
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gcov20

Complex Variables and Elliptic Equations
An International Journal

ISSN: 1747-6933 (Print) 1747-6941 (Online) Journal homepage: https://www.tandfonline.com/loi/gcov20

Time–frequency transform involving nonlinear
modulation and frequency-varying dilation

Qiuhui Chen, Luoqing Li & Tao Qian

To cite this article: Qiuhui Chen, Luoqing Li & Tao Qian (2019): Time–frequency transform
involving nonlinear modulation and frequency-varying dilation, Complex Variables and Elliptic
Equations, DOI: 10.1080/17476933.2019.1664486

To link to this article:  https://doi.org/10.1080/17476933.2019.1664486

Published online: 25 Sep 2019.

Submit your article to this journal 

Article views: 28

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gcov20
https://www.tandfonline.com/loi/gcov20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17476933.2019.1664486
https://doi.org/10.1080/17476933.2019.1664486
https://www.tandfonline.com/action/authorSubmission?journalCode=gcov20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gcov20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17476933.2019.1664486
https://www.tandfonline.com/doi/mlt/10.1080/17476933.2019.1664486
http://crossmark.crossref.org/dialog/?doi=10.1080/17476933.2019.1664486&domain=pdf&date_stamp=2019-09-25
http://crossmark.crossref.org/dialog/?doi=10.1080/17476933.2019.1664486&domain=pdf&date_stamp=2019-09-25


COMPLEX VARIABLES AND ELLIPTIC EQUATIONS
https://doi.org/10.1080/17476933.2019.1664486

Time–frequency transform involving nonlinear modulation
and frequency-varying dilation

Qiuhui Chena, Luoqing Lib and Tao Qianc

aFaculty of Mathematics and Informatics, South China Agricultural University, Guangzhou, People’s Republic
of China; bDepartment of Mathematics, Hubei University, Wuhan, People’s Republic of China; cMacau Institute
of Systems Engineering, Macau University of Science and Technology, Macau, People’s Republic of China

ABSTRACT
This paper designs a general type time–frequency transform whose
kernel function involves a nonlinear modulation and a frequency-
varying dilation. The corresponding inversion formula is established.

ARTICLE HISTORY
Received 10 June 2019
Accepted 29 August 2019

COMMUNICATED BY
H. Liu

KEYWORDS
Nonlinear modulation;
frequency-varying dilation;
time–frequency transform;
inversion formula; Hilbert
transform; Fourier transform

AMS SUBJECT
CLASSIFICATIONS
42A38; 44A15; 62P30; 94A20

1. Introduction

In modern time–frequency analysis there are three basic operators which play important
roles in time–frequency representations, namelymodulationM, translationT and dilation
D. They are defined as

Mωf (·) = eiω·f (·), Tbf (·) = f (· − b), Daf (·) = a− 1
2 f
( ·
a

)
,

for b,ω ∈ R, a ∈ R+, respectively.
For modulation and translation there hold the following non-commutative relations:

TbMω = e−ibωMωTb = R−bωMωTb.

Here the rotation transform is defined byRd : f → eidf .
The time–frequency shiftRd+ bω

2
TbMω satisfies the composition rule

(Rd+ bω
2
TbMω)(Rd̃+ b̃ω̃

2
Tb̃Mω̃) = R[(

d+d̃+ 1
2 (b̃ω−bω̃)

)
+ 1

2 (b+b̃)(ω+ω̃)
]Tb+b̃Mω+ω̃
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2 Q. CHEN ET AL.

that suggests the full Heisenberg group H := (R3, ∗) with the multiplication

(b,ω, d) ∗ (b̃, ω̃, d̃) =
(
b + b̃,ω + ω̃, d + d̃ + 1

2
(b̃ω − bω̃)

)
.

