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Statistical n-Best AFD-Based Sparse Representation
for ECG Biometric Identification
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Abstract— Electrocardiogram (ECG) biometric recognition as
a personal identification method is receiving more and more
attention because it can support live verification results. Com-
pared with other biometric-based methods, it can provide higher
security performance. The difficulty of the problem lies in how
to stably extract ECG signal features and achieve real-time
verification. In this study, a new type of sparse representation
learning framework called statistical n-best adaptive Fourier
decomposition (SAFD) originated by Qian is adopted in ECG
biometric identification. Adaptive Fourier decomposition (AFD)
is a recently developed combination of transform-based signal
decomposition and sparse representation method, which can
adaptively select the atoms from a redundant dictionary through
orthogonal processing. The advantage of the AFD-type methods
is that each atom in the dictionary has a precise mathematical
formula with good analytic properties. This characteristic is sig-
nificantly distinguished it from other existing sparse representa-
tions, where the atoms learned are usually matrix data and cannot
be described mathematically. The proposed SAFD extends the
existing n-best AFD from processing single signal to multi-signals
and implements the n-best AFD in the stochastic Hardy space.
Therefore, the small number of learned atoms by SAFD is
sufficient to capture internal structure and robustness of the
signal and generate a discriminative representation that reflects
the time–frequency characteristics of signals. It is very suitable
for non-stationary signals like ECG. The proof of convergence of
the algorithm is presented. Extensive experiments are conducted
on five public databases collected in different realistic conditions,
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and an average identification accuracy of 98.0% is achieved.
In addition, less than 1 ms for one matching process makes it
possible to be implemented in real time. Experimental results
demonstrate that the proposed method can achieve superior
performance compared to other state-of-the-art ECG biometric
identification methods.

Index Terms— Biometric identification, electrocardiogram
(ECG), sparse representation, statistical n-best adaptive Fourier
decomposition (SAFD), time–frequency representation.

I. INTRODUCTION

W ITH the increasing use of technology to enhance
human activities and improve human lifestyles, per-

sonal identification has become an indispensable part of human
life nowadays. Traditional identification methods (including
ID numbers, passwords, and tokens) have also become easily
destroyed or stolen due to the development of technology [1].
As a promising option, biometric identification using human
physiological or behavioral traits that are mostly unique
between individuals is receiving more and more attention [2].
Typical biometric technologies, such as fingerprints, faces, iris,
and voice, face the challenge of identity theft, because they can
be the result of malicious forgery [3]. Compared with these
existing biometric technologies, electrocardiogram (ECG) sig-
nals can only be collected and verified on-site. It is more
difficult to replicate and forge, and thus, provides a reliable
way for human authentication and unique recognition.

In the earliest study that applied ECG signals for human
identification, Biel et al. [4] demonstrated the feasibility by
employing 12-lead ECG signals to classify 20 subjects in 2001.
Then, many related articles were proposed in the follow-
up [5]–[8]. In the literature, ECG biometric identification
systems can be divided into two categories: the fiducial-based
and the non-fiducial-based methods [9]. The non-fiducial-
based methods are commonly used for releasing fiducial
points detection. There are three types in general, that is,
transform-based, convolutional neural network (CNN)-based,
and sparse representation-based methods. The transform-based
methods use the features extracted through different mathemat-
ical transforms, including wavelet transform (WT) [10]–[13]
and S-transformation [5]. The advantage of these methods is
that the extracted features can be fully described mathemat-
ically, while the disadvantage is that the extracted features
are usually redundant, resulting in unsatisfactory recognition
performance. The currently widely used deep learning meth-
ods have achieved outstanding performance in many fields.
However, its advantage, but also the disadvantage, is that it
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relies on a large amount of training data. The ECG biometric
identification system needs to learn the features of each person
individually, so the amount of the training data is limited [10].
Therefore, the robustness of deep learning in this field is
greatly reduced [5], [14], [15].

Sparse representation uses a few representative atoms of dic-
tionary to approximate the original signal. The representative
features are also learned, but compared with deep learning,
the training process only requires very little training data. For
example, the training samples of 277 563 are used for training
CNN in [16], while only 12 heartbeats per subject from a
database with 47 subjects and a database with 89 subjects
are used to train the dictionary of the sparse representation
algorithm in [6]. Sparse representation has achieved very good
performance in ECG biometric identification. Wang et al. [17]
used sparse representation of local segments to extract com-
pact and discriminative features from ECG signals for per-
sonal identification. Jaafar et al. [18] employed the kernel
sparse representation classifier (KSRC) in the ECG biometric
recognition system, to increase the system performance in
high-dimensional feature spaces. In [19], a unified sparse
representation that collaboratively exploited joint and spe-
cific patterns for ECG biometric recognition was developed.
Xu et al. [20] proposed a structural sparse representation
algorithm with class-specific dictionary for ECG biometric
recognition.

In the literature, the dictionary atoms of the sparse represen-
tations are adaptively learned based on the signal. However,
the extracted features are usually represented by matrix data
and cannot be described mathematically. This shortcoming
limits further analysis of ECG signals. In addition, the tradi-
tional sparse representation methods used for ECG biometric
recognition mainly use the consistent constraints on all ECG
signals to search for consistent representations, while ignoring
the signal divergence of each subject [19]. Finally, the large
dictionary dimension and large number of matrix calculations
in the dictionary learning of traditional sparse representation
methods lead to high computation complexity [19], especially
for large databases. In practice, most traditional sparse repre-
sentation methods are difficult to implement in real-time.

This article proposes a novel sparse representation learning
framework called statistical n-best adaptive Fourier decom-
position (SAFD) for ECG biometric identification. Adaptive
Fourier decomposition (AFD) is a newly developed combina-
tion of transform-based signal decomposition and sparse repre-
sentation method [21]–[23]. Unlike the other transform-based
methods that use preselected fixed bases, AFD decomposes
the signal according to the adaptive selection of atoms from
a redundant dictionary through orthogonal processing. Unlike
other sparse representation methods that have no mathemat-
ical description on the dictionary atoms, each atom in the
AFD-based dictionary has a precise mathematical formula
enjoying good analytic properties. In particular, the adaptive
decomposition offers positive frequency decomposition as well
as fast converges to the interested signal.

