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In this paper, a new identification method for discrete-time Hammerstein systems is pro- 

posed. The method is a joint use of discrete Fourier transform, backward shift method, 

and the least squares method. The frequency responses are obtained with sampled input 

and output data in the time domain through discrete Fourier transform. It is followed by 

the backward shift algorithm that was originally developed for estimating poles of linear 

time-invariant systems. After poles of linear subsystem are estimated, coefficients of lin- 

ear and nonlinear subsystems are respectively determined by using the least squares (LS) 

method. The robustness of the backward shift algorithm guarantees the effectiveness of 

the proposed algorithm. Simulation results show that the poles of linear subsystem are 

well located. Thus, it is practical to identify discrete Hammerstein systems. 
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1. Introduction 

A special kind of block-oriented models are Hammerstein models, they are capable of modeling the kind of nonlinear sys- 

tems whose nonlinear parts (static without memory) are followed by their linear parts (dynamic system with memory). The 

identification of Hammerstein models is a challenging topic and has been attracting more and more attentions [3,6,12,39] . 

Researchers have proposed many methods for identification of Hammerstein models. Among them, there are blind method 

[3] , stochastic methods [13,30–32] , recursive methods [10,28,34,35,39] , key term separation technique [16] , nonparametric 

approaches [26,33] , Hierarchical parameter estimation algorithm [4,7–9,11,17,29,36–38] and so on. All methods have their ad- 

vantages on some conditions and are efficient to some special kind of Hammerstein systems. However, almost all methods 

have one thing in common, that the parameters of linear parts are estimated simultaneously. For numerical algorithms, they 

would obtain more accurate numerical results when there are less unknown parameters to estimate. If the parameters of 

linear parts can be estimated separatedly, then it reduces the computational burden, hence it is helpful to the identification 

of Hammerstein systems. 

Frequency-domain identification is one of the two branches (time-domain and frequency domain) in system identifica- 

tion. Its advantages have been attracting more and more researchers not only for linear systems [1,24] but also nonlinear

systems [2,32] . In [2] , by using the sinusoidal inputs, there are many advantages for identification of continuous-time Ham-

merstein systems. First of all, the output signals could be expressed in a Fourier series expansion, whose Fourier coefficients 
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Fig. 1. A Hammerstein system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are invariable to different frequencies of input sinusoid signals. Second, the frequency responses of linear subsystems can 

be estimated through a point estimate by using input-output signals of entire systems. Referring to these results, a similar 

property will be verified for discrete-time systems in this paper. After that, a new method to get estimations of Hammer-

stein systems is proposed, in which we look into the problem through estimating poles of linear subsystem. As a foundation,

it is shown in [2] that a defined point estimate is identical with the sum of the true frequency response and an error, which

is an average of finite time Fourier transform of the output noise. Then our basic idea is that we first get approximating

frequency responses to linear subsystems with sampled data, then the poles of linear subsystem are estimated by using 

backward shift algorithm. This is a quite different framework from existing identification methods where the parameters 

of the linear part are not separated but generally estimated simultaneously. As a consequence, it will rise the numerical 

efficiency. 

The poles of a linear system play a very important role in system identification. On one hand, the poles affect the per-

formance of a system. One the other hand, the generalized rational orthornomal bases are useful tools in identification of 

linear systems [15,18,19,21,23] , where the basis functions are used to constructed linear-in-parameters models. The conver- 

gence rate of constructed models are determined by their poles of basis functions. So information of poles is quite important

to these problems. The backward shift algorithm (BSA), which was developed in [20] , is a useful method in estimating true

poles including their particular values and multiplicities. In the processes of backward shift algorithm, one may only need 

decades of measurements in frequency domain. In the present study of identifying Hammerstein systems, we pay our at- 

tention to the poles of linear subsystems at the beginning. The backward shift algorithm to estimate the poles will be also

generalized. Next, different from [20] , before the modified BSA is applied, we start with measurements sampled in the time

domain. After the mission of finding poles is complete, models for linear subsystems are constructed by using the obtained 

poles for the basis functions. At last, coefficients of the linear and nonlinear parts are respectively determined by using the

least squares (LS) method. The main contributions of this study include: 

• The backward shift algorithm is modified and generalized. In particular, we release the equal-spacing restriction for 

sampling frequency spaces in the modified algorithm. 