The unitary operator Rd+ bω
2
TbMω is called the Schrödinger representation of the full

Heisenberg group whose representation coefficient is given by

〈f ,Rd+ bω
2
TbMωφ〉 = R−d− bω

2
〈f ,TbMωφ〉

= R−d− bω
2
〈f ,R−bωMωTbφ〉 = R−d+ bω

2
〈f ,MωTbφ〉

for f ∈ L2(R) and a fixed function φ ∈ L2(R). Up to the phase factor ei(−d+ bω
2 ), the coef-

ficient of the Schrödinger representation coincides with the windowed Fourier transform
[1]

Vφ f (b,ω) := 〈f ,MωTbφ〉 =
∫

R

f (x)φ(x − b)e−iωxdx. (1)

The corresponding inversion formula is

f (x) = (2π‖φ‖)−1
∫∫

R2
Vφ f (b,ω)MωTbφ(x)dbdω, a.e. x ∈ R. (2)

We remark that when d = 0 the unitary operator Rd+ bω
2
TbMω has the symmetric form

Mω
2
TbMω

2
as time–frequency shift, namely,

Mω
2
TbMω

2
= R−bω

2
MωTb = R bω

2
TbMω.

The dilation and translation satisfy the non-commutative relation

DaTb = TabDa (or TbDa = DaT b
a
).

The unitary operator TbDa compliances the composition rule

(TbDa)(Tb̃Dã) = Tb+ab̃Daã

for (a, b), (ã, b̃) ∈ (0,+∞)× R that motivates the affine group A := ((0,+∞)× R, ∗)
with the multiplication

(a, b) ∗ (ã, b̃) = (aã, b + ab̃).

The affine group [2] has the representation coefficient 〈f ,TbDaψ〉 for f ∈ L2(R) and a fixed
wavelet function ψ ∈ L2(R). The latter leads to the wavelet transform

Wψ f (a, b) := 〈f ,TbDaψ〉 =
∫

R

f (x)a− 1
2ψ

(
x − b
a

)
dx. (3)

The inversion formula reads [3]

f (x) = C−1
ψ

∫ ∞

0

da
a2

∫
R

Wψ f (a, b)TbDaψ(x)db, a.e. x ∈ R. (4)
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In [4], the group H is extended to the affine Weyl–Heisenberg group

H1 :=
(
(0,∞)× R

3, ∗)
with the multiplication law

(a, b,ω, d) ∗ (ã, b̃, ω̃, d̃) =
(
aã, b + ab̃,ω + 1

a
ω̃, d + d̃ + 1

2
(a〈ω, b̃〉 − 1

a
〈b, ω̃〉)

)
.

The affine Weyl–Heisenberg group H1 has the group representation

ρH1(a, b,ω, d) := RdM 1
2ω
TbM 1

2ω
Da,

which has the representation coefficient 〈f ,M 1
2ω
TbM 1

2ω
Daψ〉. The affine Weyl–Heisen

berg group leads to the more general transformation

Tψ f (b,ω) =
∫

R

f (x)a− 1
2ψ

(
x − b
a

)
e−iωxdx. (5)

In this note, we will extend the transform (5) to the setting with nonlinear modulation and
frequency-varying dilation, and investigate the reconstruction formula.

2. Nonlinear modulation and time–frequency transform

For a fixed function μ(ω) : ω ∈ R (some conditions that have to be met by this function
will be set later), define the operator of nonlinear modulation by

Mμ(ω) : f (·) → eiμ(ω)·f (·). (6)

For a real-variable and non-negative function λ(ω) : ω ∈ R, define the dilation operator
with varying frequency by

Dλ(ω) : f (·) → λ(ω)−
1
2 f
( ·
λ(ω)

)
. (7)

Being acted by the operator Mμ(ω)TtDλ(ω), a given basic atom φ gives rise to a class of
atoms of the type |λ(ω)|− 1

2φ( ·−t
λ(ω)

)eiμ(ω)·. For convenience of the discussion of the new
type time–frequency transform we modify it to the following form:

φt,ω(x) := γ (ω)|λ(ω)| 12Mμ(ω)TtDλ(ω)φ(x) = γ (ω)φ

(
x − t
λ(ω)

)
eiμ(ω)x, x ∈ R, (8)

and consider the time–frequency transforms

T f (t,ω) = 〈f ,φt,ω〉 = γ (ω)

∫
R

f (x)φ
(
x − t
λ(ω)

)
e−iμ(ω)xdx, (t,ω) ∈ R

2. (9)

Formally, the transform (9) looks like a generalization of the windowed Fourier trans-
form (1), wavelet transform (3) and the transform (5). But it is essentially different from
them due to the fact that both the dilation and the modulation depend on the frequency
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variableω.We think that this idea is natural because the essence of dilation andmodulation
is to characterize the ‘frequency’ (vibration) of signals. Compared with the classical cases,
the price of the nonlinearity of the modulation and the dilation in the kernel function here
is that it lacks a group structure.

