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a b s t r a c t

Recently, the boom in wind power industry has called for the accurate and stable wind speed forecasting,
on which reliable wind power generation systems depend heavily. Due to the intermittency and
complexity of wind, an appropriate decomposition is proved as a pivotal part in the precise wind speed
prediction. On this account, this paper constructs a hybrid decomposition method coupling the ensemble
patch transform (EPT) and the complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), where EPT is utilized to extract the trend of wind speed, then CEEMDAN is employed to
divide the volatility into several fluctuation components with different frequency characteristics. Sub-
sequently, the proposed decomposition method is combined with temporal convolutional networks
(TCN) for the individual prediction of the trend and fluctuation components. Ultimately, the forecasted
values for the wind speed prediction are obtained by reconstructing the prediction results of all the
components. To evaluate the performance of the proposed EPT-CEEMDAN-TCN model, the historical
wind speed data from three wind farms across China are used. The experimental results verify the
notable effectiveness and necessity of the proposed EPT-CEEMDAN decomposition. In the meanwhile, the
results demonstrate the significant superiority of the proposed EPT-CEEMDAN-TCN model on accuracy
and stability.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

With the reduction in global petrochemical resource reserves
and the proposal of sustainable development strategy, the devel-
opment and utilization of renewable energy sources have aroused
increasing attention [1]. Due to the economic competitiveness and
environmental friendliness of wind energy, the wind power in-
dustry has ushered in new opportunities for prosperous develop-
ment. Following the wind power statistics published by World
Wind Energy Association in March 2021 [2], the total capacity of
wind farms worldwide has expanded to 744 GW, meeting seven
percent of global electricity demand. In spite of the pandemic, the
strong growth was realized. In 2020, the global market for annual
new turbines has raised by around 50% to 93 GW, where China has
created a new world record with 52 GW, contributing 56% of the
nd Systems Science, Chinese
global market share.
However, the large-scale wind power integration brings great

challenges to the regular operation and dispatching of power sys-
tem. As the wind power depends heavily on the uncontrollable and
changeful wind speed, it presents large variation and complex
randomness, which cause the fluctuations in current frequency and
diminish the reliability of the electrical power system. Specifically,
the quantitative relationship between wind speed and the gener-
ated wind power is established as Eq. (1) [3]:
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where vc, vf, and vr are the cut-in, cut-off, and nominal wind speed
values (m/s), respectively. Additionally, c is the Weibull scale
parameter (m/s), while Pa and Pr are the average power output of
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the wind turbine (kW) and rated electrical power of the wind
turbine (kW), respectively. Clearly, the accurate and stable wind
speed forecasting takes a leading part in wind power generation.
Thereby, the accurate and stable wind speed forecasting is vital for
improving the wind power utilization level and constructing the
smart grid, for it will benefit the optimization of dispatching plan
and reduce the system reserve capacity, raising the economic and
social profits.

Considering the intermittency and uncertainty of wind speed, it
is difficult to conduct an accurate and stable prediction. In that case,
numerous forecasting methods have been investigated recently to
forecast wind speed series over different time-scales, including
physical models, statistical models, machine learning methods,
artificial neural networks, etc. Specifically, the complex physical
models inevitably rely on the current meteorological and
geographical information, such as temperature, pressure, topog-
raphy structure, obstacles, etc., in which the required numeric
weather prediction (NWP) data are hard to acquire in most cases.
Besides, the computation is too complicated to forecast wind speed
in a short time [4e7]. On the contrary, the statistical models, such
as autoregressive (AR) [8], autoregressive moving average (ARMA)
[9e11] and generalized autoregressive conditional hetero-
skedasticity (GARCH) [12], only input the historical wind speed
series and run fast, but they often fail to yield good performance in
the presence of large uncertainties. Moreover, themachine learning
algorithms, such as the support vector regression (SVR) [13e15],
have good generalization ability to reach the global solution in a
fast manner, while their scalability for the large dataset is limited.
To address that, the neural networks are developed owing to their
powerful multivariable mapping capability. But the traditional
back-propagation neural network easily traps into the local optimal
solution and loses sight of the internal influence of time series
[16e18]. To solve this problem, the recurrent neural networks
(RNN) are introduced that are suitable to take the time series
characteristics into account through the self-connection between
hidden layers [19]. Considering the gradient vanishment problem
of RNNs, a long short-term memory (LSTM) neural network is
achieved, mitigating the issue by adding a special unit structure to
the basic RNN [20,21]. Marndi et al. [22] compared LSTMwith SVM
and the extreme learning machine (ELM), verifying the higher
forecasting precision of LSTM. Besides, an increasing number of
researches have indicated the LSTM can outperform statistical
models, machine learning methods and other previous neural
networks in various domains, such as wind speed forecasting [23],
financial market forecasting [24], COVID-19 forecasting [25].
Whereas the number of model parameters in LSTM is usually quite
large, raising the problem of hard-training and the tendency of
over-fitting. Consequently, the gated recurrent unit (GRU), as a new
type of RNN, is designed to tackle the above issues specifically [26].
Upgraded based on the LSTM, the optimized GRU promotes the
forecasting speed effectively without loss of accuracy [27e30].
Peng et al. [31] adopted GRU to predict the multi-step-ahead wind
speed values, verifying that GRU can achieve relatively high accu-
racy, fast forecasting speed, small volatility of errors and good
adaptability when it is compared with BPNN, ELM, Simple RNN,
LSTM, etc. Yet in 2018, Bai et al. [32] pointed out that the temporal
convolutional networks (TCN) with a simple dilated causal convo-
lution can outperform the popular recurrent networks such as
LSTMs and GRUs on various tasks and datasets, even possessing
longer effective memory. Following that, the temporal convolu-
tional networks (TCN) have exhibited the significant performance
benefits in traffic flow forecasting [33], short-term passenger de-
mand prediction [34], and fault diagnosis for power converters
[35]. Gan et al. [36] constructed interval prediction for wind speed
forecasting based on TCNs, suggesting that TCNs can appreciably
2

enhance the prediction accuracy and reliability as compared with
the classic artificial neural networks and the canonical recurrent
neural networks. Accordingly, this paper employs TCNs for pre-
diction. Apart from using a single model to predict wind speed
series, an increasing number of researches indicate that
decomposition-based models can transcend the single models due
to the nonstationarity and complicated randomness of wind speed
series [37e41]. For instance, the wind speed series is decomposed
first, then a single model is used to predict each subsequence
respectively, finally the forecasting results are reconstructed to
obtain the predicted value of the wind speed. Among the litera-
tures, there exists some prevalent decomposition methods for time
series, such as the wavelet transform (WT) [42e44], the variational
mode decomposition (VMD) [38,45e47], and the empirical mode
decomposition (EMD) [48e50]. Pei et al. [51] combined New Cell
Update Long Short-Term Memory network with empirical wavelet
transform, which enhanced the prediction accuracy in a shorter
training time. Zhang et al. [52] applied VMD to decompose wind
speed series into the nonlinear components, linear components
and noise, then predicted these components via PCA-RBF model
and MCMC-ARMAmodel respectively, reflecting the characteristics
of wind speed series properly and obtaining the veracious
prediction.

Gathering the present knowledge on the widely used wind
speed decomposition approaches in literatures [80e82], a concise
comparison of these main methods is illustrated in Table 1. Note
that each method has its own strengths and limitations. Specif-
ically, the Fourier transform is not suitable for transient and
nonstationary signals, like wind speed; wavelet decomposition and
wavelet packet decomposition requires presetting the basis func-
tion and the order, on which the decomposition results depend
primarily; empirical wavelet transform fails to detect the compo-
nents when the signal embodies two chirps which overlap in both
the time and frequency domains [65]; singular spectral analysis
may generate several meaningless components and omit the
important information, due to the troublesome parameter selection
problem; variational mode decomposition takes prior experience
or multiple trials to deduce the number of modes for the decom-
position. Accordingly, the fully data-driven empirical mode
decomposition (EMD) proposed by Huang [69] seems more
appropriate for handling the complex and nonstationary time se-
ries. Fu et al. [72] constructed a wind speed forecasting framework
combining time varying filter-based empirical mode decomposi-
tion (TVF-EMD), fuzzy entropy (FE) theory, and singular spectrum
analysis (SSA) to decompose the wind speed series adequately
which reduced the time consumption as well as promoted fore-
casting performance. Because the mode mixing problem is
encountered frequently in practical applications of EMD, Wu and
Huang [73] developed a noise-assisted ensemble empirical mode
decomposition (EEMD) method. Despite that the EEMD solves the
mode mixing problem, it introduces new modes. Considering that,
Torres et al. [77] proposed the complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) which adds a
specific noise at each stage and calculates an exclusive residue for
each mode. In that way, CEEMDAN can separate various modes
from the wind speed series more precisely and efficiently [78,79].
Wu et al. [76] coupled CEEMDAN and an optimized extreme
learning machine (ELM), which surpasses other traditional models
with high accuracy and strong stability. However, all the quasi-EMD
methods fail to capture the trend of wind speed series, for every
intrinsic mode function (IMF) from any quasi-EMD method has to
satisfy the following conditions: in the entire data sequence, the
number of extrema and the number of zero crossings in any
sampled dataset must either be equal or differ at most by one, while
the residual item is extremely smooth. Instead, Kim et al. [83]



Table 1
The brief comparison of the main decomposition methods utilized for wind speed forecasting.

Method Advantages Disadvantages References

Fourier Transform (FT) [53] It has strict mathematical theory.
It is only suitable for stationary signals.

It cannot be applied to transient and nonstationary
signals.

[54e56]

Wavelet Decomposition (WD) [57] It has strict mathematical theory.
It is suited for constant frequency and
almost periodic signals.

It needs to specify the wavelet basis and parameters
beforehand.
It may split the modes.
It is unsuited for highly nonstationary signals.

[31,42,44,58
e60]

Wavelet Packet Decomposition (WPD) [61] It has strict mathematical theory.
It improves forecasting models more
than WD.

It needs to specify the wavelet basis and parameters
beforehand.
It may split the modes.
It needs more computational resources.

[62e64]

Empirical Wavelet Transform (EWT) [65] It has mathematical theory.
The wavelets are adapted to the signal.
The dilation factors are detected
empirically.

It fails to separate the chirps that overlap in both the
time and frequency domains.

[39,43,51,66]

Singular Spectral Analysis (SSA) [67] It has strict mathematical theory.
It can decompose a time-series into
specific components.

The parameters must be adjusted to extract each
component.

