ g1 ◦ f ) ⊆ Aut(F ) for some F ∈ E, then

∀ n ∈ Z
+ ∃Fn ∈ E such that F = fn ◦ (gn ◦ . . . ◦ g1 ◦ f ). By Proposition 8, this

will be the case when limn→∞(gn ◦ . . .◦g1 ◦f ) = F uniformly on compact subsets
of C. Hence in this case we have limn→∞ Fn = id. uniformly on compact subsets
of C.

Remark 25 If Fn ∈ E and limn→∞ Fn = z uniformly on compact subsets of
C, then Aut(Fn) = {z} ∪ {φ(n)0k }k where ∀ k, limn→∞ φ(n)0k = ∞. In that sense
Aut(Fn)→n→∞ {z}.
We recall the following:

Theorem ([17]) There exists a sequence of positive real numbers {cn}∞n=1 such that
the sequence of functions Fn(z) = (cnez + z) ◦ . . . ◦ (c1e

z+ z) converges uniformly



On the Automorphic Group 433

on compact subsets of C to an entire function F(z). Furthermore, for each n ∈ Z
+,

F(z) = Hn ◦ (cnez + z) ◦ . . . ◦ (c1e
z + z) for some entire function Hn. Hence,

there is no uniform bound on the number of prime factors cnez + z in different
decompositions of F through transcendental entire functions.

Remark 26 A similar result holds for factorization that go in the opposite direction,
i.e. (c1e

z + z) ◦ . . . ◦ (cnez + z).
As for the Riemann surface of the inverse functions that are the limits of factoriza-
tions of non-bounded number of factors, F−1 = (c1e

z + z)−1 ◦ (c2e
z + z)−1 ◦ . . ..

It contains the embedded copies of the Riemann surfaces of the factors nested one
on the top of the other. One can outline the geometric construction of the Riemann
surface of that is induced by gn ◦ . . . ◦ g1 ◦f . if Γ =⋃∞

n=0 Aut(gn ◦ . . . ◦ g1 ◦f ) =
Aut(F ) for some F ∈ E, then the direct limit of those Riemann surfaces will be
equal to the Riemann surface of F−1. If, however, the discrete group Gamma does
not equal to an Aut(F ) for some F ∈ E, then this direct limit of Riemann surfaces
will not be a Riemann surface. This structure generalizes the Riemann surfaces.

21 Relations Between the Construction of the Direct System
of the Automorphic Groups and Weierstrass Products

We recall that for f ∈ E, the elements of the automorphic group Aut(f ) are the
functions of f−1 ◦ f . Let g1 ∈ E then Aut(f ) ⊆ Aut(g1 ◦ f ). In fact the elements
of Aut(g1 ◦ f ) are the functions of (g1 ◦ f )−1 ◦ (g1 ◦ f ) = f−1 ◦ (g−1

1 ◦ g1) ◦ f =
f−1 ◦Aut(g1) ◦ f . We note that by taking the identity element id in Aut(g1) we get
f−1 ◦ id ◦ f = Aut(f ) which explains the relation Aut(f ) ⊆ Aut(g1 ◦ f ). Both
f (w) − f (z) and (g1 ◦ f )(w) − (g1 ◦ f )(z) of the variable w, with the parameter
z ∈ C− f−1(f (0)) in the first and z ∈ C− (g1 ◦ f )−1((g1 ◦ f )(0)) in the second,
have Weierstrass products representation that are based on the product:

∏

φ0n∈Aut(f )

(
1− w

φ0n(z)

)
,

for f (w)− f (z) and on the product:

∏

ψ0n∈Aut(g1◦f )

(
1− w

ψ0n(z)

)
,

for (g1 ◦ f )(w) − (g1 ◦ f )(z). Since Aut(f ) ⊆ Aut(g1 ◦ f ), any factor of the first
product is also a factor of the second product. In that sense the first product divides
the second one. We will denote that by standard notation:
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∏

φ0n∈Aut(f )

(
1− w

φ0n(z)

) ∣∣∣∣∣∣

∏

ψ0n∈Aut(g1◦f )

(
1− w

ψ0n(z)

)
.

If we actually divide the full detailed second product by the full detailed first
product, we obtain a Weierstrass product type representation for the meromorphic
function of w,

(g1 ◦ f )(w)− (g1 ◦ f )(z)
f (w)− f (z) .

We will denote that by:

∏
φ0n∈Aut(f )

(
1− w

φ0n(z)

)

∏
ψ0n∈Aut(g1◦f )

(
1− w

ψ0n(z)

) ∼
(g1 ◦ f )(w)− (g1 ◦ f )(z)

f (w)− f (z) .

We note that the meromorphic function of w, (g1◦f )(w)−(g1◦f )(z)
f (w)−f (z) , is in fact an entire

function of w, because it has only removable singularities and not poles in the finite
plane. Symbolically we have the following assignment:

f (w)− f (z)→
∏

Aut(f )

, g1(f (w))− g1(f (z))→
∏

Aut(g1◦f )
,

{
g1(f (w))− g1(f (z))

f (w)− f (z)
}
→

∏

Aut(g1◦f )−Aut(f )

.

Similarly we can go on:

g2(g1(f (w)))− g2(g1(f (z)))→
∏

Aut(g2◦g1◦f )
,

{
g2(g1(f (w)))− g2(g1(f (z)))

g1(f (w))− g1(f (z))

} ∏

Aut(g2◦g1◦f )−Aut(g1◦f )
,

{
g2(g1(f (w)))− g2(g1(f (z)))

f (w)− f (z)
} ∏

Aut(g2◦g1◦f )−Aut(f )

.

We note the consistency:

{
g2(g1(f (w)))− g2(g1(f (z)))

f (w)− f (z)
}
=

{
g2(g1(f (w)))− g2(g1(f (z)))

g1(f (w))− g1(f (z))

}
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×
{
g1(f (w))− g1(f (z))

f (w)− f (z)
}
→

∏

Aut(g2◦g1◦f )−Aut(f )

=
∏

Aut(g2◦g1◦f )−Aut(g1◦f )
×

∏

Aut(g1◦f )−Aut(f )

.

If we denote union by plus: +, then it corresponds to multiplication. This is in
agreement with the fact that minus: − corresponded to division. In this notation we
have:

Aut(g2◦g1◦f )−Aut(f ) = (Aut(g2◦g1◦f )−Aut(g1◦f ))+(Aut(g1◦f )−Aut(f ).

It is clear that in general we have:

Proposition 9 If gn, f ∈ E, ∀ n ∈ Z
+, then:

(gn ◦ . . . ◦ g1 ◦ f )(w)− (gn ◦ . . . ◦ g1 ◦ f )(z)→ Aut(gn ◦ . . . ◦ g1 ◦ f ),

and ∀ n > m ≥ 1 in Z
+:

{
(gn ◦ . . . ◦ g1 ◦ f )(w)− (gn ◦ . . . ◦ g1 ◦ f )(z)
(gm ◦ . . . ◦ g1 ◦ f )(w)− (gm ◦ . . . ◦ g1 ◦ f )(z)

}
→ Aut(gn ◦ . . . ◦ g1 ◦ f )

− Aut(gm ◦ . . . ◦ g1 ◦ f ),

another suggestive assignment which is natural, is the exponential and the logarith-
mic notations:

{
log ((gn ◦ . . . ◦ g1 ◦ f )(w)− (gn ◦ . . . ◦ g1 ◦ f )(z))→ Aut(gn ◦ . . . ◦ g1 ◦ f )
exp (Aut(gn ◦ . . . ◦ g1 ◦ f ))→ (gn ◦ . . . ◦ g1 ◦ f )(w)− (gn ◦ . . . ◦ g1 ◦ f )(z)

Next we note that the discrete group Γ = ⋃
Aut(gn ◦ . . . ◦ g1 ◦ f ) can also be

denoted by Γ =∑∞
n=0 Aut(gn ◦ . . . ◦ g1 ◦ f ) and formally it should be assigned to

the Weierstrass type product:

∏

θ0n∈Γ

(
1− w

θ0n(z)

)
.

On the other hand, ∀ n ∈ Z
+ we have:

Aut(gn ◦ . . . ◦ g1 ◦ f ) =
n−1∑

k=1

(Aut(gk+1 ◦ . . . ◦ g1 ◦ f )− Aut(gk ◦ . . . ◦ g1 ◦ f ))+

+ (Aut(g1 ◦ f )− Aut(f ))+ Aut(f ).
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That corresponds to:

(gn ◦ . . . ◦ g1 ◦ f )(w)− (gn ◦ . . . ◦ g1 ◦ f )(z) =

=
n−1∏

k=1

{
(gk+1 ◦ . . . ◦ g1 ◦ f )(w)− (gk+1 ◦ . . . ◦ g1 ◦ f )(z)
(gk ◦ . . . ◦ g1 ◦ f )(w)− (gk ◦ . . . ◦ g1 ◦ f )(z)

}
×

×
{
(g1 ◦ f )(w)− (g1 ◦ f )(z)

f (w)− f (z)
}
× (f (w)− f (z)).

If indeed Γ = Aut(F ) for some F ∈ E, then:

F(w)− F(z)→
∏

Aut(F )

=
∏

Γ

→

→
n−1∏

k=1

{
(gk+1 ◦ . . . ◦ g1 ◦ f )(w)− (gk+1 ◦ . . . ◦ g1 ◦ f )(z)
(gk ◦ . . . ◦ g1 ◦ f )(w)− (gk ◦ . . . ◦ g1 ◦ f )(z)

}
×

×
{
(g1 ◦ f )(w)− (g1 ◦ f )(z)

f (w)− f (z)
}
× (f (w)− f (z)) =

= lim
n→∞((gn ◦ . . . ◦ g1 ◦ f )(w)− (gn ◦ . . . ◦ g1 ◦ f )(z)).

This implies:

Theorem 19 Let gn, f ∈ E ∀ n ∈ Z
+. Then there exists an F ∈ E such that:

∞⋃

n=0

Aut(gn ◦ . . . ◦ g1 ◦ f ) = Aut(F ),

if and only if G = limn→∞(gn ◦ . . . ◦ g1 ◦ f ) exists uniformly on compact subsets
of C and is not a constant. In the case the limitG �≡ Const. thenG ∈ E and we can
take F(w) = a ·G(w)+ b ∀ a ∈ C

× and ∀ b ∈ C.

Example If F(z) = limn→∞(cnez + z) ◦ . . . ◦ (c1e
z + z) is a Tuen Wai NG entire

function, then we have the identity:

Aut(F ) =
∞⋃

n=1

Aut((cne
z + z) ◦ . . . ◦ (c1e

z + z)),

where the entire functions ckez+ z (ck > 0) are primes. We also have the functional
identity:
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F(w)− F(z) =

=
∞∏

n=1

{
((cn+1e

w + w) ◦ . . . ◦ (c1e
w + w))− ((cn+1e

z + z) ◦ . . . ◦ (c1e
z + z))

((cnew + w) ◦ . . . ◦ (c1ew + w))− ((cnez + z) ◦ . . . ◦ (c1ez + z))
}
×

×((c1e
w + w)− (c1e

z + z)).

Theorem 20 Let gn, f ∈ E ∀ n ∈ Z
+. If the limit G = limn→∞(gn ◦ . . . ◦ g1 ◦ f )

exists uniformly on compact subsets of C and is not a constant, then there exists a
path metric ρ : C× C→ R≥0 which is invariant for Aut(gn ◦ . . . ◦ g1 ◦ f ), ∀ n =
0, 1, 2, . . .. In other words, ∀ n ≥ 0, ∀φ ∈ Aut(gn◦. . .◦g1◦f ), φ is a ρ-isometry on
a domain of definition of a leaf of φ, i.e. ∀ z,w we have: ρ(φ(z), φ(w)) = ρ(z,w).
Proof We have by the assumption on limn→∞(gn ◦ . . . ◦ g1 ◦ f ) the containment:

∞⋃

n=0

Aut(gn ◦ . . . ◦ g1 ◦ f ) ⊆ Aut(G).

By the way, we do not need Theorem 19 for this. Now take the path metric on C

induced byG, ρ = ρG : C×C→ R≥0. We know that anyG-automorphic function
φ ∈ Aut(G) is a ρG-isometry in the sense of the theorem. See Theorem 15. �%
Theorem 21 Let hn, gn, f ∈ E ∀ n ∈ Z

+. If limn→∞(gn ◦ . . . ◦ g1 ◦ f ) =
limn→∞(hn ◦ . . . ◦ h1 ◦ f ) exist uniformly on compact subsets of C and the limit
function is not a constant, then:

∞⋃

n=0

Aut(gn ◦ . . . ◦ g1 ◦ f ) =
∞⋃

n=0

Aut(hn ◦ . . . ◦ h1 ◦ f ).

Proof Let G be the limit function of the two sequences {gn ◦ . . . ◦ g1 ◦ f }n and
{hn ◦ . . . ◦ h1 ◦ f }n of functions in E. Then G ∈ E and by Theorem 19 the unions
of the automorphic groups, both, are equal to Aut(G). �%
So far our construction gives under the appropriate conditions the identity:

Aut(F ) =
∞⋃

n=0

Aut(gn ◦ . . . ◦ g1 ◦ f ),

where the functions F, gn, f ∈ E, ∀ n ∈ Z≥0. Hence all the automorphic groups
that are involved are discrete groups and are countable. Trivially any discrete group
is a locally compact Hausdorff group. The compact subsets in a discrete group are
the finite subsets, and the Haar measure up to a multiplication by a positive constant
is the counting measure.
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Definition 8 If H is a subgroup of the topological group G, then it induces two
relations on G:
(a) The H -right relation: γ 1 ∼H−right γ 2 ⇔ ∃ δ ∈ H such that γ 1 = γ 2 · δ.
(b) The H -left relation: γ 1 ∼H−left γ 2 ⇔ ∃ δ ∈ H such that γ 1 = δ · γ 2.

Proposition 10 LetH be a subgroup of the topological groupG, then bothH -right
and H -left are equivalence relations on G.

Proof This is straightforward from Definition 8. �%
Definition 9 We will denote the equivalence classes of G with respect to the
equivalence relation H -right by (G/H)right. Similarly (G/H)left will denote the
family of equivalence classes with respect to H -left.

Theorem 22 Let h, f ∈ E. Then:

(a) ∀ γ 1, γ 2 ∈ Aut(h ◦ f ) we have γ 1 ∼Aut(f )−left γ 2 ⇔ f (γ 1) = f (γ 2).
(b) ∀ γ 1, γ 2 ∈ Aut(h ◦ f ) we have γ 1 ∼Aut(f )−right γ 2 ⇔ f (γ−1

1 ) = f (γ−1
2 ).

Proof

(a) γ 1 ∼Aut(f )−left γ 2 ⇔ γ 2 = ψ ◦ γ 1 for some ψ ∈ Aut(f ) ⇔ f (γ 2) =
f (ψ ◦ γ 1) = (f ◦ ψ) ◦ γ 1 = f (γ 1).

(b) γ 1 ∼Aut(f )−right γ 2 ⇔ γ 2 = γ 1 ◦ ψ for some ψ ∈ Aut(f ) ⇔ γ−1
2 =

ψ−1 ◦ γ−1
1 ⇔ γ−1

1 ∼Aut(f )−left γ
−1
2 ⇔ f (γ−1

1 ) = f (γ−2
2 ) where in the

last step we made a use in (a).
�%

Theorem 23 The cardinality of the equivalence classes in (Aut(h ◦ f )/Aut(f ))left
and in (Aut(h◦f )/Aut(f ))right is equal to the cardinality of Aut(f ), and hence are
at most ℵ0.

Proof By Definition 8 it follows that for any [γ ] ∈ (Aut(h ◦ f )/Aut(f ))left we
have: [γ ] = {ψ ◦ γ |ψ ∈ Aut(f )}. Since ψ ◦ γ = ψ1 ◦ γ ⇔ ψ = ψ1 it follows
that the mapping:

[γ ] → Aut(f ), ψ ◦ γ → ψ,

is a bijection. Hence |[γ ]| = |Aut(f )|. A similar argument works for the Aut(f )-
right equivalence relation. �%
Remark 27 If f (z) ∈ E is a transcendental entire function, then the equivalence
classes in both left and right Aut(f ) equivalence relations have cardinality ℵ0.

Theorem 24 If h, f ∈ E, then both topological spaces (Aut(h ◦ f )/Aut(f ))left,
(Aut(h ◦ f )/Aut(f ))right are discrete and Hausdorff.

Proof This follows by the following well-known facts:
If H is a subgroup of G, then (G/H) is discrete if and only if H is open in G.
(G/H) is Hausdorff if and only if H is closed in G.
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In our case Aut(h ◦ f ) is a discrete group and hence Aut(f ) is both open and
closed in Aut(h ◦ f ). �%

22 Continuity Properties of the Automorphic Groups

In this section we study the following: Let f ∈ E and let fn ∈ E ∀ n ∈ Z
+.

Suppose that limn→∞ fn = f uniformly on compact subsets of C. Is it true that the
automorphic groups Aut(fn) become closer to the automorphic group Aut(f )? If
the answer is affirmative, in what sense?

Clearly an attractive situation is the one in which fn(z) ∈ C[z], i.e. the
approximating sequence is a sequence of polynomials. For example, the partial sums
of the power series expansion of f :

fn(z) =
n∑

k=0

f (k)(0)

k! , n ∈ Z
+.

Since the functions that constitute Aut(f ) are f−1 ◦ f , it makes sense to find if in
some sense the many valued functions f−1

n approach f−1. We recall once more the
following well-known:

Theorem (The Generalized Argument Principle) Let F be a meromorphic
function in the simply connected domain D, aj the zeros of F , bk the poles of F
in D and γ a closed curve in D avoiding the aj , bk . Then ∀G ∈ Cω(D) we have:

∑

j

G(aj ) · n(γ , aj )−
∑

k

G(bk) · n(γ , bk) = 1

2πi

∮

γ

G(z) · F
′(z)
F (z)

dz.

Here we have, for any a �∈ γ :

n(γ , a) = 1

2πi

∮

γ

dz

z− a ,

is the index or the winding number of the closed curve γ with respect to the point
a �∈ γ .

Theorem 25 Let f ∈ E and let fn ∈ E ∀ n ∈ Z
+. Suppose that limn→∞ fn = f

uniformly on compact subsets of C. Let us denote the automorphic group’s elements
by Aut(f ) = {φ0k}k , Aut(fn) = {φ[n]0k }k . Then for any R > 0 and for any ε > 0,
∃N = N(R, ε) such that:

(1) ∀ n > N(R, ε), the number of φ[n]0k (z) for a fixed z, such that |φ[n]0k (z)| <
R equals (counting with multiplicity) the number of those φ0k(z) for which
|φ0k(z)| < R.
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(2) The indexing of the φ0k and of the φ[n]0k , can be arranged, so that ∀ n > N(R, ε)
and ∀ z such that |φ0k(z)| < R, we have |φ0k(z)− φ[n]0k (z)| < ε.

Proof We recall some elementary facts from the algebra of polynomials in one
variable: Let {α1, α2, . . . , αm} be a finite sequence of complex numbers and let
{{α[n]1 , α

[n]
2 , . . . , α

[n]
m }}n be an infinite sequence of finite sequences over C of the

same length m as the first. We denote the moments by mk(α1, . . . , αm) = αk1 +
. . . + αkm, and similarly mk(α

[n]
1 , . . . , α

[n]
m ) = (α[n]1 )

k + . . . + (α[n]m )k, k ∈ Z
+. If

∀ k we have:

lim
n→∞mk(α

[n]
1 , . . . , α

[n]
m ) = mk(α1, . . . , αm),

then the indexing of the αi and of the α[n]i , 1 ≤ i ≤ m can be arranged, so that:

lim
n→∞α

[n]
i = αi, 1 ≤ i ≤ m.

The reason for this is the following: Let us denote the symmetric functions of the
sequence {α1, . . . , αm} by

Sk(α1, . . . , αm) =
∑

1≤i1<...<ik≤m
αi1αi2 . . . αik , 1 ≤ k ≤ m.

Similarly Sk(α
[n]
1 , . . . , α

[n]
m ), 1 ≤ k ≤ m, denote the symmetric functions of the

other sequences. Then each momentmk can be written as a polynomial over Q, with
fixed coefficients for a given k, of the symmetric functions and vice versa. These are
known as Newton’s identities. They start as follows: m1 = S1, m2 = S2 − S2

1 , . . .

and S1 = m1, S2 = m2
1 −m2 . . .. By the assumption limn→∞mk(α[n]1 , . . . , α

[n]
m ) =

mk(α1, . . . , αm), it follows that limn→∞ Sk(α[n]1 , . . . , α
[n]
m ) = Sk(α1, . . . , αm) for

1 ≤ k ≤ m. We note that for the monic polynomials that have as their zero sets the
negatives of these sequences we have:

P(w) = (w+α1) . . . (w+αm) = wm+S1(α)w
m−1+. . .+Sk(α)wm−k+. . .+Sm(α),

P [n](w) = (w + α[n]1 ) . . . (w + α[n]m ) = wm + S1(α
[n])wm−1 + . . .+ Sk(α[n])wm−k

+ . . .+ Sm(α[n]).

Hence limn→∞ P [n](w) = P(w) uniformly on compact subsets of C. Hence after
an appropriate indexing the zeros of the P [n] (multiplicity included) approach as
their limits when n→∞ the zeros of P and we proved the claimed fact.

Coming back to our entire functions, we recall that by using the Weierstrass
representation as a canonical product of the function f (w)−f (z) which is entire in
w where z is a fixed parameter, and differentiating log(f (w) − f (z)) with respect
to w, we obtain:
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f ′(w)
f (w)− f (z) =

∂g

∂w
(w, z)+

∑

k

(
w

φ0k(z)

)λk ( 1

w − φ0k

)
.

Hence we have (using the generalized argument principle):

1

2πi

∮

|w|=R
f ′(w)dw
f (w)− f (z) =

(16)

= 1

2πi

∮

|w|=R
∂g

∂w
(w, z)dw +

∑

k

1

2πi

∮

|w|=R

(
w

φ0k(z)

)λk ( dw

w − φ0k

)
.

We have:

∂g

∂w
(w, z) ∈ Cω(C, w)⇒ 1

2πi

∮

|w|=R
∂g

∂w
(w, z)dw = 0,

∑

k

1

2πi

∮

|w|=R

(
w

φ0k(z)

)λk ( dw

w − φ0k

)
=

∑

|φ0k(z)|<R

1

(φ0k(z))
λk
· (φ0k(z))

λk =

= |{k| |φ0k(z)| < R}|.

Next we have:

1

2πi

∮

|w|=R
wl · f ′(w)dw

f (w)− f (z) =

(17)

= 1

2πi

∮

|w|=R
wl
∂g

∂w
(w, z)dw +

∑

k

1

2πi

∮

|w|=R
wl

(
w

φ0k(z)

)λk ( dw

w − φ0k

)
.

Once more, by the Cauchy Theorem:

1

2πi

∮

|w|=R
wl
∂g

∂w
(w, z)dw = 0,

and by the generalized argument principle:

∑

k

1

2πi

∮

|w|=R
wl

(
w

φ0k(z)

)λk ( dw

w − φ0k

)
=

∑

|φ0k(z)|<R
φl0k(z).
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Hence we proved the following integral identity for the moments of the automorphic
functions:

ml(φ0k(z)||φ0k(z)| < R) =
1

2πi

∮

|w|=R
wl · f ′(w)dw

f (w)− f (z) .

Similarly we have for any n ∈ Z
+:

ml(φ
[n]
0k (z)||φ[n]0k (z)| < R) =

1

2πi

∮

|w|=R
wl · f ′n(w)dw

fn(w)− fn(z) .

By the assumption: limn→∞ fn = f uniformly on compact subsets of C and by
the Cauchy estimates: limn→∞ f ′n = f ′ uniformly on compact subsets of C. This
implies that:

lim
n→∞

1

2πi

∮

|w|=R
wl · f ′n(w)dw

fn(w)− fn(z) =
1

2πi

∮

|w|=R
wl · f ′(w)dw

f (w)− f (z) .

We proved:

lim
n→∞ml(φ

[n]
0k (z)||φ[n]0k (z)| < R) = ml(φ0k(z)||φ0k(z)| < R).

Now the assertions of our theorem follow by the first part of our proof. �%
One way to interpret Theorem 25 is that the automorphic functions of the

approximating functions fn to the entire function f ∈ E converge themselves to
the automorphic functions of f . This convergence is very ordered and not chaotic.
By that we mean that from a certain index n0 and on it is unambiguous for certain
of the automorphic functions of f which of the automorphic functions of fn (for
n large enough) correspond to them. This happens because when we fix the value
z of the complex parameter in f (w) − f (z) and in fn(w) − fn(z) and consider
the disk B(0, R) and only those automorphic functions φ0k of f , φ0k ∈ Aut(f )
whose z-image lies inside that disk, i.e. |φ0k(z)| < R and take in Theorem 25 the
positive ε, small enough, then for values of the index n > n0 it is clear which
of the automorphic functions of fn is the one that corresponds to a particular
φ0k . We changed the indices so that |φ0k(z) − φ[n]0k (z)| < ε. In other words, the

values φ[n]0k (z) for n > n0 (in Theorem 25 we denoted n0 = N(R, ε)) are trapped
inside a small circle of a radius ε centered at φ0k(z). The un-ambiguity follows
because for a small enough ε > 0, the disks B(φ0k(z), ε) for |φ0k(z)| < R

have disjoint closures. We can achieve this by choosing ε < 1
2 min{|φ0,k1

(z) −
φ0,k2

(z)|||φ0,k1
(z)|, |φ0,k2

(z)| < R,φ0,k1
(z) �= φ0,k2

(z)}. The minimum exists
because the set {φ0,k(z)||φ0,(z)| < R} is a finite set. The number ε should also
be smaller than min{R − |φ0,k(z)|||φ0,k(z)| < R}. Every value z of complex
parameter determines such a configuration as the one described above. Thus those
configurations (that geometrically look like an open disk of radius R punctured by
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finitely many small disks of radius ε that have disjoint closures and that stay away
from ∂B(0, R)) are determined by three quantities:

(z, R, ε) ∈
(
C− f−1(f (0)) ∪

⋃

n

f−1
n (fn(0))

)
× R

+ × (0, δ(z, R)),

where we have the formula:

δ(z, R) = min

{
1

2
min{R − |φ0,k(z)|||φ0,k(z)| < R},

1

2
min{|φ0,k1

(z)− φ0,k2
(z)|||φ0,k1

(z)|, |φ0,k2
(z)| < R,φ0,k1

(z) �= φ0,k2
(z)}

}
.

In the sequel we will be interested in such configurations determined by (z, R, ε)
for which R→+∞ and ε → 0+.

23 Amenability of the Automorphic Group

Let us assume that the sequence {fn}n ⊆ E satisfies the following:

(a) fn→ f ∈ E uniformly on compact subsets of C.
(b) The discrete groups Aut(fn) are amenable.

Example For f (z) =∑∞
j=0 aj z

j ∈ E we can take fn(z) =∑n
j=0 aj z

j ∈ E. Then
fn(z) ∈ C[z], polynomials, and hence for each n Aut(fn) is a finite group (of order
deg fn). Hence Aut(fn) are amenable ∀ n ∈ Z

+, for which fn ∈ E.

One might try to construct a Følner sequence in order to prove amenability of
Aut(f ), f ∈ E. Let us recall few notions and results.

Definition 10 A discrete group G satisfies the Følner condition if for every finite
subset A ⊆ G and every ε > 0 there exists a finite nonempty subset F ⊆ G such
that ∀ a ∈ A we have:

|aF � F |
|F | ≤ ε.

If G is locally compact we use the same definition but A is a compact subgroup,
F is a Borel set with positive Haar measure and we use Haar measure instead of
cardinality.

