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Abstract— A functional feature extraction method based on
rational function approximation for hyperspectral image (HSI)
classification is proposed. In digital imagery, the spectral infor-
mation of a pixel can be regarded as a 1-D signal. An HSI
is composed of these 1-D signals arranged in a certain spatial
structure. According to the functional characteristic of hyper-
spectral data, 1-D signals can be approximated by a linear
combination of basis functions. Thus, a joint rational basis
function system (JRBFS) based on class adaptivity is here first
built for an HSI by adaptive Fourier decomposition (AFD).
Second, the functional representations (FRs) and corresponding
reconstructed spectral curves are obtained by decomposing
the original spectral information in a JRBFS. Furthermore,
the functional spectral–spatial features are extracted on the
basis of FRs by an edge-preserving filtering method, FR-EPFs.
Finally, the functional spectral–spatial features are used for HSI
classification by SVM. Experimental results for five commonly
used HSI data sets demonstrate the effectiveness and advantages
of the proposed method FR-EPFs.

Index Terms— Adaptive Fourier decomposition (FD) (AFD),
functional spectral–spatial features, hyperspectral image (HSI)
classification, rational orthogonal function system.
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I. INTRODUCTION

W ITH the rapid development of hyperspectral remote
sensing technology, hyperspectral sensors can collect

data in the electromagnetic spectrum from the visible to
the near-infrared wavelength ranges, which can be processed
to form hyperspectral images (HSIs) with the high spatial
resolution and high spectral resolution. In HSIs, each pixel
records the spectral information of dozens or even hundreds
of continuous bands corresponding to some land cover. The
rich spectral information makes accurately discriminating land
covers of interest a possibility. Due to the advantage, HSIs
have been widely used in geological exploration, precision
agriculture, environmental monitoring, and so on [1]. However,
the development of hyperspectral remote sensing technology
also faces some problems, such as large data volume, high
dimensionality, information redundancy, and processing effi-
ciency to be improved [2].

HSI classification is an important research topic, which has
attracted the attention of many researchers. HSI classification
aims at assigning a unique class label to each pixel in HSIs.
Because of the high dimensionality of the data, the limited
number of available labeled samples, and the spatial variability
of the spectral information [3]–[5], HSI classification is a
very challenging task. Early classification methods for HSI
data were mainly based on spectral feature matching, which
relies heavily on the spectral library. In the past two decades,
with extensive research on machine learning theory, many
HSI classification methods based on machine learning have
been proposed. With respect to whether spatial information
is used or not, HSI classification methods are mainly divided
into two categories: classification methods based on spectral
information only (spectral classification methods) and classifi-
cation methods for combining spatial and spectral information
(spatial–spectral classification methods).

Classical spectral classification methods mainly identify the
class of each pixel based on the statistical characteristics of the
available spectral information. Considering how prior knowl-
edge is used, classification methods are mainly divided into
three categories: unsupervised learning, supervised learning,
and semisupervised learning [6], in which supervised learning
is probably the most commonly used approach. In this article,
our focus is on supervised classification. Common supervised
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classifiers include K-nearest neighbor, support vector machine
(SVM), random forest, multiple logistic regression, deep learn-
ing [3], [7], and so on. Due to the high dimensionality,
strong correlation and redundancy of the spectral information,
and insufficient labeled samples, the direct classification of
the spectral information by supervised classifiers is usually
not successful in terms of accuracies. Therefore, in general,
the spectral features are first extracted from the spectral
information by many classical feature extraction methods, such
as principal component analysis (PCA) [8], independent com-
ponent analysis [9], discriminant analysis [10], nonparametric
weighted feature extraction [11], orthogonal total variation
component analysis (OTVCA) [12], and their variants [13].
Then, supervised classifiers are used for classifying the fea-
tures after dimensionality reduction. Although these feature
extraction methods have achieved good results in HSI classifi-
cation, these methods usually treat the spectral information
as discrete vectors and ignore their spectral arrangement
structures and the law of continuous change with the wave-
length [14]. In other words, if the spectral information is
reordered, the new spectral information would not change
the original classification results, but the land covers they
represent actually would change substantially [15]. This is a
disadvantage of machine learning methods that are separated
from physical (imaging) models by only considering the data
itself. Based on the continuous characteristics of spectral
information, this article continues to explore a new functional
feature extraction method especially suitable for HSIs and
even higher dimensional ultraspectral images from a functional
point of view.

Functional data learning is based on functional data analy-
sis [16] and statistical machine learning theory. It focuses on
machine learning problems with continuously varying data
(i.e., functional data). Its salient feature is that the object it
analyzes and processes is a function, not a vector. The spectral
information of each pixel can be regarded as a sampling of
the reflectance curve as a function of the wavelength. This
remarkable feature of an HSI makes it have inherent functional
characteristics, which provides a theoretical basis for exploring
and studying functional feature extraction methods in HSIs.
In recent years, a few researchers have carried out exploratory
works in this direction. Li et al. [17] proposed a functional
data fitting model based on the B-Spline basis function sys-
tem and the functional principal component analysis (FPCA)
method for HSI classification. Ye et al. [18] improved the
functional data fitting models based on the B-Spline basis
function system and proposed the functional data discriminant
analysis (FDDA) method for HSI classification. Lv et al. [19]
proposed a spatial–spectral classification method based on spa-
tial FPCA with local mean filtering of HSIs. Zullo et al. [20]
experimentally compared some classical machine learning
methods with functional data learning methods, showing that
functional data learning methods have significant advantages
in the case of a small number of labeled samples and noise
labels. Several existing methods have mainly been proposed
based on the B-Spline basis function system and FPCA.
Although the B-Spline basis function system shows a good
approximation performance in nonperiodic data processing,

it faces some problems, such as fixed basis functions, the high
dimensionality of FRs, and slow convergence speed. Moreover,
it needs enough basis functions to reach a preset error. There-
fore, more effective basis function systems need to be further
developed. The rational basis function system established by
AFD has significant advantages in discrete signal and image
decomposition, which has been studied in a series of work
of Qian et al. [21]–[23]. However, the rational basis function
system is a challenge in modeling and calculation [24], [25].
Here, it is considered to introduce it into the function space
to establish new functional feature extraction methods for HSI
classification.

In the past decade, research on spatial–spectral classification
methods has attracted much attention, and research on such
classification methods has gradually become a hot topic in
the field of hyperspectral remote sensing [26]. The limited
number of available labeled samples and the spatial variability
of the spectral information in HSI classification make the
accuracies obtained by spectral classification methods unsat-
isfactory. To overcome these problems, many scholars have
tried to mine the spatial information of HSIs based on the
assumption of homogeneous regions and spatial consistency
in order to improve the classification performance. Heretofore,
some spatial information extraction techniques have been used
to implement spatial–spectral classification of HSIs, such as
local mean filtering [27], extended morphological and attribute
profiles [28], [29], invariant attribute profiles [30], super-
pixel segmentation [31], and neighboring sparse representation
methods [32], [33]. Recently, the edge-preserving filtering
method has also been used successfully for spatial information
extraction, giving a very good performance [34]. However,
direct use of edge-preserving features (EPFs) extracted by
the edge-preserving filtering method in HSIs is not effective
enough, and the dimensionality of the features is high [35].
Although the edge-preserving filtering method combined with
some simple band selection and feature extraction methods
can overcome the problems [36], extracting more discrimina-
tive spatial features is still a key task in HSI classification,
especially within the framework of functional data learning.

