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Abstract Möbius transforms, Blaschke products and starlike functions as typical conformal mappings of one

complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being defined

by instantaneous frequencies of signals they represent. The positive analytic phase derivative has been a widely

interested subject among signal analysts (see Gabor (1946)). Research results of the positive analytic frequency

and applications appears in the literature since the middle of the 20th century. Of the positive frequency study

a directly related topic is positive frequency decomposition of signals. The mainly focused methods of such

decompositions include the maximal selection method and the Blaschke product unwinding method, and joint

use of the mentioned methods. In this paper, we propose a class of iterative greedy algorithms based on the

Blaschke product and adaptive Fourier decomposition. It generalizes the Blaschke product unwinding method by

subtracting constants other than the averages of the remaining functions, aiming at larger winding numbers, and

subtracting n-Blaschke forms of the remaining functions, aiming at generating larger numbers of zero-crossings,

to fast reduce energy of the remaining terms. Furthermore, we give a comprehensive and rigorous proof of the

converging rate in terms of the zeros of the remainders. Finite Blaschke product methods are proposed to avoid

the infinite phase derivative dilemma, and to avoid the computational difficulties.
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1 Introduction

1.1 Analytic signals with positive phase derivatives: Momo-components

The recently developed empirical mode decomposition (EMD) has provided a general method for exam-

ining the time frequency distribution, and has been successfully applied to various areas, e.g., medical

studies, meteorology, geophysical studies and image analysis (see [19]). In spite of considerable success

of EMD, all of the EMD algorithms are based on empirical and heuristic procedures that make them
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hard to analyze mathematically, and EMD may suffer from mode mixing, detrend uncertainty, aliasing

and end effect artefacts (see [23]). In order to develop the related mathematical theory of EMD, some

researchers hope to decompose a complicated signal f(t) into the following form:

f(t) =

n∑
k=1

ak(t) cos θk(t) + r(t), (1.1)

where r(t) is the residual component, and ak(t) cos θk(t) in (1.1) should satisfy the equation

(Hak(·) cos θk(·))(t) = ak(t) sin θk(t), ak(t) � 0, θ′k(t) � 0. (1.2)

Here, H stands for the Hilbert transform in (1.2). The functions satisfying (1.2) are referred to as mono-

components (see [7, 9]) and well developed in the literature (see [27, 31]), and they are analytic signals

with the positive instantaneous frequency. Some algorithms are proposed for decomposing a signal into

the model (1.1) based on the theories of Fourier analysis and wavelet analysis (see [16, 20, 40]). In this

paper, we will make use of complex analysis methods to establish the rigorous mathematical analysis for

(1.2) and (1.1).

Denote by

τa(z) =
z − a

1− az

the canonical Möbius transform at a ∈ D, where D denotes the unit disc. τa maps D to D, and its

boundary ∂D = {z = eit, 0 � t < 2π} to itself. It follows that there exists a real-valued function θa(t)

such that τa(e
it) = eiθa(t). Since the mapping on the boundary is one to one and onto, and keeps the

orientation, the real-valued function θa(t) is strictly increasing. It concludes that θ′a(t) � 0 for all t.

Through a simple computation we have

θ′a(t) =
1− |a|2
|eit − a|2 > 0, ∀ t ∈ [0, 2π).

The right-hand side of the above equality is, in fact, the 2π-multiple of the Poisson kernel at a (see [18]).

A finite Blaschke product (a Blaschke product with finite zeros) is the product of a finite number of

Möbius transforms, and its boundary phase derivative, as a function, is the 2π-multiple of the sum of

the corresponding Poisson kernels, and thus is a strictly positive function. Some early studies of the

analytic phase derivative were found in [10,26]. Some recent studies on analytic signals with nonnegative

instantaneous frequencies are contained in [9, 27, 28, 31, 34, 43, 45, 47]. The circle context corresponds to

periodic signals. The line context corresponds to signals defined in the whole time range that uses the

Hardy space of the upper-half complex plane. The theories of the two contexts are parallel.

Let f be an analytic function in the unit disc D. Then the amplitude-phase representation of f may

be written in the polar coordinates as f(reit) = ρr(t)e
iθr(t) with ρr(t) � 0, and θr(t) being real-valued,

t ∈ [0, 2π). Through a direct computation one has

θ′r(t) = Re

{
z
f ′(z)
f(z)

}
, z = reit, 0 < r < 1.

We note that on the boundary a phase function may not be well defined but a phase derivative function

may be defined. In [27], it is shown that for any inner function f(reit) = ρr(t)e
iθr(t) the limits in (1.3), as

a consequence of the Wolff-Julia-Carathéodory theorem, exist for all t but possibly a Lebesgue null set.

In the inner function case, the boundary phase derivative θ′(t) is well defined and positive, as

θ′(t) � lim
r→1−

θ′r(t) � 0, a.e. (1.3)

It is noted that for the outer functions, under mild conditions ensuring absolute continuity, the boundary

phase derivatives defined through the same limit on the left-hand side of (1.3) satisfy∫ 2π

0

θ′(t)dt = 0 (1.4)



Qian T et al. Sci China Math December 2021 Vol. 64 No. 12 2705

(see [27]). This shows that unless θ′(t) is identical with the zero function, the phase derivative must be

negative in a set of the positive Lebesgue measure. The phase derivative is closely related to the angular

derivative that has been closely studied in a number of papers (see [1, 14, 15, 17, 27]). For the higher

dimensions, the subject frequency analysis and its practice have not yet been fully developed. For the

relevant references we refer to [30, 37,46].