[27,41,46]

Variational Mode Decomposition (VMD) [68] It has rigorous mathematical
formulation.
It is suited for constant frequency and
almost periodic signals.

It needs to deduce the number of modes beforehand.
It may split the modes.
It is unsuited for highly nonstationary signals.

[21,38,45,47,52]

Empirical Mode Decomposition (EMD) [69] It is fully data-driven. It lacks strict mathematical theory.
It may encounter mode mixing problem.

[37,49,70e72],

Ensemble Empirical Mode Decomposition (EEMD) [73] It is fully data-driven.
It solves the mode mixing problem.

It lacks strict mathematical theory.
The extra noise exists in the reconstructed signal.
It needs much computational resources.
It is difficult to determine an ensemble mean.

[23,50,74]

Complementary Ensemble Empirical Mode
Decomposition (CEEMD) [75]

It is fully data-driven.
It solves the mode mixing problem.
It eliminates the residual noise.
It needs fewer ensemble trials than
EEMD.

It lacks strict mathematical theory.
It is difficult to determine the ensemble mean.

[18,48,76],

Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) [77]

It is fully data-driven.
It solves the mode mixing problem.
The reconstruction errors are
negligible.
It resolves the ensemblemean problem.

It lacks strict mathematical theory.
It is implemented in sequence, and cannot be
computed in parallel.

[40,78,79],
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designed the flexible ensemble patch transformation (EPT) for
decomposition and filtering of signals, which upgrades the detec-
tion of local patterns embedded in a signal effectively through the
particular patches and explicates the temporal variation of the
signal based on the adjustable ensemble patches. Consequently, we
integrate EPTand CEEMDAN to excavate the potential trend of wind
speed series as well as separate the various patterns massed in the
volatility of wind speed series.

Furthermore, previous researches always considered the fore-
casting accuracy simply, overlooking the stability and the adapt-
ability, both of which are worth improving. For one thing, the high
forecasting stability indicates that the forecasting results are reli-
able all the time. For another, a satisfactory forecastingmodel needs
adequate adaptability for the practical application at different sites.
Thus, the comprehensive considerations of the accuracy, the sta-
bility and the adaptability herein are innovative and noteworthy.

Additionally, as the decomposition process should be executed
step by step with the new arrival of data in practical [80], the
decomposition-based prediction models will confront several
challenges, including: (i) the subseries are constantly changing
with the new data; (ii) several illusive components may emerge,
decreasing the decomposition validness; (iii) the end effect gets
worse, augmenting the subseries volatility [84]. To address these
challenges, we develop the real-time EPT-CEEMDAN-TCN model as
well, which holds the effectiveness in the practical application of
the short-term wind speed forecasting.

Synthetically speaking, a novel hybrid approach coupling the
EPT-CEEMDAN decomposition and the TCNs prediction is proposed
in this paper to extract the trend of wind speed series exactly,
3

further decompose the volatility of wind speed series completely as
well as improve forecasting performance. Correspondingly, the
main contributions of this work are stated as follows:

(1) The established ensemble patch transformation (EPT) ex-
tracts the essential trend component of wind speed series
exactly. As the trend is verified to take the dominant part in
the temporal variation of wind speed series, the precise trend
extraction by EPT contributes largely to the wind speed
forecasting results.

(2) The proposed hybrid decomposition method integrating EPT
with CEEMDAN enhances the forecasting performance
effectively, where CEEMDAN decomposes the complex
volatility of wind speed series into several uncorrelated
fluctuation components completely and efficiently.

(3) By virtue of a simple and clear convolutional architecture, the
adopted temporal convolutional networks (TCN) forecast the
trend and fluctuation components of wind speed series more
accurately and stably, transcending the statistical models, the
traditional machine learning algorithm, the canonical back
propagation neural networks and the prevalent recurrent
neural networks.

(4) The proposed prediction approach combining the EPT-
CEEMDAN decomposition and TCNs is applied to the multi-
step-ahead forecasting of three real wind speed datasets
from diverse areas of China. The contrastive experiments
verify the accuracy and stability of the proposed method
from comprehensive perspectives.
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(5) Following an approximated forecasting strategy, the real-
time EPT-CEEMDAN-TCN forecasting model is constructed
for the practical wind speed forecasting with satisfactory
performance in both accuracy and stability, mitigating the
existing challenges in decomposition-based models.

This paper is organized as follows. Section 2 introduces the
framework of the proposed approach, where the EPT-CEEMDAN
decomposition method and the temporal convolutional network
are described. Section 3 explicates the performance of the proposed
model in comparison experiments in light of multiple evaluation
criteria. Section 4 discuss the computational efficiency and
complexity of the proposed model. Finally, Section 5 draws the
major conclusions.

2. The proposed approach

The proposed method based on EPT-CEEMDAN decomposition
method and temporal convolutional networks is termed EPT-
CEEMDAN-TCN. It consists of three major processes: (1) decom-
posing the wind speed via EPT-CEEMDAN decomposition and
obtain the uncorrelated components, including the daily trend,
fluctuation components and residue; (2) forecasting all the sub-
series by TCNs individually; (3) reconstructing the wind speed
predicted values by integrating the forecasting results. The struc-
ture of EPT-CEEMDAN-TCN model is presented in Fig. 1.

2.1. EPT-CEEMDAN decomposition

The wind speed is influenced by multiple factors such as tem-
perature, humidity and topography, giving rise to its complex
nonstationary and nonlinear characteristics. It is difficult for a
single model to predict wind speed directly and precisely. Conse-
quently, a suitable decomposition of original series plays a vital role
Fig. 1. The framework of EPT
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in prediction. On this account, the hybrid EPT-CEEMDAN decom-
position is proposed in this paper. Firstly, we utilize ensemble patch
transform (EPT) to extract the trend from wind speed series with
the volatility separated out in the meantime. Subsequently, we
apply complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) to the volatility and procure its fluctu-
ation components with different frequency characteristics, and
then analyze them individually.

The ensemble patch transformation (EPT) [83] is a flexible
framework for decomposition and filtering of signal. It comprises
two primary processes. The first is “patch process”, which is a data-
dependent patch of data at a given time point t designed for
specifying the local structures with the elastic sizes of patches. The
second is termed “ensemble process”, where the time point t of
patch is shifted to produce the ensemble patch, which can illustrate
the temporal variation of data effectively via adjustable temporal
resolution. Due to the adaptable parameters, EPT is appropriate for
exploring particular patterns of signals, such as trends, season-
alities and abrupt changes.

The complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) [77] is an improved algorithm based on
the fully data-driven ensemble empirical mode decomposition
(EEMD) [73]. Comparing with the original empirical mode
decomposition (EMD) [69] and the following EEMD [73], CEEMDAN
usually achieves a more precise and computationally efficient
decomposition by adding a specific noise at each stage and calcu-
lating a unique residue for each mode.

Specifically, the proposed EPT-CEEMDAN decomposition for
wind speed signal can be done via the following steps:

Stage 1: EPT for wind speed.

(1) Patch Process. The rectangle patch is adopted in this paper.
Given the period t, the patch Ptt ðXtÞ for the wind speed Xt at
time t is centered at the point ðt;XtÞ is a closed rectangle
-CEEMDAN-TCN model.
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formed by the points
�
t þ k;mink2½�t=2;t=2� fXtþkg � 0:5gt Þ

and
�
t þ k;maxk2½�t=2;t=2�fXtþkg þ 0:5gt

�
for k 2 [�t/2, t/

2]. For the rectangle patch, the width is t and height htt is

htt ¼ maxk2½�t=2;t=2�fXtþkg �mink2½�t=2;t=2�fXtþkg þ gt (2)

where g is a scale factor.
The lower envelope Ltt ðXtÞ and upper envelope Ut

t ðXtÞ of the
rectangle patch Ptt ðXtÞ are

Ltt ðXtÞ ¼ mink2½�t=2;t=2�fXtþkg � 0:5gt (3)

Ut
t ðXtÞ ¼ maxk2½�t=2;t=2�fXtþkg þ 0:5gt: (4)

Then, we can obtain themean envelopMt
t ðXtÞ for each patch Ptt ðXtÞ:

Mt
t ðXtÞ ¼ 1

2
�
Ltt ðXtÞ þ Ut

t ðXtÞ
�

(5)

(2) Ensemble Process. For any fixed period t, the l-th shifted
patch at time point t is defined as Pttþ[ðXtÞ; [2½ � t =2; t =2�.
Accordingly, a collection of all possible shifted patches at
time point t is defined as an ensemble patch:

EPtt ðXtÞd
�
Pttþ[ðXtÞ : [2½�t =2; t =2�	 (6)

Then, we get the low-frequency mode:

EMt
t ðXtÞ ¼ average

�
Mt

tþ[ðXtÞ
�
over[0s (7)

and the high-frequency mode:

HFtt ðXtÞ ¼ Xt � EMt
t ðXtÞ (8)

Given that period t is so flexible that can be selected from a
diverse range, it is applicable to capture the temporal characters of
signal effectively. In this paper, the period t is fixed as a daily length,
thereby EMt

t ðXtÞ can be regarded as the daily trend of wind speed,
while HFtt ðXtÞ as the daily volatility.

Stage 2: CEEMDAN for daily volatility.

(1) A collection of Gaussian white noise series is added to daily
volatility as:

SiðtÞ ¼ HFt þ eiv
iðtÞ (9)

where Si(t) is the time series with the additional noise in the i-th
trial (i ¼ 1, 2, …, I), HFt is the daily volatility of wind speed, ei is the
ratio of the additional noise to the signal, and vi(t) is the Gaussian
white noise series.

(2) EMD is used to obtain the first intrinsic mode function
IMF1(t) as:

IMF1ðtÞ ¼
 XI

i¼1

IMFi1ðtÞ
!,

I (10)

where IMFi1ðtÞ is the first intrinsic mode function obtained in the i-
th trial.

(3) The first residue Re1(t) is:
5

Re1ðtÞ ¼ HFt � IMF1ðtÞ (11)
(4) For k ¼ 2, …, N, the k-th residue is:

RekðtÞ ¼ Rek�1ðtÞ � IMFkðtÞ (12)

where IMFk(t) is the k-th intrinsic mode function of CEEMDAN.

(5) The IMFkþ1(t) of CEEMDAN is:

IMFkþ1ðtÞ ¼
XI
i¼1

E1
�
RekðtÞ þ ekEk

�
viðtÞ

��,
I (13)

where Ek (,) is the k-th mode of EMD, ek is the ratio of the additional
noise to the signal in the k-th stage of CEEMDAN.

(6) Repeat steps 4) and 5) until all the intrinsic mode functions
are found.