Based on our previous work [18], in this article, we pro-
pose a new functional feature extraction method for HSI
classification with adaptive rational function approximation.
In this approach, in order to take full advantage of the high
dimensionality, strong correlation, and redundancy of spectral
information, a rational basis function system is at first used
to fit the spectral information into a spectral curve. Note
that the advantage of rational function approximation is that
it can adaptively select the parameters of basis functions
according to different spectral curves, in order to achieve the
best approximation. Then, a JRBFS based on class adaptivity
is built for different land covers by AFD. With the JRBFS,
we use the idea of minimum mean squared error to establish a
functional data fitting model in the function space. By solving
the model, we can obtain the spectral curve corresponding to
the spectral information and its FRs. Due to the JRBFS being
an orthonormal system, the FRs can fully characterize the cor-
responding spectral curve. Next, the functional spectral–spatial
feature extraction method FR-EPFs is built based on the
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FRs by the edge-preserving filtering. Finally, SVM is used
for the classification task of the functional spectral–spatial
features. The proposed functional feature extraction method
can not only effectively handle the problems of the high
dimensionality, strong correlation, and redundancy of the spec-
tral information but also mitigate the lack of available labeled
samples and the spatial variability of the spectral information.
The contributions of this article consist of the following.

1) A rational basis function system with adaptivity is built
by AFD, which can produce a good fit for spectral
curves from different classes with few basis functions.
Compared with the two most commonly used basis func-
tion systems in functional data analysis, i.e., the Fourier
basis function system and the B-spline basis function
system, the rational basis function system has a faster
convergence speed and gives a better approximation.

2) From a functional point of view, by introducing rational
approximation into the functional data learning frame-
work, a functional data fitting model based on the JRBFS
is constructed. Compared with two classical functional
data fitting models, the proposed model has significant
advantages in terms of reconstruction and classification
as can be seen by comparing classification accuracies of
the spectral information before and after fitting.

3) The use of spatial information is a challenge in the
framework of functional data learning. However, the FRs
can be regarded as features of the spectral curves under
the JRBFS. Thus, the functional spectral–spatial features
are extracted by FR-EPFs. Compared with some popular
spectral–spatial feature extraction methods, the proposed
method FR-EPFs can demonstrate better classification
performances.

The rest of this article is organized into five sections.
Section II introduces the rational function systems built by
AFD and certifies its effectiveness and advantages in spectral
curve fitting. Section III presents the JRBFS based on class
adaptivity and preliminarily demonstrates the superiority of the
functional data fitting model based on the JRBFS in spectral
classification. Section IV builds the spectral–spatial classifi-
cation with the functional spectral–spatial features. Section V
displays the experimental accuracies on five HSI data sets and
the analysis of the proposed method in comparison with some
popular methods. Finally, conclusions are drawn in Section VI.

II. MATHEMATICAL FOUNDATION

With the functional characteristics of hyperspectral data,
each pixel of the HSI records a complete and continuous spec-
tral curve. However, due to the influence of noise, the spec-
tral curve directly connected by the spectral vector is not
very regular, even with varying degrees of jagged changes.
To overcome the noise and reconstruct the spectral curve,
the rational orthogonal function system based on weighted
Blaschke products is built for approximating the intrinsic
spectral curve [37].

A. Rational Function System

This section mainly studies the decomposition of 1-D spec-
tral signals by AFD in the weighted Blaschke products. AFD is

a new transformation of real-valued functions in classical
Lebesgue L2 spaces, especially L2 space in the unit circle.
AFD aims at expanding a signal by adaptively selecting a
suitable Takenaka–Malmquist (TM) system [38], which is a
rational orthogonal function system. At this point, AFD and
classical Fourier decomposition (FD) share similar ideas and
principles. However, different from the FD with a fixed basis
(Fourier basis function system) in a Hilbert space, the rational
function system (also known as the TM system) in AFD is
adaptively selected based on the given spectral signal. In other
words, different signals produce different TM systems. The
Fourier basis function system is a special case of the TM
system. On the other hand, AFD can be regarded as a further
extension of FD. Compared with FD, AFD is more flexible
and adaptable in signal decomposition. The mathematical
principles of AFD are given in the following.

Assume that we have an HSI X ∈ R
N×m consisting

of N samples {xi }N
i=1, and the m elements in the spectral

vector xi = [xi1, . . . , xim] are acquired in sequence from the
corresponding spectral signal (curve) xi(t), where t denotes
the wavelength. For convenience, the range of wavelengths t
is transformed into [0, 2π]. Then, the j th element in xi can
be transformed into a point at the wavelength t j on the signal
xi(t), that is

xi j = xi(t j ), j = 1, 2, . . . , m. (1)

Utilizing (1), the raw discrete data are transformed into func-
tional data. Next, we use the suitable basis function system to
approximate the functional data.

In practice, any spectral signal x(t) ∈ {xi(t)}N
i=1 is energy-

limited, namely, ||x || < ∞ (x ∈ L2). According to FD,
the following formula holds:

x(t) =
+∞�

k=−∞
ckeikt ,

+∞�
k=−∞

|ck |2 < ∞. (2)

Here, ck = �x, eikt � = (1/2π)
� 2π

0 x(t)e−ikt dt , and i is the
imaginary unit. Although the Fourier basis function system is a
complete standardized orthogonal system and has some impor-
tant mathematical properties, it faces the following problems
in actual signal decomposition. First, the Fourier expansion
usually converges slowly, for the entries ckeikt in the expansion
that build up the essential part of the total energy may arrive
late. Thus, sufficient expansion entries ckeikt are required to
achieve the preset approximation effect. Second, the fixed
basis system {e±ikt }∞k=0 is selected. For a massive amount of
spectral signals from different classes of land covers, some of
the signals may get a good approximation in the fixed basis
system, others may not. To avoid the problems, the AFD built
in the Hardy space is introduced to achieve the decomposition
of spectral signals.