1.2 Momo-component decompositions of signals in the Hardy space

Closely related study is mono-component expansions of signals. The Fourier series expansion, and essen-

tially the Fourier inversion formula as well, are positive- (or negative-) constant-frequency expansions.

Mono-component expansions are generalizations, in both the concept and the methodology, of the Fourier

type expansions. Mono-component decompositions can be divided into two categories, or rather strate-

gies, since they are methodology-related, of which both are of a number of variations. They may be

called the adaptive Fourier decomposition (abbreviated as AFD), as they are related to boundary limits

of analytic functions with the polynomials and rational functions are particular cases, and adaptive. Of

the two strategies, the first is based on the reproducing kernel property, also called the Szegö kernel,

of the Hardy space. This kernel approach brings the interpolation property and creates zero-crossings.

Through a maximal selection principle, the interpolating approximation series can fast get close in the

energy sense to the given signal. The standard remainders generated through the approximation belong

to the Beurling-Lax shift-invariant subspaces. This interpolation approach in some general spaces can be

used to define Blaschke products. The Blaschke product as an operator has been extended to multivariate

contexts in such a way (see [4, 5]).

The terminology AFD was first used with the maximal selection approach (see [35]), and later renamed

as the core AFD, being the central algorithm building block of the cyclic and n-best AFD, and unwind-

ing AFD. The maximal selection type AFD was lately extended to reproducing kernel Hilbert spaces

possessing the so called boundary vanishing property (BVP) (see [29]). When in a Hilbert space there

are no functions playing the role like inner functions in the sifting process, then the best bet would be a

maximal selection or a weak-maximal selection principle. The second strategy is the Blaschke unwinding

expansion, based on the inner-outer function factorization, first explored with views of applications in

the PhD dissertation of Nahon [25] in 2000 at Yale university under the guidance of Coifman [12] (see

[28]). The earlier work of Weiss and Weiss [44] hints this development.

The unwinding methodology was independently studied in [28, 32]. The two strategies are, in fact,

closely related: Both of them are related to zeros of functions and result in Blaschke products. A detailed

description is as follows: Denote by

ea =

√
1− |a|2
1− az

, a ∈ D

the reproducing kernel of the Hardy space. At each decomposition step, denote by Pnf the projection of f

onto span{ea1 , . . . , ean}. Then f − Pnf has the zeros a1, . . . , an, due to the reproducing kernel property

and the orthogonality, and the remainder has the factor (z− a1) · · · (z− an) with the latter giving rise to

the corresponding Blaschke product factor of the remainder function. From the intrinsic and uniqueness

point of view, we want the convergence to be fast. This would be gained, at least partially, from a maximal

selection of an n-tuple of parameters a1, . . . , an. There is a delicate treatment when the parameters in a

maximal selection of parameter n-tuples have multiples.

We note that in higher dimensions with the non-scalar-valued function there does not exist an effective

inner-outer function theory and factorization, but one can adopt the above mentioned process to get a

Blaschke product related expansion with a great similarity with the core AFD resulting in a Takenaka-

Malmquist-like system (see [36]). For scalar-valued Blaschke products defined in the polydisc we refer

to [38]. For functions defined on the unit disc with matrix values we refer to [4]. For matrix-valued

functions defined on the polydisc we refer the reader to [3]. In the present paper we work only on the unit

disc context with scalar-valued functions, and will concentrate on the Blaschke unwinding methodology

via factorization.
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Fast convergence of Blaschke unwinding expansion is intimately related to the following result in digital

signal processing (DSP) (see [14, 28]), phrased as the energy front-loading property of outer functions

(minimum-phase physically realizable signals): F = IG, where F,G ∈ H2(D) and I is an inner function.

Let F (z) =
∑∞

k=0 ckz
k and G(z) =

∑∞
k=0 dkz

k. As a consequence of the Plancherel theorem,

∞∑
k=0

|dk|2 �
∞∑
k=0

|ck|2.

One, however, can prove that for all integers N > 0,
∑N

k=0 |dk|2 �
∑N

k=0 |ck|2. This shows that the

Fourier series of the unwound function G converges in a faster pace than that of the original F. The DSP

result suggests that the more zero factors one factorizes out, the faster is the convergence rate of the

Fourier series of the remaining function.

1.3 The unwinding expansion by subtracting the averages: The existing model

The following unwinding Blaschke expansion was first studied by Coifman and Nahon (see [25]). How-

ever, the study remained unpublished until 2016 (see Coifman and Steinerberger [12]). In 2010, the

literature [28] introduced what was called intrinsic mono-component decomposition of analytic signals.

[28, Remark 4.4], in particular, presents the same unwinding method of [12] together with a proof of its

H2-convergence. In 2013, the terminology unwinding AFD (UAFD) was used for this maximal selection

combined unwinding method, coinciding with the name given in [25]. This method is observed to have a

rapid convergence rate while giving rise to positive frequency constructive blocks.

This study was further expanded in [11, 13]. A number of applications of the unwinding expansion

were explored with practical algorithms, including some in signal analysis, system identification and

image processing (see [21, 24]).

