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This paper proposes a novel feature representation approach for heartbeat classification
using single-lead electrocardiogram (ECG) signals based on adaptive Fourier decompo-
sition (AFD). AFD is a recently developed signal processing tool that provides useful
morphological features, which are referred as AFD-derived instantaneous frequency (IF)
features and differ from those provided by traditional tools. The AFD-derived IF fea-
tures, together with ECG landmark features and RR interval features, are trained by a
support vector machine to perform the classification. The proposed method improves the
average accuracy of the feature extraction-based methods, reaching a level comparable
to deep learning but with less training data, and at the same time being interpretable
for the learned features. It also greatly reduces the dimension of the feature set, which
is a disadvantage of the feature extraction-based methods, especially for ECG signals.
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To evaluate the performance, the Association for the Advancement of Medical Instru-
mentation standard is applied to publicly available benchmark databases, including the
MIT-BIH arrhythmia and MIT-BIH supraventricular arrhythmia databases, to classify

heartbeats from the single-lead ECG. The overall performance is compared to selected
state-of-the-art automatic heartbeat classification algorithms, including one-lead and
even several two-lead-based methods. The proposed approach achieves superior balanced
performance and real-time implementation.

Keywords: Heartbeat classification; adaptive Fourier decomposition; instantaneous fre-
quency; time–frequency representation.
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1. Introduction

Cardiovascular disease (CVD) is the leading cause of death globally. According to a
report of the American Heart Association in 2020, CVDs claimed 17.8 million lives
in 2017, and this number amounted to an increase of 21.1% from 2007.32 Among
the various CVDs, arrhythmia accounts for a large proportion, and early diagnosis
of arrhythmia is of great significance to healthcare professionals.28

Electrocardiogram (ECG) is an effective, noninvasive and well-established diag-
nostic tool for arrhythmia. Long-term monitoring is required to achieve early diag-
nosis of life-threatening arrhythmias. Thanks to the advances in technology, this
can be achieved by wearable Holter monitors or mobile devices.12,15 As the man-
ual diagnosis of recorded long-term ECG signals is time consuming and prone to
errors, a reliable computerized interpretation of ECG,27 or at least computer-aided
automatic heartbeat classification, has become increasingly important. Our focus in
this study is computer-aided automatic heartbeat classification. Although several
commercial automatic heartbeat classification algorithms have been proposed, in
general, these exhibit substantial misdiagnosis rates,27 even when they are applied
to the multiple-lead ECG used in hospitals. Moreover, the performance is clearly
deteriorated when only a single-lead ECG is used, as it is more challenging to
determine the delineation of fiducial points. Wearable Holters and mobile devices
that are commonly used for early diagnosis of arrhythmia are usually equipped with
single-lead ECG.28 Thus, it is necessary to develop an accurate automatic heartbeat
classification algorithm for single-lead ECG.

Successful heartbeat classification usually comprises three important proce-
dures: preprocessing, feature extraction and classification. Automatic heartbeat
classification algorithms can be divided into two main categories based on the man-
ner in which these three steps are carried out. The first category includes meth-
ods based on feature extraction and classifier training, while the second category
includes those based on black box deep learning approaches.2,16

Feature selection and dimension reduction are key processes in feature
extraction-based classification. An effective feature extraction method can not
only simplify the computation, but also provide superior classification perfor-
mance. The ECG features commonly employed for classification tasks are based
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on ECG landmarks.11,36 Researchers have also considered transform domain fea-
tures based on discrete cosine transform,7 principal component analysis,3,34 inde-
pendent component analysis (ICA)34 and so on. Another set of features focuses
on the non-stationarity of the ECG, and researchers have taken the ECG time–
frequency representation into account.17 The above-mentioned features are usu-
ally used in combination, resulting in a higher dimensionality of the feature set.
Large feature dimensions lead to high computational costs, making real-time
implementation in wearable Holters, mobile devices and off-the-person sensors
impractical.