Let us define the mathematical notation used. C is the
complex plane. D � {z = reit ∈ C : 0 ≤ r < 1} denotes
an open unit disk centered on the origin in the complex plane
C. ∂ D � {z = eit ∈ C} denotes a unit circle around D. ∂ D+
is the set ∂ D with the anticlockwise direction. The complex
Hardy space H 2(D) is the class of analytic functions f on
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the unit disk D, which satisfies the following condition:

f (z) =
+∞�
k=0

ckzk,

+∞�
k=0

|ck |2 < ∞. (3)

In the following, we transform the study of the energy finite
function into a function in the Hardy space H 2(D). There are
two main advantages: one is the deterministic of the function
decomposition in the Hardy space, i.e., specific representations
under the optimal rational basis function system; the other is
applying the mature and effective complex analysis methods
for the function study in the Hardy space, such as Cauchy’s
integral theorem. According to the Fourier expansion in (2),
the spectral signal x(t) can be transformed as a function f (z)
in the Hilbert space L2(∂ D) defined on ∂ D, that is

x(t) =
+∞�

k=−∞
ckeikt =

+∞�
k=−∞

ckzk � f (z), z = eit . (4)

Furthermore, the function f (z) in (4) can be decomposed into
the sum of two parts, i.e., a positive frequency part f + and a
negative frequency part f −

f (eit) =
+∞�
k=0

ckeikt +
−1�

k=−∞
ckeikt � f +(eit) + f −(eit ). (5)

Due to the fact that x(t) is a real-valued signal, the following
holds: c−k = c̄k . Here, c̄k is the complex conjugate of ck . Thus,
(5) can be translated into

f (eit) =
+∞�
k=0

ckeikt +
0�

k=−∞
ckeikt − c0

=
+∞�
k=0

�
ckeikt + c−ke−ikt

� − c0

=
+∞�
k=0

�
ckeikt + c̄ke−ikt

� − c0

=
+∞�
k=0

�
ckeikt + ckeikt

� − c0

= 2Re(
+∞�
k=0

�
ckeikt

� − c0

= 2Re( f +(eit )) − c0 (6)

where Re(·) means taking the real part of a function. Based
on (6), we can now discuss the decomposition of the positive
frequency part f + instead of the original spectral signal f .
Furthermore, f +(eit ) is boundary values of the analytic func-
tion f +(z) ∈ H 2(D), that is

lim
r→1− f +(reit) = lim

r→1−

+∞�
k=0

ckr keikt =
+∞�
k=0

ckeikt = f +(eit ). (7)

We learn that approximation to functions in the Hardy space
H 2(D) implies that also to those in the Hilbert space L2(∂ D).
Thus, based on the transformations in (2)–(7), we study the
decomposition of f + ∈ H 2(D) instead of the original spectral
signal f ∈ L2(∂ D).

According to the spectral signal f , the analytic function f +
can be obtained through the Hilbert transform H on the unit
circle ∂ D

f + = 1

2
( f + iH f + c0)

H f (eit) � P.V.
1

2π

� 2π

0

f (eiτ )

eit − eiτ
deiτ . (8)

Note that the above integral is understood in the principal value
(P.V.) sense. The Hilbert transform is very important in signal
processing, where it derives the analytic representation f + of
a real-valued signal f . Under the FD, f + in (8) is consistent
with the one in (5), denoting the positive frequency part of f .
This article aims at studying the decomposition of the spectral
signal in H 2(D). A TM system {Bk(z)}+∞

k=1 consists of rational
functions in the Hardy space H 2(D) that can approximate any
functions f +(z) in the same Hardy space H 2(D)

f +(z) =
+∞�
k=1

ck Bk(z),
+∞�

k=−∞
|ck |2 < ∞ (9)

where ck = � f +, Bk�, and the TM system {Bk(z)}+∞
k=1 satisfies

the following conditions [21]:

Bk(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
1 − |a1|2
1 − ā1z

k = 1�
1 − |ak|2
1 − ākz

k−1�
l=1

z − al

1 − āl z
k = 2, 3, . . .

al ∈ D.

(10)

Here, eak (z) = ((1 − |ak |2)1/2/1 − ākz) is the normal-
ized Szegö kernel at ak [39]. Although there is no
orthogonality between the {eak (z)}+∞

k=1, with the attachmentsk−1
l=1 (z − al/1 − āl z) as Blaschke products, any TM system

is orthonormal. In fact, by using the Cauchy formula, one can
show the following properties.

1) Reproducing property

�F, eak � =
�

1 − |ak|2 F(ak) ∀F ∈ H 2(∂ D+)

especially, �eak , eak � = 1. (11)

2) Normalization

�Bk, Bk� = 1, k = 1, 2, 3, . . . (12)

3) Orthogonality

�Bk, Bl� = 0 ∀k 	= l. (13)

Thus, the TM system is an orthonormal system, which depends
on the choices of the complex parameters {ak}+∞

k=1 ⊂ D.
In particular, when a1 = a2 = · · · = ak · · · = 0, this TM
system becomes the Fourier basis function system {zk}+∞

k=0
(z = eit ). The AFD method aims at searching the optimal
parameters {ak}+∞

k=1 to construct the optimal TM system for
different spectral signals. Thus, for a given HSI X = {xi }N

i=1,
the functional data fitting model based on the TM system
can be built by minimizing the sum of mean-squared errors
(SMSE)

min
a1,a2,...,ak ,...

SMSE =
N�

i=1

�����xi(t) −
+∞�
k=1

cik Bk(z)

�����
2

2

. (14)
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In the following, we take N = 1 as an example to formulate
AFD for the single component case to build the optimal TM
system.

B. Adaptive Fourier Decomposition

Because HSIs generally contain noise, we do not need to
decompose the signal completely to obtain its infinite represen-
tation coefficients and rational basis functions. On the contrary,
in HSI processing based on functional data analysis, we hope
to use very few basis functions (i.e. very few parameters
{ak}K

k=1) to approximate the original spectral curve with a
very small error. Thus, the analytic signal f + derived from
any spectral signal f in (8) can be represented as a linear
combination of a finite TM system with a noise item, that is

f +(z) =
K�

k=1

ck Bk(z) + ε(z) (15)

where ε(z) is the noise function. Combining with the complete
expansion (9), the noise function ε(z) can be denoted as

ε(z) =
+∞�

k=K+1

ck Bk(z). (16)

It is obvious that the noise is expected to have as little energy
as possible in signal processing. Thus, the functional data
fitting model of a sample can be built based on the TM system

min
a1,a2,...,aK

MSE = || f +(z) −
K�

k=1

ck Bk(z)||22
= �ε(z), ε(z)�
=

� +∞�
k=K+1

ck Bk(z),
+∞�

k=K+1

ck Bk(z)

�

=
+∞�

k=K+1

|ck |2. (17)

Simultaneously, by utilizing the basis expansion in (9) and the
properties in (13)–(15), We can derive the following energy
relationship of the signal decomposition:

|| f +||22 =
+∞�
k=1

|ck |2 =
K�

k=1

|ck |2 +
+∞�

k=K+1

|ck |2. (18)

Because the energy of the signal f + is finite, the optimization
problem (17) is equivalent to the following model:

min
a1,a2,...,aK

����� f +(z) −
K�

k=1

ck Bk(z)

�����
2

2

⇔ min
a1,a2,...,aK

+∞�
k=K+1

|ck |2

⇔ max
a1,a2,...,aK

K�
k=1

|ck |2 =
K�

k=1

|� f +, Bk�|2. (19)

Thus, the minimization problem of the sum of mean-squared
errors is transformed into a modulus maximization problem of
the basis expansion coefficients. Next, we focus on searching

the optimal parameters {ak}K
k=1 ⊂ D and make the energy of

the signal f + maximize on these projection directions (the
TM basis functions {Bk(z)}K

k=1). In practice, the optimization
process of the parameters is along with the process of achiev-
ing the Gram–Schmidt orthogonalization of {eak (z)}K

k=1. This is
the core idea of AFD. Here, we use a step-by-step optimization
strategy to find an optimal parameter K -tuple in turn.

