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Abstract
Let D ∈ N, q ∈ [2,∞) and (RD, | · |, dx) be the Euclidean space equipped with the
D-dimensional Lebesgue measure. In this article, we establish the Fefferman–Stein
decomposition of Triebel–Lizorkin spaces Ḟ0

∞, q ′(RD) with the help of the dual on
function sets which have special topological structure. A function in Triebel–Lizorkin
spaces Ḟ0

∞, q ′(RD) can be written as a specific combination of D + 1 functions in

Ḟ0
∞, q ′(RD) ∩ L∞(RD). To get such a decomposition, first, some auxiliary function

spaces WE1, q(RD) andWE∞, q ′
(RD) are defined via wavelet expansions. It is shown

that

Ḟ0
1, q(RD) � L1(RD) ∪ Ḟ0

1, q(RD) ⊂ WE1, q(RD) ⊂ L1(RD) + Ḟ0
1, q(RD)

andWE∞, q ′
(RD) is strictly contained in Ḟ0

∞, q ′(RD). Next, the Riesz transform char-

acterization of Triebel–Lizorkin spaces Ḟ0
1, q(RD) by the function set WE1, q(RD)

is established. Then the dual of WE1, q(RD) is considered. As a consequence of the
above results, a Riesz transform characterization of Triebel–Lizorkin spaces Ḟ0

1, q (RD)

by Banach space L1(RD) + Ḟ0
1, q(RD) is obtained. Although Fefferman–Stein type

decompositions when D = 1 was obtained by Lin et al. (Mich Math J 62:691–703,
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2013), as was pointed out by Lin et al., the approach used in the case D = 1 cannot
be applied to the cases D ≥ 2. In the latter cases, some new skills related to Riesz
transforms are to be developed.

Keywords Riesz transform · Fefferman–Stein decomposition ·
Triebel–Lizorkin space

Mathematics Subject Classification Primary 42B35; Secondary 46E35 · 42B20

1 Introduction andMain Results

The Riesz transforms on R
D , D ≥ 2, which are natural generalizations of the Hilbert

transform on R, may be the most typical examples of Calderón–Zygmund operators
(see, for example, [8,16,17] and references therein). The Riesz transform character-
ization of Hardy spaces plays important roles in the real variable theory of Hardy
spaces (see, for example, [3,16]). Via this Riesz transform characterization of the
Hardy space H1(RD) and the duality between H1(RD) and the space of functions
with bounded mean oscillation, BMO(RD), Fefferman and Stein [3] further obtained
the so-called Fefferman–Stein decomposition of BMO(RD). Later, Uchiyama [23]
gave a constructive proof of the Fefferman–Stein decomposition of BMO(RD). Since
then, many articles have focussed on the classical Riesz transform characterization and
the Fefferman–Stein decomposition of different variants of Hardy spaces and BMO
spaces; see, for example, [1,2,7,10,25] and references therein. Recently, Lin et al. [11]
established the Hilbert transform characterization of Triebel–Lizorkin spaces Ḟ0

1, q(R)

and the Fefferman–Stein decomposition of Triebel–Lizorkin spaces Ḟ0
∞, q ′(R) for each

q ∈ [2,∞). Yang et al. [26] obtained theFefferman–Stein decomposition for Q-spaces
Qα(RD) and theRiesz transform characterization of Pα(RD), the predual of Qα(RD),
for any α ∈ [0,∞).

As was pointed out by Lin et al. in [11, Rem. 1.4], the approach used in [11]
for the Hilbert transform characterization of Triebel–Lizorkin spaces Ḟ0

1, q(R) cannot

be applied to Ḟ0
1, q(RD) when D ≥ 2. Hence, new techniques have to be devel-

oped (see also “organization of this article” at the end of this section). In this article,
motivated by some ideas from [11,26], we establish the Riesz transform characteriza-
tion of Triebel–Lizorkin spaces Ḟ0

1, q(RD) and the Fefferman–Stein decomposition of

Triebel–Lizorkin spaces Ḟ0
∞, q ′(RD) for all D ∈ N := {1, 2, . . .} and q ∈ [2,∞).

In order to state the main results of this article, we now recall the definition of
the Triebel–Lizorkin space Ḟ0

1, q(RD) from [19]; see also [5,20–22]. LetS (RD) and

S ′(RD) be the Schwartz space and its dual respectively, andP(RD) the class of all
polynomials on R

D . Following [19], we also let

S∞(RD) :=
{
ϕ ∈ S (RD) :

∫
RD

ϕ(x)xα dx = 0 for all α ∈ Z
D+
}

and S ′∞(RD) be its dual. Here and hereafter, Z+ := N ∪ {0}, Z
D+ := (Z+)D and,

for any α := (α1, . . . , αD) ∈ Z
D+ and x := (x1, . . . , xD) ∈ R

D , xα := xα1
1 · · · xαD

D .
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The Dual Elements of Function Sets and Fefferman–Stein… 187

Let ϕ ∈ S (RD) satisfy supp (ϕ̂) ⊂ {ξ ∈ R
D : 1/2 ≤ |ξ | ≤ 2}, |ϕ̂(ξ)| ≥ c > 0 if

3/5 ≤ |ξ | ≤ 5/3, and
∑

j∈Z |ϕ̂(2 jξ)| = 1 if ξ 
= 0, where c is a positive constant.

Write ϕ j (·) := 2Djϕ(2 j ·) for any j ∈ Z. Such ϕ j have been used to define the
homogeneous Triebel–Lizorkin space Ḟ0

p,q , R
D , 0 < p ≤ ∞, 0 < q < ∞. Further,

such definitions are independent of the choices of ϕ. See [5,19–22]. We consider the
case where p = 1 and ∞.

Definition 1.1 Let q ∈ (1,∞). Then the homogeneous Triebel–Lizorkin space
Ḟ0
1, q(RD) is defined to be the set of all f ∈ S ′∞(RD) such that

‖ f ‖Ḟ0
1, q (RD) :=

∥∥∥∥∥∥∥

⎧⎨
⎩
∑
j∈Z

∣∣ϕ j ∗ f
∣∣q
⎫⎬
⎭

1/q
∥∥∥∥∥∥∥

L1(RD)

< ∞.

Remark 1.2 (i) It is well known that S ′∞(RD) = S ′(RD)\P(RD) with equivalent
topologies; see for example, [9, Thm. 24.0.4], [13, Thm. 28], [14, Prop. 35.4,
Prop. 35.5] and [27, Prop. 8.1] for an exact proof.

(ii) From [5, p. 42], it follows that Ḟ0
1, 2(R

D) = H1(RD) with equivalent norms.

Obviously, for any q ∈ [2,∞), ‖ f ‖Ḟ0
1, q (RD) � ‖ f ‖H1(RD). Hence H1(RD) ⊂

Ḟ0
1, q(RD).

Now we recall the definition of Ḟ0∞,q(RD).

Definition 1.3 Let q ∈ (1,∞). Then the homogeneous Triebel–Lizorkin space
Ḟ0∞,q(RD) is defined to be the set of all f ∈ S ′∞(RD) such that

‖ f ‖Ḟ0∞, q (RD) := sup
{Q: dyadic cube}

⎧⎨
⎩

1

|Q|
∫

Q

∞∑
j=− log2 �(Q)

∣∣ϕ j ∗ f (x)
∣∣q dx

⎫⎬
⎭

1/q

< ∞,

where the supremum is taken over all dyadic cubes Q in R
D and �(Q) denotes the

side length of Q.

Remark 1.4 (i) From [5, p. 42], it follows that Ḟ0∞, 2(R
D) = BMO(RD) with equiv-

alent norms.
(ii) It was shown in [4, (5.2)] that, for each q ∈ (1,∞), Ḟ0

∞, q ′(RD) is the dual space

of Ḟ0
1, q(RD). In particular, BMO(RD) is the dual space of H1(RD), which was

shown before in [3].

Next we recall the definition of the 1-dimensional Meyer wavelets from [24]; see
also [6,11,12,15] for a different version. Let � ∈ C∞(R), the space of all infinitely
differentiable functions on R, satisfy 0 ≤ �(ξ) ≤ 1/

√
2π for any ξ ∈ R, �(ξ) =

1/
√
2π for any ξ ∈ [−2π/3, 2π/3], [�(ξ)]2 + [�(ξ − 2π)]2 = 1/(2π) for any

ξ ∈ [0, 2π ]. Further,
�(ξ) = �(−ξ) for any ξ ∈ R, (1.1)
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188 Q. Yang, T. Qian

and
�(ξ) = 0 for any ξ ∈ (−∞, 4π/3] ∪ [4π/3,∞). (1.2)

In what follows, the Fourier transform and the reverse Fourier transform of a
suitable function f on R

D are defined by

f̂ (ξ) := (2π)−D/2
∫
RD

e−iξ x f (x) dx for any ξ ∈ R
D,

and

f̌ (x) := (2π)−D/2
∫
RD

eixξ f (ξ) dξ for any x ∈ R
D,

respectively.
From [24, Prop. 3.2], it follows that φ := �̌ (the “father” wavelet) is a scaling

function of a multiresolution analysis defined as in [24, Def. 2.2]. The corresponding
function mφ of φ, satisfying φ̂(2·) = mφ(·)φ̂(·), is a 2π -periodic function which
equals

√
2π�(2·) on the interval [−π, π).

Furthermore, by [24, Thm. 2.20], we construct a 1-dimensional wavelet ψ (the
“mother” wavelet) by setting ψ̂(ξ) := eiξ/2mφ(ξ/2 + π)�(ξ/2) for any ξ ∈ R. It
was shown in [24, Prop. 3.3] thatψ is a real-valued C∞(R) function,ψ(−1/2− x) =
ψ(−1/2 + x) for all x ∈ R, and

supp
(
ψ̂
) ⊂ [−8π/3,−2π/3] ∪ [2π/3, 8π/3]. (1.3)

Such a wavelet ψ is called a 1-dimensional Meyer wavelet and ψ(0) 
= 0.