It is known that the windowed Fourier transform Vφ is an isometry from L2(R) into
L2(R2). The wavelet transformWψ maps L2(R) into L2(R2,C−1

ψ a−2dadb), the space of all
complex valued functions F on R2 equipped with the norm

‖F‖ = C−1
ψ

∫
R

1
a2

da
∫

R

|F(a, b)|2db.

Here Cψ = 2π
∫

R

|ω|−1|ψ̂(ω)|2 and the Fourier transform f̂ for f ∈ L2(R) is defined by

[5]

f̂ (ω) = F f (ω) = 1√
2π

∫
R

f (t)e−iωtdt, ω ∈ R.

Specifically, for wavelet transform the image space Wψ(L2(R)) is a reproducing kernel
Hilbert subspaces (RKHS) of the Hilbert space L2(R2,C−1

ψ a−2dadb). The kernel function
is

K(a, b; ã, b̃) = (
WψTbDaψ

)
(ã, b̃) = 〈Tb̃Dãψ ,TbDaψ〉.

The windowed Fourier transform has a parallel theory: The imageVφ(L2(R)) is a subspace
of the Hilbert space L2(R2) and also a RKHS with the kernel function [6]

K(ω, b; ω̃, b̃) = 〈Mω̃Tb̃φ,MωTbφ〉.

Our first purpose is to understand the image space T (L2(R)).We hope to choose a suitable
univariate function r of the frequency variable ω such that the image space T (L2(R)) is
just a reproducing kernel Hilbert space (RKHS) of L2(R2, dtdωr(ω) ) equipped with the norm

‖F‖2 =
∫∫

R2
|F(t,ω)|2 dtdω

r(ω)
(10)

being given by the inner product

〈F,G〉t,ω =
∫∫

R2
F(t,ω)G(t,ω)

dtdω
r(ω)

. (11)

Note that the functions γ , λ, μ and r are univariate functions dependent on the fre-
quency variable ω, which we need to construct. We remark that it is difficult to extend
them to bivariate functions of time and frequency variables. The reason can be seen from
the proof of the first lemma of the next section.
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We need two useful transformations. The first is the Hilbert transform which is defined
by

Hf (t) = 1
π
p.v.

∫
R

f (x)
t − x

dx, t ∈ R,

where the improper integral must converge in the sense of Cauchy principle. The second
is the integral transform I by

If (t) =
∫ ∞

t
f (x)dx,

from which we know that If is essentially an antiderivative of −f .

3. Technical lemmas

We will establish some lemmas which are crucial for the proof of our main results.

Lemma 3.1: Suppose that both f and If are in L1(R) ∩ L2(R). Then for any real numbers
A, B, there holds the following identity:

F−1

(
f̂ (·)sgn(· − A)

· − B

)
(t) = MAH

(
MB−AI

(
M−Bf

))
(t)

= eiAtH
(
ei(B−A)tI

(
e−iBtf (t)

))
. (12)

Proof: Denote by g = F−1
(

f̂ (·)sgn(·−A)
·−B

)
, that is, ĝ = f̂ (·)sgn(·−A)

·−B . Then we have

T−Aĝ(ω) = f̂ (ω + A)
−i(ω + A − B)

(−isgn(ω)).

By using the identity FMt = TtF and the property of π2 -phase shift

F(Hf )(ω) = −isgn(ω)f̂ (ω)

of the Hilbert transform, it gives
(
M−Ag

)∧
(ω) = (

Hg1
)∧
(ω) (13)

with

ĝ1(ω) = f̂ (ω + A)
−i(ω + A − B)

. (14)

To view Equation (13) in the time domain, we get

g(t) = eiAtHg1(t). (15)
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We now compute g1 in the time domain according to its definition in (14). Applying the
translation operator TA−B to both sides of (14), we have

TA−Bĝ1(ω) = f̂ (ω + B)
−iω

= T−Bf̂ (ω)
−iω

= (
I
(
M−Bf

))∧
(ω). (16)

In the last step of the above computation, we used the relations (F f ′)(ω) = iωf̂ (ω) and
(If )′ = −f .