Let f1 = f +, and then

f +(z) = � f1, ea1�ea1(z) + r1(z) (20)

where r1(z) is the error term at the first step. According to the
model (19) and the reproducing property (11), the first optimal
parameter a1 can be obtained by the maximal projection
principle (MPP)

â1 = arg max
a1∈D

|� f1, ea1 �|2

= arg max
a1∈D

(1 − |a1|2)| f1(a1)|2. (21)

The first basis function B̂1(z) = eâ1(z) can be determined by
the parameter â1. Thus, the first error term r1(z) can be written
as

r1(z) = f1(z) − � f1, B̂1�B̂1(z) = f1(z) − 1 − |â1|2
1 − ¯̂a1z

f1(â1).

(22)

It is observed that z = â1 is a zero point of the error term r1(z),
and r1(z) is orthogonal to B̂1(z). The following transform at
â1 is used for removing the zero point of r1(z):

f2(z) = r1(z)

τâ1(z)
= f1(z) − � f1, B̂1�B̂1(z)

z−â1

1− ¯̂a1z

(23)

and achieving f2(z) ∈ H 2(D). The expansion (20) can be
transformed into

f +(z) = � f1, B̂1�B̂1(z) + f2(z)
z − â1

1 − ¯̂a1z
. (24)

Next, we continue to implement a decomposition step for f2(z)
similar to f1(z) by searching the second optimal parameter a2,
that is

f2(z) = � f2, ea2�ea2(z) + r2(z) (25)

which can also be obtained by solving the following optimiza-
tion problem based on MPP [22]:

â2 = arg max
a2∈D

|� f2, ea2 �|2

= arg max
a2∈D

(1 − |a2|2)| f2(a2)|2. (26)

By substituting (25) and (26) into (24), the expansion (20) can
be written as

f +(z) = � f1, B̂1�B̂1(z) + � f2, eâ2 �B̂2(z) + r2(z)
z − â1

1 − ¯̂a1z
(27)

where B̂2(z) = eâ2(z)(z − â1/1 − ¯̂a1z). Similar to f2(z), f3(z)
can be defined by the Möbius transform at â2 for removing
the zero point of the second error term r2(z), that is

f3(z) = r2(z)

τâ2(z)
= f2(z) − � f2, eâ2 �eâ2(z)

z−â2
1− ¯̂a2z

(28)
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and f3(z) ∈ H 2(D). After repeating the decomposition
process, such as in (25) until the K th step, the corresponding
optimal parameters {â3, â4, . . . , âK } can be found in turn.
Finally, the signal f + can be decomposed into

f +(z) =
K�

k=1

� fk , eâk �B̂k(z) + fK+1(z)
K�

k=1

z − âk

1 − ¯̂akz
(29)

where B̂k(z) is the rational function Bk(z) in the TM sys-
tem (10) under taking the optimal parameters {â1, â2, . . . , âK }
for the given signal f +, and

fk+1(z)= rk(z)

τâk (z)
= fk(z) − � fk, eâk �eâk (z)

z−âk

1− ¯̂ak z

, k = 1, 2, . . . , K .

(30)

The following conclusion can be proven:
� fk, eâk � = � f +, B̂k� � ĉk, k = 1, 2, . . . , K . (31)

In the same way as in (15), the decomposition in (29) can be
rewritten as

f +(z) =
K�

k=1

ĉk B̂k(z) + ε̂(z). (32)

Here, the residual is ε̂(z) = fK+1(z)
K

k=1(z − âk/1 − ¯̂akz).
Due to the orthogonality of the TM system {Bk(z)}K

k=1,
the energy relation can be deduced based on (32)

|| f +||2 =
K�

k=1

|ĉk |2 + ||ε̂||2 =
K�

k=1

|� f +, B̂k�|2 + || fK+1||2.
(33)

Based on the MPP, in the manner of stepwise approximation,
AFD can make the energy of the given signal f + be distributed
in the first K terms as great as possible and, simultaneously,
make the residual energy || fK+1||2 converge quickly to 0 along
with the growth of K . The residual can be regard as the
noise with very little energy. Thus, the signal f + can be
approximated by a linear combination of the TM system based
on AFD in the mean-squared error minimization sense, that is

f +(z) ≈
K�

k=1

ĉk B̂k(z). (34)

Here, {ĉk}K
k=1 is the FRs of f + under the TM system

{B̂k(z)}K
k=1. According to (6), the reconstructed spectral curve

x(t) can be obtained by taking the real part of f +, i.e., x(t) =
2Re( f +(z)) − c0, z = eit . For clarification regarding the use
of AFD, Algorithm 1 is shown.

To certify the effectiveness and advantages of the TM
system by AFD in spectral curve fitting, we take randomly four
samples from different classes in the Indian Pines data set that
is used in Section V as examples and compare the TM system
with the Fourier basis function system [16] and the B-spline
basis function system [17] in terms of curve fitting. Fig. 1
shows the original spectral signals and the fitted spectral curves
of these three basis function systems. Table I shows the fitting
errors for these three basis function systems corresponding to
Fig. 1. Although the B-spline basis function system can give a

Algorithm 1 TM System by AFD
Input: Any spectral signal x ∈ Rm , the randomly initialized

parameter set {ak}Kk=1 ⊂ D and the decomposition step K
(K  K ).

Output: The optimal parameters {âk}K
k=1, the FRs {ĉk}K

k=1,
the fitted spectral curve x(t), and the reconstructed error
|| fK+1||.

1: Obtain the analytic form f + of the spectral signal x by (8).
2: Initialize f1 = f +, z = eit , t ∈ { 2 jπ

m }m
j=0, and x(t) = 0.

3: for k = 1 : K do
4: Compute âk = arg maxa∈{ak}Kk=1

(1 − |a|2)| fk(a)|2.
5: Obtain the rational function B̂k(z) by (10).
6: Compute the functional representation ĉk = � fk, B̂k�.
7: Obtain fk+1(z) = fk (z)−ĉk B̂k (z)

z−âk
1− ¯̂ak z

.

8: Compute x(t) = x(t) + ĉk B̂k(z).
9: end for

10: Compute x(t) = 2Re(x(t)) − ĉ0.
11: Compute the reconstructed error || fK+1||.
12: return {âk}K

k=1, {ĉk}K
k=1, x(t), and || fK+1||.

TABLE I

FITTING ERRORS OF FOUR SAMPLES FROM FOUR CLASSES FOR THESE
THREE METHODS (NUMBER OF BASIS FUNCTIONS ARE INDICATED IN

PARENTHESIS) ON THE INDIAN PINES DATA SET

very good fit, it needs enough basis functions (202), depending
on the B-spline order (4) and the band number (200). Note here
that we have extended three nodes, respectively, outward at
both ends of the bands. In order to achieve smaller fitting errors
than the B-spline basis function system, the TM system only
needs 45 basis functions. However, the Fourier basis function
system gives a very bad fit with 45 basis functions. Compared
with the Fourier and B-spline basis function systems, the TM
system achieves a better spectral curve fit. To illustrate the fast
convergence of the TM system obtained by AFD, Fig. 2 shows
the fitting errors under different numbers of basis functions
by taking the sample from Class 2 as an example. As the
number of basis functions increases, the errors of both the
TM and Fourier basis function systems decrease. However,
the error of the TM system drops faster. This shows that the
TM system has a faster convergence speed and gives a better
approximation.