Example All finite (or compact in the locally compact case) groups satisfy the
Følner condition, by simply taking F = G (aF � F = aG � G = ∅).
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Definition 11 For a discrete and countable (resp. locally compact) group G, a
Følner sequence is a sequence {Fn} of nonempty finite (resp. compact) subsets ofG
such that:

|gFn � Fn|
|Fn| →n→∞ 0

(
resp.

μ(gFn � Fn)
μ(Fn)

→n→∞ 0

)
∀ g ∈ G.

The following lemma is well-known.

Lemma 4 ([9]) A group satisfies the Følner condition, if and only if it has a Følner
sequence.

Example The group Z has a Følner sequence, namely Fn = {−n, . . . , n}.
The usefulness of Definition 10 comes from the following well-known theorem.

Theorem 26 ([9]) A group satisfies the Følner condition, if and only if it is
amenable.

Coming back to our setting where f ∈ E, fn ∈ E are polynomials, we fix z ∈ C.
We take a sequence 0 < R1 < R2 < . . . < Rn < . . . (Rn →∞), and for each pair
(z, Rn) we take an εn so that 0 < εn < δ(z, Rn) and εn → 0+. We take fm(n) such
that, using the notations of Theorem 25, m(n) > N(Rn, εn). We define a sequence
of finite subsets of Aut(f ) by:

Fn = {φ0k| |φ0k(z)| < Rn}, n ∈ Z
+.

We fix an automorphic function φ0l ∈ Aut(f ) and we consider:

|φ0l ◦ Fn � Fn|
|Fn| .

By the choice m(n) > N(Rn, εn) there is (as explained after Theorem 25) a
canonical bijection between Fn and Fn(fm(n)) = {φ[m(n)]0k | |φ[m(n)]0k (z)| < Rn}.
Moreover, if n is large enough, then φ0l ∈ Fn and so it is canonically corresponding
to φ[m(n)]0l . Hence:

|φ0l ◦ Fn � Fn|
|Fn| = |φ

[m(n)]
0l ◦ Fn(fm(n)) � Fn(fm(n))|

|Fn(fm(n))| .

By φ0l ∈ Fn we clearly have φ[m(n)]0l ∈ Fn(fm(n)) and in fact when n → ∞, we

have φ[m(n)]0l (z)→ φ0l (z). Thus |φ[m(n)]0l (z)| is bounded for n→∞ and gets closer
as we please to |φ0l (z)|.
Theorem 27 If

lim
n→∞

|Fn(fm(n))|
|Aut(fm(n))| = 1,
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then {Fn} is a Følner sequence and hence Aut(f ) is amenable.

Proof Clearly ∀ n ∈ Z
+ we have |Fn(fm(n))| ≤ |Aut(fm(n))| simply because

Fn(fm(n)) ⊆ Aut(fm(n)). Let us denote |Fn(fm(n))| = (1 − εn)|Aut(fm(n))|. Then
0 ≤ εn ≤ 1, and by our assumption:

1 = lim
n→∞

|Fn(fm(n))|
|Aut(fm(n))| = lim

n→∞(1− εn).

Thus limn→∞ εn = 0. Clearly, we have the following straightforward estimate:

0 ≤ φ
[m(n)]
0l ◦ Fn(fm(n)) � Fn(fm(n))|

|Fn(fm(n))| ≤ 2εn
1− εn .

Hence:

0 ≤ |φ0l ◦ Fn � Fn|
|Fn| ≤ 2εn

1− εn .

This implies that:

lim
n→∞

|φ0l ◦ Fn � Fn|
|Fn| = 0,

and our theorem follows. �%
We can give another condition on f (w) that implies that Aut(f ) is amenable.

This time it is a geometrical condition. We start with the following:

Definition 12 Let f ∈ E. Suppose that the z-plane is tiled up by a system of
fundamental domains {Ωj }j of the entire function w = f (z). We say that two
fundamental domainsΩ1 andΩ2 are neighboring ifΩ1∩Ω2 = ∅, ∂Ω1∩∂Ω2 �= ∅.
Definition 13 Let f ∈ E. Suppose that the z-plane is tiled up by a system of
fundamental domains {Ωj }j of the entire function w = f (z). Let Ω0 be one of
the fundamental domains in the system and let us denote by G1(Ω0) the family
of all the neighboring domains of Ω0. We will sometimes denote the members of
G1(Ω0) = {Ω1j }j and call G1(Ω0) the first generation about Ω0.

Definition 14 Let f ∈ E. Suppose that the z-plane is tiled up by a system of
fundamental domains {Ωj }j of the entire function w = f (z). Let Ω0 be one of
the fundamental domains in the system. Let n ∈ Z≥2. The n’th generation about
Ω0 is denoted by Gn(Ω0) = {Ωnj }j and is defined recursively by the following
recursive equation:

Gn(Ω0) =
⋃

Ω∈Gn−1(Ω0)

G1(Ω)− {Ω0} ∪
n−1⋃

j=1

Gj(Ω0).
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The counting function of the generations about Ω0 is defined by: g(Ω0, n) =
|Gn(Ω0)|.
Examples

1) Let f (z) = zN for some N ∈ Z≥2. Then a natural system of fundamental
domains are:

Ωj =
{
z ∈ C| 2πj

N
< arg z <

2π(j + 1)

N

}
, j = 0, 1, . . . , N − 1.

Then ∀ j G1(Ωj ) = {Ω0,Ω1, . . . ,ΩN−1} − {Ωj }, and Gn(Ωj ) = ∅, ∀ n > 1.
So:

g(Ωj , n) =
{
N − 1 if n = 1
0 if n > 1

.

2) Let f (z) = ez. A natural system of fundamental domains are:

Ωj = {z ∈ C| 2πj < /z < 2π(j + 1)} , j ∈ Z.

Here we have: Gn(Ω0) = {Ω−n,Ωn}, and hence g(Ω0, n) = 2.

Theorem 28 Let f ∈ E have a system of fundamental domains. Let Ω0 be a
fundamental domain in the system and let G1(Ω0) = {Ω1j }j . Let denote (as usual)
by φ0j : Ω0 → Ω1j the corresponding automorphic function of f . Then {φ0j }j is
a generating set of the automorphic group, Aut(f ).

Proof This is immediate from the definitions. The automorphic function φ12 :
Ω11 → Ω12 is given by the composition: φ02 ◦ φ−1

01 which maps as follows:

Ω11
φ−1

01→ Ω0
φ02→ Ω12.

If, for instance, the curve a � b is common to ∂Ω12 and to ∂Ω24 and the
automorphic function φ02 : Ω0 → Ω12 maps the curve a′ � b′ which is common
to ∂Ω0 and t ∂Ω13 to the curve a � b, then φ0(24) : Ω0 → Ω24 is given by the
composition: φ0(24) = φ03 ◦ φ02, etc. . . �%
In particular we have:

Corollary 20 Let f ∈ E have a system of fundamental domains. If Aut(f ) is not
a finitely generated group, then for any system {Ωj }j of fundamental domains and
for any j , the first generation G1(Ωj ) is an infinite family.

Remark 28 We recall that according to Shimizu’s definition in [14], the boundaries
of a fundamental system of an entire function have no accumulation point in the
finite plane. Moreover, not every entire function has a system of fundamental
domains. Gross constructed an entire function which has all the points of C as its
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asymptotic values. In [14] Shimizu proved that the Gross function has no system of
fundamental domains.

Theorem 29 Let f ∈ E have a system of fundamental domains {Ωj }j having the
property that ∀ j we have:

lim
n→∞

{
g(Ωj , n)∑n
m=1 g(Ωj ,m)

}
= 0.

In particular the g(Ωj ,m) are always finite! Then Aut(f ) is amenable.

Proof One can check that the finite sets of automorphic functions φ : Ω0 → Ω

where Ω ∈ ⋃n
k=1Gk(Ω0), which we denote by Fn form a Følner sequence for

Aut(f ). �%
Corollary 21 Let f ∈ E have a system of fundamental domains {Ωj }j such that
∀ j there is a polynomial Pj (x) of degree dj for which g(Ωj , n) ∈ Ω(Pj (n)), i.e.
there are two positive numbers 0 < cj < Cj such that ∀ n ∈ Z

+, cj · Pj (n) ≤
g(Ωj , n) ≤ Cj · Pj (n). Then Aut(f ) is amenable.

Proof We will use the following well-known estimate of the moments of the natural
numbers:

1d + 2d + . . .+ nd = nd+1

d + 1
+ n

d

2
+ dn

d−1

12
+ O(nd−3).

By this estimate we obtain:

lim
n→∞

nd

1d + 2d + 3d + . . .+ nd = 0.

By the assumption on the counting function g(Ωj , n) and by Theorem 29 the result
follows. �%
Remark 29 Theorem 29 does not imply anything in the case where g(Ωj , n) =
Ω(qn), i.e. a geometric growth. For:

lim
n→∞

qn

1+ q + q2 + . . .+ qn = 1.
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Integral Representations in Complex
Analysis: From Classical Results to
Recent Developments

Michael Range

Abstract After a review of key classical results concerning integral kernels in
multidimensional complex analysis and their numerous applications, we discuss
some of the central open problems in the general case of weakly pseudoconvex
domains. In the final section we describe some more recent results that suggest new
approaches towards making progress on some of these problems.

1 Classical Results

Most of the results described in this section are covered in detail in [15, 37], and/or
[27], to which the reader is referred to for any explanation of the basic terminology
and concepts of multidimensional complex analysis.

1.1 Results Up to the 1940s

In dimension one, the Cauchy integral formula is a most fundamental tool. First
generalizations to higher dimensions involved the case of polydiscs, or more general
products of domains in C, which was already used by Weierstrass in order to prove
standard local properties of holomorphic functions in several variables, such as
infinite differentiability and local power series expansion. These results, essentially,
just involved an iteration of the one-dimensional formula, one variable at a time.

In the 1930s, A. Weil and, independently, S. Bergman introduced integral repre-
sentations on so-called polynomial polyhedra, a special case of analytic polyhedra
A. The latter are defined by finitely many holomorphic functions h1, . . . , hl on a
domain D in C

n as follows:
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A = {z ∈ D : ∣∣hj (z)
∣∣ < 1, j = 1, . . . , l},

with the requirement that A is relatively compact in D. Since every domain of
holomorphy can be exhausted by an increasing sequence of analytic polyhedra,
these domains played an important role in the development of the basic theory
of holomorphic functions on such domains in the period 1935–1955. In particular,
the Bergman–Weil integral formula was an important ingredient in K. Oka’s 1942
solution of the Levi problem in dimension two.

A key feature of the integral representation formulas for product domains and
analytic polyhedra is that integration is over a thin subset of the topological
boundary bA which is known as the distinguished boundary of A.

Another natural generalization of a disc to higher dimensions is a ball

B(a, r) = {z ∈ C
n :∑n

j=1

∣∣zj − aj
∣∣2 < r2}.

Quite different techniques are needed in order to develop integral representation
formulas in this case, or for the more general case of a smoothly bounded domain
in C

n.
The first and most general integral representation formula for such domains

involves the Bochner–Martinelli kernel KBM(ζ , z). It is defined by

KBM(ζ , z) = (n− 1)!
(2πi)n

∑n
j=1(ζ j − zj )dζ j ∧ (∧ν �=j dζ ν ∧ dζ ν)

|ζ − z|2n .

Note that in case n = 1, KBM(ζ , z) = 1
(2πi)

(ζ−z)dζ
|ζ−z|2 = 1

(2πi)
dζ
ζ−z is exactly the

familiar Cauchy kernel.
One has the following Bochner–Martinelli formula [3, 30]:
If D ⊂⊂ Cn has (piecewise) differentiable boundary, then

f (z) =
∫

bD

f (ζ )KBM(ζ , z) , z ∈ D,

for all f ∈ O(D) ∩ C(D).
Note that for n = 1 this is exactly the standard Cauchy integral formula. Just

as in dimension one, the Bochner–Martinelli kernel is closely related to harmonic
analysis, in particular, it can be obtained quite directly from the Newtonian kernel,
i.e., from the fundamental solution of the Laplacian.

The main advantage of the Bochner–Martinelli kernel and of the related integral
representation formula is that it does not depend on the domain. On the other hand
it has significant disadvantages. For example, when n ≥ 2, KBM(ζ , z) is NOT
holomorphic in z or ζ . Furthermore, its singularity behaves the same way in all
directions, and it ignores the complex geometry of the boundary. Also, it does not
distinguish between ∂/∂zj and ∂/∂zj derivatives in any essential way.
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So, KBM is not particularly useful for any refined constructions and estimations
in multidimensional complex analysis.

Still, there are some interesting applications, such as one of the simplest proofs
of the famous Hartogs extension theorem, as given both by Martinelli in 1942 and
Bochner [3], independently, based on an idea of R. Fueter, as well as of the following
important generalization.

Global CR - Extension Theorem Suppose bD is connected, and n ≥ 2. Let
f ∈ C1(bD) be a CR-function (i.e., ∂bf = 0, that is, f satisfies the tangential
Cauchy–Riemann equations). Then f extends to a holomorphic function on D, i.e.,
there exists F ∈ O(D) ∩ C(D) with F = f on bD.

In the classical Hartogs theorem, the given function f was assumed to be
holomorphic in an open neighborhood of the boundary bD.

Since the correct history of this result is not well known, I take the opportunity
to recall the key contributions.

The concept of tangential Cauchy–Riemann equations on real submanifolds of
C
n and of the corresponding notion of CR-function goes back to W. Wirtinger

in 1926. The first version of the global CR-extension theorem was proved by
Francesco Severi in 1931 in the case that bD and f are real analytic. In case bD is
of class C2 and strictly pseudoconvex, the result was proved by Hellmuth Kneser
in 1936 (in dimension two). Kneser, in fact, proved a local CR-extension theorem
which is somewhat stronger than the result proved 20 years later by Hans Lewy and
that became widely known in the 1950s. The general differentiable case was first
proved by Gaetano Fichera in 1957, and in 1961 Martinelli found the simplest proof
by using directly the BM-kernel.

Unfortunately, the work of Wirtinger, Severi, Kneser, and Fichera and the 1961
proof of Martinelli have been largely overlooked in the literature for many years.
On the other hand, since the late 1960s the global CR extension theorem had been
widely attributed to S. Bochner, with reference to his 1943 paper, even going as far
as suggesting that Bochner introduced the idea of CR-functions. However, there is
NO such result in Bochner’s 1943 paper, and furthermore there is NO evidence in
Bochner’s work in the 1940s and 1950s that he knew of CR functions at that time,
and that he proved this result or anything similar to it. The reader interested in more
details should consult [39, 40].

Given these rather limited results in higher dimensions, it is not surprising that the
major developments in multidimensional complex analysis in the 1950s and 1960s
did not use any integral representation formulas at all, except for the elementary
polydisc case. In fact, in contrast to the dominant role of the Cauchy integral formula
in the classical one variable theory, most of the widely known books of that period
did not mention any integral representation formulas besides the polydisc case.
Instead, the key developments during those decades relied on new techniques such
as coherent analytic sheaves and, eventually, deep methods from partial differential
equations.



452 R. M. Range

1.2 Leray’s New Kernel Construction

In order to develop integral kernels that could be applied to generalize results from
classical complex analysis, such as refined approximation theorems and relevant
estimates up to the boundary of a domain, one needed a kernel that is holomorphic
in the parameter z, just like the classical Cauchy kernel. Furthermore, such a kernel
would be needed for domains more general than product domains and analytic
polyhedra. So a new method to construct kernels—explicitly using the complex
structure—had to be found. Furthermore, since such a kernel holomorphic in z on
D needs to have a singularity at points ζ ∈ bD, in essence it will be necessary to
require that the domain D is a domain of holomorphy, and hence pseudoconvex.

A key result was obtained by Jean Leray in 1956, with full details published in
[24]. Leray introduced a general technique to construct a large class of kernels. He
called them Cauchy–Fantappié kernels, in memory of his close friend, the Italian
mathematician L. Fantappié, who had just died unexpectedly.

Given the importance of these kernels for all subsequent work up to the most
recent times, we shall now describe Leray’s construction, in a slightly modified
version from the original one. Suppose D is a domain with smooth boundary.
A (1, 0) form W(ζ , z) = ∑n

j=1wj(ζ , z)dζ j of class C1 on bD × D is called a
(kernel) generating form for D if

∑n
j=1wj(ζ , z)(ζ j − zj ) = 1 on bD ×D.

Note that in dimension one there exists exactly one generating form, namely dς
ς−z ,

while in higher dimensions, as we shall see, there are numerous possibilities.
Given such a formW, one defines the Cauchy–Fantappié kernel generated byW

to be the (n, n− 1) form in ς (with coefficients depending on (ς, z))

1(W) = 1

(2πi)n
W ∧ (∂ζW)n−1.

In particular, the Bochner–Martinelli kernel discussed earlier is the (global) CF
kernel generated by

WBM =∑n
j=1

ζ j − zj
|ζ − z|2 dζ j .

By using the defining equation for generating forms, one readily proves that
dς1(W) = ∂ς1(W) = 0. Most significantly, this then implies the Cauchy–
Fantappié formula of Leray,

f (z) =
∫

bD

f (ζ )1(W)(ζ , z) , z ∈ D,

for all f ∈ O(D) ∩ C(D).



Integral Representations in Complex Analysis: From Classical Results to. . . 453

A simple important case involves (Euclidean) convex domains D with C2

boundary. If r is a C2 defining function for D (i.e., D = {z : r(z) < 0} and
dr �= 0 on bD), convexity implies that

-(ζ , z) =
∑

j

∂r

∂ζ j
(ζ )(ζ j − zj ) �= 0 on bD ×D.

ThereforeWC = ∂r/- is a generating form for D that is holomorphic in z. The
corresponding CF - kernel 1(WC)(ζ , z) is then holomorphic in z ∈ D as well.

Its pull-back to the boundary is independent of the defining function r , so that this
kernel, known as the Cauchy–Leray kernel for convex domains, is an intrinsically
defined object for any smoothly bounded convex domain. Note that this includes a
holomorphic Cauchy-type kernel for a ball.

Unfortunately, Leray did not pursue this line of research further. Since convex
domains were viewed as much too special for the purposes of global complex
analysis, and since in the 1950s questions related to boundary behavior of analytic
objects were not at the forefront, this construction moved to the sidelines for the
next decade.

1.3 Kernels for Strictly Pseudoconvex Domains

Things were very different about 10 years later. Most likely the emergence of PDE
methods in multidimensional complex analysis, beginning in the early 1960s, had
major influence. The work of J. J. Kohn [19], who obtained sharp optimal L2

estimates for the ∂-Neumann problem up to the boundary of strictly pseudoconvex
domains, and subsequently of A. Andreotti and E. Vesentini [1] and L. Hörmander
[16], signaled a more analytic approach to several complex variables. It thus
appeared quite natural to search for Cauchy-type holomorphic kernels on strictly
pseudoconvex domains. In particular, H. Grauert in Göttingen—quite aware of the
potential deep applications—presented this problem to Enrique Ramirez, one of his
doctoral students. Ramirez solved the problem [34], and even before his work was
published, Grauert, in collaboration with I. Lieb, used the Ramirez kernel to prove
sup-norm estimates for solutions of the Cauchy–Riemann equations [12]. Lieb [25]
then used this result to prove a higher dimensional version of the classical 1952
approximation theorem of S. N. Mergelyan, as follows:

If D is strictly pseudoconvex, then every f ∈ O(D)∩C(D) can be approximated
uniformly on D by functions holomorphic in a neighborhood of D.

Given that the late 1960s seemed ripe for such results, it is not surprising that
essentially around the same time these results were also obtained, independently,
by G. M. Henkin in Moscow [13, 14]. We remark that the above approximation
theorem was also proved by N. Kerzman [17], who built upon the results of Grauert
and Lieb, and, in particular, showed the usefulness of local kernels.
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In hindsight, the local construction of the kernel should have been seen already
by Leray. In fact, since near any boundary point a strictly pseudoconvex domain
is locally biholomorphically equivalent to a convex domain, it is just an exercise
to transport Leray’s Cauchy kernel—locally—to a strictly pseudoconvex domain,
thereby obtaining a generating form holomorphic in z for such domains, that is
defined for |ζ − z| < ε, where ε > 0 is sufficiently small. The main difficulty then
is to use the local data to construct a global holomorphic generating formWHR on
bD ×D. Ramirez solved this problem by using deep results from coherent analytic
sheaf theory, while Henkin used the global ∂ methods developed by Hörmander,
resulting in a technically simpler construction than the one of Ramirez. Still, the
essential local features of the resulting kernels are identical. This kernel 1(WHR)

is generally known as the Henkin–Ramirez (HR-) kernel.
Since every domain with smooth boundary in C

1 is trivially strictly pseudocon-
vex, the HR-kernel can be viewed as the optimal higher dimensional generalization
of the classical Cauchy kernel. Just like in dimension one, the HR-kernel can readily
be estimated, and in the 1970s and 1980s it has led to numerous major applications
and new results in function theory on strictly pseudoconvex domains.

Furthermore, W. Koppelman [23] showed how to generalize the Cauchy–
Fantappié kernels of Leray to differential forms of type (0, q), or more generally,
type (p, q). Given a generating formW and 0 ≤ q ≤ n− 1, one defines the double
differential form

1q(W) = cn,qW ∧ (∂ςW)n−q−1 ∧ (∂zW)q,

which is of type (n, n − q − 1) in ς and type (0, q) in z. Here cn,q is a
numerical constant that depends on n and q. Note that 10(W) = 1(W) (the
kernel introduced by Leray); for convenience one also sets1−1(W) =1n(W) = 0.
The corresponding Bochner–Martinelli–Koppelman kernels 1q(WBM) lead to the
following representation formula for forms f ∈ C1

(0,q)(D), 0 ≤ q ≤ n, on an

arbitrary bounded domain D with piecewise C1 boundary, where the integration is
with respect to ς , and z ∈ D is a parameter:

f (z) =
∫

bD

f ∧1q(WBM)− ∂z
∫

D

f ∧1q−1(W
BM)−

∫

D

∂f ∧1q(WBM).

This formula gives an explicit solution for the ∂−equation ∂u = f in case f is
∂-closed with compact support, or for forms of type (0, n), generalizing classical
results in dimension one.

Koppelman also showed how the preceding representation formula needs to be
adjusted if in the boundary integral the BM-generating formWBM is replaced with
another generating formW. Given such aW , one defines an integral operator

T Wq : C(0,q)(D)→ C(0,q−1)(D),
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for 0 ≤ q ≤ n by

T Wq f =
∫

bD

f ∧1q−1(W,W
BM)−

∫

D

f ∧1q−1(W
BM),

where 1q−1(W,W
BM) is a rather complicated double differential form that

depends explicitly onW andWBM. One then has the representation formula

f =
∫

bD

f ∧1q(W)+ ∂T Wq f + T Wq+1∂f for f ∈ C1
(0,q)(D).

While these formulas were announced by Koppelman in 1967, his untimely death
prevented him from publishing proofs. First complete proofs of these results were
obtained by I. Lieb [26], who, most importantly—as discussed below—showed how
to use these formulas for solving ∂ on (0, q)-forms for general q. Inspired by Lieb’s
work, shortly thereafter N. ∅vrelid obtained somewhat different proofs [33].

By applying this formula with the (holomorphic) HR-generating form on a
strictly pseudoconvex domain, one trivially gets 1q(WHR) = 0 for q ≥ 1.
Consequently, if f is ∂-closed, one obtains the rather explicit integral solution
operator T W

HR

q for ∂ , since then the above representation formula reduces to

f = ∂T WHR

q f .

By using these formulas and variations thereof, mathematicians could solve
numerous analytic problems on strictly pseudoconvex domains. In particular, it was
proved that the operators T W

HR

q satisfy optimal Hölder estimates such as

∣∣∣T W
HR

q f

∣∣∣
1/2
≤ C |f |0 ,

in analogy to the 1/2 subelliptic estimate proved by Kohn in the L2-setting [19].
Similar estimates were obtained in numerous other function spaces.

Another important by-product was the precise identification of the principal term
of fundamental abstract Hilbert space operators in complex analysis in terms of the
singularities of theHR-kernel, the operators T W

HR

q , and appropriate variations. For
example, this was first done for the Szegö kernel by N. Kerzman and E. Stein [18].
A few years later E. Ligocka handled the Bergman kernel [29], and this method
allowed a major simplification of the proof of C. Fefferman’s famous mapping
theorem [10]:

If F is a biholomorphic map between strictly pseudoconvex domains with C∞
boundaries, then F extends C∞ to the boundary.

Finally, assuming a special metric adapted to the complex geometry of the
boundary (a so-called Levi metric), Lieb and Range handled the canonical solution
operator for ∂ that arises in the L2 theory of the ∂-Neumann problem [28].
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By using completely different methods based on pseudo-differential operators,
shortly thereafter R. Beals, P. Greiner, and N. Stanton were able to handle general
metrics [2].

We conclude this section by mentioning that in the early 1980s it was discovered
how the general machinery of integral representations, suitably applied to the
elementary local holomorphic generating form mentioned earlier (the transplant of
the Cauchy–Leray kernel for convex domains) could be used to obtain global results
directly, avoiding any of the deep results from coherent analytic sheaves and/or PDE
that were used by Ramirez and Henkin. (See [36] and [15]).

Just as in the very classical one-dimensional setting three distinct view points—
power series, Cauchy–Riemann equations, and Cauchy integral formula—could be
used to establish fundamental results, complex analysis on strictly pseudoconvex
domains could now be similarly developed by the corresponding distinct higher
dimensional versions: coherent sheaf theory, ∂-methods, and integral representa-
tions.

2 Beyond Strictly Pseudoconvex Domains: Many Problems

2.1 L2 Results and Finite Type

While every smoothly bounded domain in dimension one is strictly pseudoconvex,
in higher dimensions new phenomena arise, even within the class of pseudoconvex
domains. Such smoothly bounded pseudoconvex domains, where the Levi form
is not positive definite at every boundary point but just semi-definite, are gen-
erally called weakly pseudoconvex, and they are a genuine higher dimensional
phenomenon. In particular, the complex geometry of the boundary can be very
complicated, and so far the general case is not well understood. Furthermore,
counter examples have been found over the years that demonstrate how certain
basic results for strictly pseudoconvex domains do not hold for general weakly
pseudoconvex domains. For example, it is not possible to use a holomorphic
coordinate change to locally turn the domain into something convex, as in the strictly
pseudoconvex case, and in general there are no sup-norm estimates for solutions
of ∂ . Of course, one could go even further and consider non-pseudoconvex domains,
but this more general case ultimately can be properly investigated only by including
envelopes of holomorphy, involving the class of Riemann domains that are complex
manifolds spread over Cn.

But weakly pseudoconvex domains already present enough major challenges and
open problems, and it is therefore quite reasonable to focus on such domains, at
least for the foreseeable future. Historically, the PDE methods based on abstract
Hilbert space techniques have been most successful. For example, by introducing
appropriate weight functions, in 1973 J.J. Kohn proved global regularity for the
Cauchy–Riemann equations on arbitrary weakly pseudoconvex domains, that is,
given a form f ∈ C∞(0,q+1)(D) with ∂f = 0, there exists a solution u ∈ C∞(0,q)(D)
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of the equation ∂u = f [20]. However, counterexamples show that in general there
is no such global regularity result for the canonical solution arising from the ∂-
Neumann problem. Instead, it turns out that in order to obtain sharp local regularity
estimates one needs to consider the so-called domains of finite type. In essence, this
condition means that the Levi form vanishes to finite order, or—more precisely—
that at every point P ∈ bD the maximal order of contact of bD with complex
analytic varieties (including singularities) is finite. This condition was introduced
in dimension 2 by using vector fields by Kohn in 1972, and the appropriate general
version was obtained by J. D’Angelo in 1982 [8]. The central role of finite type is
evidenced by the key result of Kohn (sufficiency) and D. Catlin (necessity) that finite
type at P ∈ bD is necessary and sufficient for the existence of a (local) subelliptic
estimate

‖f ‖2ε ≤ C[
∥∥∂f

∥∥2 +
∥∥∥∂∗f

∥∥∥
2 + ‖f ‖2] ,

for some ε > 0 and all smooth f ∈dom(∂
∗
) with compact support in a small

neighborhood U ∩D of P [4, 21].
This latter result, in particular, implies that Fefferman’s mapping theorem (see

above) can be extended to the finite type case. However, in spite of numerous efforts,
to this author’s knowledge it is still unknown whether the corresponding result holds
in the arbitrary weakly pseudoconvex case.

