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A B S T R A C T   

The extant literature mainly utilized the wavelet tools and EMD-type methods to investigate linkages between 
different markets based on the frequency-domain information, confronting the difficulties of the wavelet basis 
selections and scale aliasing phenomenon. To overcome these disadvantages, the present study proposes a BEKK- 
GARCH-AFD approach based on the adaptive-Fourier-decomposition (AFD) to reveal the linkages between the 
international crude oil market and the Chinese stock market. According to the spillover effect between markets 
revealed by BEKK-GARCH, the proposed approach could further disclose the linkages between markets under 
external shocks with high-resolution information concerning market fluctuations provided by the AFD. Our 
empirical results demonstrate that the oil supply and demand shocks caused by external events (e.g., the strikes, 
the geopolitics, and the natural disasters) will put pressure on the Chinese stock market, while the combination of 
bullish and bearish events (e.g., the reduction of crude oil production and the shale oil boom) contributes to 
stabilizing the stock market.   

1. Introduction 

In addition to being a product that is scarce, strategic, economic, and 
geopolitical, the role of oil as a financial product has gained much 
popularity. An increasing number of investors have taken the oil assets 
(especially the oil futures) into their investment baskets, leading to the 
linkages between the oil market and the financial markets (especially 
the stock market) (Jiang and Yoon, 2020). The oil-stock links have been 
extensively reported by academia (Guo et al., 2021). Theoretically, a 
rapid increase in oil price will enlarge the inflation rate affecting pro
duction costs and actual consumption level (Reboredo and Ugolini, 
2016), which may result in a decline in investment, especially the in
vestment in the stock market. In turn, stock market conditions and 
investor sentiments could also exert significant effects on oil price (He, 
2020). 

China’s oil import dependence has grown rapidly for its fast- 
developed economics (Zhang et al., 2020b). By the end of 2019, 
China’s crude oil imports increased by 9.5%, causing a high degree of 
dependence on imports at over 72%. Thus, China’s economy and its 
“barometer”, the stock market, are sensitive to the international oil 
market with the decisiveness of three major crude oil prices 

internationally to oil product prices (Huang et al., 2018). Therefore, it is 
imperative to analyze the linkages between the international oil market 
and the stock markets, especially the Chinses stock market, for financial 
risk management and investment decision. 

Up to the present, abundant literature has explored the linkages 
between the oil and stock markets considering the time-domain infor
mation with three groups of statistical models. The first refers to the 
vector autoregression (VAR) models, which are commonly used to 
capture the impact of oil shocks on the stock market (Wen et al., 2019), 
whereas they neglect the nonlinear features of complex relationships 
between real financial markets (Yu et al., 2020). The copulas can solve 
this problem by allowing nonlinearity, symmetric, asymmetric, and tail 
dependence (Jammazi and Reboredo, 2016; Liu et al., 2017; Sukcharoen 
et al., 2014) since they have more relaxed requirements for data (Sklar, 
1959). However, they fail to determine the direction of spillovers be
tween the markets (Ji et al., 2018; Uddin et al., 2020). The third is for the 
GARCH models, which have gained much popularity for considering the 
heteroscedasticity of the conditional variance of financial time series 
(Engle and Kroner, 1995). Additionally, one of them, namely BEKK- 
GARCH, overcomes the disadvantages of the copulas and determines 
the direction of the spillovers from one market to another accurately 
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(Salisu and Oloko, 2015). 
It is noted that most existing literature is conducted based on the 

assumption of a constant data generation process (DGP) (Mensi et al., 
2015). However, given that the impact of the external events, there 
might exist structural breaks (Chen et al., 2014a; McMillan et al., 2021; 
Salisu and Oloko, 2015; Yu et al., 2020) potentially influencing the 
relationship between the two markets. Thus, some studies have also 
considered the oil-stock links by introducing the definition of structural 
breaks. A part of them first divide the sample period due to the structural 
breaks and then explore the changes in spillover effects between the oil 
market and the stock market in sub-samples. For example, Hou et al. 
(2019) discover differing patterns of bilateral spillovers between the fuel 
oil market and the stock market across multiple periods. On the con
trary, the other studies first explore linkages between the two markets 
and then detect the structural breaks in the linkages. For instance, based 
on the work of Westerlund (2006), Li et al. (2012) provide evidence of 
structural breaks for the relationship between oil price and Chinese 
sectoral stocks. 

Considering that the financial time series also possesses the fre
quency dimensional features, a branch of literature also concentrates on 
the oil and stock markets by applying frequency analysis such as the 
wavelet analysis and the EMD (Empirical Mode Decomposition), the 
most two famous methods to capture the frequency-domain informa
tion. Some literature has concentrated on the oil market through the 
combination of wavelet decomposition and the statistical methods (e.g., 
VAR, MARCH) (Chen et al., 2020, 2019). Moreover, several studies 
capture the oil-stock co-movements by employing the wavelet coher
ence analysis (Sun et al., 2020). Additionally, some scholars combine the 
EMD with different methods to investigate the interactions between 
markets, analyze price-driving factors and make price predictions (Zhu 
et al., 2019, 2017, 2018). On this basis, a portion of researchers work on 
the financial time series by EEMD (Ensemble Empirical Mode Decom
position, EEMD) and CEEMD (Complete Ensemble Empirical Mode 
Decomposition, CEEMD), which are the improvements of EMD (Lin 
et al., 2019; Zhang et al., 2020a). 

Generally, although the above studies consider the time-domain and 
frequency-domain information, they all have certain limitations. To be 
specific, the commonly used statistical models fail to consider the 
frequency-domain information, while a challenge for wavelet analysis is 
how to select the wavelet basis and decomposition level, which can in
fluence the visual presentation of the time-frequency analysis diagram 
(Xie et al., 2021). Although the EMD avoids this disadvantage, it pre
sents the scale aliasing phenomenon (Hu et al., 2012). To improve this 
problem, Wu and Huang (2009) propose EEMD by adding noise to the 
original signal. However, it does not completely eliminate the phe
nomenon of scale aliasing in EMD, and the reconstructed signal by it 
restrains the residual noises (Wu and Huang, 2009). A further improved 
model, CEEMD, resolves the mode aliasing problem comprehensively 
and minimizes the error of reconstructed signals (Colominas et al., 
2014). However, its computational complexity and cost might be 
enormous (Yeh et al., 2010). Besides, more important is that although 
being aware of the frequency domain information, most of the existing 
literature still ignores the existence of the structural breaks that consider 
frequency information. 

