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a b s t r a c t

In this paper, we propose a two-stage algorithm utilizing the Cauchy integral and the matrix-valued
adaptive Fourier decomposition (abbreviated as matrix AFD) to identify transfer functions of linear
time-invariant (LTI) multi-input multi-output (MIMO) systems in the continuous time case. In recent
work of Alpay et al. (2017), a theory of adaptive rational approximation to matrix-valued Hardy space
functions on the unit disk was established. The matrix-valued function theory has great potential in
applications, in views of the practice of its scalar-valued counterparts. The algorithm and application
aspects of the mentioned theory of Alpay et al. (2017) have not been developed. The theory was only
written for the unit disk case corresponding to the discrete time systems. The contributions of the
present paper are 3-fold. First, we construct an analogous adaptive approximation theory for complex
matrix-valued Hardy space functions defined on a half of the complex plane, corresponding to the
Laplace transforms of signals of finite energy whose Fourier transforms are supported on a half of the
frequency domain. The half plane model corresponds to signals defined in the whole axis range which
is an alternative case to signals defined in a compact interval. The second fold contribution lays on
maximal selection of the pair (a, P) where a is a point of the right-half plane and P is an orthogonal
projection. We show that the optimal selection of P is dependent on a when a is first fixed, that is
P = P(a), where P : a → P(a) has an explicit corresponding relation. Due to this relation we reduce
the maximal selection of the pair (a, P) to only that of the parameter a. This result can be extended to
the compact intervals case as well. The third fold is, with the precise rule from a to P(a), we develop
a practical algorithm for the adaptive approximation to the transfer function. Through an example we
show that the proposed algorithm is effective in both the noise-free and noisy cases.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

System identification has been having a long term develop-
ent motivated by the evolution of the neighbouring fields of
cience (Gevers, 2006) and has had a wide range of engineer-
ng applications (see, for instance, Natke and Cottin (1988)). It
onstructs mathematical models for dynamic systems from ob-
erved input–output data. Despite of the progresses, there are still
hallenges in this subject (see, for instance (Ninness, 2009)).
The two mainstreams of identification techniques are

rediction error identification and subspace identification
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(Katayama, 2005; Ljung, 1999; Overschee & Moor, 1996; Pin-
telon & Schoukens, 2012). Prediction error identification methods
(PEM) are based on the minimization of a prediction error cri-
terion to estimate the system parameters. It usually involves
non-linear optimization using iterative gradient search methods
and an initial model is required, which may lead to a local
minima. To reduce the computational burden and increase the es-
timation accuracy when we apply PEM for MIMO systems, some
novel estimation algorithms, for instance Ding and Chen (2005),
Liu, Xiao, and Zhao (2009), Ninness (2009), are studied. Subspace
identification methods are based on the projection theory in a
Hilbert space. The subspace methods are non-iterative, which
require to determine only one structural parameter, and do not
cause extra difficulty to process MIMO systems. Moreover, they
are numerically efficient due to use of robust tools such as QR
factorization and singular value decomposition (SVD) (Stoica &
Jansson, 2000). The subspace identification methods can be used
to provide a good initial state space parameterized estimation for

PEM to overcome the challenge in initialization (Mckelvey, 1995).
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n addition to the above mentioned two mainstreams the recent
apid developments of machine learning techniques and kernel
ethods shed their lights on applications to system identification.
Among the various methods in the study of system identifi-

ation, identification with rational orthogonal basis functions is
ffective from the perspective of approximation theory, which
xtends the system theory of Laguerre functions and Kautz func-
ions. It searches the ‘‘best approximating model’’ to the system
rom a priori chosen model set. The book (Heuberger, Hof, &
ahlberg, 2005) gathers the important contributions in this field
uring about 15 years around 2000. It is noted that these studies
ocus on the case of single-input single-output (SISO) systems.
e aim to give an identification method for MIMO systems
ased on the newly established theory on matrix-valued rational
rthogonal functions.
Potapov originally defined matrix-valued Blaschke–Potapov

actors up to a right multiplicative constant in the work (Potapov,
955). Inspired by this work, some researchers have developed
horough theories for matrix-valued functions (abbreviated as
vf’s) as extension of the classical Hardy space theory, including

ational matrix-valued Blaschke products, inner-outer factoriza-
ion for mvf’s, Beurling–Lax theorem for mvf’s, and other re-
ated topics (see, for instance, Alpay and Gohberg (1988a, 1988b),
rov and Dym (2008)). Based on those studies, authors of Al-
ay, Colombo, Qian, and Sabadini (2017) propose an adaptive
rthonormal decomposition method for mvf’s defined on the unit
isk D, whose scalar-valued case is the adaptive Fourier decom-
osition (AFD) method given in Qian and Wang (2011). AFD has
een receiving attentions in the last 10 years and has been suc-
essfully applied to SISO system identification (Chen, Mai, Zhang,
Mi, 2015; Fei, Mi, & Pan, 2016; Mi & Qian, 2011, 2014; Mi, Qian,
Li, 2016; Mi, Qian, &Wan, 2012). Being different from the classi-
al identification methods (Akcay & Ninness, 1998; Makila, 1991;
inness & Gustafsson, 1997; Wahlberg, 1994) using limited types
f pre-determined orthogonal basis functions, AFD iteratively and
daptively constructs rational orthogonal functions according to
he given function under the so called ‘‘maximal selection princi-
le’’. Practically, AFD gives optimal approximations to the given
ransfer functions by achieving fast convergence.

In this paper, we develop the adaptive orthonormal decompo-
ition method in Alpay et al. (2017) and apply it to MIMO system
dentification for continuous systems. For discrete systems, a
arallel identification procedure can be derived by utilizing the
riginal decomposition method in Alpay et al. (2017) with the
ame methodology as given in this paper. The contributions of
his paper are three folds:

(1) Referring to the existing theory of adaptive orthonormal
decomposition for mvf’s defined on the unit disk D, we de-
velop the counterpart theory for mvf’s defined on the right-
half complex plane Π . In case there is no ambiguity, we
call both the adaptive orthonormal decomposition methods
for functions belonging to the Hardy spaces Hp×q

2 (D) and
Hp×q

2 (Π ) as matrix AFD, and will not specify which context.
With this development a set of corresponding objects in
the half-plane context are specified and further used in the
mvf’s system identification.

(2) The maximal selection principle used in the matrix AFD in-
volves the selection of a parameter a in the right half-plane
Π and an orthogonal projection P . Utilizing a corollary of
the Poincaré Separation Theorem in the matrix inequalities
theory, we prove that the selection of P depends entirely
on the pre-selected a. Therefore, we find a convenient
way to solve the nonlinear optimization problem under
the maximal selection principle on the two independent
objects.
2

(3) Adapted to the system identification problem, we propose
a two-stage algorithm utilizing the Cauchy integral and
the matrix AFD defined on Π . The proposed algorithm,
in particular, gives rise to real coefficients in the rational
approximations to the transfer functions of the continuous
time systems. Last but not least, through some numerical
experiments, we show that the proposed matrix AFD and
the related algorithm are effective and converge fast.

The rest of the paper is organized as follows. Section 2 recalls
preliminary knowledge and gives the problem setting. Section 3
introduces the matrix AFD for the mvf’s space Hp×q

2 (Π ) and
proves a theorem, related to the maximal selection principle
in the matrix AFD, to show the precise formula of the optimal
orthogonal projection P with respect to a previously determined
a ∈ Π . Hp×q

2 (Π ) is the playground of the transfer functions of
the continuous systems. Section 4 presents a two-stage algorithm
utilizing the matrix AFD in Section 3 to identify a matrix-valued
transfer function. In Section 5, we give two theorems, one states
the convergence rate of the matrix AFD and the other gives an
upper bound for the identification process in the presence of
noise. Section 6 exhibits the numerical experiments. The pro-
posed algorithm gives promising approximation results. Some
conclusions are drawn in Section 7.

2. Preliminary and problem setting

We restrict our discussion to the following space.