Finally, we decompose nonstationary and nonlinear wind speed
into a finite number of components as Eq. (14):

XðtÞ ¼
XN
i¼1

IMFiðtÞ þ ReðtÞ þ TrendðtÞ (14)

where TrendðtÞdEMt
t ðXtÞ.

Considering that the decomposition methods may cause the
edge effect in practice, we mirror the periods (in EPT stage) and
extrema (in CEEMDAN stage) close to the edges before the corre-
sponding decompositions, so as to minimize error propagations
over the finite observation lengths [83,85].
2.2. Temporal convolutional network

Bai et al. constructed temporal convolutional networks (TCN) for
sequence modeling tasks under causal constraint [32]. In a
sequence modeling task, the model output is a prediction sequence
fŷ0; ŷ1;…; ŷTgwith the corresponding input sequence {x0, x1,…, xT}
given. The typical causal constraint is that only those previous
observations x0, x1, …, xt can be taken as inputs for predicting the
output yt at the time t. Accordingly, the temporal convolutional
network is designed as a nonlinear function f : XTþ1/YTþ1 that
yields the mapping:

ŷ0;…; ŷT ¼ f ðx0;…; xTÞ (15)

where ŷt depends only on known x0, …, xt instead of any unknown
xtþ1, …, xT at the time t. The network is trained by supervised
learning to find the function f that minimizes the loss function Lðy0;
…; yT ; f ðx0;…; xT Þ Þ between the actual outputs and the predictions.
In the case of wind speed forecasting, the input sequence is the
historical wind speed observations over the past few moments,
while the actual output is the current wind speed observation.

Under the causal constrain, the TCN develops dilated causal
convolutions to expand the receptive field exponentially, taking
more historical information into consideration. The dilated
convolution operation F on element s of the 1-D sequence x2Rn for
a filter f : f0;1;…; k�1g/R is formulated as Eq. (16).
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FðsÞ ¼ �x*df �ðsÞ ¼Xk�1

i¼0

f ðiÞ,xs�d,i; (16)

where k is the filter size, d is the dilation factor, and * is the
convolution operator. The dilated causal convolution used in this
paper is illustrated in Fig. 2 (a) with dilation factors d¼ 1, 2, 4, 8 and
filter size k ¼ 2. Definitely, the larger filter sizes k or dilation factor
d is set, the broader receptive field of the network is.

Furthermore, a generic residual module is employed for feature
extraction at each layer in the TCN. As is depicted in Fig. 2 (b), the
residual block consists of two layers of dilated causal convolution
and nonlinearity, where the rectified linear unit (ReLU) is taken as
the activation function. In each layer, batch normalization [86] is
adopted to the convolutional filters and a spatial dropout [87] is
added subsequent to each dilated convolution for regularization.
On account of the incompatible input-output widths, an additional
1� 1 convolution is utilized to ensure that elementwise addition4

takes in tensors of the consistent shape.

2.3. Reconstruction

According to Eq. (14), the prediction results of each component
are aggregated to obtain the final wind speed predicted results, as
shown in the Eq. (17).

PWind ¼
XN
i¼1

PIMFi þ PResidue þ PTrend (17)

where PWind is the final wind speed predicted value, and PIMFi ,
PResidue, and PTrend are the predicted values for IMFi(t), Re(t), and
Trend(t) in Eq. (14) respectively, with i ¼ 1, 2, …, N.

3. Experimental analysis

In this section, the wind speed series collected from three sites
are used to evaluate the performance of the proposed EPT-
CEEMDAN-TCN model comparing with several benchmark
models. Section 3.1 describes the experimental design. Section 3.2
demonstrates the experimental decomposition results. Section
3.3 analyses the forecasting results from multiple perspectives.
Section 3.4 compares the prediction performance with different
decomposition methods. Section 3.5 constructs the real-time
Fig. 2. Temporal convolutional network. (a) A dilated causal convolution with dilation factor
and output have different dimensions.
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forecasting model.
3.1. Experimental design

3.1.1. Data description
Up till now, China has constructedwind capacity of 289 GW, 39%

of global capacity, ranking the first in the world [2]. Thereupon, the
models are performed on the historical short-termwind speed data
collected from three wind farms across China. They are located in
Gansu Province, Liaoning Province and Jiangsu Province respec-
tively, varying considerably in longitudes and latitudes. As is
illustrated in Fig. 3, Gansu lies in northwest inland area, Liaoning
lies in northeastern coastal area, and Jiangsu lies in southeastern
coastal area. Gansu and Liaoning are located in the “Three-North”
(Northwest China, North China, and Northeast China) areas in
which wind power resources are concentrated, while Jiangsu faces
the Yellow Sea to the east with installed capacity of offshore wind
power ranking first in China for consecutive years.

All the wind speeds are measured every 15 min at 10 m at the
level of the ground, with 96 times scanning frequency per day. As is
listed in Table 2, the detailed time periods of the three datasets are
August 1st-31st in 2017 (Gansu), December 1st-31st in 2017
(Liaoning), and April 1st-30th in 2017 (Jiangsu). Each the wind
speed dataset is divided into three parts: training sets, validation
sets and testing sets, which are utilized for model training, hyper
parameters selection and model verification correspondingly.

The original wind speed series are shown in Fig. 4. Their sta-
tistical information is shown in Table 3. It is noticeable that each
wind speed series contains a significant trend and complicated
high-frequency components, where the trends, the fluctuations
and the distributions of the wind speed series vary from site to site.
3.1.2. Evaluation criteria
We adopt mean absolute error (MAE), root mean square error

(RMSE), mean absolute percentage error (MAPE) and normalized
mean absolute percentage error (NMAPE) to evaluate the fore-
casting accuracy. The following are their formulas.

MAE ¼ 1
n

Xn
i¼1

jŷi � yij (18)
s d ¼ 1, 2, 4, 8 and filter size k ¼ 2. (b) A 1 � 1 convolution is added when residual input



Fig. 3. The location of the three wind farms.

Table 2
The descriptions of the three wind speed datasets.

Dataset Location Samples Time interval # of samples

1 Gansu All August 1st - August 31st 2976
Training August 1st - August 24th 2304
Validation August 25th - August 26th 192
Testing August 27th - August 31st 480

2 Liaoning All December 1st - December 31st 2976
Training December 1st - December 24th 2304
Validation December 25th - December 26th 192
Testing December 27th - December 31st 480

3 Jiangsu All April 1st - April 30th 2880
Training April 1st - April 23rd 2208
Validation April 24th - April 25th 192
Testing April 26th - April 30th 480
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðŷi � yiÞ2
vuut (19)

MAPE ¼ 100%
n

Xn
i¼1

����ŷi � yi
yi

���� (20)

NRMSE ¼ 100%
RMSE

ymax � ymin
(21)

where n is the number of testing samples, ŷi is the predicted value
of the actual value yi. A more precise prediction is achieved when
MAE, MSE, MAPE and NMAPE are smaller.

Besides, the improvement percentage is introduced for quanti-
ficational comparison between the proposed model and the
benchmark models [29]. The improvement percentage of RMSE
ðPRMSEÞ, the improvement percentage of MAE ðPMAEÞ, the
improvement percentage of MAPE ðPMAPEÞ and the improvement
percentage of NRMSE ðPNRMSEÞ are the descent rates of the pro-
posed model compared with the benchmark model in terms of
RMSE, MAE, MAPE and NRMSE respectively. PRMSE, PMAE, PMAPE and
PNRMSE are calculated as follows:

PRMSE ¼ RMSE1 � RMSE2
RMSE1

� 100% (22)
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PMAE ¼ MAE1 �MAE2
MAE1

� 100% (23)

PMAPE ¼ MAPE1 �MAPE2
MAPE1

� 100% (24)

PNRMSE ¼ NRMSE1 � NRMSE2
NRMSE1

� 100% (25)

where RMSE1, MAE1, MAPE1 and NRMSE1 are the errors of the
benchmark model, and RMSE2, MAE2, MAPE2 and NRMSE2 are the
errors of the proposed model. A large positive value of PRMSE, PMAE,
PMAPE and PNRMSE indicates that the proposed model performsmuch
more accurately than the benchmark model.

Furthermore, the variance of absolute error (VAE) is employed
to evaluate the forecasting stability. The VAE between the predicted
value ŷi and the actual value of yi is as follow:

VAE ¼ Varðjyt � ŷt j Þ (26)

The improvement percentage of VAE ðPVAEÞ of the proposed
model compared with the benchmark model is defined in the same
way as follows.

PVAE ¼ VAE1 � VAE2
VAE1

� 100% (27)



Fig. 4. The wind speed time series.

Table 3
The statistical information of the three wind speed datasets.

Site Location Minimum Mean Maximum Standard Deviation Skewness Kurtosis

1 Gansu 0.400 6.302 16.000 3.303 0.487 2.339
2 Liaoning 0.32 4.070 9.420 1.585 0.217 3.048
3 Jiangsu 0.000 3.557 9.200 1.668 0.097 2.430

D. Li, F. Jiang, M. Chen et al. Energy 238 (2022) 121981
where VAE1 is the VAE of the benchmark model, and VAE2 is the VAE
of the proposed model. Note that a large positive value of PVAE
means that the proposed model performs much more stably than
the benchmark model.
3.1.3. Model development
To evaluate the forecasting performance of the proposed EPT-

CEEMDAN-TCN model, we introduce several benchmark models
for comparison:

(1) the traditional statistical model, i.e. autoregressive inte-
grated moving average model (ARIMA);

(2) a modified statistical model which can outperform the
recently developed neural networks in wind speed fore-
casting, i.e. seasonal autoregression integrated moving
average (SARIMA) [11];

(3) the traditional machine learning algorithm, i.e. support
vector regression (SVR);

(4) the benchmark neural networks, including the canonical
back propagation neural network (BPNN) [18], the popular
long short-term memory network (LSTM) [88], the newly
emerging gated recurrent unit network (GRU) [46] and the
adopted temporal convolutional networks (TCN);
8

(5) the other three benchmark neural networks with EPT-
CEEMDAN decomposition, i.e. EPT-CEEMDAN-BPNN, EPT-
CEEMDAN-LSTM, EPT-CEEMDAN-GRU, for investigating the
effectiveness of EPT-CEEMDAN decomposition.