To fill the existing gaps, the present study proposes a BEKK-GARCH- 
AFD approach that is based on adaptive-Fourier-decomposition (AFD), a 
novel signal decomposition model, to investigate the linkage between 
the international crude oil market and the Chinese stock market. Firstly, 
the BEKK-GARCH is employed to testify the existence of the risk spill
overs between the international oil market and the Chinese stock mar
ket. Then, the AFD is utilized to construct the instantaneous time- 
frequency distribution that is employed for detecting the structural 
breaks given the frequency information of the market, which receives 
the risks transmitted from the other. Finally, the present study analyzes 
the fluctuation characteristics of the market that is a risk receiver under 
the detected structural breaks by considering the influence of the risk 

sender. 
The main contributions of the current work are presented as follows. 

Firstly, the BEKK-GARCH-AFD can not only determine the spillover 
relationship between markets but also accurately grasp the specific time 
and the magnitude of the influence of one market on another market. 
Secondly, the proposed approach overcomes the disadvantages of the 
widely used statistical models and frequency analysis (e.g., the igno
rance of frequency information, the necessity for base functions, or the 
scale aliasing phenomenon), and notices the structural breaks in the 
frequency domain (Dang et al., 2013). Thirdly, to our best knowledge, 
this paper is the first to analyze the oil-stock linkages under the struc
tural breaks considering the frequency domain information and provide 
empirical evidence for them. 

This study obtains some important findings. First, the empirical re
sults demonstrate that there is a significant spillover effect from the 
international crude oil market to the Chinese stock market. Second, 
influenced by the fluctuation of the international oil market, there exist 
obvious structural breaks of the Chinese stock market, which results in 
volatile changes. The oil supply and demand shocks caused by external 
events (e.g., the strikes, the geopolitics, and the natural disasters) will 
lead to drastic fluctuations in the oil prices, which can thus put pressure 
on the Chinese stock market. Additionally, the combination of bullish 
and bearish events (e.g., the reduction of crude oil production and the 
shale oil boom) is significant for the balance of the oil market, which is 
conducive to stabilizing the Chinese stock market. 

The remainder of this paper is organized as follows. Section 2 in
troduces the proposed approach. Section 3 deals with the data and 
performs the empirical analysis. Section 4 presents the conclusion. 

2. Methodology 

2.1. The framework of BEKK-GARCH-AFD 

This paper proposes a BEKK-GARCH-AFD approach based on the 
BEKK-GARCH model and the AFD to investigate the linkages between 
the international crude oil market and the Chinese stock market. The 
proposed approach attempts to capture the risk transmission between 
the international crude oil market and the Chinese stock market, and 
struggles for detecting the structural breaks of the risk receiver in the 
frequency domain. Specifically, the BEKK-GARCH model is first 
employed to determine the direction of the risk spillovers between the 
two markets, aiming to identify the risk receiver. On this basis, the AFD 
algorithm is applied to decompose the data series of the risk receiver. 
Subsequently, based on the AFD, the instantaneous time-frequency 
distribution of the data series of the risk receiver is reconstructed. 
Then, according to the instantaneous time-frequency distribution, the 
structural breaks of the market can be detected. Finally, this paper an
alyzes the extent of the influence of the risk sender on the risk receiver 
under the external shocks. As shown in Fig. 1, the block diagram of the 
BEKK-GARCH-AFD method is displayed. 

The steps of the proposed approach are presented as follows: 

Step 1: Within the sample interval, the existence of risk spillovers 
between the international crude oil market and the Chinese stock 
market is verified via the BEKK-GARCH model. 
Step 2: Through AFD, the fast signal orthogonalization is performed 
on S(t), which denotes the data series of the market that serves as a 
risk receiver. Then, the S(t) is decomposed into S1(t), S2(t), ……, 
Sn(t), representing different characteristics at different frequencies. 
Step 3: Based on AFD, an instantaneous time-frequency distribution 
diagram is created, which is composed of a lot of colorful points and 
can characterize the frequency change characteristics of a time series 
on timescales. We can judge the structural breaks based on the 
change in the distance between the peaks of the composition of the 
colorful points and the density of the color points. 
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Step 4: This paper analyzes the extent to which external shocks in the 
market acting as a risk sender affect the market as a risk receiver. 

2.2. Basic methods of BEKK-GARCH-AFD 

The BEKK-GARCH-AFD algorithm mainly involves the methods for 
testing the spillover effect and structural breaks. Specifically, the BEKK- 
GARCH model is employed to test the spillover effect, and the AFD 
technique is used to achieve the fast orthogonalization of signals. 
Furthermore, the AFD-based instantaneous time-frequency distribution 
is exploited to perform the structural breaks test. The basic ideas of these 
methods will be described separately in the current section. 