Applying the inverse Fourier transform to both sides of (16), we have

MA−Bg1(t) = I
(
M−Bf

)
(t).

Consequently,

g1(t) = MB−AI
(
M−Bf

)
(t).

Finally, substituting this equation into (15), we conclude (12). This completes the proof of
the lemma. �

The next lemma concerns about the Fourier transform of φt,ω in (8).

Lemma 3.2: Suppose that φt,ω is defined in (8). Then the Fourier transform of φt,ω is

F
(
φt,ω

)
(ξ) = γ (ω)|λ(ω)| 12Tμ(ω)M−tD 1

λ(ω)
φ̂(ξ)

= γ (ω)|λ(ω)|e−it(ξ−μ(ω))φ̂ (λ(ω)(ξ − μ(ω))) .

Proof: Applying the formula FMt = TtF , FTt = M−tF and FDt = D 1
t
F , we have

F
(
φt,ω

)
(ξ) = F

(
γ (ω)|λ(ω)| 12Mμ(ω)TtDλ(ω)φ

)
(ξ)

= γ (ω)|λ(ω)| 12Tμ(ω)M−tD 1
λ(ω)
φ̂(ξ)

= γ (ω)|λ(ω)|e−it(ξ−μ(ω))φ̂ (λ(ω)(ξ − μ(ω))) . �

The next lemma offers an alternative form of T f .

Lemma 3.3: For any f ∈ L2(R), the following identity holds:

T f (t,ω) = 〈f ,φt,ω〉 = e−itμ(ω)
〈
f̂ γ (ω)|λ(ω)| 12Tμ(ω)D 1

λ(ω)
φ̂,M−t1

〉
. (17)

Proof: Applying Lemma (3.2) and the unitary property of the Fourier transform, we have

T f (t,ω) = 〈f ,φt,ω〉 =
〈
f̂ ,Fφt,ω

〉
=
〈
f̂ , γ (ω)|λ(ω)| 12Tμ(ω)M−tD 1

λ(ω)
φ̂
〉
.
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Using the canonical commutation relation of the modulation and the translation

TxMω = e−ixωMωTx,

we get

T f (t,ω) =
〈
f̂ , γ (ω)|λ(ω)| 12 eitμ(ω)M−tTμ(ω)D 1

λ(ω)
φ̂
〉

= e−itμ(ω)
〈
f̂ , γ (ω)|λ(ω)| 12M−tTμ(ω)D 1

λ(ω)
φ̂
〉

= e−itμ(ω)
〈
f̂ γ (ω)|λ(ω)| 12Tμ(ω)D 1

λ(ω)
φ̂,M−t1

〉
.

The proof of this lemma is completed. �

The next lemma is crucial for reproducibility of the time–frequency transform defined
in (9).

Lemma 3.4: Suppose that both f and g are in L2(R). Then the following identity holds:

∫∫
R2

〈f ,φt,ω〉〈g,φt,ω〉 dtdω
r(ω)

= 2π
∫∫

R2
γ 2(ω)λ2(ω)

∣∣∣φ̂ [λ(ω) (t − μ(ω))]
∣∣∣2 f̂ (t)ĝ(t) dtdω

r(ω)
. (18)

Proof: Note that the left-hand side of (18) is essentially the inner product 〈T f ,T g〉t,ω of
T f and T g in L2(R2, dtdωr(ω) ). Applying Lemma (3.3), it follows that