For each model, the input is the previous sixteen observations
(4h ahead), while the output is the forecasting values. Table 1 in
Appendix presents the specific parameter settings of these models,
including the determination approaches. In the light of the fore-
casting accuracy on the divided validation sets, hyper parameters in
forecasting models are generally predetermined by grid search and
trial and error approach [89], while the hyper parameters in
decomposition techniques are mainly preset [72]. In addition, we
employ the mean square error as the loss function, and use the
adaptive momentum estimation method (Adam) [90] to optimize
the weights. All the models are implemented on the Keras platform
using Tensorflow as backend in Python 3.7.4 with CPU 2.3 GHz and
GPU NVIDIA TITAN RTX 24G RAM.

3.2. Decomposition results

Based on complex nonstationary characteristics of wind speed
series, a proper decomposition of the original series plays a critical
role in the enhancement of the forecasting performance. First, we
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set the period t¼ 96 in the ensemble patch transform (EPT) stage to
extract the daily wind speed trend, for the data measured every
15 min with 96 times scanning frequency per day. Subtracting the
daily trend from the original wind speed, we get the daily volatility.
After that we use complete ensemble empirical mode decomposi-
tion with adaptive noise (CEEMDAN) to divide the daily volatility
into several fluctuation components IMFi with different frequency
patterns. Then we analyze and forecast these components indi-
vidually. To evaluate the performance of our proposed EPT-
CEEMDAN, we employ the classic CEEMDAN on the wind speed
series for comparison.

Fig. 5 demonstrates the decomposition results of CEEMDAN and
EPT-CEEMDAN. In Fig. 5 (a), (c) and (e), it presents IMFs from high-
frequency to low-frequency, residue and the original wind speed
signal in order from top to bottom. In Fig. 5 (b), (d) and (f), it pre-
sents IMFs, residue, trend and the wind speed signal sequentially.
Intuitively, it is clear that the traditional CEEMDAN decomposes the
wind speed into several IMFs and a residual item, leaving out the
fundamental trend item, while the EPT-CEEMDAN captures the
trend of wind speed exactly.

Subsequently, the correlations for the components sets obtained
by CEEMDAN and EPT-CEEMDAN are exhibited in Fig. 6. Note that
the trends extracted by EPT always achieve the highest positive
correlation with the original wind speed series, that is 0.75 in
Gansu, 0.79 in Liaoning, and 0.77 in Jiangsu. That is to say, the trend
contributes largely to wind speed variation, thereby it is necessary
to extract it out precisely before prediction. On the contrary, the
correlations between the components obtained by CEEMDAN and
original wind speed series lack apparent rule. In Fig. 6 (a)e(c), the
most correlated components with original wind speed series from
CEEMDAN is IMF7 in Gansu, IMF6 in Liaoning and IMF8 in Jiangsu, as
the corresponding correlations are 0.60, 0.51, and 0.70. They are all
smaller than the correlations between trends and wind speed se-
ries. In other words, the components from CEEMDAN take a more
trivial part in the reconstruction of wind speed forecasting values
according to Eq. (17).

Furthermore, there is less correlation between components
obtained by EPT-CEEMDAN. It implies that EPT-CEEMDAN exerts
the advantage of CEEMDAN to decompose the nonstationary
volatility completely, for it performs on the nonlinear volatility
instead of the complex wind speed series.

3.3. Forecasting results

In this section, each component obtained by EPT-CEEMDAN is
forecasted by the temporal convolutional network respectively.
Summing up the prediction results of all the components, we
procure the final wind speed predicted values, according to Eq. (17).
Note that the testing data should be ‘unknown’ in the training
phase [71], thereupon the decomposition is applied only on the
training sets firstly, then prediction models are trained on the
subseries obtained from the training sets, avoiding the leakage of
testing data during the training period. Subsequently, the valida-
tion sets are decomposed alongside training sets for hyper pa-
rameters selection. Finally, the trained prediction models are
performed on the subseries from the whole datasets for model
testing.

To adequately evaluate the performance of the proposed model,
we also employ the other ten benchmark models aforementioned
in Section 3.1.3 for comparison, including ARIMA, SARIMA, SVR,
BPNN, LSTM, GRU, TCN, EPT-CEEMDAN-BPNN, EPT-CEEMDAN-
LSTM, and EPT-CEEMDAN-GRU.

In practical applications, it is also worthwhile to forecast wind
speeds 1 h ahead. Thus, the multi-step-ahead forecasting is
implemented. Given the time series fy1; y2;…; yTg, we calculate the
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k-step-ahead forecasting value ŷtþk directly as follows:

ŷtþk ¼ f
�
yt ; yt�1;…; yt�ðp�1Þ

�
; t ¼ 1;2;…; T (28)

where ŷtþk is the forecasted value at time tþ k, yt is the actual value
at time t, and p is the lag order of the input features. The lag order p
determines the input features of the prediction model, which is
important for the model performance. In this paper, the lag order p
is set as 16, taking historical wind speed series over the past 4 h as
input. The prediction horizon k is set as 1, 2, 3, 4 sequentially.

3.3.1. The accuracy of forecasting
The 1-step-ahead (15 min ahead) to 4-step-ahead (1 h ahead)

forecasting accuracy in the three provinces are shown in
Tables 4e6. In all the experiments, the proposed EPT-CEEMDAN-
TCN method reaches all the best values of all the accuracy evalua-
tion metrics including the least MAE (m/s), RMSE (m/s), MAPE and
NRMSE values. It implies that EPT-CEEMDAN-TCN outperforms the
other ten models on accuracy.

Take the case of Gansu as an example. The MAE, RMSE, MAPE
and NRMSE obtained by EPT-CEEMDAN-TCN in one-step-ahead
forecasting are 0.28890 m/s, 0.40157 m/s, 0.07595, and 3.08901,
all of which are quite smaller than the corresponding errors of the
other ten contrast models. Specifically, the RMSE values obtained
by ARIMA, SARIMA, SVR, BPNN, LSTM, GRU, TCN, EPT-CEEMDAN-
BPNN. EPT-CEEMDAN-LSTM, EPT-CEEMDAN-GRU, and EPT-
CEEMDAN-TCN are 0.99677 m/s, 0.77507 m/s, 0.86547 m/s,
0.81122 m/s, 0.79083 m/s, 0.77943 m/s, 0.77494 m/s, 0.50294 m/s,
0.45949 m/s, 0.47798m/s and 0.40157m/s respectively, where EPT-
CEEMDAN-TCN reaches the minimum 0.40157 m/s. Besides that,
the RMSE values obtained by EPT-CEEMDAN-TCN in one-step-
ahead, two-step-ahead, three-step-ahead, and four-step-ahead
forecasting are 0.40157 m/s, 0.55225 m/s, 0.56956 m/s, and
0.63539 m/s in ascending order, and all of them reach the corre-
spondingminimums. Likewise, themetrics MAE, MAPE and NRMSE
follow the similar pattern.

In addition, the hybrid models based on EPT-CEEMDAN
decomposition perform appreciably better than these single
models with the much lower errors. Take the one-step-ahead
forecasting in Gansu as an instance. The MAPE of TCN is 0.15420
while the MAPE of EPT-CEEMDAN-TCN is 0.07595, which is less
than a half of 0.15420. Thereby, it is obvious that the EPT-CEEMDAN
decomposition possesses the essential capability of assisting the
prediction model to grasp the valuable patterns within original
series, improving the forecasting accuracy considerably.

The one-step-ahead prediction curves and the area graph of
actual wind speed series in three datasets are shown in Fig. 7. Note
that the fitting curve obtained by EPT-CEEMDAN-TCN (red lines)
approximates to the edge of pink region representing actual values
most closely in each dataset. It is convincingly verified the superi-
ority of the high-precision prediction owned by EPT-CEEMDAN-
TCN.

Moreover, in each dataset, the fitting curves obtained by hybrid
models based on EPT-CEEMDAN decomposition, i.e. EPT-
CEEMDAN-BPNN, EPT-CEEMDAN-LSTM, EPT-CEEMDAN-GRU and
EPT-CEEMDAN-TCN, approximate to the edge of pink region more
closely than those from single models, such as ARIMA, SARIMA,
SVR, BPNN, LSTM, GRU and TCN. It reveals the virtue and necessity
of the proposed EPT-CEEMDAN decomposition as well.

3.3.2. The improvement percentages on accuracy
The improvement percentages on accuracy of the proposed EPT-

CEEMDAN-TCN compared with the benchmark models are shown
in Tables 7e9. As the proposed EPT-CEEMDAN-TCN cuts down the



Fig. 5. The components sets from CEEMDAN and EPT-CEEMDAN at three sites.
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errors effectively and significantly in multi-step-ahead forecasting
on various datasets, the remarkable superiority of EPT-CEEMDAN-
TCN on accuracy is validated definitely.

Comparing with the single models, including ARIMA, SARIMA,
SVR, BPNN, LSTM, GRU and TCN, the EPT-CEEMDAN-TCN can
enhance prediction precision significantly, with the errors are
almost halved. For example, the improvement percentages on
RMSE of EPT-CEEMDAN-TCN compared with ARIMA, SARIMA, SVR,
BPNN, LSTM, GRU and TCN are 56.98%, 47.59%, 51.41%, 57.81%,
10
51.01%, 50.67% and 49.06% orderly in the case of one-step-ahead
forecasting in Jiangsu as is shown in Table 9. That is to say, the
proposed EPT-CEEMDAN decomposition is rather powerful and
necessary.

Furthermore, EPT-CEEMDAN-TCN also promotes the prediction
accuracy of the three hybrid contrast models evidently, i.e. EPT-
CEEMDAN-BPNN, EPT-CEEMDAN-LSTM and EPT-CEEMDAN-GRU.
Specifically, the improvement percentages on RMSE of EPT-
CEEMDAN-TCN compared with EPT-CEEMDAN-BPNN, EPT-



Fig. 6. The correlations for the components sets.

Table 4
The multi-step-ahead forecasting accuracy in Gansu.