Deep learning offers an integrated scheme that combines feature extraction and
classification. Acharya et al.2 and Zubair et al.38 developed 9-layer and 3-layer
convolutional neural network (CNN) methods, respectively, whereas, Yildirim35

constructed the deep bidirectional long short-term memory network-based wavelet
sequences model. Deep learning-based methods generally exhibit higher accuracy
rates; for example, the average accuracy rates were 93.47% in Ref. 2 and 99.25% in
Ref. 35. However, a large amount of training data is required for training deep neural
networks (NNs). The benchmark datasets in the standard MIT-BIH arrhythmia
database are not sufficiently large to support such training.16 To solve this problem,
artificial synthetic data2 and the intra-patient paradigm have been used in Refs.
2, 35 and 18, which reduce the reliability of the methods. Some methods also use
additional classifiers, such as support vector machine (SVM) and decision tree,18 to
improve the final accuracy after CNN. Moreover, several methods only focused on
some specific classes and ignore the others, as in Ref. 22, in which the application of
the restricted Boltzmann machine (RBM) and deep belief network (DBN) is used
for detecting ventricular and supraventricular heartbeats, thereby achieving high
performance in those two classes, while the other classes perform poorly.

As ECG signals are always imbalanced, the deep learning-based classification
methods, even the feature extraction-based methods are prone to ineffective due to
the small amount of abnormal data. However, the main focus of the ECG classifi-
cation is to identify the abnormal classes, rather than the normal class. From the
clinical respective, balanced classification results are sought.

In this paper, we propose a new automatic heartbeat classification method for
single-lead ECG signals with rigorous mathematical support, which belongs to the
first category. Our approach uses the time–frequency features of the ECG signal
to perform feature extraction. Popular time–frequency representation methods in
the literature include short-time Fourier transform (STFT),19 the Wigner–Ville dis-
tribution,1 wavelet transform3,34 and synchrosqueezing transform.17 Ambiguity is
inevitably caused by the uncertainty principle26 in STFT,19 which may mask impor-
tant heartbeat information. Moreover, the Wigner distribution1 suffers from the
cross-term problem.37 To the best of the authors’ knowledge, no STFT or Wigner
distribution-based ECG feature representation method for heartbeat classification is
available in the literature. In wavelet transform, the selections of the mother wavelet
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and number of decomposition levels are problematic. While synchrosqueezing
transform17 may aid in eliminating above problems, the computational complex-
ity is nontrivial, making it unsuitable for real-time implementation. Therefore, we
consider a new type of time–frequency analysis, based on adaptive Fourier decompo-
sition (AFD)25,37 to address the limitations of the aforementioned time–frequency
analysis approaches.

AFD is a novel signal processing technique with a rigorous mathematical foun-
dation, which generalizes the traditional Fourier decomposition by considering the
Blaschke decomposition (BKD) theory in the complex analysis.8,9,30 It decomposes
a given signal by adaptively selecting its associated basis from the Takenaka–
Malmquist (TM) system.21,29 By achieving the maximal energy gain in each decom-
position iteration, AFD decomposes a signal into several constitutional components
known as mono-components. Those mono-components possess positive instanta-
neous frequencies (IFs) and no intersection occurs among any of the IFs.10,37 The
positive IFs effectively reflect the time-varying characteristics of the signals, such
as the morphology of the heartbeats. The discriminating ability of these IF features
is sufficient to exceed the performance levels of other methods using complex fea-
ture screening and assessment processes. A balanced classification performance is
achieved by these features for abnormal heartbeats detection.

The contributions of this study are as follows:

• New AFD-derived IF features are introduced for the first time in application
and heartbeat classification in the literature. It significantly reduces the feature
dimensions of ECG signals for feature extraction-based approaches.

• The proposed method can be implemented automatically and in real time using
a low-power platform. Our classification requires only a small amount of train-
ing data compared to deep learning methods. These advantages offer significant
potential for practical use in wearable Holters, mobile devices and off-the-person
sensors (provided that a high-quality ECG signal is available), and even for user-
side learning training in the near future.

• An inter-patient cross-validation (CV) paradigm is applied to the entire data
in the benchmark database to validate the proposed method. The results are
more stable and reliable compared to those methods using intra-patient or using
selected data from the database.

• The experiment results show that our method reaches over 80% balanced accu-
racy classification rates on overall and all four classes, which is the best balanced
result in the literature on heartbeat classification.