2.2.1. BEKK-GARCH model 
The multivariate BEKK-GARCH (1,1) model is utilized to observe the 

time-varying volatility spillover effects between the international crude 
oil and the Chinese stock markets. The commonly used GARCH (1,1) 
form is: 

Rt = Xtθ+ εt, εt∣Ωt− 1 ∼ N(0, ht), (1)  

ht = a0 + a1ε2
t− 1 + β1ht− 1, (2)  

where Xt stands for the explanatory variable, θ denotes the coefficient 
vector, εt represents that the conditional residuals follow a normal dis
tribution, and ht denotes the conditional variance. The volatility spill
overs between the two time series for the international crude oil and the 
Chinese stock markets are observed using the multivariate GARCH 
model, e.g., the vector GARCH model. At this point, the residual 
sequence of the mean equation follows a multivariate normal distribu
tion. The conditional covariance matrix is denoted by Ht, and the vari
ance equations are set up as follows: 

Ht = W +A
′εt− 1ε′

t− 1A+B
′

Ht− 1B, (3)  

A =

(
α11 α12
α21 α22

)

, W =

(
ω1 0
ω2 ω3

)

,

B =

(
β11 β12
β21 β22

)

,

(4)  

where W denotes the constant-coefficient matrix, A is the coefficient 
matrix of conditional residual matrix term, and B is the coefficient 
matrix of conditional covariance term. Specifically, the conditional 
covariance matrix of the BEKK-GARCH (1,1) model is written as: 

ht =

(
h11,t h12,t
h21,t h22,t

)

=

(
ω1 0
ω2 ω3

)′(
ω1 0
ω2 ω3

)

+

(
α11 α12
α21 α22

)′(
ε1,t− 1
ε2,t− 1

)(
ε1,t− 1
ε2,t− 1

)′(
α11 α12
α21 α22

)

+

(
β11 β12
β21 β22

)′(
h11,t− 1 h12,t− 1
h21,t− 1 h22,t− 1

)(
β11 β12
β21 β22

)

.

(5) 

The above equation can be written separately as:. 

h11,t = ω2
1 + α2

11ε2
1,t− 1 + 2α11α21ε1,t− 1ε2,t− 1 + α2

21ε2
2,t− 1

+β2
11h11,t− 1 + 2β11β21h12,t− 1 + β2

21h22,t− 1
, (6)  

h22,t =
(
ω2

2 + ω2
3

)
+ α2

12ε2
1,t− 1 + 2α22α12ε1,t− 1ε2,t− 1

+α2
22ε2

2,t− 1 + β2
12h11,t− 1 + 2β12β22h12,t− 1 + β2

22h22,t− 1
, (7)  

h12,t = ω1ω2 + α11α12ε2
1,t− 1 + (α11α22 + α21α12)ε1,t− 1ε2,t− 1

+α22α21ε2
2,t− 1 + β11β12h11,t− 1 + (β11β22 + β21β12)h12,t− 1

+β21β22h22,t− 1

, (8)  

where h11, t represents the conditional variance of the rate of return in 
the international crude oil market, h22, t denotes the conditional vari
ance of the rate of return in the Chinese stock market, and h12, t signifies 
the conditional covariance of the rate of returns in both markets. It is 
particularly noteworthy that α11 and β11 describe the ARCH and GARCH 
volatility effects of the international crude oil market itself, α22 and β22 

Fig. 1. Block diagram of BEKK-GARCH-AFD approach.  
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denote the ARCH and GARCH volatility effects of the Chinese stock 
market itself, α12 and β12 describe the ARCH and GARCH volatility ef
fects of the international crude oil market’s return on the Chinese stock 
market’s return (i.e. the changes in the conditional volatility of the 
Chinese stock market caused by past abnormal impacts of the interna
tional crude oil market, as well as the volatility spillover effects of the 
international crude oil market on the Chinese stock market), and α21, β21 
represent the ARCH and GARCH volatility effects of the Chinese stock 
market’s return on the international crude oil market’s return (i.e. the 
changes in the conditional volatility of international crude oil market 
caused by past abnormal impacts of the Chinese stock market, as well as 
the volatility spillover effects of the Chinese stock market on the inter
national crude oil market). 

The current work focuses on discussing the relationship between the 
secondary moments of the returns in the international crude oil market 
and the Chinese stock market since its primary tasks are characterization 
and examination of the volatility spillover effects between the two 
markets. To investigate the inter-market spillover effects, the Wald test 
is performed on matrix elements. There are a total of three hypotheses to 
be tested:  

1. When the stock market has no direct spillover effect (unidirectional 
volatility spillover effect) on the oil market, the null hypothesis is H0 
: α21 = β21 = 0.  

2. When the oil market has no direct spillover effect (unidirectional 
volatility spillover effect) on the stock market, the null hypothesis is 
H0 : α12 = β12 = 0.  

3. When there is no mutual spillover effect (bidirectional volatility 
spillover effect) between the two markets, the null hypothesis is H0 : 
α12 = β12 = α21 = β21 = 0. 

The direction of spillover effects between the international crude oil 
market and the Chinese stock market is determined based on the Wald 
test results, and thus the data under the structural change point test is 
decided. The following four results may occur:  

1. If there is no volatility spillover effect between the oil market and the 
stock market, the experiment will end.  

2. If there is a unidirectional volatility spillover effect from the oil 
market to the stock market, the stock market time series will be 
decided as the data under test.  

3. If there is a unidirectional spillover effect from the stock market to 
the oil market, the oil market time series will be decided as the data 
under test.  

4. If there is a bidirectional spillover effect between the oil market and 
the stock market, the time series of both markets will be decided as 
the data under test. 

2.2.2. Adaptive Fourier decomposition (AFD) 
Based on the Takenaka-Malmquist system, adaptive Fourier decom

position of the data under test is performed (Chen et al., 2016; Qian, 
2009). The Takenaka-Maluquist system is defined as: 

Bn(z) = B{a1 ,a2 ,⋯,an}(z) :=
1̅̅
̅̅̅

2π
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − |an|
2

√

1 − anz
∏n− 1

k=1

z − ak

1 − akz
. (9)  

an ∈ D, n = 1, 2, …, D = {z ∈ C : |z| < 1}, where C is the complex plane. 
For any sequence {an} at D, the Takenaka-Malmquist system is ortho
normal normal. Regarding all existing studies of the system, there is a 
premise condition: 

∑∞

k=1
(1 − |ak|) = ∞, (10)  

which is sufficient and necessary for a TM system {Bn} to be a complete 
basis in all the Hardy space H2(D) (Mo et al., 2015; Zhang et al., 2014). 