In self-explanatory notations the Blaschke unwinding method is formulated as follows. Let F = F0

∈ H2(D). In each of the following iterations, we have

Gk(z) = Gk(z)−Gk(0) +Gk(0) = zBk+1Gk+1(z) +Gk(0), (1.5)

where Bk+1 is the Blaschke product part of Fk+1 and Gk+1 is the product of the outer factor and the

singular inner function factor parts of Fk+1. We leave out the z factor in each of the sifting steps, except

the case where k = 0. It follows

F (z) = F0(z) = B0(z)(G0(z)−G0(0) +G0(0)) = c0B0(z) + zB0(z)F1(z)

= c0B0(z) + c1zB0(z)B1(z) + z2B0(z)B1(z)B2(z)G2(z)

=
∞∑
k=0

ckz
k

k∏
j=0

Bj(z), (1.6)

where ck = Gk(0) is the average of the function Gk. We note that the standard unwinding process given

above produces an orthogonal system. In proving this the factors zk in the decomposition components

zk
∏k

j=0 Bj play a crucial role. The obtained series converges in the square norm sense to the function

on the left-hand side (see [12,28]). For polynomial functions F (z) the decomposition process ends after a

finite number of iterations. By noticing the similarity between the backward-shift process to obtain the

Taylor series and the unwinding process (1.5), the above process will be phrased as sifting through the

backward-shift operation (through subtracting the averages). For the concept of the generalized backward-

shift operation, see [35].

To the unwinding Blaschke expansion process there would exist the following concerns:

(1) The calculation of the Hardy space function F factorization F = BG, where B is the Blaschke

product part and the calculation of the phase derivatives of B both have computational difficulties. The

task of obtaining the Blaschke product part of F is equivalent to finding out all the zeros of F, and, of

course, by no means easy. It is obviously more difficult than finding the roots of a general polynomial
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of degree greater than 4. If, instead, one chooses to first compute the function G, as the product of the

outer function and the singular inner function parts, it involves computation of the Hilbert transform

with the latter being a continuing research topic in numerical computation, due to singularity of the

Hilbert transform. The calculation of an outer function is, in fact, harder than just computing the

Hilbert transform, as not only the Hilbert kernel is singular, but also the integrand function ln |F (eit)|
is singular at all the points that make F (eit) = 0. Algorithms have been developed for both of these

computational strategies: First computing B or first computing G. For computing B or the zeros, see,

for example, [22]. The literature promotes a finite zero method that leads to convenience of the unwinding

expansion and, at the same time, obtains the intrinsic frequencies of the signal as the sum of the involved

Poisson kernels. For computations of the outer functions via the Hilbert transform, see [25,41]. A recent

result explores an optimization method to extract out the outer function part without computing the

Hilbert transform (see [42]). A more recent study computes the Hilbert transform by using a mechanical

quadrature method (see [41]). The strategy of first finding out outer functions does not lose anything

theoretically in itself but would lay difficulties of computing out the boundary phase derivatives and may

fall in the dilemma of getting a Blaschke product that has infinite boundary phase derivatives at all the

points of the circle (see below).

(2) The literature [27] constructed an inner function whose phase derivatives are a.e. infinite. The

literature [1] and [39, p.184] constructed interpolating Blaschke products whose cluster set E is identical

with ∂D and they have the infinite phase derivative at all the points of ∂D. Blaschke products of such

a type arouse considerable interest due to its connections with compactness of the composition operator

in the Hardy space (see [39]). Such a substantial infinite phase derivative phenomenon, however, lays

an ill impact to frequency analysis of unwinding Blaschke expansion: The expansion may automatically

generate Blaschke products that have substantial infinite phase derivatives. In order to carry on mean-

ingful frequency analysis one would need to restrict oneself to finite Blaschke product decompositions.

The frequency decomposition of a signal does not seem to be unique.

The present study will generalize the existing unwinding processes (1.6) and (1.5). They at the same

time are improvements of (1.6) and (1.5) with regard to the concerns just expressed.

1.4 Generalizations of the unwinding method: Main results of the paper

Our first main result, Theorem 2.4, deals with the cases where in the splitting

Gk(z) = Gk(z)−Gk(ak) +Gk(ak)

one may take ak ∈ D other than ak = 0. The ak’s may be selected to have the maximal winding (index)

numbers. The technical difficulty is that in such a case the terms in the corresponding partial sum S̃nF for

each n may not be orthogonal to each other. We overcome the difficulty by using a related interpolation

property. With the convergence results we also prove convergence rates of the exponential type.

Our second main result Theorem 3.1 deals with the cases where instead of subtracting single values

Gk(ak) one subtracts functions G(Gk)(z) generating prescribed or non-prescribed but induced zeros. In

the induced zero case the functions G(Gk)(z) may be, for example, selected as Blaschke forms giving rise

to maximal energy at each step.

2 Sifting process through subtracting function values other than the averages

The Blaschke unwinding method is based on subtracting the averages of the recursively generated func-

tions Gk :

Gk(z) = Gk(z)−Gk(0) +Gk(0),

where

Gk(0) =
1

2π

∫ 2π

0

Gk(e
it)dt.
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As a variation we can proceed with subtracting a function value Gk(ak), where ak is not necessarily 0,

to create more zeros in the remainders Gk(z) − Gk(ak), k = 0, 1, 2, . . . We may take, for example, for r

being a fixed number in (0, 1), ak = argmaxa∈rD{IndGk(∂(rD))(a)}. There are maybe more than one ak
satisfying this relation. Then we have a different decomposition of the signal

F (z) = B0(z)[G0(z)−G0(a0)] +B0(z)G0(z)

= B0(z)B1(z)G1(z) +B0(z)G0(a0)