AFD has been proved to be a powerful tool for ECG signal
compression [24], [25] and offers higher performance with its
ability for signal modeling [26], [27]. The n-best AFD [22] is

a variant of AFD, which uses the learning method to select n
best atoms to represent the signal. Due to its optimization in
the cyclic iteration, the dictionary atoms learned by n-best
AFD are more robust and more effective to represent the
signal. The existing n-best AFD is used to process only
one signal at a time. To generalize the n-best AFD into
processing multi-signals on stochastic analytic Hardy spaces,
this article adopts the newly proposed SAFD theory [28] and
proposes a novel learning framework and the algorithm based
on SAFD, which is applied to ECG biometric identification.
SAFD can extract common features from multi-signals at
one time, thereby improving the effectiveness and efficiency
of sparse representation. It has been successful applied in
ECG classification [29]. Besides, the numbers of the common
features from the multi-signals are less than the sum of the
feature numbers from single signals, and therefore it also has
potential applications in the fields of signal compression.

The main contributions of this article are summarized as
follows.

1) The learning framework and algorithm of SAFD is
introduced in this article. It extends the existing n-best
AFD from processing single signal to multi-signals and
implements the n-best AFD in the stochastic Hardy
space. In addition to the ECG signal, the SAFD can
also be generalized to other types of signals.

2) Due to the optimization nature, SAFD is more effective
and stable to approximate signals with fast convergence.
Only a few atoms are needed to represent the sig-
nal, which greatly enhances the sparsity. Though the
extracted features are more compact, the sparse features
effectively minimize intra-subject variability and maxi-
mize inter-subject variability of ECG signals and achieve
the final robust and discriminative representation.

3) The extracted features represented by SAFD dictionary
atoms can be described by time–frequency character-
istics mathematically. The time–frequency structure of
ECG signals provides relevant and effective pattern
information for ECG biometric identification.

4) Compared with the other sparse representation methods,
our method requires only a small amount of training
data to find appropriate dictionary atoms to represent
the interested signals. In addition, the fast convergence
of the algorithm greatly reduces the calculation time.
The efficient data calculation process can greatly save
storage space. These advantages make the proposed
ECG biometric system suitable for real-time imple-
mentation and provide great potential for the practical
applications.

5) The proposed method is tested on five ECG databases,
all publicly available. Four of them are currently used
for the ECG biometric algorithm evaluation. The other
one was designed to collect ECG data in three sessions,
allowing the algorithm evaluation over different time
periods.

The rest of the article is organized as follows. The proposed
method is described in detail in Section II. In Section III,
experimental results are presented. Finally, conclusions are
drawn and future works are suggested in Section IV.
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II. PRINCIPLE OF THE PROPOSED SAFD

A. Mathematical Foundation

1) Preliminaries: As the proposed SAFD is through the
n-best AFD, we will briefly introduce the fundamental knowl-
edge of the n-best AFD. The n-best AFD is based on the
n-orthogonal rational function system, or the n-Takenaka–
Malmquist system (the n-TM system in brief). For a given
set of ak ∈ D, where k = 1, 2, . . . , n and D is the unit disk,
the n-TM system is denoted as {Bk} [22] with

Bk(z) = Ba1,...,ak =
√

1 − |ak |2
1 − ākz

k−1∏
j=1

z − a j

1 − ā j z
(1)

and Bk are called weighted Blaschke products (wBPs).
A n-TM system is said to be adaptive if the parameters ak for
all k are selected according to the input signal. An adaptive
n-TM system is a generalization of the n-Fourier system,
the latter being composed of the monomials {zk}n

k=1, corre-
sponding to ak = 0 for all k in the n-TM system.

An element in the dictionary {ea}a∈D

ea =
√

1 − |a|2
1 − āz

(2)

is called an evaluator [21], which is employed to facilitate
computation of energy gain during the parameter selection.
A weight Blaschke product in (1) comes from a product
of several evaluators with a proper normalization [21]. The
evaluators are the reproducing kernels of the Hardy space
H 2(D).

The n-best AFD is the n-best approximation to an analytic
signal in the Hardy space by a linear combination of some n
dictionary atoms in a learned n-TM system, so as to achieve
the sparsity. For an analytic signal f ∈ H 2(D), the n-best
AFD is a function of the form

f̃ (z) =
n∑

k=1

(c f )k Ba f
1 ,...,a f

k
(3)

which best approximates f under a selection of the n-tuple of
the parameters a f

1 , a f
2 , . . . , a f

n . (c f )k = 〈 f, Ba f
1 ,...,a f

k
〉 is the kth

coefficient of Ba f
1 ,...,a f

k
, where 〈 , 〉 represents the inner product

in H 2(D). The existence and a proposed algorithm of (2) may
be found in [22].

Extending the n-best AFD to the stochastic Hardy space,
we get SAFD.

2) SAFD: The stochastic Hardy space is defined as follows:

H 2
ξ (D) =

{
x : D × � → C | x(z, ξ) is a.s. analytic in z

x(z, ξ) =
∞∑

k=0

ck(ξ)zk with

||x ||2N =
∞∑

k=0

Eξ |ck(ξ)|2 < ∞
}

(4)

where Eξ stands for the mathematical expectation in the
underlying probability space (�,μ), ξ ∈ �. ||x ||N is the
energy expectation norm of x , and N = L2

ξ (∂D) is the space

of random signals of finite energy. x(z, ξ) in (4) can also be
written as x(t, ξ) = �∞

k=0ck(ξ)eikt with z = eit .
Let y(t, ξ) be a real-valued signal in L2

ξ (∂D). The associated
analytic signals of y(t, ξ) is denoted as

x(t, ξ) = 1

2

(
y(t, ξ) + i H y(t, ξ) + c0

)
(5)

where c0 is the 0th Fourier coefficient, and H is the Hilbert
transformation.