2.2 The Obstruction to Holomorphic Kernels

Turning to integral representations, the situation is much worse. One major obstacle
is that there is no analogue of the essential local ingredient in the construction of the
Henkin–Ramirez kernel, that is, the Levi polynomial F (r) of a defining function r for
the domain D. In order to understand this better, and also in light of the discussion
in Section 3, let us review the key concepts. We assume that for a fixed k ≥ 3 the
function r has a bounded Ck norm |r|k over U . The Taylor expansion of r(z) at the
point ζ ∈ U up to order 2 can be written as

r(z) = r(ζ )+ 2 Re
[
−F (r)(ζ , z)

]
+ L(r, ζ ; ζ − z)+O(|ζ − z|3),

where F (r)(ζ , z) (that is, the Levi polynomial) is defined by

F (r)(ζ , z) =
∑

j

∂r

∂ζ j
(ζ )(ζ j − zj )+

(−1

2
)
∑

j,k

∂2r

∂ζ j ∂ζ k
(ζ )(ζ j − zj )(ζ k − zk),

and L(r, ζ ; t) is the Levi form of r at ζ applied to the vector t ∈ C
n.
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Assume now that D is strictly Levi pseudoconvex; one may then choose the
defining function r to be strictly plurisubharmonic on a neighborhood U of bD, i.e.,
there is c > 0 so that

L(r, ζ ; ζ − z) ≥ 2c |ζ − z|2 .

It then follows that there exists ε > 0 so that for ζ ∈ U and z with |ζ − z| < ε
one has

2 Re
[
F (r)(ζ , z)

]
≥ r(ζ )− r(z)+ c |ζ − z|2 .

In particular, if ζ ∈ bD, and z ∈ D satisfies |ζ − z| < ε, one has

2 Re
[
F (r)(ζ , z)

]
≥ |r(z)| + c |ζ − z|2 ,

that is, F (r)(ζ , z) is a holomorphic function in z that has a zero at ζ , but that is non-
zero on D ∩ B(ζ , ε) \ {ζ }. Such a function is also known as a (local) holomorphic
support function.

Since trivially F (r)(ζ , z) =∑
j gj (ζ , z)(ζ j − zj ), with gj holomorphic as well,

it follows that

W(r)(ζ , z) =
∑
j gj (ζ , z)dζ j

F (r)(ζ , z)

is a (local) holomorphic generating form on bD × {z ∈ D : |ζ − z| < ε}.
The deep work of Henkin and Ramirez mentioned earlier in Section 1.3 involves

passing from this local generating form to a global generating formWHR(ζ , z) that
is holomorphic for z ∈ D. The simple local estimates for the Levi polynomial we
just stated are critical for all deeper applications of the Henkin–Ramirez kernel.

Unfortunately, for an arbitrary (weakly) pseudoconvex domain, there does not
exist any explicit holomorphic analogue of the Levi polynomial. In fact, the 1972
famous example of Kohn and Nirenberg [22] provides a simple pseudoconvex
domain D of finite type 8, with 0 ∈ bD, so that the zero set of any holomorphic
h in any neighborhood U of 0 with h(0) = 0 will have points both in D ∩ U
and in U \ D. In particular, this example cannot be locally biholomorphically
equivalent to a convex domain! The situation is even worse: shortly thereafter J.
E. Fornaess modified and refined the example by showing that this even fails if the
biholomorphic coordinate change on U ∩D is only C1 up to the boundary.



Integral Representations in Complex Analysis: From Classical Results to. . . 459

2.3 Partial Results for Convex Domains and in Dimension Two

Given this obstruction, it therefore seemed natural to consider convex domains,
where the existence of a holomorphic generating form was known since 1956,
thanks to Leray. In order to obtain estimates, some special cases were considered
at first. For example, this author considered generalized complex ellipsoids

{z : |z1|m1 + . . .+ |zn|mn < 1},

where the mj are positive even integers, and proved Hölder estimates for solutions
of ∂ of any order ε < 1/M, whereM = max{mj } is the type (introduced earlier) of
the domain [35]. In 1986 Diederich–Fornaess–Wiegerinck obtained corresponding
results on real generalized ellipsoids, and in the late 1990s, A. Cumenge, and—
independently—Diederich–Fischer–Fornaess proved Hölder estimates for ∂ on
(Euclidean) convex domains of finite type [6, 7, 9]. The latter results made critical
use of information about the complex geometry of finite type in the convex case
obtained by J. McNeal and E. M. Stein [31]. This case is much better understood
than the general finite type case, since convexity implies that the type can be
identified by just considering the order of contact of the boundary with complex
lines.

Another case for which positive results are known is in dimension 2. Here, too,
finite type is more elementary than in the general case. As originally introduced by
Kohn in 1972, finite type in dimension two can be characterized by just considering
a non-zero local (1, 0) tangent vector field L and its conjugate L: bD is of finite
type ≤ m at P ∈ bD if and only if L, L, and their commutators up to order m
generate the full (complexified) tangent space at P. In terms of order of contact, this
is equivalent to saying that the order of contact at P between bD and (nonsingular)
holomorphic curves is ≤ m. Given this much simpler situation, Nagel–Rosay–
Stein–Wainger, and—independently—Catlin were able to obtain a rather precise
description of the local complex geometry of finite type in dimension two [5, 32].

In order to construct holomorphic kernels, one had to deal with the fundamental
obstruction of the Kohn–Nirenberg example. This author used a deep classical
result of H. Skoda [44] to construct holomorphic generating forms. Skoda’s result
is valid on arbitrary pseudoconvex domains (no smoothness assumptions); it uses
an ingenious modification of the L2 techniques of Hörmander [16] to obtain rather
precise estimates with weights on holomorphic L2 functions f and g1, . . . , gp to
characterize when f is in the ideal generated by g1, . . . , gp.

For ζ ∈ bD, the constant function f ≡ 1 satisfies Skoda’s conditions to be in the
ideal generated by gj = (ζ j − zj ), j = 1, . . . , n. One therefore obtains precise L2

estimates with weights for holomorphic solutions (in z) (w1(ζ , z), . . . , wn(ζ , z)) of
the equation

∑n
j=1wj(ζ , z)(ζ j − zj ) = 1.
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Consequently,WSk =∑n
j=1wj(ζ , z)dςj is a holomorphic generating form which,

in contrast to the Leray form or the HR-form, is only defined for z ∈ D,

and moreover is highly non-explicit. Still, by combining the precise geometric
information mentioned above in case the domain is of finite type in dimension 2 with
the estimates of Skoda, it was possible to estimate the resulting solution operator
T W

Sk

1 for ∂ and to prove Hölder estimates for solutions of ∂ of any order ε < 1/m,
where m is the maximal type of the domain D [38].

By using completely different methods based on microlocal analysis of pseudo-
differential operators on appropriate models of the boundary, Fefferman and Kohn
had obtained this same result for solutions of ∂ a bit earlier [11], even proving the
optimal estimate with ε = 1/m.

As for dimension ≥ 3, holomorphic integral kernels and pointwise estimates
for ∂ in the general case of weakly pseudoconvex domains of finite type are still
unknown, after more than 40 years that the question was first considered. The
main problem is that the techniques that have worked in the partial results we just
described do not seem to work in general: there is no known model or candidate in
higher dimensions for describing the local complex geometry of finite type, such as
is known in dimension two or for convex domains.

2.4 Speculation on Some Possible Approaches

One fairly natural approach that has been successful to obtain fundamental results in
classical global complex analysis is based on exhausting the given general domain
by better domains, for which more detailed information is available. For example, it
is known that a pseudoconvex domainD can be exhausted by strictly pseudoconvex
domains. In case the boundary is smooth, rather simple strictly plurisubharmonic
exhaustion functions, whose sublevel sets are then strictly pseudoconvex, can be
constructed from a given defining function. Unfortunately, while this approach has
been tried, no useful result has been obtained so far. Still, I believe that there is room
for further investigations. In particular, one could explore whether the condition of
finite type could be used to obtain improved exhaustions, so that critical estimates
can be controlled along the exhaustion.

Another suggestion has its roots in classical work of Kohn and Nirenberg,
who proved subelliptic estimates in the strictly pseudoconvex case via elliptic
regularization, that is, they added a small term εG(ς, z) to the fundamental
operator that made the problem elliptic up to the boundary. This allowed to use
more powerful familiar machinery, and the crux was to produce new (subelliptic)
estimates that ultimately were independent of ε. Letting ε → 0 then preserved these
estimates in the original non-elliptic case. So one could try an analogous technique
for integral kernels, for example, in the finite type case. The challenge of course is
to find an appropriate modification and to prove estimates that remain stable as the
correction term goes to zero.
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Finally there is the result of Skoda that was used successfully by this author
in dimension two. Perhaps the lack of complex geometric information in higher
dimensions could be balanced by improving Skoda’s theorem by introducing
appropriate modifications of his techniques assuming that the domain has smooth
boundary of finite type. In the original work, only generalL2 Hilbert space estimates
with weights were used, so it would appear that a better version of Skoda’s theorem
might be possible. Just like numerous variations of Hörmander’s L2 techniques have
produced much additional precise global information, say involving L2 Sobolev
norms and appropriate weights, comparable refinements of Skoda’s techniques
might (should?) produce additional useful information.

Of course, these few suggestions involve very difficult and highly technical
speculative methods. But then the problem is really very deep. Even the subelliptic
L2 estimates required major highly non-trivial new methods in order to get from the
strictly pseudoconvex case to the finite type case.

3 A New Kernel Approach

Rather than looking for special techniques and new approaches that would allow
the local construction of holomorphic Cauchy–Fantappié kernels, a few years ago I
introduced a modification of the Levi polynomial that leads to a new kernel that is
no longer holomorphic, but still retains significant complex analytic properties.

The advantages one gains are that this construction works on an arbitrary
pseudoconvex domain with differentiable boundary, and that it reflects the ana-
lytic/geometric information contained in the Levi form. Therefore this construction
might lead to new applications.

3.1 Motivation: The Basic L2 A-priori Estimate

The overall plan is motivated by the successful approach in the L2 theory, especially
by Kohn’s 1979 work. Most work in this area begins with the fundamental basic L2

estimate for forms in the domain of the adjoint ∂
∗

that is valid on an arbitrary weakly
pseudoconvex domain D. Let us recall this result in case of (0, 1) forms.

We fix a point P ∈ bD, and choose a local orthonormal frame (ω1, . . . , ωn) for
(1, 0) forms on a neighborhood U of P ∈ bD, with ωn the normal component. Let
{L1, . . . , Ln} be the dual frame of (1, 0) vector fields. The basic L2 estimate then
states that there exists a constant C, such that if f = ∑

fkωk ∈ dom(∂
∗
) with

compact support in U , then
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∑

j, k

∥∥Ljfk
∥∥2 +

∫

bD∩U
L(r, ζ ; f #)dS(ζ ) ≤

≤ C [∥∥∂f ∥∥2 +
∥∥∥∂∗f

∥∥∥
2 + ‖f ‖2],

where f # = (f1, . . . , fn). The norms here are the standard L2 norms. Since
f ∈ dom(∂

∗
), one has fn = 0 on bD, so that f # is tangential and hence, by

pseudoconvexity, L(r, ζ ; f #) ≥ 0
By analogy, in order to study pointwise estimates such as sup-norm or Hölder

estimates, one should start with a pointwise analogue of this basic estimate, as
follows. For q ≥ 1 we define

Dkq(D) = Ck(0,q)(D) ∩ dom(∂
∗
),

for k = 1, 2, . . .. Fix P ,U, and the frames ω1, ω2, . . . , ωn andL1, . . . , Ln as above.
Denote by DkqU those forms in Dkq(D) that have compact support in D ∩ U.

For a C1 form f =∑
J fJω

J of type (0, q) on D, where the summation is over
all strictly increasing q tuples J from {1, . . . , n}, we define the norm

Q0(f ) =
∣∣∂f

∣∣
0 + |ϑf |0 + |f |0 ,

where |·|0 is the sup-norm over D and ϑ is the formal adjoint of ∂ . One would then
like to prove something like

∣∣LjfJ (z)
∣∣ ≤ C Q0(f ) for j = 1, . . . , n and each q-tuple J

for f ∈ DkqU .
Given the well-known subtleties of L∞ estimates in analysis, such a sharp result

is probably not correct. However, a slightly weaker version like

∣∣LjfJ (z)
∣∣ · dist (z, bD)δ ≤ Cδ ·Q0(f ) for all j, J and any δ > 0

would seem quite reasonable and consistent with the basic L2 estimate.

3.2 A New Kernel

It is readily seen that the basic Bochner–Martinelli–Koppelman representation
formula does not yield anything close to the desired a-priori estimate. In particular,
it would seem that pseudoconvexity must be used along the way, just as in the L2

basic estimate.



Integral Representations in Complex Analysis: From Classical Results to. . . 463

We assume that D is a bounded pseudoconvex domain in C
n with Ck boundary

bD (k ≥ 3), and we choose a Ck defining function ϕ for bD defined on a
neighborhood U = U(bD) of bD. In general the level surfacesM−δ = {z : ϕ(z) =
−δ} will not be Levi pseudoconvex for δ > 0.

However, one may choose a defining function r of the form

r(z) = ϕ(z) exp(−C |z|2),
so that if C > 0 is sufficiently large and U(bD) is sufficiently small, its Levi form
satisfies for all ζ ∈ D ∩ U

L(r, ζ ; t) =
n∑

j,k=1

∂2r

∂ζ j ∂ζ k
(ζ )tj tk > 0

for all t ∈ Cn with t �= 0 and
n∑

j=1

∂r

∂ζ j
(ζ )tj = 0.

So the level surfaces Mr(ζ) of r are actually strictly pseudoconvex, but the
resulting estimates are not uniform in ζ as r(ζ ) → 0, unless bD is strictly
pseudoconvex to begin with.

We now fix this particular global defining function r . After shrinking U , we may
assume that for a fixed k ≥ 3 the function r has a bounded Ck norm |r|k over U . We
again consider its Levi polynomial F (r)(ζ , z) (see Section 2.2). As usual, it follows
that

2 Re
[
F (r)(ζ , z)− r(ζ )

]
= −r(ζ )− r(z)+
+L(r, ζ ; ζ − z)+O(|ζ − z|3).

Given a constant K > 0 one now defines

-K(ζ , z) = F (r)(ζ , z)− r(ζ )+K |ζ − z|3 .

One then proves the following key estimate from below: forK suitably large one
has

|-K(ζ , z)| �
[∣∣∣ImF (r)(ζ , z)

∣∣∣+ |r(ζ )| + |r(z)| +

+L(r, ζ ;πtζ (ζ − z))+K |ζ − z|3
]
,

for all ζ , z ∈ D ∩ U with |ζ − z| < ε, where

πtζ : Cn→ T
1,0
ζ (Mr(ζ )) ⊂ C

n
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is the orthogonal projection. We note that by the property of r , the Levi form term
is ≥ 0. As in the familiar strictly pseudoconvex case, r(ζ ) and ImF (r)(ζ , z) can be
used as coordinates in a Ck−2 real coordinate system in a neighborhood B(z, δ) of
a fixed point z ∈ U , provided δ > 0 is sufficiently small. The key information in
this estimate is that -K has a zero of order one in the complex normal direction,
while the Levi form completely controls -K from below in the complex tangential
directions.

Furthermore, if z is fixed, one can introduce special “z−diagonalizing coordi-
nates for ζ ,” so that the Levi form term satisfies

L(r, ζ ;πtζ (ζ − z))+K |ζ − z|3

�
n−1∑

j=1

λj (z)
∣∣ζ j − zj

∣∣2 +K/2 |ζ − z|3 ,

where the λj (z) ≥ 0, j = 1, . . . , n− 1, are the eigenvalues of the Levi form at z.
Similarly, one obtains a corresponding version involving the dual frame

∂r ∧ ∂r ∧ ∂∂r(ζ ) = γ (ζ )ωn ∧ ωn ∧

∧
⎡

⎣
n−1∑

j=1

λj (z)dζ j ∧ dζ j +11

⎤

⎦,

where γ (ζ ) > 0 and 11 is a well-behaved error term that satisfies |11| ≤ C |ζ − z|
for some constant C.

For ζ ∈ bD, one clearly has a decomposition

-K(ζ , z) =
n∑

j=1

g̃j (ζ , z)(ζ j − zj ),

where g̃j = gj +K |ζ − z| (ζ j − zj ) (recall gj from 2.2), so that

WL =
∑n
j=1 g̃j dζ j

-K

is a local generating form on bD×(D∩U) and |ζ − z| < ε. Finally one uses routine
techniques to patch this local generating form with the BM generating form, thereby
obtaining a global generating form on bD ×D that locally agrees with the original
one. We still label this global form WL

D = WL and call it the Levi generating form
for the weakly pseudoconvex domain D.

We now consider the Cauchy–Fantappié kernel 10(W
L) = (2πi)−nWL ∧

(∂ζW
L)n−1 on bD × D − {(ζ , ζ ) : ζ ∈ bD}. As usual, for f ∈ O(D) ∩ CD)

one has the representation formula f (z) = ∫
bD
f 10(W

L)(•, z). Furthermore we
note that for any f ∈ L1(bD) the integral transform
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T L(f ) =
∫

bD

f 10(W
L)

defines a C∞ function on D.
While of course 10(W

L) is not holomorphic in the parameter z, this kernel still
has some special properties that might make it a useful tool. For example, in contrast
to the Bochner–Martinelli kernel, its singularities reflect the complex geometry of
the boundary. Furthermore, it is “more holomorphic” than the Bochner–Martinelli
kernel, as follows. Given any 0 < δ < 1/2 one has an estimate

∣∣∣∣∂z
∫

bD

f 10(W
L)(•, z)

∣∣∣∣ ≤ Cδ |f |0 · dist (z, bD)δ−1 for all f ∈ C(bD).

For the BM-kernel such an estimate (for any derivative) holds only for δ = 0. The
proof of this estimate involves a careful balancing of the estimates from below for
|-K | and the estimates for the numerator that are given above with respect to z−
diagonalizing coordinates, while keeping track of numerous error terms. Full details
are given in [41].

3.3 Pointwise A-priori Estimates

We shall now discuss how the Koppelman formulas discussed in Section 1.3, applied
to the Levi generating form WL, lead to a version of the desired pointwise a-priori
estimates. Recall the generating form WBM for the Bochner–Martinelli kernel and
the general BMK representation formula

f (z) =
∫

bD

f (ζ ) ∧1q(WBM)− ∂z
∫

D

f (ζ ) ∧1q−1(W
BM)−

−
∫

D

∂ζ f (ζ ) ∧1q(WBM) for z ∈ D,

for f ∈ C1
(0,q)(D) that is valid on an arbitrary smoothly bounded domain.

By utilizing the connection between the BMK-kernels and the fundamental
solution ωq for the complex Laplacian

� = ϑ∂ + ∂ϑ = 1

4
�

on (0, q) forms, where ϑ denotes the formal adjoint of ∂ , so that ϑf = ∂∗f for f
∈ D1

q , one may transform the above BMK formula into

f =
∫

bD

f ∧1q(WBM)+ (∂f, ∂ωq)+ (∂∗f, ϑωq) for f ∈ D1
q .
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Here (•, •) denotes the standard L2 inner product of forms over D, that is

(f, g) =
∫

D

(f, g)(ζ )dV (ζ ) =
∫

D

f ∧ ∗g.

The fundamental solution ωq is an isotropic kernel whose regularity properties
are well understood. In particular, the operator

Siso : f → Siso(f ) = (∂f, ∂ωq)+ (ϑf, ϑωq)
satisfies a Hölder estimate

∣∣∣Siso(f )
∣∣∣
δ
≤ CδQ0(f ) for all f ∈ C1

(0,q)(D) and any δ < 1.

Consequently, the essential information regarding all pointwise estimations is
contained in the boundary integral SbD(f ) = ∫

bD
f ∧ 1q(WBM). Note that the

kernel1q(WBM) is isotropic; it treats derivatives in all directions equally, and direct
differentiation under the integral in

∫
bD
f ∧ 1q(WBM) leads to an expression that

will in general blow up like dist (z, bD)−1. So this elementary representation of the
operator SbD does not provide any useful information.

Note that since 1n(WBM) ≡ 0, it trivially follows that |f |δ ≤ CδQ0(f ) for
f ∈ D1

n and any δ < 1.We shall therefore assume that q < n in what follows.
As we discussed in Section 1.3, by classical results of W. Koppelman one may

replace 1q(WBM) by any other CF kernel 1q(W) on the boundary bD, as follows.
Given any generating formW on bD ×D, one has

∫

bD

f (ζ ) ∧1q(WBM) =
∫

bD

f (ζ ) ∧1q(W)+

+∂z
∫

bD

f ∧1q−1(W,W
BM)+

∫

bD

∂f ∧1q(W,WBM),

where the “transition” kernels 1q(W,WBM) involve explicit expressions in terms
ofW andWBM .

Starting with the representation

f = SbD(f )+ Siso(f ) for f ∈ D1
0,q(D),

we shall apply these Koppelman formulas with the non-holomorphic Levi gen-
erating form WL(ζ , z) introduced in the previous section in order to replace the
boundary integral SbD(f ) = ∫

bD
f ∧1q(WBM) by

SbDL (f ) =
∫

bD

f ∧1q(WL)+

+
∫

bD

∂f ∧1q(WL,WBM)+
∫

bD

f ∧ ∂z1q−1(W
L,WBM).
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By using this representation of SbD(f ) by SbDL (f ) we are able to prove the
following a-priori estimates on a weakly pseudoconvex domain D ⊂⊂ C

n.

Theorem The integral operator

SbDL : C(0,q)(bD)→ C∞(0,q)(D)

has the following properties. If U is a sufficiently small neighborhood of the point
P ∈ bD, there exist constants Cδ depending on δ > 0, so that one has the following
uniform estimates for all f ∈ D1

qU , 1 ≤ q < n, and for z ∈ D ∩ U :

1)
∣∣f − SbDL (f )

∣∣
δ
≤ Cδ ·Q0(f ) for any δ < 1;

2)
∣∣LjSbDL (f )(z)

∣∣ ≤ Cδ·dist (z, bD)δ−1·Q0(f ) for j = 1, . . . , n and any δ < 1/2;
3)

∣∣LjSbDL (f )(z)
∣∣ ≤ Cδ · dist (z, bD)δ−1 · Q0(f ) for j = 1, . . . , n − 1 and any

δ < 1/3.

Furthermore, if fJωJ is a normal component of f with respect to the frame
ω1, . . . , ωn, one has

|fJ |δ ≤ CδQ0(f ) for any δ < 1/2 if n ∈ J .

Note that if one had an estimate analogous to 3) also for the normal derivative
LnS

bD
L (f )(z) for some δ > 0 (with δ < 1/3), standard results would imply the

Hölder estimate
∣∣∣SbDL (f )

∣∣∣
δ
≤ CδQ0(f ).

By using 1), one therefore would obtain an estimate

| f |δ ≤ CδQ0(f ),

i.e., the Hölder analogon of a subelliptic estimate.
It is known that such an estimate does not hold on arbitrary pseudoconvex

domains. On the other hand, as outlined in the next section, the theorem provides
a starting point in a general setting which, combined with additional suitable
properties of the boundary, such as finite type, might be useful to obtain appropriate
estimates for LnSbDL (f ) and consequently lead to a Hölder estimate on suitable
domains.

The proof of the theorem involves a careful analysis and estimations of the
relevant derivatives of the boundary integrals in the representation of SbDL (f ),
utilizing, in particular, techniques we mentioned earlier in the context of the kernel
10(W

L), as well as techniques from [28].
One particularly delicate new problem arises with the integral

∫

bD

f ∧ ∂z1q−1(W
L,WBM).
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Here one needs to shift the differentiation from the kernel in a suitable way onto
the form f . This requires an elaborate detour involving Stokes’ theorem and the
Hodge ∗ operator in order to first transform the boundary integral into standard inner
products of forms over D. One then must exploit certain approximate symmetries
in the kernels to replace ∂z with ∂ς , so that one can use integration by parts to move
the ∂ς differentiation from the kernel onto f in the form ∂

∗
ςf .

The details of the proof are given in [42].

3.4 Outlook: A-priori Hölder Estimates

Given the general integral representation formulas and the “pointwise basic esti-
mates” on arbitrary pseudoconvex domains we have discussed, the main problem
before us is to investigate under what additional conditions on the boundary can the
estimates be improved to obtain a Hölder estimate

|f |δ ≤ CδQ0(f ) for some δ > 0 and all f ∈ D1
qU.

Such an estimate would be an analogon in Hölder norm of a subelliptic estimate
in the L2 theory. Just as a subelliptic estimate is the critical ingredient to prove
numerous regularity results in Sobolev spaces in the theory of the ∂-Neumann
problem, it is expected that a corresponding Hölder estimate would be a useful tool
to prove analogous pointwise estimates for the ∂-Neumann operator, for solutions
of the ∂-equation, and other related regularity results in Hölder norms.

In case D is strictly pseudoconvex with a Levi metric, the above estimate holds
for δ = 1/2, as was shown in 1986 by Lieb and Range [28].

One possible approach on general weakly pseudoconvex domains is based on
developing an analogue of the machinery of subelliptic multipliers introduced by
J.J. Kohn [21]. This would then allow to utilize algebraic/geometric techniques to
determine conditions on the boundary that imply the desired estimate.

This work is still mainly in the design stages, and so far there are few definitive
results, so we shall just give a brief sketch.

A germ of a C∞ function μ at P which satisfies

|μf |δ ≤ CδQ0(f ) for all f ∈ D1
qU and for some δ > 0

on a sufficiently small neighborhood U on which μ is defined, is called a q-Hölder
multiplier at P . We denote the set of such multipliers by Hq(P ).

As in Kohn’s work in the L2 setting, the goal is to set up an algorithm involving,
in particular, certain successive differentiations of multipliers, in order to generate
more multipliers, and to identify conditions on bD at P that would eventually lead
to a non-zero multiplier, that is to prove 1 ∈ Hq(P ), so that one gets the desired
Hölder estimate |f |δ ≤ CδQ0(f ).
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It follows readily that Hq(P ) is an ideal in the ring of germs of C∞ functions
at P.

The following two results are easy consequences of the general integral repre-
sentation formula and the basic estimates stated above.

A) If μ = 0 on bD near P,then μ ∈ Hq(P ) for any q ≥ 1.
B) 1 ∈ Hn(P ), with the Hölder estimate holding for any δ < 1.

Much more delicate is the following result. Recall that r is the suitably
chosen defining function for D near the point P .

C) If n = 2, the eigenvalue of the Levi form (i.e., the coefficient of the (2, 2) form
∂r ∧ ∂r ∧ ∂∂r) is in H1(P ).

Attempts to generalize C) to higher dimensions have not been successful so far.
In particular, it appears that the restriction to δ < 1/2, resp. δ < 1/3, in the theorem
stated above is a major obstacle. It thus seems that one should try to eliminate this
restriction, that is, to prove estimate 2) (and perhaps 3) ) for any δ < 1. This would
be consistent with the known results in the L2 theory.