III. JOINT RATIONAL BASIS FUNCTION SYSTEM BASED

ON CLASS ADAPTIVITY

According to the above results, the TM system is a very
good tool for HSI functional data processing from a functional
point of view. Next, we build a joint rational basis function
system (JRBFS) based on class adaptivity for each HSI.
Assume that the training samples {xl

j , yl}nl
j=1(l = 1, 2, . . . , C)

in an HSI are given, where xl
j represents the j th sample of the
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Fig. 1. Original spectral signals (black) and spectral curves of four samples from Class 2 (Top left), Class 6 (Top right), Class 11 (Bottom left), and Class
16 (Bottom right) after functional data fitting by the Fourier (green), B-spline (blue), and TM (red) basis function systems on the Indian Pines data set.

Fig. 2. Fitting errors for the Fourier and TM basis function systems under
different numbers of basis functions, and the B-spline basis function system
under a fixed number of basis functions (202) by taking the sample from
Class 2 as an example.

lth class, yl is the lth class label, nl is the number of training
samples from the lth class, and C is the class number.

To ensure that spectral curves from each class can get a
good fit, we obtain a set of basis functions (or strictly a
set of parameters {âl

k}Kl
k=1) by AFD based on the mean of

training samples {xl
j }nl

j=1 for each class. Due to the similarity
of spectral curves from different land covers, the different sets
of basis functions for all classes on an HSI may contain some
common elements. Thus, to avoid repetition, we fuse these C
sets of parameters {âl

k}Kl
k=1(l = 1, 2, . . . , C) and form a new

set of parameters {ãk}K
k=1. Thereupon, a JRBFS {B̃k(z)}K

k=1
with the parameters {ãk}K

k=1 can be constructed based on (10).
It is obvious that the JRBFS is a new TM system. It is not
a basis functions system for a particular class but a common
basis function system for all classes on an HSI. Moreover,
due to the fact that some common elements exist, the number
of the joint rational basis functions is usually less than the
sum of the number of the basis functions from each class,
i.e., K <

�C
l=1 Kl . Thus, for a given HSI X = {xi }N

i=1,
the functional data fitting model can be built based on the

JRBFS in the sense of the sum of mean-squared errors (SMSE)

min
c11,c12,...,cNK

SMSE =
N�

i=1

�����xi(t) −
K�

k=1

cik B̃k(z)

�����
2

2

. (35)

Under the fixed orthogonal rational basis function system
{B̃k(z)}K

k=1, the model can be solved easily by the projection
method. The FRs are obtained as follows:

c̃ik = �xi (t), B̃k(z)�, z = eit , k = 1, 2, . . . K . (36)

Whereupon, any fitted spectral curve in an HSI can be repre-
sented as a continuous function under the JRBFS, that is

xi(t) =
K�

k=1

c̃ik B̃k(z), z = eit , i = 1, 2, . . . N. (37)

To further help understand the construction of the JRBFS
based on class adaptivity and functional data fitting model,
we summarize this in Algorithm 2.

To demonstrate the superiority of the functional data fitting
model based on the JRBFS, we take the whole Indian Pines
data set as an example and compare the proposed model
with the regularized fitting model based on the Fourier basis
function system (RFM_Fourier) [16] and the B-spline basis
function system (RFM_B-spline) [17] in terms of classification
accuracies. For convenience, we uniformly select six para-
meters for each class to construct the JRBFS, i.e., Kl = 6.
As mentioned earlier, due to the fact that some common
elements exist, K <

�C
l=1 Kl . In fact, the number of the

joint rational basis functions will change slightly with different
training sets. In these experiments, the number of Fourier basis
functions for RFM_Fourier is consistent with the proposed
model, while the one for RFM_B-spline is still 202.

Unless particularly stated, we randomly select 10% of the
labeled samples for each class as the training set for the HSI
and the remaining 90% as the test set. The SVM with the
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Algorithm 2 Functional Data Fitting Model Based on the
JRBFS
Input: An HSI X = {xi}N

i=1 ∈ RN×m with training samples
{xl

j , yl}nl
j=1 (l = 1, 2, . . . , C), the randomly initialized

parameter set {ak}Kk=1 ⊂ D and the decomposition step
Kl for the l-th class (K  Kl).

Output: The fused parameter set {ãk}K
k=1, the corresponding

JRBFS {B̃k(z)}K
k=1, the FRs {c̃ik}K

k=1(i = 1, 2, . . . , N), and
the fitted spectral curve {xi(t)}N

i=1.
1: for l = 1 : C do
2: Compute the average spectral signal for the l-th class

x̄l = 1
nl

∑nl
j=1 xl

j .

3: Compute {âl
k}Kl

k=1 by Algorithm 1.
4: end for
5: Obtain the fused parameter set {ãk}K

k=1 =
U N I QU E{âl

k , k = 1, 2, . . . Kl , l = 1, 2, . . . , C}.
6: Construct the JRBFS {B̃k(z)}K

k=1 under the fused parameter
set {ãk}K

k=1.
7: for i = 1 : N do
8: for k = 1 : K do
9: Compute c̃ik = �x i , B̃k(z)�, where z = eit and t ∈

{ 2 jπ
m }m

j=0.
10: end for
11: Obtain the fitted spectral curve xi(t) = �K

k=1 c̃ik B̃k(z).
12: end for
13: return {ãk}K

k=1, {B̃k(z)}K
k=1, {c̃ik}K

k=1(i = 1, 2, . . . , N), and
{xi(t)}N

i=1.

TABLE II

CLASSIFICATION RESULTS FOR THE RFM_FOURIER, RFM_B-SPLINE,
AND PROPOSED MODELS ON THE INDIAN PINES DATA SET (OA AND

AA ARE IN PERCENTAGE)

TABLE III

NUMBER OF THE JOINT RATIONAL BASIS FUNCTIONS UNDER TEN

RANDOM EXPERIMENTS ON THE INDIAN PINES DATA SET

Gaussian kernel is chosen as the classifier. The corresponding
parameters are set optimally. The overall accuracy (OA [%]),
average accuracy (AA [%]), and kappa statistic (κ) are quan-
titative indexes for evaluating the classification performance.
These accuracies are computed by taking the mean of ten runs.
The same applies hereinafter.