Now x(t, ξ) is in H 2
ξ (D). Let x̄ = Eξ (x(t, ξ)), we have

x(t, ξ) = x(t) + r(t, ξ) (6)

where r is the remainder. In fact, x̄ is in H 2(D).
Theorem 2.1: If x(t, ξ) ∈ H 2

ξ (D), let x̄ = Eξ (x(t, ξ)), then
x̄ ∈ H 2(D).

Proof: We will show

x̄ = Eξ (x(t, ξ)) =
∞∑

k=0

Eξ (ck(ξ))zk (7)

and x̄ ∈ H 2(D).
In fact, according to Parseval’s inequality, we have

‖∑∞
k=0 Eξ (ck(ξ))zk‖ = (

∑∞
k=0 |Eξ (ck(ξ))|2)(1/2), and

according to the Minkovski’s inequality, we have
(
∑∞

k=0 |Eξ (ck(ξ))|2)(1/2) ≤ Eξ [(∑∞
k=0 |ck(ξ)|2)(1/2)].

Then, from Cauchy–Schwarz inequality, there follows:

Eξ

⎡
⎣( ∞∑

k=0

|ck(ξ)|2
) 1

2

⎤
⎦ ≤

[
Eξ

( ∞∑
k=0

|ck(ξ)|2
)] 1

2 [
Eξ (1)

] 1
2

=
[ ∞∑

k=0

Eξ (|ck(ξ)|2)
] 1

2

= ‖x‖N < ∞ (8)

as assumed. Hence,
∑∞

k=0 Eξ (ck(ξ))zk ∈ H 2(D).
Furthermore, the relation (7) holds because ck(ξ) =

(1/2π)
∫ 2π

0 x(eit , ξ)e−ikt dt for each k is a continuous
functional.

For x̄ , according to (7), the n-best AFD approximation of
x̄ is

˜̄x(z) =
n∑

k=1

ck Bk (9)

which best approximates x̄ under a selection of the n-tuple
of the parameters {ak}n

k=1. The learned n-TM system of x̄ is
{Bk}n

k=1. We call the sparse coding vector of x̄ with {Bk}n
k=1 is

the functional representation under the learned n-TM system
{Bk}n

k=1, which can be written as

ck = 〈x̄, Bk〉 = 〈
x̄, Ba1,...,ak

〉
. (10)

The characteristic of SAFD is embedded in the para-
meter selection. An optimal selection of the parameters
a1, a2, . . . , an is based on minimizing the square-distance
between x̄ and ˜̄x , that is,∣∣∣∣∣
∣∣∣∣∣x̄ −

n∑
k=1

〈
x̄, Ba1,...,ak

〉
Ba1,...,ak

∣∣∣∣∣
∣∣∣∣∣
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= min
{b1,...,bk }⊂D

∣∣∣∣∣
∣∣∣∣∣x̄ −

n∑
k=1

〈
x̄, Bb1,...,bk

〉
Bb1,...,bk

∣∣∣∣∣
∣∣∣∣∣. (11)

The cyclic iteration process is used to solve the above
optimization problem. That is, it adaptively selects one opti-
mized parameter for each cycle based on the maximal selection
principle (MSP) to reach the maximum energy [21], [22]
and achieve fast convergence. Specifically, to achieve (11),
we start from an initial value of the n-tuple parameter of
(b(0)

1 , . . . , b(0)
n ). Then we fix b(0)

2 , . . . , b(0)
n and rename the

n − 1 points (b(0)
2 , . . . , b(0)

n ) as (d1, . . . , dn−1).
Set x̄ = X1, then according to [21]

x̄(z) =
n−1∑
k=1

〈
X1, B{d1,...,dk }

〉
B{d1,...,dk } + Xn(z)

n−1∏
k=1

z − dk

1 − d̄kz
(12)

where

Xn = Xn−1 − 〈Xn−1, ed1〉ed1

z−dn−1

1− ¯dn−1 z

. (13)

Xn is the generalized backward shift of Xn−1(z) through
dn−1.

By the reproducing kernel property of the evaluator, the inter
product between Xn and eb is [21]

〈Xn, eb〉 =
√

1 − |b|2 Xn(b). (14)

The MSP proved in [21] asserts that for Xn , there exists
b(1)

1 ∈ D such that

b(1)
1 = arg max

b∈D

{(
1 − |b|2)|Xn(b)|2}. (15)

We then form a new n-tuple (b(1)
1 , . . . , b(1)

n ). With these new
parameters, we have the improvement of∣∣∣∣∣
∣∣∣∣∣x̄ −

n∑
k=1

〈
x̄, Bb(1)

1 ,...,b(1)
n

〉
Bb(1)

1 ,...,b(1)
n

∣∣∣∣∣
∣∣∣∣∣

<

∣∣∣∣∣
∣∣∣∣∣x̄ −

n∑
k=1

〈
x̄, Bb(0)

1 ,...,b(0)
n

〉
Bb(0)

1 ,...,b(0)
n

∣∣∣∣∣
∣∣∣∣∣. (16)

Repeating the same process to the time M such that
none of the continuous n replacements of b(M)

k has a true
improvement of ||x̄ − ∑n

k=1〈x̄, Bb(M)
1 ,...,b(M)

n
〉Bb(M)

1 ,...,b(M)
n

||. Then

(b(M)
1 , . . . , b(M)

n ) is the optimal parameters (a1, . . . , an) that
been finalized.

The iterative selection process of the parameters is also
vividly shown in Fig. 1. As shown in Fig. 1, one more
optimized parameter for each cycle is selected adaptively
based on MSP to achieve the most representative atoms.