The rest of this paper is organized as follows. The proposed method is described
in detail in Sec. 2. In Sec. 3, the results of the classification performance and
the performance comparisons with state-of-the-art algorithms are presented. Sev-
eral concerned issues are discussed in Sec. 4. Finally, conclusion is drawn in
Sec. 5.
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2. Methods

In this section, we first present the mathematical foundation of the proposed
approach. Then the new time–frequency feature representation-based ECG clas-
sification system is described in detail. Finally, the databases and the assessment
strategies are introduced.

2.1. Mathematical foundation

2.1.1. AFD-based time–frequency representation

Take a real-valued function s ∈ L2(∂D), where ∂D is the unit circle. The associated
analytic signal s+ is defined as s+ = 1

2 (s + iHs + c0), where c0 is the 0th Fourier
coefficient and H is the Hilbert transform. For the analytic signal s+, AFD conducts
rapid converging approximation of s+ in orthogonal terms, of the form

s+
rec =

N∑

n=1

cnBn, (2.1)

under selection of the parameters a1, . . . , aN , by the maximal selection principle.25

a1, . . . , aN ⊂ D, where D ⊂ C is the unit disc, Bn(z) =
√

1−|an|2
1−anz

∏n−1
k=1

z−ak

1−akz ,
n ∈ N are modified Blaschke products of the TM system,21,29 and cn = 〈s+, Bn〉
is the nth coefficient of Bn. N ∈ N is known as the decomposition level and s+

rec is
referred as the AFD approximation of degree N . We have s+ = s+

rec + RN . RN is
the remainder after N times decomposition, which represents the error between s+

and s+
rec. It was proven in Ref. 25 that s+

rec converges to s+ in the H2 convergence
sense; that is, ‖RN‖H2 → 0 as N → ∞. Refer to Fig. 1 for a detailed illustration
of AFD for the ECG signal.

Then

srec = 2
s+
rec − c0, (2.2)

where 
 means taking the real part, and srec is the approximation of s. When s is
an ECG signal, refer to Fig. 2 for examples when N = 10.

It is natural to consider a time–frequency representation to visualize the oscilla-
tion of a given real-valued signal s. We denote cnBn, n = 1, . . . , N as the nth level
AFD of s. If cnBn(eit) = ρn(t)eiθn(t), where t ∈ [0, 2π) is the time, the transient
time–frequency representation of s, as proposed in Refs. 37 and 10, can be defined
as

Rs(t, ζ) =
N∑

n=1

ρ2
n(t)δ(θ′n(t)), (2.3)

where ζ > 0 is the frequency and δ is the distributional Dirac function.10 Note
that Rs can be numerically plotted as an image for the purpose of visualization, as
illustrated in Fig. 1.
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Fig. 1. Flowchart of AFD with real ECG signal. The black and red curves denote the real and
imaginary parts of a complex signal, respectively. Note that al, where l = 1, 2, 3, are indicated as
red dots in those plots illustrating eal . In the time–frequency representation in the bottom-right
subplot, note that the IFs of all decomposed components are grouped together (color online).

Fig. 2. Results of AFD approximation and associated time–frequency representations of four
different heartbeat classes. The decomposition level is N = 10. The black lines represent the
original heartbeats, while the red dotted lines represent the respective approximations (color
online).

2.1.2. IF feature

A function s(eit) = ρ(t)eiθ(t) ∈ L2(∂D) is known as a mono-component if ρ ≥ 0 and
θ′ ≥ 0 a.e.37; that is, it has well defined, non-negative analytic phase derivatives.
The non-negative analytic phase derivative θ′ is the IF of s. According to (2.1)

2150010-6



August 12, 2021 17:0 WSPC/S0219-6913 181-IJWMIP 2150010

AFD based feature representation for heartbeat classification

Fig. 3. Process of extracting IF feature vectors. (θ′1(tR), θ′2(tR), . . . , θ′N (tR)) are IF features in
our method.