• The modified backward shift algorithm is applied to identification of Hammerstein systems. Poles of linear subsystems 

are efficiently estimated by using the modified backward shift algorithm. 

The outline of this paper is given as follows. In Section 2 , the problem settings are provided. We give a summary of

the backward shift algorithm in Section 3 . Section 4 is to propose the identification processes of a Hammerstein system by

using our DFT-BSA-LS method. After that, an example is given in Section 5 to illustrate the proposed idea. Conclusions are

drawn in the last section. 

2. Problem formulation 

A discrete-time Hammerstein system, shown in Fig. 1 , consists of a dynamical linear subsystem G (z) and a static non-

linear subsystem f (x ) . G (z) is the transfer function of its linear subsystem, y (n ) is the output signal with input x (n ) , it is

noised by v (n ) . We set y 0 (n ) as the true output without noise. u (n ) is the internal signal, it can be treated as either output

of the static nonlinear subsystem f (x ) or input of the linear subsystem G (z) . 

In engineering, the transfer function of a linear system G (z) is defined by the series 

G (z) = 

∞ ∑ 

n = −∞ 

h (n ) z −n , (1) 

where h (n ) is the impulse response of system G (z) . It can also be defined by replacing z with z −1 in (1) , then the transfer

function of a stable and casual linear discrete system is analytic in the unit disc in the complex plane. In this case, the study

is proceeded in the unit disc. Here are some assumptions about the considered Hammerstein system in this paper: 

• Assumption 1. The discrete linear subsystem G (z) is a rational function, that is to say, G (z) is a stable and casual system

and its poles are not in the closed unit disc. 

• Assumption 2. The nonlinear static subsystem f (x ) is assumed to be a polynomial with known maximal order p. 

• Assumption 3. The noise v (n ) is Gassian, its a stationary random process with zero mean and zero mean and finite

variance σ , 0 < σ < + ∞ . 

Generally speaking, a Hammerstein system { f (x ) , G (z) } is unidentifiable, because either linear subsystem G (z) or nonlin-

ear subsystem f (x ) are not unique. For any different nonzero constant c, the pairs of { c f (x ) , G (z) /c} give rise to the same
2 
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product under identical input signals. Some studies tried to estimate true linear and nonlinear subsystems, that do not make 

sense and nor are they necessary neither. Many ways can be taken to avoid this problem, such as estimating a block at first,

fixing a norm of f (x ) or G (z) [14] , or setting the first order coefficient of the Fourier series of the output f (A cos (w l t)) being

equal 1, etc [2] . 

For Assumption 1, G (z) is a rational function, it also can be equally rewritten as 

G (z) = 

m 1 ∑ 

k =1 

λ1 k 

(1 − a 1 z) k 
+ . . . + 

m α∑ 

k =1 

λαk 

(1 − a αz) k 
, (2) 

where | a i | < 1 , K = m 1 + . . . + m α is the order of G (z) , (for simplicity a k is just called poles of system in the left text). If a i 
is the single pole, then the index m i is 1. 

The algorithm starts with sets of measurements in time domain, and the excitation signals are set to be 

x <l> (n ) = A cos (w l n ) , (3) 

where w l (l = 1 , 2 , . . . , L ) are frequencies. In each signal, there are N sampled data. Because of the structure of Hammerstein

model, the internal signal u (n ) = f (x (n )) and output signal y (n ) are periodic under input signal x (n ) . This study begins with

the following sampled data set: there are L inputs 

{ x < 1 > (n ) } N n =1 , . . . , { x <l> (n ) } N n =1 . . . , { x <L> (n ) } N n =1 

and L noised outputs 

{ y < 1 > (n ) } N n =1 , . . . , { y <l> (n ) } N n =1 . . . , { y <L> (n ) } N n =1 

that are given by 

y <l> (n ) = y <l> 
0 (n ) + v <l> (n ) l = 1 , 2 , . . . , L. 

y <l> 
0 

(n ) stand for the true values of signals and v <l> (n ) are the noises. For computation convenience, we choose that N =
mL , where m is a positive integer. Other types of input could also be used, such as multisine [24] . 