〈
T f ,T g

〉
t,ω

=
〈
e−itμ(ω)〈γ (ω)|λ(ω)| 12 f̂Tμ(ω)D 1

λ(ω)
φ̂,M−t1〉,

e−itμ(ω)〈γ (ω)|λ(ω)| 12 ĝTμ(ω)D 1
λ(ω)
φ̂,M−t1〉

〉
t,ω

=
〈
〈γ (ω)|λ(ω)| 12 f̂ Tμ(ω)D 1

λ(ω)
φ̂,M−t1〉, 〈γ (ω)|λ(ω)| 12 ĝTμ(ω)D 1

λ(ω)
φ̂,M−t1〉

〉
t,ω

= 2π
〈
F
(
γ (ω)|λ(ω)| 12 f̂Tμ(ω)D 1

λ(ω)
φ̂
)
(−t),

F
(
γ (ω)|λ(ω)| 12 ĝTμ(ω)D 1

λ(ω)
φ̂
)
(−t)

〉
t,ω

= 2π
∫

R

〈
F
(
γ (ω)|λ(ω)| 12 f̂Tμ(ω)D 1

λ(ω)
φ̂
)
(−t),

F
(
γ (ω)|λ(ω)| 12 ĝTμ(ω)D 1

λ(ω)
φ̂
)
(−t)

〉
t

dω
r(ω)

,
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where 〈·, ·〉t in the last step of the above equation is the inner product of the space L2(R).
By using the unitarity of the Fourier transform again, we obtain that

〈T f ,T g〉t,ω

= 2π
∫

R

〈
γ (ω)|λ(ω)| 12 f̂ Tμ(ω)D 1

λ(ω)
φ̂(t), γ (ω)|λ(ω)| 12 ĝTμ(ω)D 1

λ(ω)
φ̂(t)

〉
t

dω
r(ω)

= 2π
∫

R

〈
γ (ω)|λ(ω)|f̂Tμ(ω)φ̂(λ(ω)t), γ (ω)|λ(ω)|ĝTμ(ω)φ̂(λ(ω)t)

〉
t

dω
r(ω)

= 2π
∫

R

〈
γ (ω)|λ(ω)|f̂ φ̂(λ(ω)(t − μ(ω))), γ (ω)|λ(ω)|ĝφ̂(λ(ω)(t − μ(ω)))

〉
t

dω
r(ω)

.

Writing the inner product in the integral form we then conclude (18). The proof of this
lemma is complete. �

4. Reproducibility

Equation (18) is the starting point of our discussion.We hope that the integral of the right-
hand side of Equation (18) is separable, that is,

2π
∫∫

R2
γ 2(ω)λ2(ω)

∣∣∣φ̂ [λ(ω) (t − μ(ω))]
∣∣∣2 f̂ (t)ĝ(t) dtdω

r(ω)

=
∫

R

|φ(ω)|2dm1(ω)

∫
R

f (t)ḡ(t)dm2(t)

for some measures dm1 and dm2, and then the inversion formula holds

f (x) = 1
Cφ

∫∫
R2

〈f ,φt,ω〉φ̃t,ω(x)dtdωr(ω)
,

and correspondingly

C−1
φ

∫∫
R2

〈·,φt,ω〉φ̃t,ω dtdωr(ω)
= Id,

which means that f can be reconstructed from T f . Here, the constant Cφ is dependent on
φ and φ̃t,ω(·) is some univariate function. Note that φ̃t,ω is a synthesis atom. We cannot
ensure that φ̃t,m(·) has the same structure as φt,m. Without doubt, selections of functions
r, γ , λ,μ are crucial.

We need to change the form of the right-hand side integral of (18):∫
R2
γ 2(ω)λ2(ω)

∣∣∣φ̂ [λ(ω) (t − μ(ω))]
∣∣∣2 f̂ (t)ĝ(t) dtdω

r(ω)

=
∫

R

{∫
R

γ 2(ω)λ2(ω)

r(ω)

∣∣∣φ̂ [λ(ω) (t − μ(ω))]
∣∣∣2 dω} f̂ (t)ĝ(t)dt

=
∫

R

{∫
R

γ 2(ω)λ2(ω)

r(ω)

∣∣∣φ̂ [λ(ω) (t − μ(ω))]
∣∣∣2 d[λ(ω) (t − μ(ω))]

tλ′(ω)− (λ(ω)μ(ω))′

}
f̂ (t)ĝ(t)dt.