and (2.3), if cnBn(eit) = ρn(t)eiθn(t), by direct calculation, we obtain

θ′n(t) =
|an| cos(t − θan) − |an|2

1 − 2|an| cos(t − θan) + |an|2 +
n−1∑

l=1

1 − |al|2
1 − |al| cos(t − θal

) + |al|2 , (2.4)

where θan = |an|eiθan . We view the IF function θ′n as a feature of the given signal.
In our application, if tR represents the location of an R-peak, we refer to θ′n(tR) as
the nth R-peak IF feature of that heartbeat. For the decomposition level N , we refer
to the vector (θ′1(tR), θ′2(tR), . . . , θ′N (tR)) as the R-peak IF feature vector of a given
heartbeat. The process of extracting the R-peak IF feature vectors is described in
Fig. 3.

2.2. AFD-based heartbeat classification system

The proposed automatic heartbeat classification system consists of three steps:
preprocessing, feature extraction and classifier construction. In the first step, the
raw ECG signals are divided into heartbeat segments following the standard R-peak
detection algorithm. Thereafter, AFD is applied to generate the IF feature vector
for each heartbeat segment. A set of commonly applied landmark features, including
the QRS duration, R-peak amplitude and RR interval, is also derived. Finally, the
SVM classifier is trained for the purpose of classification. An illustration of the
proposed algorithm is provided in Fig. 4.

2.2.1. Preprocessing

The preprocessing stage consists of R-peak detection and heartbeat segmentation.
As the R-peak detection is not the focus of this work, the R-peak annotations
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Fig. 4. Overview of proposed automatic heartbeat classification algorithm.

provided in the MIT-BIH arrhythmia database are used for the heartbeat segmen-
tation. For each detected R-peak, 100 sampling points before the R-peak location
and 200 sampling points thereafter are selected to construct an associated heartbeat
segmentation. Considering that the sample rate is 360Hz, a heartbeat segment is
approximately 0.83 s.

2.2.2. Feature extraction

AFD is applied to every heartbeat segment, with the decomposition level N =
10 because 10 decomposed mono-components can effectively recover the heart-
beat segment. Therefore, each heartbeat segment is decomposed into nine mono-
components, as the first mono-component is trivial according to the selection of
a1 = 0. The IFs of these nine mono-components at the R-peak locations are selected
as features of each heartbeat segment; that is, the R-peak IF feature vector is
(θ′2(tR), θ′3(tR), . . . , θ′10(tR)) ∈ R

9, as illustrated in Fig. 3. The distributions of the
nine R-peak IF features of the N, S, V and F classes are graphically represented
in Fig. 5. According to Fig. 5, we can observe that the IF feature vectors are dis-
criminative representations of the heartbeat classes. Moreover, landmark features
and dynamic features that have been clinically studied with stipulated diagnostic
standards are selected. In total, we have 14 features for each heartbeat segment,
which are listed in Table 1.

2.2.3. Classifier

We consider the widely applied classifier with a solid theoretical foundation, namely
the kernel SVM,31 to establish the heartbeat classification model, owing to its strong
performance, as reported in previous works for classifying beat types. Numerically,
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Fig. 5. Boxplots of IF distribution of nine mono-components obtained by AFD at R locations for
main beat types presented in MIT-BIH database. Note that we set all a1 = 0 for N = 1, resulting
in θ′1(tR) = 0 for each heartbeat segment, so we omit it. N: N class; S: S class; V: V class; F: F
class.

Table 1. Feature set in this study.

Features Description

R-peak IF feature vector AFD-derived IFs at R-peaks
QRS duration Duration of QRS complex
R-peak amplitude Amplitude of R point location
Pre-RR interval Time difference between current and previous beat at R-peak
Post-RR interval Time difference between current and next beat at R-peak
Local-RR interval Average R-peak to R-peak interval over 10 beats

the LIBSVM library6 is applied to implement the kernel SVM. The weighted SVM
classifier is trained, as the training data from the MIT-BIH arrhythmia database is
imbalanced. Specifically, we assign each class a weight to penalize the class according
to its prevalence in order to relieve the problem generated by the imbalance of the
training dataset.
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2.3. Databases