Definition 1 (Hp×q
2 (Π )). Denote the open right-half complex

lane by Π = {s ∈ C : Re (s) > 0}, where Re means the real part.
For positive integers p and q, define Hp×q

2 (Π ) as the set containing
all Cp×q-valued functions whose entries belong to the Hardy 2-
space defined on Π , denoted by H2(Π ). It is known that all f (s) ∈

H2(Π ) have non-tangential boundary limits f (jy) where y ∈ R.
he norm of f (s) can be computed through its boundary limit, as
f ∥2

H2(Π ) =
1
2π

∫
R |f (jy)|2dy. The induced inner product is defined

by ⟨f , g⟩ =
1
2π

∫
R f (jy)g(jy)dy for f (s), g(s) ∈ H2(Π ). Denote ∗ as

he complex conjugate transpose. For F (s),G(s) ∈ Hp×q
2 (Π ), the

Cq×q-valued inner product is defined by

[F ,G] =
1
2π

∫
R
G(jy)∗F (jy)dy, (1)

where each entry of F (jy),G(jy) is the non-tangential boundary
limit of the corresponding entry of F (s),G(s) from the inside of

to the imaginary axis. The norm is defined by

F∥ =

√
trace[F , F ].

It is noted that if F (s) ∈ Hp×q
2 (Π ), then F (jy) belongs to the

mvf’s space Lp×q
2 (jR) whose entries belong to the square inte-

grable function space L2(jR). Obviously, the Lp×q
2 (jR) norm of F (jR)

satisfies ∥F∥Lp×q
2

= ∥F∥. Hp×q
2 (Π ) can be regarded as Cq×q right

Hilbert module (see in Lance (1994)), which is an extension of
Hilbert space for mvf’s space.

In this paper, we consider continuous LTI, MIMO and causal
systems. The transfer function G(s) satisfies Y (s) = G(s)U(s) where
Y (s) and U(s) are the Laplace transformations of the output y and
input u in the time domain. Moreover, we assume that, entries of
G(s) have no poles in the closed region Π = {s ∈ C : Re (s) ≥ 0},
which means that the systems are asymptotically stable. Thus,
G(s) ∈ Hp×q

2 (Π ).
In order to formulate the frequency domain system identifi-

cation problem, assume that some frequency response measure-
ments are given and corrupted by additive noise,

G (jy ) = G(jy ) + ν , (2)
measure k k k
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here the frequency yk belongs to a frequency nodes set ΩM
and νk is the matrix-valued noise. In general, we assume that
entries of νk are deterministic and bounded or obey certain prob-
ability distribution. About this, we will give a detailed discussion
later. Here, we consider a set of nodes ΩM = {±jyk, k =

1, 2, . . . , M
2 with 0 < y1 < y2 < · · · < yM

2
= T } where M is

a positive even integer and T > 0.
With the above assumption, we aim to find approximations

Gn(s) (n is a positive integer) of G(s) such that

lim
n,M→∞

ν→0

E∥G − Gn∥Lp×q
2

= 0. (3)

Here, E stands for the mathematical expectation and ∥ · ∥Lp×q
2

is
mentioned in Definition 1.

3. Matrix AFD for functions in Hp×q
2 (Π)

In this section, we introduce the matrix AFD method for func-
tions in Hp×q

2 (Π ). It is an adaptation of the decomposition theory
on the unit disk developed in Alpay et al. (2017). The method
involves, at each step, selections of a parameter a ∈ Π and
an orthogonal projection P of a prescribed rank to meet the
maximal selection principle. We will give an explicit formula for
the theoretically optimal P in terms of a prescribed a ∈ Π . The
section includes three parts: the mathematical foundations, the
matrix AFD and its convergence theorem, and the formulation of
the practical and optimal P .

3.1. Mathematical foundations

This part is the base of the iterative algorithm of the matrix
AFD introduced in Section 3.2. After supplying the basic and
necessary ingredients, we prove a key result, Theorem 5, which
plays an important role in the optimal parameter selection at each
iteration step and the convergence proof of the matrix AFD.

Definition 2 (Szegö Kernel on Π ). Denote the Szegö kernel on Π

by ea(s) =

√
2 Re(a)
s+a , a ∈ Π . The following properties hold:

a) ea(s) ∈ H2(Π ),
(b) ⟨ea, ea⟩ = 1,
(c) ∀f (s) ∈ H2(Π ), ⟨f , ea⟩ =

√
2 Re(a)f (a).

Furthermore, H2(Π ) is a reproducing kernel Hilbert space,
admitting the reproducing kernel ka(s) =

ea(s)√
2 Re(a) , a ∈ Π , and the

set D = {ea(s), a ∈ Π} is a dictionary of H2(Π ).

efinition 3 (Blaschke–Potapov Factor (Arov & Dym, 2008)). An
elementary Blaschke–Potapov factor on Π is defined as

Ba,P (s) = Ip − P + P
s − a
s + a

,

where a ∈ Π , p is a positive integer, P is a Cp×p-valued or-
thogonal projection satisfying P = P∗

= P2 and Ip is the p × p
identity matrix. If rank(P) = k, there exists a k × p matrix V =

v1, v2, . . . , vk]
∗ whose row vectors are orthonormal, i.e. VV ∗

=

k, such that P = V ∗V . It is noted that B−1
a,P (s) = Ip − P + P s+a

s−a .

With the above definitions, we give the following lemma and
theorem, being crucial for developing the matrix AFD, whose
proofs are given in Appendix A.

Lemma 4. For F (s) ∈ Hp×q
2 (Π ), let a0 ∈ Π, P0 be a p×p orthogonal

rojection and

0(s) = P0F (a0)ea0 (s)
√
2 Re(a0),

H(s) = F (s) − H0(s),
3

we have P0H(a0) = 0, [F , F ] = [H0,H0] + [H,H] and [H0,H0] =

2 Re(a0)F (a0)∗P0F (a0). Moreover, G(s) = B−1
a0,P0

(s)H(s) belongs to
p×q
2 (Π ) and [G,G] = [H,H].

heorem 5 (Maximal Selection Principle for mvf’s in Hp×q
2 (Π )). Let

(s) ∈ Hp×q
2 (Π ) and k0 ∈ {1, 2, . . . , p}. Then for all s ∈ Π and

rthogonal projections P of rank k0,
a) trace(2 Re(s)F (s)∗PF (s)) has a finite supremum.
b) there exist a0 ∈ Π and orthogonal projection P0 with rank k0
uch that trace(2 Re(a0)F (a0)∗P0F (a0)) is the maximum of
race(2 Re(s)F (s)∗PF (s)).

.2. Matrix AFD and its convergence theorem

In the previous part, we have made a full theoretical prepa-
ation. Based on those, we are ready to give the matrix AFD for
unctions in Hp×q

2 (Π ).
Let F (s) ∈ Hp×q

2 (Π ), k0 ∈ {1, 2, . . . , p}, and F1(s) = F (s). Ac-
ording to the maximal selection principle proved in Theorem 5,
e can select a1 ∈ Π and an orthogonal projection P1 ∈ Cp×p of
ank k0 such that trace(2 Re(a1)F1(a1)∗P1F1(a1)) attains its global
aximum among all possible selections. Denote H1(s) = F1(s) −

1F1(a1)ea1 (s)
√
2 Re(a1), then from Lemma 4, F (s) is decomposed

s

(s) = P1F1(a1)ea1 (s)
√
2 Re(a1) + H1(s), (4)

and there exists F2(s) ∈ Hp×q
2 (Π ) such that

H1(s) = Ba1,P1 (s)F2(s), [F2, F2] = [H1,H1].

hus the decomposition (4) of F (s) is rewritten as

(s) = P1F1(a1)ea1 (s)
√
2 Re(a1) + Ba1,P1 (s)F2(s).

urthermore, we can decompose F2(s) using the same strategy,
amely, select a2 ∈ Π and an orthogonal projection P2 ∈ Cp×p of
ank k0 according to the maximal selection principle. This gives,

2(s) = P2F2(a2)ea2 (s)
√
2 Re(a2) + H2(s)

