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ABSTRACT
We study a weak greedy type algorithm called the weak pre-
orthogonal adaptive Fourier decomposition (WPOAFD) for the
Bergman space A2(�) on a bounded pseudoconvex domain� with
smooth boundary. We show that any function f ∈ A2(�) can be
approximated by linear combinations of kernel functions in weak
greedy sense.
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1. Introduction

Let � be a bounded pseudoconvex domain with smooth boundary in Cn. The Bergman
space A2(�) on � is the space of square-integrable holomorphic functions on � with the
inner product

〈f , g〉 =
∫
�

f ḡ dV ,

where dV is the Lebesgue measure on Cn. Let K(z,w) be the Bergman kernel of �. Then
A2(�) with K(z,w) is a reproducing kernel Hilbert space (RKHS) [1]. For any f ∈ A2(�)

and any a ∈ �, the reproducing property holds:

f (a) = 〈f (·),K(·, a)〉 =
∫
�

f (z)K(z, a) dV(z).

It is well known that K(z,w) = ∑∞
i=1 φi(z)φi(w), where {φi}i≥1 is any orthonormal basis

of A2(�) [1].
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For any fixed a ∈ �, define ka(z) = K(z, a) to be the kernel function associated to a.
Note that

‖ka‖2 = K(a, a) =
∑
i≥1

|φi(a)|2 ≥ 1
|�| . (1)

In fact, inequality (1) holds as one can choose φ1 to be the constant function

φ1(z) = 1√|�|
for all z ∈ �.

By the reproducing property, the span of the set {ka | a ∈ �} of kernel functions is dense
in A2(�). Hence, for any countable dense set {ai}i≥1 in �, the corresponding sequence
{kai}i≥1 forms a complete system in A2(�). Furthermore, we have the following simple
observation.

Lemma 1.1: The set {ka}a∈� of all Bergman kernel functions is a linearly independent set if
� is bounded.

Proof: Suppose to the contrary that there exist finitely many distinct points a1, . . . , am ∈
� ⊂ Cn such that {ka1 , . . . , kam} inA2(�) is linearly dependent. So there exists a non-zero
vector (c1, c2, . . . , cm) ∈ Cm such that in A2(�), we have

m∑
j=1

cjkaj = 0. (2)

For any fixed vectors λ = (λ1, λ2, . . . , λn) ∈ Cn, define fλ ∈ A2(�) by fλ(z) = et〈z,λ〉 =
exp(t

∑n
i=1 ziλi). As the sequence (a1, . . . , am) consists of finitely many distinct points in

Cn, there exists a non-empty open subset U in Cn such that for any λ ∈ U, the complex
numbers 〈ai, λ〉 are distinct for 1 ≤ i ≤ m. It follows from (2) and the reproducing property
of the kernel functions kai that

0 = 〈fλ, 0〉 =
〈
fλ,

m∑
j=1

cjkaj

〉
=

m∑
j=1

cjfλ(aj) =
m∑
j=1

cj exp(t〈aj, λ〉).

For any fixed λ ∈ U, the set {exp(t〈ai, λ〉) | 1 ≤ i ≤ m} of functions in t is linearly inde-
pendent. This implies that all the coefficients cj are zero, which contradicts to the non-zero
assumption of the vector (ci)1≤i≤m, and so the result follows. �

By Lemma 1.1 and inequality (1), we can apply the Gram–Schmidt orthonormaliza-
tion process to {kai}i≥1 associated to a dense sequence of distinct points in �, to obtain a
complete orthonormal system {Bi}i≥1, where B1 = ka1

‖ka1‖ and

Bi =
kai −

∑i−1
j=1〈kai ,Bj〉Bj

‖kai −
∑i−1

j=1〈kai ,Bj〉Bj‖
(3)
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for all i ≥ 2. Then, for any f ∈ A2(�), we have

lim
N→∞

∥∥∥∥∥∥
∑

1≤i≤N
〈f ,Bi〉Bi − f

∥∥∥∥∥∥ = 0. (4)

In general, if the given fixed sequence {ai}i≥1 of points in� is not dense, the corresponding
set {kai}i≥1 may not form a complete system in�, i.e. span{kai}i≥1 �= A2(�). Nevertheless,
for any given f ∈ A2(�), instead of considering a fixed set of parameter points, due to the
flexibility of selecting parameter points ai’s of kai ’s with respect to the function f, one can
try to select ai successively to produce an orthonormal sequence (Bi)i≥1 as above so that
the values |〈f ,Bi〉| are as large as possible out of the sum in (4). This is a starting point of
an adaptive Fourier decomposition [2–6].