3.5 Some Conjectures

If the program to set up an algorithm for Hölder multipliers in the integral
representation setting that somehow parallels Kohn’s L2 theory of subelliptic
multipliers [21] is successful, it should then be possible to combine these results
with Kohn’s algorithm and a 1978 theorem of K. Diederich and J. E. Fornaess to
obtain proofs of the following conjectures.

Conjecture I If bD is real analytic and pseudoconvex in a neighborhood of P, and
if there does NOT exist any germ of a complex subvariety V ⊂ bD of dimension q
with P ∈ V , then 1 ∈ Hq(P ).
Conjecture II If D is pseudoconvex with real analytic boundary, then there exists

δ > 0 and a solution operator SD
∂

for ∂ such that
∣∣∣SD
∂
(f )

∣∣∣
δ
≤ Cδ |f |0 .

Furthermore, by using results of Y.T. Siu [43], it might be possible to also prove

Conjecture III Conjecture II is correct for a smoothly bounded pseudoconvex
domain D of finite type.

To summarize, I believe that an essentially optimal version of the theorem
in Section 3.3, that is, the pointwise a-priori estimate on weakly pseudoconvex
domains—analogous to the known basic L2 estimate recalled in Section 3.1—is
an important step in order to improve our understanding of the Cauchy–Riemann
equations in this general setting. I hope that the discussion in Section 2.4 and in
these last two sections may inspire future investigations to learn more about complex
geometry and the Cauchy-Riemann equations on weakly pseudoconvex domains.
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Abstract We review some aspects of the statistical behavior of the Riemann zeta
function on the critical line. Especially, we discuss how its functional statistics is
related to Gaussian multiplicative chaos (Saksman and Webb, The Riemann zeta
function and Gaussian multiplicative chaos: statistics on the critical line. Preprint
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ζ (s) :=
∞∑

n=1

n−s for σ > 1, s = σ + it.

We deliberately avoid discussing many technicalities and fine points, and we omit
many results since the text below is intended for non-specialists. Basically no proofs
are given.

Some vague knowledge of the rudiments of analytic number theory is useful for
the reader, but as we give no proofs below, actually very very little will be assumed
in order to understand the statements. Basically what one needs to know is that one
may continue ζ as a meromorphic function to the whole complex plane, with only
one pole. The pole is simple and located at s = 1 with residue 1. What comes to
growth of ζ (s) as s → ∞, it behaves in a rather mild manner. In the whole plane
(s−1)ζ (s) is an entire function of order 1, and in the closed half-plane {σ ≥ 1/2} the
fastest growth is on the critical line {σ = 1/2}. Almost hundred years old estimates
[76, Section 5.18] tell us that

ζ

(
1

2
+ it

)
= O(tμ0), with some μ0 < 1/6. (1.1)

Currently the best known bound is μ0 = 13/84 + ε [17]. The famous Lindelöf
hypothesis declares that (1.1) is true for any μ0 > 0, and would in turn be a
consequence of the Riemann hypothesis. Other basic features of ζ include the Euler
product formula (see (1.2) below) and the functional equation of ζ . The books
[42, 75, 76], among many others, are excellent references for further properties of
the Riemann zeta function.

In the remainder of this introductory section, we will formulate explicitly what
we mean by statistical behavior and review some classical results concerning
this statistical behavior – for further information, we refer the reader to the nice
monograph of Laurinčikas [52] devoted to statistical behavior of ζ . After this
introduction, we turn to more modern questions regarding the statistical behavior.
In particular, we will focus on the connection between statistics of the zeta function,
stochastic processes known as log-correlated fields, and the theory of multiplicative
chaos. More precisely, in Section 2, we review the connection between the zeta
function and log-correlated fields. Section 3 contains a very short introduction to
the theory of multiplicative chaos. In Section 4, we discuss the connection between
the zeta function and multiplicative chaos. In turn, Section 5 describes how this
connection to multiplicative chaos can be used to relate mesoscopic behavior of
the zeta function with mesoscopic behavior of certain random matrices. Finally
in Section 6, we review some further results and conjectures about the connection
between the zeta function and multiplicative chaos.

In what follows we shall denote by P = {2, 3, 5, . . .} the set of prime numbers.
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1.1 Towards Functional Statistics of ζ : The Easy Case
of σ > 1

The statistics in this range are easily described and the result is not surprising, but
it provides us with a simple playground to illustrate what one actually means by
functional statistics, and it also displays the ubiquitous role of the Euler product
formula

ζ (s) :=
∏

p

(1− p−s)−1 σ > 1 (1.2)

as well as that of rational independence of logp:s for p ∈ P . The question of
functional statistics of the Riemann zeta function on the vertical line σ = σ 0 where
σ 0 ≥ 1/2 roughly amounts to taking a “random” length 1 subinterval I of this line
and asking for the statistics of the restrictions ζ |I . As such the question is perhaps
not defined explicitly enough, so in order to make it rigorous we let ω ∈ [0, 1] be
uniformly distributed, and we consider [0, 1] equipped with the Lebesgue measure
as our probability space. Pick a large number T > 1 and consider the random
function

x �→ gT (x) := ζ (σ 0 + ix + iT ω)

defined on x ∈ [0, 1].1 One then asks:
BASIC QUESTION: Is there a limiting probability distribution for the random
variable ζ (σ 0 + ix + iT ω) as T →∞?
One should note that our random variable gT takes values in the set of (continuous)
functions defined on [0, 1]. Thus the desired limit distribution is expected to be
a probability distribution on suitable class of functions (or perhaps generalized
functions. . .) on the interval [0, 1].

To approach this question, fix σ 0 > 1 and observe that by the Euler product our
gT takes the form

gT (x) =
∏

p

1

1− p−σ 0−ixp−iωT
. (1.3)

We then make the crucial observation that one may easily describe the limiting
statistics of the terms p−iωT :

1One could well let x vary in some larger interval than [0, 1], or even on R, but for simplicity we
stick to x ∈ [0, 1].
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Lemma 1.1 In the limit T →∞, the random variables p−iωT , p ∈ P , tend in the
sense of finite dimensional distributions2 to independent random variables that are
all uniformly distributed on T := {z ∈ C : |z| = 1}.
It is an instructive exercise for the reader to find her/his own proof3 of this
observation. Since σ 0 > 1, we have uniform convergence in (1.3), and it is then
an easy matter to deduce that the statistical limit of gT is given by the randomized
zeta function ζ rand(σ 0 + ix)|[0,1], where

Definition 1.2 ζ rand(s) is the random analytic function on {σ > 1/2} given by the
randomized Euler product

ζ rand(s) =
∏

p∈P

(
1− p−iseiθp

)−1
, σ > 1/2,

where θp, p ∈ P , are independent random variables with uniform distribution on
[0, 2π ]. 3

Obviously ζ rand is analytic in σ > 1, but due to random cancellations arising
from the terms eiθp it is relatively easy to check that ζ rand almost surely has an
analytic extension to the half-plane {σ > 1/2}. This was first observed by Helson
[35], and later on reproved by Bagchi [5] and Hedenmalm, Lindqvist, and Seip [36].

1.2 Bohr, Jessen, and Bagchi: The Case of σ > 1/2

When one moves from the half-plane {σ > 1} in to the open right half of the critical
strip {1/2 < σ < 1} nontrivial obstructions arise due to the fact that the Euler
product does not converge anymore and hence cannot be directly used to represent
ζ . One needs to invoke more serious tools from analytic number theory, and utilize
suitable approximative formulas for the Riemann zeta. In this range the statistics
of ζ were studied by Bohr and Jessen in the 1930s [12, 13], and they were able to
prove the existence of some kind of a (pointwise) statistical limit. Later on, Bagchi
[5] identified the limiting functional statistics with ζ rand(s) defined above.

Further results related to statistics in the strip {1/2 < σ < 1} were obtained by
Voronin who proved in the 1970s [77] the famous Voronin universality result, which
states that given a non-vanishing analytic function f on a neighborhood of the ball

2To be precise, this means that for any finite collection of primes p1, . . . , pk ∈ P , the probability
distribution of (p−iωT1 , . . . , p−iωTk ) tends to that of k i.i.d. random variables which are uniformly
distributed on the unit circle.
3Hint: One may, e.g., easily compute the (mixed) moments of the variables, and the desired
statement then boils down to the rational independence of the set {logp : p ∈ P}, which in
turn is a restatement of uniqueness of the prime factor decomposition of natural numbers.
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B(1/2, r), where r < 1/4, there are translations of ζ to the vertical direction that
approximate f with an arbitrary precision. More precisely, for given ε > 0 we may
find T > 1 so that

|f (s)− ζ (s + iT )| < ε for s ∈ B(1/2, r).

1.3 Selberg: Pointwise Statistics in the Case of σ = 1/2

The fundamental result concerning the pointwise statistical behavior of ζ (1/2+ it)
is Selberg’s central limit theorem on the critical line:

(
1

2
log log(T ))−1/2 log

∣∣ζ (1/2+ iT + iωT )∣∣ d−→ N(0, 1) (1.4)

as T →∞. Originally Selberg [71] proved the same result for the S-function that is
essentially the imaginary part of log(ζ (it+1/2)). Here one needs to be careful how
to define the logarithm unconditionally, see, e.g., [76, Section 9]. Selberg’s method
was based on estimating moments. Later on he also obtained a similar result for
the real part of the logarithm, namely (1.4). These results have been generalized in
many ways. For example, it is known that if one drops the absolute values above
from the logarithm, and looks at the joint distribution of the real and imaginary
parts of the logarithm, the convergence in law is to a multiple of a standard complex
Gaussian. Alternatively, one can replace T by e(log T )x with x > 0 and consider this
as a stochastic process in x [39]. We also refer to [15, 16, 56, 69], and the references
therein for interesting generalizations of Selberg’s result. It is also useful to note that
[67] provides a short and self-contained proof of Selberg’s central limit theorem.

2 Log-Correlated Fields

2.1 Emergence of Log-Correlated Field: Heuristics and Facts

We shall follow heuristics from Fyodorov’s and Keating’s work [29]. There one
assumes the statistical validity of the Dirichlet series representation of log ζ (s) up to
the critical line, which leads to suggesting that the statistical behavior of log ζ (1/2+
it) as a random function should resemble that of a log-correlated field – formally a
stochastic process with a logarithmic singularity on the diagonal of its covariance.
We shall discuss the rigorous definition and examples of log-correlated fields in
the next subsection, but before that let us try to imitate the heuristics mentioned
above. Thus, in what follows, we will simply have fun and calculate in the classical
“Eulerian spirit” without concern for validity of convergence of our expressions.
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Start from the Euler product and compute

log(ζ (s)) = log

(
∏

p

( 1

1− p−s
))
=

∑

p

∑

k≥1

1

k
p−ks .

Calmly substitute s = 1/2 + it and note that the sum over terms with k ≥ 3
is uniformly bounded for σ = Re s ≥ 1/2. Also the terms with k = 2 “almost
converge” (will be “statistically negligible”). So we obtain as the leading order
(heuristic) approximation

log(ζ (1/2+ it)) ∼
∑

p

p−it√
p
, or

log |ζ (1/2+ it)| ∼ Re
(∑

p

p−it√
p

)
.

Recall from the previous section, that in order to study functional statistics of
log |ζ (1/2 + it)| we choose T 4 1 and pick ω ∈ [0, 1] at random, and consider
the “random shifts” x �→ log |ζ (1/2 + iωT + ix)|. When this is substituted to our
“leading order approximation” for log(ζ ) we obtain the quantity

Re
(∑

p

p−ixp−iωT√
p

)
.

According to Lemma 1.1 in the limit T →∞ we end up with the limiting statistics
f , where the random function f is given by

f (x) := Re

(
∑

p

eiθpp−ix√
p

)
, x ∈ [0, 1], (2.1)

and again the θp’s are i.i.d. and uniform on [0, 2π). Let us the formally compute

the covariance structure of our field f . By denoting F(x) := ∑
p
eiθpp−ix√

p
, a

straightforward formal calculation yields

E f (x)f (y) = 1

4
E

(
F(x)F (y)+ F(x)F (y)+ Fx)F (y)+ F(x)F (y)

)

= 1

2
Re

(
∑

p

p−i(x−y)

p

)

= 1

2
log |ζ (1+ i(x − y))| + smooth

= 1

2
log

( 1

|x − y|
)+ smooth.
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Thus the covariance function is translation invariant and has a logarithmic singular-
ity at the diagonal! One may check that (2.1) does not define a random function,
but it does represent a well-defined random generalized function. Such random
generalized functions with a logarithmic singularity on the diagonal have been
studied extensively in the setting of Gaussian processes, in which case they are
termed Gaussian log-correlated fields, and we shall shortly turn to discussing them.

Another motivation for treating shifts of log(ζ ) on the critical line statistically as
a log-correlated field comes from the Montgomery–Keating–Snaith (see [48, 61])
picture of modeling the zeta function on suitable scales as a characteristic polyno-
mial of a large random matrix which we discuss more in Section 5.1 later on. When
this is combined with Lemma 2.3 below, one recovers the principle message of the
above heuristics from another point of view.

Finally, it is important to observe that besides the above heuristic line of thinking
there is also some real evidence of the log-correlated statistical nature of shifts of
log(ζ ) on the critical line. We have here in mind the results by Bourgade [15],
Bourgade and Kuan [16], Rodgers [69], as well as Maples and Rodgers [56]. In [15]
Bourgade showed that if one normalizes log ζ in a suitable way, then on a certain
mesoscopic scale, for some range of the normalized distance |x − y| the statistics
behaves like a certain Gaussian field. Another form of this connection was provided
in [16, 56, 69], where “mesoscopic linear statistics” of the zeta function zeroes were
shown to have a Gaussian limit with a covariance form given by the homogenous
W 1/2-inner product.

2.2 Log-Correlated Gaussian Fields

A centered Gaussian field on a domain 1 ⊂ R
d can be thought of as a random

function X : 1 → R such that all the evaluation vectors (X(z1), . . . , X(zn))

are multivariate and centered Gaussians. They are (essentially) determined by
knowledge of the covariance function CX(z, z

′) := EX(z)X(z′). As mentioned,
we are interested in log-correlated fields, namely the case where this covariance has
a logarithmic singularity on the diagonal. In this situation, the rigorous definition
is slightly more involved. To illustrate some aspects of the general theory of such
objects, let us first focus on an example.

A basic 1-dimensional example is given by the centered Gaussian field X on the
torus T := {|z| = 1} (i.e., the complex unit circle).

Definition 2.1 Xci is the centered Gaussian field on T defined by the covariance
structure

CXci(z, z
′) = “E Xci(z)Xci(z

′)” = log
( 1

|z− z′|
)

for z, z′ ∈ T.
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The fieldXci is called Gaussian Free Field (GFF), restricted to T. As the covariance
blows up at the diagonal, the fieldXci cannot be realized as a random function, but it
takes values in the space of generalized functions – this means that one needs some
care in handling them! 3
In order to verify the existence of such a field, one simply writes down a random
Fourier series:

Xci(e
iθ ) :=

∞∑

n=1

1√
n

(
An cos(nθ)+ Bn sin(nθ)

)
, (2.2)

where An ∼ N(0, 1) ∼ Bn (n ≥ 1) are i.i.d. standard Gaussians. One can readily
verify that this series converges almost surely in the Sobolev space of generalized
functions H−s(T) for any s > 0. That Xci possesses the right covariance is seen by
a (slightly formal) computation: Let z = eit and z′ = eit ′ . Then

EXci(z)Xci(z
′) = E

(( ∞∑

k=1

1√
k

(
Ak cos(kt)+ Bk sin(kt)

)

×
( ∞∑

m=1

1√
m

(
Am cos(mt ′)+ Bm sin(mt ′)

))

=
∞∑

k=1

1

k

(
cos(kt) cos(kt ′)+ sin(kt) sin(kt ′)

)
=
∞∑

k=1

1

k
cos(k(t − t ′))

= Re
∞∑

k=1

1

k
eik(t−t ′) = Re

(
log(1− z/z′)−1) = log

( 1

|z− z′|
)
.

Another typical example of a log-correlated is the 2-dimensional Gaussian Free
Field (GFF), which is defined in a domain 1 ⊂ R

2, and its covariance is given
by G1(z, z′), where G1 is the Green’s function of 1 (e.g., with zero boundary
conditions). Again we have a logarithmic singularity in the covariance. The 2-
dimensional free field is perhaps the most important log-correlated field in that it
occurs quite often as a scaling limit of various statistical models. However, in view
of the fact that applications related to the Riemann zeta function mainly concern
one-dimensional log-correlated fields, we have no need here to discuss further the
2-dimensional GFF.

More generally, one considers log-correlated fields that are centered Gaussian
fields X on a domain U ⊂ R

d , such that

CX(x, y) := EX(x)X(y) = log
( 1

|x − y|
)
+g(x, y) for x, y ∈ U, (2.3)
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where g is continuous (or smooth). One can again show that such objects make
sense as random elements in suitable Sobolev spaces of generalized functions: see,
e.g., [45, Proposition 2.3].

The GFF or, more generally, log-correlated fields almost abound in today’s
literature on statistical models. For example, they appear as scaling limits of
fluctuations of many random models of statistical physics. Before continuing, we
take a quick look at one particular instance that is of relevance to us later on.

Example 2.2 We consider the statistical limit behavior of the logarithm of the
characteristic polynomial of random unitary matrices. Let UN stand for a N × N
CUE-random matrix. In other words,UN is theN×N random unitary matrix whose
law is the Haar measure on the unitary group U(N). We let {z1, . . . zN } ⊂ T stand
for the spectrum of UN and denote by

pn(z) :=
N∏

j=1

(z− zj )

the characteristic polynomial of UN . We are interested in the behavior of

YN(θ) := log | det(UN − eiθ )| = log |pn(eiθ )|.

Lemma 2.3 (Szegő; Diaconis and Shahshahani; Johansson; Hughes, Keating,
and O’Connell) As n→∞, Yn tends to 1√

2
Xci in distribution (as a generalized

random function).4

Proof A very short sketch: One observes that

YN(θ) = log | det(UN − eiθ )| = −1

2

∞∑

k=1

1

k

[
e−ikθTrUkN + eikθTrU−kN

]
.

By [24] one has

ETrUjNU
−k
N = δk,j min(|k|, N)

and any finite collection of the variables TrUkN with k > 0 converges in law to
independent centered Gaussians. This easily yields the convergence as generalized
(random) functions. Alternatively, one could as well use the famous strong Szegő
theorem [74, Chapter 6] to deduce the result. �%

3

4It is not easy to say where this fact was really observed for the first time; however, it is explicitly
stated in the paper of [38].
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Other examples of statistical models where log-correlated fields arise are, e.g.,
the dimer model, models for random partitions of integers, and random growth
models – see, e.g., [14, 41, 49].

It is not difficult to show (see, e.g., [45, Lemma 2.5]) that log-correlated fields
are rather mild generalized functions, since smoothing them just by a little produces
immediately fields with Hölder-continuous realizations.

When one deals with log-correlated fields, e.g., when we later on construct
multiplicative chaos out of them, it is important to provide good regularizations of
them. For that purpose, we call a sequence (Xn)n≥1 of continuous jointly Gaussian
centered fields on U a standard approximation of X if it satisfies:

(i) One has

lim
(m,n)→∞EXm(x)Xn(y) = CX(x, y),

where convergence is in measure with respect to the Lebesgue measure on
U × U .

(ii) There exists a sequence (cn)∞n=1 such that c1 ≥ c2 ≥ . . . > 0, limn→∞ cn = 0,
and for every compact K ⊂ U

sup
n≥1

sup
x,y∈K

∣∣∣∣EXn(x)Xn(y)− log
1

max(cn, |x − y|)
∣∣∣∣ <∞.

(iii) We have

sup
n≥1

sup
x,y∈U

[
EXn(x)Xn(y)− log

1

|x − y|
]
<∞.

We also say that the approximation Xn is “at covariance level” log(1/cn), since at
the diagonal the covariance of Xn equals log(1/cn)+O(1) by (ii).

Example 2.4 For the field Xci (recall (2.2)) the partial sums

Xci,N :=
N∑

n=1

1√
n

(
An cos(nθ)+ Bn sin(nθ)

)

yield a standard approximation. This standard approximation additionally has
independent increments. 3
Example 2.5 If X is a log-correlated field and εn ↘ 0 as n → ∞, then the usual
mollifications

Xεn := ϕεn ∗X
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provide a standard approximation on the covariance level log 1/ε. Here ϕε =
ε−dϕ(·/ε), and ϕ ∈ C∞c (Rd) with

∫
φ = 1. 3

Apart from their natural appearance in various models of probability and
mathematical physics, one of the main reasons for studying log-correlated fields
is that it is believed that they have many universal features – properties that stem
from the logarithmic singularity in the covariance, not from the precise details of
the covariance. One such feature is the maximum of the field, which of course
only makes sense once the field has been regularized. For example, for a standard
approximation at covariance level log c−1

n , one expects that for any compactK ⊂ U
with non-empty interior, maxx∈K Xn(x) = (1 + o(1))

√
2d log c−1

n . In fact, much
stronger results exist – see, e.g., [25, 53].

3 Multiplicative Chaos

3.1 Gaussian Multiplicative Chaos Measures

The foundations of the mathematical theory of Gaussian multiplicative chaos were
established in the 1980s by Kahane [47]. At that time, the main motivation was
the desire to build mathematical models for Kolmogorov’s statistical theory of tur-
bulence by providing a continuous counterpart for multiplicative cascades that were
originally introduced by Mandelbrot for the same purpose in the early 1970s. During
the last 15 years there has been a new wave of interest in multiplicative chaos,
partly due to its important connections to Stochastic Loewner Evolution [4, 73],
to quantum gravity and scaling limits of random planar maps [10, 23, 26, 50, 57–
60], as well as to models in finance and turbulence [68, Section 5]. We will later
discuss briefly also the role of multiplicative chaos in random matrix theory.

In order to give a brief and informal description of multiplicative chaos, consider
a sequence of a.s. continuous and centered real-valued Gaussian fields Xn, say on
an interval I ⊂ R. The elements of this sequence should be considered as suitable
approximations of a (possibly generalized function valued) Gaussian field X. For
simplicity, assume that the increments Xn+1 − Xn are independent. One may then
define the random measures λn on I by setting

λn(dx) := exp(Xn(x)− 1

2
EXn(x)

2)dx.

In this situation, the density is martingale, and basic martingale theory implies
that almost surely there exists a (random) limit measure λ = limn→∞ λn, where
the convergence is understood in the weak∗-sense. The measure λ is called the
multiplicative chaos measure defined byX, often denoted in the physics literature by

λ = “ exp(X)”.
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Kahane showed that under suitable conditions the limit does not depend on the
choice of the approximating sequence (Xn). However, a significant obstacle in
defining a meaningful limiting object λ is that it may very well be the zero measure
almost surely.

The most important, and in some sense a borderline situation for defining
meaningful limiting objects, is when the limit field X is log-correlated, as described
in Section 2.2. Then it is natural to try to define “exp(βX),” where β > 0 is a real
parameter (the “inverse temperature”). In this case

CβX(x, y) = β2 log |x − y| + β2g(x, y), x, y ∈ I,
where g is a continuous and bounded function. Kahane’s theory implies that the
limit measure is almost surely non-zero for 0 < β <

√
2. For chaos in dimension d

the corresponding bound is β <
√

2d . The limiting random Borel measure λ = λβ
on the interval I is almost surely singular and its basic properties like multifractal
spectrum, tail of the total mass or scaling properties have been investigated – see,
e.g., [68] for further information.

For the reader’s benefit, let us here sketch the proof the nontriviality of the
limit in the so-called L2-range β ∈ (0, 1), where the proof is particularly
simple (similar considerations appeared already in [37]). Assume for simplicity
that (Xn)n≥1 is a standard approximation of X with independent increments – as
we saw in Example 2.4, such approximations do exist. We may simply compute
E (λβ,n(I ))

2 ≤ C for all n ≥ 1:

E (λβ,n(Q0))
2 = E

[( ∫

I
exp

(
βXn(x)− 1

2
E (βXn(x))

2
)
dx

)

×
( ∫

I
exp

(
βXn(y)− 1

2
E (βXn(y))

2
)
dy

)]

=
∫

I×I
exp

(
− 1

2
E (βXn(x))

2 − 1

2
E (βXn(y))

2
)
E exp

(
βXn(x)+ βXn(y)

)
dxdy

=
∫

I×I
exp

(
− 1

2
E (βXn(x))

2 − 1

2
E (βXn(y))

2
)

exp
(1

2
E
(
βXn(x)+ βXn(y)

)2
)
dxdy.

The only probability fact we used above is the basic formula

E exp(Y ) = exp(
1

2
EY 2), (3.1)

when Y is a centered Gaussian random variable. We may thus continue to obtain
and

E (λβ,n(I ))
2 =

∫

I×I
exp

(
β2

EXn(x)Xn(y)
)
dxdy =

∫

I×I
exp

(
β2

ECXn(x, y)
)
dxdy

≤
∫

I×I
exp

(
β2( log(1/|x − y|)+O(1))

)
dxdy.
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This entails that the total mass λβ,n(I ) is a positive L2-bounded martingale with
respect to increasing n and naturally defined sigma-fields. Hence the limit λ(I) is
nontrivial, and non-zero a.s. as one may check by Kolmogorov’s 0-1 law.

The topological support of the measure λβ is the whole interval I. However,
almost surely its Hausdorff-dimension as a Borel measure is 1 − β2/2 (and λβ
is a.s. exact dimensional). The starting point is Kahane’s (see [68, Section 4.1])
observation that the chaos measure (if it exists) is concentrated on points x ∈ I with
the property

lim
n→∞(EXn(x)

2)−1Xn(x) = β, (3.2)

i.e., on β-thick points of the field X. Especially, the measures λβ live on disjoint
Borel sets for distinct β.

The dependence of the chaos measure on the generating Gaussian field has many
delicate features. For example, the universality property (how the law of the limiting
object is independent of the precise details of the approximation scheme) is far from
trivial for multiplicative chaos [44, 68, 72]. We refer to the nice survey [68] for the
basic properties of these measures, to [9] for an elegant proof of the existence of
subcritical chaos measures, and to [8, 27, 28] for the existence and basic properties
of critical Gaussian chaos (discussed next).

3.2 Critical and Supercritical Chaos

At the threshold β = βc :=
√

2d one needs to add a deterministic nontrivial
renormalization factor that depends on n in order to obtain the existence of a
nontrivial object known as a critical chaos measure. Thus, let Xn be a standard
approximation of a nice log-correlated field on the covariance level cn as defined
in Section 2.2. Under some mild smoothness conditions for g in the covariance
structure (2.3) [28, 44, 46] there exists a nontrivial random measure

λ√2d := lim
n
(cn)

1/2 exp
(√

2dXn(x)− d EXn(x)2
)
dx, (3.3)

where the limit is in, e.g., in the sense of weak convergence of evaluations against
test functions. This limit can also be achieved through a random normalization
known as the derivative martingale [27, 65].