For the standard case of H2(D), in AFD, we have a “dictionary” consisting 
of the elementary functions: 

e{a}(z) := B{a}(z) =
1̅̅
̅̅̅

2π
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − |a|2
√

1 − az
, a ∈ D. (11) 

The function e(a) is called the evaluator at a (also reproducing kernel 
and shifted Cauchy kernel). Each evaluator gives rise to the evaluating 
functional essentially. In fact, for any F ∈ H2, with the Cauchy Formula, 
we have: 

〈F, e{a} 〉 =
̅̅̅̅̅
2π

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − |a|2
√ 1

2πi

∫ 2π

0

F(eit)

eit − a
deit

=
̅̅̅̅̅
2π

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − |a|2
√

F(a)

(12) 

It is worth noting that the denotations of “e” in both sides of Eq. (12) 
remain the same. They both represent the natural logarithms (to the base 
e), valuing about 2.718. The reason why the forms of “e” are different on 
both the left and the right sides is that the “e{a}” on the left is the 
unexpanded expression in the function, while the “eit” on the right is the 
expanded expression. 

Since for a real-valued signal G̃, there holds the relation: 

G̃ = 2ReG+ − c0, (13)  

where c0 stands for power series expansion coefficient of F. Here G+ ∈

H2, G̃ can be reconstructed through G+ and the specific algorithm steps 
are as follows:  

(1) Maximize |〈G1,e{a}〉|2: 

Let G1 = G = G+, among all possible selections of a ∈ D. Thus: 
⃒
⃒〈G1, e{a} 〉

⃒
⃒2 = 2π

(
1 − |a|2

)
|G1(a) |2, (14)  

lim|a|→1−
⃦
⃦G − 〈G,B{a} 〉B{a}

⃦
⃦ =‖ G ‖ . (15) 

Let Pr denote the Poisson kernel for the unit circle, r ∈ (0,1). For ϵ >
0, let r sufficiently close to 1. Therefore, by the L2-approximation 
property of the Poisson kernel, there holds: 

‖ G ‖≥
⃦
⃦〈G,B{a}B{a} 〉

⃦
⃦

≥
⃦
⃦Pr∗

(
G − 〈G,B{a} 〉B{a}

) ⃦
⃦

≥ ‖Pr∗G‖ −
⃒
⃒〈G,B{a} 〉

⃒
⃒ ‖ Pr∗B{a}∣

≥ (1 − ε) ‖ G ‖ − ‖ G ‖
⃦
⃦Pr∗B{a}

⃦
⃦

. (16) 

For a fixed r value, B{a} ∈ H∞(D), z = reit,  

Pr∗B{a}eit = B{a}e(z), (17)  

⃦
⃦Pr∗B{a}

⃦
⃦2

=
1

2π

∫ 2π

0

1 − |a|2
⃒
⃒1 − areit

⃒
⃒2 dt

=
1

2π
1 − |a|2

1 − r2|a|2

∫ 2π

0

1 − r2|a|2
⃒
⃒1 −

⃒
⃒ra

⃒
⃒eit

⃒
⃒2 dt

=
1 − |a|2

1 − r2|a|2

∫ 2π

0
Pr|a|

(
eit)dt

=
1 − |a|2

1 − r2|a|2

. (18)  

When |a| is close to 1, Equation (19) is given from Equation (16):  

‖G‖ ≥
⃦
⃦G −

〈
G,B{a}

〉
B{a}

⃦
⃦ ≥ (1 − 2ϵ)‖G‖. (19)  

Thus, we obtain the Maximal Projection Principle. 
According to the Maximal Projection Principle, there is a1 ∈ D. Thus: 
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⃒
⃒〈G1, e{a1} 〉

⃒
⃒2
= max

{
〈|G1, e{a} 〉

⃒
⃒2
: a ∈ D

}
. (20) 

For the proof of the above fact, we can refer to (Qian, 2009; Qian 
et al., 2009). 

(2) Give a decomposition function: 

G1(z) = 〈G1, e{a1} 〉e{a1} +
(
G1(z) − 〈G1, e{a1} 〉e{a1}

)

= 〈G1, e{a1} 〉e{a1} + R1(z)
, (21)  

where R1(z) is recorded as the remaining standard. 
(3) Perform maximum screening: 

R1(z) = G2(z)
z − a1

1 − a1z
, (22)  

where  

G2(z) =
(
G1(z) − 〈G1, e{a1} 〉e{a1}(z)

) 1 − a1z
z − a1

. (23) 

Here G2(z) is in H2 all along, when z = a1,  

G1(z) − 〈G1, e{a1} 〉e{a1}(z) = 0. (24) 

By repeating the above process, we obtain AFD expansion of G+. The 
algorithm is usually completed here. For more information on the AFD 
algorithm, we can refer to (Qian et al., 2011a, 2011b; Qian et al., 2009). 

2.2.3. AFD-based instantaneous time-frequency distribution diagram 
Data under test is regarded as signals S(t) (Chen et al., 2014b), where 

s(t) = ρ(t)eiϕ(t) and other definitions are presented as follows: 

P(t, ξ) = ρ2(t)δM(ξ − φ
′

(t) ), (t, ξ) ∈ R×

[

−
1

2M
, +∞

)

, (25)  

where,  

δM(ξ − φ
′

(t) ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M, ξ ∈

[

φ
′

(t) −
1

2M
,φ

′

(t) +
1

2M

]

0, ξ ∕∈

[

φ′

(t) −
1

2M
,φ′

(t) +
1

2M

] , (26)  

where M is a large enough positive constant. AFD is a basic method in 
time-frequency analysis. It produces intrinsic blocks of the signal under 
study (Dang et al., 2013). An induced time-frequency distribution of 
multi-components is based on the mono-component decomposition of 
the latter (Dang et al., 2013). If orthogonal decomposition could be used 
in a square-integrable analytic signal S(t) with mono-component 
decomposition, then the corresponding composing-transient-time- 
frequency distribution (CTTFD) is defined to be: 

P(t, ξ) =
∑∞

k=1
Pk(t, ξ) =

∑∞

k=1
ρ2

k(t)δM
(
ξ − φ′

k(t)
)