In this paper, we apply a recently developed greedy type algorithm called the weak pre-
orthogonal adaptive Fourier decomposition (WPOAFD) to any given function f ∈ A2(�).
Our main result is as follows.

Theorem 1.1 (WeakMaximal Selection Principle): For any f ∈ A2(�) and any sequence
{ρi | 0 < ρ0 ≤ ρi < 1, i = 1, 2, . . . }, there exists a sequence (ai)i≥1 of distinct points in
� such that the orthonormal sequence (Bi)i≥1 of functions in A2(�) obtained by apply-
ing Gram–Schmidt orthonormalization process to the sequence (kai)i≥1 of kernel functions
satisfies the inequality for all i ≥ 1:

|〈f ,Bi〉| ≥ ρi sup{|〈f ,Bb
i 〉| | b ∈ � \ {a1, a2, . . . , ai−1}}, (5)

where Bb
i = kb−

∑i−1
j=1〈kb,Bj〉Bj

‖kb−
∑i−1

j=1〈kb,Bj〉Bj‖ .

It follows from our main Theorem 1.1 that for any f ∈ A2(�), we can construct an
orthonormal sequence (Bi)i≥1.

Theorem 1.2 (Convergence of WPOAFD): With the notations stated above, the sequence∑n
i=1〈f ,Bi〉Bi converges to f in A2(�), i.e.

f =
∑
i≥1

〈f ,Bi〉Bi in A2(�). (6)

The right hand side of Equation (6) is called a weak pre-orthogonal adaptive Fourier
decomposition (WPOAFD) of f.

Remark 1.1: In the case of the Bergman spaces of classical bounded symmetric domains,
our result of WPOAFD can be strengthened to POAFD one in which the inequality in (5)
is replaced by equality with all the ρi = 1 [7]. In fact, this is one of the motivations of this
work. In the case of POAFD [3,4,8–11], we need to introduce the class of generalized kernel
functions by passing to limit functions when two consecutive points an and an+1 coincide.

The rest of this paper is structured as follows. In Section 2, we show that A2(�) satisfies
an important property called boundary vanishing property (BVP) so that WPOAFD can
be implemented in A2(�). In Section 3, we give a proof of Theorem 1.1. In Section 4, we
prove the convergence of WPOAFD in Theorem 1.2.
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2. Boundary vanishing property (BVP) of A2(�)

We first recall the definition of bounded pseudoconvex domains with smooth boundary
[12]:

Definition 2.1: Let � = {z ∈ Cn |ψ(z) < 0} be a bounded domain in Cn, where ψ is a
real-valued function onCn. The boundary ∂� = {z ∈ Cn |ψ(z) = 0} of� is called smooth
if ψ is a real-valued smooth function on Cn with ( ∂ψ

∂z1 , . . . ,
∂ψ
∂zn ) �= 0 on ∂�. A bounded

domain � with smooth boundary ∂� is called pseudoconvex if for any p ∈ ∂� and any
w = (w1, . . . ,wn) ∈ Cn with

∑n
j=1

∂ψ
∂zj (p)wj = 0, we have

n∑
j,k=1

∂2ψ

∂zj∂ z̄k
(p)wjw̄k ≥ 0.

Let A∞(�) be the set of all holomorphic functions on � which are smooth up to the
boundary of �, and A2(�) be the Bergman space on �. In our study for BVP of A2(�),
we need a growth estimate of K(z, z) for z near a boundary point.