The well-known MIT-BIH arrhythmia databasea from PhysioNet14 is used for eval-
uating the proposed method. The database contains 48 recordings, each of which
lasts about 30min, with two leads: lead A and lead B. In 45 recordings out of 48,
lead A is modified lead II (MLII), while lead B is mainly V1, but sometimes V2,
V4 or V5; in the remaining three recordings, lead A is V5 and lead B is V2 or II.
The signals are sampled at 360Hz. In this work, we use lead A for the automatic
heartbeat classification. The database includes expert annotations. The annotations
follow the Association for the Advancement of Medical Instrumentation (AAMI)
standard,4,5 which further categorizes the beat types into different classes, as indi-
cated in Table 2. In particular, the N class contains beats originating from the sinus
node (normal and bundle branch block beat types); the S class contains supraven-
tricular ectopic beats; the V class contains ventricular ectopic beats; the F class
contains beats resulting from fusing normal and ventricular ectopic beats and the
Q class contains unknown beats, including paced beats. In this work, the Q class is
discarded according to the recommended practice, as it is marginally represented in
the database. The provided expert annotations are used as the standard to evaluate
the performance of the classification results.

In addition to the MIT-BIH arrhythmia database, the MIT-BIH supraventricu-
lar databaseb is used to alleviate the imbalanced class issue when using the MIT-
BIH arrhythmia database. Specifically, limited beats of type S exist in the MIT-
BIH arrhythmia database. The MIT-BIH supraventricular database consists of 78
recordings of approximately 30min each, sampled at 128Hz with two leads. In this
study, the ECG recordings from MIT-BIH supraventricular database are resampled
to 360Hz to match the sampling rate of the MIT-BIH arrhythmia database.

2.4. Assessment strategies

2.4.1. Inter-patient CV

CV is applied to evaluate the performance of the proposed algorithm. Based on
different types of CV, heartbeat classification methods can be divided into two
categories, namely intra-patient CV and inter-patient CV. When the training and
testing sets contain heartbeats from the same subjects, the CV is known as intra-
patient CV; otherwise, it is known as inter-patient CV.11,17,33 Intra-patient CV has
been widely adopted and can achieve optimistic results.2,3,18,35 However, we can-
not retrain the heartbeat signals of every new patient in practice. Due to numerous
variations in ECG signals, the intra-patient CV-based methods may not be able to
predict the heartbeat classification of unknown patients, therefore it is not suitable
for the actual situation. For inter-patient CV, heartbeats in the training set and
the testing set are from different patients so that inter-subject variations are taken

ahttp://www. physionet.org/physiobank/database/mitdbl.
bhttp://www. physionet.org/physiobank/database/svdb.
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into account, providing a more realistic evaluation for heartbeat classification. Fol-
lowing the state-of-the-art approaches,11,17,33 inter-patient CV is performed in this
study.

2.4.2. Assessment metrics

The confusion matrix is used in this study that shows the detailed distribution of
the classification results achieved by a classifier. Besides, the following assessment
metrics are also employed. We denote nkl as the (k, l)th entry of the confusion
matrix. The sensitivity (Se), positive predictivity (+P) for the kth class are defined
as

Sek =
nkk

N∑

l=1

nkl

, +Pk =
nkk

N∑

k=1

nkl

. (2.5)

Larger Se and +P value reflect better classification performance for the kth class.
The overall accuracy (Acc) is denoted as

Acc =

N∑

k=1

nkk

N∑

k=1

N∑

l=1

nkl

. (2.6)

3. Results

In this section, we give detailed results of time–frequency feature images, imbal-
anced classification results, balanced classification results and comparison results
with other state-of-the-art methods.

3.1. Time–frequency features images

Figure 2 presents the results of four heartbeat segments from different classes,
including the AFD approximation of degree 10 and their respective time–frequency
representations. In addition, Fig. 6 provides detailed time–frequency features of the
V class heartbeat given in Fig. 2.

3.2. Imbalanced results

The entire MIT-BIH arrhythmia database is divided into a training set (DS1) and
a test set (DS2) according to the recommendation in Ref. 11, that is, DS1 con-
tains all heartbeats in 22 records and DS2 contains all heartbeats in the other
22 records. The records in DS1 and DS2 do not cross each other. The remaining
four records containing paced beats are removed. Table 2 illustrates the detailed
heartbeat distribution for different heartbeat classes in DS1 and DS2.
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Fig. 6. The detailed time–frequency features of the V class heartbeat in Fig. 2.