The supercritical case β >
√

2d has been treated for cascades [55, 78] and
for some interesting cases of multiplicative chaos [54]. Here one encounters the
phenomenon known as freezing, which in terms of chaos means that in order to
obtain convergence to a measure one needs to perform a stronger renormalization
than in the critical case, i.e., the extra factor (cn)1/2 in the martingale normalization
has to be replaced by the factor

c

3β
2
√

2d
n e

cn

(
γ√

2
−√d

)2

. (3.4)
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3.3 Complex Chaos

There is a further variant of multiplicative chaos that is important for the connection
to the Riemann zeta function which is the concept of complex multiplicative chaos,
where in the above one allows for complex Gaussian fields. Two basic cases have
been studied in the literature. In the first variant one allows the parameter β take
complex values, and it turns out that one obtains analyticity in the parameter β
for β ∈ U , where U ⊂ C is an open subset that is the interior of the convex
hull of the unit disc and the points ±√2d (see [6, 7] in the slightly simpler case of
multiplicative cascades and [4, 46] in the case of multiplicative chaos). In the second
case one assumes thatX = β1X1+iβ2X2 withX1, X2 independent copies of a log-
correlated field and β1, β2 ∈ R. This case turns out to be more amenable to analysis,
due to the independence of the real and imaginary parts, and many aspects of it have
been studied thoroughly in [51]. Further study of the case of purely imaginary β is
contained in [45]. However, as will be discussed in Section 4.2 the complex chaos
we need to study here does not quite fit into either of these models.

4 Riemann Zeta and Multiplicative Chaos

As chaos is the “exponential of a log-correlated field,” and one loosely speaking
expects random shifts of log ζ (1/2 + it) to have log-correlated statistics (in
Section 2.1 this was done only to the real part, but we could have as well treated
log ζ (1/2 + it) itself), this leads us to suggest that perhaps the functional statistics
of random shifts of ζ themselves should be given by some kind of multiplicative
chaos. This heuristics was made rigorous in [70]. The first main result of [70] states
that

Theorem 4.1

(i) There exists a nontrivial random variable x �→ ζ rand(1/2 + ix) taking values
inW−α,2(0, 1), such that as T →∞

ζ (1/2+ ix + iT ω) d−→ ζ rand(1/2+ ix),

where the convergence in law is with respect to the strong topology of the
Sobolev spaceW−α,2(0, 1) for any α > 1/2.

(ii) Moreover, the law of the limit ζ rand can be characterized in the following way:
as random generalized functions

ζ rand(1/2+ ix) = g(x)ν(x),

where ν is a random generalized function known as a Gaussian multiplicative
chaos distribution, which can be formally written as
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ν(x) = “ eG(x), ”

where G is a centered Gaussian field on (0, 1) with the correlation structure

EG(x)G(y) = 0 and EG(x)G(y) = log(ζ (1+i(x−y))) for x, y ∈ (0, 1).

The factor g is a random smooth function on R, almost surely has no zeroes,
and for which E

(‖g(x)‖p
C&(I)

+ ‖1/g(x)‖p
C&(I)

)
is finite for all p ∈ R, any

& ≥ 0, and any finite interval I ⊂ R.

Above one made use of the standard L2-based Sobolev spaces: a tempered distribu-
tion f on R belongs toWs,2(R) if its Fourier transform satisfies (1+|ξ |2)s/2f̂ (ξ) ∈
L2(R). A generalized function f on (0, 1) belongs toWs,2(0, 1) if it is a restriction
to (0, 1) of some element inWs,2(R). Loosely speaking, this is equivalent to having
the s:th derivative of f in L2(I ).

4.1 Some Ingredients of the Proof of Part (i) of Thm 4.1

For simplicity, let us denote by

μT (x) := ζ (1/2+ ix + iωT ) for x ∈ (0, 1)
the random function whose limit statistics we would like to understand in the limit
T →∞. It turns out that the truncated Euler products

μT,N(x) :=
N∏

k=1

(1− p−1/2−ix−iT ω
k )−1,

where pk:s are the primes in an increasing order, yield a good enough approximation
to μT as N →∞. The proof uses in a crucial manner the explicit T →∞ limit of
the two-point functions

EμT (x)μT (y), EμT,N(x)μT (y), and EμT,N(x)μT,N (y).

These can be controlled by combining simple harmonic analysis with existing
techniques for shifted 2-point moments due to Ingham [40] and Bettin [11].
Interestingly enough, the main term in EμT (x)μT (y) is given by (i(x − y))−1,

i.e., the kernel of the Hilbert transform. Using this observation and the well-known
L2-boundedness of the Hilbert transform as a starting point, a careful analysis
enables one to deduce suitable uniform estimates, which in turn show that the second
moment E |μT (f )|2 converges as soon as f ∈ L2(0, 1). Roughly speaking, one
establishes the convergence
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lim
N→∞ lim

T→∞E |μT (f )− μT,N(f )|2 = 0.

The final and rather straightforward piece of information one needs is to note that as
T → ∞, the random variable μT,N converges in law to the randomized truncated

Euler product ζN,rand(1/2 + ix), where ζN,rand(s) :=
∏N
k=1

(
1

1−p−sk eiθk

)
, and

the θk:s are i.i.d. random variables, each uniformly distributed on [0, 2π ], as in
Section 2.

Finally, not too surprisingly any more at this point, ζN,rand(1/2+ ix) converges
almost surely (in the sense of generalized functions) to the distributional boundary
values ζ rand(1/2 + ix) of the randomized Riemann zeta function ζ rand from
Definition 1.2. In addition to being a limit of ζN,rand(1/2 + ix), ζ rand(1/2 + ix)
should thus be understood as the boundary values (in the sense of generalized
functions) of the random analytic function ζ rand(s) in the half-plane {σ > 1/2}.
These boundary values are almost surely honest generalized functions, i.e., they are
not given even locally by a measure. In any case, one may conclude that this single
random analytic function describes the statistics of random shifts of ζ in the whole
closed half-plane {σ ≥ 1/2} !

4.2 Some Ingredients of Part (ii) of Thm 4.1

Here one relates the statistical limit ζ rand to a complex Gaussian multiplicative chaos
distribution. The theory of complex Gaussian multiplicative chaos is not as well
developed as the real case, and as mentioned, our chaos does not fit into the cases
studied before. In our situation there is a very special mutual dependence between
the real and imaginary parts X1 and X2, of the form

EX1(x)X2(y) = −π
4

sgn(x − y) + smooth,

where sgn(x) denotes the sign of x and the covariance is zero when x = y.

In addition, the 2-point function E eG(x)+G(y) is not absolutely integrable, which
in general indicates that the L2-theory is not available. Remarkably enough, it is
exactly the above peculiar dependence of the real and imaginary part that produces
the dominant part (i(x−y))−1 to the exponential of the covariance EG(x)G(y), and
hence the basic theory of one-dimensional singular integrals applies to resurrect the
L2-theory. The complex Gaussian chaos ν that appears in Theorem 4.1 has some
unique features that arise from the fact that it can be considered as a boundary
distribution of a random analytic function. For example, the finiteness of a moment
E |ν(φ)|p with p > 4 can be shown to depend on the smoothness properties of the
function φ, and thus their properties differ in some respects from the complex chaos
considered in [51].
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The proof of the second part of the theorem uses the following result (which
is [70, Theorem 1.7]) of independent interest, as it provides a direct functional
Gaussian approximation in contrast to, e.g., [1, 64].

Theorem 4.2 For each N ≥ 1 there exists a decomposition

log ζN,rand(1/2+ ix) = GN(x)+ EN(x),

where GN is a Gaussian process on [−1, 1] which can be written in the following
way: let (W(j)

k )k∈Z+,j∈{0,1} be i.i.d. standard Gaussians, then

GN(x) =
N∑

k=1

1√
2pk

p−ixk (W
(1)
k + iW(2)

k ).

The function EN is smooth and as N →∞, it a.s. converges uniformly to a random
smooth function E ∈ C∞[−1, 1]. Moreover, the maximal error and its derivatives
in this decomposition have finite exponential moments:

E exp

(
λ sup
N≥1
‖EN(x)‖C&[−1,1]

)
<∞ for all λ > 0 and & ≥ 0.

5 The Mesoscopic Scale: ζ Meets Random Matrices

In random matrix theory (resp. in the study of ζ on the critical line), one typically
studies spectral properties of the random matrices on three different scales. For the
study of ζ one makes similar definitions by replacing the spectrum by the zeroes of
ζ . The microscopic scale is where one zooms in and looks at the spectrum around
a fixed point on the scale of the distance between the eigenvalues (resp. the zeroes
of ζ ). The global, or macroscopic scale is where on zooms out and looks at all
of the eigenvalues simultaneously (or in the setting of the ζ -function, an order one
portion of the critical line). Finally one also considers a mesoscopic scale where
one zooms in, but not to the scale of the distance between the eigenvalues, but to
one where one asymptotically sees infinitely many (but still a vanishing fraction) of
the eigenvalues.

5.1 The Montgomery(-Dyson) Paradigm

Similarities between the statistics of zeros of the zeta function on the critical line and
statistics of eigenvalues of large random matrices, such as GUE random matrices
or Haar distributed random unitary matrices, have been of great interest since
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Montgomery’s seminal pair correlation conjecture. The conjecture roughly states
that on a microscopic scale, assuming the Riemann hypothesis and normalizing the
zeros suitably, the statistics are indistinguishable from the microscopic statistics of
the eigenvalues of the random matrices. Montgomery himself proved a partial result
to this direction [61].

The proof of the full Montgomery conjecture seems to be presently out of reach.
However, the point of view the conjecture provides has gained additional importance
during last 15 years or so. Especially, an important variant (and strengthening) of is
due to Keating and Snaith [48]. They suggested that the characteristic polynomial of
a Haar distributed unitary matrix should be a good model for the statistical behavior
of the zeta function. Even more recently, this has been formulated into very precise
conjectures on the microscopic scale by Chhaibi, Najnudel, and Nikeghbali [19].
See also, e.g., [22] and the recent series of papers due to Conrey and Keating [21]
and for a brief overview, see the book review of Conrey [20]. In [19] the microscopic
statistical limit of the characteristic polynomial of a CUE-random matrix is proven
to be a random analytic function whose zeroes behave like a suitable determinantal
point process having a sine kernel, which then yields a natural conjecture concerning
microscopic limit statistics of the ζ -zeroes.

5.2 Rigorous Results on the Mesoscopic Scale

It is then natural to discuss what can be said about the connection between the
statistics of the Riemann zeta function and random matrices on the mesoscopic and
macroscopic scale. Conjectures about these were made by Fyodorov, Hiary, and
Keating, as well as Fyodorov and Keating in [29, 30], especially on the statistical
behavior maxima of random shifts over [0, T ] in terms of T . The second main
result of [70], see Theorem 5.1 below, can be seen as describing rigorously the
similarities and differences between the zeta function and random matrix theory
on the mesoscopic scale. More precisely, Theorem 5.1 gives a precise description
of the statistical functional behavior of the zeta function on the mesoscopic scale
up to a constant multiplicative factor and observes that the identical result holds
on the RMT side. The limiting objects are the same, so this gives a very precise
interpretation of the Keating–Snaith conjecture on the mesoscopic scale.

In order to describe the limit statistics for random shifts of ζ under a mesoscopic
scaling, let us define a complex Gaussian multiplicative chaos distribution η
formally (see [70] for a proper treatment) by

η(x) = exp

[∫ 1

0

e−2πixu − 1√
u

dBC

u +
∫ ∞

1

e−2πixu

√
u
dBC

u

]
,

where BC
u denotes a complex Brownian motion. Then we have
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Theorem 5.1 There exists a deterministic δT tending to zero as T →∞ such that
as T →∞

ζ (1/2+ iδT x + iωT ) d→ η(x)

in the topology of W−α,2mult (0, 1) for any α > 1/2 (see below for the definition
of this space). An analogous result, with the same limiting object, is true for the
characteristic polynomial of a CUE-random matrix.

Remark 5.2 Above W−α,2mult (0, 1) stands for the Sobolev space W−α,2(0, 1), where
each element f is identified with the normalized element f/‖f ‖W−α,2(0,1).We omit
the precise description here. 3

6 Results and Conjectures for Statistics of |ζ (1/2 + it)|β

As one expects (recall Section 2.1) that shifts of log |ζ (1/2+ it)| converge in some
suitable sense to something close to a log-correlated Gaussian field, it is natural to
expect that statistical behavior of shifts of |ζ (1/2 + it)|β should resemble that of a
real chaos, at least for small values of β.

6.1 The Fyodorov–Hiary–Keating Conjecture

Fyodorov, Hiary, and Keating [30] conjectured that with convergence in probability,
one has as T →∞

∫ 1

0
|ζ (1/2+ iωT + ix)|βdx =

{
(log T )β

2/4+o(1), if 0 < β ≤ 2,

(log T )β−1+o(1), if β > 2.
(6.1)

This was later on refined and strengthened by Fyodorov and Keating [29] to cover
intervals of length (log T )θ . In a recent interesting preprint Arguin, Ouimet, and
Radziwiłł [3] actually verified an extended form of the conjecture. In addition to
such integrals, Fyodorov, Hiary, and Keating also utilized the theory of extrema of
log-correlated processes (which we briefly touched on at the end of Section 2) to
make conjectures concerning maxx log |ζ ( 1

2 + iωT + ix)|. While the full extent
of these conjectures remain unresolved, there has been significant progress in their
proof – see [2, 32, 62].

It is of interest to note that the statistics of the β-moments described by (6.1)
matches well what one would get if one would assume real multiplicative chaos
limit statistics for the shifts of |ζ (1/2+ it)|β – this even holds true for the freezing
regime as one notes by recalling Section 3.2. We will finish this review by describing
conjectures to this direction.
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6.2 Multiplicative Chaos as Statistical Limits for Shifts of
|ζ (1/2 + it)|β?

After what we have described in the previous sections it is natural to expect that
multiplicative chaos measures are the correct way to describe the statistical behavior
of |ζ |β . More precisely, one would like to know for 0 < β < 2 (β = βc = 2 being
the critical point in this case) the convergence and some basic properties of measures
of the form

|ζ (1/2+ ix + iωT )|β
E |ζ (1/2+ ix + iωT )|β dx.

One should note that for random matrices there are results on the convergence of
|pn(θ)|β (with suitable normalization) to the Gaussian chaos measure λ

β/
√

2 defined
on the circle T using the log-correlated field Xci from Definition 2.1. In [79] this as
done in the L2-range β ∈ (0,√2). This was extended to the full subcritical range
β ∈ (0, 2) in [63].

The convergence of such measures would of course not be too surprising when
comparing with Theorem 4.1 and it would fit very well to the Fyodorov–Hiary–
Keating conjecture (which would be a consequence of such a result in the subcritical
range). However, there are still significant obstacles in proving such a result. First
of all, when proving such results one typically needs good asymptotics for the
normalizing quantity

a(T ) := E |ζ (1/2+ ix + iωT )|β

along with asymptotics for quantities like the two-point function E |ζ (1/2 + ix +
iωT )|β |ζ (1/2+ iy + iωT )|β .

Determining the exact asymptotics of a(T ) is a long-standing open problem.
However, a lower bound of the desired type is known unconditionally [66], and
very recently a corresponding unconditional upper bound was established in [34],
following conditional ones given in [31]. In addition, some fairly sharp conditional
estimates for the shifted moments such as the two-point function are given in [18],
but bounds of the correct order in log T are still unknown.

In any case, it is natural to expect that the correct limiting object can be obtained
as a limit of |ζN,rand|β/E |ζN,rand|β , for which the limit was identified a s a smooth
perturbation of Gaussian (real) chaos in [70]. Hence we are lead to conjectures (put
forward in [70]):

Conjecture 6.1 For β ∈ (0, 2) the random densities

(log T )−
1
4β

2 |ζ (1/2+ ix + iωT )|β, x ∈ [0, 1]

converge in distribution to a smooth perturbation of a Gaussian chaos measure λβ .



On the Riemann Zeta Function and Gaussian Multiplicative Chaos 493

As a side remark, we note that this entails that one should think of |ζ (1/2 + ix +
iωT )|β as an approximation to the chaos on covariance level log log T .

Conjecture 6.2 The previous conjecture holds for β = βc = 2 as soon as one adds
the normalizing factor (log log T )1/2.

Conjecture 6.3 There are mesoscopic analogues of the above conjectures.

If one moves a little bit away from the imaginary axis, and considers instead
statistics of |ζ (1/2+δT+ix+iT ω)|β , one may get rid of the normalization problem,
and the corresponding modified form of Conjecture 6.1 is established in [33] in the
L2-range β ∈ (0,√2).
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16. P. Bourgade, J. Kuan, Strong Szegő asymptotics and zeros of the zeta-function. Comm. Pure
Appl. Math. 67(6), 1028–1044 (2014)

17. J. Bourgain, Decoupling, exponential sums and the Riemann zeta function. Decoupling,
exponential sums and the Riemann zeta function. J. Amer. Math. Soc. 30(1), 203–224 (2017)



494 E. Saksman and C. Webb

18. V. Chandee, On the correlation of shifted values of the Riemann zeta function. Q. J. Math.
62(3), 545–572 (2011)

19. R. Chhaibi, J. Najnudel, A. Nikeghbali, The circular unitary ensemble and the Riemann zeta
function: the microscopic landscape and a new approach to ratios. Invent. Math. 207(1), 23–
113 (2017)

20. J.B. Conrey, Review of “Lectures on the Riemann zeta function” by H. Iwaniec. Bull. Amer.
Math. Soc. 53, 507–512 (2016)

21. J.B. Conrey, J.P. Keating, Moments of zeta and correlations of divisor-sums I–IV (2018).
Preprint arXiv:1506.06842-4 and arXiv:1603.06893

22. J.B. Conrey, D.W. Farmer, J.P. Keating, M.O. Rubinstein, N.C. Snaith, Autocorrelation of
random matrix polynomials. Comm. Math. Phys. 237(3), 365–395 (2003)

23. F. David, A. Kupiainen, R. Rhodes, V. Vargas, Liouville quantum gravity on the Riemann
sphere. Comm. Math. Phys. 342(3), 869–907 (2016)

24. P. Diaconis, M. Shahshahani, On the eigenvalues of random matrices. Studies in applied
probability. J. Appl. Probab. 31A, 49–62 (1994)

25. J. Ding, R. Roy, O. Zeitouni, Convergence of the centered maximum of log-correlated Gaussian
fields. Ann. Probab. 45(6A), 3886–3928 (2017)

26. B. Duplantier, S. Sheffield, Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393
(2011)

27. B. Duplantier, R. Rhodes, S. Sheffield, V. Vargas, Renormalization of critical Gaussian
multiplicative chaos and KPZ relation. Comm. Math. Phys. 330(1), 283–330 (2014)

28. B. Duplantier, R. Rhodes, S. Sheffield, V. Vargas, Critical Gaussian multiplicative chaos:
convergence of the derivative martingale. Ann. Probab. 42(5), 1769–1808 (2014)

29. Y.V. Fyodorov, J.P. Keating, Freezing transitions and extreme values: random matrix theory,
and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
372(2007), 20120503, 32 pp. (2014)

30. Y.V. Fyodorov, G. Hiary, J.P. Keating, Freezing transition, characteristic polynomials of
random matrices, and the Riemann Zeta-function. Phys. Rev. Lett. 108, 170601 (2012)

31. A. Harper, Sharp conditional bounds for the moments of the Riemann zeta function (2013).
Preprint arXiv:1305.4618

32. A. Harper, On the partition function of the Riemann zeta function, and the Fyodorov-Hiary-
Keating conjecture (2019). Preprint arXiv:1906.05783

33. A. Harper, E. Saksman, C. Webb, Multiplicative chaos measures and powers of the absolute
value of the Riemann zeta function close to the critical line – the L2-regime. Manuscript in
preparation

34. W. Heap, M. Radziwiłł, K. Soundararajan, Sharp upper bounds for fractional moments of the
Riemann zeta function (2019). Preprint arXiv:1901.08423

35. H. Helson, Compact groups and Dirichlet series. Ark. Mat. 8, 139–143 (1969)
36. H. Hedenmalm, P. Lindqvist, K. Seip, A Hilbert space of Dirichlet series and systems of dilated

functions in L2(0, 1). Duke Math. J. 86, 1–37 (1997)
37. R. Høegh-Krohn, A general class of quantum fields without cut-offs in two space-time

dimensions. Commun. Math. Phys. 21, 244–255 (1971)
38. C. Hughes, J. Keating, N. O’Connell, On the characteristic polynomial of a random unitary

matrix. Comm. Math. Phys. 220(2), 429–451 (2001)
39. C. Hughes, A. Nikeghbali, M. Yor, An arithmetic model for the total disorder process. Probab.

Theory Relat. Fields 141(1–2), 47–59 (2008)
40. A.E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function. Proc. Lond.

Math. Soc. 27, 273–300 (1926)
41. V. Ivanov, G. Olshanski, Kerov’s central limit theorem for the Plancherel measure on Young

diagrams, in Symmetric Functions 2001: Surveys of Developments and Perspectives (Kluwer
Academic Publishers, Dordrecht, 2002), pp. 93–151

42. A. Ivic, The Riemann Zeta-Function. Theory and Application (Wiley, Hoboken, 1985)
43. J. Junnila, On the multiplicative chaos of non-Gaussian log-correlated fields. Preprint

arXiv:1606.08986. To appear in Int. Math. Res. Not. (2016)



On the Riemann Zeta Function and Gaussian Multiplicative Chaos 495

44. J. Junnila, E. Saksman, Uniqueness of critical Gaussian chaos. Electron. J. Probab. 22(11), 31
pp. (2017)

45. J. Junnila, E. Saksman, C. Webb, Imaginary multiplicative chaos: moments, regularity and
connections to the Ising model (2018). Preprint arXiv:1806.02118

46. J. Junnila, E. Saksman, C. Webb, Decompositions of log-correlated fields with applications
(2019). Preprint arXiv:1808.06838

47. J.-P. Kahane, Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)
48. J. Keating, N. Snaith, Random matrix theory and ζ (1/2 + it). Commun. Math. Phys. 214,

57–89 (2000)
49. R. Kenyon, Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001)
50. A. Kupiainen, R. Rhodes, V. Vargas, Integrability of Liouville theory: proof of the DOZZ

Formula (2019). Preprint arXiv:1707.08785
51. H. Lacoin, R. Rhodes, V. Vargas, Complex Gaussian multiplicative chaos. Comm. Math. Phys.

337, 569–632 (2015)
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Some New Aspects in Hypercomplex
Analysis

Wolfgang Sprößig

Abstract The aim of this overview article is to inform the reader on some new
aspects in the use of hypercomplex methods. We have selected six topics, which
are interesting for applications to physics, hydrodynamics, texture analysis, and
mathematics itself. In the first part we introduce hyperquaternions and show its
usefulness for the algebraical representation of the different kind of physics (P.
Girard). The second part is devoted to the analysis on the 3-sphere and its practical
applications to problems in texture analysis (H. Schaeben, R. Hielscher). In the
third section we describe the fluid flow through porous media with the help of a
quaternion operator calculus. For this reason the basics of the calculus ((D + α)-
holomorphic functions, Bergman–Hodge decomposition of the quaternionic Hilbert
space and its projections) has to be introduced (K. Guerlebeck, W. Sproessig).
With the help of the Takenaka–Malmquist system a generalized Fourier expansion
with the so-called mono-components is shortly described (T. Qian). Furthermore,
harmonic conjugates in weighted Bergman spaces of quaternion valued functions
are presented (K. Avetisyan). The harmonic conjugates of the Poisson kernel are
given explicitly in R

3 and R
4, which are higher dimensional generalizations of the

famous Schwarz formula of the classic function theory.
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1 Hyperquaternions

1.1 Introduction

We have the complex numbers C with e1 = i and e2
1 = −1. Hamilton’s quaternions

H can be defined by e1 = j , e2 = k, e1e2, and e2
& = −1. The algebra of

W. Sprößig (�)
TU Bergakademie Freiberg Fakultät für Mathematik und Informatik,
Prueferstraße 9, 09596 Freiberg, Germany
e-mail: sproessig@math.tu-freiberg.de

© Springer Nature Switzerland AG 2020
D. Breaz, M. Th. Rassias (eds.), Advancements in Complex Analysis,
https://doi.org/10.1007/978-3-030-40120-7_13

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40120-7_13&domain=pdf
mailto:sproessig@math.tu-freiberg.de
https://doi.org/10.1007/978-3-030-40120-7_13


498 W. Sprößig

biquaternions

C⊗H = H⊗ C (1.1)

is defined by the basis e1 = iI , e2 = iJ , e3 = iK , where e2
& = 1, where i = i ⊗ 1,

I = 1⊗ i, etc. Biquaternions are quaternions with complex coefficients. There is an
isomorphy to the Pauli algebra generated by Pauli matrices

σ 1 =
(

0 1
1 0

)
; σ 2 =

(
0 −i
i 0

)
; (1.2)

σ 3 =
(

1 0
0 −1

)
; σ 0 =

(
1 0
0 1

)
. (1.3)

Usually, the unit matrix does not belong to the Pauli matrices. H⊗H are quaternions
with quaternionic coefficients also called tetraquaternions. Its generators are given
by

e0 = j, e1 = kI, e2 = kJ, e3 = Kk, (1.4)

with e2
0 = −1 and e2

& = 1 Tetraquaternions with complex coefficients form the
so-called Dirac algebra H⊗H⊗ C.

Remark 1.1 The name “ hyperquaternion ” was coined in 1922 by the American
mathematician CLARENCE LEMUEL ELISHA MOORE (1876–1931). He was a
mathematics professor in geometry and algebra at the MIT. He had a natural relation
to hypercomplex numbers by studies in Bonn (E. STUDY) and Turin (C. SEGRE).
Nowadays, there are remarkable works of M. PITKANEN and P. GIRARD in this
field.

1.2 Multiplication in H ⊗ H

LetQ,P ∈ H⊗H. Then we define

QP =
(
q0p0 − q1p1 − q2p2 − q3p3 q0p1 + q1p0 + q2p3 − q3p2

q0p2 + q2p0 − q3p1 − q1p3 q0p3 + q3p0 + q1p2 − q2p1

)
.

Furthermore, H⊗H⊗H are quaternions with tetraquaternionic coefficients, which
is a hyperquaternionic structure. It used the rule

(u⊗ v)(x ⊗ y) = (ux ⊗ vy) for u, v, x, y ∈ H. (1.5)

The multivector structure is given by the following table:
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1 I = e3e2 J = e2e3 K = e2e1,

i = e0e1e2e3 iI = e0e1 iJ = e0e2 iK = e0e3,

j = e0 jI = e0e3e2 jJ = e0e1e3 jK = e0e2e1,

k = e1e2e3 kI = e1 kJ = e2 kK = e3.

1.3 Generators

mi⊗1 =
(

0 −iσ 2

−iσ 2 0

)
; mj⊗1 =

(
0 −1
1 0

)
; mk⊗1 =

(−iσ 2 0
0 iσ 2

)
;

m1⊗i =
(

0 −σ 1

σ 1 0

)
; m1⊗j =

(−iσ 2 0
0 −iσ 2

)
; m1⊗k =

(
0 −σ 3

σ 3 0

)
.

These matrices square to −1, anticommute on the same line and commute with
the matrices of the other line, then, they constitute distinct quaternionic systems.
The products of these matrices generate m(4,R), and thus we get the algebraic
isomorphisms

H⊗H ∼= m(4,R) (1.6)

[H⊗H] ⊗ C ∼= m(4,C) (1.7)

[H⊗H] ⊗H ∼= m(4,H) (1.8)

1.4 Clifford Numbers

W.K. CLIFFORD (1845–1879) was an English mathematician and philosopher.
Building on the work of HERMANN GÜNTHER GRASSMANN (1844), he introduced
in 1878 the “geometric algebra,” a special case of a more general Clifford algebra,
which will be introduced. He was the first to propose that gravitation might depend
on the underlying geometry. This idea was later used in A. Einstein’s relativity
theory. The year in that W.K. CLIFFORD died was A. EINSTEIN born. So far Clifford
can be seen as forerunner of Einstein’s work. See also [1].