Theorem 2.1 ([13]): Let K be the Bergman kernel of A2(�) and b ∈ ∂�. Then there exists
a constant C>0 and a neighborhood U of b in Cn such that

K(a, a) ≥ C
d2(a)

for all a ∈ U ∩�,

where d(a) is the distance from a to ∂�.

Lemma 2.1: For any f ∈ A2(�) and any a ∈ �, define

ea = ka
‖ka‖ , H(a) = ka ∈ A2(�), and G(a) = |〈f , ea〉|.

Then H and G are continuous on�.

Proof: We first show that the function H(a) = ka is continuous from � to the Hilbert
space A2(�) with the norm ‖ · ‖. In fact, it follows from the continuity of K on �×�

[1, Proposition 1.1.7.] that

‖kb − ka‖2 = ‖kb‖2 + ‖ka‖2 − 〈kb, ka〉 − 〈ka, kb〉
= K(b, b)+ K(a, a)− K(a, b)− K(b, a)

converges to 0 as b tends to a ∈ �. This also implies that limb→a ‖kb‖ = ‖ka‖ and hence
limb→a eb = limb→a

kb
‖kb‖ = ka

‖ka‖ = ea. Then the continuity ofG follows from limb→a eb =
ea and |G(b)− G(a)| ≤ |〈f , eb − ea〉| ≤ ‖f ‖ ‖eb − ea‖. �

Proposition 2.1: (i) (Boundary Vanishing Property) For any f ∈ A2(�) and any b0 ∈ ∂�,
we have limb→b0 |〈f , eb〉| = 0.

(ii) (Maximal Modulus Coefficient Property) For any f ∈ A2(�), there exists a ∈ � such
that |〈f , ea〉| = max{|〈f , eb〉| | b ∈ �}.
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Proof: (i) For any ε > 0 and any f ∈ A2(�), if follows from [14, Lemma 3.1.4.] that there
exists g ∈ A∞(�) such that

‖f − g‖ < ε

2
. (7)

Since g ∈ A∞(�), there existsM>0 such that

|g(b)| ≤ M for all b ∈ �̄. (8)

By Theorem 2.1, there exists a neighborhood U of b0 such that

1√
K(b, b)

≤ ε

2M
for all b ∈ U ∩�. (9)

By reproducing property of kb, the normalized kernel function eb at b ∈ � is given by

eb = kb
‖kb‖

= kb√〈kb, kb〉
= kb√

kb(b)
= kb√

K(b, b)
.

Since ‖eb‖ = 1, the triangle inequality, the Cauchy–Schwarz inequality, the reproducing
property of kb and the inequalities (7), (8), (9) give

|〈f , eb〉| ≤ |〈f − g, eb〉| + |〈g, eb〉| ≤ ‖f − g‖ + |g(b)|√
K(b, b)

≤ ε

2
+ M · ε

2M
< ε.

(ii) By Lemma 2.1, G(b) = |〈f , eb〉| is continuous on �. By (i), G(b) can be continuously
extended to the bounded and closed subset �̄ in Cn and G(b) = 0 for all b ∈ ∂�. Then
L = max{G(b) | b ∈ �̄} is finite.

If L = 0, then 0 ≤ |〈f , eb〉| ≤ L = 0 for all b ∈ �. By reproducing property of kb, f = 0
on�. In this case, choose a to be any point in�.

IfL>0, then it follows from (i) that themaximumL can only be attained at some interior
point of�. Therefore, there exists a ∈ � such that L = G(a) = |〈f , ea〉|. �

Define fj ∈ A2(�) be the jth residual function of f as follows:

f1 = f , and fj = fj−1 − 〈fj−1,Bj−1〉Bj−1 (10)

for 2 ≤ j ≤ n + 1. We can deduce the following.