The imbalance model means that the imbalance of the data is not taken into
account. Since most heartbeats in the database are normal heartbeats, the accuracy
of the overall and normal heartbeat classification is higher, and the accuracy of
the abnormal heartbeat classification is lower. In imbalance model, the classifier is
trained on all features listed in Table 1 and the heartbeats from DS1. The optimal
parameters for the kernel SVM are determined by the grid optimization method,
by applying 10-fold CV. Once the optimal parameters are selected, the established
SVM classifier is validated on DS2.

The optimal parameters for the kernel SVM classifier determined from DS1 are
C = 2.8, σ = 0.0008. The confusion matrix is presented in Table 3. This classifier
assessed on DS2 achieves an overall Acc of 94.7% and N class Se of 99.1%. As
indicated in Table 3, the performance of the S class and F class is poor, mainly
owing to the imbalanced dataset issue.

3.3. Balanced results

In order to improve the accuracy of abnormal heartbeat classification, we add the
following operations to the imbalance model: extend DS1 with the S class in the
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Table 3. Confusion matrix of imbalance model.

Predicted

N S V F

Reference N 43,642 94 304 1
S 1076 454 298 1
V 443 10 2630 0
F 321 1 44 12

Table 4. Confusion matrix of balance model.

Predicted

N S V F

Reference N 37,681 3555 231 2574
S 299 1470 58 2
V 67 433 2477 106
F 38 7 20 313

MIT-BIH supraventricular database, add the P-wave IF features of each heartbeat
in the training features, and provide weights for different heartbeat classes. As
the last few mono-components can better reflect the subtle oscillations of ECG
signals, for each heartbeat segment, the IFs at the 50th samples before the R-peak
location of the last five mono-components refer as the P-wave IF feature vector,
that is, (θ′6(tR − 50), θ′7(tR − 50), . . . , θ′10(tR − 50)) ∈ R5. Therefore, there are five
more features used in balance model. In this case, the accuracy of overall and
normal heartbeat classification rates may be reduced, but the accuracy of abnormal
heartbeats will be greatly improved. In balance model, the classifier is trained on
the extended DS1, and assessed on DS2.

In balance model, the optimal parameters for the weighted SVM classifier are
determined as C = 3, σ = 0.0006, ω1 = 0.42, ω2 = 36, ω3 = 2.5 and ω4 = 1.79,
where ω1, ω2, ω3 and ω4 are the weights for classes N, S, V and F, respectively.
The confusion matrix is presented in Table 4, the final performance of the classifier
tested on DS2 exhibits an overall Acc of 85.02% and Se of all classes over 80%. The
detailed Se and +P values of each class are provided in Table 5. Note that this
model achieves a more balanced result, and the results of the S class and F class
are improved.

3.4. Performance comparison

A comparison of the classification accuracy between the proposed method and the
state-of-the-art methods based on inter-patient CV is provided in Table 5. All
methods shown in Table 5 used all data of the MIT-BIH arrhythmia database
for training and validating, complied with the AAMI standard and followed DS1
and DS2 division schemes proposed in Ref. 11. Except Refs. 38 and 22 are deep
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learning-based methods, others are feature extraction-based methods. The methods
proposed in Refs. 11, 20, 34 and 36 depend on two-lead ECG signals, while the other
methods depend on a single ECG lead.

For the deep learning approaches, Ref. 22 used the RBM and the DBN after
extracting feature sets, while Ref. 38 developed a 3-layer CNN. For feature extrac-
tion, Refs. 11 and 20 consider the RR interval, ECG landmark features such as
the QRS duration, T-wave duration, P-wave flag, 2D vectocardiogram loop and
others, as their features, while Refs. 34 and 36 consider a combination of landmark
and dynamic features, wavelets, ICA and the RR interval as their features. Fea-
ture selection is conducted in Ref. 36 to determine the best features. The phase
information determined by the synchrosqueezing transform is used as a feature in
Ref. 17. In Ref. 7, a random projection is considered to determine the final fea-
tures. The features of wavelets, local binary patterns, higher-order statistics and
several amplitude values with the product, sum and majority rules are employed
in Ref. 23. Thereafter, Refs. 11 and 20 select logistic discrimination (LD) as their
classifier, while the others select the SVM.