For x(t, ξ), we have obtained a sequence of optimal para-
meters {ak}n

k=1 and an associated n-TM system {Bk}n
k=1 that

gives rise to the SAFD approximation x̃(t, ξ) of x(t, ξ), where

x̃(t, ξ) =
n∑

k=1

ck(ξ)Bk (17)

and ck(ξ) = 〈x(t, ξ), Bk〉 is the functional representation of
x(t, ξ). According to (5), we have

ỹ(t, ξ) = 2R(x̃) − c0 = 2R
(

n∑
k=1

〈x(t, ξ), Bk〉Bk

)
− c0 (18)

where R means taking the real part.

Fig. 1. Iterative selection process of parameters.

B. Effect of wBPs for ECG Signals

The ECG signal is based on the individualized mechan-
ical movement of human heart, which contains the unique
physiological information of the individual [3]. An ECG
signal is composed of consecutive heartbeats. A complete
heartbeat mainly includes P, QRS complex, and T wave [30].
It is reasonable that the heartbeats of the same subject
should share similar characteristics, not only the waveform
structure, but also the time–frequency characteristics. More-
over, due to the physiological diversity, these characteris-
tics show different aspects for different subjects. Since the
differences between subjects are relatively subtle, it is very
challenging to visually distinguish these differences. In the
proposed method, the n-TM system learned by SAFD con-
tains the time–frequency characteristic of each heartbeat,
which can effectively describe the inherent wave structure of
the heartbeat. Through the improvement of the intra-subject
compactness and the inter-subject dispersion by the learned
n-TM system, we can extract effective features for personal
identification.

A specific time–frequency representation of x(t, ξ) is given
by SAFD in (17), that is,

Tx(t,ξ)(t, η) =
n∑

k=1

ρ2
k (t, ξ)δ

(
η − θ ′

k(t)
)

(19)

where η > 0 is the frequency and δ is the distributional Dirac
function [31]

ρk(t, ξ) = |ck(ξ)|
√

1 − |ak |2
1 − |ak | cos(t − θak ) + |ak|2
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Fig. 2. wBPs and corresponding time–frequency representations of a
heartbeat by SAFD.

is the instantaneous amplitude, and

θ ′
k(t) = |ak| cos(t − θak ) − |ak |2

1 − 2|ak | cos(t − θak ) + |ak |2

+
k−1∑
j=1

1 − |a j |2
1 − |a j | cos(t − θa j ) + |a j |2

is the instantaneous frequency, where θk = |ak|eiθak .
The time–frequency representation quantifies the

time-varying properties of ECG signals. The morphology
of the ECG signal evolves with time and space, so the
time–frequency representation can reveal the joint temporal
and spatial characteristics. For the purpose of visualization, all
wBPs and their corresponding time–frequency representations
of a heartbeat are illustrated in Fig. 2. In Fig. 2, the first
row shows the original heartbeat and the last row shows
the heartbeat of the SAFD approximation, along with its
time–frequency representation calculated by (19). The second
and third rows show each decomposed wBP and partial sums
of selected wBP with their corresponding time–frequency
representations, respectively. As shown in Fig. 2, each
wBP plays a role in the composition of the wave, which
corresponds to different wave components of P wave,
QRS wave, and T wave. It can also be observed from the
time–frequency representation that the spectral power of wBP
is mainly concentrated in the frequency range of its related
wave components.

To further demonstrate the effectiveness of the learned
n-TM system, we use a visualization technique [32] to visual-
ize the learned functional representations from (10) in Fig. 3.
Fig. 3(a) and (b) shows two heartbeats with subtle change
in wave morphology, selected randomly from two different
subjects, respectively. Fig. 3(c) is the visualization of the two
heartbeats embedded into two dimensions, while Fig. 3(d) is
done in the same way on functional representations based on
the learned n-TM system. It can be seen from the figure that
although the heartbeats are so similar that it is difficult to
distinguish them visually, the results after functional represen-
tation has become separable. It shows that the learned n-TM
system is able to generate discriminative outputs.

Fig. 3. Visualization of two heartbeats from two subjects. (a) and (b) Orig-
inal heartbeats. (c) Original data points. (d) Result after the functional
representations.

C. Proposed Sparse Representation Learning Framework

The framework of ECG biometric identification system is
shown in Fig. 4. The method is implemented in three steps,
including preprocessing, the sparse representation training, and
matching process.

1) Preprocessing: Due to the practical demand for real-time
identification, heartbeats, instead of long-term ECG records,
are used in the proposed method. Therefore, ECG signals are
mainly preprocessed by noise filtering, R location detection,
and heartbeat segmentation [14]. ECG denoising and R-peak
detection methods have been widely explored [33]–[35], which
are beyond the scope of this study. A Butterworth bandpass
filter is used to reduce noise for obtaining smoothed ECG
signals, and the R-peak location is detected by the Elgendi
algorithm [36]. In order to keep the complete information con-
taining P, QRS complex, and T waves, as well as considering
the heart rate variability, one-third durations of RR intervals
before the R location and two-thirds durations thereafter is
truncated as a heartbeat segmentation. Heart rate variability
needs to be considered in the ECG biometric recognition,
because it will affect the cycle length of the ECG signal,
thereby affecting the accuracy of recognition [37]. The nor-
malization step is usually used in other methods, which adjusts
the heartbeat segments to a fixed length to reduce the influence
of heart rate variability [14], [20]. In our method, all heartbeats
are automatically mapped to the same period [0, 2π) during
the processing in SAFD. In this case, our method is not
affected by heart rate variability, which is a superior advantage
over other methods.

2) SAFD-Based Heartbeat Sparse Representation: Assume
there are L subjects. The i th subject’s training heartbeats are
denoted as Si = (yi,1, . . . , yi,Ni ), where Ni is the number of
training heartbeats of the i th subject, i = 1, . . . , L. Our goal is
to learn a subject-specific n-TM system to represent the origi-
nal training heartbeats Si and obtain the sparse representation
of Si . First of all, the associated analytic signal of yi, j is xi, j

that is calculated by (5), so S+
i = (xi,1, . . . , xi,Ni ). We write

xi, j as xi(ξ j), that is,

xi, j = xi(ξ j ), j = 1, . . . , Ni . (20)

Then, according to (6)

xi(ξ j ) = x̄i + ri (ξ j ) (21)

and x̄i = Eξ (xi(ξ j )). x̄i is as the template heartbeat of the i th
subject.
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Fig. 4. Framework of the proposed SAFD for ECG biometric identification.