Let n ≥ 1 let e0, e1, . . . , en be an orthonormal basis of R
n+1, we define a

multiplication by

e0ei = eie0 = ei, i = 0, . . . , n; e2
i = −1, i = 1, . . . , n, (1.9)

eiej = −ej ei, i �= j, i, j = 1, . . . , n. (1.10)
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Thus we obtain a basis of the so-called real Clifford algebra C&(n):

e0; e1, . . . , en; e1e2, . . . , en−1en; e1e2e3, . . . ; . . . ; e1e2 . . . en,

with e0 as unit element.
An arbitrary Clifford number is given by

x = x0 +
n∑

k=1

∑

0<i1<...<ik≤n
xi1...ik ei1...ik ,

where we used the abbreviation

ei1i2...ik := ei1ei2 . . . eik .

1.5 Clifford Algebras over the Real Numbers

Every nondegenerate quadratic form on a finite-dimensional real vector space is
equivalent to the standard diagonal form:

Q(u) = u2
1 + · · · + u2

p − u2
p+1 − · · · − u2

p+q, (1.11)

where n = p+ q is the dimension of the vector space. The pair of integers (p, q) is
called the signature of the quadratic form. The real vector space with this quadratic
form is often denoted R

p,q . The Clifford algebra on R
p,q is denoted C&p,q(R)(=

C&p,q). Obviously, C&(n) coincides with C&0,n.
A standard basis e1, . . . , en for Rp,q consists of n = p + q mutually orthogonal

vectors, p of which square to +1 and q of which square to −1. Of such a basis,
the algebra C&p,q will therefore have p vectors that square to +1 and q vectors that
square to−1. The most important Clifford algebras are those over real and complex
vector spaces equipped with nondegenerate quadratic forms. A few low-dimensional
cases are:
C&0,0 is naturally isomorphic to R since there are no nonzero vectors. C&0,1

is a two-dimensional algebra generated by e1 that squares to −1, and is algebra
isomorphic to C, the field of complex numbers. C&0,2 is a four-dimensional
algebra spanned by {1, e1, e2, e1e2}. The latter three elements all square to −1 and
anticommute, and so the algebra is isomorphic to the quaternions H. C&0,3 is an 8-
dimensional algebra isomorphic to the direct H⊕H, the split-biquaternions. C&3,0
is an 8-dimensional algebra algebraic-isomorphic to the so-called Pauli algebra
generated by the Pauli matrices.
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1.6 Hyperquaternions for Classification of Physics

We follow the paper [2] of the authors Patrick Girard, Patrick Clarysse, Romaric
Pujol, Robert Goutte, Philippe Delachartre. There are used the denotations: with
m(n,K) with K = R,C,H we denote the full n × n matrices with entries from
K . As usual SO(n) denotes the special orthogonal group in R

n. SO(1, 3) is the
special orthogonal group related to the real space R

1,3. The notation SU(n) is
taken for the special unitary group in R

n. Furthermore, we denote by USp(n)
the corresponding unitary symplectic group. nD-physics means physics in R

n. The
abbreviations STR and GTR stand for special theory of relativity as well as general
theory of relativity. With QM is quantum mechanics abbreviated. The isomorphisms
are to see as algebra-isomorphisms. A large part of mathematics in such algebras
is concerned with symmetries. The orthogonal group or special orthogonal group
describes the linear symmetries in regular quadratic spaces. The special orthogonal
group contains as subgroup the spin group which is used to describe actions. The
following relations are valid by using tensor product technique:

Algebra C&p,q Symmetry group Physics

C 1D-physics

H C&0,2 SO(2) 2D-physics

H⊗ C ∼= m(2,C) C&3,0 SO(3) 3D-physics

H⊗H ∼= m(4,R) C&3,1 SO(1, 3) STR, GTR

[H⊗H] ⊗ C ∼= m(4,C) C&2,3 SU(4) Relativistic QM

[H⊗H] ⊗H ∼= m(4,H) C&2,4 USp(4) Quaternionic QM

[H⊗H] ⊗ [H⊗ C] ∼= m(8,C) C&5,2 SU(8) ⊇ SU(5) Standard model

2 Analysis on the 3-Sphere—Some Topics

In crystallographic texture analysis arise the question to have some kind of
“ harmonic analysis ” over the group SO(3), which is easy related to the 3-sphere.
One day H. Schaeben (TU Freiberg) an expert for Geology and Geoinformatics
asked me the following questions:

How to realize a finite element method on the 3-sphere?
What is the area of a triangle on S3?

Starting to think on these questions we very quickly come to Poincaré’s conjecture.
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This conjecture gives a topological characterization of the 3-sphere, which is just
a hypersphere that bounds the unit ball in the 4-dimensional Euclidean space. The
conjecture formulated by H. POINCARE (1854–1912) in 1900 states:

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

which was proved in 2002–2003 by GRIGORI PERELMAN. This shows that a 3-
sphere is from topological point of view very complicated and captivated our
imagination.

2.1 Representations of S3

For practical computations on the sphere one needs more clearness on the represen-
tation of S3. Homeomorphic images are not enough in this case. Therefore we need
descriptions of the sphere by suitable coordinates.

Furthermore, we have to use the work of the English geometer W.K. CLIFFORD

(1845–1879),the French astronomer and mathematician Y. VILLARCEAU (1813–
1883) and the German-Swiss algebraical topologist H. HOPF (1894–1971). The
famous physicist and geometer R. PENROSE: wrote ...Clifford found, that the entire
3-dimensional sphere can be filled up with non-intersecting parallel circles (today
called Clifford parallels), each being linked to each of the others. (see also [3].)

We identify x = (x0, x1, x2, x3) with (z0, z1) ∈ C
2 with z0 = x0 + ix1 and

z1 = x2 + ix3. S3 is identified with a subset of C2 such that |z1|2 + |z2|2 = 1. S2

is a subset of C × R with the pairs (z, x3) and |z|2 + x2
3 = 1. The Clifford-Hopf

mapping h is given by

S3 * (z1, z2)→ (2z0z1, |z0|2 − |z1|2) ∈ S2, (2.1)

which is surjective on S2. For a closer look we refer to the paper by PIERRE ANGLES

[4].

Theorem 2.1 We have h((z0, z1)) = h((w0, w1)) iff (z0, z1) = λ(w0, w1), λ ∈ C

and |λ| = 1.

Corollary 2.2 For any q ∈ S2 h−1(q) is circle isomorphic to S1. The mapping h is
associated with a “ fibration ” of S3. The inverse image of a circle on S2 is a torus
in S3.

Moreover one can show that S3 is the union of two solid tori “glued” together along
their common boundary which is called Clifford torus. This can be easily seen as
follows:

Let S3 = {(w, x, y, z) : w2 + x2 + y2 + z2 = 1}. The common boundary is the
Clifford torus w2 + x2 = y2 + z2 = 1. The solid tori can be described by
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w2 + x2 ≤ 1

2
, y2 + z2 = 1− w2 − x2, (2.2)

y2 + z2 ≤ 1

2
, w2 + x2 = 1− y2 − z2. (2.3)

Remark 2.3 From a 4D-to-3D stereographic projection to the Clifford-Hopf fibra-
tion one gets the Clifford torus composed of interlinked Villarceau circles. There
exists a nice image in nylander.wordpress.com.

The complicated nature of S3 makes it not easy to find suitable distortion free
notions of distances and volumes. Therefore are used the relations between SO(3)
(special orthogonal group), RP

3(real projective space) and S3 (3-sphere).
We have

SO(3) ≡ RP
3 ≡ S3/(x ≡ −x). (2.4)

RP
3 is locally the Cartesian product of S1 and S2, in the same sense like the Möbius

band is the Cartesian product of an interval and S1.
On the sphere S3 can chosen three coordinates (θ, φ, ψ) with 0 < ψ ≤ 2π

(parametrization of S1), 0 < θ ≤ π, 0 < φ ≤ 2π (spherical coordinates).

x0 = cos
θ

2
cos

ψ

2
, x1 = cos

θ

2
sin
ψ

2
, (2.5)

x2 = sin
θ

2
cos

(
φ + ψ

2

)
, x3 = sin

θ

2
sin

(
φ + ψ

2

)
. (2.6)

Intuitively, we have at first a rotation of angle ψ ∈ S1 around an axis z, followed
by a rotation which places the axis z (versor z) in any position (θ, φ) ∈ S2. The
volume element is the product of the surface element in S2 and the length element
of a circle:

dV = sin θdθdφdψ. (2.7)

Such coordinates are called Clifford-Hopf coordinates. See it more detailed in the
paper [5]

It is well known that the group of all real valued, orthogonal 3× 3 matrices with
determinant 1 is just SO(3). A rotation g ∈ SO(3) is defined by a rotational axis
ξ ∈ S2 and a rotational angle ω ∈ [0, π). The rotation matrix should be now denoted
by Rξ (ω). The rotational angle ω =: � g of g can be described by the trace of the
rotation matrix (gij ).

cos ω = g11 + g22 + g33 − 1

2
. (2.8)

nylander.wordpress.com
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With the help of the quaternion multiplication the product Rξ3(ω3) of the two
rotations Rξ1(ω1) and Rξ2(ω2) is obtained. The rotation axis and the rotation angle
are given by

ξ3 = sin
ω2

2
cos
ω1

2
ξ1 + sin

ω1

2
cos
ω2

2
ξ2 + cos

ω1

2
cos
ω2

2
ξ1 × ξ2 (2.9)

cos
ω3

2
= cos

ω1

2
cos
ω2

2
− sin

ω1

2
sin
ω2

2
ξ1 · ξ2. (2.10)

The rotational angle between two rotations g1 and g2 is given by � g−1
1 g2. This angle

can be used to define a metric on SO(3). For the application of the rotation to x one
gets the well-known Rodrigues’ formula

Rξ (ω)x = cosωx + sinωξ × x + (1− cosω)(ξ · x)ξ . (2.11)

One defines the volume element in terms of the rotation axis and the rotation angle

dg = dξ sin2 ω

2
dω (2.12)

in order to give sense to the integral
∫

SO(3)
1dg. Therefore

∫

SO(3)

1dg = 4

π∫

0

∫

S2

1dξ sin2 ω

2
dω = 8π2. (2.13)

2.2 Tomographic Methods

It is very useful that the subspace of even functions of the spaceL2([−1, 1],√1− t2)
and the space of radially symmetric functions with respect to the identity (Id)
L2(SO(3)) are isomorphic. A function u : SO(3)→ R is called radially symmetric
with respect to the identity if u(g) = u(g′) for all g, g′ ∈ SO(3) fulfils the condition
� g = � g′, i.e., only the distance of g to Id is relevant. An important example is the
De la Vallée Poussin kernel which reads as follows:

K(t) := B( 3
2 ,

1
2 )

B( 3
2 , κ + 1

2 )
t2κ , t ∈ (0, 1], κ > 0, (2.14)

where B denotes the Beta function: B(x, y) =
1∫

0
tx−1(1− t)y−1dt . Now we follow

results of R. Hielscher:
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Theorem 2.4 ([6]) Let u ∈ L2(SO(3)) be a radially symmetric function with
respect to the identity Id and U : [−1, 1] * t → U(t) = u(g) with g ∈ SO(3)
and |t | := cos

� g
2 . Then the mapping u → U defines an isomorphism. Moreover,

it can be proved that any radially symmetric function u ∈ L2(SO(3)) permits the
following series expansion:

u(g) =
∞∑

k=0

Û (2k)U2k(cos
� g
2
), g ∈ SO(3), (2.15)

where Û (2k) are the Chebyshev coefficients of even order of the function U and U
denotes the Chebyshev polynomials of second kind.

Using the Peter–Weyl theory on irreducible representations of compact groups a
complete system of the so-called Wigner-D-functions Wk on SO(3) is given [6].
More exactly holds:

Theorem 2.5 Let be Wk : SO(3)→ GL(Harmk)(S2) the (left) representations of

SO(3) into Harmk(S2). For the matrix entries Wm,m′
k one obtains for g ∈ SO(3)

Wm,m′
k (g) =

∫

S2

Ym
′
k (g

−1ξ)Y
m

k (ξ)dξ, (2.16)

where Ymk are harmonic polynomials. For an arbitrary function of L2(SO(3)) one

gets a corresponding series expansion in terms of Wm,m′
k .

It is well-known that all tomographic methods used in material science and medicine
are mathematically based on the so-called Radon transform.

Ru(x, y) =
∫

R

u(x + τy)dτ , x, y ∈ R
n, (X-ray tomography) (2.17)

which is well-defined for any continuous function u. The inversion of this transfor-
mation is a basic ill-posed problem. Its formulation for the Lie group SO(3) reads
as follows:

R : C(SO(3))→ C(S2 × S2); (Ru)(h, r) := 1

2π

∫

G(h,r)

u(g)dg, (2.18)

with G(h, r) = {g ∈ SO(3) : gh = r}, h, r ∈ S2, (see also in [7]).
The inversion of R is an important problem in quantitative texture analysis

(QTA). The Radon transform (Ru)(h, r) can be expressed by the two rotations
Rr(ω) and gh,r a rotation that maps h to r . One has
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(Ru)(h, r) = 1

2π

2π∫

0

u(Rr(ω)gh,r )dω. (2.19)

The Radon transform produces a nice relation between harmonic polynomials of
degree k and the Wigner-D-function of degree k. More detailed, it holds

RWk(h, r) = 2π

k + 1/2
Yk(r)Yk(h)T , h, r ∈ S2. (2.20)

The proof is based on Funk-Hecke’s theorem, which is formulated on Sn−1 as
follows: It follows that any u ∈ L2(S

n−1) permits the series expansion

u(ω) =
∞∑

k=0

Yk(ω), (2.21)

which converges in L2(S
n−1) . The functions Yk(ω) can be represented by

Gegenbauer polynomials Cμk via an integral formula

Yk(ω) = 2k + n− 2

(n− 2)σn

∫

Sn−1

C
n−1

2
k ((ω, ζ ))u(ζ )dS(ζ ), (2.22)

where σn denotes the area of the unit sphere Sn−1. The famous Funk-Hecke formula
reads as follows:

∫

Sn−1

u(〈, ω, ζ 〉)Yk(ζ )dS(ζ ) = σn−1
k!(n− 3)!
(k + n− 2)!

1∫

−1

u(t)(1− t2) n−3
2 C

n−2
2
k (t)dtYk(ω).

3 Fluid Flow Through Porous Media with the Help of a
Quaternionic Operator Calculus

3.1 Some Basic Fluid Flow Equations

A mass of a liquid dq percolating through the surface element dσ of a homogeneous
porous medium in the direction of the normal n in a time interval dt is given by
Darcy’s law:

dq = −k 1

μ∗
∂p

∂n
dσdt, (3.1)
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where p is the so-called (pore) pressure and k the permeability, a measure of the
ability of a material to transmit fluids , μ∗ is the so-called dynamic viscosity of the
percolation material. Further k/μ∗ is called percolation coefficient.

In his famous paper [8]: H. DARCY described the basic equations of the flow
though porous media:

μ∗
k
u = −gradp + f (Darcy equation), (3.2)

div u = 0, (3.3)

where u is the velocity, p as already mentioned is the pressure, and f the body
force. Darcy’s equations are only true in regions where the velocity is not too large.

Note that the measure of porosity is the fraction of fluid per volume divided by
the total volume of the porous body. In the case that this fraction is near to one.
H.C. BRINKMAN added in 1949 a further term. The arising system is now called
Brinkman’s equations

μ∗
k
u = −gradp + f + λ�u, (3.4)

div u = 0. (3.5)

Here λ is called effective viscosity.

Remark 3.1 H.C. BRINKMAN worked at the University of Groningen together with
F. ZERNIKE and B. NIJBOER. See also the paper [9].

For situations where the fluid velocity is big enough Darcy’s equations are usually
replaced by the so-called Forchheimer equations. These equations often read as
follows:

μ∗
k
u+ au+ b|u|u = −gradp + f, (3.6)

div u = 0. (3.7)

Remark 3.2 By definition, the effective viscosity means the viscosity of Newtonian
fluid that gives the same shear stress at the same shear rate.

The analysis of convective fluid flow in a porous medium where the viscosity is
considerable varying (with temperature or with salt concentration ) it is necessary
to use a combination of both the Brinkman and the Forchheimer model. We obtain

∂u

∂t
= λ�u− au+ b|u|u = −gradp + f, div u = 0. (3.8)

This last model characterizes a non-slow flow in a saturated porous medium. The
solution depends continuously on the Forchheimer coefficient b and also from
the Brinkman coefficient λ. If the effective viscosity tends to zero then the limit
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model is called Darcy–Forchheimer equations. It is known that the energy decays
exponentially. A good reference is the paper [10].

3.2 A Quaternion Operator System

First we introduce the notion of a generalized holomorphy. Let D be the operator
given by

D = ∂1e1 + ∂2e2 + ∂3e3, (3.9)

where ei are the basic quaternions with −DD = �.
A componentwise differentiable quaternion valued function-α is called (D+α)-

holomorphic in a domain G if and only if

(D + α)-α = 0 in G. (3.10)

Let

Kp(z) = −πi
2
e−

πi
2 pH(2)p

(
ze−

πi
2

)
, −π

2
≤ argz < π, (3.11)

whereH(2)p denotes the Hankel function of second order. The functionKp(t) is also
called MacDonald function (named after H.M. MACDONALD) (1865–1935).

The fundamental solution for the Klein–Gordon operator −� + μ2 = (D +
iμ)(D − iμ) is given by:

Kα(x) :=
(

1

2π

)n/2 (
α

|x|
)n/2−1

Kn/2−1(α|x|). (3.12)

Let us consider the fundamental solution eα for the operator Dα (α = iμ). Let
n ≥ 3, we then have

eα(x) := −
( α

2π

)n/2 1

|x|(n/2−1)

[
x

|x|Kn/2(α|x|)−Kn/2−1(α|x|)
]
. (3.13)

∣∣∣∣∣∣

∫

G

eα(x)dx

∣∣∣∣∣∣
≤ 1

μ
const. (3.14)

[11].
Let G be a sufficiently smooth bounded domain in R

3. Introducing the modified
Teodorescu transform as follows with α = iμ
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(Tαu)(x) :=
∫

G

eα(y − x)u(y)dy x ∈ G. (3.15)

Then we have (D ± α)T±α = I . In [12] is proved the following Bergman–Hodge
decomposition of the Hilbert space

Theorem 3.3 Let α = ia0 , a0 ∈ R+. We obtain:

L2(G) = kerDα ∩ L2(G)⊕D−α
◦
W 1

2 (G), (3.16)

where Pα orthoprojection onto (kerDα ∩ L2)(G) (Bergman projection)

Qα orthoprojection onto D−α
◦
W 1

2 (G) Qα = I −Pα (Pompeiu projection).

The modified Cauchy–Fueter operator is given by

(F±α,�u)(x) :=
∫

�

eα(x − y)n(y)u(y)d�y, x ∈ G ∪ (R3 \G), (3.17)

for u ∈ C1(G) ∩ C(G). A corresponding Borel–Pompeiu formula is proved. For
u ∈ C0,β(�) (0 < β ≤ 1) the corresponding Bitzadse integral operator is given by

(S±α,�u)(x) := 2
∫

�

eα(x − y)n(y)u(y)d�y, x ∈ �. (3.18)

Again we have S2±α,� = I . Thus we have also Plemelj projections onto correspond-
ing Hardy spaces of (D ± α)-holomorphic extendable quaternionic functions. We
define:

P±α,� = 1

2
(I + S±α,�), Q±α,� = 1

2
(I − S±α,�). (3.19)

Jump formulae of Plemelj–Sokhotzkij type are also proved.

Theorem 3.4 Let f ∈ Wk
2 (G) , g ∈ Wk+3/2

2 (�). Then

(−1+μ2)u = f in G, (3.20)

u = g on �. (3.21)

This problem has the (unique) solution

u = F�,−αg + T−αPαD−αh+ T−αQαTαf, (3.22)

where h denotes a Wk+2
2 -extension of g into G

For the proof we again refer to [12].
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Theorem 3.5 The operator

tr�T−αF�,α : im P�,α ∩W 1/2
2 (�)→ im Q�,−α ∩W 3/2

2 (�) (3.23)

is an isomorphism.

Corollary 3.6 For the Bergman and Pompeiu projections hold

Qα = I − Pα and Pα = F�,α(tr�T−αF�,α)−1T−α. (3.24)

Corollary 3.7 It holds the following equivalence:

tr�T−αu = 0⇔ u ∈ imQα. (3.25)

Remark 3.8 Let G ⊂ Rn+1 a bounded domain and � = ∂G. For all x ∈ � and
0 < r < diam� has to exist a positive constant c with

c−1r−1 ≤ Hn(�) ∩ B(x, r) ≤ cr2, (3.26)

where Hn(F ) (F ⊂ Rn) is the n-dimensional Hausdorff measure. Such a
boundary is called Ahlfors–David boundary. Surfaces of this type are called AD-
regular. Liapunov, Lipschitzean, and chord-arc (S. SEMMES) surfaces belong to this
class.

In subclasses of hölder-continuous functions operators of Cauchy–Bizadse type
are studied. Plemelj–Privalov, Plemelj–Sokhotzky formulae are proved. Riemann
boundary value problems are solved. Fractal boundaries also considered more
recently. Most progress in these questions was obtained by the Cuban Research
Group around J. BORY-REYES (see also [13]). In the Lipschitzean case there are
papers by M. MITREA and A. MCINTOSH.

3.3 Representation in Terms of (D ± α)-Holomorphic
Functions

Set μ := μ∗
kλ

and α := iμ. Applying Teodorescu transforms from the left and
consider the validity of the Borel–Pompeiu formula one gets

u = T−αTαDp̃ + T−αTαf̃ + T−α-α +-−α, (3.27)

with p̃ = p
λ

and f̃ = f
λ

, where

-±α ∈ ker (D ± α). (3.28)
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After using the representation of the orthoprojections

Pα := Fα(tr�T−αFα)−1tr�T−α (3.29)

and

Qα = I − Pα (3.30)

one obtains

u = T−αQα[p̃ + αTαp̃] − T−αQαTαf̃ (3.31)

0 = ScQα[p̃ + αTαp̃] − ScQαTαf̃. (3.32)

It holds the equality

‖D−αu‖22 + ‖Qα ˜̃p‖22 = ‖QαTαf̃ ‖22. (3.33)

We have already proved that

u = T−αQα[p̃ + αTαp̃] − T−iαQαTαf̃, (3.34)

where Qα = I − Pα and

Pα = VecF�,α
(
tr� T−αVecF�,α

)−1 tr� T−α, (3.35)

where μ := μ∗
kλ

(λ,μ∗ viscosities and k the permeability and α = iμ. A solution is
given by

us = T−αQiαVec Tαf̃ . (3.36)

It remains for the pressure term

Qα ˜̃p = QiαScTαf̃ . (3.37)

This leads to

˜̃p = Sc Tαf̃ +- (- ∈ ker(Dα)) (3.38)

and thus with H ∈ ker(−�+ μ2)

p̃s = Sc Tαf̃ +H. (3.39)
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4 An Adaptive Fast Fourier Type Decomposition

4.1 Takenaka–Malmquist Systems

Definition 4.1 Let α ∈ B1(0). The Blaschke product is defined by the factors

Bα(z) = z− α
1− αz . (4.1)

The function L(α)k = mα(z)Bkα(z) with

mα =
√

1− |α|2
1− αz and k ∈ Z (4.2)

is called discrete Laguerre function. Moreover, L1−n(z) = L1
n(

1
z
).

Above representation formulae are used to construct analoga to the well-known
Takenaka–Malmquist system (TM-system) in quaternions and reduced quaternions.
Reduced quaternions are quaternions of the form a0e0+a1e1+a2e2 with ai are real
numbers and ei basis elements. The TM-system is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

-1(z) =
√

1− |a1|2
1− a1z

,

-n(z) =
√

1− |an|2
1− anz

n−1∏

k=1

z− ak
1− akz , n ≥ 2,

ak ∈ D, k = 1, 2, . . . , z ∈ D.

(4.3)
See in [14, 15].

Remark 4.2 F. MALMQUIST was a student of HAROLD CRAMER (Stockholm), who
was student of MARCEL RIESZ, also influenced by G.H. HARDY.

Under some conditions a function f can be represented in a Fourier expansion.
There is a proposal for a generalization with the so-called mono-components (T.
QIAN). Such an expansion is given by

f (t) =
∞∑

i=0

ρk(t) cos θk(t). (4.4)

Each of the summands is a mono-component (classical-Fourier-expansion: ρk(t) =
ρk and θk(t) = kωt). For the convergence is used the famous Huang algorithm.
This is an algorithm for detecting termination in a distributed system. This greedy
algorithm was proposed by SHING-TSAAN HUANG in 1989 in the journal of
computers. There is a relation to the Empirical Mode Decomposition (EMD).
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A similar adaptive orthogonal complete system {Bn} of quaternionic valued
functions H2(B) is obtained. Only as a remark, without construction details we
formulate:

Theorem 4.3 ([16, 17]) By adaptively choosing the parameters {an}∞n=1 according
to the given function a fast decomposition (in terms of energy) is achieved such that

f =
∞∑

n=1

Bn〈f,Bn〉. (4.5)

The latter decomposition is called Adaptive fast Fourier type decomposition.

5 Harmonic Conjugates in Weighted Bergman Spaces

The British mathematicians G.H. HARDY and J.E. LITTLEWOOD [18] were the
first who considered in 1931 the problem of harmonic conjugation in spaces of
holomorphic functions on the unit disk in C. Later E. STEIN and G. WEISS

generalized this to the half space in R
n+1 and characterized Hardy spaces on the

upper half space. A. SUDBERY in 1979 gave by the help of quaternions the first
explicit formula for a harmonic conjugate in R

4. In 1988–1993 D. CONSTALES, F.
BRACKX, N. VAN ACKER, Z. XU, J. CHEN, and W. ZHANG constructed harmonic
conjugates to the Poisson kernel. M. SHAPIRO (1997) and F. BRACKX, B. DE

KNOCK, H. DE SCHEPPER ,D. EELBODE (2006) as well as R. DELANGHE and F.
SOMMEN (2002) studied such problems using for the construction singular integral
equations.

During the stay of K. AVETISYAN in Freiberg and Weimar the following question
was studied:

If a given harmonic function belongs to some function space, where are then the
harmonic conjugate functions?

Let f (x) = f (rζ ) a H−valued function in B(= B4) = B1(0) ⊂ R
4, 0 ≤ r <

1, ζ ∈ ∂B = S(= S3). Further let

‖f ‖p,α :=
⎛

⎝
∫

B

(1− |x|)α|f (x)pdV (x)
⎞

⎠
1/p

, 0 < p <∞, α > −1, (5.1)

where dV is the Lebesgue volume measure on B normalized by V (B) = 1. We
define

Mp
α := {f ∈M(B,H) : ‖f ‖p,α <∞} (5.2)
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hpα := {u ∈ h(B,R) : ‖u‖p,α <∞}. (5.3)

Mp,α denotes the weighted Bergman space of (left) holomorphic functions in B and
h
p
α denotes the Bergman space of scalar harmonic functions in B.

Theorem 5.1 Let u : B → R a real-valued harmonic function in the unit ball B. If
u ∈ hpα for some α > −1 and 0 < p < 1 or 1 < p < ∞ then there exists a (left)
holomorphic function f : B → H such that f ∈Mp

α and Sc f = u in B and

‖f ‖p,α ≤ C(p, α)‖u‖p,α. (5.4)

Remark 5.2 The proofs for the two cases 0 < p < 1 and 1 < p <∞ are different.
The first case is more complicated.

The starting point for any proof is the following

Theorem 5.3 (A. Sudbery) Let v(x) be a harmonic function in a domainG ⊂ R
3,

let G be star-shaped with respect to the origin. Here star-shaped means a domain
which contains with every x ∈ G also the line from the origin to x. Then with the
Dirac operator D

u(x) = v(x)− V ec
⎛

⎝
1∫

0

t2(Dv)(tx)xdt

⎞

⎠ (5.5)

is a (left) holomorphic function in R×G ⊂ H.