Let D ∈ N ∩ [2,∞) and �0 := (

D times︷ ︸︸ ︷
0, . . . , 0). The D-dimensional Meyer wavelets

are constructed by tensor products as follows. Let x := (x1, . . . , xD) ∈ R
D , ED :=

{0, 1}D\{�0} and, for any λ := (λ1, . . . , λD) ∈ ED , define

ψλ(x) := φλ1(x1) · · · φλD (xD),

with φλ j (x j ) := φ(x j ) if λ j = 0 and φλ j (x j ) := ψ(x j ) if λ j = 1. As in [24],
for any (λ, j, k) ∈ �D := {(λ, j, k) : λ ∈ ED, j ∈ Z, k ∈ Z

D} and x ∈ R
D ,

we let ψλ
j, k(x) := 2Djψλ(2 j x − k) and, for λ = �0 and any k := (k1, . . . , kD), let

ψ
�0
j, k(x) := 2Djφ(2 j x1 − k1) · · · φ(2 j xD − kD) and ψ

�0(x) := φ(x1) · · · φ(xD).
By [24, Prop. 3.1] and arguments of tensor products, we know that, for any

(λ, j, k) ∈ �D , ψλ
j, k ∈ S∞(RD). Thus, for any (λ, j, k) ∈ �D and any

f ∈ S ′∞(RD), let aλ
j, k( f ) := 〈 f , ψλ

j, k〉, where 〈·, ·〉 represents the duality between

S ′∞(RD) and S∞(RD). From the proof of [5, Thm. (7.20)], it follows that, for any
f ∈ S ′∞(RD),

f =
∑

λ∈ED

∑
j∈Z

∑
k∈ZD

aλ
j, k( f )ψλ

j, k in S ′∞(RD). (1.4)
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The Dual Elements of Function Sets and Fefferman–Stein… 189

Moreover, by [24, Prop. 5.2], we know that {ψλ
j, k}(λ, j,k)∈�D is an orthonormal basis

of L2(RD).
For any � ∈ {1, . . . , D} and any f ∈ S (RD), denote by R�( f ) the �th-Riesz

transform of f , which is defined by setting

R̂�( f )(ξ) := −i
ξ�

|ξ | f̂ (ξ) for any ξ ∈ R
D and ξ 
= 0.

Since (1.2) and (1.3) hold true, by [26, (5.2)], we know that, for any � ∈ {1, . . . , D},
(λ, j, k), (̃λ, j̃, k̃) ∈ �D and | j − j̃ | ≥ 2, we have

(
R�

(
ψλ

j, k

)
, ψλ̃

j̃, k̃

)
= 0, (1.5)

where (·, ·) denotes the inner product in L2(RD). Note that (1.5) implies that

R�

(
ψλ

j, k

)
=

∑
(̃λ, j̃ ,̃k)∈�D : j−1≤ j̃≤ j+1

bλ, j,k
λ̃, j̃ ,̃k

ψλ̃
j̃, k̃

for some coefficients

bλ, j,k
λ̃, j̃ ,̃k

=
(

R�

(
ψλ

j, k

)
, ψλ̃

j̃ , k̃

)
.

Now we recall the wavelet characterization of Ḟ0
1, q(RD) and Ḟ0∞,q(RD) (see, for

example, [5, Thm. (7.20)]). For j ∈ Z and k = (k1, . . . , kD) ∈ Z
D , denote

Q j,k =
D∏

l=1

[2− j kl , 2
− j (1 + kl)[.

Theorem 1.5 Let q ∈ (1,∞). Then

(i) f ∈ Ḟ0
1, q(RD) if and only if f ∈ S ′∞(RD) and

J f :=

∥∥∥∥∥∥∥

⎧⎨
⎩

∑
(λ, j, k)∈�D

[
2Dj

∣∣∣aλ
j, k( f )

∣∣∣χ (2 j x − k
)]q

⎫⎬
⎭

1/q
∥∥∥∥∥∥∥

L1(RD)

< ∞,

where χ denotes the characteristic function of the cube [0, 1)D. Moreover, there
exists a positive constant C such that, for all f ∈ Ḟ0

1, q(RD),

1

C
‖ f ‖Ḟ0

1, q (RD) ≤ J f ≤ C‖ f ‖Ḟ0
1, q (RD).
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190 Q. Yang, T. Qian

(ii) f ∈ Ḟ0∞,q(RD) if and only if f ∈ S ′∞(RD) and there exists C > 0 such that for
all dyadic cube Q,

∑
(λ, j, k)∈�D ,Q j,k⊂Q

2(q−1) j D|aλ
j,k( f )|q ≤ C |Q|.

Remark 1.6 By Remark 1.2 and Theorem 1.5, we also obtain the wavelet characteri-
zation of H1(RD) as in [12, p. 143].

To consider Fefferman–Stein type decomposition for Ḟ0∞,q(RD), we need to study
some properties relative to frequency. Hence we use Meyer wavelets to introduce
the auxiliary function sets WE1, q(RD). We consider the linear functional on these
function sets and consider some exchangeability of Riesz transform and some sums
of orthogonal projector operator defined by Meyer wavelets.

Let q ∈ (1,∞) and f ∈ S ′∞(RD). For any s ∈ Z, N ∈ N and t ∈ {0, . . . , N + 1},
let Ps,N be the projection onto the subspace generated by the wavelets at the scales j
living in the band [s − N , s], namely

Ps, N f :=
∑

{(λ, j, k)∈�D : s−N≤ j≤s}
aλ

j, k( f )ψλ
j, k in S ′∞(RD). (1.6)

For each t ∈ {0, . . . , N + 1}, we further restrict the projections to the sub-bands
corresponding to the scale intervals [s − t + 1, s] and [s − N , s − t],

T (1)
s, t, N ( f ) :=

⎧⎪⎨
⎪⎩
0, t = 0,∑
{(λ, j, k)∈�D : s−t+1≤ j≤s}

aλ
j, k( f )ψλ

j, k, t ∈ {1, . . . , N + 1}

(1.7)

and

T (2)
s, t, N ( f ) :=

⎧⎪⎨
⎪⎩

∑
{(λ, j, k)∈�D : s−N≤ j≤s−t}

aλ
j, k( f )ψλ

j, k, t ∈ {0, . . . , N },

0, t = N + 1.
(1.8)

Observe that Ps,N = T (1)
s, t, N + T (2)

s, t, N and the operators T (i)
s, t, N are also orthogonal

projections.More precisely, T (1)
s, t, N = Ps,t−1 and T (2)

s, t, N = Ps−t,N−t .When f belongs
to the projection space, then the projection operator acts like the identity, a fact that will
be used repeatedly. The operators T (1)

s, t, N ( f ) and T (2)
s, t, N ( f ) in the above Eqs. (1.7) and

(1.8) are quite important. They are adapted to the Eq. (1.5) where the frequencies does
not change much when considering the action of Riesz operators on Meyer wavelets.

Definition 1.7 For 1 < q ≤ ∞, the space WE∞, q(RD) is defined to be the space of
all f ∈ S ′∞(RD) such that
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The Dual Elements of Function Sets and Fefferman–Stein… 191

‖ f ‖WE∞, q (RD)

:= sup
{s∈N, N∈N}

sup
t∈{0,...,N+1}

[∥∥∥T (1)
s, t, N ( f )

∥∥∥
Ḟ0∞, q (RD)

+
∥∥∥T (2)

s, t, N ( f )

∥∥∥
L∞(RD)

]
< ∞.

It is easy to see that

Proposition 1.8 For 1 < q ≤ ∞, WE∞, q(RD) = L∞(RD)∩ Ḟ0∞,q(RD) are Banach
spaces.

Definition 1.9 For 1 < q ≤ ∞, the relative space WE1, q(RD) is defined to be the
space of all f ∈ S ′∞(RD) such that

‖ f ‖WE1, q (RD)

:= sup
{s∈N, N∈N}

min
t∈{0,...,N+1} ×

[∥∥∥T (1)
s, t, N ( f )

∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s, t, N ( f )

∥∥∥
L1(RD)

]
< ∞.

Further, for f ∈ L1(RD) ∪ Ḟ0
1,q(RD), we define

‖ f ‖{1,q} := min(‖ f ‖L1 , ‖ f ‖Ḟ0
1,q

).

For f ∈ L1(RD) + Ḟ0
1,q(RD), we define

‖ f ‖1,q := inf
f =h+g∈L1+Ḟ0

1,q

{‖h‖L1 + ‖g‖Ḟ0
1,q

}. (1.9)

Remark 1.10 For D = 1 the spaces WE1, q(RD) and WE∞, q(RD), q ∈ (1,∞), have
been introduced by Lin et al. in [11, p. 693] and [11, p. 694], respectively, and were
denoted by L1, q(R), and L∞, q(R), respectively. To distinguish these spaces from
the well-known Lorentz spaces, we use the notation WE1, q(RD) and WE∞, q(RD)

which indicate that these spaces are defined via wavelet expansions. Recall also that
the space WE1, q(RD) was also called the relative L1 space in [11, p. 693].

We know that the function

P̃N f (x) =
∑

(ε, j,k)∈�D,| j |+|k|≤2N

aλ
j,k( f )ψλ

j,k(x)

belongs to S∞(RD) for all N ≥ 1. Set A = WE1, q(RD) or L1(RD) ∪ Ḟ0
1,q(RD) or

L1(RD) + Ḟ0
1,q(RD). If f ∈ A, then P̃N f ∈ A. It is easy to see that

Proposition 1.11 For 1 ≤ q < ∞,

(i) WE1, q(RD) is complete with the above induced norm.
(ii) The set S∞(RD) is dense in A.
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192 Q. Yang, T. Qian

Remark 1.12 Let q ∈ [2,∞). It was shown in [20, p. 239] that the dual space of
Ḟ0
1, q(RD) is Ḟ0

∞, q ′(RD). Further Ḟ0∞, 2(R
D) = BMO(RD), Ḟ0

1,2(R
D) = H1(RD) ⊂

L1(RD). Hence for q = 2,

L1(RD) ∪ Ḟ0
1,2(R

D) = WE1,2(RD) = L1(RD) + Ḟ0
1,2(R

D) = L1(RD). (1.10)

Let 2 < q < ∞. L1(RD) + Ḟ0
1,q(RD) are Banach spaces. W E1,q(RD) are function

sets, not Banach spaces. Moreover, the following equalities are not true

L1(RD) ∪ Ḟ0
1,q(RD) = WE1,q(RD) = L1(RD) + Ḟ0

1,q(RD).