Algorithm 1 Parameter Selection Process of S+
i

Input: x̄i , an initial value of the n-tuple parameter of m0 =
(b(0)

1 , . . . , b(0)
n ).

Output: (b(M)
1 , . . . , b(M)

n ).

1: Compute ∇E (M) = ∇E (0) = ||x̄i −∑n
k=1〈x̄i , Bb(0)

1 ,...,b(0)
n

〉Bb(0)
1 ,...,b(0)

n
||, where M changes with

the upper index value of ∇E .

2: Fix b(0)
2 , . . . , b(0)

n , rename the n − 1 points as
(d1, . . . , dn−1);

3: Compute x̄i − ∑n−1
k=1〈x̄i , B{d1,...,dk }〉B{d1,...,dk } =

x̄i n
∏n−1

k=1
z − dk

1 − d̄kz
by (12);

4: Use the MSP to x̄i n , then get b(1)
1 = arg maxb∈D{(1 −

|b|2)|x̄i n(b)|2} by (15), m1 = (b(1)
1 , . . . , b(1)

n ) and
||∇E (1)|| < ||∇E (0)||;

5: Keep b(1)
1 and b(1)

3 , . . . , b(1)
n unchanged in their positions,

replace b(1)
2 by b(2)

2 in virtue of MSP to obtain the improve-
ment of ||∇E (2)|| < ||∇E (1)||;

6: Carry on this process to the time M such that none of the
continuous n replacements of b(M)

k has a true improvement
of ||∇E (M)||;

7: return (b(M)
1 , . . . , b(M)

n ).

As described in Section II-A2, we need to select the optimal
parameters {ai

1, . . . , ai
n} of x̄i to constructed the n-TM system

of S+
i such that

∣∣∣∣∣
∣∣∣∣∣x̄i −

n∑
k=1

〈
x̄i , Bai

1,...,a
i
k

〉
Bai

1,...,a
i
k

∣∣∣∣∣
∣∣∣∣∣

= min
{b1,...,bk }⊂D

∣∣∣∣∣
∣∣∣∣∣x̄i −

n∑
k=1

〈
x̄i , Bb1,...,bk

〉
Bb1,...,bk

∣∣∣∣∣
∣∣∣∣∣. (22)

The detailed parameter selection process is described
in Algorithm 1 according to Section II-A2. The output
(b(M)

1 , . . . , b(M)
n ) in Algorithm 1 is as {ai

1, . . . , ai
n} of x̄i .

Then the corresponding wBPs of the i th subject’s training
heartbeats are acquired by (1), that is,

Bi
k(z) = Bai

1,...,a
i
k
=

√
1 − |ai

k|2
1 − āi

k z

k−1∏
j=1

z − ai
j

1 − āi
j z

. (23)

{Bi
k}n

k=1 is the learned n-TM system of Si .
Now we have got the learned n-TM system of each subject’s

training heartbeats, namely {Bi
k}n

k=1, i = 1, . . . , L. Then the
subject-specific n-TM system {Bi

k}n
k=1 are combined as an

unified n-TM system {B1
1 , . . . , Bn

1 , . . . , B1
L , . . . , Bn

L}.
For xi, j , the approximation ˜xi, j of xi, j , j = 1, . . . , Ni is

obtained over the learned n-TM system {Bi
k}n

k=1

˜xi, j =
n∑

k=1

(ci, j )
i
k Bi

k (24)

(ci, j )
i
k = 〈xi, j , Bi

k〉 is the functional representation based
on {Bi

k}n
k=1. It can be seen from (23) and (24) that the

functional representation (ci, j )
i
k only uses the learned para-

meters {ai
1, . . . , ai

n}. Furthermore, the unified functional rep-
resentation of xi, j or yi, j can be obtained as Ci, j =
((ci, j )

1
1, . . . , (ci, j )

1
n, . . . , (ci, j )

L
1 , . . . , (ci, j )

L
n ).

Therefore, we get the unified functional representation Ci ,
i = 1, . . . , L of each subject’ training heartbeats stored as
templates for matching.

3) Matching: In the matching phase, to an unknown test
heartbeat y of one subject, we need to find the best approxi-
mation of y and get the unified functional representation for
final identification. The associated analytic signal of y is x ,
and the approximation x̃ i are obtained over the learned n-TM
system {Bi

k}n
k=1, i = 1, . . . , L, that is,

x̃ i =
n∑

k=1

ci
k Bi

k (25)

where ci
k is the corresponding functional representation of ci

k =
〈x, Bi

k〉. Hence, the unified functional representation of x or y
is Cx = (c1

1, . . . , c1
n, c2

1, . . . , c2
n, . . . , cL

1 , . . . , cL
n ).
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TABLE I

CONFIGURATIONS OF ECG DATABASES

Finally, the test heartbeat y is determined as the hth subject
whose distance is nearest

h = arg min
i=1,...,L

‖Ci − Cx‖2
2. (26)

In addition, the subject is identified as the hth subject, and
the approximation of y is obtained by (17) and (18) as the
following:

ỹ = 2R
(

n∑
k=1

ch
k Bh

k

)
− c0. (27)

D. Initial Parameters n and m0 Settings

SAFD uses a fixed n to determine not only the size of the
n-TM system {Bk}n

k=1, but also the approximation accuracy. m0

is the initial parameter value, which can affect the number of
iterations and the calculation time of the algorithm. They can
be set manually in advance and adjusted by the normalized
residuals. Alternatively, they can be automatically estimated
by applying the core AFD algorithm first [23]. In core
AFD, the parameters a1, . . . , ak, . . . are selected one by one
automatically to construct an optimal sequence of wBPs to
approximate the given signal. In this study, we use the core
AFD to determine n and m0.