(t, ξ) ∈ R∗
[

−
1

2M
,+∞

) , (27)  

where Pk(t,ξ) is the TTFD of the mono-component Sk. Through the 
application of AFD in the given signal, the series expansion for basic 
signals can be made, which is referred to as mono-components con
taining non-negative analytic phase derivatives (functions), or mean
ingful instantaneous frequencies (Qian et al., 2011a, 2011b). The 
presented new concept of instantaneous frequency puts forward a 
straightforward method with a simple formula and algorithm which can 
calculate the value. It may serve as the major supplement of the EMD 
algorithm and apply to the engineering application for high-frequency 
signal analysis. On the basis of the defined instantaneous frequency 
and signal decomposition, a stock index movement prediction method 
has been presented in Zhang et al. (2012). The experiment carried out 
using the stock market data of the Hong Kong Hang Seng Index well 
proves the validity of the presented method. According to former 

research, AFD definitely suits the research involving financial data. 

3. Empirical analysis 

3.1. Data description 

For the oil market, the WTI futures is widely traded with its good 
liquidity and high price transparency, providing the reference of crude 
oil price. For the stock market, the Shanghai Stock Exchange (SSE) is the 
earliest stock exchange established in the mainland of China and has 
gradually formed a multilevel blue-chip stock market with large blue- 
chip enterprises as the center as well as the small and medium-sized 
ones surrounding it. The Shanghai Composite Index (SCI) is the 
earliest index released by the SSE, with its sample stocks being all listed 
stocks within it. It can reflect the fluctuations of the Chinese stock 
market comprehensively (Huang et al., 2018; Xu et al., 2019). Therefore, 
in the present study, we exploit the daily closing price of WTI futures and 
the SCI from the Wind database as the proxies to represent the inter
national oil market and the Chinese stock market, respectively. To 
satisfy the data stability requirements for modeling, the original data is 
converted according to Ri, t = 100 × (Pi, t/Pi, t− 1), where Ri, t expressed as 
a percentage denotes the rate of return series of a certain market on the t- 
th trading day; Pi, t signifies the closing price of a certain market on the t- 
th trading day; and i=1, 2 represent the international crude oil market 
and the Chinese stock market, respectively. The sample period of returns 
covers January 4th, 2010, until February 10th, 2021, and contains a total 
of 2636 observations. 

Fig. 2 displays the price and returns of the international oil market 
and the Chinese stock market. As revealed by the comparison of the 
closing prices between the two markets in (a) and (c) in Fig. 2, the in
ternational crude oil prices and China’s stock prices fluctuated drasti
cally almost in some same positions (e.g., June 2014, January 2016, 
April 2020). Besides, according to the comparison of the returns in (b) 
and (d) in Fig. 2, the two markets exhibited similar volatility clustering 
phenomena within certain periods (e.g., July 2014 to August 2016 and 
December 2019 to August 2020), indicating that there may exist a 
volatility shock transmission mechanism between them. 

Table 1 presents the statistical summary of the returns of the WTI and 
the SCI. According to the results shown in Table 1, the standard devia
tion of the return series for the international crude oil market (2.978) is 
greater than that of the Chinese stock market (1.365), suggesting that 
the overall market fluctuation of the former is more intensive than that 
of the latter. For the two return series, the skewness coefficients with 
negative signs are different from the 0 value of the normal distribution, 
and the kurtosis coefficients (86.317 and 8.873, respectively) are all 
greater than 3, suggesting that all the return series show the high-peak 
and fat-tail phenomenon. Besides, the Jarque-Bera tests reject the null 
hypothesis of normality. Both the Augmented Dickey-Fuller (ADF) tests 
of the two markets reject the null hypothesis at the 1% significance level, 
indicating the stationarity of the return series, respectively. 

Before applying the BEKK model, some preliminary tests are imple
mented to ensure that there exists an ARCH effect in the return series. 
The results of the autocorrelation and conditional heteroscedasticity 
tests for the return series of the two markets, the used ARMA and GJR- 
GARCH models, as well as the tests results after the estimations are 
presented in Panel B, C, and D in Table 1. From Panel B, it can be found 
that the statistics of the Ljung-Box (LB) test, the LB (2) test, and the LM 
test for the two markets are significant at 1% level, implying conditional 
heteroscedasticity characteristics in both returns of the international oil 
market and Chinese stock market. The suitable ARMA models for the 
two markets are displayed in Panel C. For the oil market and Chinese 
stock market, ARMA (4,1) and ARMA (3,3) are selected, respectively. 
Panel D provides the results of the ARCH effect after ARCH estimation 
and GJR-GARCH estimation. Obviously, the statistics for all the tests 
(the LB test, the LB (2) test, and the LM test) are not significant, 
reflecting the rationality of our estimations by using the ARMA-GJR- 
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GARCH model. 

3.2. Spillovers between international crude oil market and the Chinese 
stock market 

In the current section, the spillovers between the two markets are 

investigated through bivariate BEKK-GARCH (1,1) modeling. Consid
ering that the BEKK-GARCH model with the lag order of (1,1) has been 
proven to describe the characteristics of the risk spillovers between 
markets well (Efimova and Serletis, 2014; Okorie and Lin, 2020; Zolfa
ghari et al., 2020), this paper chooses the BEKK-GARCH (1,1) to capture 
the risk spillovers between the oil market and the stock market. Table 2 
details the estimated results of the BEKK-GARCH (1,1). 

At first, the diagonal elements α11 (0.330), α22 (0.218), β11 (0.937), 
and β22 (0.973) of the parameter matrices A and B are significant at the 
1% confidence level, indicating that there exist obvious ARCH and 
GARCH effects in the two markets. That is to say, both the international 
oil market and Chinese stock market are affected by their own external 
shocks as well as intrinsic memories. Moreover, the reported ARCH 
coefficients α11 (0.330) and α22 (0.218) are smaller than the GARCH 
coefficients β11 (0.937) and β22 (0.973) obviously, implying that the 
conditional volatilities of the international oil market and the Chinese 
stock market do not change drastically with historical shocks, but with 
historical volatilities. 