One can obtain the following inequalities for potential kernels. For the proof we
further need estimations of potential kernels:

Let β > α > −1, 0 ≤ r < 1. Then for any x = rζ ∈ Bn, ζ ∈ Sn.

∫

Sn

dσ (ξ)

|ξ − x|β+n ≤ C(β, n)
1

(1− |x|)β+1 , (5.6)

∫

Bn

(1− |y|)α
|ζ − ry|β+n dVn(y) ≤ C(α, β, n)

1

(1− |x|)β−α , (5.7)

(see also [19, 20]). Starting from the classical Hardy inequality it follows:
Let f ≥ 0, 1 < p <∞

∞∫

0

⎛

⎝ 1

x

x∫

0

f (t)dt

⎞

⎠
p

dx ≤
(

p

p − 1

) ∞∫

0

[f (x)]pdx, (5.8)
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see in [21], one has also the Hardy type inequalities Let 1 ≤ p < ∞, β > −1 and
g(r) ≥ 0, then

1∫

0

(1− r)β
⎛

⎝
r∫

0

g(t)dt

⎞

⎠
p

dr ≤ C(β, p)
1∫

0

(1− r)β+pgp(r)dr. (5.9)

Let 0 < p < 1 and g(r) is a positive increasing function and 0 ≤ r < 1, then

⎛

⎝
1∫

0

g(tr)dt

⎞

⎠
p

≤ C(p)
1∫

0

(1− t)p−1gp(tr)dt. (5.10)

On the basis of the famous Hardy-Littlewood-Fefferman-Stein inequality for sub-
harmonic functions |u|p, which reads as follows:

|u(x)|p ≤ C(p, n)

(1− |x|)n
∫

B(x)

|u(y)|pdVn(y) (HL-property) (5.11)

with

B(x) :=
{
y ∈ Bn : |y − x| < 1

2
(1− |x|)

}
. (5.12)

K. AVETYSIAN obtained for 0 < p <∞, α > −1 and for all u ∈ h(Bn)

∫

Bn

(1− |x|)α|u(x)|pdVn(x) ≡
1∫

0

(1− r)αMp
p (u; r)dr, (5.13)

with Mp(u; r) = ‖u(r·)‖Lp(S,dσ), where 0 ≤ r < 1, 0 ≤ p < ∞. dσ is the
normalized surface measure from S. (see [22]).

6 On Schwarz Type Formulae

6.1 Schwarz Integral Formula in the Complex Plane

Theorem 6.1 (Integral Formula of Schwarz, 1870) Let z and ζ be variables. Br
is a disk around the origin with radius r . Further let f = u + iv be a function
holomorphic in Br ⊂ C and continuous in Br . Then for z ∈ Br holds
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f (z) = 1

2πi

∫

∂Br

ζ + z
ζ − zu(ζ )

dζ

ζ
+ i Imf (0). (6.1)

Analogously a formula with the imaginary part of f holds as well:

f (z) = 1

2π

∫

∂Br

ζ + z
ζ − zv(ζ )

dζ

ζ
+ Re f (0). (6.2)

6.2 Schwarz Kernel in R
4

In case of quaternions the following result could be obtained:

Theorem 6.2 Given a function f, which is defined on S3 = ∂B1(0) = ∂B, assume
f ∈ L2(S3), without loss of generality, we further assume that f is real valued
(otherwise we handle with f componentwisely). If a function F ∈ H2(B) satisfies

lim
r→1−

Sc(F (rξ)) = f (ξ), a.e. on S3, (6.3)

then the adaptive decomposition of F lead to the adaptive decomposition of f . F
can be constructed explicitly (not necessarily uniquely) by

F(x) = T (f )(x) =
∫

|ω|=1
S(x, ω)f (ω)do(ω), |x| < 1, (6.4)

where S(x, ω) = P(x, ω) + Q(x, ω) is the quaternionic Schwarz kernel with the
Poisson kernel

P(x, ω) = 1

2π2

1− |x|2
|x − ω|4 . (6.5)

For the harmonic conjugate of Poisson’s kernel we have

Q(x, ω) = Vec
( ∫ 1

0
t2(∂P )(tx, ω)xdt

)
=

( 1

2π2

∫ 1

0

4t2(1− t2|x|2)
|tx − ω|6 dt

)
Vec(ωx)

= 1

2π2

[
(3+|x|2)(3−Sc(ωx))−8

|x−ω|4 −
arctan

√
|x|2−(Sc(ωx))2

1−Sc(ωx)√|x|2−(Sc(ωx))2

]
Vec(ωx)

|x|2−(Sc(ωx))2

is the Cauchy-type harmonic conjugate of the Poisson kernel on the unit sphere,
[17, 23].

Remark 6.3 One can prove that T is a bounded operator from L2(S3) to H2(B).
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Let B = {x = x0 + −→x = x0 + x1e1 + x2e2 ∈ R
3 : |x| < 1}. Denote with

A := spanR{1, e1, e2}. A function f, which is defined on B taking values in H, is
called left holomorphic if it satisfies

Df = e0
∂f

∂x0
+ e1

∂f

∂x1
+ e2

∂f

∂x2
= 0 (6.6)

in its domain. If in addition, f satisfies

‖f ‖2 := 1

4π
sup

0<r<1

∫

η∈S
|f (rη)|2dS <∞, (6.7)

where S is the boundary of B and d−→x = dx1dx2, then f is said to be an element
of the Hardy space H2(B).

The Cauchy integral formula for this setting is

f (x) = 1

4π

∫

∂1

(y − x)−1

|y − x| (n(y)dS)f (y), x ∈ 1, f ∈ H2(1), 1 = B.(6.8)

For more details about these function classes and their generalizations, see, e.g.,
[24].

6.3 Schwarz Formula for the Ball in R
3

The following operator:

T (f )(x) = F(x) =
∫

ω∈S
P(x, ω)f (ω)dω +

∫

ω∈S
Q(x, ω)f (ω)dω, x ∈ B,

where P(x, ω) = 1
4π

1−|x|2
|x−ω|3 is the Poisson kernel andQ(x, ω) is given by

The so-called Cauchy-type harmonic conjugate in R
3 is given by

Q(x, ω) = Vec
( ∫ 1

0
t (DP)(tx, ω)xdt

)
(6.9)

=
( 1

4π

∫ 1

0

3t (1− t2|x|2)
|tx − ω|5 dt

)
Vec(ωx) (6.10)

= 1

4π

[ (3+ |x|2)(3− Sc(ωx))− 8

|x − ω|3 − 1
] Vec(ωx)

|x|2 − (Sc(ωx))2
. (6.11)

In summing up a real-valued function f ∈ L2(S) is mapped to a function F ∈
H2(B), and the real part of the boundary values of F coincides with f.
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Some Connections of Complex Dynamics

Alexandre De Zotti

Abstract We survey some of the connections linking complex dynamics to other
fields of mathematics and science. We hope to show that complex dynamics is not
just interesting on its own but also has value as an applicable theory.

1 Introduction

Complex dynamics is the study of the iterations of holomorphic maps1 and the
field of dynamics in one complex variable is the subfield of complex dynamics
concerning the iteration of holomorphic functions defined on Riemann surfaces.
Usually this involves an open connected subset U of a Riemann surface such as
the complex plane C or the Riemann sphere Ĉ and a nonconstant holomorphic
function f defined on U and whose range intersects U . Hence if one has to explain
to nonexperts what complex dynamics is, then one would have to explain many
concepts and ideas: complex numbers, holomorphic functions, iteration, and finally,
why studying complex dynamics.

The study of the iteration of holomorphic function belongs to both the fields of
complex analysis and the theory of dynamical systems. Because of the rigidity of
holomorphic functions, the theory of complex dynamics is rich in deep results: a
complete combinatorial description of the structure of the Julia set of polynomials
and (conjecturally) of the Mandelbrot set [53], application of the thermodynamical
formalism to Julia sets (see, for example, the survey [55]) which allows to compute

1There is also another unrelated field called complex dynamics which can also be described as
“nonlinear dynamics” and usually involves the coupling of different systems, hence the use of the
word “complex.” In our perspective the word “complex” is to be understood as relating to the
complex numbers.
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their Hausdorff dimensions, interplay with circle map dynamics and the theory of
small divisors (for example, [69]), as examples of realizations of unusual topologies
as Julia sets (e.g., [9, 57]) or of pathological dynamical systems [13].

In this article we will attempt to give some examples of what makes complex
dynamics an attractive field of research in the point of view of applications. We
do not claim to be exhaustive. Section 2 contains some background material on
complex dynamics. In the following sections we will focus on three areas: Kleinian
groups, root finding algorithms, and the Ising model. For each area we will try to
explain some of their relations with the field of complex dynamics and will refer to
further references for more in depth exploration. Finally, in Section 6 we will give
quick indications about other connections.

The author wishes to thank Prof. Kuntal Banerjee for helpful discussions.

2 Background Material in Complex Dynamics

In this section we cover basic material about complex dynamics. For some
references on the topic see, for example, [19, 52, 54] or [3].

The most elementary type of holomorphic functions to study in complex
dynamics would be polynomials. But beyond the trivial case of affine maps, the
theory of polynomial dynamics is already rich and complex. Let d ≥ 2 and denote
by

Poly(d) (1)

the set of polynomials of degree d. Let P ∈ Poly(d). Then for each z = z0 ∈ C we
define inductively its orbit (zn)n under P as

zn+1
..= P(zn) = Pn(z0), (2)

where Pn = P ◦ . . . ◦ P denotes the nth iterate of P .
Using a direct computation, it is easy to show that if |z| is large enough, then

its orbit converges quickly to∞. This motivates the definition of the filled Julia set
K(P ) of P :

K(P ) ..= {z ∈ C : the orbit of z is bounded }. (3)

Then the Julia set J (P ) is defined as the boundary of the filled Julia set. The
sets K(P ) and J (P ) are both totally invariant, that is P(K(P )) = P−1(K(P ))

and P(J (P )) = P−1(J (P )). If follows from its definition that the Julia set is
characterized by sensible dependence on initial conditions on its neighborhood. We
will later see a more general definition for the Julia set.

For example, the Julia set of the map z �→ z2 is simply the unit circle {z : |z| = 1}
and its filled Julia set the closed unit disk. Orbits inside the open disk are attracted
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by the fixed point at 0 and orbits outside the closed unit disk diverge quickly to∞.
The unit circle is situated at the interface between these two very distinct behaviors.

The Julia set of a polynomial is either connected or consists of uncountably many
connected components. And in the latter case when d = 2, the Julia set is a Cantor
set.

A critical point of P is a point where the derivative of P vanishes. One of
the main principles of complex dynamics is that the orbits of the critical points
determine the global features of the dynamics of the map. This principle is
exemplified in the following equivalence: the Julia set of a polynomial is connected
if and only all the critical points of P belong to the filled Julia set.

It is easy to see that any polynomial of degree 2 is conjugated via an affine change
of variables to a polynomial of the form

Pc(z) = z2 + c (4)

where c ∈ C is some complex parameter. Moreover, if c �= c′, then Pc and Pc′ are
not affinely conjugated. The family of polynomials Pc is called the quadratic family.
The quadratic family encompasses the dynamics of all the quadratic polynomials
up to affine change of variables. The set of parameters c ∈ C is also called the
parameter space of the quadratic family. This is just the complex plane C seen as a
family of distinct dynamical systems.

In general one studies the properties of a family of holomorphic maps, such as
bifurcations, inside the parameter spaces. For example, the connectedness locus of
a parametrized family is the set of parameter for which the Julia set is connected.
The connectedness locus of the quadratic family is more famously known as the
Mandelbrot set.

As mentioned in the introduction the theory of complex dynamics is concerned
with any type of holomorphic functions and the notion of Julia set can be extended
to any mapping on a Riemann surface to itself. For that we first need to define the
Fatou set.

The Fatou set of a holomorphic map f is the set of points z which have a
neighborhood on which the family (f n)n≥0 of iterates of f forms a normal family.
In other words the point z belongs to the Fatou set of f if and only if from
any subsequence of (f n)n≥0 one can extract a (sub-)subsequence converging on
a neighborhood of z for the topology of local uniform convergence. The Fatou set
is a totally invariant open set and the Julia set is defined as the complement of the
Fatou set in the domain of f . This means that the dynamics on the Fatou is stable
while the Julia set contains the chaotic part of the dynamics.

When the Riemann surface in question is C the set of holomorphic functions is
the set of entire functions, including the polynomials. On the Riemann sphere Ĉ,
the holomorphic functions are the rational maps. Polynomial maps are also rational
maps. A polynomial map is a rational map having a fixed point (identified with
∞ ∈ Ĉ) with no other preimage than itself. In particular ∞ is a superattracting
fixed point (see below) for any polynomial.
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We will also need the following definitions. A periodic point for f is a point z
such that there exists p ≥ 1 with f p(z) = z. The minimal value of p such that the
above is satisfied is called the period of z. When the period is p = 1 a periodic point
is simply called a fixed point. When a point has a finite orbit but is not periodic it is
called preperiodic.

The derivative of f p at a periodic point of period p is called the multiplier of
the periodic point. The multiplier determines the local dynamics of f p near the
periodic point. Let λ be the multiplier of a periodic point z. We have the following
classification:

1. If λ = 0, the periodic point is called superattracting.
2. If |λ| < 1, the periodic point is called attracting (superattracting is a special case

of attracting).
3. If |λ| = 1, the periodic point is called neutral.
4. If |λ| > 1, the periodic point is called repelling.

In the first two cases the point z belongs to the Fatou set and has a basin of attraction.
The basin of attraction is an open neighborhood of z consisting of all of the points
whose orbit under f p converges to a point in the (finite) orbit of z.

The repelling periodic points belong to the Julia set and the Julia set is equal to
the closure of the set of repelling periodic points of f . The neutral case is the most
complicated (and interesting) and the point z might or might not belong to J (f )
depending on the map and, more importantly, on the arithmetic properties of λ.

3 Complex Dynamics and Kleinian Groups

The earliest picture of the Mandelbrot set2 to appear came from the study of discrete
subgroups of Möbius transformations. Jørgensen [36] showed that a nonelementary3

subgroup of SL(2,C) is discrete if and only if all of its subgroups that are generated
by two elements are discrete. This result follows from an inequality that Jørgensen
proved in an earlier work [35]. This inequality known as Jørgensen’s inequality is
a necessary condition for a group with two generators to be discrete in SL(2,C).
The proof consists of a rather simple argument by contradiction. Assuming that the
group is not discrete one can easily find a pair of elements for which Jørgensen’s
inequality is not satisfied.

The above results motivated the search for properties of subgroups of PSL(2,C)
generated by two elements that would imply discreteness. Brooks and Matelski [12]
generalized Jørgensen’s result. This result can be stated as follows. Recall that an

2More precisely the conjectured interior of the Mandelbrot set.
3A subgroup of SL(2,C) is elementary if any pair of elements of infinite order have a common
fixed point. Discreteness of elementary groups can be checked in an easier way than nonelementary
groups.
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element γ of PSL(2,C) is called loxodromic if it is conjugated to z �→ kz for some
k ∈ C\ {0} with |k| �= 1 or equivalently, if its squared trace tr2 γ is a complex
number outside the closed interval [0, 4].

Theorem 1 (Brooks and Matelski, 1978) Let γ 0, γ 1 be the elements of PSL(2,C)
with γ 0 loxodromic. Then there exists c = c(γ 0, γ 1) ∈ C and z0 = z0(γ 0, γ 1) ∈
C such that if the subgroup generated by γ 0 and γ 1 is Kleinian, then the set
{zn : n ∈ Z>0} is discrete in C, where the sequence zn is defined by the following
induction:

zn+1 = z2
n + c. (1)

The constants c and z0 can be computed explicitly from γ 0 and γ 1.

More precisely, let γ 0, γ 1 ∈ PSL(2,C) with γ 0 loxodromic. Let τ be the com-
plex translation length of γ 0. It is defined by the identity tr2 γ 0 = 4 (cosh(τ/2))2

with the normalizations Re τ ≥ 0 and Im τ ∈ ]−π, π ]4. Then

c = (1− cosh(τ )) cosh(τ ). (2)

Now define for n ∈ Z≥1, γ n+1 = γ iγ 0γ
−1
n . Note that for n ≥ 2, γ n is loxodromic.

Let δn be the complex distance between the axis of γ 0 and the axis of γ n. This
complex number satisfies Re δn ≥ 0 and if we denote the fixed points of γ n by
αn, βn (in order such that αn is repelling and βn is attracting), then (cosh(δn/2))2

is equal to the cross ratio of α0, αn, β0, βn. Then

zn = (1− cosh(τ )) cosh δn.
5 (7)

If the group generated by γ 0 and γ 1 is discrete, then the set
{
cosh(δn) : n ∈ Z≥2

}

is discrete in C. The theorem follows from the following inductive relation on the
sequence of δn [12, p.67]:

cosh(δn+1) = (1− cosh(τ )) (cosh(δn))
2 + cosh τ . (10)

4Equivalently γ 0 is conjugated to the map z �→ kz with k = eτ and Re τ ≥ 0.
5An equivalent formulation is as follows. Let σ be the squared trace of γ 0 and R the value of the
cross ratio of α0, α1, β0, β1. Then

c = (2− σ/2) (σ/2− 1) (8)

and

z1 = (2− σ/2) (2R − 1). (9)

Then zn
2−σ/2 is equal to the image of the complex distance between the axis of γ n and the axis of

γ 0 by the function cosh.
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In their article they proceed to draw the filled Julia set of z2+ 0.1+ 0.6i and the set
of c ∈ C for which z �→ z2 + c has a stable periodic orbit. It is noteworthy that one
of the important features of the field of complex dynamics in the years following the
work of Brooks and Matelski is the use of computer graphics in an exploratory way.

Works on the question of the discreteness of groups of Möbius transformations
generated by certain generators, and in particular on generalizations of Jorgensen’s
inequalities, neither started nor ended with the above example (e.g., [11, 18, 35, 37,
38, 42, 43, 67]). One of the important developments appears in the work of Gehring
and Martin [29]. Their main theorem is as follows.

Theorem 3.1 (Gehring and Martin, [29]) Assume that the group generated by
γ 0 ∈ PSL(2,C) and γ 1 ∈ PSL(2,C) is Kleinian and γ 0 is loxodromic. Define

z0 = tr
[
γ 0, γ 1

]− 2 (11)

and

β = tr2 γ 0 − 4, (12)

where
[
γ 0, γ 1

] = γ 0γ 1γ
−1
0 γ

−1
1 is the commutator. Let K(Pβ) be the filled Julia

set of z �→ Pβ(z) = z2 − βz.
Then either z0 /∈ K(Pβ) or z0 is preperiodic under the iteration of Pβ . If z0 is

preperiodic, its orbit never lands on the fixed point 0.
Moreover, if z0 is preperiodic, there are nontrivial conjugacy relations between

γ 0 and γ 1.

These results can be related to other types of link that have been established
between the iteration of rational maps and Kleinian groups. These include famously
Sullivan’s dictionary (compare [50, 51, 65, 66]) but also the study of the coupling
of the dynamics of rational maps with Möbius transformations through a procedure
called mating (see, e.g., [14–17]).

4 Newton’s Method and Other Numerical Methods

Since for most polynomials there is no simple formula that expresses the roots
in terms of the coefficients one has to use iterative methods to find numerical
approximations of their roots. A classic method is Newton’s iterative scheme. It
is based on the idea that the function whose roots are to be found can be locally
replaced by its first order approximation. An approximation of a root is inductively
computed using this local approximation of the function. In precise terms, if we
want to solve the equation

P(z) = 0 (1)
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we define a sequence of approximations of some root by picking a guess z0 and then
defining the sequence

zn+1 = N(zn), (2)

where NP is the Newton map and is defined as

NP (z) = z− P(z)
P ′(z)

. (3)

For a large set of choices of z0 the sequence (zn)n will indeed converge to a root of
P . Since the invention of Newton’s method many other methods for finding the roots
of polynomials have been found. Despite its simplicity Newton’s method is already
quite efficient. This simplicity and its old age has allowed a good understanding of
the dynamics of Newton’s method. When applied to complex analytic equations,
in particular when P is a polynomial, Newton’s method can be studied by using
complex dynamics.

The study of the dynamics of the Newton map is an old (for example, [20])
and rich topic. Here we are only exploring a very small portion of the theory. In
particular we only look at methods for finding roots of a polynomial. The study
of Newton’s method in complex dynamics is not restricted to this case, see, for
example, [4, 31, 32] and more recently [2].

We will focus on two aspects of the theoretical study of Newton’s method and
related root finding algorithms. Firstly we will ask the question of how big is the
set of pairs map-and-initial-guess (f, z0) for which the method converges. Then we
will look for an algorithm to find all the roots of a given polynomial.

4.1 Genericity of Convergence

Given an iterative algorithm it is natural to ask for which initial values this algorithm
will converge. One can also ask for which function we are guaranteed to find the
roots by using the algorithm. In the best case the algorithm would converge to all or
almost all (in the sense of measure) pairs (P, z) ∈ Poly(d)×C of polynomials and
initial guesses. In the context of Newton’s method and more general root finding
algorithms this idea has been conceptualized by Smale. Smale introduced in [64]
the notion of generally convergent purely iterative algorithm (GCPIA).

A purely iterative algorithm is given by a map T (P, z) = TP (z) which depends
rationally on z and on the coefficients of P . A purely iterative algorithm is generally
convergent if there exists a dense open set Ω ⊂ Poly(d) ×C of full measure such
that for all (P, z) ∈ Ω the sequence

(
T nP (z)

)
n

converges to a root of P . A GPCIA is
a purely iterative algorithm which is generally convergent.
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An alternative definition requires only that Ω is open and dense but not
necessarily of full measure [49]. To distinguish them from GCPIA we will call such
algorithms GCPIAM.

Newton’s method is not a GCPIA for Poly(d), d > 2. Indeed there are many
examples of polynomials for which the Newton map has other attracting basins than
the ones of the roots, see, for example, [34]. Using deep results in complex dynamics
McMullen was able to show that there is no GCPIA for Poly(d)with d ≥ 4 and gave
a complete classification of GCPIA for d = 2, 3.

Before stating McMullen’s result we need the following definition. The central-
izer C(T ) of a rational map T is defined as the subgroup of Möbius transformations
which commute with T .

Theorem 4.1 (McMullen, [48], Theorem 1.1)

1. There is no GCPIAM for Poly(d) with d ≥ 4.
2. Let T be a purely iterative algorithm defined over Poly(3). Then T is a GCPIAM

if and only if there exists a rational map T0 : Ĉ→ Ĉ such that the following are
true.

a. There is U0 ⊂ C open and dense in C such that for all z ∈ U0, T n0 (z)
converges to a root of P0(z) = z3 − 1.

b. The centralizer C(T ) contains the group of Möbius transformations permut-
ing the roots of P0.

c. For all P ∈ Poly(3) with no multiple root, TP = MP ◦ T0 ◦M−1
P , whereMP

is a Möbius transformation mapping the roots of P0 to the roots of P .

3. Let T be a purely iterative algorithm defined over Poly(2). Then T is a GCPIAM
if and only if there exists a rational map T0 : Ĉ → Ĉ and a rational function
M : Poly(2)→ PSL(2,C)/C(T0) such that the following are true.

a. There is U0 ⊂ C open and dense in C such that for all z ∈ U0, T n0 (z)
converges to a root of P0(z) = z2 − 1.

b. The centralizer of T0 contains z �→ −z.
c. If P has no multiple roots, then M(P) maps the roots of P0 to the roots of P

and TP = MP ◦ T0 ◦M−1
P for some representantMP ofM(P) in PSL(2,C).

In particular the following examples are GCPIA (see [48], Proposition 1.2):

1. Newton’s method for quadratic polynomials.
2. The Newton’s map of the rational map

f (z) = z3 + az+ b
3az2 + 9bz− a2 (4)

is a GCPIA for the cubic polynomials of the form

P(z) = z3 + az+ b. (5)
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The above are also characterized by their fast convergence due to the fact that the
roots are superattracting fixed points of the map TP (compare above reference). Note
that finding the roots of a cubic polynomial can easily be replaced by the problem
of finding the roots of some P in the form (5). The Newton map for (4) is expanding
and its only Fatou components are in the basin of some root of P . This implies that
it is not just a GCPIAM but also a GCPIA as stated.

When the condition on the complex analycity of the mapping T is relaxed into
real analycity (that is by allowing complex conjugate in the formulas), a GCPIA
exists for any degree [63].

McMullen later refined their results in [49]. In that article they explain that
braiding of the roots when going around a polynomial with multiple roots prevents
the existence of a mapping TP which is a GCPIA for the polynomials of degree
d ≥ 4. This is also a very interesting article where complex dynamics is used for
studying many aspects of the GCPIAs.

The proof of Theorem 4.1 relies on deep results of complex dynamics. These
include the celebrated work of Mañé, Sad, and Sullivan [45] and Thurston’s work
on the characterization of postcritically finite rational maps. A postcritically finite
rational map is a rational map f : Ĉ → Ĉ such that all of its critical points are
either periodic or preperiodic.

If T is a GCPIAM for polynomials of degree d ≥ 2, then (TP )P∈Poly(d) forms
a stable algebraic family. This means that this is a family of rational maps of fixed
degree depending rationally on the coefficients of P (algebraic family) and there
is a uniform bound on the periods of attracting cycle (stable). Indeed the roots are
the only attracting periodic points of the family for generic points and there is no
bifurcation in the sense of [45].

From a result of Thurston it follows that stable algebraic families either are
trivial (all the elements in the family are conjugated to each other by a Möbius
transformation) or consist of Lattès examples (see [44] or [54], Definition 7.4 for
a definition). The latter case is excluded for a GCPIAM since the Julia set of a
Lattès example consists of the whole Riemann sphere. It follows from the rigidity
of Möbius transformations that a GCPIA cannot exists for d ≥ 4.

To get around the problem of the nonexistence of GCPIA one can consider
instead towers of algorithms as defined in [27]. Then it can be shown that the roots
of a polynomial of degree d can be computed by a general tower of algorithms if
and only if d ≤ 5 ([27], Corollary 4.3). An explicit algorithm for the quintic in given
in the appendix of [27].

Crass [21, 22] has provided methods for solving the quintics and equations
of higher degree in a similar manner. These methods involve the iteration of
holomorphic maps in higher dimensional complex projective spaces. Subsequent
developments also include [23].



528 A. De Zotti

4.2 Finding All the Roots

One of the remarkable features of the theory is that it can be used to describe an
explicit strategy for finding all the roots of a polynomial with certainty.

Early works on the maximal complexity of Newton’s method applied to the
search of roots of complex polynomials include Manning’s [46]. This work contains
the description of an implementable algorithm that ensures the finding of at least
one root with complexity bounded a priori by a constant depending only on the
degree d (note that their result applies only for d ≥ 10). This is based on the
fact that the Newton map NP has a repelling fixed point on the Riemann sphere
at∞, explicit bounds on the behavior of NP and distortions estimates coming from
complex analysis.

The question of finding a choice of initial guesses that would guarantee finding all
the roots of the polynomial was answered by Hubbard, Schleicher, and Sutherland
in [33]. The set they produce depends only on the degree d of P .

Let Pd be the set of polynomials of degree d with all the roots inside the open
unit disk D. Note that there is a simple method to substitute the problem of finding
all the roots of an element of Pd for the problem of finding roots of some arbitrary
polynomial.

Theorem 4.2 ([33]) Let d ≥ 2. There exists Sd ⊂ C finite with at most
1.11d (log d)2 elements such that for all P ∈ Pd and all root ξ of P there exists
s ∈ Sd such that NnP (s)→ξ as n→∞.