E. Computation Complexity

The computation of SAFD is dominated by formula (5) and
step 5 in Algorithm 1. Suppose the input ECG signal y is of
length N ∈ N. The computational complexity of (5) for getting
the associated analytic signal is O(N) [25]. For the parameters
selection process in Algorithm 1, a more optimized parameter
is obtained in each cycle by the MSP of step 4. To implement
the MSP, the computational complexity is O(C N log N) as
provided in [38], where C is the number of discrete points in D

that is divided into rectangular grid for searching the maximum
value to satisfy b( j)

1 = arg maxb∈D{(1 − |b|2)|x̄i n(b)|2}, where
j = 1, 2, . . . , M is the number of iterations, and i =
1, 2, . . . , L is the number of subject. Therefore, in summary,
the computational complexity of SAFD is O(N log N) since
C is determined. In practice, because each heartbeat is fixed
and short, the calculating time is expected to be small.

III. EXPERIMENTAL RESULTS

The principle of our method is to learn a heartbeat sparse
representation for each subject. Then, for any given ECG
signal, our method recognizes which subject the heartbeat
belongs to according to its sparse representation, thereby

realizing ECG-based biometric identification. Recognition can
be achieved by matching single or multiple heartbeats. In this
section, the ECG databases and initial parameter settings used
in this study are briefly introduced first. Then, the performance
evaluation metrics are provided. Finally, the comprehensive
evaluations of our method on five ECG databases are presented
in three aspects, including single and multiple heartbeats
recognition, and comparison experiments.

A. ECG Databases and Initial Parameter Settings

The proposed SAFD is evaluated on four widely used public
databases, including Fantasia database (Fantasia),1 MIT-BIH
arrhythmia database (MITDB),2 ECG-ID database (ECG-ID),3

and European ST-T database (EDB).4 The data in these
databases are collected under different sample rates, number
of records and subjects, recording time, age, and health status.
To further evaluate the method, one more database, Aveiro
ECG database (AED) [39], [40], is used, which data were col-
lected through three different sessions, apart from each other
for one week. The detailed information of these databases is
listed in Table I.

We divided the heartbeats into two groups, that is, training
and test heartbeats. The test heartbeats can be further divided
into two categories, including same time interval and cross
time interval heartbeats. The same time interval heartbeats
mean that the training data and test data come from the
ECG signals with a short time interval, for example, con-
secutive heartbeats immediately after the training heartbeats
or the heartbeats that are only a few seconds apart from the
training heartbeats. The cross time interval heartbeats mean
that the training data and the test data come from different
time periods, such as different hours, even different days. The
former has smaller changes between training and testing heart-
beats, while the latter has larger changes. Taking into account
the real situation of personal identification, the cross time
interval test is more realistic. In this aspect, AED conforms to
the ECG signal used for biometric identification in practice.
The time interval of the other four public databases is not
labeled clearly. To compare with other studies, two different
kinds of experiments were conducted on each database, that is,
same time interval and cross time interval experiments. We try
to take the heartbeats that are far apart for training and testing
as the cross time interval experiments.

1https://physionet.org/content/fantasia
2https://physionet.org/content/mitdb
3https://physionet.org/content/ecgiddb
4https://physionet.org/content/edb
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TABLE II

PARAMETERS AND IDENTIFICATION PERFORMANCE OF THE PROPOSED METHOD ON FIVE DATABASES

There are two parameters to be set, that is, n and m0.
By applying the core AFD algorithm, n = 12 is obtained as
the initial n of SAFD. m0 = (b(0)

1 , . . . , b(0)
12 ) is the parameters

obtained by the core AFD algorithm with n = 12. The detailed
parameter values of each database are presented in Table II.

B. Performance Evaluation Metrics

The recognition performance of the proposed method is
evaluated by the recognition accuracy (RAC) and the confu-
sion matrix. The RAC is the ratio of the number of correctly
identified subjects to the number of all subjects, which is
defined as [39]

RAC = TP + TN

TP + FP + TN + FN
(28)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is
the number of false negatives. The sensitivity (Se) represents
the ability of an identification system to identify someone
correctly and the specificity (Spe) evaluates the ability of the
identification system to reject someone correctly, and they are
as follows [39]:

Se = TP

TP + FN
(29)

Spe = TN

FP + TN
. (30)

The confusion matrix provides a detailed distribution of the
recognition performance of each subject. Assume there are L
subjects, then the confusion matrix is an L square matrix.

Furthermore, the verification performance is evaluated using
equal error rate (EER) [20]. EER is a point on the detection
error tradeoff curve where the false acceptance rate (FAR)
equals the false rejection rate (FRR). FAR is the probability
that two non-mate samples will be incorrectly recognized
as a match, while FRR refers to the probability that two

Fig. 5. Comparison of the RAC of different numbers of training heartbeats
on Fantasia.

mate samples will be falsely declared as non-match. A varied
threshold for using to verify the authenticity of the test sample
is used to yield a plot of FAR, FRR, and EER. Here, lower
EER means better identification system.

C. ECG Biometric Identification by Matching
Single Heartbeat

1) Experimental Results on Fantasia: Unlike most other
databases in PhysioNet, ECG signals of the Fantasia database
are all from healthy subjects with similar signal waveforms.
The first 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 heartbeats
of each subject are used as the training heartbeats. The
detailed RAC of different number of training samples is plotted
in Fig. 5. As shown in Fig. 5, the minimum of RAC is 99.93%
and the maximum of RAC is 99.97% in the same time interval
mode; the RACs in the cross time interval mode are from
99.45% to 99.62%. It is reasonable that the performance of the
same time interval mode is better than that of the cross time
interval mode. It can be seen from Fig. 5 that the performance
of different number of training heartbeats does not change
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Fig. 6. Confusion matrix for identification performance on the test databases listed in Table II with the cross time interval mode. (a) Confusion matrix of
Fatansia. (b) Confusion matrix of MITDB. (c) Confusion matrix of ECG-ID. (d) Confusion matrix of EDB. (e) Confusion matrix of AED.