= P2F2(a2)ea2 (s)
√
2 Re(a2) + Ba2,P2 (s)F3(s),

here H2(s) = F2(s) − P2F2(a2)ea2 (s)
√
2 Re(a2), F3(s) ∈ Hp×q

2 (Π )
nd [F3, F3] = [H2,H2]. This leads to the following decomposition
f F (s)

(s) =P1F1(a1)ea1 (s)
√
2 Re(a1)

+ Ba1,P1 (s)P2F2(a2)ea2 (s)
√
2 Re(a2)

+ Ba1,P1 (s)Ba2,P2 (s)F3(s).

terating step by step, we get two function sequences
F1(s), F2(s), . . .} ⊂ Hp×q

2 (Π ) and {H1(s),H2(s), . . .} ⊂ Hp×q
2 (Π )

atisfying the following recurrence relations

Hk(s) = Fk(s) − PkFk(ak)eak (s)
√
2 Re(ak),

Fk+1(s) = B−1
ak,Pk

(s)Hk(s).

ere, Hk(s) is called the kth standard remainder. Fk(s) is called the
th reduced remainder. Denote

Mk =PkFk(ak)
√
2 Re(ak),

Bk(s) =(
k−1∏
u=1

Bau,Pu (s))Pkeak (s), k = 1, 2, . . . ,

we obtain a decomposition of F (s) after N iterations as

F (s) =

N∑
k=1

Bk(s)Mk + (
N∏

u=1

Bau,Pu (s))FN+1(s),

where FN+1(s) ∈ Hp×q
2 (Π ).

We denote the N-partial sum as S (F )(s) =
∑N B (s)M .
N k=1 k k
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heorem 6 (Convergence of Matrix AFD). Let F (s) ∈ Hp×q
2 (Π ). Then

he above matrix AFD converges in the Hp×q
2 (Π ) norm sense, namely

imN→∞ ∥F − SN (F )∥ = 0. Moreover,

[SN (F ), SN (F )]

=

N∑
k=1

M∗

kMk =

N∑
k=1

2 Re(ak)Fk(ak)∗PkFk(ak).
(5)

The proof of this theorem is similar to the one for matrix AFD
or functions in Hp×q

2 (D) developed in Alpay et al. (2017). We omit
t here.

.3. Formulation of the practical and optimal P

In Theorem 5 we proved the existence of an optimal pair (a, P).
It is critical to propose a practical procedure to determine an
optimal pair (a, P) considering that the construction involves all
orthogonal projections with the prescribed rank. In the following
theorem, we give the precise corresponding rule between an
optimal P0 in relation to a pre-selected a0.

Theorem 7. Let F (s) ∈ Hp×q
2 (Π ) and k0 ∈ {1, 2, . . . , p}. Then an

ptimal pair (a0, P0) mentioned in Theorem 5 satisfies

trace(2 Re(a0)F (a0)∗P0F (a0))

2 Re(a0)
k0∑
l=1

λl(F (a0)F (a0)∗),

here λ1(·), λ2(·), . . . , λp(·) are the eigenvalues sorted in the de-
cending order. In addition, P0 = U∗

0U0 where U0 = [ϕ1, ϕ2, . . . ,

k0 ]
∗ and ϕ1, ϕ2, . . . , ϕk0 are the eigenvectors corresponding to the

irst k0 largest eigenvalues of F (a0)F (a0)∗ satisfying U0U∗

0 = Ik0 .

Proof. We just need to show that the maximum of
trace(2 Re(s)F (s)∗PF (s)) can be obtained by only associating it
with the variable s.

From Definition 3, there exists a k0 × p matrix V satisfying
V ∗

= Ik0 such that P = V ∗V . Denote Q1 = PF (s)F (s)∗ and
2 = VF (s)F (s)∗V ∗, then

race(Q1) = trace(Q2) =

k0∑
l=1

λl(Q2)
(a,b,c)
=

k0∑
l=1

λl(Q1),

ecause of the following basic results in linear algebra (see for
nstance (Horn & Johnson, 1990)),
a) let A ∈ Cp×q, B ∈ Cq×p, AB and BA have the same nonzero
igenvalues. Moreover, rank(AB) ≤ min{rank(A), rank(B)}.
b) the number of the nonzero eigenvalues of a square matrix A
multiplicity included) ≤ rank (A).
c) Q2 is a positive semidefinite matrix and all of its eigenvalues
0.
Together with Lemma 16 in Appendix B and the fact that

(s)F (s)∗ is a positive semidefinite matrix, we have

trace(2 Re(s)F (s)∗PF (s))

=2 Re(s)trace(Q1) = 2 Re(s)
k0∑
l=1

λl(Q1)

∗)
≤2 Re(s)

k0∑
l=1

λl(F (s)F (s)∗).

ere, ‘‘=’’ in the above inequality (∗) holds if and only if P = U∗U
ollowing the statement of Lemma 16, namely columns of U∗ are
et to be the orthonormal eigenvectors corresponding to the first
largest eigenvalues of F (s)F (s)∗.
0

4

Therefore, we note that by searching the maximum of
2 Re(s)

∑k0
l=1 λl(F (s)F (s)∗), which is only associated with the vari-

able s, we can obtain the maximum of trace(2 Re(s)F (s)∗PF (s)). In
addition, the optimal P0 can be represented by the optimal a0
using the eigenvectors of F (a0)F (a0)∗. □

Remark 8. Due to (5), we conclude that the maximal selection
principle guarantees that at each iteration, the norm increasing of
SN (F ) is maximal. Here, the optimal pair (ak, Pk) at each iteration
is not unique since the optimal ak is not unique. In addition,
according to Theorem 7, we notice that at each iteration, by pre-
scribing a larger k0, which is the rank of the orthogonal projection,
we obtain a larger norm increasing of SN (F ).

4. Two-stage procedure for frequency-domain MIMO system
identification

To apply the decomposition method introduced in Section 3
to MIMO system identification, we design a two-stage process
referring to the work in Gu and Khargonekar (1992), Mi and Qian
(2011) and Mo, Qian, and Mi (2015). In the first stage, we use
the Cauchy integral to formulate an analytic mvf whose boundary
value is the frequency response of the transfer function. In the
second stage, we decompose the analytic mvf obtained in the
previous stage utilizing the matrix AFD and use the N-partial sum
to approximate the transfer function.

4.1. The first stage

In the classical Hardy space theory, the following results in-
volving Cauchy integral representation of the Hardy space on the
half plane are well known (see, for instance, Garnett (1987), Li,
Deng, and Qian (2016, 2018)). Let f (jy) ∈ L2(jR). The Cauchy
integral of f (jy) is defined by

C(f )(s) =
1

2π j

∫
R

f (jy)
y + js

dy, s ∈ Π, (6)

where Π is the right-half plane. Then C(f )(s) ∈ H2(Π ) and there
xists a constant C > 0 such that

C(f )∥H2(Π ) ≤ C∥f ∥L2(jR),

here the L2(jR) norm is ∥f ∥2
L2(jR)

=
1
2π

∫
R |f (jy)|2dy. Conversely,

for all f (s) ∈ H2(Π ), f (s) is the Cauchy integral of its boundary
imit on the imaginary axis f (jy), namely f (s) = C(f )(s).

Based on the above results, given the Cp×q-valued frequency
esponse G(jy) = (glm(jy)), y ∈ R, by taking the Cauchy integral
f each entry glm(jy), we construct the analytic mvf F (s) as

F (s) = C(G)(s),

nd there exists a constant C > 0 such that

∥F∥
2

=

p∑
l=1

q∑
m=1

∥C(glm)∥2
H2(Π )

≤C
p∑

l=1

q∑
m=1

∥glm∥
2
L2(jR) = C∥G∥

2.

(7)

Given some measurements of the frequency response,

{Gmeasure(±jyk)}
M
2
k=1 as mentioned in Section 2, we can apply the

classical interpolatory quadrature methods (see, for instance
(Dahlquist & Björck, 2008; Sun & Dang, 2019)) to calculate the
Cauchy integral in (6). In this paper, we use the basic rectangular
interpolation to construct a step function Ĝ(jy), whose value
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efined outside a finite interval is equal to 0, to approximate G(jy)
s below.