Table II shows the classification accuracies of the original
spectral signals (Spect), the reconstructed spectral signals
(RSpect), and the FRs by the RFM_Fourier, RFM_B-spline,
and proposed model. It is easy to see that RSpect based on
functional data fitting models obtained higher classification
accuracies than Spect. This shows that the functional data

Fig. 3. OA for Spect, RSpect, and FRs based on the proposed model as
a function of the number of rational basis functions for each class in left
coordinate system (OA versus Kl ). The cardinality K of the JRBFS as a
function of the number of rational basis functions for each class in the right
coordinate system (K versus Kl ).

fitting models demonstrate good fitting performances. Compar-
ing RSpect based on the proposed model with the ones based
on RFM_Fourier and RFM_B-spline, we find that the proposed
model obtains the highest classification accuracies, followed
by RFM_B-spline, but the worst performer is RFM_Fourier.
This is consistent with the fitting performance shown in Fig. 1.
This shows again that the proposed model demonstrates both
good fitting and reconstruction. The FRs are the features
extracted from the reconstructed spectral curves. After pre-
liminary feature extraction, the FRs based on the proposed
model achieve better classification accuracies than the ones
obtained by RFM_Fourier and RFM_B-spline and are also
more effective than the RSpect based on different models,
including the proposed model. Note that the FRs based on
RFM_Fourier outperform the ones based on RFM_B-spline,
which is mainly because the dimension of the FRs based
on RFM_B-spline (202) is too high. To observe the change
of the dimension for the FRs based on the proposed model
and RFM_Fourier, we show the number of the joint rational
basis functions under ten random experiments in Table III.
They are significantly lower than the number of the B-spline
basis functions. In the case of the same number of basis
functions, the proposed model based on the JRBFS can achieve
a faster convergence than RFM_Fourier. The FRs based on
the proposed model can also obtain more energy from the
original spectral signals than the ones based on RFM_Fourier,
as described by (33). Thereby, the proposed model can obtain
better classification results. Furthermore, we give the OA
in Fig. 3 when different numbers of rational basis functions are
selected for each class, that is, Kl takes different values. As the
number of rational basis functions increases, the classification
accuracies for the FRs and RSpect increase, but, after taking
the maximum value when Kl = 6, the accuracies gradu-
ally decrease. Moreover, the accuracy based on the RSpect
decreases faster. The increase in the number of basis functions
makes the fit better and better, even almost the same as the
original spectral vectors. Thus, the accuracy becomes the same
as the one obtained by Spect. This shows that too many
basis functions lead to overfitting, which reduces the fitting
performance.
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Fig. 4. Flowchart of the spectral–spatial classification scheme based on
the functional feature extraction by using the adaptive rational function
approximation and DTRF.

IV. SPECTRAL–SPATIAL CLASSIFICATION WITH FR-EPFS

A. FR-EPFs

Large quantities of researches certify that the spatial
structural information can improve the classification accura-
cies [40]. Edge-preserving features (EPFs) have been proven to
effectively build spatial structural features, which were derived
from the edge-preserving filtering by the domain transform
recursive filter (DTRF) in HSIs [34]. In the above experiments,
it is shown that the FRs are very effective functional features
for discriminating the spectral curves. According to the MPP,
the energy of the spectral information is mainly distributed in
the first few components of FRs, which is similar to the con-
tribution rate distribution of the principal components in PCA.
Thus, this article further builds the functional spectral–spatial
features based on the FRs by the edge-preserving filtering
method, which is abbreviated as FR-EPFs. First, a single
DTRF with two smoothing parameters δs and δr is applied
for the first d components of FRs (i.e., FR1, FR2, . . . , FRd )
and stacked into a FR-EPF, that is

FR-EPF(δs, δr ) = {DTRF(FR1, δs, δr ), DTRF(FR2, δs, δr ),

. . . , DTRF(FRd , δs, δr )}. (38)

Second, FR-EPFs are built by stacking the multiple FR-EPF
with τ different sets of smoothing parameters δs and δr

FR-EPFs = �
FR-EPF

�
δ1

s , δ
1
r

�
, FR-EPF

�
δ2

s , δ
2
r

�
,

. . . , FR-EPF
�
δτ

s , δτ
r

��
. (39)

The resulting FR-EPFs fuse the spectral features and spatial
structural features, which can improve the discrimination of
samples in HSIs.

B. Spectral–Spatial Classification

To test the effectiveness of the proposed method, we design
a spectral–spatial classification scheme based on the functional
feature extraction by using the adaptive rational function
approximation and DTRF. The flowchart of the proposed
spectral–spatial classification scheme is shown in Fig. 4.
First, in order to explore the function characteristic of the
spectral vectors, a TM system is adaptively selected for each
class by AFD, which makes the spectral vectors from each
class be well fitted under its own function system. This is
mainly due to the similarity of spectral vectors from the same
class and the dissimilarity of ones from the different classes.
Second, because spectral vectors from different classes may
also exhibit the similarity in some continuous bands, this
results in some same elements among different TM systems.
Thus, a JRBFS is built by integrating TM systems from all

Fig. 5. OA, AA (left coordinate system, i.e., OA versus d and AA versus d),
and κ (right coordinate system, i.e., κ versus d) as functions of d of FRs in
the proposed method FR-EPFs.

classes. In contrast to the TM system suitable for some classes,
the JRBFS is suitable for all classes from this HSI. The HSIs
with different land covers have different JRBFSs. Third, based
on the resulting FRs, the functional spectral–spatial features
FR-EPFs are extracted by DTRF. Finally, the FR-EPFs consist
of the inputs for the SVM classification.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To prove the effectiveness and superiority of the proposed
method FR-EPFs, experiments are first performed on three
commonly used HSI data sets and two new HSI data sets,
including the Indian Pines, Salinas, Pavia University,1 and
Houston scenes.2 Furthermore, some state-of-the-art vector
data and functional data classification methods are used
for comparison, including SS-SVM [41], PCA-EPFs [36],
OTVCA [13], FPCA [17]. and FDDA [18]. SS-SVM is a
benchmarking spectral–spatial classification method that clas-
sifies the spectral–spatial features by stacking the spectral
vectors and spatial vectors obtained by the local mean filtering
method [41].

A. Experimental Design and Parameter Selection

For the following experiments, some experimental set-
tings and parameter selections are shown in Section III. For
SS-SVM [41], PCA-EPFs [36], OTVCA [13], FPCA [17],
and FDDA [18], the parameters are set to the same as
the corresponding publication. The SVM with the Gaussian
kernel is used as a common classifier, whose penalty term c
and width of the Gaussian kernel σ are tuned in the range
{2−10, 2−9, . . . , 210}. These optimal parameters are obtained
by using tenfold cross-validation. In the proposed FR-EPFs
method, the two most important parameters are considered as
follows: Kl in the range from 2 to 16 and d in the range from
3 to 36 at intervals of 3. Besides, the smoothing parameters δs

and δr in the FR-EPFs refer to the setting of PCA-EPFs [36].
The experiments are implemented using MATLAB R2018a
in a PC with Intel Core i7-4770 CPU and 24-GB
DDR3 RAM.

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

2https://hyperspectral.ee.uh.edu/?page_id=1075
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Fig. 6. Whole classification maps for different methods applied on the Indian Pines data set. (a) False-color image. (b) Ground reference map. (c) SS-SVM.
(d) PCA-EPFs. (e) OTVCA. (f) FPCA. (g) FDDA. (h) FR-EPFs.