Prediction horizon Model MAE RMSE MAPE NRMSE Prediction horizon Model MAE RMSE MAPE NRMSE

1-Step ARIMA 0.75036 0.99677 0.19740 7.66745 3-Step ARIMA 0.97477 1.30791 0.24610 10.06081
SARIMA 0.55813 0.77507 0.14995 5.96205 SARIMA 0.84987 1.13984 0.22330 8.76803
SVR 0.63584 0.86547 0.17628 6.65745 SVR 0.93912 1.27634 0.24683 9.81801
BPNN 0.59619 0.81122 0.15089 6.24012 BPNN 1.00469 1.28037 0.26799 9.84901
LSTM 0.58013 0.79083 0.15358 6.08333 LSTM 0.89739 1.19647 0.24136 9.20362
GRU 0.57101 0.77943 0.15640 5.99561 GRU 0.85968 1.16102 0.22978 8.93091
TCN 0.56005 0.77494 0.15420 5.96109 TCN 0.84117 1.13651 0.21753 8.74240
EPT-CEEMDAN-BPNN 0.37587 0.50294 0.09314 3.86879 EPT-CEEMDAN-BPNN 0.67890 0.84542 0.16118 6.50326
EPT-CEEMDAN-LSTM 0.34791 0.45949 0.08666 3.53453 EPT-CEEMDAN-LSTM 0.53286 0.68676 0.14267 5.28279
EPT-CEEMDAN-GRU 0.35836 0.47798 0.09569 3.67678 EPT-CEEMDAN-GRU 0.54288 0.69484 0.15445 5.34493
EPT-CEEMDAN-TCN 0.28890 0.40157 0.07595 3.08901 EPT-CEEMDAN-TCN 0.43800 0.56956 0.11625 4.38124

2-Step ARIMA 0.86198 1.16172 0.22132 8.93627 4-Step ARIMA 1.09460 1.43588 0.27271 11.04521
SARIMA 0.74627 0.98809 0.19950 7.60073 SARIMA 0.94718 1.26830 0.24697 9.75613
SVR 0.81933 1.10615 0.21767 8.50888 SVR 1.07058 1.42277 0.27392 10.94438
BPNN 0.86452 1.09109 0.23085 8.39298 BPNN 1.06295 1.37633 0.28317 10.58717
LSTM 0.81430 1.08485 0.21794 8.34496 LSTM 1.01472 1.33591 0.27391 10.27620
GRU 0.79784 1.04583 0.21999 8.04481 GRU 0.96856 1.30910 0.25017 10.06998
TCN 0.74810 0.99327 0.20058 7.64051 TCN 0.94510 1.26588 0.24383 9.73757
EPT-CEEMDAN-BPNN 0.63142 0.78217 0.16720 6.01666 EPT-CEEMDAN-BPNN 0.67949 0.85706 0.19267 6.59278
EPT-CEEMDAN-LSTM 0.45798 0.58322 0.11632 4.48632 EPT-CEEMDAN-LSTM 0.56088 0.73031 0.15842 5.61779
EPT-CEEMDAN-GRU 0.50145 0.62649 0.12058 4.81917 EPT-CEEMDAN-GRU 0.60467 0.77625 0.15207 5.97115
EPT-CEEMDAN-TCN 0.43056 0.55225 0.11629 4.24808 EPT-CEEMDAN-TCN 0.49176 0.63539 0.13649 4.88758
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CEEMDAN-LSTM and EPT-CEEMDAN-GRU are 25.86% 13.00% 18.15%
individually in the case of four-step-ahead forecasting in Gansu as
is shown in Table 7.

Moreover, the improvement percentages on accuracy of EPT-
CEEMDAN-TCN is displayed in Fig. 8 intuitively. The deeper color
is, the higher the corresponding improvement percentage is.
Consequently, it is obvious that EPT-CEEMDAN-TCN can enhance
the prediction accuracy to a great extent, especially in comparison
with ARIMA, SARIMA, SVR, BPNN, LSTM, GRU, TCN and EPT-
CEEMDAN-BPNN. In addition, as the lightest color that represents
the minimum of improvement percentages is larger than zero, the
superiority of EPT-CEEMDAN-TCN on accuracy is demonstrated
apparently.
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3.3.3. Forecasting error analysis
A further analysis on forecasting errors is conducted in this

section. Take one-step-ahead forecasting as an example. Fig. 9 ex-
hibits the stacked forecasting errors of the ten benchmark models
and the proposed model at different time points, where the de-
viations of each single model at different time points can be
observed directly. Accordingly, it is obvious that the hybrid models
based on EPT-CEEMDAN decomposition generally possess smaller
errors while EPT-CEEMDAN-TCN possess the smallest errors overall
on the three datasets.

The error distributions of the various models are presented in
Fig. 10, which makes it crystal clear that the errors from EPT-
CEEMDAN-TCN are more concentrated around zero with a



Table 5
The multi-step-ahead forecasting accuracy in Liaoning.

Prediction horizon Model MAE RMSE MAPE NRMSE Prediction horizon Model MAE RMSE MAPE NRMSE

1-Step ARIMA 0.34028 0.42858 0.19553 8.47004 3-Step ARIMA 0.43321 0.54912 0.24799 10.85215
SARIMA 0.30287 0.37690 0.17388 7.44853 SARIMA 0.38086 0.48368 0.22736 9.55880
SVR 0.34601 0.42863 0.23829 8.47091 SVR 0.41456 0.52408 0.29606 10.35724
BPNN 0.33001 0.40359 0.17400 7.97612 BPNN 0.43516 0.54807 0.26955 10.83134
LSTM 0.30694 0.38032 0.18941 7.51625 LSTM 0.37004 0.46587 0.23718 9.20686
GRU 0.30358 0.37406 0.18301 7.39249 GRU 0.36852 0.46413 0.23815 9.17258
TCN 0.30768 0.37182 0.17713 7.34829 TCN 0.35821 0.45342 0.22598 8.96090
EPT-CEEMDAN-BPNN 0.28392 0.33864 0.17580 6.69248 EPT-CEEMDAN-BPNN 0.32530 0.40152 0.22060 7.93526
EPT-CEEMDAN-LSTM 0.18127 0.22413 0.11207 4.42953 EPT-CEEMDAN-LSTM 0.26738 0.32382 0.17641 6.39951
EPT-CEEMDAN-GRU 0.16936 0.20773 0.09606 4.10527 EPT-CEEMDAN-GRU 0.24721 0.29991 0.15058 5.92701
EPT-CEEMDAN-TCN 0.15659 0.19586 0.08896 3.87075 EPT-CEEMDAN-TCN 0.23442 0.28551 0.13423 5.64250

2-Step ARIMA 0.37898 0.48158 0.21875 9.51741 4-Step ARIMA 0.48565 0.61647 0.27494 12.18311
SARIMA 0.34185 0.42948 0.19991 8.48770 SARIMA 0.43724 0.55225 0.26175 10.91400
SVR 0.36113 0.44995 0.24594 8.89226 SVR 0.47824 0.59111 0.34272 11.68200
BPNN 0.35965 0.45118 0.21587 8.91669 BPNN 0.47081 0.59198 0.24753 11.69915
LSTM 0.34472 0.43288 0.22639 8.55499 LSTM 0.46450 0.57594 0.31688 11.38223
GRU 0.33862 0.42636 0.21875 8.42616 GRU 0.45456 0.56445 0.31418 11.15505
TCN 0.33778 0.41980 0.21611 8.29646 TCN 0.41562 0.51924 0.26147 10.26164
EPT-CEEMDAN-BPNN 0.34629 0.41896 0.18137 8.27977 EPT-CEEMDAN-BPNN 0.37920 0.47502 0.19341 9.38769
EPT-CEEMDAN-LSTM 0.26869 0.33097 0.14945 6.54087 EPT-CEEMDAN-LSTM 0.27079 0.32975 0.16622 6.51672
EPT-CEEMDAN-GRU 0.22383 0.26723 0.12631 5.28129 EPT-CEEMDAN-GRU 0.28275 0.34748 0.18709 6.86712
EPT-CEEMDAN-TCN 0.21370 0.25635 0.12290 5.06621 EPT-CEEMDAN-TCN 0.26401 0.32091 0.16370 6.34217

Table 6
The multi-step-ahead forecasting accuracy in Jiangsu.

Prediction horizon Model MAE RMSE MAPE NRMSE Prediction horizon Model MAE RMSE MAPE NRMSE

1-Step ARIMA 0.39818 0.51980 0.29027 6.44112 3-Step ARIMA 0.49670 0.63942 0.33435 7.92345
SARIMA 0.32574 0.42664 0.39609 5.29331 SARIMA 0.46454 0.60320 0.78175 7.48393
SVR 0.36148 0.46016 0.34174 5.70919 SVR 0.47061 0.61487 0.78451 7.62867
BPNN 0.41870 0.52997 0.21891 6.56717 BPNN 0.55528 0.69628 0.40785 8.62806
LSTM 0.35511 0.45644 0.24724 5.65605 LSTM 0.51543 0.65367 0.39224 8.10000
GRU 0.34621 0.45328 0.22944 5.61691 GRU 0.46440 0.62107 0.33552 7.69600
TCN 0.33825 0.43894 0.18861 5.43919 TCN 0.45576 0.60434 0.33619 7.48876
EPT-CEEMDAN-BPNN 0.26951 0.33657 0.12004 4.17058 EPT-CEEMDAN-BPNN 0.32740 0.41192 0.20865 5.10428
EPT-CEEMDAN-LSTM 0.19916 0.24823 0.10549 3.07591 EPT-CEEMDAN-LSTM 0.26070 0.32602 0.13913 4.03991
EPT-CEEMDAN-GRU 0.21274 0.26546 0.09799 3.28951 EPT-CEEMDAN-GRU 0.30912 0.38894 0.18256 4.81961
EPT-CEEMDAN-TCN 0.17790 0.22361 0.09606 2.77083 EPT-CEEMDAN-TCN 0.25483 0.31743 0.13475 3.93352

2-Step ARIMA 0.44602 0.58380 0.32619 7.23423 4-Step ARIMA 0.52962 0.68565 0.35423 8.49626
SARIMA 0.40394 0.52897 0.73741 6.56296 SARIMA 0.51531 0.66953 0.83149 8.30677
SVR 0.42099 0.54412 0.66762 6.75084 SVR 0.52298 0.68318 0.84677 8.47612
BPNN 0.44937 0.57007 0.33142 7.06412 BPNN 0.53191 0.68667 0.39838 8.50894
LSTM 0.42665 0.56790 0.30204 7.03723 LSTM 0.50766 0.67674 0.36210 8.38585
GRU 0.42545 0.56861 0.31315 7.04598 GRU 0.51403 0.66905 0.39055 8.29062
TCN 0.40297 0.52716 0.28493 6.53229 TCN 0.51048 0.66664 0.33572 8.26067
EPT-CEEMDAN-BPNN 0.35423 0.43967 0.17721 5.44816 EPT-CEEMDAN-BPNN 0.44651 0.55103 0.28381 6.82813
EPT-CEEMDAN-LSTM 0.27406 0.34165 0.14795 4.23358 EPT-CEEMDAN-LSTM 0.32803 0.41264 0.22263 5.11332
EPT-CEEMDAN-GRU 0.27739 0.34532 0.15790 4.27907 EPT-CEEMDAN-GRU 0.31405 0.39014 0.20209 4.83451
EPT-CEEMDAN-TCN 0.22549 0.28258 0.13516 3.50157 EPT-CEEMDAN-TCN 0.27826 0.33971 0.15826 4.20959
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smaller variation.
Furthermore, the probability density functions of the errors are

fitted under the normal distribution in Fig. 11. Evidently, the errors
from hybrid models with EPT-CEEMDAN decomposition reach
higher kurtoses than the errors from the other four single models
where EPT-CEEMDAN-TCN achieves the highest kurtosis on each
dataset. It confirms the distinction of EPT-CEEMDAN decomposi-
tion as well as the high-precision and robustness of EPT-CEEMDAN-
TCN.
3.3.4. Stability analysis of forecasting results
Aiming to test the forecasting stability further, the variance of

absolute error (VAE) of one-step-ahead (15 min ahead) to four-
step-ahead (1 h ahead) forecasting results are calculated accord-
ing to Eq. (26). As is listed in Table 10, the proposed EPT-CEEMDAN-
TCN obtains the lowest VAE, exhibiting its stronger stability than all
the other benchmark models in multi-step-ahead forecasting on
12
the three datasets. Take the case of Liaoning for instance. The VAE of
EPT-CEEMDAN-TCN is 0.01384, 0.02005, 0.02657 and 0.03328 in
one-, two-, three- and four-step-ahead forecasting orderly, which
are relatively lower than the corresponding VAE of the benchmark
models.