The candidates of new time–frequency transform come from the two cases: λ′(ω) =
C1(λ(ω)μ(ω))

′ withC1 ∈ R \ {0} or (λ(ω)μ(ω))′ = 0.Wewill investigate both these cases
separately below. From now on, we assume λ′(ω) > 0,ω ∈ R.
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4.1. (i) The case λ′(ω) = C1(λ(ω)μ(ω))′

In this case, λ(ω) = C1λ(ω)μ(ω)+ C2 for some nonzero real constant C2. Thus μ(ω) =
1
C1

− C2
C1

1
λ(ω)

or equivalently λ(ω) = C2
1−C1μ(ω)

and then

λ(ω)(t − μ(ω)) = λ(ω)

(
t − 1

C1

)
+ C2

C1
.

The integral of the right-hand side of (18) becomes

∫
R

⎧⎨
⎩
∫

R

γ 2(ω)λ2(ω)

r(ω)

∣∣∣∣φ̂
[
λ(ω)

(
t − 1

C1

)
+ C2

C1

]∣∣∣∣
2 d[λ(ω)

(
t − 1

C1

)
+ C2

C1
]

λ′(ω)(t − C1)

⎫⎬
⎭ f̂ (t)ĝ(t)dt.

By imposing the condition

γ 2(ω)λ2(ω)

r(ω)λ′(ω)
= 1

2π

and applying change of variable y = λ(ω)
(
t − 1

C1

)
+ C2

C1
and using (12), Equation (18)

becomes

∫
R2

〈f ,φt,ω〉〈g,φt,ω〉 dtdω
r(ω)

= ‖φ‖22
∫

R

f̂ (t)sgn
(
t − 1

C1

)
t − C1

ĝ(t)dt.

Define the function f̃ by

F f̃ (·) :=
f̂ (·)sgn

(
· − 1

C1

)
· − C1

.

Recalling Lemma 3.1, we know that

f̃ (x) = ei
x
C1 H

(
ei
(
C1− 1

C1

)
xI
(
e−iC1xf (x)

))
= M 1

C1
HMC1− 1

C1
IM−C1 f (x) (19)

and obtain the formula ∫∫
R2

〈f ,φt,ω〉〈g,φt,ω〉 dtdω
r(ω)

= ‖φ‖22〈f̃ , g〉. (20)

The above equation (20) may be written as〈∫∫
R2

〈f ,φt,ω
〉
φt,ω

dtdω
r(ω)

, g〉 = ‖φ‖22〈f̃ , g〉

that suggests a representation formula in the weak sense for f̃ :

f̃ (x) = ei
x
C1 H

(
ei
(
C1− 1

C1

)
xI
(
e−iC1xf (x)

))
= 1

‖φ|22

∫∫
R2

〈f ,φt,ω〉φt,ω(x) dtdω
r(ω)

.
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The latter implies the desired inversion formula for f :

f (x) = 1
‖φ|22

∫∫
R2

〈f ,φt,ω〉φ̃t,ω(x) dtdωr(ω)
. (21)

Precisely, the above relation is in the weak sense:

∫∫
R2

〈f ,φt,ω〉〈φ̃t,ω, g〉dtdωr(ω)
= ‖φ‖22〈f , g〉 (22)

for any f , g ∈ L2(R). Here, the synthesis atom is of the form

φ̃t,ω(x) = −eiC1x d
dx

[
ei(

1
C1

−C1)xH
(
e−i x

C1 φt,ω(x)
)]

, (23)

or equivalently, of an alternative form in terms of the basic operators

φ̃t,ω(x) = −MC1

d
dx

[
M 1

C1
−C1

H
(
M− 1

C1
φt,ω(x)

)]
. (24)

Indeed, there hides a gap between the formulae (20) and (22). The following lemma fills
in it.

Lemma 4.1: Equation (20) is sufficient for Equation (22) to hold for any f , g ∈ L2(R).