In the following Theorem 1.17, the above two equal signs both have been changed to
the inclusion sign “⊂”. i.e.

L1(RD) ∪ Ḟ0
1,q(RD) ⊂ WE1,q(RD) ⊂ L1(RD) + Ḟ0

1,q(RD). (1.11)

For A, we can use distributions to define their dual elements.

Definition 1.13 For 1 ≤ q < ∞ and a function set A ⊂ L1(RD)+ Ḟ0
1,q(RD), we call

l to be a dual element of A, if l ∈ S ′∞(RD) and

sup
f ∈S∞(RD),‖ f ‖A≤1

|〈l, f 〉| < ∞.

We write l ∈ A′.

A′ is a linear space. In fact, for α, β ∈ C and l1, l2 ∈ A′, we know that αl1 +βl2 ∈ A′.
Further, L1(RD) + Ḟ0

1,q(RD) is the linearization function space of the set L1(RD) ∪
Ḟ0
1,q(RD) or the set WE1,q(RD). The dual elements on the set L1(RD)∪ Ḟ0

1,q(RD) or

on the set WE1,q(RD) are the same as those on the linear space L1(RD) + Ḟ0
1,q(RD).

Now we are ready to state the first main auxiliary result of this paper.

Theorem 1.14 For q ∈ [2,∞), we have

(
L1(RD) ∪ Ḟ0

1,q(RD)
)′ =

(
WE1,q(RD)

)′ =
(

L1(RD) + Ḟ0
1,q(RD)

)′

= L∞(RD) ∩ Ḟ0
∞,q ′(RD).

For q = 2, due to the Eq. (1.10), the above Theorem 1.14 is evident. For general
q, this theorem is new and its proof will be given in the final section.

Let R0 := Id denote the identity operator. We state the second main auxiliary
result which will be needed in the proof of our Fefferman–Stein type decomposition.
We will use certain exchangeability of Meyer wavelets and Riesz transform to prove
Theorem 1.15 in Sect. 2.
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Theorem 1.15 Let D ∈ N and q ∈ [2,∞). Then f ∈ S ′∞(RD) belongs to Ḟ0
1, q(RD)

if and only if f ∈ WE1, q(RD) and {R�( f )}D
�=1 ⊂ WE1, q(RD). Moreover, there exists

a positive constant C such that, for all f ∈ Ḟ0
1, q(RD),

1

C
‖ f ‖Ḟ0

1, q (RD) ≤
D∑

�=0

‖R�( f )‖WE1, q (RD) ≤ C‖ f ‖Ḟ0
1, q (RD).

Theorem 1.15 provides a Riesz transform characterization of the homogeneous
Triebel–Lizorkin spaces Ḟ0

1, q(RD) via the wavelet expansion sets WE1, q(RD) for
q ≥ 2.

Remark 1.16 If D = 1, Theorem 1.15 is just [11, Thm. 1.3].

Fefferman–Stein decomposition says, for some function space A, there exists some
space B satisfying B � A such that, for f ∈ A, there exist fl ∈ B such that

f =
D∑

l=0

Rl fl .

The functions in B have better properties than those in A. But a function in A has
been written as a linear combination of a function in B and the D images of the D
Riesz transformations acting on the D functions in B respectively. Such slightly better
properties can improve certain results in PDE and in harmonic analysis. The following
Theorems 1.17 and 1.18 tell us that we have also Fefferman–Stein decomposition for
Ḟ0∞, q(RD).

By Remark 1.12, we know that, for any q ∈ [2,∞), Ḟ0
1, q(RD) ⊂ WE1, q(RD) and

WE∞, q ′
(RD) ⊂ Ḟ0

∞, q ′(RD). The above inclusions of sets are proper. The facts A � B
means the functions in A have better properties than the functions in B. Fefferman–
Stein decomposition needs such facts. The following conclusions are extensions of
[11, Rem. 1.8]. The proof of Theorem 1.17 will be given at Sect. 3.

Theorem 1.17 Let D ∈ N and q ∈ [2,∞). Then

(i) Ḟ0
1, q(RD) � L1(RD) ∪ Ḟ0

1, q(RD) ⊂ WE1, q(RD) ⊂ L1(RD) + Ḟ0
1, q(RD);

(ii) WE∞, q ′
(RD) � Ḟ0

∞, q ′(RD).

Combining Theorems 1.15 and 1.17 and some arguments analogous to those used in
the proof of [11, Thm. 1.7], we obtain the following Fefferman–Stein decomposition
of Ḟ0∞, q(RD), the proof will be given in the final section.

Theorem 1.18 Let D ∈ N and q ∈ (1, 2]. Then f ∈ Ḟ0∞, q(RD) if and only if there

exist { f�}D
�=0 ∈ WE∞, q(RD) such that f = f0 +∑D

�=1 R� ( f�).

By Theorems 1.14 and 1.18, we obtain the following Riesz transform characteri-
zation of the homogeneous Triebel–Lizorkin spaces Ḟ0

1,q(RD).
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Theorem 1.19 Let D ∈ N and q ∈ [2,∞). Then f ∈ S ′∞(RD) belongs to Ḟ0
1, q(RD)

if and only if f ∈ L1(RD) + Ḟ0
1,q(RD) and {R�( f )}D

�=1 ⊂ L1(RD) + Ḟ0
1,q(RD).

Moreover, there exists a positive constant C such that, for all f ∈ Ḟ0
1, q(RD),

1

C
‖ f ‖Ḟ0

1, q (RD) ≤
D∑

�=0

‖R�( f )‖L1(RD)+Ḟ0
1,q (RD) ≤ C‖ f ‖Ḟ0

1, q (RD).

Remark 1.20 (i) Theorem 1.18 when D = 1 is just [11, Thm. 1.7].
(ii) For q = 2, Ḟ0

1, q(RD) is the Hardy space, L1(RD) + Ḟ0
1,q(RD) = L1(RD), this

theorem becomes the well-known characterization of Hardy space by L1. For
2 < q < ∞, the conclusion of Theorem 1.19 is new.

The organization of this article is as follows.
In Sect. 2, via the definition of the space WE1, q(RD), the boundedness of Riesz

transforms on Ḟ0
1, q(RD), the Riesz transform characterization of H1(RD) and some

ideas from [11,26], we prove Theorem 1.15, namely, establish the Riesz transform

characterization of Triebel–Lizorkin spaces Ḟ0
1, q(RD). Denote fs N := Ps,N f . Com-

paring with the corresponding proof of [26, Sect. 6.2], the main innovation of this
proof is that we regard the corresponding parts of the norms of Riesz transforms
{R�( fs1, N1)}D

�=1 in WE1, q(RD) as a whole to choose only one t1s, N ∈ {0, . . . , N + 1}
such that (2.6) below holds true as one did in the corresponding proof of [26, (6.6)]. For
D ≥ 2, we do not choose D numbers t�s, N ∈ {0, . . . , N + 1} for each � ∈ {1, . . . , D}
separately. Using this technique, we successfully overcome those difficulties described
in [11, Rem. 1.4].

In Sect. 3, we prove Theorem 1.17. In Sect. 4, we give the proof of Theo-
rems 1.14, 1.18 and 1.19.

Finally, we state some conventions on notation. Throughout the whole paper, C
stands for a positive constant which is independent of the main parameters, but it may
vary from line to line. If, for two real functions f and g, f ≤ Cg, we then write
f � g; if f � g � f , we then write f ∼ g. For q ∈ (1,∞), let q ′ be the conjugate
number of q defined by 1/q + 1/q ′ = 1. Let C be the set of complex numbers and
N := {1, 2, . . .}. Furthermore, 〈·, ·〉 and (·, ·) represent the duality relation, and the
L2(RD) inner product respectively.

2 Proof of Theorem 1.15

In this section, we prove Theorem 1.15. To this end, we need to recall some well
known results. The following conclusion is taken from [5, Cor. (8.21)].

Theorem 2.1 Let D ∈ N and q ∈ (1,∞). Then the Riesz transform R� for each
� ∈ {1, . . . , D} is bounded on Ḟ0

1, q(RD).

Remark 2.2 By Remark 1.2, Ḟ0
1, 2(R

D) = H1(RD). Theorem 2.1 says that the Riesz

transform R� for each � ∈ {1, . . . , D} is bounded on H1(RD).
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The Riesz transform characterization of H1(RD) can be found in [16, p. 221].

Theorem 2.3 Let D ∈ N. The space H1(RD) is isomorphic to the space of all functions
f ∈ L1(RD) such that {R�( f )}D

�=1 ⊂ L1(RD). Moreover, there exists a positive
constant C such that, for all f ∈ H1(RD),

1

C
‖ f ‖H1(RD) ≤ ‖ f ‖L1(RD) +

D∑
�=1

‖R�( f )‖L1(RD) ≤ C‖ f ‖H1(RD).

The following lemma is completely analogous to [11, Lem. 2.2], the details are
omitted.

Lemma 2.4 Let D ∈ N and q ∈ [2,∞). If f ∈ WE1, q(RD), then, for any j ∈ Z,
Q j ( f ) ∈ H1(RD), where Q j ( f ) := ∑

(λ, k)∈ED×ZD aλ
j, k( f )ψλ

j, k . Moreover, there

exists a positive constant C such that, for all j ∈ Z and f ∈ WE1, q(RD),

∥∥Q j ( f )
∥∥

H1(RD)
≤ C‖ f ‖WE1, q (RD).