As it can be observed in Table 5, the proposed imbalanced classification model
exhibits the best performance in terms of the overall accuracy and the Se of N class.
Also, Se of V class performs similarly, +P of V and F class perform better com-
pared with others. It demonstrates that the extracted features using our proposed
time–frequency representation have very good discriminative ability. The poor per-
formance of S class and F class mainly owes to the imbalanced dataset issue. It
can be seen from the value of Se and +P in Table 5, each method has one or more
classes with Se below 80%, as the slight improvement in balanced performance is
very difficult to achieve. As also shown in Table 5, our balance model achieves the
best balanced classification rate. The Se of all beat classes is over 80%, and the
overall Acc is also greater than 85%. The result in Ref. 36 is closer to ours, but
compared to our results, the Se of S class is below 80%, yet using two leads and
additional features. Moreover, they use a complicated feature ranking approach for
selecting the features and dimension reduction, which is challenging to implement
in real applications.

The balanced results ensure the accuracy of various arrhythmia classifications,
while overall accuracy above 85% is clinically acceptable. Moreover, as single-lead
and fewer features used, our method can operate on a low-power platform, it offers
significant potential to be used in real-time applications in wearable Holters, mobile
devices and off-the-person sensors.

4. Discussion

4.1. Classifier selection

Our extracted features can work with any classifier. To choose a more suitable
classifier for ECG signals, we test the widely applied classifiers, including LD, k -
nearest neighbors (kNN), random forest (RF), SVM and NN. These classifiers have
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(a) (b)

Fig. 7. Comparisons of the accuracy of different classifiers. (a) Heartbeat classification based on
intra-patient CV. (b) Heartbeat classification based on inter-patient CV.

been reported as the foremost classifiers for producing high accuracies, particularly
in feature extraction-based methods. The performance of these classifiers working
with our method is presented in Fig. 7.

It can be seen in Fig. 7(a) that all the tested classifiers achieve the accuracy of the
heartbeat classification over 90%, some of them even over 95%, which demonstrate
that the extracted features using our proposed time–frequency feature extraction
approach have good discriminative ability. Figure 7 shows that RF and SVM exhibit
comparable performance of intra-patient CV in (a) and SVM performs better than
RF in the inter-patient CV in (b). As the performance of the RF classifier on
different data with varying training sample strategies (balanced vs. imbalanced)
differs,24 the differences between various training sample sizes of the SVM classifier
are insignificant, besides, ECG data are highly imbalanced and the sample sizes in
certain classes are relatively very small, we select the SVM as the classifier in our
study.

4.2. Balanced results for improving pathological beats detection

The imbalanced dataset issue is challenging in all automatic heartbeat classification
methods. The MIT-BIH arrhythmia database is highly imbalanced, as almost 90%
of the beat types belong to the N class. The classification method is prone to
ineffective, since it can identify all heartbeats in the N class and achieve a higher
overall accuracy, but it neglects the S, V and F classes. However, the main focus
of the ECG classification is to identify the S, V and F classes, rather than the N
class. In this situation, a more balanced performance result is superior, even with
slightly lower accuracy rates in the N class and total average results.

As the purpose of the proposed automatic heartbeat classification is to detect
various types of non-lethal arrhythmia, the weighted kernel SVM is considered, and
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an extra database, namely the MIT-BIH supraventricular database, is taken into
account to address the imbalanced dataset issue. Furthermore, the IF features at
other sample points related to the P-wave are extracted to describe the characteris-
tics of the S class, which is conducive to differentiating the S class from the N class.
Finally, a classification model with a balanced classification rate is achieved, which
specifically exhibits priority over classes with few samples of pathological beats.