Proof: Let h be any function in the Schwartz class S(R) consisting of all infinitely
differentiable and infinitely decaying functions. Set g = M 1

C1
HMC1− 1

C1

d
dxM−C1h in

Equation (20) and obtain that

∫∫
R2

〈
f ,φt,ω

〉 〈
M 1

C1
HMC1− 1

C1

d
dx

M−C1h,φt,ω
〉
dtdω
r(ω)

= ‖φ‖22
〈
f̃ ,M 1

C1
HMC1− 1

C1

d
dx

M−C1h
〉
, (25)

where f̃ is defined in (19).
One one hand, noting that the adjoint operators of modulation and the Hilbert trans-

form satisfy M∗
ω = M−ω, H∗ = −H, using decaying property of h and utilizing the

formula of integration by parts, we get

〈
M 1

C1
HMC1− 1

C1

d
dx

M−C1h, φ
t,ω
〉

=
〈
HMC1− 1

C1

d
dx

M−C1h, M− 1
C1
φt,ω

〉

=
〈
MC1− 1

C1

d
dx

M−C1h, − HM− 1
C1
φt,ω

〉
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=
〈
d
dx

M−C1h, − M−C1+ 1
C1
HM− 1

C1
φt,ω

〉

= −M−C1h(x)
d
dx

M−C1+ 1
C1
HM− 1

C1
φt,ω(x)|∞x=−∞

+
〈
M−C1h,

d
dx

M−C1+ 1
C1
HM− 1

C1
φt,ω

〉

=
〈
M−C1h,

d
dx

M−C1+ 1
C1
HM− 1

C1
φt,ω

〉

=
〈
h, MC1

d
dx

M−C1+ 1
C1
HM− 1

C1
φt,ω

〉
= −

〈
h, φ̃t,ω

〉
.

On the other hand, a similar argument leads to〈
f̃ ,M 1

C1
HMC1− 1

C1

d
dx

M−C1h
〉

=
〈
M 1

C1
HMC1− 1

C1
IM−C1 f ,M 1

C1
HMC1− 1

C1

d
dx

M−C1h
〉

=
〈
HMC1− 1

C1
IM−C1 f ,HMC1− 1

C1

d
dx

M−C1h
〉

= −
〈
MC1− 1

C1
IM−C1 f ,MC1− 1

C1

d
dx

M−C1h
〉

= −
〈
IM−C1 f ,

d
dx

M−C1h
〉

= −IM−C1 f (x)M−C1h(x)|∞x=−∞ − 〈
M−C1 f ,M−C1h

〉
= − 〈M−C1 f ,M−C1h

〉 = − 〈f , h〉 .
Then by (25), we obtain that∫∫

R2

〈
f ,φt,ω

〉 〈
h, φ̃t,ω

〉 dtdω
r(ω)

= ‖φ‖22
〈
f , h
〉

holds for any h ∈ S(R). Finally, by a density argument, we conclude (22). �

The above discussion leads to the following theorem.

Theorem 4.2: Suppose that λ,r and γ are real-variable and real-valued functions. Assume
that λ′(ω) > 0, r and γ satisfy that γ

2(ω)λ2(ω)
r(ω)λ′(ω) = 1

2π . Define the decomposition atom by

φt,ω(x) = γ (ω)φ

(
x − t
λ(ω)

)
ei
(

1
C1

− C2
C1

1
λ(ω)

)
x (26)

for any function φ ∈ L2(R) with ‖φ‖2 = 1 and any fixed nonzero real numbers C1 and C2,
and the synthesis atom by

φ̃t,ω(x) = −eiC1x d
dx

[
ei(

1
C1

−C1)xH
(
e−i x

C1 φt,ω(x)
)]

. (27)
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Then the inversion formula of (9) is

f (x) =
∫

R2
〈f ,φt,ω〉φ̃t,ω(x) dtdωr(ω)

,

where the identical relation holds in the weak sense for any function f ∈ L2(R).

Now we investigate the image space T (L2(R)) of the time–frequency transform T
defined in (9) with the special atom (26). We will show that T (L2(R)) is a RKHS of
L2(R2, dtdωr(ω) ). For any F ∈ T (L2(R)), there is a function f ∈ L2(R) such that

F(t′,ω′) = T f (t′,ω′) =
〈
f ,φt

′,ω′〉
, (t′,ω′) ∈ R

2.

Recalling the formula (22) and setting g = φt
′,ω′

there, it follows∫∫
R2

〈f ,φt,ω〉〈φt′,ω′ , φ̃t,ω〉 dtdω
r(ω)

= ‖φ‖22〈f ,φt
′,ω′ 〉.