B. Results and Analysis

1) Indian Pines Data Set: The experimental setup,
as described above, was applied to the Indian Pines data set.
Fig. 3 shows that, for these data, the FRs achieve the best pure
spectral classification accuracies when the number of rational
basis functions for each class is Kl = 6, which is adopted in
the following experiments on the same data set. Meanwhile,
τ = 3, i.e., three sets of different smoothing parameters δs

and δr are set as (δ1
s = 30, δ1

r = 0.3), (δ2
s = 115, δ2

r = 0.6),
and (δ3

s = 200, δ3
r = 0.9). Fig. 5 shows the classification

accuracies, including the OA, AA, and κ for different numbers
d of FRs in the proposed method FR-EPFs. The OA and κ
keep improving with d increased and then gradually become
stable with a slight decline when d > 24. Although the AA
also shows this trend, there are relatively large oscillations
when d < 24. This is mainly due to serious misclassifications
of two small classes in the Indian Pines data set, i.e., Class 7
with 28 samples and Class 9 with 20 samples. However,
as d continues to increase, this phenomenon is significantly
improved. Thus, in the next experiment, the number d of FRs
is set as 24.

To further demonstrate the advantage of the proposed
method FR-EPFs, we compare the approach with other state-
of-the-art vector data and functional data classification meth-
ods in terms of OA, AA, and κ , including SS-SVM [41],
PCA-EPFs [36], OTVCA [13], FPCA [17], and FDDA [18].
Table IV displays the classification performance of different
methods for each class and all samples. The proposed method
FR-EPFs outperforms the other methods in terms of classifi-
cation accuracies. The PCA-EPFs also produces a compet-
itive classification performance. When comparing FR-EPFs
to PCA-EPFs, it illustrates that the functional features FRs
from the functional data fitting model based on the JRBFS are
more effective than the original spectral features obtained by
band selection in PCA-EPFs. Furthermore, the classification
accuracies of these two methods based on DTRF are higher
than those of the other methods, which verifies the superi-
ority of DTRF in terms of modeling the spatial structural
information. Furthermore, in contrast to three vector data
classification methods (SS-SVM, OTVCA, and PCA-EPFs),
three functional data classification methods (FPCA, FDDA,
and FR-EPFs) achieve correspondingly better classification
results. This illustrates the effectiveness and advantages of
using functional data learning methods in the field of HSI
processing.

Meanwhile, Table IV also gives the computational time
in seconds and the number of features for different

TABLE IV

CLASSIFICATION PERFORMANCE FOR THE STATE-OF-THE-ART METHODS

AND PROPOSED METHOD ON THE INDIAN PINES DATA SET WITH 10%
LABELED SAMPLES PER CLASS (NUMBER OF FEATURES

IN BRACKETS)

classification methods in the Indian Pines scene. The proposed
method requires very low computational cost, second only
to PCA-EPFs. This is mainly because PCA-EPFs quickly
realize the dimensionality reduction of HSIs by using the band
selection technology and the PCA code in MATLAB, which
greatly saves the computational cost. Compared with FPCA
and FDDA, the functional data fitting model in FR-EPFs can
produce a better fit with fewer basis functions. Fewer basis
functions lead to less computational cost. OTVCA, as a state-
of-the-art method, also has a low computational cost. The
benchmarking method SS-SVM has the highest computational
cost because the number of features is too high.

To visually reflect on the classification of these methods,
we show their classification maps in the whole Indian Pines
scene, including the background class, as shown in Fig. 6.
Fig. 6(h) obtained by the proposed method demonstrates the
best performance, which produces very smooth and accurate
classification boundaries. Moreover, the dividing lines between
different classes are also very distinct in this map, while that is
opposite in Fig. 6(e) produced by OTVCA. The classification
map of PCA-EPFs also looks good visually and outperforms
the remaining three maps, i.e., Figs. 6(c), (f), and (g), in this
respect. However, compared with Fig. 6(h), there is a small
amount of salt and pepper noise in Fig. 6(d), and the classifi-
cation boundaries are slightly damaged. In general, these two
spectral–spatial classification methods based on EPFs achieve
very good classification maps. This once again demonstrates
the advantages of DTRF in extracting spatial structural fea-
tures. Then, FDDA with local mean filtering also gives a
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Fig. 7. Experimental results obtained by different methods when randomly selected 1%, 5%, 10%, and 15% of samples for each class as the training set.
(a) OA. (b) AA. (c) κ .

Fig. 8. Whole classification maps for different methods applied on the Salinas data set. (a) False-color image. (b) Ground reference map. (c) SS-SVM.
(d) PCA-EPFs. (e) OTVCA. (f) FPCA. (g) FDDA. (h) FR-EPFs.

visually good classification map, but it has obvious salt and
pepper noise. By contrast, the class boundaries of classification
maps for SS-SVM and FPCA are heavily blurred, especially
for SS-SVM.

To demonstrate the effectiveness and advantages of the pro-
posed method in different situations, we discuss the influence
of different training samples for different methods applied
on the Indian Pines data set. We randomly select 1%, 5%,
10%, and 15% of the available samples for each class as
the training set, respectively. The experimental results are dis-
played in Fig. 7. As the number of training samples increases,
the classification accuracies of all methods are improved.
The proposed method achieves the best classification results
in these situations. In particular, when 15% of samples are
selected as the training set, the proposed method exceeds 99%
in terms of OA and AA.

2) Salinas Data Set: This scene was acquired at a higher
spatial resolution than the Indian Pines scene. The spectral
information among different land covers is very different
and can be easily distinguished. In this experiment, the two
important parameters are set as Kl = 7 and d = 27.
Table V shows the individual class accuracies, OA, AA,
and κ for the different methods. All three functional data
classification methods achieve very high accuracies, which
again demonstrates that it is feasible and effective to imple-
ment the classification tasks of HSIs from a functional point
of view. Moreover, the PCA-EPFs, OTVCA, FDDA, and
FR-EPFs achieve near-perfect classification results, especially
FR-EPFs that gives the best OA and κ . This further reflects the
advantages of the combination of functional data processing
and the EPFs for extracting the functional spectral–spatial
features of the HSIs. Furthermore, this benchmarking method
SS-SVM also achieves an OA of up to 97.65%.

TABLE V

CLASSIFICATION RESULTS FOR THE STATE-OF-THE-ART METHODS AND

PROPOSED METHOD ON THE SALINAS DATA SET WITH 10% LABELED
SAMPLES PER CLASS (NUMBER OF FEATURES IN BRACKETS)

Fig. 8 shows the whole classification maps for different
methods applied on the Salinas data set. The classification
map produced by FR-EPFs has both the best classification
accuracies and visual performance, as shown in Fig. 8(h).
The boundaries between different classes in this map are
well maintained. This visually illustrates the advantages of the
proposed method. Although PCA-EPFs, OTVCA, and FDDA
achieve comparable classification accuracies, their classifica-
tion maps are not as smooth as the map for the proposed
method, and their boundaries are blurred to varying degrees.
Fig. 8(f) seems even worse. Due to more misclassifications,
the noise in the maps is obvious. The worst performance is
seen in Fig. 8(c), generated by the benchmarking method SS-
SVM, whose map is chaotic.
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Fig. 9. Whole classification maps for different methods applied on the Pavia University data set. (a) False-color image. (b) Ground reference map. (c) SS-SVM.
(d) PCA-EPFs. (e) OTVCA. (f) FPCA. (g) FDDA. (h) FR-EPFs.