2.1 Proof of Theorem 1.15

Proof of Theorem 1.15 We first show the necessity of Theorem 1.15. By (1.11) in
Remark 1.12 and Theorem 2.1, we have

D∑
�=0

‖R�( f )‖WE1, q (RD) �
D∑

�=0

‖R�( f )‖Ḟ0
1, q (RD) � ‖ f ‖Ḟ0

1, q (RD),

which completes the proof of the necessity of Theorem 1.15.
Nowwe show the sufficiency ofTheorem1.15. To this end, for any f ∈ WE1, q(RD)

such that {R�( f )}D
�=1 ⊂ WE1, q(RD), it suffices to show that, for any s1 ∈ Z, N1 ∈ N

and fs1, N1 := Ps1, N1 f defined as in (1.6), we have

∥∥ fs1, N1

∥∥
Ḟ0
1, q (RD)

�
D∑

�=0

∥∥R�

(
fs1, N1

)∥∥
WE1, q (RD)

, (2.1)

where the implicit constant is independent of s1, N1 and f . Recall thatwith the notation
introduced in (1.7) and (1.8), we have that fs1, N1 = T (1)

s1,t1,N1
( f ) + T (2)

s1,t1,N1
( f ).

Indeed, assume that (2.1) holds true for the time being. Owing to (1.5), for any
� ∈ {1, . . . , D}, there exists a sequence { f λ, �

j, k }(λ, j, k)∈�D ⊂ C such that

R�

(
fs1, N1

) :=
∑

{(λ, j, k)∈�D : s1−N1−1≤ j≤s1+1}
f λ, �

j, k ψλ
j, k in S ′∞(RD).
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By this and the orthogonality of {ψλ
j, k}(λ, j, k)∈�D , with the notation introduced in

(1.7) and (1.8), we know that, for each � ∈ {1, . . . , D},
∥∥R�

(
fs1, N1

)∥∥
WE1, q (RD)

= sup
{̃s∈Z, Ñ∈N}

min
t∈{0,...,Ñ+1}

[∥∥∥T (1)
s̃, t, Ñ

R�

(
fs1, N1

)∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s̃, t, Ñ
R�

(
fs1, N1

)∥∥∥
L1(RD)

]

= sup
s̃∈Z, Ñ∈N

s̃≤s1+1, s̃−Ñ≥s1−N1−1

min
t∈{0,...,Ñ+1}

[∥∥∥T (1)
s̃, t, Ñ

R�

(
fs1, N1

)∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s̃, t, Ñ
R�

(
fs1, N1

)∥∥∥
L1(RD)

]

= sup
s̃∈Z, Ñ∈N

s̃≤s1+1, s̃−Ñ≥s1−N1−1

min
t∈{0,...,Ñ+1}

[∥∥∥T (1)
s̃, t, Ñ

R�( f )

∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s̃, t, Ñ
R�( f )

∥∥∥
L1(RD)

]

≤ ‖R�( f )‖WE1, q (RD) < ∞. (2.2)

A similar conclusion holds for fs1, N1 = R0
(

fs1, N1

)
. We choose to write out the

process, for there is a distinction on the ranges.
∥∥ fs1, N1

∥∥
WE1, q (RD)

= sup
s̃∈Z, Ñ∈N

s̃≤s1+1, s̃−Ñ≥s1−N1−1

min
t∈{0,...,Ñ+1}

[∥∥∥T (1)
s̃, t, Ñ

(
fs1, N1

)∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s̃, t, Ñ

(
fs1, N1

)∥∥∥
L1(RD)

]

= sup
s̃∈Z, Ñ∈N

s̃≤s1, s̃−Ñ≥s1−N1

min
t∈{0,...,Ñ+1}

[∥∥∥T (1)
s̃, t, Ñ

( fs1, N1 )

∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s̃, t, Ñ
( fs1, N1 )

∥∥∥
L1(RD)

]

= sup
s̃∈Z, Ñ∈N

s̃≤s1, s̃−Ñ≥s1−N1

min
t∈{0,...,Ñ+1}

[∥∥∥T (1)
s̃, t, Ñ

( f )

∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s̃, t, Ñ
( f )

∥∥∥
L1(RD)

]

≤ ‖ f ‖WE1, q (RD)
< ∞. (2.3)

From (2.1), (2.2) and (2.3), we deduce that

∥∥ fs1, N1

∥∥
Ḟ0
1, q (RD)

�
D∑

�=0

‖R�( f )‖WE1, q (RD) .

Further, the Levi lemma says

‖ f ‖Ḟ0
1, q (RD) ≤ lim

∥∥ fs1, N1

∥∥
Ḟ0
1, q (RD)

.
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These, together with Theorem 1.5, implies that f ∈ Ḟ0
1, q(RD) and

‖ f ‖Ḟ0
1, q (RD)

�

∥∥∥∥∥∥∥

⎧⎨
⎩

∑
(λ, j , k)∈�D

[
2Dj

∣∣∣aλ
j , k ( f )

∣∣∣χ (2 j x − k
)]q

⎫⎬
⎭
1/q

∥∥∥∥∥∥∥
L1(RD)

∼ lim
N1,s1→∞

∥∥∥∥∥∥∥

⎧⎨
⎩

∑
{(λ, j , k)∈�D : s1−N1≤ j≤s1}

[
2Dj

∣∣∣aλ
j, k ( f )

∣∣∣χ (2 j x − k
)]q

⎫⎬
⎭
1/q

∥∥∥∥∥∥∥
L1(RD)

� lim
N1, s1→∞

∥∥ fs1, N1

∥∥
Ḟ0
1, q (RD)

�
D∑

�=0

‖R�( f )‖WE1, q (RD)
,

which are the desired conclusions for sufficiency.
Thus, to finish the proof of the sufficiency of Theorem 1.15, we still need to prove

(2.1). To this end, fix s1 ∈ Z and N1 ∈ N. In order to obtain the WE1, q(RD)-norms
of {R�( fs1, N1)}D

�=0, by (2.2) and (2.3), it suffices to consider

s := s1 + 1 and N := N1 + 2 in (1.7) and (1.8) , (2.4)

because the proof for the other indices (s, N ) can be deduced in a similar but easier
way.

For such s and N , there exist t (0)s, N , t (1)s, N ∈ {0, . . . , N + 1} such that

∥∥∥∥T (1)

s, t (0)s, N , N

(
fs1, N1

)∥∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥∥T (2)

s, t (0)s, N , N

(
fs1, N1

)∥∥∥∥
L1(RD)

= min
t∈{0,...,N+1}

[∥∥∥T (1)
s, t, N

(
fs1, N1

)∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s, t, N

(
fs1, N1

)∥∥∥
L1(RD)

]
(2.5)

and

D∑
�=1

[∥∥∥∥T (1)

s, t (1)s, N , N
R�

(
fs1, N1

)∥∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥∥T (2)

s, t (1)s, N , N
R�

(
fs1, N1

)∥∥∥∥
L1(RD)

]

= min
t∈{0,...,N+1}

D∑
�=1

[∥∥∥T (1)
s, t, N R�

(
fs1, N1

)∥∥∥
Ḟ0
1, q (RD)

+
∥∥∥T (2)

s, t, N R�

(
fs1, N1

)∥∥∥
L1(RD)

]
.

(2.6)

In the remainder of this proof, to simplify notation, we let g1 := fs1, N1 for any

fixed s1 and N1, t j := t ( j)
s, N and Ti, j := T (i)

s, t ( j)
s, N , N

for any i ∈ {1, 2} and j ∈ {0, 1}.
With the help of (2.4), (2.5) and (2.6), to prove Eq. (2.1), it suffices to show that

‖g1‖Ḟ0
1,q (RD) �

D∑
�=0

‖R� (g1)‖WE1, q (RD) (2.7)

��
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2.2 The Proof of Eq. (2.7)

To prove Eq. (2.7), we consider the following three cases: t0 = t1, t0 > t1 and t0 < t1.

Case I t0 = t1. In this case, we write g1 = a1 + a2, where

a1 :=
s∑

j=s−t0+1

Q j (g1) and a2 :=
s−t0∑

j=s−N

Q j (g1) .

By (2.5), we have a2 = T2, 0(g1) ∈ L1(RD) and

‖a2‖L1(RD) = ∥∥T2, 0 (g1)
∥∥

L1(RD)
≤ ‖g1‖WE1, q (RD), (2.8)

which, together with Lemma 2.4 and H1(RD) ⊂ L1(RD), further implies that

Qs−t0 (g1) + Qs−t0−1 (g1) ∈ H1(RD)

and

∥∥Qs−t0 (g1) + Qs−t0−1 (g1)
∥∥

H1(RD)

≤ ∥∥Qs−t0 (g1)
∥∥

H1(RD)
+ ∥∥Qs−t0−1 (g1)

∥∥
H1(RD)

� ‖g1‖WE1, q (RD) . (2.9)

Thus, by this, H1(RD) ⊂ L1(RD) and (2.8), we obtain

a2 − [
Qs−t0 (g1) + Qs−t0−1 (g1)

] ∈ L1(RD)

and

∥∥a2 − [
Qs−t0 (g1) + Qs−t0−1 (g1)

]∥∥
L1(RD)

≤ ‖a2‖L1(RD) + ∥∥Qs−t0 (g1) + Qs−t0−1 (g1)
∥∥

H1(RD)
� ‖g1‖WE1, q (RD) . (2.10)

Moreover, for each � ∈ {1, . . . , D}, we have

T2, 1R� (g1) = T2, 1R�

(
a2 + Qs−t0+1 (g1)

)
= T2, 1R�

(
a2 − [

Qs−t0 (g1) + Qs−t0−1 (g1)
])

+ T2, 1R�

(
Qs−t0 (g1) + Qs−t0−1 (g1)

)+ T2, 1R�Qs−t0+1 (g1)