= · · ·

= G0(a0)B0(z) +

n∑
k=1

Gk(ak)

k∏
j=0

Bj(z) +Gn+1(z)

n+1∏
j=0

Bj(z), (2.1)

where Gk(z)−Gk(ak) = Bk+1(z)Gk+1(z), ak is a point in D, B0(z) is the Blaschke product defined by

the zeros of F (z), Bk+1(z) is the Blaschke product defined by the zeros of Gk(z) − Gk(ak) (the zeros

are counted according to their multiplicities) and Gk(z) is a product of an outer function and an inner

function. In order to design a computer algorithm easily, we restrict that each Bk(z) in (2.1) is a finite

Blaschke product. Let

ENk

Bk
= {b(k)j }Nk

j=1

be the set of all the zeros of Bk(z) in the unit disc, where b
(k)
1 = ak−1 for k � 1. Then the sum of the

first n+ 1 terms in the unwinding procedure (2.1) can be written as

(S̃nF )(z) = G0(a0)B0(z) +

n∑
k=1

Gk(ak)

k∏
j=0

Bj(z)

= G0(a0)

N0∏
i=1

z − b
(0)
i

1− b
(0)
i z

+
n∑

k=1

Gk(ak)
k∏

j=0

Nj∏
i=1

z − b
(j)
i

1− b
(j)
i z

.

When all ak’s are chosen to be 0, the components
∏k

j=0 Bj in (2.1) are orthogonal to each other for zk

is a factor of
∏k

j=0 Bj . By virtue of the orthogonality, the result that (S̃nF )(z) converges to F (z) as

n → ∞ is proved in [28]. We cite this proof here to show how different it is between the two convergence

proofs: One is for all ak = 0, and the other is for all the selections of ak ∈ D.

Theorem 2.1. If at each of the sifting steps of the unwinding process (1.6) an arbitrary sub-Blaschke

product but including the z term is factorized out, then the resulted expansion (1.6) is orthogonal and

converges to the originally given analytic signal.

Proof. By (1.6), we know that

F (z) = F0(z) = B0(z)[G0(z)−G0(0)] +B0(z)G0(0)

=

[
G0(0)B0(z) +

n∑
k=1

Gk(0)z
k

k∏
j=0

Bj(z)

]
+

[
zn+1

n+1∏
j=0

Bj(z)

]
Gn+1(z)

=: Tn(z) +An(z),

where Bk(z) is the sub-Blaschke product of Gk−1(z) − Gk−1(0) excluding the z factor. Now we show

that Tn and An are orthogonal. In fact, for k � n, by Cauchy’s integral theorem, we have

〈
An,

k∏
j=0

zjBj

〉
=

1

2π

∫ 2π

0

ei(n+1−k)tBk+1(e
it) · · ·Bn+1(e

it)Gn+1(e
it)dt

=
1

2πi

∮
|z|=1

zn−kBk(z) · · ·Bn+1(z)Gn+1(z)dz = 0,
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as n − k � 0. Let Sn(z) be the n-th partial sum of F (z) collecting all the terms of the form ckz
k with

k � n in the Fourier expansion of Tn(z), and hence

Tn(z) =

n∑
k=0

Gk(0)z
k

k∏
j=0

Bj(z) = Sn(z) +Nn(z),

where Nn collects all the terms of the form akz
k with k > n in the expansion of Tn(z). The orthogonality

between Sn and Nn is obvious. Due to the orthogonality, we have

‖F‖2 = ‖Tn‖2 + ‖An‖2 = ‖Sn‖2 + ‖Nn‖2 + ‖An‖2.

The fact

lim
n→∞Sn = F

forces

lim
n→∞(‖Nn‖2 + ‖An‖2) = 0.

Hence

lim
n→∞ ‖An‖2 = 0.

The last relation is equivalent to

lim
n→∞ ‖F − Tn‖2 = 0.

The proof is completed.

The proof shows that the crucial point for the orthogonality and thus for the convergence as well is

the presence of the factors zk. In general cases where ak’s are not necessarily all chosen to be zero, the

components in the decomposition (2.1) may not be orthogonal to each other. The above proof is thus

not valid for general cases.

To give a proof of the convergence for the general cases we first put all the zeros together: Let

E
(n+1)

N(n+1) = EN0

B0
∪ EN1

B1
∪ · · · ∪ ENn

Bn
∪ E

Nn+1

Bn+1

= {b(0)1 , . . . , b
(0)
N0

, b
(1)
1 , . . . , b

(1)
N1

, . . . , b
(n+1)
1 , . . . , b

(n+1)
Nn+1

}
= {b0, b1, . . . , bN(n+1)−1}. (2.2)

We found that the function

F (z)− (S̃nF )(z) =

[ n+1∏
k=0

Bk(z)

]
Gn+1(z) =

[ n+1∏
k=0

Nk∏
j=1

z − b
(k)
j

1− b
(k)
j z

]
Gn+1(z)

satisfies the following interpolation conditions:

F (l(bk)−1)(bk) = (S̃nF )(l(bk)−1)(bk), (2.3)

where k = 0, 1, . . . , N (n+1) − 1, and bk is the k+1 term of the set E
(n+1)

N(n+1) , N
(n+1) =

∑n+1
k=0 Nk and l(bk)

denotes the number of repeating times of bk in the (k + 1)-tuple sets {b0, b1, . . . , bk}. Let us define

ẽbk(z) =

⎧⎨
⎩

1

(1− bkz)l(bk)
, bk �= 0,

z(l(bk)−1), bk = 0.