Ĝ(jy) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(jyk), yk ≤ y < yk+1

and k = −
M
2 , . . . ,−1,

G(jyk+1), yk < y ≤ yk+1
and k = 0, . . . , M

2 − 1,
0, y < y

−
M
2

or y > yM
2
,

(8)

where we set y0 = 0. It is easy to verify that C(Ĝ)(s) = C(Ĝ)(s).
Denote Ĝmeasure(jy) as the function obtained by (8) when we use
the noisy frequency response Gmeasure(jyk) in place of G(jyk), then
in the noise-free case, the analytic mvf F (s) = C(Ĝmeasure)(s)
satisfies the symmetric property as the transfer function does,
i.e., F (s) = F (s).

The Cauchy integral method to compute the first stage analytic
pproximation is referred to Qian, Zhang, and Li (2011).

emark 9. In practice, frequency response functions are often
easured in frequency bands that are away from the zero fre-
uency. The Carleman Theorem asserts that if boundary limits
f a Hardy Hp (p ∈ [1, ∞)) function are known on any set of
ositive Lebesgue measure, then the Hardy space function can
e fully recovered from the related Carleman formula (Aizen-
erg, 1993). According to this result, on any frequency band of
ositive Lebesgue measure, practically being away from the zero
requency, if one takes a set of dense enough frequency response
easurements, then one can recover the corresponding transfer

unction.

.2. The second stage

Applying the matrix AFD to F (s) = C(Ĝmeasure)(s) constructed
n the first stage, we obtain the N-partial sum SN (F )(s) of F (s).
e use SN (F )(s) to construct an approximation sequence to G(s)
ith real coefficients. Denote by S̃N (F )(s) the function obtained
y taking the conjugates of the coefficients of SN (F )(s), and set

SN (F )(s) =
SN (F )(s) + S̃N (F )(s)

2
.

Then the following theorem holds.

Theorem 10. Let F (s) ∈ Hp×q
2 (Π ). Applying the matrix AFD to F (s),

then RSN (F )(s) ∈ Hp×q
2 (Π ) and RSN (F )(s) is a mvf whose elements

are rational functions having real coefficients and with the same
force of approximation to F (s).

Proof. Given F (s) ∈ Hp×q
2 (Π ), we note that SN (F )(s) ∈ Hp×q

2 (Π )
and

∥S̃N (F )∥2
= trace(

1
2π

∫
R
SN (F )(−jy)

∗

SN (F )(−jy)dy)

= ∥SN (F )∥2.

herefore, RSN (F )(s) ∈ Hp×q
2 (Π ).

RSN (F )(s) is a mvf whose elements are rational functions of real
oefficients due to the relations

RSN (F )(s) =
SN (F )(s) + S̃N (F )(s)

2

=
S̃N (F )(s) + SN (F )(s)

2
= RSN (F )(s).

Furthermore, since ∥S̃N (F ) − F∥ = ∥SN (F ) − F∥,

∥RSN (F ) − F∥ ≤
1
2
∥S̃N (F ) − F∥ +

1
2
∥SN (F ) − F∥

= ∥SN (F ) − F∥.

Thus, RSN (F )(s) is an approximation of F (s) of the same force. □
5

5. Convergence rate and error analysis

In this section, we give an estimation for the convergence rate
of the matrix AFD and use it to analyse the approximation error
of the two-stage algorithm proposed in Section 4.

5.1. Convergence rate of matrix AFD

Define a subset of Hp×q
2 (Π ) as

H(D, R) ={F (s) ∈ Hp×q
2 (Π ) : F (s) =

∞∑
k=1

Ckewk (s),

where Ck ∈ Cp×q, wk ∈ Π, and
∞∑
k=1

√
trace(C∗

k Ck) < R}, R > 0.

We analyse the convergence rate of matrix AFD within H(D, R).

Proposition 11. Let F (s) ∈ H(D, R). Then ∥F∥ < R.

roof. Let F (s) = (flm(s)) ∈ H(D, R). By directly computing
ccording to the triangle inequality and the Cauchy–Schwartz
nequality, we obtain

∥F∥
2

⏐⏐trace[F ,

∞∑
k=1

Ckewk ]
⏐⏐

⏐⏐trace( ∞∑
k=1

C∗

k

⎡⎢⎣
⟨
f11, ewk

⟩
· · ·

⟨
f1q, ewk

⟩
...

...⟨
fp1, ewk

⟩
· · ·

⟨
fpq, ewk

⟩
⎤⎥⎦)

⏐⏐
≤

∞∑
k=1

⏐⏐trace(C∗

k (
⟨
flm, ewk

⟩
))
⏐⏐

≤

∞∑
k=1

√
trace(C∗

k Ck)
√
trace((

⟨
flm, ewk

⟩
)∗(

⟨
flm, ewk

⟩
))

≤

∞∑
k=1

√
trace(C∗

k Ck)

√ p∑
l=1

q∑
m=1

∥flm∥
2
H2(Π )

=

∞∑
k=1

√
trace(C∗

k Ck)∥F∥.

Therefore, ∥F∥ ≤
∑

∞

k=1

√
trace(C∗

k Ck) < R. □

The following theorem and its proof are suitable adaptations
of the scalar-valued case.

Theorem 12. Let F (s) ∈ H(D, R). Use matrix AFD for Hp×q
2 (Π )

o decompose F (s). Denote the kth remainder by Rk(s) = F (s) −

k−1(F )(s). If at each iteration of applying the maximal selection
rinciple, we select au ∈ Π and the orthogonal projection Pu of full
ank, i.e., rank(Pu) = p, then the kth remainder satisfies

Rk∥ ≤
R

√
k
.

Proof. We adopt the notations of Section 3. Since {Bu(s)} is an
orthonormal system, we have

[F (·), Bk(·)] = [Rk(·), Bk(·)] = Mk.

Then

∥Rk+1∥
2

=trace[Rk(·) − Bk(·)Mk, Rk(·) − Bk(·)Mk]

2 ∗

=∥Rk∥ − trace(MkMk).
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f F (s) ∈ H(D, R), there exist sequences {wk} ⊂ Π and {Ck} ⊂

Cp×q such that F (s) =
∑

∞

k=1 Ckewk (s). Hence, on one hand,

∥Rk∥
2

=trace[Rk(·), Rk(·)] = trace[Rk(·), F (·)]

=trace[Rk(·),
∞∑
k=1

Ckewk (·)]

=trace(
∞∑
k=1

C∗

k Rk(wk)
√
2 Re(wk))

≤

∞∑
k=1

√
2 Re(wk)

√
trace(C∗

k Ck)
√
trace(Rk(wk)∗Rk(wk))

≤

∞∑
k=1

√
trace(C∗

k Ck) sup
k

√
2 Re(wk)trace(Rk(wk)∗Rk(wk))

≤R sup
k

√
2 Re(wk)trace(Rk(wk)∗Rk(wk)).

On the other hand, since B−1
a,P (s)

∗B−1
a,P (s) ≥ Ip for s ∈ Π , we have

trace(M∗

kMk)
= sup

s∈Π
P of rank p

trace(2 Re(s)Fk(s)∗PFk(s))

= sup
s∈Π

2 Re(s) trace(Fk(s)∗Fk(s))

= sup
s∈Π

2 Re(s) trace((
k−1∏
u=1

Bak,Pk (s)
−1Rk(s))∗

k−1∏
u=1

Bak,Pk (s)
−1Rk(s))

≥ sup
s∈Π

2 Re(s)trace(Rk(s)∗Rk(s))

≥ sup
wk

2 Re(wk)trace(Rk(wk)∗Rk(wk)).

Combining the above two aspects, we have trace(M∗

kMk) ≥
∥Rk∥4

R2
.

hus,

Rk+1∥
2

≤ ∥Rk∥
2
−

∥Rk∥
4

R2 = ∥Rk∥
2(1 −

∥Rk∥
2

R2 ).

rom Proposition 11, we know ∥R1∥ = ∥F∥ < R. According to the
Lemma 3.3 in Qian and Wang (2013), we obtain that ∥Rk∥ ≤

R
√
k
.