Proposition 2.2: Let f ∈ A2(�), {B1, . . . ,Bn} be an orthonormal set in A2(�) and
(fj)1≤j≤n+1 be defined in (10). Then we have

(i) 〈fj,Bj−1〉 = 〈fj,Bj−2〉 = · · · = 〈fj,B1〉 = 0;
(ii) 〈fj,Bj〉 = 〈fj−1,Bj〉 = · · · = 〈f2,Bj〉 = 〈f1,Bj〉 = 〈f ,Bj〉 for 1 ≤ j ≤ n;
(iii) fj = f	 − ∑j−1

i=	〈f ,Bi〉Bi = f − ∑j−1
i=1〈f ,Bi〉Bi for 1 ≤ 	 < j ≤ n + 1.
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Proof: (i) Using fj = fj−1 − 〈fj−1,Bj−1〉Bj−1 and 〈Bi,Bj〉 = δij, where δij is the Kro-
necker delta, we have

〈fj,Bj−1〉 = 〈fj−1 − 〈fj−1,Bj−1〉Bj−1,Bj−1〉
= 〈fj−1,Bj−1〉 − 〈fj−1,Bj−1〉‖Bj−1‖2 = 0,

the others follow similarly.
(ii) The result follows from 〈fi+1,Bj〉 = 〈fi − 〈fi,Bi〉Bi,Bj〉 = 〈fi,Bj〉 if i< j.
(iii) The result follows from (ii) and fj = fj−1 − 〈fj−1,Bj−1〉Bj−1 = fj−1 − 〈f ,Bj−1〉

Bj−1. �

Definition 2.2: Let�n = � \ {a1, . . . , an} be the punctured domain. Define an objective
function gn+1 on�n as follows: gn+1(b) = |〈fn+1,Bb

n+1〉| for any b ∈ �n, where Bb
n+1 =

kb−
∑n

j=1〈kb,Bj〉Bj

‖kb−
∑n

j=1〈kb,Bj〉Bj‖ .

It follows from Proposition 2.2(i) and Cauchy–Schwarz inequality that 〈fn+1,Bj〉 = 0,

gn+1(b) = |〈fn+1,Bb
n+1〉| =

∣∣∣∣∣
〈
fn+1,

kb − ∑n
j=1〈kb,Bj〉Bj

‖kb − ∑n
j=1〈kb,Bj〉Bj‖

〉∣∣∣∣∣
= |〈fn+1, kb〉|

‖kb − ∑n
j=1〈kb,Bj〉Bj‖ = |〈fn+1, eb〉|

‖eb − ∑n
j=1〈eb,Bj〉Bj‖

= |〈fn+1, eb〉|√
1 − ∑n

j=1 |〈eb,Bj〉|2
(11)

and

gn+1(b) = |〈fn+1,Bb
n+1〉| ≤ ‖fn+1‖ ‖Bb

n+1‖ ≤ |fn+1‖
for all b ∈ �n.

For any b0 ∈ ∂�, the BVP in Proposition 2.1(i) implies that limb→b0 |〈fn+1, eb〉| = 0
and limb→b0 |〈Bj, eb〉| = 0 (1 ≤ j ≤ n), hence limb→b0 gn+1(b) = 0. Therefore, gn+1 can
be extended to�n ∪ ∂� continuously with gn+1(b) = 0 for all b ∈ ∂�.

As gn+1 is bounded on�n ∪ ∂�, the following supremum

S = sup{gn+1(b) ∈ R | b ∈ �n ∪ ∂�} (12)

is finite.

3. Weakmaximal selection principle in A2(�)

We now present proof of Theorem 1.1.

Proof of Theorem 1.1.: The goal is to select a sequence {a1, . . . , an} of distinct points in
� successively such that each modulus |〈f ,Bi〉| is large enough for i = 1, 2, . . . , n. More
precisely, when i = 1, by Proposition 2.1, the first point a1 ∈ � can always be chosen such
that B1 = ka1

‖ka1‖ and

|〈f ,B1〉| =
∣∣∣∣
〈
f ,

ka1
‖ka1‖

〉∣∣∣∣ = sup
{∣∣∣∣〈f , kb

‖kb‖
〉
||b ∈ �

}
. (13)

If the supremum in (13) is zero, then the decomposition terminates.
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For the other points ai (i ≥ 2) in �, we establish their existence inductively as follows.
Suppose that the previous n distinct points a1, . . . , an are chosen and Bi = Bai

i such that

|〈fi,Bi〉| ≥ ρi sup{|〈fi,Bb
i 〉| | b ∈ � \ {a1, a2, . . . , ai−1}}, (14)

where fi is the ith residual function defined in (10), 0 < ρ0 < ρi < 1 and i = 1, . . . , n. If
any one of the residual functions fi is zero, then the decomposition terminates.