= R�

(
a2 − [

Qs−t0 (g1) + Qs−t0−1 (g1)
])

+ T2, 1R�

(
Qs−t0 (g1) + Qs−t0−1 (g1)

)+ T2, 1R�Qs−t0+1 (g1)

= R�

(
a2 − [

Qs−t0 (g1) + Qs−t0−1 (g1)
])+ T2, 1R�Qs−t0+1 (g1)

+ T2, 1R�

(
Qs−t0 (g1) + Qs−t0−1 (g1)

)
. (2.11)
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Denote

I(�) := R�

(
a2 − [

Qs−t0 (g1) + Qs−t0−1 (g1)
])

II(�) := I(�) + T2, 1R�Qs−t0+1 (g1)

= T2, 1R� (g1) − T2, 1R�

(
Qs−t0 (g1) + Qs−t0−1 (g1)

)

By (2.6), (2.11), H1(RD) ⊂ L1(RD), Remarks 1.6 and 2.2, (2.9) and Lemma 2.4, we
conclude that, for any � ∈ {1, . . . , D},

II(�) ∈ L1(RD)

and

∥∥∥II(�)
∥∥∥

L1(RD)
≤ ∥∥T2, 1R� (g1)

∥∥
L1(RD)

+ ∥∥T2, 1R�

(
Qs−t0 (g1) + Qs−t0−1 (g1)

)∥∥
H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ∥∥R�

(
Qs−t0 (g1) + Qs−t0−1 (g1)

)∥∥
H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ∥∥Qs−t0 (g1) + Qs−t0−1 (g1)
∥∥

H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ‖g1‖WE1, q (RD) . (2.12)

From (1.5), it follows that, for each � ∈ {1, . . . , D}, there exist {τλ, �
j, k }(λ, j, k)∈�D ⊂ C

such that

I(�) := R�

(
a2 − [

Qs−t0 (g1) + Qs−t0−1 (g1)
])

=
∑

{(λ, j, k)∈�D : s−N−1≤ j≤s−t0−1}
τ

λ, �
j, k ψλ

j, k

and

R�Qs−t0+1 (g1) =
∑

{(λ, j, k)∈�D : s−t0≤ j≤s−t0+2}
τ

λ, �
j, k ψλ

j, k .

For any h ∈ L∞(RD) and j0 ∈ Z, let

Pj0(h) :=
∑

k∈ZD

〈
h, ψ

�0
j0, k

〉
ψ

�0
j0, k,

where 〈·, ·〉 represents the duality between L∞(RD) and L1(RD). Note Q j = Pj+1 −
Pj and therefore by a telescoping sum argument Pj0 = ∑

j≤ j0−1 Q j .
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We claim that Pj0(h) ∈ L∞(RD). Indeed, by |〈h, ψ
�0
j0, k〉| � 2−Dj0/2 and ψ

�0 ∈
S (RD), we know that, for all x ∈ R

D ,

∣∣Pj0(h)(x)
∣∣ �

∑
k∈ZD

2−Dj0/2
∣∣∣ψ �0

j0, k(x)

∣∣∣ �
∑

k∈ZD

∣∣∣ψ �0 (2 j0x − k
)∣∣∣ � 1.

Let

h0 := Ps−t0(h) =
∑

{(λ, j, k)∈�D : j≤s−t0−1}
aλ

j, k(h)ψλ
j, k .

Thus, h0 ∈ L∞(RD) and ‖h0‖L∞(RD) � 1 by the above claim.
Moreover, with (2.12) and by definition of I(�), we observe that, for any � ∈

{1, . . . , D},
∣∣∣〈I(�), h

〉∣∣∣ =
∣∣∣〈I(�), h0

〉∣∣∣ =
∣∣∣〈II(�), h0

〉∣∣∣ ≤
∥∥∥II(�)∥∥∥

L1(RD)
‖h0‖L∞(RD) ,

which, combined with ‖h0‖L∞(RD) � 1 and (2.12), further implies that

∥∥∥I(�)∥∥∥
L1(RD)

�
∥∥∥II(�)∥∥∥

L1(RD)
�

D∑
�=0

‖R� (g1)‖WE1, q (RD) .

From this, Theorem 2.3 and (2.10), it follows that

a2 − [
Qs−t0 (g1) + Qs−t0−1 (g1)

] ∈ H1(RD)

and

∥∥a2 − [
Qs−t0 (g1) + Qs−t0−1 (g1)

]∥∥
H1(RD)

∼ ∥∥a2 − [
Qs−t0 (g1) + Qs−t0−1 (g1)

]∥∥
L1(RD)

+
D∑

�=0

∥∥R�

(
a2 − [

Qs−t0 (g1) + Qs−t0−1 (g1)
])∥∥

L1(RD)

� ‖g1‖WE1, q (RD) +
D∑

�=1

‖R� (g1)‖WE1, q (RD) ,

which, together with Remark 1.2, (2.9) and Lemma 2.4, further implies that

‖a2‖Ḟ0
1, q (RD) � ‖a2‖H1(RD)

�
∥∥a2 − [

Qs−t0 (g1) + Qs−t0−1 (g1)
]∥∥

H1(RD)

+ ∥∥Qs−t0 (g1) + Qs−t0−1 (g1)
∥∥

H1(RD)
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� ‖g1‖WE1, q (RD) +
D∑

�=1

‖R� (g1)‖WE1, q (RD) . (2.13)

Furthermore, by (2.5), we find that

‖a1‖Ḟ0
1, q (RD) = ∥∥T1, 0 (g1)

∥∥
Ḟ0
1, q (RD)

≤ ‖g1‖WE1, q (RD) ,

which, combined with (2.13), implies that g1 = a1 + a2 ∈ Ḟ0
1, q(RD) and

‖g1‖Ḟ0
1, q (RD) ≤ ‖a1‖Ḟ0

1, q (RD) + ‖a2‖Ḟ0
1, q (RD) �

D∑
�=0

‖R� (g1)‖WE1, q (RD) .

This finishes the proof of Case I.

Case II t0 > t1. In this case, we write g1 = b1 + b2 + b3, where

b1 :=
s∑

j=s−t1+1

Q j (g1) , b2 :=
s−t1∑

j=s−t0+1

Q j (g1) and b3 :=
s−t0∑

j=s−N

Q j (g1) .

By (2.5) and (2.6), we have

b1 = T1,1(g1), b2 = T1,0(g1) − T1,1(g1) = T2,1(g1) − T2,0(g1) and b3 = T2,0(g1).

Similar to (2.11), for any � ∈ {1, . . . , D}, we know that

T2, 1R� (g1) = T2, 1R�

(
b3 + b2 + Qs−t1+1 (g1)

)
= R�

(
b3 + b2 − [

Qs−t1 (g1) + Qs−t1−1 (g1)
])

+ T2, 1R�

(
Qs−t1 (g1) + Qs−t1−1 (g1)

)+ T2, 1R�Qs−t1+1 (g1)

=: I(�)1 + I(�)2 + I(�)3 .

With this notation observe that

R� (b2 + b3) =I(�)1 + R�

(
Qs−t1 (g1) + Qs−t1−1 (g1)

)
. (2.14)

For any h ∈ L∞(RD), let

h1 :=
∑

{(λ, j, k)∈�D : j≤s−t1−1}
aλ

j, k(h)ψλ
j, k = Ps−t1(h).

Similar to the proof of h0 ∈ L∞(RD), we have h1 ∈ L∞(RD) and

‖h1‖L∞(RD) � 1. (2.15)
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By (1.5), we know that, for any � ∈ {1, . . . , D}, there exists a sequence
{ f λ, �

j, k }(λ, j, k)∈�D ⊂ C such that

I(�)1 =
∑

{(λ, j, k)∈�D : s−N−1≤ j≤s−t1−1}
f λ, �

j, k ψλ
j, k and I(�)3

=
∑

{(λ, j, k)∈�D : j=s−t1}
f λ, �

j, k ψλ
j, k,

which imply that

∣∣∣〈I(�)1 , h
〉∣∣∣ =

∣∣∣〈I(�)1 , h1

〉∣∣∣ =
∣∣∣〈I(�)1 + I(�)3 , h1

〉∣∣∣ =
∣∣∣〈T2, 1R� (g1) − I(�)2 , h1

〉∣∣∣ .

Hence, by this, (2.15), (2.6), H1(RD) ⊂ L1(RD), Remarks 1.6 and 2.2, and
Lemma 2.4, we conclude that

∥∥∥I(�)1

∥∥∥
L1(RD)

�
[∥∥T2, 1R� (g1)

∥∥
L1(RD)

+
∥∥∥I(�)2

∥∥∥
L1(RD)

]

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) +
∥∥∥I(�)2

∥∥∥
H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ∥∥R�

(
Qs−t1 (g1) + Qs−t1−1 (g1)

)∥∥
H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ∥∥Qs−t1 (g1) + Qs−t1−1 (g1)
∥∥

H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ‖g1‖WE1, q (RD) . (2.16)

Thus, I(�)1 ∈ L1(RD). Moreover, by Remark 2.2 and Lemma 2.4, we have

∥∥R�

(
Qs−t1 (g1) + Qs−t1−1 (g1)

)∥∥
H1(RD)

�
∥∥Qs−t1 (g1) + Qs−t1−1 (g1)

∥∥
H1(RD)

� ‖g1‖WE1, q (RD) . (2.17)

With this notation, applying H1(RD) ⊂ L1(RD), from (2.14), (2.16), (2.17) we
deduce that
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‖R� (b2 + b3)‖L1(RD) ≤
∥∥∥I(�)1

∥∥∥
L1(RD)

+ ∥∥R�

(
Qs−t1 (g1) + Qs−t1−1 (g1)

)∥∥
H1(RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) . (2.18)

On the other hand, for any function h satisfying that ‖h‖L∞(RD) ≤ 1, let

h̃0 :=
∑

{(λ, j, k)∈�D : j≥s−t0+2}
aλ

j, k(h)ψλ
j, k = h − Ps−t0+2h.