he proof is complete. □

.2. Error analysis

In this part, we give an upper bound for the approximation
rror of the two-stage process designed in Section 4 for sys-
em identification in the presence of noise. Given measurements
Gmeasure(jyk)}, in the first stage, we construct an analytic mvf
(s) = C(Ĝmeasure)(s) using the measurements. In the second stage,
e apply the matrix-valued AFD to F (s) and use RSN (F )(s) =

RN (F )(s)+S̃N (F )(s)
2 to approximate the transfer function G(s). Due to

he two-stage process, we divide the whole approximation error
nto two parts, one is caused by the measurements and compu-
ations, the other is caused by the truncated partial sum SN (F )(s).
n the following theorem, we analyse the above two parts sep-
rately, leading to an upper bound for the whole approximation
rror.

heorem 13. Assume that each element of G(jyk) is corrupted
y additive noise νk, i.e., Gmeasure(jyk) = G(jyk) + νk, ±k =

, 2, . . . , M
2 with 0 < y1 < y2 < · · · < yM

2
= T , νk = ν−k, and νk

satisfies one of the following two conditions:
6

(1) All entries are bounded. We denote by |νk| < ϵ for a small value
ϵ > 0.
(2) All entries are subjected to a complex Gaussian distribution
NC(0, σ 2) and the real and imaginary parts are independent and
have equal variance σ2

2 . We denote this by νk ∼ NC (0, σ 2). This
condition is based on the fact that after a discrete Fourier trans-
form, filtered white noise is asymptotically circular complex normally
distributed (Picinbono, 1993; Pintelon & Schoukens, 2012).

If F (s) ∈ H(D, R) and the frequency y belongs to a finite interval
[−T , T ] where T > 0, then E∥RSN (F ) − G∥

2 has an upper bound E
as below:

E =

{
2R2
N + 8CpqT (∆2

+ ϵ2), when |ν| < ϵ,

2R2
N + 8CpqT (∆2

+ σ 2), when ν ∼ NC (0, σ 2).

where ∆ is the maximum of all elements in the matrix maxk
maxy∈[yk,yk+1) |G(jy) − G(jyk)|. Furthermore,

lim
N,M→∞

ν→0

E∥RSN (F ) − G∥ = 0. (9)

Proof. Due to F (s) = C(Ĝmeasure)(s) and G(s) = C(G)(s), by applying
the triangle inequality and the norm inequality (7), we note that

E∥SN (F ) − G∥
2

≤2E∥SN (F ) − F∥
2
+ 2E∥C(Ĝmeasure) − C(G)∥2

≤2E∥SN (F ) − F∥
2
+ 4CE∥Ĝ − G∥

2
+ 4CE∥ν∥

2.

Here, ∥C(Ĝmeasure) − C(G)∥2 causes the first-stage error; and
∥SN (F ) − F∥

2 causes the second-stage error.
Denote ∆ as the maximum of all elements in the matrix

maxk maxy∈[yk,yk+1) |G(jy) − G(jyk)|. Together with the
convergence rate in Theorem 12, we have
(1) when |νk| < ϵ,

E∥SN (F ) − G∥
2

≤
2R2

N
+ 4Cpq

∫ T

−T
(∆2

+ ϵ2)dy

≤
2R2

N
+ 8CpqT (∆2

+ ϵ2).

2) when νk ∼ NC(0, σ 2),

∥SN (F ) − G∥
2

≤
2R2

N
+ 4Cpq

∫ T

−T
(∆2

+ E|ν|
2)dy

≤
2R2

N
+ 8CpqT (∆2

+ σ 2).

ince ∥S̃N (F ) − G∥ = ∥SN (F ) − G∥, we obtain

∥RSN (F ) − G∥
2

=E∥
SN (F ) + S̃N (F )

2
− G∥

2

≤
1
2
E(∥SN (F ) − G∥

2
+ ∥S̃N (F ) − G∥

2).

he proof is complete. □

emark 14. Theorem 13 declares the convergence of the ap-
roximation error when the noise level ν tends to zero. It may
e concluded from Pintelon and Schoukens (2012) that ν → 0
olds, where a periodic excitation consisting of a fixed number of
armonically related frequencies is used, and the number of the
easured time domain samples Q tends to infinity. It is noted

hat in this case the standard deviation of the additive frequency
oise ν at the excited DFT frequencies decreases as O(Q−

1
2 ). It

is worth emphasizing that for broadband random excitations we
cannot conclude the convergence formula (9). That is because
the standard derivation of the additive frequency noise ν at the
excited DFT frequencies is of the level O(Q 0), amounting that the
noise level ν remains steady. However, the upper bound obtained
in Theorem 13 is still valid.
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Fig. 1. The REs obtained by the matrix AFD in the previous 5 iterations when we
hoose the orthogonal projection with different rank values using the noise-free
easurements with the number of measurements M = 4000. The frequency

yk} of the measurements belongs to the frequency band [−200, 200]. The REs
are shown using a base-10 logarithmic scale.

6. Numerical experiments

We give an example to show the effectiveness of the pro-
posed algorithm. Given measurements of any function F (s) and
ts approximation Fn(s), the relative error (RE) below is defined
o evaluate the approximating performance:

E =

∑M
k=1 trace[(F (jyk) − Fn(jyk))∗(F (jyk) − Fn(jyk))]∑M

k=1 trace(F (jyk)∗F (jyk))
.

xample. We consider a continuous time system used in Garnier,
ilson, Bastogne, and Mensler (2008) and show it in the following
ransfer function form:

(s) =
1

E(s)

[g11(s) g12(s) g13(s)
g21(s) g22(s) g23(s)
g31(s) g32(s) g33(s)

]
where

E(s) =s3 + 8.6813s2 + 26.3493s + 23.4799;

g11(s) = − 4.7167s2 − 31.4326s − 70.9014;

g12(s) =1.4503s2 + 9.7398s + 11.5931;

g13(s) =1.4213s2 + 4.4633s + 6.7293;

g21(s) = − 2.6966s2 − 10.7190s − 5.4670;

g22(s) = − 2.3246s2 − 6.4052s − 4.3889;

g23(s) =4.8762s2 + 26.5256s + 28.5751;

g31(s) = − 0.5145s2 + 3.3836s + 2.4385;

g32(s) =3.2158s2 + 22.8679s + 27.2990;

g33(s) =3.1153s2 + 6.9512s + 3.7446.

In Fig. 1, we show the REs obtained by the matrix AFD when
we set the chosen orthogonal projection by different ranks as
1, 2, 3 respectively in the noise-free case. Being consistent with
the theoretical analysis in Theorem 7 and the statement in Re-
mark 8, the larger the rank of the orthogonal projection is, the
faster the algorithm converges. In addition, the algorithm con-
verges to a satisfactory approximation within several iterations
in all the 3 cases. As supplement to Fig. 1, we give the REs data
when we choose orthogonal projection with different ranks and
different numbers of measurements by using noise-free and noisy
measurements respectively in Table 1. From the table, we find
that under interference of noise, the algorithm is still effective.
7

Table 1
The REs obtained by the matrix AFD with different types of noise: (1) The noise
NC(0, σ 2) is Gaussian, σ being set to be δ maxk {|G(jyk)|} where δ is a parameter.
(2) Bounded noise ν satisfies |ν| < ϵ, ϵ being set to be δ maxk {|G(jyk)|} where
δ is a parameter. (3) N is the number of iterations. (4) k0 is the rank of the
chosen orthogonal projection. (5) M is the number of measurements.
(a) noise-free

M N 1 2 3 4 5

2000
k0 = 1 0.4486 0.2031 0.0498 0.0053 9.97e−04
k0 = 2 0.2566 0.0578 0.0032 6.037e−04 1.18e−04
k0 = 3 0.1012 0.0110 5.91e−04 1.57e−04 1.15e−04

4000
k0 = 1 0.4485 0.2048 0.0505 0.0055 0.0011
k0 = 2 0.2566 0.0578 0.0032 6.20e−04 1.19e−04
k0 = 3 0.1012 0.0110 5.77e−04 1.39e−04 8.91e−05