4.3. Real-time implementation

The proposed classifier is trained on a computer with 16GB of RAM and a 2.71GHz
Intel Core i5 processor. The algorithm is developed in MATLAB R2016a. Approx-
imately 81.83 s are required to complete one training process. Once the training
of ECG signals is complete, the heartbeat classification is rapid. The critical step
in the proposed classification system is the feature extraction based on AFD. The
computational complexity of the AFD algorithm is O(N log N)13 and the compu-
tation time of AFD with N = 10 is 0.189 s. Note that this time is much shorter
than that required to complete one heartbeat, even when the heart rate is as fast as
180 beats per minute. Thus, the proposed algorithm offers potential for real-time
monitoring systems, the implementation of which will be the focus of our future
work. As none of the methods presented in Table 5 provide the training time, a
comparison cannot be conducted. Deep learning approaches require a long training
time and specialized hardware, such as a GPU, to train the algorithm efficiently.
For example, the CNN in Ref. 2 is trained with two Intel Xeon 2.40GHz (E5620)
processors and 24GB of RAM, requiring approximately 9573.2 s to complete one
training epoch, and the total processing time of Ref. 18 is about 1 h on CPU 3.2G
Core i7 with 4G memory.

4.4. Limitations and future work

The proposed approach exhibits several limitations. The data are obtained from
a publicly available database, and not collected from equipment tailored for
telemedicine. Moreover, the database size is limited. Therefore, a larger database
collected from professional mobile devices for telemedicine will be executed to con-
firm the practical performance of the proposed algorithm in follow-up work.

In this study, we focus only on the ECG signal, but the proposed algorithm offers
the potential to be applied to other biomedical signals, which will be explored in
future work. Furthermore, the possibility of extracting features from AFD to train
the deep learning framework and improve the overall performance will be considered
in a future study.

5. Conclusions

A novel automatic heartbeat classification method based on the recently devel-
oped signal processing tool, AFD, which is applied to capture the time–frequency
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characteristics of the ECG signal from a complex analysis perspective, has been
presented in this paper. The SVM classifier has been considered for automatic
classification. The heartbeat classification performance on the MIT-BIH arrhyth-
mia database outperforms other state-of-the-art methods, which depend on a large
number of features and/or multi-lead ECG signals, in terms of exhibiting balanced
performance and real-time implementation. The balanced results effectively improve
pathological detection. The proposed method offers the potential to be used in an
ambulatory ECG monitoring device or a mobile health device for real-time diagnosis
of non-life-threatening arrhythmia.
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Mathématiciens Scandinaves (Kopenhagen, 1925) (Copenhagen, Gjellerups, 1926), pp.
253–259.

22. S. Mathews, C. Kambhamettu and K. E. Barner, A novel application of deep learning
for single-lead ECG classification, Comput. Biol. Med. 99 (2018) 53–62.
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35. Ö. Yildirim, A novel wavelet sequence based on deep bidirectional LSTM network
model for ECG signal classification, Comput. Biol. Med. 96 (2018) 189–202.

36. Z. Zhang et al., Heartbeat classification using disease-specific feature selection, Com-
put. Biol. Med. 46 (2014) 79–89.

37. L. Zhang, T. Qian, W. Mai and P. Dang, Adaptive Fourier decomposition-based Dirac
type time–frequency distribution, Math. Methods Appl. Sci. 40(8) (2017) 2815–2833.

38. M. Zubair, J. Kim and C. Yoon, An automated ECG beat classification system using
convolutional neural networks, in 2016 6th Int. Conf. IT Convergence and Security
(ICITCS) (IEEE, 2016), pp. 1–5.

2150010-21



Copyright of International Journal of Wavelets, Multiresolution & Information Processing is
the property of World Scientific Publishing Company and its content may not be copied or
emailed to multiple sites or posted to a listserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.


	Introduction
	Methods
	Mathematical foundation
	AFD-based time--frequency representation
	IF feature

	AFD-based heartbeat classification system
	Preprocessing
	Feature extraction
	Classifier

	Databases
	Assessment strategies
	Inter-patient CV
	Assessment metrics


	Results
	Time--frequency features images
	Imbalanced results
	Balanced results
	Performance comparison

	Discussion
	Classifier selection
	Balanced results for improving pathological beats detection
	Real-time implementation
	Limitations and future work

	Conclusions