Fig. 7. FAR-FRR curves of the test databases listed in Table II with the cross time interval mode. (a) FAR-FRR curve of Fatansia. (b) FAR-FRR curve of
MITDB. (c) FAR-FRR curve of ECG-ID. (d) FAR-FRR curve of EDB. (e) FAR-FRR curve of AED. The threshold is abbreviated as th that is varied to yield
the plot of FAR-FRR curve.

much. Therefore, considering the calculation cost and storage
space, in the subsequent experiments, we set ten heartbeats as
the training number.

Table II presents the Se of 99.46%, Spe of 99.45%, and
RAC of 99.46% on the test heartbeats in the cross time interval
mode and Fig. 6(a) shows the corresponding confusion matrix.
Heartbeats not shown on the diagonal of the confusion matrix
are false matches. It can be seen that the test heartbeats are
almost on the diagonal, which shows that the proposed method
achieves a higher recognition rate on the Fantasia database.
The test performance of the FAR and FRR of the Fantasia
database in the cross time interval mode is shown in Fig. 7(a).
The EER is 0.015 as shown in Fig. 7(a), which proves that
the proposed method is an effective identification system.

2) Experimental Results on MITDB: The MIT-BIH arrhyth-
mia database is widely used in various methods [6], [8], [12],
[13], [20], [41]. However, this database is mainly to record
the data on different arrhythmia heart diseases. Therefore,
we conduct experiments on this database by using 25 records
of relatively wave shape control subjects and all 48 records
of 47 subjects separately. In the same time interval mode,
the RAC of identifying 25 subjects reaches 99.95% and
identifying 47 subjects reaches 99.46%. The results in the
cross time interval mode are list in Table II. For identifying
47 subjects of MITDB, the RAC of the cross time interval
mode is 98.25%. The confusion matrix and the FAR and FRR
curves of the cross time interval mode for testing 47 subjects’
data are presented in Figs. 6(b) and 7(b), respectively.

3) Experimental Results on ECG-ID: Each record in the
ECG-ID database is about 20 s, so the number of heartbeats
obtained from each record is not much. There are several

records for each subject, and therefore, we only perform the
cross interval experiments on this database. Specifically, for
each subject, training heartbeats are taken from one record and
test heartbeats are taken from another record. The RAC of the
ECG-ID database is 97.89% as shown Table II and the confu-
sion matrix is presented in Fig. 6(c). Besides, the FAR, FRR,
and EER of the ECG-ID database are displayed in Fig. 7(c).

4) Experimental Results on EDB: EDB contains a large
number of subjects whose ECG records are with long periods
of time and is suitable for evaluating the impact of database
scales or the number of subjects on the proposed method.
Hence, we test performance for different database scales based
on this database. When the test data come from 20, 40, 60, and
all subjects’ data, RAC achieves 99.83%, 99.75%, 99.68%,
and 99.55% in the same time interval mode, and 96.13%,
96.55%, 94.83%, and 93.74% in the cross time interval mode,
respectively. The results of the cross time interval mode in
terms of different database scales are list in Table II. The
confusion matrix of the test data from all subjects’ data in
the cross time interval mode are shown in Fig. 6(d) and the
FAR and FRR curves are shown in Fig. 7(d). It can be seen
in Fig. 6(d) that there are a few false matching samples in
the confusion matrix for larger scales, but the RACs are still
high. Furthermore, this database records diseases related to
ST and T wave changes, not normal signals, which is an
indication that the proposed method is useful and reproducible
in real contexts.

5) Experimental Results on AED: Most public databases
are used for clinical analysis and monitoring of certain heart
diseases, and personal identification is not taken into account.
AED is specifically designed for the purpose of personal
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TABLE III

PERFORMANCE COMPARISON BETWEEN THE PROPOSED
METHOD AND [39] ON AED

Fig. 8. RAC of varying vote heartbeats on test databases. (a) RAC of each
test database. (b) Average RAC of five databases.

biometric and emotion identification. It is very suitable for
evaluating the robustness of the proposed method, which is
independent of the signals collected at different hours, days,
and human emotions. In this database, the heartbeats of ECG
signals collected on the first day are used for training, and
the data collected on the other days are used for testing. The
identification results are listed in Tables II and III. The cor-
responding confusion matrix and the FAR and FRR curves of
the cross time interval mode are shown in Figs. 6(e) and 7(e),
respectively. As shown in Table II, the RAC is 99.90%.
The results show that the proposed method can achieve a
remarkable performance in a dedicated biometric database,
even in which ECG data collected from different realistic
conditions, such as hours, days, and human emotions. There-
fore, the proposed method is somehow immune to variability
induced by different data collection sessions.

D. ECG Biometric Identification by Matching Multiple
Heartbeats

Considering the security of identity recognition, in order
to improve the reliability and recognition performance, it is
usually adopted to recognize multiple consecutive heartbeats,
known as the voting heartbeat method [6], [14]. Voting experi-
ments with 1, 3, 5, 8, 10, 15, and 20 heartbeats are conducted.
Since the test heartbeats of some subjects in ECG-ID are less
than 20, the voting experiment on 20 was not carried out in it.
The identification results on the five databases under the cross
time interval mode are shown in Fig. 8.

It can be seen in Fig. 8(b), if only one heartbeat used for
identification, the average accuracy (Acc) of five databases is
97.59%. It demonstrates that the proposed method has a good
ability for identification by single heartbeat. If three heartbeats
are used, the identification accuracy of AED can reach 100%.
In addition, when the heartbeat vote is 15, the RAC of Fantasia
and MITDB are both 100%. In practical applications, the bal-
ance between the RAC, the acquisition time, and the com-
putational complexity needs to be considered. For real-time

implementation in practice, in this study, we use three heart-
beats for final recognition with an average RAC of 98.0%.