Similar to the proof of h0 ∈ L∞(RD), we have h − h̃0 ∈ L∞(RD) and ‖h −
h̃0‖L∞(RD) � 1, which further implies that

∥∥h̃0
∥∥

L∞(RD)
≤ ‖h‖L∞(RD) + ∥∥h − h̃0

∥∥
L∞(RD)

� 1. (2.19)

By (1.5), we know that

R�

(
b2 − [

Qs−t0+1 (g1)+Qs−t0+2 (g1)
])= ∑

{(λ, j, k)∈�D : s−t0+2≤ j≤s−t1+1}
f λ, �

j, k ψλ
j, k,

which implies that

〈
R�

(
b2 − [

Qs−t0+1 (g1) + Qs−t0+2 (g1)
])

, h
〉

= 〈
R�

(
b2 − [

Qs−t0+1 (g1) + Qs−t0+2 (g1)
])

, h̃0
〉

= 〈
R�

(
b3 + b2 − [

Qs−t0+1 (g1) + Qs−t0+2 (g1)
])

, h̃0
〉
. (2.20)

From an argument similar to that used in (2.17), it follows that

∥∥R�

(
Qs−t0+1 (g1) + Qs−t0+2 (g1)

)∥∥
H1(RD)

�
∥∥Qs−t0+1 (g1) + Qs−t0+2 (g1)

∥∥
H1(RD)

� ‖g1‖WE1, q (RD) . (2.21)

Thus, by (2.20), (2.19), (2.21), H1(RD) ⊂ L1(RD) and (2.18), we conclude that

∥∥R�

(
b2 − [

Qs−t0+1 (g1) + Qs−t0+2 (g1)
])∥∥

L1(RD)

�
∥∥R�

(
b3 + b2 − [

Qs−t0+1 (g1) + Qs−t0+2 (g1)
])∥∥

L1(RD)

� ‖R� (b3 + b2)‖L1(RD) + ∥∥R�

(
Qs−t0+1 (g1) + Qs−t0+2 (g1)

)∥∥
H1(RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) .

Therefore, by this, H1(RD) ⊂ L1(RD) and (2.21), we obtain

‖R� (b2)‖L1(RD) ≤ ∥∥R�

(
b2 − [

Qs−t0+1 (g1) + Qs−t0+2 (g1)
])∥∥

L1(RD)
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+ ∥∥R�

(
Qs−t0+1 (g1) + Qs−t0+2 (g1)

)∥∥
H1(RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) ,

which, together with (2.18), implies that

‖R� (b3)‖L1(RD) ≤ ‖R� (b3 + b2)‖L1(RD) + ‖R� (b2)‖L1(RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) . (2.22)

Furthermore, by (2.5), we know that

‖b3‖L1(RD) = ∥∥T2, 0 (g1)
∥∥

L1(RD)
� ‖g1‖WE1, q (RD) ,

which, combined with (2.22) and Theorem 2.3, implies that b3 ∈ H1(RD) and

‖b3‖H1(RD) ∼ ‖b3‖L1(RD) +
D∑

�=1

‖R� (b3)‖L1(RD) �
D∑

�=0

‖R� (g1)‖WE1, q (RD) .

(2.23)

By (2.23) and Remark 1.2, we know that b3 ∈ Ḟ0
1, q(RD) and

‖b3‖Ḟ0
1, q (RD) � ‖b3‖H1(RD) �

D∑
�=0

‖R� (g1)‖WE1, q (RD) . (2.24)

Moreover, by (2.5), we obtain

‖b1 + b2‖Ḟ0
1, q (RD) = ∥∥T1, 0 (g1)

∥∥
Ḟ0
1, q (RD)

� ‖g1‖WE1, q (RD) ,

which, together with (2.24) and Remark 1.2, further implies that

‖g1‖Ḟ0
1, q (RD) ≤ ‖b1 + b2‖Ḟ0

1, q (RD) + ‖b3‖Ḟ0
1, q (RD) �

D∑
�=0

‖R� (g1)‖WE1, q (RD) .

This finishes the proof of Case II.

Case III t0 < t1. In this case, we write g1 = e1 + e2 + e3, where

e1 :=
s∑

j=s−t0+1

Q j (g1) , e2 :=
s−t0∑

j=s−t1+1

Q j (g1) and e3 :=
s−t1∑

j=s−N

Q j (g1) .
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By (2.5) and (2.6), we have

e1 = T1,0(g1), e2 = T1,1(g1) − T1,0(g1) = T2,0(g1) − T2,1(g1) and e3 = T2,1(g1).

Moreover note that

e2 + e3 = T2,0(g1) and e2 + e1 = T1,1(g1).

Similar to (2.11), for any � ∈ {1, . . . , D}, we have

T2, 1R� (g1) = T2, 1R�

(
e3 + Qs−t1+1 (g1)

)
= R�

(
e3 − [

Qs−t1 (g1) + Qs−t1−1 (g1)
])

+ T2, 1R�

(
Qs−t1 (g1) + Qs−t1−1 (g1)

)+ T2, 1R�Qs−t1+1 (g1)

=: II(�)1 + II(�)2 + II(�)3 . (2.25)

Note that with this notation

II(�)1 + II(�)3 = T2, 1R� (g1) − II(�)2 .

For any h ∈ L∞(RD), let

h2 :=
∑

{(λ, j, k)∈�D : j≤s−t1−1}
aλ

j, k(h)ψλ
j, k = Ps−t1(h).

By an argument similar to that used in the proof of h0 ∈ L∞(RD), we conclude that
h2 ∈ L∞(RD) and ‖h2‖L∞(RD) � 1. By (1.5), we know that, for any � ∈ {1, . . . , D},
there exists a sequence { f λ, �

j, k }(λ, j, k)∈�D ⊂ C such that

II(�)1 =
∑

{(λ, j, k)∈�D : s−N−1≤ j≤s−t1−1}
f λ, �

j, k ψλ
j, k

and

T2, 1R�Qs−t1+1 (g1) =
∑

{(λ, j, k)∈�D : j=s−t1}
f λ, �

j, k ψλ
j, k,

which, together with (2.25), imply that

∣∣∣〈II(�)1 , h
〉∣∣∣ =

∣∣∣〈II(�)1 , h2

〉∣∣∣ =
∣∣∣〈II(�)1 + II(�)3 , h2

〉∣∣∣ =
∣∣∣〈T2, 1R� (g1) − II(�)2 , h2

〉∣∣∣ .
Hence, by this, ‖h2‖L∞(RD) � 1, (2.6), H1(RD) ⊂ L1(RD), Remarks 1.2 and 2.2,
and Lemma 2.4, we conclude that
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∥∥∥II(�)1

∥∥∥
L1(RD)

�
∥∥T2, 1R� (g1)

∥∥
L1(RD)

+
∥∥∥II(�)2

∥∥∥
L1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) +
∥∥∥II(�)2

∥∥∥
H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ∥∥R�

(
Qs−t1 (g1) + Qs−t1−1 (g1)

)∥∥
H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ∥∥Qs−t1 (g1) + Qs−t1−1 (g1)
∥∥

H1(RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ‖g1‖WE1, q (RD) . (2.26)

Thus, II(�)1 ∈ L1(RD).
By (2.6), we have e2 + e3 ∈ L1(RD) and

‖e2 + e3‖L1(RD) = ∥∥T2, 0 (g1)
∥∥

L1(RD)
� ‖g1‖WE1, q (RD) . (2.27)

For any h ∈ L∞(RD), let

h̃1 :=
∑

{(λ, j, k)∈�D : j≤s−t1−2}
aλ

j, k(h)ψλ
j, k = Ps−t1−1h.

Similar to the proof of h0 ∈ L∞(RD), we have ‖h̃1‖L∞(RD) � 1. We notice that

〈
e3 − [

Qs−t1 (g1) + Qs−t1−1 (g1)
]
, h
〉

= 〈
e3 − [

Qs−t1 (g1) + Qs−t1−1 (g1)
]
, h̃1

〉 = 〈
e3, h̃1

〉 = 〈
e3 + e2, h̃1

〉
.

Therefore, by this, (2.27) and ‖h̃1‖L∞(RD) � 1, we obtain

∥∥e3 − [
Qs−t1 (g1) + Qs−t1−1 (g1)

]∥∥
L1(RD)

� ‖e3 + e2‖L1(RD) � ‖g1‖WE1, q (RD) .

Hence e3−[Qs−t1(g1)+Qs−t1−1(g1)] ∈ L1(RD). From this, (2.26) and Theorem 2.3,
we deduce that e3 − [Qs−t1(g1) + Qs−t1−1(g1)] ∈ H1(RD) and

∥∥e3 − [
Qs−t1 (g1) + Qs−t1−1 (g1)

]∥∥
H1(RD)

∼ ∥∥e3 − [
Qs−t1 (g1) + Qs−t1−1 (g1)

]∥∥
L1(RD)
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+
D∑

�=1

∥∥R�

(
e3 − [

Qs−t1 (g1) + Qs−t1−1 (g1)
])∥∥

L1(RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) .

Then, by this, H1(RD) ⊂ L1(RD) and Lemma 2.4, we know that e3 ∈ L1(RD) and

‖e3‖L1(RD) ≤ ∥∥e3 − [
Qs−t1 (g1) + Qs−t1−1 (g1)

]∥∥
L1(RD)

+ ∥∥Qs−t1 (g1) + Qs−t1−1 (g1)
∥∥

H1(RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) . (2.28)

For each � ∈ {1, . . . , D}, we observe that

T1, 1R� (g1) = T1, 1R�

(
e1 + e2 + Qs−t1 (g1)

)
.

By this and (2.6), we know that, for any � ∈ {1, . . . , D},

T1, 1R�

(
e1 + e2 + Qs−t1 (g1)

) ∈ Ḟ0
1, q(RD)

and

∥∥T1, 1R�

(
e1 + e2 + Qs−t1 (g1)

)∥∥
Ḟ0
1, q (RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) .