The improvement percentage on VAE of the proposed EPT-
CEEMDAN-TCN compared with the other benchmark models is
presented in Fig. 12. Comparing with the single models, i.e. ARIMA,
SARIMA, SVR, BPNN, LSTM, GRU and TCN, the EPT-CEEMDAN-TCN
reduces VAE by seventy percent approximately. It implies that the
proposed EPT-CEEMDAN decomposition also plays a critical role in
prediction stability. Comparing with the benchmark hybridmodels,
including EPT-CEEMDAN-BPNN, EPT-CEEMDAN-LSTM and EPT-
CEEMDAN-GRU, the EPT-CEEMDAN-TCN deceases VAE by 4.32%e
63.94%. It verifies the prediction based on the TCN is stable.



Fig. 7. One-step-ahead forecasting results.

Table 7
The improvement percentages on accuracy of the proposed EPT-CEEMDAN-TCN compared with the benchmark models in Gansu.

Prediction horizon Model MAE RMSE MAPE NRMSE Prediction horizon Model MAE RMSE MAPE NRMSE

1-Step ARIMA 61.50% 59.71% 61.52% 59.71% 3-Step ARIMA 55.07% 56.45% 52.76% 56.45%
SARIMA 48.24% 48.19% 49.35% 48.19% SARIMA 48.46% 50.03% 47.94% 50.03%
SVR 54.56% 53.60% 56.92% 53.60% SVR 53.36% 55.38% 52.90% 55.38%
BPNN 51.54% 50.50% 49.67% 50.50% BPNN 56.40% 55.52% 56.62% 55.52%
LSTM 50.20% 49.22% 50.55% 49.22% LSTM 51.19% 52.40% 51.84% 52.40%
GRU 49.41% 48.48% 51.44% 48.48% GRU 49.05% 50.94% 49.41% 50.94%
TCN 48.41% 48.18% 50.75% 48.18% TCN 47.93% 49.89% 46.56% 49.89%
EPT-CEEMDAN-BPNN 23.14% 20.16% 18.45% 20.16% EPT-CEEMDAN-BPNN 35.48% 32.63% 27.88% 32.63%
EPT-CEEMDAN-LSTM 16.96% 12.61% 12.36% 12.60% EPT-CEEMDAN-LSTM 17.80% 17.07% 18.52% 17.07%
EPT-CEEMDAN-GRU 19.38% 15.99% 20.63% 15.99% EPT-CEEMDAN-GRU 19.32% 18.03% 24.73% 18.03%

2-Step ARIMA 50.05% 52.46% 47.46% 52.46% 4-Step ARIMA 55.07% 55.75% 49.95% 55.75%
SARIMA 42.31% 44.11% 41.71% 44.11% SARIMA 48.08% 49.90% 44.73% 49.90%
SVR 47.45% 50.07% 46.57% 50.07% SVR 54.07% 55.34% 50.17% 55.34%
BPNN 50.20% 49.39% 49.62% 49.39% BPNN 53.74% 53.83% 51.80% 53.83%
LSTM 47.13% 49.09% 46.64% 49.09% LSTM 51.54% 52.44% 50.17% 52.44%
GRU 46.03% 47.19% 47.14% 47.19% GRU 49.23% 51.46% 45.44% 51.46%
TCN 42.45% 44.40% 42.02% 44.40% TCN 47.97% 49.81% 44.02% 49.81%
EPT-CEEMDAN-BPNN 31.81% 29.39% 30.45% 29.39% EPT-CEEMDAN-BPNN 27.63% 25.86% 29.16% 25.86%
EPT-CEEMDAN-LSTM 5.99% 5.31% 0.02% 5.31% EPT-CEEMDAN-LSTM 12.32% 13.00% 13.84% 13.00%
EPT-CEEMDAN-GRU 14.14% 11.85% 3.56% 11.85% EPT-CEEMDAN-GRU 18.67% 18.15% 10.25% 18.15%
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3.3.5. Significance evaluation
Diebold-Mariano (DM) test [91] is utilized to evaluate the sta-

tistical significance of the superiority of the proposed EPT-
CEEMDAN-TCN model comparing with the other ten benchmark
models, where themean square error on testing samples is adopted
13
as the loss function. Under the null hypothesis of equal forecast
accuracy across models, the DM statistic is asymptotically N (0, 1).
Accordingly, we accept the null hypothesis at the a significance
level only if the DM statistic falls in the confidence intervalh
� Za=2; Za=2

i
. On the contrary, we reject the null hypothesis when



Table 8
The improvement percentages on accuracy of the proposed EPT-CEEMDAN-TCN compared with the benchmark models in Liaoning.

Prediction horizon Model MAE RMSE MAPE NRMSE Prediction horizon Model MAE RMSE MAPE NRMSE

1-Step ARIMA 53.98% 54.30% 54.50% 54.30% 3-Step ARIMA 45.89% 48.01% 45.87% 48.01%
SARIMA 48.30% 48.03% 48.84% 48.03% SARIMA 38.45% 40.97% 40.96% 40.97%
SVR 54.75% 54.31% 62.67% 54.31% SVR 43.45% 45.52% 54.66% 45.52%
BPNN 52.55% 51.47% 48.87% 51.47% BPNN 46.13% 47.91% 50.20% 47.91%
LSTM 48.98% 48.50% 53.03% 48.50% LSTM 36.65% 38.71% 43.40% 38.71%
GRU 48.42% 47.64% 51.39% 47.64% GRU 36.39% 38.49% 43.63% 38.49%
TCN 49.11% 47.32% 49.77% 47.32% TCN 34.56% 37.03% 40.60% 37.03%
EPT-CEEMDAN-BPNN 44.85% 42.16% 49.40% 42.16% EPT-CEEMDAN-BPNN 27.94% 28.89% 39.15% 28.89%
EPT-CEEMDAN-LSTM 13.62% 12.61% 20.62% 12.61% EPT-CEEMDAN-LSTM 12.33% 11.83% 23.91% 11.83%
EPT-CEEMDAN-GRU 7.54% 5.71% 7.39% 5.71% EPT-CEEMDAN-GRU 5.18% 4.80% 10.86% 4.80%

2-Step ARIMA 43.61% 46.77% 43.81% 46.77% 4-Step ARIMA 45.64% 47.94% 40.46% 47.94%
SARIMA 37.49% 40.31% 38.52% 40.31% SARIMA 39.62% 41.89% 37.46% 41.89%
SVR 40.83% 43.03% 50.03% 43.03% SVR 44.79% 45.71% 52.23% 45.71%
BPNN 40.58% 43.18% 43.06% 43.18% BPNN 43.92% 45.79% 33.87% 45.79%
LSTM 38.01% 40.78% 45.71% 40.78% LSTM 43.16% 44.28% 48.34% 44.28%
GRU 36.89% 39.88% 43.82% 39.88% GRU 41.92% 43.15% 47.90% 43.15%
TCN 36.73% 38.94% 43.13% 38.94% TCN 36.48% 38.20% 37.39% 38.20%
EPT-CEEMDAN-BPNN 38.29% 38.81% 32.23% 38.81% EPT-CEEMDAN-BPNN 30.38% 32.44% 15.36% 32.44%
EPT-CEEMDAN-LSTM 20.47% 22.55% 17.76% 22.55% EPT-CEEMDAN-LSTM 2.50% 2.68% 1.51% 2.68%
EPT-CEEMDAN-GRU 4.53% 4.07% 2.70% 4.07% EPT-CEEMDAN-GRU 6.63% 7.64% 12.50% 7.64%

Table 9
The improvement percentages on accuracy of the proposed EPT-CEEMDAN-TCN compared with the benchmark models in Jiangsu.