Then there holds

F(t′,ω′) = 1
‖φ‖22

∫∫
R2

〈f ,φt,ω〉〈φt′,ω′ , φ̃t,ω〉 dtdω
r(ω)

= 1
‖φ‖22

∫∫
R2

F(t,ω)〈φt′,ω′ , φ̃t,ω〉 dtdω
r(ω)

= 1
‖φ‖22

∫∫
R2

F(t,ω)K(t,ω; t′,ω′)
dtdω
r(ω)

with the kernel

K(t,ω; t′,ω′) = 〈φt′,ω′ , φ̃t,ω〉 = 〈φ̃t,ω,φt′,ω′ 〉.

4.2. (ii) The case (λ(ω)μ(ω))′ = 0

In this case, μ(ω) = C
λ(ω)

for any nonzero real number C. By noting that

λ(ω)(t − μ(ω)) = λ(ω)t − C,

the integral of the right-hand side of (18) becomes∫
R

{∫
R

γ 2(ω)λ2(ω)

r(ω)

∣∣∣φ̂ (λ(ω)t − C)
∣∣∣2 d (λ(ω)t − C)

λ′(ω)t

}
f̂ (t)ĝ(t)dt.

By imposing the condition

γ 2(ω)λ2(ω)

r(ω)λ′(ω)
= 1

2π
and applying change of variable y = λ(ω)t − C and using (12), Equation (18) becomes

∫∫
R2

〈f ,φt,ω〉〈g,φt,ω〉 dtdω
r(ω)

= ‖φ‖22
∫

R

f̂ (t)sgn(t)
t

ĝ(t)dt. (28)
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Set

f̃ (x) = H
(
I
(
f (x)

))
.

We get the equivalent form of (28)∫∫
R2

〈f ,φt,ω〉〈g,φt,ω〉 dtdω
r(ω)

= ‖φ‖22〈f̃ , g〉. (29)

Equation (29) formally leads to

H
(
I
(
f (x)

)) = 1
‖φ|22

∫∫
R2

〈f ,φt,ω〉φt,ω(x) dtdω
r(ω)

and then the inversion formula

f (x) = 1
‖φ‖22

∫∫
R2

〈f ,φt,ω〉φ̃t,ω(x) dtdωr(ω)
(30)

with

φ̃t,ω(x) = − d
dx
(
Hφt,ω(x)

)
.

The inversion formula (30) is in the weak sense∫∫
R2

〈f ,φt,ω〉〈g, φ̃t,ω〉 dtdω
r(ω)

= ‖φ‖22〈f , g〉. (31)

The above discussion leads to the following theorem.

Theorem 4.3: Suppose that λ is a real variable function with λ′(ω) > 0. Assume that λ,r
and γ satisfy the condition γ 2(ω)λ2(ω)

r(ω)λ′(ω) = 1
2π . Define the decomposition atom by

φt,ω(x) = γ (ω)φ

(
x − t
λ(ω)

)
ei

C
λ(ω)

x (32)

for any real function φ ∈ L2(R) with ‖φ‖2 = 1 and any fixed nonzero real number C, and
the synthesis atom by

φ̃t,ω(x) = − d
dx
(
Hφt,ω(x)

)
. (33)

Then the inversion formula of (9) is

f (x) =
∫∫

R2
〈f ,φt,ω〉φ̃t,ω(x) dtdωr(ω)

,

where the convergence of the integral is in the weak sense for any function f ∈ L2(R).

Denote by T (L2(R)) the image space of the time–frequency transform T defined in (9)
with the special atom (32). For φt,ω defined in (32), setting g = φt

′,ω′
in the formula (31), a
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similar argument concludes that, for any F ∈ T (L2(R)), there exists a function f ∈ L2(R)
such that

F(t′,ω′) = 1
‖φ‖22

∫∫
R2

F(t,ω)K(t,ω; t′,ω′)
dtdω
r(ω)

with the kernel

K(t,ω; t′,ω′) = 〈φ̃t,ω,φt′,ω′ 〉
and φ̃t,ω defined in (33). It indicates that T (L2(R)) in the case (ii) is also a RKHS of
L2(R2, dtdωr(ω) ).
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