The results also contribute to understanding the risk transmission 

Fig. 2. The closing price and return series of WTI and SCI.  

Table 1 
Descriptive statistics and test results of market rates of return.   

WTI rate of return SCI rate of return 

Panel A: Descriptive statistical analysis 
Mean − 0.012 0.005 
Maximum 31.963 6.040 
Minimum − 60.168 − 8.873 
Standard deviation 2.978 1.365 
Skewness − 2.892 − 0.825 
Kurtosis 86.317 8.873 
J-B 765,823.000*** 4086.600*** 
ADF − 13.979*** − 13.578***  

Panel B: Autocorrelation and ARCH effect tests (before) 
LB 86.084*** 20.926** 
LB(2) 834.960*** 743.530*** 
LM 507.750*** 309.290***  

Panel C: The used models 
ARMA(p,q) (4,1) (3,3) 
GJR-GARCH(p,q) (1,1) (1,1)  

Panel D: Autocorrelation and ARCH effect tests (after) 
LB 6.128 15.281 
LB(2) 6.373 4.578 
LM 4.403 2.709 

Note: (1) The J-B corresponds to the test statistic for the null hypothesis of 
normality in sample returns distribution. (2) The lags for LB, LB (2), and ARCH 
tests are set to 11. (3) ***, ** and * represent significance at the 1%, 5%, and 
10% level respectively. 

Table 2 
Parameter estimation for the multivariate BEKK-GARCH (1,1) model.   

Coeff T-stat Signifi 

W(1,1) 0.304 255.249 0.000 
W(2,1) 0.004 10.176 0.000 
W(2,2) 0.100 629.535 0.000 
A(1,1) 0.330 1197.118 0.000 
A(1,2) 0.104 148.963 0.000 
A(2,1) − 0.011 − 346.151 0.000 
A(2,2) 0.218 2885.585 0.000 
B(1,1) 0.937 29,712.863 0.000 
B(1,2) − 0.016 − 263.967 0.000 
B(2,1) 0.004 1184.091 0.000 
B(2,2) 0.973 417,890.825 0.000  
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mechanism of the two markets. To be specific, the volatilities of the 
international oil market and the Chinese stock market may be stimulated 
by their own shocks and the historical volatilities, with the influence of 
the latter greater than that of the former. Our findings are consistent 
with Ahmed and Huo (2021) who have evidenced that there exist both 
ARCH and GARCH effects in global oil price and Chinese stock markets, 
and the GARCH effect is more obvious than the ARCH effect. 

Then, the mean spillover effects are analyzed through the statistical 
significance of the off-diagonal coefficients in matrix A of the BEKK- 
GARCH model. As shown in Table 2, the non-diagonal element α12 
(0.104) of matrix A rejects the null hypotheses at the 1% significant 
level, suggesting the presence of the mean spillover effects from the oil 
market to the stock market. That is to say, the past shocks in the inter
national oil market have significant effects on the Chinese stock mar
ket’s volatility over the sample period. Besides, there also exists an 
obvious influence of the past shocks in the Chinese stock market on the 
oil market as the parameter α21 (− 0.011) of matrix A is significant at the 
1% level as well. 

Besides, the present study examines the volatility spillovers based on 
the statistical significance of the off-diagonal coefficients in matrix B of 
the BEKK-GARCH model. It can be found in Table 2 that the non- 
diagonal elements β12 (− 0.016) and β21 (0.004) of matrix B are both 
significant at the 1% significant level, suggesting the presence of 
bidirectional volatility spillover effects between the oil and stock 
markets. 

To further verify the direction of the volatility spillover effect be
tween the two markets, we conduct a Wald test on the above parameters. 
Based on the Wald test results presented in Table 3, the null hypotheses 
that “there is no bidirectional volatility spillover effect between the two 
markets”, “there is no unidirectional volatility spillover effect from the 
oil market to the stock market” are rejected, while the null hypothesis 
that “there is no unidirectional spillover effect from the stock market to 
the oil market” is accepted. These results can help us understand the 
roles played by the two markets in risk transmission. Obviously, the 
international oil market is the risk sender, while the Chinese stock 
market is the risk receiver. In other words, the risks in the oil market can 
be transmitted to the stock market. Besides, these results also support 
the view that China’s stock market is integrating with other financial 
markets (the international crude oil futures market in this paper) in the 
world after the gradual financial liberalization reforms in 1998. As a 
result, with the surging oil imports, the Chinese stock market is more 
sensitive to oil price fluctuations (Xiao et al., 2018). 

3.3. Impact of major events on the Chinese stock market 

Based on the above research, we have confirmed that the interna
tional crude oil market generates a significant spillover effect on the 
Chinese stock market. However, the applied model has only determined 
the direction of the risk transmission, ignoring the specific time and the 
magnitude of the influence of the oil shock on the stock market. To fill 
this gap, the current work will detect structural breaks in the Chinese 

stock market to determine the specific time points of the oil shock on the 
stock market. Then, by combining the external events, this paper will 
analyze the extent to which the international crude oil impacts the 
Chinese stock market. 

To achieve this, the AFD based on the Takenaka-Malmquist system is 
first applied to decompose the volatility of the Chinese stock market 
estimated by GARCH (1,1) (Charfeddine, 2014; Charles and Darné, 
2014; Horpestad et al., 2019). Therefore, the instantaneous time- 
frequency distribution diagram of the estimated volatility is con
structed to detect the structural breaks of the Chinese stock market. 
Then, after the breakpoints are determined, the present study will 
analyze the characteristics of China’s stock market’s volatility near the 
breakpoints to investigate the impacts of structural breaks due to the 
external oil shocks on the stock market. 