(b) Gaussian noise with δ = 0.01

M N 1 2 3 4 5

2000
k0 = 1 0.4486 0.1966 0.0483 0.0050 9.97e−04
k0 = 2 0.2565 0.0575 0.0035 6.56e−04 1.97e−04
k0 = 3 0.1012 0.0111 6.33e−04 2.05e−04 1.71e−04

4000
k0 = 1 0.4486 0.1961 0.0491 0.0048 9.31e−04
k0 = 2 0.2567 0.0570 0.0033 6.41e−04 1.72e−04
k0 = 3 0.1012 0.0111 6.03e−04 1.65e−04 1.18e−04

(c) Gaussian noise with δ = 0.02

M N 1 2 3 4 5

2000
k0 = 1 0.4487 0.2174 0.0521 0.0061 0.0014
k0 = 2 0.2560 0.0593 0.0033 9.33e−04 4.40e−04
k0 = 3 0.1013 0.0112 7.91e−04 4.57e−04 5.23e−04

4000
k0 = 1 0.4486 0.1941 0.0480 0.0051 0.0011
k0 = 2 0.2569 0.0595 0.0029 7.72e−04 2.74e−04
k0 = 3 0.1012 0.0112 7.10e−04 3.89e−04 3.74e−04

(d) bounded noise with δ = 0.01

M N 1 2 3 4 5

2000
k0 = 1 0.4486 0.2000 0.0489 0.0052 9.77e−04
k0 = 2 0.2564 0.0571 0.0033 6.17e−04 1.38e−04
k0 = 3 0.1012 0.0110 5.83e−04 1.52e−04 1.09e−05

4000
k0 = 1 0.4486 0.2054 0.0503 0.0056 0.0011
k0 = 2 0.2566 0.0577 0.0033 6.46e−04 1.16e−04
k0 = 3 0.1012 0.0110 5.77e−04 1.39e−04 9.72e−05

(e) bounded noise with δ = 0.02

M N 1 2 3 4 5

2000
k0 = 1 0.4486 0.1943 0.0484 0.0050 0.0011
k0 = 2 0.2565 0.0575 0.0033 7.09e−4 2.01e−04
k0 = 3 0.1012 0.0111 6.81e−04 2.63e−04 2.95e−04

4000
k0 = 1 0.4486 0.1963 0.0484 0.0049 9.52e−04
k0 = 2 0.2566 0.0571 0.0035 6.51e−04 1.73e−04
k0 = 3 0.1012 0.0111 6.24e−04 1.98e−04 1.94e−04

Besides, the relative errors are not sensitive to the noise level and
the number of measurements. As in the scalar-valued cases, this
shows the robustness of the matrix AFD. In Table 2, we list the
parameter of the Blaschke–Potapov factor chosen by the matrix
AFD in the previous 3 iterations in both the noise-free and noisy
case. We choose to show the results corresponding to the case
δ = 0.02 and M = 4000 in Table 1. As we can see from the table,
the selection of the parameter is relatively stable.

As comparison, we use the output error model estimation (OE)
in the system identification toolbox of matlab to estimate the
transfer function as well.

In the OE method, the transfer function is assumed to be a
rational function G(s) =

B(s)
A(s) where B(s), A(s) are polynomials and

the method gives an estimation for the coefficients of B(s), A(s).
Considering that it is possible for the OE method to give com-
plex valued estimation for the coefficients, we apply the same
technique mentioned in Section 4.2 to obtain a transfer function
estimation with real coefficients. In Table 3, we present the rel-
ative errors obtained by the OE method with different degrees
of B(s), A(s), different types of noisy data and different numbers
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he parameters {an} of the Blaschke–Potapov factor selected by the matrix AFD
n the previous 3 iterations with different types of noise: (1) The noise NC(0, σ 2)
is Gaussian, σ being set to be 0.02maxk {|G(jyk)|}. (2) Bounded noise ν satisfies
|ν| < ϵ, ϵ being set to be 0.02maxk {|G(jyk)|}. (3) The number of measurements
is 4000. (4) N is the number of iterations. (5) k0 is the rank of the orthogonal
projection.
(a) k0 = 1

N noise-free Gaussian noise bounded noise

1 2.1277 2.0957 2.1277
2 3.5319 + 1.0638j 3.5000 + 1.2057j 3.4681 + 1.2057j
3 2.8936 − 1.0638j 2.8936 − 1.2057j 2.8936 − 1.2057j

(b) k0 = 2

N noise-free Gaussian noise bounded noise

1 2.5106 2.5106 2.5106
2 2.9255 2.8936 − 0.0709j 2.8936 − 0.0709j
3 3.2128 3.1489 + 0.0709j 3.3404 + 0.0709j

(c) k0 = 3

N noise-free Gaussian noise bounded noise

1 2.6064 2.6064 2.6064
2 2.7660 2.7021 2.7660
3 2.7340 2.7340 − 0.0709j 2.6064 − 0.0709j

Table 3
The REs obtained by the OE method with different degrees of the polynomials
B(s), A(s) and different kinds of noise (the additive Gaussian noise N(0; σ 2) and
the additive bounded noise with bound ϵ), d representing the degree, degree
B(s) = degree A(s), the level of the noise as σ (or ϵ) equal to the maximum
of the matrix δ maxk{|G(jyk)|} with δ = 0.01, 0.02 respectively, M being the
number of the measurements.
(a) M = 2000

d noise-free Gaussian noise Bounded noise

– δ = 0.01 δ = 0.02 δ = 0.01 δ = 0.02

1 0.0124 0.0117 0.0137 0.0132 0.0512
2 2.17e−04 0.0177 0.0206 0.0100 0.0090
3 4.13e−08 0.0110 0.0390 0.0013 0.0445
4 1.62e−11 0.0337 0.0767 2.07e−04 0.0517
5 7.31e−10 0.0012 0.0088 2.97e−04 4.47e−04

(b) M = 4000

d noise-free Gaussian noise Bounded noise

– δ = 0.01 δ = 0.02 δ = 0.01 δ = 0.02

1 0.0124 0.0132 0.0133 0.0116 0.0116
2 2.17e−04 0.0103 0.0357 0.0087 0.0116
3 4.01e−08 0.0082 0.0107 0.0109 0.0526
4 2.77e−07 0.0190 0.1402 0.0023 0.0138
5 2.35e−07 0.0041 0.8277 3.96e−04 0.0016

of the measurements. We found that even in the noise free case,
the RE when d = 3, which is the order of the true system, is not
the smallest. It is unexpected, from the theory of OE implies that
the OE method gives asymptotically unbiased estimation. This
phenomenon is caused by sinking into a local minimum inherited
from the gradient type methods. The crucial thing is the initial
state to start with. In the noisy case, the OE method does not
give results as stable as those given by the proposed method.
The results of the OE method can be greatly influenced by the
noise. The fact is that due to the large number of the estimated
parameters, MIMO systems are likely to get stuck in local minima
and unstable when applying the PEM methods. Table 4 shows
the REs obtained by the OE method starting from an initialization
system deduced from the subspace method (n4sid in Matlab). It
is observed that in the noise free case, the RE when d = 3 is the
smallest and almost 0, and in the noisy case the results are more
stable. Although the OE method seems superior, in the OE model
the initialization is important and the degree numbers of B(s), A(s)
re critical. It requires an appropriate model order selection, for
xample, using the AIC or MDL criterion.
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Table 4
The REs obtained by the OE method under an initialization derived by the
subspace method with notations as the same as those in Table 3.
(a) M = 2000

d noise-free Gaussian noise Bounded noise

– δ = 0.01 δ = 0.02 δ = 0.01 δ = 0.02

1 0.0387 0.0384 0.0399 0.0382 0.0387
2 0.0093 0.0081 0.0064 0.0072 0.0088
3 3.13e−32 1.32e−04 4.92e−04 3.50e−04 1.38e−04
4 4.18e−32 1.84e−04 6.43e−04 4.45e−04 2.24e−04
5 4.44e−32 2.18e−04 8.87e−04 6.21e−04 2.77e−04