Prediction horizon Model MAE RMSE MAPE NRMSE Prediction horizon Model MAE RMSE MAPE NRMSE

1-Step ARIMA 55.32% 56.98% 66.91% 56.98% 3-Step ARIMA 48.70% 50.36% 59.70% 50.36%
SARIMA 45.39% 47.59% 75.75% 47.65% SARIMA 45.14% 47.38% 82.76% 47.44%
SVR 50.79% 51.41% 71.89% 51.47% SVR 45.85% 48.37% 82.82% 48.44%
BPNN 57.51% 57.81% 56.12% 57.81% BPNN 54.11% 54.41% 66.96% 54.41%
LSTM 49.90% 51.01% 61.15% 51.01% LSTM 50.56% 51.44% 65.65% 51.44%
GRU 48.61% 50.67% 58.13% 50.67% GRU 45.13% 48.89% 59.84% 48.89%
TCN 47.41% 49.06% 49.07% 49.06% TCN 44.09% 47.47% 59.92% 47.47%
EPT-CEEMDAN-BPNN 33.99% 33.56% 19.98% 33.56% EPT-CEEMDAN-BPNN 22.17% 22.94% 35.42% 22.94%
EPT-CEEMDAN-LSTM 10.67% 9.92% 8.94% 9.92% EPT-CEEMDAN-LSTM 2.25% 2.63% 3.15% 2.63%
EPT-CEEMDAN-GRU 16.38% 15.77% 1.97% 15.77% EPT-CEEMDAN-GRU 17.56% 18.39% 26.19% 18.39%

2-Step ARIMA 49.44% 51.60% 58.56% 51.60% 4-Step ARIMA 47.46% 50.45% 55.32% 50.45%
SARIMA 44.18% 46.58% 81.67% 46.65% SARIMA 46.00% 49.26% 80.97% 49.32%
SVR 46.44% 48.07% 79.75% 48.13% SVR 46.79% 50.27% 81.31% 50.34%
BPNN 49.82% 50.43% 59.22% 50.43% BPNN 47.69% 50.53% 60.27% 50.53%
LSTM 47.15% 50.24% 55.25% 50.24% LSTM 45.19% 49.80% 56.29% 49.80%
GRU 47.00% 50.30% 56.84% 50.30% GRU 45.87% 49.22% 59.48% 49.22%
TCN 44.04% 46.40% 52.56% 46.40% TCN 45.49% 49.04% 52.86% 49.04%
EPT-CEEMDAN-BPNN 36.34% 35.73% 23.73% 35.73% EPT-CEEMDAN-BPNN 37.68% 38.35% 44.24% 38.35%
EPT-CEEMDAN-LSTM 17.72% 17.29% 8.64% 17.29% EPT-CEEMDAN-LSTM 15.17% 17.67% 28.91% 17.67%
EPT-CEEMDAN-GRU 18.71% 18.17% 14.40% 18.17% EPT-CEEMDAN-GRU 11.40% 12.93% 21.69% 12.93%
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the DM statistic falls outside the confidence interval, holding that
the accuracy of the proposed model is significantly different from
the benchmark model.

As is listed in Table 11, the absolute value of DM statistic is
generally larger than the critical value of the 1% significance level as
2.58. More specifically, the DM statistics among the single models,
such as ARIMA, SARIMA, SVR, BPNN, LSTM, GRU and TCN, range
from �12.74 to �8.33, which are far less than �2.58. It proves the
significant improvement of the proposed EPT-CEEMDAN-TCN
model comparing with the single models. Among the hybrid
benchmark models based on EPT-CEEMDAN decomposition, the
DM statistic is significant in most cases. The superiority of EPT-
CEEMDAN-TCN model still holds.
3.4. Analysis on the hyper parameters

To analysis the effect of the hyper parameters in TCN, we apply it
on dataset 2 with different parameter sets, which vary in input
dimension, dropout rate, hidden size, and filter size.

Table 12 presents the one-step-ahead forecasting error (RMSE)
14
on training set, validation set and testing set. It implies that the
forecasting accuracy of TCN changes with parameter sets. As for
input dimension, we set it as 12, 16, 20 respectively with the other
parameters unchanged. When 16 is selected, TCN realizes the
minimum RMSE on the three sets. Likewise, we set filter size as 1, 2
and 3, hidden size as 32, 64 and 128, dropout rate as 0.00, 0.05 and
0.10. Among these various parameter sets, the selected one always
achieves the most accurate forecasting.
3.5. Comparison of decomposition methods

To compare the prediction performance with different decom-
position methods, different forecasting techniques and decompo-
sition methods are combined for forecasting the wind speed on
dataset 1, the results of which are listed in Table 13. Thewidely used
VMD [68], EMD [69], CEEMDAN [77] and newly developed WSTD
[31], VMD-SSA [46] are adopted as the contrast decomposition
methods herein.

Following conclusions can be drawn from sufficient analyses.
Firstly, when combining with the EPT-CEEMDAN decomposition,



Fig. 8. The improvement percentages on accuracy of the proposed EPT-CEEMDAN-TCN compared with the benchmark models.

Fig. 9. One-step-ahead forecasting errors.
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each forecasting technique, except ARIMA model, reaches the
minimum of forecasting root mean square errors, i.e. 0.65575 m/s,
0.50294 m/s, 0.45949 m/s, 0.47798 m/s and 0.40157 m/s. It verifies
the superiority of the proposed decomposition method. Secondly,
cooperating with the more accurate forecasting technique, the
decomposition methods perform more effectively. Specifically,
15
compared with the traditional methods (ARIMA and SVR), the deep
learning models (BPNN, LSTM, GRU and TCN) can realize greater
accuracy improvements through decomposition. For example, EPT-
CEEMDAN decomposition reduces the prediction RMSE of TCN
from 0.77494 m/s to 0.40157 m/s by 48.18%, but it only reduces the
RMSE of ARIMA from 0.99677 m/s to 0.73334 m/s by 26.43%.



Fig. 10. The distributions of one-step-ahead forecasting errors.

Fig. 11. The fitting probability density functions of one-step-ahead forecasting errors.

Table 10
The multi-step-ahead forecasting stability results (VAE) in Gansu, Liaoning and Jiangsu.

Prediction
horizon

ARIMA SARIMA SVR BPNN LSTM GRU TCN EPT-CEEM DAN-
BPNN

EPT-CEEM DAN-
LSTM

EPT-CEEM DAN-
GRU

EPT-CEEM DAN-
TCN

Gansu
1-step-ahead 0.43051 0.28983 0.34475 0.30263 0.28887 0.28145 0.28688 0.11167 0.09009 0.10004 0.07780
2-step-ahead 0.60657 0.42029 0.55227 0.44308 0.51380 0.45721 0.42692 0.21309 0.13040 0.14104 0.11960
3-step-ahead 0.76045 0.57817 0.74710 0.62996 0.62623 0.60892 0.58410 0.25384 0.18771 0.18808 0.13255
4-step-ahead 0.86360 0.71292 0.87814 0.76443 0.75500 0.77563 0.70924 0.27599 0.21876 0.23694 0.16189
Liaoning
1-step-ahead 0.06789 0.05043 0.06400 0.05398 0.05043 0.04776 0.04358 0.03407 0.01738 0.01447 0.01384
2-step-ahead 0.08829 0.06773 0.07204 0.07422 0.06856 0.06712 0.06214 0.05560 0.03735 0.02131 0.02005
3-step-ahead 0.11386 0.08908 0.10279 0.11101 0.08010 0.07961 0.07728 0.05540 0.03336 0.02883 0.02657
4-step-ahead 0.14417 0.11404 0.12070 0.12877 0.11595 0.11197 0.09687 0.08185 0.03540 0.04079 0.03328
Jiangsu
1-step-ahead 0.11164 0.07607 0.08108 0.10556 0.08223 0.08561 0.07826 0.04064 0.02195 0.02521 0.01835
2-step-ahead 0.14189 0.11689 0.11883 0.12305 0.14049 0.14231 0.11551 0.06783 0.04162 0.04230 0.02900
3-step-ahead 0.16216 0.14837 0.15660 0.17648 0.16162 0.15476 0.15751 0.06248 0.03832 0.05041 0.03583
4-step-ahead 0.189613 0.18310033 0.19322 0.18859 0.20025 0.18929 0.18381 0.10427 0.06267 0.06676 0.03798

Fig. 12. The improvement percentages on VAE of the proposed EPT-CEEMDAN-TCN compared with the benchmark models.
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Thirdly, based on the same decomposition method, TCN generally
achieves the best prediction accuracy, further contributing to the
accuracy improvement. Last but not the least, among the 42
16
combinations of 6 forecasting models and 7 decomposition tech-
niques, the proposed EPT-CEEMDAN-TCN model accomplishes the
minimum of forecasting root mean square errors, i.e. 0.40157 m/s,



Table 11
The results of Diebold-Mariano test.

Prediction horizon ARIMA SARIMA SVR BPNN LSTM GRU TCN EPT-CEEM DAN-BPNN EPT-CEEM DAN-LSTM EPT-CEEM DAN-GRU

Gansu
1-step-ahead �10.9*** �8.33*** �9.29*** �8.95*** �8.66*** �8.65*** �8.45*** �6.22*** �6.07*** �4.83***
2-step-ahead �9.81*** �9.54*** �9.31*** �11.93*** �9.11*** �10.06*** �9.21*** �10.29*** �1.78* �3.92***
3-step-ahead �10.36*** �9.73*** �9.74*** �12.25*** �9.62*** �9.4*** �9.15*** �10.09*** �6.25*** �6.16***
4-step-ahead �10.55*** �9.75*** �10.07*** �11.71*** �10.22*** �9.01*** �9.12*** �8.7*** �4.91*** �6.06***
Liaoning
1-step-ahead �12.47*** �11.64*** �12.74*** �12.66*** �11.74*** �11.92*** �12.66*** �14.1*** �5.8*** �2.63***
2-step-ahead �10.39*** �10.39*** �11.28*** �9.94*** �10.06*** �9.9*** �10.2*** �11.23*** �6.77*** �1.55
3-step-ahead �11.07*** �10.26*** �11.38*** �12.36*** �9.84*** �10.04*** �9.26*** �9.65*** �4.44*** �2.23**
4-step-ahead �10.56*** �10.23*** �12.61*** �10.95*** �11.54*** �11.93*** �9.85*** �8.08*** �0.95 �3.12***
Jiangsu
1-step-ahead �10.6*** �10.53*** �12.01*** �12.71*** �11.15*** �10.49*** �11.39*** �9.93*** �4.17*** �5.42***
2-step-ahead �10.34*** �9.18*** �9.24*** �10.83*** �9.54*** �9.42*** �8.97*** �9.54*** �4.99*** �7.64***
3-step-ahead �11.06*** �9.98*** �9.72*** �12.23*** �11*** �9.54*** �9.67*** �6.86*** �1.32 �7.67***
4-step-ahead �10.04*** �10.64*** �9.65*** �10.38*** �8.92*** �9.23*** �10.25*** �12.02*** �6.7*** �8.67***

*** is the 1% significance level.
** is the 5% significance level.
* is the 10% significance level.

Table 12
The forecasting accuracy of TCN with the different parameter sets.

Interested parameter Parameter sets RMSE (m/s)

Input dimension Filter size Hidden size Dropout Training Validation Testing

(The selected set) 16 2 64 0.05 0.34746 0.36446 0.37182
Input dimension 12 2 64 0.05 0.37866 0.38431 0.38979

20 2 64 0.05 0.37056 0.39128 0.44916
Filter size 16 1 64 0.05 0.40870 0.41338 0.41276

16 3 64 0.05 0.39486 0.40281 0.40431
Hidden size 16 2 32 0.05 0.36160 0.38175 0.39708

16 2 128 0.05 0.34999 0.36688 0.39477
Dropout 16 2 64 0.00 0.34786 0.36515 0.37934

16 2 64 0.10 0.35495 0.36459 0.40388

Table 13
The comparison on the combinations of different forecasting techniques and decomposition methods in RMSE (m/s).