We say that ẽbk(z) is a higher order Szegö kernel if l(bk) > 1, and otherwise a Szegö kernel. The system

{ẽb0(z), ẽb1(z), . . . , ẽbn(z)} is called the partial fraction system generated by {b0, b1, . . . , bn}. By the

Gram-Schmidt (G-S) orthogonalization process applied to the partial fractions {ẽbk(z)}nk=0, a rational



2710 Qian T et al. Sci China Math December 2021 Vol. 64 No. 12

orthonormal system (referred as Takenaka-Malmquist (TM) system), denoted by {Bk(z)}nk=0, can be

obtained, where

B0(z) =

√
1− |b0|2
1− b0z

, Bk(z) =

√
1− |bk|2
1− bkz

k−1∏
j=0

z − bj

1− bjz
. (2.4)

Orthonormality of the TM system {Bk(z)}∞k=0 can be easily proved by using the Cauchy theorem: For

n < m,

〈Bm(eit),Bn(e
it)〉 = 1

2π

∫ 2π

0

Bm(eit)Bn(eit)dt

=
1

2πi

∮
|z|=1

√
1− |am|2
1− amz

m−1∏
l=1

z − al
1− alz

√
1− |an|2
1− anz

n−1∏
l=1

z − al
1− alz

dz

z

=
1

2πi

∮
|z|=1

√
1− |am|2√1− |an|2

1− amz

m−1∏
l=n

z − al
1− alz

1

z − an
dz

=
1

2πi

∮
|z|=1

√
1− |am|2
1− amz

√
1− |an|2
1− anz

m−1∏
l=n+1

z − al
1− alz

dz

= 0.

We need some technical preparation for proving the general convergence theorem. For the following

two lemmas the reader can also be referred to [2, 8, 36].

Lemma 2.2. Let φn(z) =
∏n

k=0
z−bk
1−bkz

be an n-Blaschke product for n � 0. Then we have

n∑
k=0

Bk(ξ)Bk(z) =
1− φn(ξ)φn(z)

1− ξz
, ξz �= 1, |ξ| = 1 (2.5)

and

sup
|z|=R

1

|φn(z)| � exp

{
− R− 1

2R

n∑
j=0

(1− |bj |)
}
, R > 1. (2.6)

Proof. To make the paper self-contained we give outlines of the proofs. The detailed proofs can be

found in [2]. The Christoffel-Darboux identity (2.5), from the Beurling direct sum decomposition point

of view, can be easily obtained. In fact,

H2(D) = span{Bk}nk=0 ⊕ φnH
2(D).

The reproducing kernel of the shift-invariant subspace φnH
2(D) is φn(ξ)φn(z)

1−ξz
, and the kernel of the

component in the span of {Bk}nk=0 is, therefore,

1− φn(ξ)φn(z)

1− ξz
.

Hence the representation (2.5) is proved.

For proving the inequality (2.6), let z = Reiθ, bk = |bk|eiωk and ψk = θ−ωk. Then for R > 1, a simple

algebraic manipulation yields that∣∣∣∣ z − bk

1− bkz

∣∣∣∣2 =

∣∣∣∣ Reiψk − |bk|
1−R|bk|eiψk

∣∣∣∣2

= 1− (1− |bk|2)(1−R2)

1 + |bk|2R2 − 2R|bk| cosψk

� 1− (1−R)(1− |bk|)
� exp [−(1−R)(1− |bk|)],
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where we used the elementary inequality e−x � 1− x for all x. Hence, we have

sup
|ξ|=R

1

|φn(ξ)| = sup
|ξ|= 1

R

|φn(ξ)| � exp

{
− R− 1

2R

n∑
j=0

(1− |bj |)
}
.

This completes the proof.

Denote by SnF the partial sum

(SnF )(z) =
n∑

k=0

〈F,Bk〉Bk(z).

Based on (2.5) and hyperbolic non-separability condition, we have the following result (see [8]).

Lemma 2.3. Let {Bk(z)}∞k=0 be the TM system determined by the set E = {b0, b1, . . .}. If it holds that

the hyperbolic non-separability condition
∑∞

i=0(1− |bi|) = ∞, then for any F (z) ∈ H2(D), we have

lim
n→∞ ‖(SnF )(eit)− F (eit)‖2 = 0.

Moreover, (SnF )(z) =
∑n

k=0〈F (eit),Bk(e
it)〉Bk(z) is the unique function in the rational space

Rn,n+1 =

{
Pn(z)∏n

k=0(1− bkz)

}
(2.7)

satisfying the interpolation condition (SnF )(l(bk)−1)(bk) = F (l(bk)−1)(bk) for k = 0, 1, . . . , n, where Pn(z)

is an arbitrary polynomial with order not exceeding n.

Now we are ready to prove that S̃nF converges to F as n → ∞.

Theorem 2.4. Let F (z) be a nonzero function in H2(D) and {a1, . . . , an, . . .} be any sequence in D

that induces the unwinding decomposition (2.1). Then

(S̃nF )(z) =
1

2πi

∮
|ξ|=1

F (ξ)[1− ψn(z)ψn(ξ)]

(ξ − z)
dξ +

ψn(z)

2πi

∮
|ξ|=1

F (ξ)ψn(ξ)

(ξ − an)
dξ. (2.8)

If there exists r0 such that 0 < r0 < 1 and |ak| � r0 for all k, then it holds that

lim
n→∞ ‖F − S̃nF‖2 = 0, (2.9)

where ψn(z) =
∏n

j=0

∏Nj

i=1
z−b

(j)
i

1−b
(j)
i z

and b
(j)
1 = aj−1 for j � 1.