The aim of this study is to identify a pair of { cG (z) , f (x ) 
c } based on the data sets, but not to find G (z) , f (z) and c them-

selves, where c is a nonzero number. Since the coefficients of linear and nonlinear parts can not be uniquely fixed, while

the poles of G (z) are unique. cG (z) and G (z) share the same poles, then the poles of G (z) plays a key role in identification

of a Hammerstein system. This is why one should consider the poles at first. So we will start our identification process with

estimating poles of G (z) , where backward shift algorithm is used. In the next section, we briefly introduce the backward

shift algorithm. 

3. The backward shift algorithm 

The backward shift algorithm is developed based on a famous mathematical tool: the backward shift operator which is 

defined by 

B (g)(z) = 

g(z) − g(0) 

z 
, (4) 

and g(z) is a function in Hardy spaces. This operator is continuous for Hardy spaces functions H 

p (D ) p > 1 [5] . For a closed

subspace M in H 

p (D ) , it is also a backward shit invariant subspace for B , e.g., for any function g(z) ∈ M , B (g) ∈ M . 

Set e a (z) = 

1 
1 −az , it is a rational wavelet basis function with parameter a in the unit disc. For a K-sequence { a 1 , . . . , a K } ,

a k could repeat, we have multiple analytic wavelets, { ̃ e a 1 , . . . , ̃  e a K } , where 

˜ e a k = 

1 

(1 − a k z) l k 
, 

and l k is the repeating time of a k in (a 1 , . . . , a k ) . 

The set of multiple analytic wavelets { ̃ e a 1 , . . . , ̃  e a K } could generate a closed subspace of H 

p (D ) , in fact, it is shown in

[15,25] , that 

span { B 1 (z) , . . . , B K (z) } = span { ̃  e a 1 , . . . , ̃  e a K } 
where the rational orthomormal basis functions B k (z) are defined by 

B k (z) = 

√ 

1 − | a k | 2 
1 − a k z 

k −1 ∏ 

l=1 

z − a l 
1 − a l z 

(5) 

with B 1 (z) = 

√ 

1 −| a 1 | 2 
1 −a 1 z 

, a k is the conjugate. 

Given a function in form (2) , it can be reformed in linear combination of rational orthogonal basis functions (5) , i.e., 

g(z) = 

K ∑ 

k =1 

ϑ k B k (z) . (6) 
3 
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We can notice that the space X a 1 , ... ,a K spanned by ( ̃  e a 1 , . . . , ̃  e a K ) is a closed subspace in Hardy spaces, thus, for g(z) in

form of (2) , we can see not only g(z) belongs to X a 1 , ... ,a K , but also the function after taking backward shift algorithm B (g)(z)

belongs to X a 1 , ... ,a K . In fact, we have 

B (e a k )(z) = 

e a k (z) − e a k (0) 

z 

= a k e a k (z) . 

And we have a result shown in [20] that 

Theorem 3.1. For a rational function g(z) given in form (2) , suppose the order is K, after taking k times backward shift operator

one obtain B 

k (g)(z) , then there is a unique sequence { μ1 , μ2 , . . . , μK } such that 

B 

K (g)(z) + μK B 

K−1 (g)(z) + . . . + μ1 g((z) = 0 , (7) 

where μk are not all zeros. Furthermore, zeros of corresponding algebraic equation 

x K + μK x 
K−1 + . . . + μ2 x + μ1 = 0 , (8) 

are exactly the parameters { a 1 , a 2 , . . . , a K } , including the multiplicities. 

Based on the relationship given in (7) and (8) , the so called Backward Shift Algorithm (BSA) was developed in [20] . The di-

rect purpose is to estimate parameters { a k } (including multiplicities) by using frequency-domain measurements { E l } , where

E l = g(e jw l ) + V l , each g(e jw l ) is the true value at w l and V l is the noise. The algorithm can be briefly stepped as: 

Algorithm 1 

• Step 1. Collect data set of frequency responses { E l } ; 
• Step 2. Take backward shift operator to { E l } and obtain data sets { B ({ E l } ) } , { B 

2 ({ E l } ) } , ..., { B 

M ({ E l } ) } ; 
• Step 3. Find μ1 , μ2 , . . . , μK from equation (7) ; 

• Step 4. Find { a k } by solving equation (8) . 

It is shown in [20] that only dozens of frequency-domain measurements are enough to get true poles in case of no noise.

After poles { a k } are obtained, then e a k (or B k (z) ) are fixed, their coefficients can be estimated quickly by using the least

squares method. Due to the particular structure of Hammerstein systems, it is reasonable to consider the application of the 

backward shift algorithm in their identification. 