(b) M = 4000

d noise-free Gaussian noise Bounded noise

– δ = 0.01 δ = 0.02 δ = 0.01 δ = 0.02

1 0.0387 0.0387 0.0370 0.0384 0.0368
2 0.0093 0.0087 0.0089 0.0073 0.0106
3 3.83e−32 5.24e−05 3.00e−04 2.69e−05 7.31e−05
4 4.17e−32 6.23e−05 3.73e−04 3.04e−05 8.96e−05
5 5.01e−32 9.48e−05 4.44e−04 4.33e−05 1.42e−04

Table 5
The REs obtained by the subspace method using the function n4sid in Matlab
with notations as the same as those in Table 3.
(a) M = 2000

d noise-free Gaussian noise Bounded noise

– δ = 0.01 δ = 0.02 δ = 0.01 δ = 0.02

1 0.4521 0.4520 0.4530 0.4520 0.4518
2 0.2083 0.2088 0.2077 0.2081 0.2078
3 2.71e−30 5.92e−05 0.0046 3.40e−05 2.50e−04
4 3.69e−30 1.50e−04 0.0073 8.89e−05 2.81e−05
5 2.38e−29 0.0051 0.0553 2.61e−04 0.0033

(b) M = 4000

d noise-free Gaussian noise Bounded noise

– δ = 0.01 δ = 0.02 δ = 0.01 δ = 0.02

1 0.4521 0.4526 0.4525 0.4519 0.4519
2 0.2083 0.2082 0.2073 0.2083 0.2080
3 2.35e−30 5.11e−05 9.52e−04 1.27e−05 7.31e−05
4 6.38e−30 7.16e−05 0.0012 1.59e−05 1.32e−04
5 6.02e−30 1.31e−04 0.0624 3.71e−05 4.74e−04

In Table 5, we show the REs obtained by the subspace method
(n4sid in Matlab). Comparing Table 4 with Table 5, it is true that
we achieve more accurate approximations by applying the OE
method starting from an initialization obtained by the subspace
method than by simply applying the subspace method.

We give some figures to intuitively compare the approxima-
tions obtained by four methods, which are the proposed method,
the OE method, the OE method with an initialization deduced
from the subspace method and the subspace method, with the
true system in the noisy case.

(1) In Fig. 2, we show the Nyquist plots of the 11-th entry of
the true system, the 11-th entries of the approximations
obtained by the proposed method with different iteration
numbers, the 11-th entries of the approximations obtained
by the OE method with different degrees based on an
initialization deduced from the subspace method and the
approximations obtained by the subspace method with
different degrees.

(2) In Figs. 3 and 4, we separately show the singular values
of the matrix-valued frequency response G(jy) at differ-
ent frequencies {yk} of the true system, the approxima-
tion systems obtained by the proposed method with dif-
ferent ranks of the selected orthogonal projections, the
approximation systems obtained by the OE method, the
approximation systems with an initialization and the ap-
proximation systems obtained by the subspace method.
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Fig. 2. The Nyquist plots of the true system, the noisy system, the approximations obtained by the proposed method, the approximations obtained by the OE method starting
from an initialization deduced by the subspace method (n4sid in Matlab) and the approximations obtained by the subspace method (n4sid in matlab) for the entry at the
first row and the first column in the transfer function of the example. The subfigure in the first row and the first column shows the Nyquist plots of the noise-free and
noisy frequency response data. Here the noise is additive Gaussian noise and δ = 0.01. The other subfigures are the Nyquist plots of the approximations obtained by using
the noisy data but setting different iteration numbers N (for the proposed method) and different degree values d of B(z), A(z) (for the OE method). k0 represents the rank
of the selected orthogonal projection at each iteration by the proposed method. In the title of these subfigures, we indicate the value of N and d. Here, the number of the
measurements M = 4000.

Fig. 3. The singular values of the frequency responses of the true system and the approximations obtained by the proposed method in the noisy case when the iteration
number N = 1, 5. Here, the noise is the additive Gaussian noise and δ = 0.01 and the number of the measurements M = 4000. In the 3 subfigures of each row, we successively
show the 3 singular values of the 3 × 3-valued frequency responses in descending order. sv stands for the order number of the sorted singular values. In the 3 subfigures
of each column, we successively show the singular values of the approximations obtained by the proposed method by choosing orthogonal projections with rank = 1,2,3. In
all the subfigures, when the labels of the left y axis and the right y axis are both presented, the data on the red line is read according to the right y axis. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

9
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n

Fig. 4. The singular values of the frequency responses of the true system, the approximations obtained by the OE method, the approximations obtained by the OE method
with an initialization and the approximations obtained by the subspace method in the noisy case when the degree number d = 1, 3. Here, the noise is the additive Gaussian
oise and δ = 0.01 and the number of the measurements M = 4000. In the 3 subfigures of each row, we successively show the 3 singular values of the 3 × 3-valued

frequency responses in descending order. sv stands for the order number of the sorted singular values. In the first row, the singular values of the approximations obtained by
directly applying the OE method are shown. In the second row, the singular values of the approximations obtained by applying the OE method starting from an initialization
using the subspace method are shown. In the third row, the singular values of the approximations obtained by directly applying the subspace method (n4sid in Matlab) are
shown. In all the subfigures, when the labels of the left y axis and the right y axis are both presented, the data on the red line is read according to the right y axis.
Among all the singular values of the frequency response
G(yk) at certain frequency yk, it is observed that in terms of
the singular values, the smaller the true singular value is,
the more difficult to obtain accurate approximations. The
numerical experiments show that the true system is well
approached by the proposed method when the iteration
number N = 5 and the rank of the selected orthogonal
projection rank = 3, and is also well approached by the
OE method starting from an initialization deduced by the
subspace method when the degree number d = 3.

Remark 15. Robustness to the noise is an inherent advantage
of the proposed matrix AFD. Due to the reproducing property
of Szegö kernel ea(s), a ∈ Π , we can obtain 2 Re (a)F (a)F (a)∗
appearing in Theorem 7 by the inner products {⟨flm, ea⟩}, where
flm(s) is the lm-th entry of F (s). The integrals smooth the noise out
on the measurements {F (jyk)}. In addition, out of a considerable
amount of measurements {Gmeasure(jyk)}, the rational approxima-
tions are determined by a few parameters, which avoids overfit-
ting in a certain extent. However, in the numerical experiments,
accumulation of the calculation errors may lead to ineffective
approximations. To avoid this, in practice, when we find that
the relative error obtained does not decrease with a prescribed
threshold, we stop the iteration.

7. Conclusion

The present work extends the matrix AFD result by Alpay
et al. (2017), that is for the functions on the unit disc context
corresponding to Z-transformations of the discrete systems, to
10
the functions on the right-half complex plane context corre-
sponding to Laplace transformations of the continuous systems.
The key point of the AFD type methods is that they perform
the most efficient matching pursuit strategy with the one-step-
optimal selection model. The matrix-valued contexts concerned
in Alpay et al. (2017) and the present paper are generaliza-
tions of Qian and Wang (2011). The corresponding algorithms
in the two matrix-valued contexts are made practical through
crucial use of a corollary of the famous Poincaré Separation The-
orem (Durbin & Watson, 1950). The efficiency of the proposed
algorithm is evidenced by the mathematical estimation on the
convergence rate O(k−

1
2 ), as well as experiments in comparison

with the OE model, in both the noisy and the noise-free cases.
The AFD type methods have been successfully applied to the field
of frequency domain system identification including SISO system
identification in Mi and Qian (2011) and SISO multi-dimensional
system identification in Wang, Qian, Leong, and Gao (2020). With
the present study we successfully extend the applications to the
MIMO type system identification by using the matrix AFD. It is
prospected that one can consider identification problems of more
complex systems, including nonlinear systems and time-variant
systems, and explore the possibility of AFD type algorithms in the
contexts in which Blaschke products are unavailable (Qu & Dang,
2019a, 2019b).
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ppendix A. Some proofs involved in Section 3.1

roof of Lemma 4. Using Definition 2 directly, we obtain

0H(a0) = P0F (a0) − P2
0 F (a0)

2 Re(a0)
a0 + a0

= 0.

ccording to the Cq×q-valued inner product (1) and the properties
b), (c) of the Szegö kernel ea(s) in Definition 2, we obtain

[H,H0]

1
2π

∫
R
(P0F (a0)ea0 (jy)

√
2 Re(a0))∗F (jy)dy

−
1
2π

∫
R
2 Re(a0)F (a0)∗P0F (a0)ea0 (jy)ea0 (jy)dy

=F (a0)∗P0F (a0)2 Re(a0) − F (a0)∗P0F (a0)2 Re(a0)
=0.