3.3.1. Breakpoints test of the Chinese stock market 
In this section, the volatility of the Chinese stock market is decom

posed and reconstructed on the basis of the Takenaka-Malmquist sys
tem. Fig. 3 (a) presents the results of the decomposition and the 
reconstruction. The “decomposed no” represents the maximal steps of 
decomposition and the "energy difference" stands for the magnitude of 
the change of the decomposed signal compared to the original signal. 
The smaller the energy difference, the smaller the energy loss, which 
means the more original information about the real market is retained. 
The blue line represents the original volatility, while the red line rep
resents the reconstructed volatility. As distinctly observed from Fig. 3 
(a), the reconstructed signal is basically the same as the original signal 
with an extremely small energy difference (0.004), implying that almost 
all information is retained. These results prove the rationality of the 
decomposition and the reconstruction, meaning that we can further 
construct the instantaneous time-frequency distribution diagram of the 
Chinese stock market. 

Fig. 3 (b) gives the instantaneous time-frequency distribution dia
gram constructed based on the AFD decomposition. The time-frequency 
distribution diagram is comprised of many colored dots, where the areas 
of the colored dots represent the magnitudes of frequencies. Higher 
frequencies indicate more drastic changes in volatility. Besides, the 
fluctuation of volatility will become severer as the peaks overlap each 
other or increase in value, indicating the existence of the structural 
breaks. 

Based on (b), the peaks for instantaneous time-frequency distribution 
of volatilities appeared on November 19th, 2010, June 18th, 2013, June 
8th, 2015, March 1st, 2019, and February 20th, 2020, respectively, 
indicating the presence of structural breaks of the volatility of the Chi
nese stock market, respectively. 

3.3.2. The influence of the international oil market on the Chinese stock 
market 

This paper will analyze the impact of the international oil market on 
the Chinese stock market considering the detected structural breaks due 
to the external events after 2010 (see Table 4). For a better analysis of 
the impact of the oil market on the Chinese stock market with the major 
events, the events corresponding to the time points of volatility struc
tural breaks in the Chinese stock market are collated in Table 5. Ac
cording to Table 5, the structural breaks of the Chinese stock market 
correspond well to the events listed in Table 4. 

As shown in Table 5, the first structural breakpoint lies on November 
19th, 2010 when the volatility of the Chinese stock market is relatively 
high, valuing at 1.894 (see Fig. 4). This can be attributed to the strikes in 
France and the implementation of a quantitative easing policy (see 
Table 5). In fact, from September to October 2010, a nationwide strike 
broke out in France, preventing 4000 gas stations (about 30% of the 
total) from supplying oil, and eventually resulting in the usage of the 
country’s strategic oil. Therefore, the oil price has risen with the 
continuously increasing domestic tensions and national anxieties in 
France. Besides, the United States restarted the quantitative easing 

Table 3 
Spillover effect test based on the multivariate BEKK-GARCH (1,1) model.  

Null hypothesis and results 

F(4,*) P value 

There is no unidirectional spillover effect from the stock market to the oil market 
H0: a21 = b21 = 0 
4.523 0.104 
There is no unidirectional spillover effect from the oil market to the stock market 
H0: a12 = b12 = 0 
17.652 0.000 
There is no bidirectional volatility spillover effect between the oil and the stock 

markets 
H0: a12 = b12 = a21 = b21 = 0 
21.804 0.000  
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policy after the Federal Open Market Committee (FOMC) that was held 
from November 2nd to 3rd, leading to the weak dollar undoubtedly, and 
influencing the bulk commodity market (the international oil market in 
this paper). These events inevitably aroused volatile changes in oil prices 
and further put great pressure on the Chinese stock market. 

The second structural breakpoint is observed on June 18th, 2013 (see 
Table 5). At this point, although the volatility of the Chinese stock 
market is not at a high level (1.171), it immediately rose sharply and 
reached a peak on June 25th, 2013, valuing at 1.738 (see Fig. 4). This is 
undoubtedly caused by the fluctuating oil price due to the escalation of 
the conflict in Syria and the blockage of U.S. crude oil imports. On June 
14th, 2013, the United States announced military support for Syrian 
rebels, which raised tensions in the Middle East and eventually aroused 
concerns about the Middle East crude oil supplies. As a result, oil prices 
rose. Besides, floods that occurred in Canada on June 25th, 2013 have 
led to the forced closure of three main pipelines, which are used to 
transport crude oil to the United States. As a result, the oil price fluc
tuated severely due to the shortage of supply of U.S. crude oil. These 
events generally aroused volatile changes in oil price and ultimately 
transmitted the risks to the Chinese stock market. 

The third structural breakpoint can be noticed on June 8th, 2015 (see 
Table 5). It can be clearly observed from Fig. 4 that, the volatility of the 
Chinese stock market has reached a small peak near this point, valuing at 
2.687. This can be attributed to the market concerns caused by the tense 
situation in the Middle East. Firstly, a bombing attack occurred in Saudi 
Arabia on May 29th, and the Islamic State claimed responsibility for this 
event, which stimulated oil prices to rise. Besides, after this time point, it 
can be distinctly found that the volatility of the Chinese stock market has 
further risen sharply (see Fig. 4). The market concerns caused by the 
increasing production of oil can be the reason. OPEC had been 
increasing production for several months. To be specific, Saudi Arabia 
boosted its oil production to a three-year high in March, adding over 650 

Fig. 3. The energy difference and the instantaneous time-frequency distribution of SCI’s volatility.  

Table 4 
The list of major events affecting the Chinese stock market.  

Event 
No. 

Time Major event 

1 10/12/2010 The strikes in France 
2 11/02/2010–11/ 

03/2010 
The Federal Open Market Committee was held 

3 06/14/2013 The escalation of conflict in Syria 
4 06/25/2013 The blockages of U.S. crude oil imports 
5 05/29/2015 The Islamic State claimed responsibility for a 

suicide bomber struck in Saudi Arabia 
6 06/12/2015 Saudi Arabia hinted at increasing oil production 
7 01/01/2019 OPEC and its partners’ agreement on the reduction 

of oil 
8 01/28/2019 Sanctions on Venezuela’s Petroleum Corporation 

by the U.S 
9 01/20/2020 The outbreak of COVID-19 
10 03/08/2020 The oil price war between the OPEC cartel and 

Russia 
11 04/20/2020 The oil price goes below zero for the first time  

Table 5 
The time points of structural breaks and the corresponding events.  