Proof. By the unwinding procedure (2.1), (S̃nF )(z) can be rewritten as

(S̃nF )(z) = G0(a0)B0(z) +G1(a1)B0(z)B1(z) + · · ·+Gn(an)
n∏

k=0

Bk(z)

= G0(a0)

N0∏
i=1

z − b
(0)
i

1− b
(0)
i z

+

n∑
k=1

Gk(ak)

k∏
j=0

Nj∏
i=1

z − b
(j)
i

1− b
(j)
i z

=

∑N(n)

k=0 ckz
k∏n

j=0

∏Nj

i=1(1− b
(j)
i z)

, (2.10)

where b
(j)
1 = aj−1 for j � 1, N (n) = N0 +N1 + · · ·+Nn and {ck}N(n)

k=0 are some complex constants in the

complex plane. Let E
(n+1)

N(n+1) = {b0, b1, . . . , bN(n+1)−1} be defined by (2.2). From the previous analysis,

we know that (S̃nF )(z) satisfies the interpolation condition (S̃nF )(l(bk)−1)(bk) = F (l(bk)−1)(bk) for all

bk ∈ E
(n+1)

N(n+1) . Let

(SnF )(z) =
N(n)−1∑
k=0

〈F,Bk〉Bk(z),
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where Bk(z) is the TM system defined by the sequence in E
(n)

N(n) given in (2.2). Based on Theorem 2.3,

we also know that (SnF )(z) is the unique function in the rational space RN(n)−1,N(n) defined by (2.7)

satisfying the interpolation condition (S̃nF )(l(bk)−1)(bk) = F (l(bk)−1)(bk) for all bk ∈ E
(n)

N(n) . This implies

that (S̃nF )(z)−(SnF )(z) will have zeros at bk ∈ E
(n)

N(n) for k = 0, 1, . . . , N (n)−1. It follows that (S̃nF )(z)

can be rewritten as

(S̃nF )(z) = (SnF )(z) + C̃n

N(n)−1∏
k=0

z − bk

1− bkz
= (SnF )(z) + C̃n

n∏
j=0

Nj∏
i=1

z − b
(j)
i

1− b
(j)
i z

,

where C̃n is an arbitrary constant. From the fact that E
Nn+1

Bn+1
= {b(n+1)

1 , . . . , b
(n+1)
Nn+1

} at least has a point

at an and the interpolation condition (S̃nF )l(an)−1(an) = F l(an)−1(an), we obtain

[F (z)− (SnF )(z)](l(an)−1)(an) =

[
ψn(z)

2πi

∮
|ξ|=1

F (ξ)

(ξ − z)ψn(ξ)
dξ

](l(an)−1)

z=an

= C̃n[ψn(z)]
(l(an)−1)
z=an

,

where l(an) is the number of repeating times of an in the set E
(n)
Nn

∪ {an} and

ψn(z) =

N(n)−1∏
k=0

z − bj

1− bjz
=

n∏
j=0

Nj∏
i=1

z − b
(j)
i

1− b
(j)
i z

has a zero at an with multiplicities l(an)− 1. Hence, we have

C̃n =
1

2πi

∮
|ξ|=1

F (ξ)

(ξ − an)ψn(ξ)
dξ.

This proves that the identity (2.8) holds. Next, we prove

lim
n→∞ ‖F (z)− (S̃nF )(z)‖2 = 0.

It is known that

‖F (z)− (S̃nF )(z)‖2 = ‖F (z)− (SnF )(z)− C̃nψn(z)‖2 � ‖F (z)− (SnF )(z)‖2 + |C̃n|.

If all |ak| < r for some r < 1, then we have the hyperbolic non-separability condition

∞∑
k=0

(1− |ak|) = ∞.

Hence, by Theorem 2.3, we have

lim
n→∞ ‖F (z)− (SnF )(z)‖2 = 0

and the N (n)-th rational Fourier coefficients

cN(n) = 〈F,BNn〉 =
〈
F,

√
1− |an|2
1− anz

N(n)−1∏
k=0

z − bn

1− bnz

〉
→ 0

as n → ∞. From this we see that

C̃n =
1√

1− |an|2
〈F,BNn〉 → 0

as n → ∞ for |an| < r. The proof is completed.
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If all ak’s are chosen to be 0 and all Bk’s are chosen to be z, then we have the Fourier expansion

F (z) = G0(0) +G1(0)z +G2(0)z
2 + · · ·+Gn(0)z

n + · · · .

By a simple computation, we know that Gn(0) = F (n)(0)/n!. If all ak’s are chosen to be any constant

in D, all Bk(z)’s are chosen to be

Bk(z) =
z − ak−1

1− ak−1z

for k � 1 and B0(z)’s are chosen to be 1, then the single-zero unwinding procedure (2.1) generates

F (z) = G(a0) + · · ·+Gn(an)
n−1∏
k=0

z − ak
1− akz

+

n∏
k=0

z − aj
1− ajz

Gn+1(z). (2.11)

By introducing the generalized difference

FB [a0, a1] =
F (a1)− F (a0)

a1−a0

1−a0a1

and inductively,

FB [a0, a1, . . . , an] =
FB [a1, . . . , an]− FB [a0, a1, . . . , an−1]

an−a0

1−a0an

,

we can show

Gn(an) = FB [a0, a1, . . . , an].