Otherwise, for any ρn+1 with 0 < ρ0 < ρn+1 < 1, by the definition of supremum S
in (12), there exists an+1 ∈ � \ {a1, . . . , an} such that

|〈fn+1,Bn+1〉| ≥ ρn+1 sup{|〈fn+1,Bb
n+1〉| | b ∈ � \ {a1, . . . , an}}, (15)

where Bn+1 = kan+1−
∑n

j=1〈kan+1 ,Bj〉Bj

‖kan+1−
∑n

j=1〈kan+1 ,Bj〉Bj‖ and Bb
n+1 = kb−

∑n
j=1〈kb,Bj〉Bj

‖kb−
∑n

j=1〈kb,Bj〉Bj‖ .

By constructions, we have 〈Bn+1,Bi〉 = 0 and 〈Bb
n+1,Bi〉 = 0 for each i =

1, . . . , n. Then it follows from Proposition 2.2(ii) that 〈fn+1,Bn+1〉 = 〈f ,Bn+1〉 and
〈fn+1,Bb

n+1〉 = 〈f ,Bb
n+1〉. Hence, (14) and (15) are, respectively, equivalent to

|〈f ,Bi〉| ≥ ρi sup{|〈f ,Bb
i 〉| | b ∈ � \ {a1, a2, . . . , ai−1}}

and

|〈f ,Bn+1〉| ≥ ρn+1 sup{|〈f ,Bb
n+1〉| | b ∈ � \ {a1, . . . , an}}. �

4. Convergence of WPOAFD in A2(�)

In the last section, we shall prove our second main result in Theorem 1.2, i.e. to show a
WPOAFD of any function f in Bergman space A2(�) converges to the same function f.

Definition 4.1: For any given f ∈ A2(�) and any sequence {ρi}i≥0 with 0 < ρ0 ≤ ρi < 1
for all i ≥ 1, a sequence (ai)i≥1 of distinct points in � is called a weak maximal selection
sequence of f if there exists an orthonormal sequence (Bi)i≥1 in A2(�) associated to a
sequence (ai)i≥1 constructed as in Theorem 1.1.

For any given f ∈ A2(�), we fix a weak maximal selection sequence (ai)i≥1 of f with
an orthonormal sequence (Bi)i≥1 in A2(�). Then one can extend the given (Bi)i≥1 to an
orthonormal basis of A2(�), so Bessel’s inequality implies the following lemma.

Lemma 4.1: Let f ∈ A2(�). Then for any weak maximal selection sequence (ai)i≥1 of f, we
have

∑
i≥1〈f ,Bi〉Bi ∈ A2(�).

Now, we prove the convergence result of WPOAFD in Theorem 1.2 for any weak
maximal selection sequence as follows.

Proof of Theorem 1.2.: Suppose to the contrary that (ai)i≥1 is a sequence given by
WPOAFD applied to f, and (Bi)i≥1 is the corresponding orthonormal sequence in A2(�)

such that the residual

h = f −
∑
i≥1

〈f ,Bi〉Bi ∈ A2(�) (16)
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is non-zero. Then the sequence (ai)i≥1 is not finite in this case.We first prove that 〈h,Bi〉 =
0 for all i ≥ 1. In fact,

〈h,Bk〉 =
〈
f −

∑
i≥1

〈f ,Bi〉Bi,Bk

〉
=

〈
lim

N→∞

⎛
⎝f −

∑
1≤i≤N

〈f ,Bi〉Bi

⎞
⎠ ,Bk

〉

= lim
N→∞

〈
f −

∑
1≤i≤N

〈f ,Bi〉Bi,Bk

〉
= lim

N→∞(〈f ,Bk〉 − 〈f ,Bk〉〈Bk,Bk〉) = 0.