TABLE VI

CLASSIFICATION RESULTS FOR THE STATE-OF-THE-ART METHODS AND

PROPOSED METHOD ON THE PAVIA UNIVERSITY DATA SET WITH 10%
LABELED SAMPLES PER CLASS (NUMBER OF FEATURES

IN BRACKETS)

3) Pavia University Data Set: Compared with the first
two scenes, this scene was acquired with fewer bands. Thus,
the number of rational basis functions for each class is set
as Kl = 5. Another important parameter is set as d = 24.
The classification results for different methods on this data set
are shown in Table VI. The proposed method still achieves the
best classification accuracies. The effectiveness and advantages
of the proposed method are demonstrated again. At the same
time, in this complex scene, EPFs show great advantages
and can effectively extract more discriminative spectral–spatial
features. This is again reflected in PCA-EPFs, which achieves
competitive classification results. In general, three functional
data classification methods achieve good classification results.
The effectiveness of functional feature extraction is illustrated
once again. However, SS-SVM does not perform very well for
such complex images with irregularly distributed land covers.

The whole classification maps for different methods are
shown in Fig. 9. Due to the complex spatial structures of this
HSI, there are great differences between the different classifi-
cation maps, especially for the background class. However,
the classification areas in Fig. 9(d) and (h) seem smoother,
and the class boundaries are distinct. In contrast, the classifi-
cation of the background class seems a bit messy in Fig. 9(f)
and (g). This is mainly due to the advantages of DTRF in
preserving spatial structural features, which is more effective
than the common local mean filtering approach used in FPCA
and FDDA. In addition, the classification map produced by
SS-SVM is heavily blurred, which also results from the
local mean filtering. Although mean filtering can achieve a
certain degree of denoising effect on the spectral information,
it cannot protect the details in the spatial structures well.

TABLE VII

CLASSIFICATION RESULTS FOR THE STATE-OF-THE-ART METHODS AND

PROPOSED METHOD ON THE HOUSTON 2013 AND 2018 DATA SETS

4) Houston Data Sets: To further demonstrate the effec-
tiveness and superiority of the proposed method FR-EPFs
on newer HSI data sets, we test the classification perfor-
mance of the proposed method on the Houston 2013 and
2018 data sets. These two data sets were acquired on June 23,
2012, and February 16, 2017, over the University of Houston
campus and the neighboring urban area, respectively. The
Houston 2013 HSI consists of 144 spectral bands in the
380–1050-nm region and 349 × 1905 pixels with 15 classes
shown in Fig. 10(b). The Houston 2018 HSI covers the spectral
range 380–1050 nm with 48 bands and contains 1202 × 4768
pixels and 20 land cover classes of interest shown in Fig. 11(b).
The training and test samples have been given in advance for
the Houston 2013 data set, as described in the 2013 IEEE
GRSS Data Fusion Contest [42]. For the Houston 2018 data
set, 10% labeled samples per class are still randomly selected
as the training set. Table VII gives the classification accuracies
of different methods on these two data sets. As can be seen
from Table VII, the proposed method FR-EPFs almost obtains
the highest classification accuracies, higher than other methods
in terms of OA and κ . Figs. 10 and 11 also show the
classification maps of different methods in the whole Houston
2013 and 2018 scenes. The experimental results for these two
data sets once again demonstrate that the effectiveness of the
proposed method, reflecting the advantages of the combination
of functional feature extraction methods and edge-preserving
filtering for modeling the spatial structure information.

C. Discussion

The proposed FR-EPFs method gives excellent classification
results, and overall speaking outperforms the other methods in
terms of OA, AA, and κ on the above five HSI data sets. This
illustrates the advantages of the proposed method in processing
high-dimensional continuous data that are mainly reflected as
follows.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 20,2023 at 08:34:25 UTC from IEEE Xplore.  Restrictions apply. 



7692 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 9, SEPTEMBER 2021

Fig. 10. Classification maps for different methods applied on the Houston 2013 data set. (a) False-color image. (b) Ground reference map. (c) SS-SVM.
(d) PCA-EPFs. (e) OTVCA. (f) FPCA. (g) FDDA. (h) FR-EPFs.

Fig. 11. Classification maps for different methods applied on the Houston 2018 data set. (a) False-color image. (b) Ground reference map. (c) SS-SVM.
(d) PCA-EPFs. (e) OTVCA. (f) FPCA. (g) FDDA. (h) FR-EPFs.

1) In contrast to the classic feature extraction methods,
the proposed method can fully use the continuous char-
acteristics of the HSI data for overcoming the curse
of dimensionality. This advantage will become more
significant as the data dimension increases.

2) In this article, a rational approximation is introduced
for the functional data learning framework in order to
construct a more effective functional data fitting model.
Compared with the data fitting models in FPCA and
FDDA, this proposed model can produce a better fit with
fewer basis functions.

3) In order to ensure that the spectral information from
each class in an HSI is well fitted, a JRBFS is gen-
erated by AFD. Compared with fixed basis function
systems, such as Fourier and B-spline basis function
systems, the JRBFS has class adaptivity and needs fewer
basis functions to achieve a similar fitting effect as
those systems. Thus, the proposed functional data fitting
model based on the JRBFS can obtain low-dimensional
functional representations (FRs), which contains most of
the energy of the spectral information based on the MPP.

4) For exploiting spatial information in HSIs, the functional
spectral–spatial feature extraction method FR-EPFs

based on the FRs by the edge-preserving filtering is
proposed here. This method can well maintain the spatial
smoothness of HSIs, thus effectively solving the spatial
variability of the spectral information. However, the pro-
posed method also has two main shortcomings and needs
to be improved. One shortcoming is the construction of
the rational basis functions. The TM system is obtained
through consecutive optimal selections of the parame-
ters. In our future work, we will study simultaneous
optimization to directly obtain a set of basis functions.
The second shortcoming is oversmoothing. Although the
proposed method can fully mine the spatial structural
information of HSIs in order to improve the classifica-
tion accuracies, the structural information of samples of
unknown classes cannot be maintained.

VI. CONCLUSION

In this article, an effort is made to produce advanced clas-
sification methods for HSIs based on functional data learning.
The starting point of this article is based on the continuity
of the spectral curves of hyperspectral data. Combining that
with the theory of rational function approximation, a special
functional feature extraction method based on adaptive rational
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function approximation is proposed and tested in experiments.
Although the functional fitting method based on the B-spline
basis function system in our previous work has also achieved
very good classification results, the dimension of its FRs has
been demonstrated to be too high. Moreover, since the B-spline
basis function system is not orthonormal, its FRs cannot
be used as effective features for the spectral curves, which
depends on the basis function system. However, the JRBFS
based on class adaptivity, as proposed here, can effectively
overcome these problems and obtain more efficient functional
features. At the same time, considering the use of spatial infor-
mation in functional feature extraction methods, this article
introduces the DTRF on the basis of FRs in order to establish
more discriminative spectral–spatial features for classifica-
tion. The experimental results demonstrate that the proposed
method provides a promising classification performance and
outperforms in most cases other widely used methods in terms
of OA, AA, and κ .
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