This means that the unwinding procedure proposed by (2.1) can be seen as a generalized version of the

classical Newton interpolation formula in the complex plane. Hence, (2.11) may be written as

F (z) = F (a0) + FB [a0, a1]
z − a0
1− a0z

+ · · ·+ FB [a0, . . . , an]
n−1∏
k=0

z − ak
1− akz

+

n∏
k=0

z − aj
1− ajz

Gn+1(z).

The series part

S̃nF (z) = F (a0) + FB [a0, a1]
z − a0
1− a0z

+ · · ·+ FB [a0, . . . , an]

n−1∏
k=0

z − ak
1− akz

may also be written in the rational Lagrange interpolation form, as

S̃nF (z) =
n∑

k=0

lk(z)F (ak),

where

lk(z) =

∏n
j=0,j �=k(z − aj)

∏n−1
j=0 (1− ajak)∏n

j=0,j �=k(ak − aj)

n−1∏
j=0

(1− ajz).

For the multi-zero unwinding procedure we have the similar results.

Let A(DR) denote the set of the functions that are holomorphic functions in DR := {z | |z| < R}
and continuous to the closure of DR. If F (z) ∈ A(DR), R > 1, then it is easy to show that each fully

factorized Blaschke product Bj(z) in the unwinding procedure (2.1) is a finite Blaschke product.

It is well known that if F is analytic in the closure of D that is equivalent to F ∈ A(DR) for some

R > 1, then the Fourier series of F converges at an exponential rate. We will prove that the unwinding

procedure given in (2.1) also gives rise to an exponential convergence rate.

Corollary 2.5. Let nonzero functions F (z) ∈ A(DR), R > 1, and

(S̃nF )(z) = G0(a0)B0(z) +

n∑
k=1

Gk(ak)

k∏
j=0

Bj(z)
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be produced by (2.1), where ak is any sequence in D. Then for |z| � 1, we have

|F (z)− (S̃nF )(z)| � MR

(R− 1)
exp

{
− R− 1

2R

n∑
j=0

Nj∑
i=1

(1− |b(j)i |)
}
, (2.12)

where Bj(z) =
∏Nj

i=1
z−b

(j)
i

1−b
(j)
i z

and M is some constant.

Proof. For |z| � 1, by (2.5), we have

|F (z)− (S̃nF )(z)| � |F (z)− (SnF )(z)|+
∣∣∣∣ψn(z)

2πi

∮
|ξ|=1

F (ξ)

(ξ − an)ψn(ξ)
dξ

∣∣∣∣
�

∣∣∣∣ψn(z)

2πi

∮
|ξ|=1

F (ξ)

(ξ − z)ψn(ξ)
dξ

∣∣∣∣+
∣∣∣∣ψn(z)

2πi

∮
|ξ|=1

F (ξ)

(ξ − an)ψn(ξ)
dξ

∣∣∣∣,
where ψn(z) =

∏n
j=0

∏Nj

i=1
z−b

(j)
i

1−b
(j)
i z

. Since F (z) is holomorphic in DR and |ψn(z)| � 1 for |z| � 1, it

follows that

|F (z)− (S̃nF )(z)| � 1

2π

∮
|ξ|=R

|F (ξ)|
|ξ − z||ψn(ξ)|dξ +

1

2π

∮
|ξ|=R

|F (ξ)|
|ξ − an||ψn(ξ)|dξ

� MR

(R− 1)
sup
|ξ|=R

1

|ψn(ξ)| ,

where M is a constant depending on the maximum value of F on the boundary of DR. Hence, by (2.6),

we have

|F (z)− (S̃nF )(z)| � MR

(R− 1)
exp

{
− R− 1

2R

n∑
j=0

Nj∑
i=1

(1− |b(j)i |)
}
.

This completes the proof.

From (2.12), it seems that the rate of convergence of a Blaschke unwinding decomposition depends

on two factors: One is how many zeros can be extracted in the unwinding steps, and the other is how

close zeros b
(j)
i ’s are to 0. It seems that the latter factor is more important. Figure 1 uses an example to

show the relations among the subtracting various function values, their winding numbers and the related

decompositions. The example function in use is

G(z) = 1 + 10(z − 0.95)

(
z − 1

3

)(
z −

[
0.1 +

i

1.01

])(
z −

[
0.05 +

i

1.01

])
.

The figure shows that with respect to the curve γ(t) = G(eit), 0 � t � 2π, the point G(0) = 4.12− 0.16i,

marked by a red color circle, has winding number 1. That point situates in only one of the loops formed

by the curve γ. Also in the figure the point 1 = G(0.5) = G( 13 ) = G(0.1+ i
1.01 ) = G(0.05+ i

1.01 ), marked

by a blue cross, has the winding number 4. It is one of the points that possess the greatest winding

number 4. By subtracting G(0.5) = 1 one can factorize out a Blaschke product with 4 Möbius factors.

Figure 2 is a magnifying enlargement of Figure 1 to present the local details. We colored all the loops for

counting the winding numbers of the individual regions (connected open sets). Subtracting G(0.5) = 1

gives rise to a Blaschke unwinding decomposition, i.e.,

F (z) = 1 +

( 4∏
k=1

z − ak
1− akz

)
G1(z) (2.13)

with G1(z) =
∏4

k=1(1− akz), which is different from the standard one cited in (1.6).
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Figure 2 (Color online) Local details of G(eit)

3 Sifting process through subtracting Blaschke forms

In AFD theory we have the following algebraic relation: For F being any function in the Hardy space

H2(D) and a1, . . . , an being any n points in the open disc D, it holds that

G(z) =

n∑
k=1

〈G,Bk〉Bk(z) +Gn+1(z)

n∏
k=1

z − ak
1− akz

, (3.1)

where Bk’s, called weighted Blaschke products, constitute the rational orthonormal n-system or the

Takenaka-Malmquist (TM ) n-system, determined by a1, . . . , an with the expressions

Bk(z) =

√
1− |ak|2
1− akz

k−1∏
l=1

z − al
1− akz

,

and Gk’s are the reduced remainders, obtained recursively through a generalized backward shift transform

Gk+1(z) =
Gk(z)− 〈Gk, eak

〉eak
(z)

z−ak

1−akz

.