As h �= 0 and h is holomorphic on �, there exists a closed ball B̄ ⊂ � centered at some
point b in� with positive radius such that B̄ is compact and |h(z)| > 0 on B̄. Then set

C0 = min
x∈B̄

|h(x)|
K(x, x)

> 0.

Recall that fN is theNth residual of f in (10). We estimate |〈fN ,BN〉| in two different ways.
Firstly, Lemma 4.1 implies that

∑∞
i=1 |〈f ,Bi〉|2 < ∞. As C0 > 0, there exists a positive

integer N0 such that for all N ≥ N0, one has
∞∑
i=N

|〈f ,Bi〉|2 <
(
ρ0C0

2

)2
. (17)

By Proposition 2.2(ii) and inequality (17), we have

|〈fN ,BN〉| = |〈f ,BN〉| < ρ0C0

2
. (18)

Secondly, for any fixedN ≥ N0, we select a point b ∈ B̄\{a1, . . . , aN}. We consider another
sequence (a1, . . . , aN−1, b) ∈ �N . Let (B1, . . . ,BN−1,Bb

N) be the Gram–Schmidt
orthonormalization of (B1, . . . ,BN−1, kb), where

Bb
N = kb − ∑N−1

i=1 〈kb,Bi〉Bi

‖kb − ∑N−1
i=1 〈kb,Bi〉Bi‖

. (19)

SinceBN is selected according to the weakmaximalmodulus property (5) in Theorem 1.1,
we have

|〈fN ,BN〉| ≥ ρN sup{|〈fN ,Bz
N〉| | z ∈ � \ {a1, a2, . . . , aN−1}}

≥ ρN |〈fN ,Bb
N〉| ≥ ρ0 |〈fN ,Bb

N〉|. (20)

In order to arrive at a contradiction, consider eb = kb
‖kb‖ for b ∈ B̄\{a1, . . . , aN} and note

that

‖kb −
N−1∑
i=1

〈kb,Bi〉Bi‖2 = ‖kb‖2 −
N−1∑
i=1

|〈kb,Bi〉|2 ≤ ‖kb‖2. (21)

On the one hand, Proposition 2.2(i), (21), (19), (20) and (18) imply that

|〈fN , eb〉| =
∣∣∣∣
〈
fN ,

kb
‖kb‖

〉∣∣∣∣ = |〈fN , kb − ∑N−1
i=1 〈kb,Bi〉Bi〉|
‖kb‖
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≤ |〈fN , kb − ∑N−1
i=1 〈kb,Bi〉Bi〉|

‖kb − ∑N−1
i=1 〈kb,Bi〉Bi|‖

= |〈fN ,Bb
N〉| ≤ 1

ρ0
|〈fN ,BN〉| < 1

ρ0

ρ0C0

2
= C0

2
. (22)

On the other hand, by (10) and (16),

fN = f −
N−1∑
i=1

〈f ,Bi〉Bi =
∞∑
i=N

〈f ,Bi〉Bi + h. (23)

Then it follows from (23), triangle inequality, Cauchy–Schwarz inequality and (17) that

|〈fN , eb〉| =
∣∣∣∣∣
〈
h +

∞∑
i=N

〈f ,Bi〉Bi, eb

〉∣∣∣∣∣ ≥
∣∣∣∣ h(b)
K(b, b)

∣∣∣∣ −
∣∣∣∣∣
〈 ∞∑
i=N

〈f ,Bi〉Bi, eb

〉∣∣∣∣∣
≥ min

z∈B̄

∣∣∣∣ h(z)
K(z, z)

∣∣∣∣ −
∥∥∥∥∥

∞∑
i=N

〈f ,Bi〉Bi

∥∥∥∥∥ ‖eb‖

= C0 −
√√√√ ∞∑

i=N
|〈f ,Bi〉|2 > C0 − ρ0C0

2
>

C0

2
,

which contradicts to (22).
Consequently, h = 0 and this completes the proof of Theorem 1.2. �
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