Let ε > 0. By compactness there exists n = n(d, ε) such that for all P ∈ Pd

and all ξ root of P there exists s ∈ Sd such that

∣∣NnP (s)− ξ
∣∣ ≤ ε. (6)

This ensures that the algorithm effectively finds all the roots in finite time.
Schleicher’s article [60] provides explicit estimates on n(d, ε). In theory each guess
could require a large number of iterations as the degree becomes large.

The article [33] also contains an explicit construction for the set Sd and finer and
better results for when the polynomial is real. The authors use their own algorithm
to compute approximations to the invariant measure of Hénon mappings.

In [61] Schleicher and Stoll give a slightly different version of the algorithm
mentioned above. This reference also contains many remarks on the implementation
and possible improvements. Using some numerical experiments they checked that
the theoretically possible large number of iterations (larger than d2 with d ≈ 106)
was not a problem in practice for the specific problems they were looking at. They
used it to find the centers of hyperbolic components of the Mandelbrot set and
periodic points of iterated polynomials.

The roots are attracting fixed points of the Newton map NP . The basin of a root
is the set of points whose orbit converge to the root under the iteration ofNP . This is
an open set. The immediate basin of a root is the connected component of the basin
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containing the root. The proof of Theorem 4.2 builds on previous results relating to
the shape of the immediate basins of the roots such as [46] and [56].

A summary of the proof is as follows. The only fixed points of the Newton map
NP are the roots of P and∞. The roots are either superattracting or attracting with
multiplier 1− 1/k for some integer k ≥ 2. The fixed point at∞ is repelling.

Let
(
ξ i
)
i

be the roots of P and let Uξi be the immediate basin of ξ i . Define also
mξi as the number of critical points of NP (counted with multiplicity) inside Uξi .
From [33], Proposition 6, it follows that Uξi has mξi accesses to∞6. The idea is to
constrain the geometry of these accesses.

Pick a root ξ = ξ i . From [56] (see also [62]) we know that Uξ is simply
connected. Let ϕ : D → Uξ be a conformal isomorphism normalized so that
ϕ(0) = ξ and define

f ..= ϕ−1 ◦NP ◦ ϕ. (7)

The mapping f is proper of degree m + 1, where m = mξ . This mapping can be
extended by reflection into a rational map f : Ĉ→ Ĉ of degree m+ 1.

The rational map f hasm+ 2 fixed points (counted with multiplicity). The point
0 is a (super)attracting fixed point of f . By symmetry this is also the case for the
point∞. The respective multipliers λ0, λm+1 of 0 and∞ are either both equal to 0
or to 1 − 1/k for some integer k ≥ 2. It also follows from the symmetry that the
other fixed points ζ 1, . . . , ζm lie on the unit circle and their respective multipliers
are positive real numbers λj > 1.

The holomorphic fixed point formula applied to f (see, e.g., [54, Section 12])
states that

m+1∑

j=0

1

λj − 1
= −1. (8)

Hence

m∑

j=1

1

λj − 1
≥ 1. (9)

It follows that there must be at least one j such that λj − 1 ≤ m.
The quotient of the corresponding channel for NP by the dynamics of NP is an

annulus of modulus π
log λj

. Indeed this is the value of the modulus of the annulus
obtained by taking the quotient of the upper plane by the action of z �→ λj z. Since
the degree of f is at most equal to the degree of NP it follows that

6That is the complement of some large disk in Uξi has mξi components accumulating to∞.
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π

log λj
≥ π

log(m+ 1)
≥ π

log d
. (10)

Having such a lower bound on the modulus allows to find places where the channel
must have a definite extent. This is made precise in [33, Section 5]. Using this, one
can pick points independently of P such that at least one of them is in Uξ .

5 Hierarchical Ising and Potts Models

The Ising and Potts models are mathematical models from solid state physics. The
Ising model relates to the ferromagnetic properties of a material. At the base of
both models lies a graph whose vertexes represent the locus of a particle/atom and
the edges the interaction between these particles. Each vertex is characterized by a
state chosen among a finite set of possible values. For the Ising model this set has
2 element while for the Potts model the number of possible states is some positive
integer q ≥ 2.

The Hamiltonian of the system can be computed explicitly for any state. The
temperature T , interaction constant J , and the (possibly 0) magnetic field h appear
as parameters in the Hamiltonian. From the Hamiltonian one can derive a formula
for the partition function.

A hierarchical lattice consists of a refining sequence of finite graphs on which the
Hamiltonian is computed successively. For example, a diamond hierarchical lattice
can be defined as follows. The first graph consists of a pair of vertexes joined by a
single edge. The refining consists in replacing each edge by two pairs of edges each
connecting one of the previous vertexes to a new vertex in the middle. The refining
procedure is illustrated in Figure 1. Instead of replacing each edges by 2 branches
(pairs of edges), one could also insert b ≥ 2 branches, see Figure 2. The integer b is
the parameter characterizing a diamond hierarchical lattice.

The passage from the partition function of one level of the hierarchy to the next
level is performed by a renormalization group transformation. This transformation
depends on the variable J . For a diamond hierarchical lattice model the renormal-
ization group transformation is identified as a rational map f : z �→ f (z), where

Fig. 1 The first levels of the diamond lattice hierarchy (b = 2).
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Fig. 2 Examples of diamond lattices with b = 3, 4, 5.

z = z(J, T ), and its dynamics has a physical relevance. For example, the zeros
of the partition functions in the thermodynamic limit (i.e., when the level in the
hierarchy tends to∞) converge to the Julia set of f . The dynamics of this map is
the focus of the study of hierarchical Potts/Ising models in complex dynamics.

These models generally do not really represent actual physical systems but are
instead used to try to understand what type of properties more complicated and
realistic model could have. In general one cannot hope to have an explicit formula
for the renormalization transformation of a realistic model.

Hierarchical models are described in [5, 47] and [24]. In the latter, Derrida, De
Seze, and Itzykson study the q-state Potts model on a diamond hierarchical lattice
with b = 2. The renormalization map f for this model can be computed explicitly:

f (z) =
(
z2 + q − 1

2z+ q − 2

)2

. (1)

They provide several pictures of the Julia sets corresponding to different values of
q in an attempt to get an idea of their fractal structure. This work has been followed
by [25] where the geometric properties of the Julia set of f are used to extract
information about the model. Those are mainly numerical studies.

Another type of hierarchical model is presented in [10]. The renormalization
transformation can also be identified to a rational map. The authors study the
structure and Hausdorff dimension of the corresponding Julia set. For another model
see also [1, 30].

An important occurrence of the utilization of complex dynamics to study the
Ising model is the work of Bleher and Lyubich [6]. They study the Ising model on
the diamond hierarchical lattice for arbitrary values of b ≥ 2 (see also [7]). In that
case the renormalization transformation is represented by the rational map

f (z) = 4zb
(
1+ zb)2 . (2)

The points 0 and 1 are superattracting fixed points of f . Denote the immediate basin
of 0 by Ω0. The free energy can be expressed as
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F(z) =
∞∑

n=0

1

(2b)n
g ◦ f n(z), (3)

where g(z) = log(1+ zb). Bleher and Lyubich showed that F is analytic onΩ0 and
that the boundary of Ω0 is a natural boundary of analyticity for this function (i.e.
analytic continuation is not possible along any path that crosses ∂Ω0). They also
derive some physically relevant properties of the model.

The Fatou set of f consists of the respective basins of attractions of 0 and 1.
Before proceeding to study the properties of the free energy F , they first showed
that Ω0 is a Jordan domain. Recall that a quasicircle is the image of a round circle
by a quasiconformal homeomorphism of C. Bleher and Lyubich showed that the
boundary of Ω0 is a quasicircle. Although this proof is rather simple it exemplifies
the use of a powerful tool of complex dynamics: the theory of polynomial like maps
[26]. This theory explains why copies of the Mandelbrot set seem to appear in every
parameter space of holomorphic dynamical systems.

Let d ≥ 2. A polynomial like map of degree d is a triplet
(
U,U ′, f

)
where U and

U ′ are simply connected open subsets of C such that U ′ is compactly contained in
U and f : U ′ → U is a proper holomorphic mapping of degree d. The filled Julia
set K(f ) of a polynomial like mapping is the set of points whose orbit stays inside
the domain U ′,

K(f ) ..= {
z ∈ U ′ : ∀n, f n(z) ∈ U ′}. (4)

The relevance of polynomial like mappings derives from Douady and Hubbard’s
straightening theorem.

Theorem 5.1 (Douady, Hubbard, [26], Theorem 1) Let (U,U ′, f ) be a poly-
nomial like mapping of degree d ≥ 2. Then there exists a quasiconformal map
ψ : C→ C and a polynomial P of degree d such that

ψ ◦ f = g ◦ ψ (5)

on some neighborhood of K(f ) and ∂ψ = 0 almost everywhere on K(f ).
Moreover, if K(f ) is connected, then the polynomial P is unique up to

conjugation by an affine map.

Thanks to a fine analysis of the map f , Bleher and Lyubich showed that f is
polynomial like of degree b on a neighborhood of the closure of Ω0. Since it has
a superattracting fixed point of degree b at 0, the straightening of f is conjugated
to the polynomial z �→ zb. Since Ω0 is the basin of 0, it follows that ∂Ω0 is the
image of the circle {z : |z| = 1} by a quasiconformal map of the plane, hence it is a
quasicircle.

The use of complex dynamics in the field has continued after this work, for
example, in [8].
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6 Other Connections

There are many other applications of complex dynamics. Eremenko has mentioned
other connections in a talk [28] about the interaction between function theory and
complex dynamics.

A surprising application is related to gravitational lensing. In [41] Kahvinson and
Świątek solved the Sheil-Small and Wilmhurst conjecture. This states that if P is a
polynomial of degree n ≥ 2, then the harmonic polynomial z − P(z) has at most
3n− 2 zeros.

Their proof relies on the classical fact from complex dynamics that any attracting
or parabolic periodic point attracts at least one critical point. This can be applied to

the holomorphic polynomialQ(z) = P
(
P(z)

)
.

It turns out that this solution has an application in astrophysics exposed in [39].
A similar argument can be used when one replaces the polynomial P by a rational
function R. This gives the following theorem.

Theorem 2 (Khavinson, Neumann, [39]) Let R be a rational function of degree
n ≥ 2. Then the equation z = R(z) has at most 5n− 5 solutions.

In astrophysics the lensing effect produced by the gravity coming from n point
like objects can be modelled via a lens equation (see, for example, [68] and
[58]). A corollary ([39], Corollary 1) of the above theorem gives an explicit upper
bound on the number of images that such model can produce. See [40] for further
developments. For more details about this the reader is advised to consult the
excellent [59].
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41. D. Khavinson, G. Świa̧tek, On the number of zeros of certain harmonic polynomials. Proc.
Amer. Math. Soc. 131(2), 409–414 (2003)

42. E. Klimenko, Some examples of discrete groups and hyperbolic orbifolds of infinite volume.
J. Lie Theory 11(2), 491–503 (2001)

43. E. Klimenko, N. Kopteva, Discreteness criteria for RP groups. Israel J. Math. 128, 247–265
(2002)

44. S. Lattès, Sur l’itération des substitutions rationnelles et les fonctions de Poincaré. C. R. Acad.
Sci. Paris 166, 26–28 (1918)

45. R. Mañé, P. Sad, D. Sullivan, On the dynamics of rational maps. Ann. Sci. École Norm. Sup.
(4) 16(2), 193–217 (1983)

46. A. Manning, How to be sure of finding a root of a complex polynomial using Newton’s method.
Bol. Soc. Brasil. Mat. (N.S.) 22(2), 157–177 (1992)

47. S.R. McKay, A. Nihat Berker, S. Kirkpatrick, Spin-glass behavior in frustrated Ising models
with chaotic renormalization-group trajectories. Phys. Rev. Lett. 48(11), 767–770 (1982)

48. C. McMullen, Families of rational maps and iterative root-finding algorithms. Ann. Math. (2)
125(3), 467–493 (1987)

49. C. McMullen, Braiding of the attractor and the failure of iterative algorithms. Invent. Math.
91(2), 259–272 (1988)

50. C. McMullen, Rational maps and Kleinian groups, in Proceedings of the International
Congress of Mathematicians, vol. I, II, Kyoto, 1990 (Mathematical Society of Japan, Tokyo,
1991), pp. 889–899

51. C.T. McMullen, The classification of conformal dynamical systems, in Current Developments
in Mathematics, Cambridge, 1995 (International Press, Cambridge, 1994), pp. 323–360

52. C.T. McMullen, Complex Dynamics and Renormalization. Annals of Mathematics Studies, vol.
135 (Princeton University Press, Princeton, 1994)

53. J. Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account, in
Géométrie Complexe et Systèmes Dynamiques, Orsay, 1995. Astérisque, (261):xiii (Société
mathématique de France, Marseille, 2000), pp. 277–333

54. J. Milnor, Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160, 3rd
edn. (Princeton University Press, Princeton, 2006).

55. F. Przytycki, Thermodynamic formalism methods in one-dimensional real and complex
dynamics (2018). https://arxiv.org/abs/1806.06186v1

56. F. Przytycki, Remarks on the simple connectedness of basins of sinks for iterations of rational
maps, in Dynamical Systems and Ergodic Theory, Warsaw, 1986, vol. 23 (Banach Center
Publications, Warsaw, 1989), pp. 229–235

57. L. Rempe-Gillen, Arc-like continua, Julia sets of entire functions and Eremenko’s conjecture
(2018). https://arxiv.org/abs/1610.06278v3

58. S.H. Rhie, Can a gravitational quadruple lens produce 17 images? (2001). https://arxiv.org/abs/
astro-ph/0103463

59. R.K.W. Roeder, Around the boundary of complex dynamics, in Dynamics Done with Your
Bare Hands. EMS Series of Lectures in Mathematics (European Mathematical Society, Zürich,
2016), pp. 101–155

60. D. Schleicher, On the number of iterations of Newton’s method for complex polynomials.
Ergodic Theory Dynam. Systems 22(3), 935–945 (2002)

61. D. Schleicher, R. Stoll, Newton’s method in practice: finding all roots of polynomials of degree
one million efficiently. Theoret. Comput. Sci. 681, 146–166 (2017)

https://arxiv.org/abs/1806.06186v1
https://arxiv.org/abs/1610.06278v3
https://arxiv.org/abs/astro-ph/0103463
https://arxiv.org/abs/astro-ph/0103463


536 A. De Zotti

62. M. Shishikura, The connectivity of the Julia set and fixed points, in Complex Dynamics (A K
Peters, Wellesley, 2009), pp. 257–276

63. M. Shub, S. Smale, On the existence of generally convergent algorithms. J. Complexity 2(1),
2–11 (1986)

64. S. Smale, On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc. (N.S.) 13(2),
87–121 (1985)

65. D. Sullivan, Conformal dynamical systems, in Geometric Dynamics, Rio de Janeiro, 1981.
Lecture Notes in Mathematics, vol. 1007 (Springer, Berlin, 1983), pp. 725–752

66. D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia
problem on wandering domains. Ann. of Math. (2) 122(3), 401–418 (1985)

67. D. Tan, On two-generator discrete groups of Möbius transformations. Proc. Amer. Math. Soc.
106(3), 763–770 (1989)

68. H.J. Witt, Investigation of high amplification events in light curves of gravitationally lensed
quasars. Astron. Astrophys. 236, 311–322 (1990)

69. J.-C. Yoccoz, Analytic linearization of circle diffeomorphisms, in Dynamical Systems and
Small Divisors, Cetraro, 1998. Lecture Notes in Mathematics, vol. 1784 (Springer, Berlin,
2002), pp. 125–173


	Preface
	Contents
	A Theory on Non-Constant Frequency Decompositionsand Applications
	1 Introduction
	2 Mono-component Function Theory
	2.1 Mono-component and IF
	2.2 The Inner Function Type Mono-Components
	2.3 The Bedrosian Type Mono-Components
	2.4 The Non-Bedrosian Type Mono-Components: The Starlike and Boundary Starlike Type

	3 Adaptive Fourier Approximations
	3.1 Mono-component Decomposition of Signals in General
	3.2 One Dimensional Core-Adaptive Fourier Decomposition (Core-AFD) and Its Variations
	3.3 Unwinding AFD (UWAFD)
	3.4 Cyclic AFD for n-Best Rational Approximation
	3.5 Pre-Orthogonal Adaptive Fourier Decomposition (POAFD) for Reproducing Kernel Hilbert Spaces

	4 Related Studies and Applications
	4.1 Aspects in Relation to Beurling–Lax Shift-Invariant Subspaces
	4.2 Extra-Strong Uncertainty Principle
	4.3 The Dirac-Type Time-Frequency Distributions Based on Mono-component Decompositions
	4.4 Higher Dimensional AFDs
	4.5 Fourier Spectrum Characterization of Hardy Spaces: Analytic Signals Revised
	4.6 Hilbert Transforms as Singular Integral Operators: Analytic Signals Revised
	4.7 Applications

	References

	One-Component Inner Functions II
	1 Introduction
	2 Main Tools
	3 Splitting Off Factors
	4 Composition of One-Component Inner Functions
	References

	Biholomorphic Cryptosystems
	1 Introduction
	2 Biholomorphic Codes
	3 Convergence Properties of Biholomorphic Codes
	4 Dynamic Properties of Biholomorphic Codes
	5 Biholomorphic Cryptosystems
	6 Dynamics of Biholomorphic Cryptosystems
	References

	Third-Order Fermionic and Fourth-Order Bosonic Operators
	1 Introduction
	2 Preliminaries
	2.1 Clifford Algebra
	2.2 Irreducible Representations of the Spin Group
	Spinor Representation of Spin(m)
	Homogeneous Harmonic Polynomials on Hk(Rm,C)
	Homogeneous Monogenic Polynomials on Clm


	3 Construction and Conformal Invariance
	3.1 3rd-Order Higher Spin Operator D3
	Detailed Proof of Proposition 1

	3.2 4th-Order Higher Spin Operator D4
	Detailed Proof of Proposition 2


	4 Fundamental Solutions and Intertwining Operators
	5 Connection with Lower Order Conformally Invariant Operators
	6 Ellipticity
	6.1 Ellipticity for 3rd-Order Higher Spin Operator D3
	6.2 Ellipticity for 4th-Order Higher Spin Operator D4

	References

	Holomorphic Approximation: The Legacy of Weierstrass, Runge, Oka–Weil, and Mergelyan
	1 Introduction
	2 From Weierstrass and Runge to Mergelyan
	3 Approximation on Unbounded sets in Riemann Surfaces
	4 Mergelyan's Theorem for Cr Functions on Riemann Surfaces
	5 The Oka–Weil Theorem and Its Generalizations
	6 Mergelyan's Theorem in Higher Dimensions
	6.1 Approximation on Totally Real Submanifolds and Admissible Sets
	6.2 Approximation on Strongly Pseudoconvex Domains and on Strongly Admissible Sets
	6.3 Mergelyan Approximation in L2-Spaces
	6.4 Carleman Approximation in Several Variables

	7 Approximation of Manifold-Valued Maps
	7.1 Runge Theorem for Maps from Stein Spaces to Oka Manifolds
	7.2 Mergelyan Theorem for Manifold-Valued Maps
	7.3 Carleman and Arakelian Theorems for Manifold-Valued Maps

	8 Weighted Approximation in L2 Spaces
	9 Appendix: Whitney's Extension Theorem
	References

	A Potapov-Type Approach to a Truncated Matricial Stieltjes-Type Power Moment Problem
	1 Introduction and Preliminaries
	2 On the Solvability of Matricial Power Moment Problems
	3 Some Classes of Holomorphic Matrix-Valued Functions
	4 On the Equivalence of the Stieltjes Moment Problem to a System of Two Fundamental Matrix Inequalities of Potapov Type
	5 Some Considerations on Block Hankel Matrices
	6 Dubovoj Subspaces and Associated Generalized Inverses of Matrices
	7 Construction of a Pair of Coupled J̃q-Inner 2q2q Matrix Polynomials
	8 Stieltjes Pairs of Meromorphic Matrix-Valued Functions
	9 The Class W̃J̃q,α
	10 On the Class WJ̃q,α Under the View of Linear Fractional Transformations
	11 On the Solutions of the Schur Complement Matrix Inequalities
	12 On a Closer Analysis of the Range Conditions in Proposition 4.10
	13 On a First Description of the Set S0,q;[α,∞)(sj)j=02n+1,≤
	14 A Pair of Subspaces of Cq Which Describes the Degeneracy of the Moment Problem MP[[α,∞);(sj)j=02n+1,≤]
	15 A Further Parametrization of the Solution Set of the Truncated Matricial Stieltjes Moment Problem in the Degenerate But Not Completely Degenerate Case
	16 The Completely Degenerate Case
	17 A Particular Generalized Inverse of a Complex Matrix
	References

	Formulas and Inequalities for Some Special Functionsof a Complex Variable
	1 Introduction
	2 An Identity for Three Gauss Hypergeometric Functions
	3 General Convolution Inequalities
	4 Inequalities for Bessel Functions
	5 Inequalities for Laguerre and Hermite Polynomials
	6 Inequalities for Whittaker Functions
	References

	On the Means of the Non-trivial Zeros of the Riemann Zeta Function
	1 Introduction and Summary of the Results
	2 Proofs
	2.1 Proof of (3)
	2.2 Proof of (4)
	2.3 Proof of (5)
	2.4 Proof of Theorem 1

	References

	Minimal Kernels and Compact Analytic Objects in Complex Surfaces
	1 Introduction
	2 The Minimal Kernel and Its Slices
	3 Compact Complex Curves
	3.1 The Neighborhood of a Compact Curve
	Grauert Criterium
	Positive Curves
	Ueda's Paper
	Curves Near C

	3.2 Propagation of Compact Curves
	Nishino's Paper
	Ohsawa's Paper and Its Generalization


	4 Weakly Complete Surfaces
	4.1 Examples and Remarks
	4.2 Classification Results
	4.3 Coronae of Dimension 2
	4.4 Brunella's Example

	5 Minimal Kernels and the Structure of Complex Manifolds
	5.1 Complex Surfaces with a Smooth Exhaustion
	5.2 The Singular Locus of an Admissible Class
	5.3 A Levi Problem

	References

	On the Automorphic Group of an Entire Function
	1 Some Background and the Contribution of Tatsujirô Shimizu
	2 The Weierstrass Representation of the Automorphic Group of an Entire Function, and the Extra Properties in the Case of a Finite Order
	3 Conclusions from Proposition 3 in Case We Have No Monodromy
	4 The Cycle Relation and the Chain Relation in the General Case
	5 Examples (Mostly the Exponential Function) and the Role Played by the Assumption That We Have Some Summation Method for the Infinite Series: n=1∞Qλn(wϕ0n(z)), for the Reconstruction of f from Aut(f)
	6 Reconstruction Formulas for f(z) and for f'(z) in Terms of Approximating Automorphic Functions: Relations Between the Groups Aut(f) and Autz(g(w,z))
	7 The Function g(w,z)-g(0,z) Is Determined by the Negative Moments of the Elements in Aut(f(z))
	8 An Infinite Product Representation of f'(w)
	9 Common Zeros of the Reciprocals of Almost All the Automorphic Functions
	10 Sums of the Derivatives of the Automorphic Functions
	11 An Application of Jensen's Theorem to the Automorphic Group of an Entire Function
	12 A Computation of the Integral 12π02πlog|f(reiθ)-f(z)|dθ
	13 The Product of the Automorphic Functions
	14 Consequences to Aut(f) That Follow from the Classical Theory of Entire Functions
	15 The Relations Between Scattering Theory and Automorphic Functions
	16 Local Groups
	17 The Sums of the k'th Derivatives of All the Elements of the Automorphic Group Aut(f), for Any fE of Order 0<ρ<12, k=1,2,3,…
	18 The Circular Density of the Orbits of the Automorphic Group Aut(f), for Any fE of Order 0<ρ<12
	19 The Vieta Formulas for Aut(f), fE of Order 0≤ρ<1
	20 Embedding the Automorphic Group Within a Larger Group
	21 Relations Between the Construction of the Direct System of the Automorphic Groups and Weierstrass Products
	22 Continuity Properties of the Automorphic Groups
	23 Amenability of the Automorphic Group
	References

	Integral Representations in Complex Analysis: From Classical Results to Recent Developments
	1 Classical Results
	1.1 Results Up to the 1940s
	1.2 Leray's New Kernel Construction
	1.3 Kernels for Strictly Pseudoconvex Domains

	2 Beyond Strictly Pseudoconvex Domains: Many Problems
	2.1 L2 Results and Finite Type
	2.2 The Obstruction to Holomorphic Kernels
	2.3 Partial Results for Convex Domains and in Dimension Two
	2.4 Speculation on Some Possible Approaches

	3 A New Kernel Approach
	3.1 Motivation: The Basic L2 A-priori Estimate
	3.2 A New Kernel
	3.3 Pointwise A-priori Estimates
	3.4 Outlook: A-priori Hölder Estimates
	3.5 Some Conjectures

	References

	On the Riemann Zeta Function and Gaussian Multiplicative Chaos
	1 Background: Classical Results on Statistics of ζ
	1.1 Towards Functional Statistics of ζ: The Easy Case of σ>1
	1.2 Bohr, Jessen, and Bagchi: The Case of σ>1/2
	1.3 Selberg: Pointwise Statistics in the Case of σ=1/2

	2 Log-Correlated Fields
	2.1 Emergence of Log-Correlated Field: Heuristics and Facts
	2.2 Log-Correlated Gaussian Fields

	3 Multiplicative Chaos
	3.1 Gaussian Multiplicative Chaos Measures
	3.2 Critical and Supercritical Chaos
	3.3 Complex Chaos

	4 Riemann Zeta and Multiplicative Chaos
	4.1 Some Ingredients of the Proof of Part (i) of Thm 4.1
	4.2 Some Ingredients of Part (ii) of Thm 4.1

	5 The Mesoscopic Scale: ζ Meets Random Matrices
	5.1 The Montgomery(-Dyson) Paradigm
	5.2 Rigorous Results on the Mesoscopic Scale

	6 Results and Conjectures for Statistics of |ζ(1/2+it)|β
	6.1 The Fyodorov–Hiary–Keating Conjecture
	6.2 Multiplicative Chaos as Statistical Limits for Shifts of |ζ(1/2+it)|β?

	References

	Some New Aspects in Hypercomplex Analysis
	1 Hyperquaternions
	1.1 Introduction
	1.2 Multiplication in HH
	1.3 Generators
	1.4 Clifford Numbers
	1.5 Clifford Algebras over the Real Numbers
	1.6 Hyperquaternions for Classification of Physics

	2 Analysis on the 3-Sphere—Some Topics
	2.1 Representations of S3 
	2.2 Tomographic Methods

	3 Fluid Flow Through Porous Media with the Help of a Quaternionic Operator Calculus
	3.1 Some Basic Fluid Flow Equations
	3.2 A Quaternion Operator System
	3.3 Representation in Terms of (Dα)-Holomorphic Functions

	4 An Adaptive Fast Fourier Type Decomposition
	4.1 Takenaka–Malmquist Systems

	5 Harmonic Conjugates in Weighted Bergman Spaces
	6 On Schwarz Type Formulae
	6.1 Schwarz Integral Formula in the Complex Plane
	6.2 Schwarz Kernel in R4
	6.3 Schwarz Formula for the Ball in R3

	References

	Some Connections of Complex Dynamics
	1 Introduction
	2 Background Material in Complex Dynamics
	3 Complex Dynamics and Kleinian Groups
	4 Newton's Method and Other Numerical Methods
	4.1 Genericity of Convergence
	4.2 Finding All the Roots

	5 Hierarchical Ising and Potts Models
	6 Other Connections
	References