E. Performance Comparisons

Although personal identification based on ECG signals has
been explored for more than ten years, there is still no standard
criterion for comparing the performance of different methods.
The main reason is that the databases used are inconsistent.
For example, different methods use different public databases,
or some methods only use part of the data in the same
database, and some methods use private databases. In our
method, we use all data from five databases, that is, Fatansia,
MITDB, ECG-ID, EDB, and AED. In order to make a fair
comparison with other state-of-the-art methods, in this study,
we use the following items for comparison, including the
number and scale of databases used, the main algorithms
used for identification, the types of the feature extraction
methods, the mathematical interpretability of the extracted
features, the duration of the ECG signal used for one recog-
nition, and the corresponding Acc. Our proposed methods is
compared with the other 12 state-of-the-art methods, where
the comparison results with the other 11 methods on public
databases are shown in Table IV and the comparison results
with the other one method on AED database are shown
in Table III.

In Table IV, it can be seen the number and scale of databases
used by each method are different. Among 12 comparison
methods (including 11 state-of-the-art methods and the pro-
posed method), the methods used in [10], [13], [14], [19],
and [43] and the proposed method are verified on multiple
databases. The other methods are only tested on one database.
Except for the ECG database collected privately by themselves
in [11], the ECG signals of other methods are all from online
public databases. Besides, [8], [12], [13], [18], [19], [42],
and [43] selected part of data in the database to conduct
experiments. The proposed method is evaluated on both the
public databases (Table IV) and the database collected under
different realistic conditions (Table III). In Table IV, there are
four learning-based methods, where the proposed method is
the only one that can be described mathematically. The Acc
of using 3 and 10 s ECG signal for once identification of the
proposed method is 98.1% and 98.6%, respectively. Compared
with other methods with the same time duration, the proposed
method is most accurate. Brás et al. [39] in Table III used AED
to verify their method and achieved Acc of 98.03%. 99.93%
Acc of the proposed method by using the same database
outperforms that of [39] as shown in Table III.

In addition, several prominent methods only use the
MIT-BIH arrhythmia database and the ECG-ID database and
just provide their respective accuracy rather than the average
recognition rate, so a comparison of the proposed method
against these methods with these two databases is provided
in Table V. As shown in Table V, when we use three
heartbeats for the identification, the RAC on the MITDB
database and the ECG-ID database is 99.10% and 98.11%,
respectively. Compared with the same number of heartbeats
used in [6] and [20], our method is more accurate on the
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TABLE IV

PERFORMANCE COMPARISON WITH OTHER METHODS

TABLE V

PERFORMANCE COMPARISON ON MITDB AND ECG-ID

Fig. 9. Computation time. (a) Computation time of SAFD with different n,
where n is the parameter of the learned n-TM system. (b) Computation time
of the corresponding matching time.

ECG-ID database. Due to the use of all data of the MITDB
database, the RAC of MITDB is not the best, but it is also
comparable to [6] and [20], which removed heartbeats that
are shaped changed heavily or abnormal. Furthermore, using
the highest performance of our method compared with other
methods in Table V, the RAC on the MITDB database is
99.74% and on the ECG-ID database is 99.02% as shown
in Fig. 8, which is better than [44] of 95.99% and 98.24%,
respectively. As it can be seen in Tables III–V, the proposed
method achieves best performance compared with the other
state-of-the-art methods.

F. Real-Time Implementation

All experiments in this study are performed on a computer
with 16 GB of RAM and a 2.71 GHz Intel Core i5 processor.
Note that there is no acceleration technology used to increase

TABLE VI

COMPARISON OF THE COMPUTATION TIME BETWEEN THE

PROPOSED METHOD AND OTHER METHODS

the speed, such as CNN in [10] and [14] for parallel comput-
ing. The main algorithm is developed in MATLAB R2016a.

The time of the sparse representation of heartbeats based
on SAFD and the matching time are calculated. The critical
part of sparse representation is to construct the learned n-TM
systems. The calculation time required for each database to
complete a training process to learn n-TM systems with
different n is shown in Fig. 9(a). The training time depends
on the number of subjects in the database. For Fatansia and
ECG-ID with 40 and 79 subjects, respectively, the training
times are below 1 s. For ECG-ID with 90 subjects, the training
time is about 4 s on n = 14. As the training time in the
learning method, it is already short enough. After the learned
n-TM systems are established, the matching time will be fast.
The average matching time is reported in Fig. 9(b), where the
times are less than 1 ms for all databases. It demonstrates
the potential for real-time implementation in practical appli-
cation scenarios. As few methods provide the computation
time, a comparison with selected methods that illustrate the
algorithm time is presented in Table VI. As it can be observed
in Table VI, the proposed method is more advantageous
in terms of training time and matching time, which further
suggests that it can serve as an effective real-time method for
ECG biometric identification.

IV. CONCLUSION AND FUTURE WORKS

This article proposed a new sparse representation learning
framework SAFD for ECG biometric identification. It can
improve the intra-class compactness and inter-class dispersion
of extracted features. It achieves a final robust and discrimina-
tive representation by the learned n-TM system, which reflect
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the wave structure with time–frequency distribution of ECG
signals. Experimental results demonstrate the effectiveness and
efficiency of the proposed method for personal identification.
The limitation of the system is that it needs some preprocess-
ing operations. In addition, the recognition ability is reduced
for the people with large heartbeat changes caused by heart
disease that may change the time–frequency of the heartbeat
itself. In future work, we will focus on reducing preprocessing
operations and explore more robust features of ECG signals
containing more uncontrolled conditions (especially pathologi-
cal properties) to develop a broad identification system suitable
for any external conditions. Furthermore, we will also explore
the application of the proposed method to other physiolog-
ical traits to develop other types of biometric identification
systems.
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