No. The time point of volatility structural change Corresponding event 

1 11/19/2010 Events 1, 2 
2 06/18/2013 Events 3, 4 
3 06/08/2015 Events 5, 6 
4 03/01/2019 Events 7, 8 
5 02/04/2020 Events 9, 10, 11  
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thousand barrels a day. Moreover, on June 12th, it further announced 
that it would increase oil production in the future. As a result, this 
inevitably aroused market concerns about low oil prices in the future 
and stimulated the fluctuation of oil prices. In general, the market 
concerns in the oil market inevitably put pressure on the Chinese stock 
market, and finally resulted in volatile fluctuations in it. 

The fourth structural breakpoint lies on March 1st, 2019 (see 
Table 5). It can be noticed that the volatility of the Chinese stock market 
has changed from a relatively low level to a relatively high level after 
February. Specifically, it reached a small peak around this time point, 
valuing at 1.681 (see Fig. 4). The low volatility of the Chinese stock 
market can be attributed to OPEC’s production cuts at the beginning of 
2019. To be specific, OPEC’s crude oil production decreased by 797,000 
barrels/day to 30.8 million barrels/day by January, offsetting the 
impact of the oversupply of crude oil caused by the shale-oil boom to 
some extent, which is beneficial for stabilizing the oil market. However, 
this kind of low fluctuation was broken by sanctions on Venezuela’s 
Petroleum Corporation by the U.S. At the end of January, the United 
States announced sanctions against the Petroleo De Venezuela S.A 
(PDVSA), a Venezuelan state-owned energy company established in 
1976. Venezuela is the world’s largest crude oil producer and exporter, 
which is also the fourth-largest crude oil importer of the United States. 
Once sanctions are implemented, the U.S. refineries are forced to choose 
oil in other countries as an alternative. As a result, the balance of oil 
supply and demand will be disrupted, which will inevitably affect the 
crude oil market. In general, the disruption of the supply-demand bal
ance undoubtedly aroused severe fluctuations in oil prices and further 
put great pressure on the Chinese stock market. 

The fifth structural breakpoint is observed on February 4th, 2020 (see 
Table 5). It can be clearly seen from Fig. 4 that around this point, China’s 
stock market fluctuates violently, with volatility valuing at 2.091. This is 
undoubtedly caused by the big drop in oil on the COVID-19 fears. At the 
beginning of 2020, a new coronavirus disease had been swiping the 
world, namely COVID-19. In order to prevent the spread of the 
pandemic, most countries and regions successively adopted strict 
contain measures that restricted economic activities such as travel 
(Jiang et al., 2021), thus stagnating economic development and hit 
global oil demand. Besides, what can be found in the following months is 
that the volatility of the Chinese stock market continued to retain at a 
relatively high level (around 1.755), and reached a small peak value 
(1.915) on March 26th, 2020. For one thing, the oil price war exploded 
on March 8th after the dramatic collapse of an alliance between the 
OPEC cartel and Russia is an important reason. In the days after that, the 
price of WTI futures had plunged more than 26%. For another, due to 
reasons like inventory pressure and transportation costs under the 
epidemic, the WTI futures price has closed 305% down to − 37.63 dollars 
a barrel for the first time on April 20th. These things send shockwaves 
from the oil market to other markets, especially the stock market that 
has been reeling from the COVID-19 severely, through global finance. 

4. Conclusions 

To conclude, in this paper, a BEKK-GARCH-AFD approach is pro
posed to investigate the linkages between the international crude oil 
market and the Chinese stock market from the perspective of the time- 
frequency domain. Through the proposed approach, the present paper 
can not only determine the direction of the risk spillover between 
markets but also determine the specific time and extent of the impact of 
one market on another. Besides, the BEKK-GARCH-AFD approach con
siders both the time-domain and frequency-domain characteristics of the 
financial markets, and gives higher-resolution information concerning 
structural breaks in the frequency domain in contrast to the existing 
studies. Additionally, considering the influence of the COVID-19, evi
dence of risk transmission between the international oil market and the 
Chinese stock market is provided. 

Our empirical analysis is based on the daily data of WTI crude oil 
prices and China’s Shanghai composite index from January 1st, 2010 to 
February 10th, 2021. According to our empirical results, several 
following main findings are obtained in the current work. Firstly, due to 
the high sensitivity of the Chinese stock market to the volatile changes in 
the international oil price, the latter plays the role of risk sender, while 
the former is the receiver. Secondly, it is interesting to point out that, 
there are apparent structural breaks in the Chinese stock market. Oil 
supply and demand shocks caused by external events such as the strikes, 
the geopolitics, natural disasters, and some policies will make oil prices 
fluctuate dramatically, and inevitably put pressure on the Chinese stock 
market. In contrast, the influence of the bullish (bearish) events can be 
used to offset the bearish (bearish) events, thus balancing the oil market, 
which is beneficial for stabilizing the Chinese stock market. 

The implications of our study are three-fold. Firstly, different from 
the literature which concentrates on the linkages between the interna
tional oil market and the Chinese stock market, the present paper further 
confirms when and to what extent the former affects the latter. It em
phasizes the importance of paying attention to the influence of the 
structural breaks in the frequency domain on the markets due to external 
events. Secondly, this study is of great importance for understanding the 
interactive linkages between the international oil market and the Chi
nese stock market, which is beneficial for investors to manage portfolios 
risk by helping them decide whether to add an oil futures asset or a stock 
asset to their investment portfolio to hedge risks. Moreover, this study 
also provides significance for policymakers. Specifically, the results 
present that the fluctuation of the international oil market due to 
external events can stimulate the Chinese stock market. Therefore, 
policy-makers can quickly make countermeasures based on the histori
cal experience once similar external events occur in the future. 
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