For a general a ∈ D the function

ea(z) =

√
1− |a|2
1− az

is the normalized reproducing kernel of the Hardy space with the parameter a. The orthogonality of the

n-TM system implies the following useful relations: For each k,

〈Gk, eak
〉 = 〈G,Bk〉 = 〈Hk,Bk〉, (3.2)

where Hk is the standard remainder

Hk(z) = G(z)−
k−1∑
l=1

〈G,Bl〉Bl(z).

By selecting all an’s being equal to a real number or a complex number in the disc one obtains, respectively,

the Laguerre and the two-parameter-Kautz systems. Both systems are orthonormal bases of the Hardy

space and lead to convergence to the function G as n → ∞.

By invoking the Cauchy-Schwarz inequality one has

sup
a∈D

|〈Gk, eak
〉| � ‖Gk‖ � ‖G‖ < ∞.
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The essence of the AFD algorithm is that at each step the supremum is attainable (see [35]). For

convenience we call

G(G;a)(z) =

n∑
k=1

〈G,Bk〉Bk(z)

as the Blaschke form of F induced by a = (a1, . . . , an) ∈ Dn. Note that (3.1) is an algebraic identity

that achieves two aspects at the same time benefiting the approximation:

(1) the difference G− G(G;a)(z) has zeros a1, . . . , an including multiples (see (3.1) or [35]);

(2) the energy ‖G−G(G;a)‖ can attain the minimum value over all the possible selections of n-tuple a

(see [6, 33]).

As an application of the results (1) and (2), the Blaschke forms G(Gk,a
(k)) can be designed to generate

zeros in the unwinding process, where a(k)’s are arbitrary vectors in Dnk of any prescribed length nk � 1,

or to maximally reduce energy as in [28, 35]. In both cases the decompositions lead convergence to the

originally given function.

Under this program the unwinding decomposition becomes

F (z) = F0(z) = B0(z)(G0(z)− G(G0;a
(0))(z) + G(G0;a

(0))(z))

= c0(z)B0(z) +B0(z)Ba(0)(z)F1(z)

= c0(z)B0(z) + c1(z)B0(z)Ba(0)(z)B1(z) +B0(z)Ba(0)(z)B1(z)Ba(1)(z)F2(z)

= c0(z)B0(z) +

n∑
k=1

ck(z)B0(z) · · ·Bk(z)Ba(0)(z) · · ·Ba(k−1)(z)

+B0(z) · · ·Bn(z)Ba(0)(z) · · ·Ba(n)(z)Gn+1(z),

where Gk−1(z) − G(Gk−1;a
(k−1))(z) = Ba(k−1)(z)Fk(z) = Ba(k−1)(z)Bk(z)Gk(z) is the sifting process

together with Nevanlinna factorization, ck(z) = G(Gk;a
(k))(z), and Ba(k)(z) is the Blaschke product

associated with a(k). We note that with the Nevanlinna factorization Fk(z) = Bk(z)Gk(z) the Blaschke

product Bk(z) does not have to exhaust all the zeros of Fk(z) to make a proper sense of the instantaneous

frequency and to reduce the computation complexity.

Theorem 3.1. Under a similar condition regarding the hyperbolic non-separability of the zeros collected

from the remainders as in Theorem 2.4, or using the maximal selections of a(k)’s as proved in [28, 35],

we can conclude

F (z) = c0(z)B0(z) +
∞∑
k=1

ck(z)B0(z) · · ·Bk(z)Ba(0)(z) · · ·Ba(k−1)(z).

If all a(k)’s have length 1, under the maximal selections of a(k), the above model reduces to what is

proceeded in [28].

Remark 3.2. All the above mentioned unwinding expansions are in the following form:

F0(z) = B0(z)G(G0)(z) +B0(z)B1(z)G1(z)

= B0(z)G(G0)(z) +B0(z)B1(z)G(G1)(z) +B0(z)B1(z)B2(z)G2(z)

= · · ·

= B0G(G0)(z) + G(Gn)(z)

n∑
k=1

[ k∏
j=0

Bj(z)

]
+

[ n+1∏
k=0

Bk(z)

]
Gn+1(z),

where Bk(z) is a Blaschke product formed by a part or all of the zeros of Gk−1(z) − G(Gk−1)(z) and

Gk(z) := Gk−1(z)−G(Gk−1)(z)
Bk(z)

. If one has targeted unwinding Blaschke factors, G(Gk−1)(z) are specially

designed to make Gk−1(z) − G(Gk−1)(z) to have the corresponding zeros in the disc. In the above two

sections, we, respectively, make G(Gk−1)(z) = Gk−1(ak−1), where at ak−1 the function Gk−1 has the

maximal winding number, or make G(Gk−1)(z) = G(Gk−1;a
(k−1))(z) to reduce the maximal energy. The
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convergence can be verified through the non-separable hyperbolic property of the parameters of the TM

system or through the maximal selection principle.
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