Decomposition method ARIMA SVR BPNN LSTM GRU TCN

Non-decomposition 0.99677 0.85180 0.81122 0.79083 0.77943 0.77494
WSTD 0.80608 0.88297 0.71328 0.71590 0.68382 0.73238
VMD 0.71914 0.77627 0.62559 0.62877 0.62417* 0.60346
VMD-SSA 0.72625 0.71218 0.57107 0.59579** 0.59159 0.54632
EMD 0.73449 0.70997 0.55308 0.50348 0.51003 0.49142
CEEMDAN 0.73370 0.68248 0.53853 0.49041 0.50207 0.45153
EPT-CEEMDAN 0.73334 0.65575 0.50294 0.45949 0.47798 0.40157

* The WSTD-GRU model is proposed for wind speed forecasting by Peng et al. [31].
** The VMD-SSA-LSTM model is proposed for wind speed forecasting by Rodrigues Moreno et al. [46].
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unveiling the best prediction performance.

3.6. Real-time forecasting strategy

In the practical application, only the data up to the current time t
is ‘known’ and can be decomposed at time t. In this case, the
decomposition process should be implemented successively with
the new arrival of data in real-time forecasting, which can mod-
erate the nonstationarity of original series, but may amplify the end
effect and the fluctuation in each subseries, and yield illusive
components, leading to a loss of effectiveness [80,84]. On this ac-
count, Wang et al. [71] proposed an approximated forecasting
method based on EMD, where the approximated time series
generated by removing the highest frequency portion IMF1 from
the original series [70] is forecasted by a single prediction model.
Whereas the IMF1 varies with the new obtained data in real-time
decomposition, it only accounts for a negligibly small proportion
17
of the original series and will not produce a significant change of
the approximated series. Accordingly, the real-timewind speed and
solar irradiation forecasting cases indicated that this method
transcended the existing EMD-based prediction algorithms and the
non-decomposition based model. Following this approximated
forecasting strategy, we construct the real-time EPT-CEEMDAN-
TCN and CEEMDAN-TCN forecasting models as illustrated in Fig. 13.

To evaluate the real-time forecasting performance of the pro-
posed EPT-CEEMDAN-TCN model, we apply it on the short-term
wind speed data collected from Gansu in March 2017, along with
the TCN model and the real-time CEEMDAN-TCN model for com-
parison. As is displayed Fig. 14 and Table 14, the whole wind speed
dataset is divided into three parts in consistency with Section 3.1.1.

Table 15 and Fig. 15 exhibit the real-time forecasting perfor-
mance on the testing set, where EPT-CEEMDAN-TCN still out-
performs TCN and CEEMDAN-TCN in both accuracy and stability,
achieving theminimum of forecasting errors (MAE, MSE, MAPE and



Fig. 13. Schematic illustration of the real-time EPT-CEEMDAN-TCN and CEEMDAN-TCN forecasting models.

Fig. 14. The wind speed time series.

Table 14
The descriptions of the dataset.

Dataset Location Samples Time interval # of samples

4 Gansu All March 1st - March 31st 2976
Training March 1st - March 24th 2304
Validation March 25th - March 26th 192
Testing March 27th - March 31st 480

Table 15
The real-time forecasting results.

Model MAE RMSE MAPE NRMSE VAE

TCN 0.68285 0.88677 0.11963 6.98244 0.32008
CEEMDAN-TCN 0.63219 0.86774 0.11950 6.83258 0.35330
EPT-CEEMDAN-TCN 0.59888 0.82218 0.11676 6.47387 0.31732
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NMAPE) and the variance of absolute error (VAE) among the three
models. It verifies the effectiveness and superiority of the EPT-
CEEMDAN decomposition in the practical application.
4. Discussion

Wind speed is affected by many factors such as temperature,
humidity, air pressure, and surface obstacles, resulting in its
nonstationary and nonlinear characteristics. Single models often
fail to predict the complex series well. However, the power systems
requires high-precision wind speed forecasting, because the
18
higher-precision prediction can save more power system operating
costs. Therefore, it is worthwhile to use the more complex models
to achieve higher precision predictions.

4.1. The computational efficiency

Compared with other prediction models, the proposed method
has higher computational efficiency, for: (i) the decomposition
structure can take advantage of the distributed storage and the
parallel computing technology to achieve much higher efficiency,
for the prediction of each component is independent from each
other; (ii) the proposed EPT-CEEMDAN decomposition combines
EPT and CEEMDAN, where the CEEMDAN requires much less trials
than EEMD; (iii) the convolutions in TCN can be conducted in
parallel due to the same filter in each layer, while the predictions in
RNNs must be computed in sequence; (iv) TCN possesses the more
stable gradients and easy to train, for its backpropagation path is
distinct from the temporal direction of the sequence, avoiding the
problem of exploding/vanishing gradients in RNNs [32].

4.2. The computational complex

Compared with non-decomposition forecasting models, the
proposed model increases the computational complexity within an
acceptable range. The EPT-CEEMDAN-TCN model has to construct
and train TCNs on each component respectively to obtain the pre-
diction values of subseries, multiplying the computational
complexity. For real-time forecasting, all the decomposition-based



Fig. 15. Real-time forecasting results.
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models will generate higher computational complexity than single
models, because the time series should be decomposed the step-
by-step, which needs more computational resources [80]. Fortu-
nately, the higher-precision prediction will slash the power system
operating costs. Considering that, the extra computational
complexity is negligible.

5. Conclusion

Recent years have witnessed the vigorous growth of wind po-
wer industry. However, considering the intermittency and
complexity of the wind, it is challenging to obtain the precise and
robust prediction of the wind speed series, which is crucial for the
reliable wind power generation. On this account, this paper pro-
poses a novel approach coupling a hybrid decomposition method
and the temporal convolutional networks for a more accurate and
robust wind speed prediction. To begin with, the ensemble patch
transform (EPT) is employed on thewind speed series to extract the
trend component of the original series, with the volatility separated
out simultaneously. Furthermore, the complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) effectively
decomposes the volatility into fluctuation components with
different frequency characteristics. Subsequently, the temporal
convolutional networks (TCN) forecast the trend and fluctuation
components individually. Ultimately, the wind speed prediction
values are deduced through the reconstruction of the forecasting
results. To test the performance of the proposed EPT-CEEMDAN-
TCN model, the proposed model and several benchmark models
are implemented on various wind speed datasets from three wind
farms across China.

The results from the contrast experiments between CEEMDAN
and EPT-CEEMDAN decomposition illustrate that the common
CEEMDAN method decomposes a sequence into several smooth
intrinsic mode functions and a residue overlooking the essential
trend of the original sequence, while the proposed EPT-CEEMDAN
decomposition has the capability of capturing the vital daily
trend of the wind speed series exactly and decomposing the
nonlinear volatility completely. Furthermore, the multi-step-ahead
wind speed forecasting results on the various datasets attest the
remarkable effectiveness of the proposed EPT-CEEMDAN decom-
position, as the composite models based on EPT-CEEMDAN
decomposition cut the prediction error by nearly a half. Addition-
ally, the comparison experiment results of different decomposition
methods confirm the superiority EPT-CEEMDAN decomposition
over the widely used and newly developed decomposition
methods.

Moreover, among the single models, the temporal convolutional
network (TCN) generally outperforms the statistical models
19
(ARIMA, SARIMA), traditional machine learning algorithm (SVR),
and other deep learning models (BPNN, LSTM, GRU) in multi-step-
aheadwind speed forecasting. In themeanwhile, the proposed EPT-
CEEMDAN-TCN model demonstrates the significant superiority on
accuracy and stability, for it consistently reaches amore precise and
stable prediction than ARIMA, SARIMA, SVR, BPNN, LSTM, GRU, TCN
and the hybrid models, such as EPT-CEEMDAN-BPNN, EPT-CEEM-
DAN-LSTM, and EPT-CEEMDAN-GRU. Even in real-time forecasting,
the effectiveness of the proposed EPT-CEEMDAN-TCN model still
holds.

In addition, the proposed method has higher computational
efficiency with the acceptable computational complexity, espe-
cially under a parallel or distributed computation environment. It is
beneficial and competitive in the big data era. Furthermore, there is
a potential application of the decomposition-prediction framework
on the very short-term and large-scale wind speed prediction. For
example, Chen et al. [23] successfully applied the framework based
on EEMD-GA-LSTM method to the short-term (5 min) wind speed
predictionwithmore than 100,000 records of historical wind speed
throughout a year. Besides, the proposed EPT-CEEMDAN-TCN
model can also apply to any other nonstationary and nonlinear
time series prediction, such as wind power, electricity consumption
and solar radiation intensity.
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A. Appendix

The specific parameter settings of these models are listed in
Table 1, including the determination approaches.



Table 1
The parameters of the neural networks.

Model Parameters Determination approach Values

ARIMA AR Partial Autocorrelation Function [0,10]
I Augmented DickeyeFuller Test 0 or 1
MA Autocorrelation Function [0,10]

SARIMA Seasonal period Preset 96
AR Partial Autocorrelation Function [0,10]
I Augmented DickeyeFuller Test 0 or 1
MA Autocorrelation Function [0,10]

SVR Regularization coefficient c Grid search [1,1000]
Kernel parameter g Grid search [2�10, 210]

BPNN Input dimension Trial and error approach 16
Number of hidden layer nodes Trial and error approach 64
Output dimension Preset 1
Dropout Trial and error approach 0.05
Initial learning rate Trial and error approach 0.001
Batch size Trial and error approach 96
Maximum of epochs Preset 200

LSTM Input dimension Trial and error approach 16
Number of hidden layer nodes Trial and error approach 64
Output dimension Preset 1
Dropout Trial and error approach 0.05
Initial learning rate Trial and error approach 0.001
Batch size Trial and error approach 96
Maximum of epochs Preset 200

GRU Input dimension Trial and error approach 16
Number of hidden layer nodes Trial and error approach 64
Output dimension Preset 1
Dropout Trial and error approach 0.05
Initial learning rate Trial and error approach 0.001
Batch size Trial and error approach 96
Maximum of epochs Preset 200

TCN Input dimension Trial and error approach 16
Number of hidden layer nodes Trial and error approach 64
Filter size in each convolutional layer Trial and error approach 2
Dilations Trial and error approach [1,2,4,8]
Output dimension Preset 1
Dropout Trial and error approach 0.05
Initial learning rate Trial and error approach 0.001
Batch size Trial and error approach 96
Maximum of epochs Preset 200
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