Thus, [F , F ] = [H + H0,H + H0] = [H,H] + [H0,H0].
From P0H(a0) = 0, we can formulate P0H(s) = (s − a0)R(s),

where R(s) is Cp×q-valued and analytic at a0. Due to the formula-
tion of B−1

a,P (s) in Definition 3,

B−1
a0,P0

(s)H(s) = (Ip − P0 + P0
s + a0
s − a0

)H(s)

= H(s) + 2 Re(a0)R(s),

meaning that B−1
a0,P0

(s)H(s) is analytic at a0. Moreover, because of
B−1
a0,P0

(jy)∗B−1
a0,P0

(jy) = Ip,

[G,G] = [B−1
a0,P0

H, B−1
a0,P0

H]

=
1
2π

∫
R
H(jy)∗B−1

a0,P0
(jy)∗B−1

a0,P0
(jy)H(jy)dy

=
1
2π

∫
R
H(jy)∗H(jy)dy = [H,H].

Therefore, G(s) ∈ Hp×q
2 (Π ). The proof is complete. □

Proof of Theorem 5. (a) We show that trace(2 Re(s)F (s)∗PF (s)) is
niformly bounded by ∥F∥

2, then it has a finite supremum.
Write F (s) ∈ Hp×q

2 (Π ) in its entries flm(s), l = 1, . . . , p,m =

, . . . , q as F (s) = (flm(s)). Recall that for a ∈ Π and entry flm(s)
e have√
2 Re(a)flm(a)| = |⟨flm, ea⟩ | ≤ ∥flm∥H2(Π ).

hus, since the orthogonal projection P satisfies P ≤ Ip, we obtain

trace(2 Re(s)F (s)∗PF (s))
≤ trace(2 Re(s)F (s)∗F (s))

p∑
l=1

q∑
m=1

|

√
2 Re(s)flm(s)|

2

≤

p∑
l=1

q∑
m=1

∥flm∥
2
H2(Π ) = ∥F∥

2.

(b) We claim that among all possible selections of s ∈ Π and
rthogonal projection P with rank k0, the finite supremum of
race(2 Re(s)F (s)∗PF (s)) is attainable at a point inside Π . It in-
olves a density argument. Similar proofs can be found in Mi et al.
2012), Qian (2010) and Qu and Dang (2019a). Below we include
he details in the present case.

We first indicate the particulars with this unbounded domain
ituation for f ∈ H2(Π ). We show that for any f (s) ∈ H2(Π ) and
> 0, there exist δ > 0, R > 0, and the associated neighbourhood
f the boundary of Π ,

(δ, R) = {s ∈ Π : Re(s) < δ} ∪ {s ∈ Π : |s| > R},
 t
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such that whenever a ∈ B(δ, R), there holds that |⟨f , ea⟩ | < ϵ. It
amounts that |⟨f , ea⟩ | → 0 when a tends to the boundary of Π .

From Definition 2, we know that D = {ea(s), a ∈ Π} is a
dictionary of H2(Π ), which implies that D is dense in H2(Π ).
hus span{D}, which consists of all finite linear combinations of
he elements in D, is also dense in H2(Π ). As a consequence,
ny function f (s) ∈ H2(Π ) can be infinitely approximated by a
equence of functions of which each is a finite linear combination
f parameterized Szegö kernels. Therefore, for ∀ϵ > 0, there exist
positive integer N0 and a function g(s) having the following form

(s) =

N0∑
l=1

cl
s + al

,

where cl ∈ C, al ∈ Π , such that ∥f − g∥H2(Π ) < ϵ
2 . From

the triangle inequality and the Cauchy–Schwartz inequality, for
∀a ∈ Π , we have

|⟨f , ea⟩ | ≤ |⟨g, ea⟩ | + ∥f − g∥H2(Π ) < |⟨g, ea⟩ | +
ϵ

2
.

Denote C0 = max1≤l≤N0 |cl|, δ1 = min1≤l≤N0 Re(al) > 0, R1 =

max1≤l≤N0 |al|. From the reproducing property (c) in Definition 2
and |a + al| ≥ Re(a + al) > Re(al) ≥ δ1,

|⟨g, ea⟩ | =

√
2 Re(a)|

N0∑
l=1

cl
a + al

| ≤
√
2δ

N0C0

δ1
.

t implies |⟨g, ea⟩ | < ϵ
2 whenever δ < ( δ1ϵ

2
√
2N0C0

)2. If a ∈ Π

satisfies |a| > 2R1, we obtain |a + al| ≥ |a| − |al| ≥
|a|
2 . Then

if we let R = max{R1, (
4
√
2N0 max1≤l≤N0 {|cl|}

ϵ
)2}, whenever |a| > R,

|⟨g, ea⟩ | ≤

√
2|a|

N0 max1≤l≤N0{|cl|}
|a|
2

<
ϵ

2
.

To sum up, whenever a ∈ B(δ, R), there holds |⟨f , ea⟩ | <
⟨g, ea⟩ | +

ϵ
2 < ϵ.

Considering that

trace(2 Re(a)F (a)∗F (a)) =

∑
l=1,...,p,
m=1,...,q

∥

√
2 Re(a)flm(a)∥2

H2(Π ),

for ∀ϵ > 0, denote by B(δlm, Rlm) the set such that whenever
a ∈ B(δlm, Rlm), there holds |⟨flm, ea⟩ | < ϵ. Then the supremum of
trace(2 Re(a)F (a)∗F (a)) is attainable in a compact set having the
form S = Π \ ∩ l=1,...,p,

m=1,...,q
B(δlm, Rlm).

It is noted that the orthogonal projections of rank k0 constitute
a compact set, denoted by P. For the orthogonal projection P =

V ∗V , as mentioned in Definition 3,

trace(2 Re(s)F (s)∗PF (s))
=trace(2 Re(s)(VF (s))∗VF (s)).

ince the entries of VF (s) are linear combinations of the en-
ries of F (s), we note that by adding the orthogonal projection
, trace(2 Re(s)F (s)∗PF (s)) also tends to 0 when s tends to the
oundary of Π . Thus the supremum of trace(2 Re(s)F (s)∗PF (s)) is
ttainable in a compact set having the form S × P as product
f two compact sets. Therefore, a pair (a0, P0) giving rise to the
upremum of trace(2 Re(s)F (s)∗PF (s)) exists. □

ppendix B. A corollary of the famous Poincaré separation
heorem

emma 16 (Durbin & Watson, 1950). Let A be a p × p pos-
tive semidefinite matrix and P be a p × p orthogonal projec-
ion such that rank(P) = k , where k ∈ {1, 2, . . . , p}. Denote
0 0
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Φ

R

A

A

A

A

A

A

C

= [ϕ1, ϕ2, . . . , ϕp]
∗, where the column vectors ϕ1, ϕ2, . . . , ϕp are

eigenvectors of A corresponding to λ1(A), λ2(A), . . . , λp(A) respec-
tively and satisfy ΦΦ∗

= Ip. Here, λ1(A), λ2(A), . . . , λp(A) are sorted
in the descending order satisfying λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A).
Then,

λp−k0+l(A) ≤ λl(PA) ≤ λl(A), l = 1, 2, . . . , k0.

Here, ‘‘=’’ in the right inequality holds for all l = 1, 2, . . . , k0 if
and only if P = Φ∗

(k0)
Φ(k0) where Φ(k0) = [ϕ1, ϕ2, . . . , ϕk0 ]

∗, and
‘‘=’’ in the left inequality holds for all l = 1, 2, . . . , k0 if and only if
P = Φ∗

[k0]
Φ[k0] where Φ[k0] = [ϕp−k0+1, . . . , ϕp−1, ϕp]

∗.
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