This, together with

‖e1‖Ḟ0
1, q (RD) = ∥∥T1, 0 (g1)

∥∥
Ḟ0
1, q (RD)

≤ ‖g1‖WE1, q (RD) (see (2.5)), (2.29)

Theorems 1.5 and 2.1, and (2.29), further implies that, for each � ∈ {1, . . . , D},
∥∥T1, 1R�

(
e2 + Qs−t0 (g1)

)∥∥
Ḟ0
1, q (RD)

≤ ∥∥T1, 1R�

(
e1 + e2 + Qs−t0 (g1)

)∥∥
Ḟ0
1, q (RD)

+ ∥∥T1, 1R� (e1)
∥∥

Ḟ0
1, q (RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ‖R� (e1)‖Ḟ0
1, q (RD)
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�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ‖e1‖Ḟ0
1, q (RD)

�
D∑

�=1

‖R� (g1)‖WE1, q (RD) + ‖g1‖WE1, q (RD) . (2.30)

Furthermore, for any � ∈ {1, . . . , D}, we notice that

T1, 1R�

(
e2 + Qs−t1 (g1)

) = R�

(
e2 − [

Qs−t1+1 (g1) + Qs−t0 (g1)
])

+ T1, 1R�

(
Qs−t1+1 (g1) + Qs−t1 (g1) + Qs−t0 (g1)

)
.

(2.31)

By Theorems 1.5 and 2.1, Remark 1.2 and Lemma 2.4, we conclude that

∥∥T1, 1R�

(
Qs−t1+1 (g1) + Qs−t1 (g1) + Qs−t0 (g1)

)∥∥
Ḟ0
1, q (RD)

�
∥∥R�

(
Qs−t1+1 (g1) + Qs−t1 (g1) + Qs−t0 (g1)

)∥∥
Ḟ0
1, q (RD)

�
∥∥Qs−t1+1 (g1) + Qs−t1 (g1) + Qs−t0 (g1)

∥∥
Ḟ0
1, q (RD)

�
∥∥Qs−t1+1 (g1) + Qs−t1 (g1) + Qs−t0 (g1)

∥∥
H1(RD)

� ‖g1‖Ḟ0
1, q (RD) ,

which, together with (2.30) and (2.31), implies that

∥∥R�

(
e2 − [

Qs−t1+1 (g1) + Qs−t0 (g1)
])∥∥

Ḟ0
1, q (RD)

≤ ∥∥T1, 1R�

(
e2 + Qs−t1 (g1)

)∥∥
Ḟ0
1, q (RD)

+ ∥∥T1, 1R�

(
Qs−t1+1 (g1) + Qs−t1 (g1) + Qs−t0 (g1)

)∥∥
Ḟ0
1, q (RD)

� ‖g1‖WE1, q (RD) +
D∑

�=1

‖R� (g1)‖WE1, q (RD) . (2.32)

Now we need a useful identity from [18, p. 224, (2.9)] that, for all f ∈ L2(RD),

D∑
�=1

R2
� ( f ) = − f . (2.33)

From e2 − [Qs−t1+1(g1) + Qs−t0(g1)] ∈ L2(RD) and (2.33), we deduce that

e2 − [
Qs−t1+1 (g1) + Qs−t0 (g1)

]

=
D∑

�=1

R2
�

(
e2 − [

Qs−t1+1 (g1) + Qs−t0 (g1)
]) ∈ Ḟ0

1, q(RD),
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which, combined with Theorem 2.1 and (2.32), implies that

∥∥e2 − [
Qs−t1+1 (g1) + Qs−t0 (g1)

]∥∥
Ḟ0
1, q (RD)

≤
D∑

�=1

∥∥∥R2
�

(
e2 − [

Qs−t1+1 (g1) + Qs−t0 (g1)
])∥∥∥

Ḟ0
1, q (RD)

�
D∑

�=1

∥∥R�

(
e2 − [

Qs−t1+1 (g1) + Qs−t0 (g1)
])∥∥

Ḟ0
1, q (RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) . (2.34)

Again, by Remark 1.2 and Lemma 2.4, we obtain

∥∥Qs−t1+1 (g1) + Qs−t0 (g1)
∥∥

Ḟ0
1, q (RD)

�
∥∥Qs−t1+1 (g1) + Qs−t0 (g1)

∥∥
H1(RD)

� ‖g1‖WE1, q (RD) ,

which, together with (2.34), implies that

‖e2‖Ḟ0
1, q (RD) ≤ ∥∥e2 − [

Qs−t1+1 (g1) + Qs−t0 (g1)
]∥∥

Ḟ0
1, q (RD)

+ ∥∥Qs−t1+1 (g1) + Qs−t0 (g1)
∥∥

Ḟ0
1, q (RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) .

(2.35)

Combining with (2.29), (2.35) and (2.28), we obtain

‖g1‖Ḟ0
1, q (RD) ≤

3∑
j=1

∥∥e j
∥∥

Ḟ0
1, q (RD)

�
D∑

�=0

‖R� (g1)‖WE1, q (RD) ,

which completes the proof of Case III and hence Theorem 1.15.

3 Proof of Theorem 1.17

Proof of Theorem 1.17 (i) Suppose that q ∈ [2,∞), φ and � are defined as in the
construction of the 1-dimensional Meyer wavelets. Moreover, we assume that the
1-dimensional Meyer wavelet ψ satisfies ψ(0) 
= 0.

For any x := (x1, . . . , xD) ∈ R
D , let ψ �0(x) := φ(x1) · · · φ(xD). From [11, (5.1)],

we deduce that, for all x ∈ R
D ,
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∑
k∈ZD

∣∣∣ψ �0(x − k)

∣∣∣ =
D∏

�=1

∑
k�∈Z

|φ (x� − k�)| � 1. (3.1)

For any j ∈ Z, k ∈ Z
D and x ∈ R

D , we write ψ
�0
j, k(x) := 2Dj/2ψ

�0 (2 j x − k
)
. Let

f ∈ L1(RD). For any j ∈ Z, define Pj ( f ) := ∑
k∈ZD 〈 f , ψ

�0
j, k〉ψ �0

j, k . Then, for any
j ∈ Z, by estimate in (3.1),

∥∥Pj ( f )
∥∥

L1(RD)
≤
∫
RD

∫
RD

| f (y)|
∑

k∈ZD

∣∣∣ψ �0(2 j y − k)

∣∣∣ ∣∣∣2Djψ
�0(2 j x − k)

∣∣∣ dx dy

�
∫
RD

| f (y)|
∑

k∈ZD

∣∣∣ψ �0(y − k)

∣∣∣ dy � ‖ f ‖L1(RD). (3.2)

The proper inclusion relations in (i) of Theorem 1.17 are contained in Remark 1.12
except for the first inclusion. In order to prove (i) of Theorem 1.17, it suffices to show
that Ḟ0

1, q(RD) � L1(RD) ∪ Ḟ0
1, q(RD). We first observe that ψ �0 ∈ L1(RD). Indeed,

∥∥∥ψ �0
∥∥∥

L1(RD)
=

D∏
�=1

‖φ‖L1(RD) = ‖φ‖D
L1(RD)

< ∞.

To show ψ
�0 /∈ Ḟ0

1, q(RD), let a j, k(ψ
�0) := (ψ

�0, ψ j, k) for any j ∈ Z and k ∈
Z

D , where (·, ·) represents the L2(RD) inner product. Let ξ := (ξ1, . . . , ξD), η :=
(η1, . . . , ηD) ∈ R

D . Then, by the multiplication formula (see [18, p. 8, Thm. 1.15]),
(1.2), (1.1), (1.3) and the assumption ψ(0) 
= 0, we obtain

∣∣∣a j, 0

(
ψ

�0)∣∣∣ =
D∏

�=1

∣∣∣∣
∫
R

φ̂ (−ξ�) 2
− j/2ψ̂

(
2− jξ�

)
dξ�

∣∣∣∣

=
D∏

�=1

∣∣∣∣
∫ 4π/3

−4π/3
�(ξ�) 2

− j/2ψ̂
(
2− jξ�

)
dξ�

∣∣∣∣

=
D∏

�=1

∣∣∣∣∣
∫ 22− j π/3

−22− j π/3
�
(
2 jη�

)
2 j/2ψ̂ (η�) dη�

∣∣∣∣∣
=

D∏
�=1

∣∣∣∣
∫ 8π/3

−8π/3
�
(
2 jη�

)
2 j/2ψ̂ (η�) dη�

∣∣∣∣

∼ 2Dj/2
D∏

�=1

∣∣∣∣
∫ 8π/3

−8π/3
ψ̂ (η�) dη�

∣∣∣∣ ∼ 2Dj/2|ψ(0)|D � 2Dj/2, (3.3)
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provided that j < −M for some positive integer M large enough. Therefore, we have

∫
RD

∫
RD

⎧⎨
⎩

∑
j∈Z, k∈ZD

[
2Dj/2

∣∣∣a j, k

(
ψ

�0)∣∣∣χ (2 j x − k
)]q

⎫⎬
⎭

1/q

dx

≥
∫
RD

⎧⎨
⎩

−M−1∑
j=−∞

2Djq/2
∣∣∣a j, 0

(
ψ

�0)∣∣∣q χ
(
2 j x − k

)⎫⎬
⎭

1/q

dx

�
∫
RD

⎧⎨
⎩

−M−1∑
j=−∞

2Djqχ
(
2 j x − k

)⎫⎬
⎭

1/q

dx

�
∞∑

m=M

∫
B(0, 2m+1)\B(0, 2m )

⎧⎨
⎩

−m−1∑
j=−∞

2Djq

⎫⎬
⎭

1/q

dx = ∞,

which, combined with Theorem 1.5, implies that ψ
�0 /∈ Ḟ0

1, q(RD). This finishes the
proof of (i) of Theorem 1.17.

(ii) Then we use Daubechies wavelets to prove (ii) of Theorem 1.17. The goal
is to show that there is function g ∈ Ḟ0

∞,q ′(RD) such that g /∈ W E∞,q ′
(RD). We

will realize this g as the Riesz transform of a suitable function f , more precisely,
g = R1 f . We know that there exist some integer M and a Daubechies scale function
�0(x) ∈ C D+2

0 ([−2M , 2M ]D) satisfying

CD =
∫ −y1

|y|n+1�0(y − 2M+1e)dy < 0, (3.4)

where e = (1, 1, . . . , 1). Let �(x) = �0(x − 2M+1e) and let f be defined as

f (x) =
∑
j∈2N

�(2 j x). (3.5)

For j, j ′ ∈ 2N, j 
= j ′, the supports of�(2 j x) and�(2 j ′ x) are disjoint. Hence the
above f (x) in (3.5) belongs to L∞(RD). The same reasoning gives, for any j ′ ∈ N,

∑
j∈N,2 j> j ′

�(22 j x) ∈ L∞(RD).

Now we compute the wavelet coefficients of f (x) in (3.5). For (λ′, j ′, k′) ∈ �D , let
f λ′

j ′,k′ = 〈 f , �λ′
j ′,k′ 〉. We divide two cases: j ′ < 0 and j ′ ≥ 0.

For j ′ < 0, since the support of f is contained in [−3 · 2M , 3 · 2M ]D , we know that
if |k′| > 22M+5, then f λ′

j ′,k′ = 0. If |k′| ≤ 22M+5, we have

| f λ′
j ′,k′ | ≤ C2Dj ′

∫
| f (x)|dx ≤ C2Dj ′ .
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For j ′ ≥ 0, by orthogonality of the wavelets, we have

f λ′
j ′,k′ =

〈
f , �λ′

j ′,k′
〉
=
〈 ∑

j∈N,2 j> j ′
�(22 j ·), �λ′

j ′,k′

〉
.

By the same reasoning, for the case j ′ ≥ 0, we know that if |k′| > 22M+5, then
f λ′

j ′,k′ = 0. Since
∑

j∈N,2 j> j ′
�(22 j x) ∈ L∞, if |k′| ≤ 22M+5, we have

| f λ′
j ′,k′ | ≤ C

∫
|�λ′

j ′,k′(x)|dx ≤ C .

By the above estimation of wavelet coefficients of f (x) and by the wavelet charac-
terization of Ḟ0

∞,q ′(RD) in (ii) of Theorem 1.5, we conclude that f ∈ Ḟ0
∞,q ′(RD).

Hence,
f ∈ L∞(RD) ∩ Ḟ0

∞,q ′(RD). (3.6)

Since �0 ∈ C D+2
0 ([−2M , 2M ]D), we know that

�(x) = �0(x − 2M+1e) ∈ C D+2
0 ([2M , 3 · 2M ]D).

Further, if |x | ≤ 2M−1 and y ∈ [2M , 3 · 2M ]D , then |x − y| > 2M−1. Hence R1�(x)

is smooth in the ball {x : |x | ≤ 2M−1}.
Applying (3.4), there exists a positive δ > 0 such that for |x | < δ, there holds

R1�(x) < CD/2 < 0. That implies, if 22 j |x | < δ, then R1�(22 j x) < CD/2 < 0.
Hence

R1 f (x) /∈ L∞(RD). (3.7)

The Eqs. (3.6), (3.7) and the continuity of Riesz operators on Ḟ0
∞,q ′(RD) implies

g = R1( f ) ∈ Ḟ0
∞,q ′(RD) but g /∈ W E∞,q ′

(RD), which is precisely what we set out
to prove. ��

4 The Proofs of Theorems 1.14, 1.18 and 1.19

We first prove Theorem 1.14; note that this proof is independent of Theorem 1.15.

Proof of Theorem 1.14 If l ∈ (L1(RD) ∪ Ḟ0
1,q(RD))′, then

sup
f ∈S∞(RD),‖ f ‖

L1∪Ḟ0
1,q

≤1
|〈l, f 〉| < ∞.

In other words,

sup
f ∈S∞(RD),‖ f ‖L1≤1

|〈l, f 〉| < ∞ and (4.1)
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sup
f ∈S∞(RD),‖ f ‖

Ḟ0
1,q

≤1
|〈l, f 〉| < ∞. (4.2)

The condition (4.1) means l ∈ L∞(RD), the condition (4.2) means l ∈ Ḟ0
∞,q ′(RD).

Hence we have the following inclusion relation:

(
L1(RD) ∪ Ḟ0

1,q(RD)
)′ ⊂ L∞(RD) ∩ Ḟ0

∞,q ′(RD). (4.3)

Further, by Theorem 1.17(i), we have that

L1(RD) ∪ Ḟ0
1,q(RD) ⊂ WE1,q(RD) ⊂ L1(RD) + Ḟ0

1,q(RD).

Hence we have

(
L1(RD) + Ḟ0

1,q(RD)
)′ ⊂

(
WE1,q(RD)

)′ ⊂
(

L1(RD) ∪ Ḟ0
1,q(RD)

)′
. (4.4)

Moreover, by the fact
(
L1(RD)

)′ = L∞(RD) and
(

Ḟ0
1,q(RD)

)′ = Ḟ0
∞,q ′ and the

definition of L1(RD) + Ḟ0
1,q(RD) in (1.9), we know that

(
L1(RD) + Ḟ0

1,q(RD)
)′ = L∞(RD) ∩ Ḟ0

∞,q ′(RD). (4.5)

The Eqs. (4.3), (4.4) and (4.5) implies Theorem 1.14. ��
Using Theorems 1.14 and 1.15, we prove Theorem 1.18.

Proof of Theorem 1.18 By the continuity ofRiesz operators on the Ḟ0∞,q(RD), we know

that if fl ∈ Ḟ0∞,q(RD) ∩ L∞(RD), then

∑
0≤l≤D

Rl fl(x) ∈ Ḟ0∞,q(RD).

We now prove the converse result. Let

B =
{
(g0, g1, . . . , gD) : gl ∈ WE1,q ′

(RD), l = 0, . . . , D
}

,

B̃ =
{
(g0, g1, . . . , gD) : gl ∈ L1(RD) + Ḟ0

1,q ′(RD), l = 0, . . . , D
}

,

where B ⊂ B̃. The norm of B and B̃ is defined respectively as follows

‖(g0, g1, . . . , gD)‖B =
D∑

l=0

‖gl‖WE1,q′ ,
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‖(g0, g1, . . . , gD)‖B̃ =
D∑

l=0

‖gl‖L1+Ḟ0
1,q′ .

We define

S = {(g0, g1, . . . , gD) ∈ B : gl = Rl g0, l = 0, 1, . . . , D} ,

S̃ =
{
(g0, g1, . . . , gD) ∈ B̃ : gl = Rl g0, l = 0, 1, . . . , D

}
,

where S ⊂ S̃.
By Theorem 1.15, g0 → (g0, R1g0, . . . , RDg0) defines a norm preserving map

from Ḟ0
1,q ′(RD) to S. Hence the set of continuous linear functionals f on Ḟ0

1,q ′(RD) is
equivalent to the set of bounded linear maps on the set S. According to the definition of
B and B̃ and the second equality in the equations ofTheorem1.14, the set of continuous
linear functionals f on Ḟ0

1,q ′(RD) is equivalent also to the set of continuous linearmaps

on the Banach space S̃.
According to Theorem 1.14, the continuous linear functionals on B belong to

WE∞,q(RD) + · · · + WE∞,q(RD).

For all f ∈ Ḟ0∞,q(RD), f defines a continuous linear functional l on Ḟ0
1,q ′(RD) and

also on S̃. Hence there exist f̃l ∈ WE∞,q(RD), l = 0, 1, . . . , D, such that for any
g0 ∈ Ḟ0

1,q ′(RD),

∫
RD

f (x)g0(x)dx

=
∫
RD

f̃0(x)g0(x)dx +
D∑

l=1

∫
RD

f̃l(x)Rl g0(x)dx

=
∫
RD

f̃0(x)g0(x)dx −
D∑

l=1

∫
RD

Rl( f̃l)(x)g0(x)dx .

Hence f (x) = f̃0(x) −∑D
l=1 Rl( f̃l)(x). ��

Finally, as a consequence of Theorem 1.18, we deduce Theorem 1.19.

Proof of Theorem 1.19 By the continuity of Riesz operators on Ḟ0
1,q(RD), there exists

a positive constant C such that, for all f ∈ Ḟ0
1, q(RD),

D∑
�=0

‖R�( f )‖L1(RD)+Ḟ0
1,q (RD) ≤ C‖ f ‖Ḟ0

1, q (RD).
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To prove

1

C
‖ f ‖Ḟ0

1, q (RD) ≤
D∑

�=0

‖R�( f )‖L1(RD)+Ḟ0
1,q (RD),

it is sufficient to prove

|〈 f , g〉| ≤ C

{
D∑

l=0

‖Rl f ‖WE1,q (RD)

}
‖g‖Ḟ0

∞,q′ (RD)

for all g ∈ S∞(RD) ∩ Ḟ0
∞,q ′(RD).

But, by Theorem 1.18, for all g ∈ S∞(RD) ∩ Ḟ0
∞,q ′(RD) there exists gl such that

‖gl‖WE∞,q′
(RD)

≤ C‖g‖Ḟ0
∞,q′ (RD) and g =

D∑
l=0

Rl gl .

Hence, we have

|〈 f , g〉| = |〈 f ,

D∑
l=0

Rl gl〉| ≤
D∑

l=0

|〈 f , Rl gl〉| =
D∑

l=0

|〈Rl f , gl〉|

≤ C
D∑

l=0

‖Rl f ‖WE1,q (RD)‖gl‖WE∞,q′
(RD)

≤ C
D∑

l=0

‖Rl f ‖WE1,q (RD)‖g‖Ḟ0
∞,q′ (RD).

��
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