4. Identification of hammerstein systems with BSA 

4.1. Modification of BSA 

In the algorithm of BSA, given linear subsystem G (z) , an approximation to G (0) is taken by using sampled data as fol-

lows: 

B (G )(e jw l ) = 

G (e jw l ) − G (0) 

e jw l 
(9) 

= 

G (e jw l ) − 1 
2 π

∫ 2 π
0 G (e jw ) dw 

e jw l 

≈ G (e jw l ) − 1 
L 

∑ L 
k =1 G (e jw k ) 

e jw l 
. 

This approximation is simple, and truly, it is a special case of the following approximation, 

B (G )(e jw l ) ≈ G (e jw l ) − 1 
2 π

∫ 2 π
0 

∑ 

G (e jw l ) χ(·) dw 

e jw l 
, (10) 

in which χ(·) is the indicator function. So one can use the extended formula instead of the old approximating formula if

no equal spacing is used. And this is more helpful for algorithm and experimental designing. 

Remark 4.1. In fact, according to the theory of holomorphic functions, a function given in 2 can be uniquely determined by

a set of function values on a convergent sequence in its analytic region [27] . 

Even though the estimation is replaced by (10) , the backward shift algorithm ( Algorithm 1 ) still keeps its efficiency and

robustness. We have 

Theorem 4.1. Suppose we have a set of noised data { E l } L l=1 
(i.e, E l = G (e jw l ) + V l ) and each V l is bounded as | V l | < ε. If μ	 is

the true solution and μL is the estimated solution of (7) by BSA with (10) , then there is 

μL → μ	 (L → ∞ , ε → 0) . (11) 

For the proof, it is analogous to the process of Theorem 4 in [20] by replacing (9) with (10) , the detail is given in the

Appendix Section. From formula (8) , we can see when μL are getting true, and the estimated poles approach to the true

values of { a k } . 
4 
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4.2. Estimation of linear subsystem 

Now we are going to show the identification of Hammerstein systems, where the backward shift algorithm is mainly 

used in the identification of linear subsystem. On considering the initial condition starting from input and output measure- 

ments { x <l> (n ) } N n =1 , { y <l> (n ) } N n =1 ( l = 1 , 2 . . . L ) in the time domain, while the BSA is a frequency-responses driven algorithm

( Algorithm 1 ), then an estimation of frequency responses is necessary before proceeding BSA. 

In this paper, discrete Fourier transform (DFT) is used to get the estimation of frequency responses of linear subsystem. 

By computation, there are: 

X (e jw l ) = 

A 

√ 

N 

2 

(12) 

and 

Y (e jw l ) = 

c 
√ 

N G (e jw l ) 

2 

+ V (e jw l ) , (13) 

where c is a nonzero constant according to [2] and V (e jw l ) is DFT of noise. From equations (12) and (13) , one can define an

estimator as 

˜ G (e jw ) = A 

Y (e jw ) 

X (e jw ) 
. (14) 

Consequently, we obtain estimates of frequency responses of the linear subsystem at each frequency w = w l , i.e., 

˜ G (e jw l ) = cG (e jw l ) + 

2 V (e jw l ) √ 

N 

. (15) 

A result about convergence of (15) guarantees this estimation: 

Theorem 4.2. Given a Hammerstein system in Fig. 1 with assumptions 1–3, then the estimation of frequency responses for the

linear subsystem G (z) by (15) converges to cG (e jw l ) uniformly in l,viz., 

˜ G (e jw l ) → cG (e jw l ) 

uniformly in l in probability as N → ∞ . 

Proof. Denote by E (•) the expectation for •. According to [24] , there are 

E V (e jw l ) = 0 (16) 

and 

E { | V (e jw l ) | 2 
N 

} = O ( 
1 √ 

N 

) . (17) 

Then the above equations lead to 

E ( ̃  G (e jw l ) − cG (e jw l )) = 0 (18) 

and 

E | ̃  G (e jw l ) − cG (e jw l ) | 2 = O ( 
1 √ 

N 

) → 0 , (N → ∞ ) (19)

uniformly in w l , respectively. The proof is complete. 

After these preparations, the backward shift algorithm could be now used to estimate poles { a k } and linear subsystem

for the considered Hammerstein system. The complete algorithm is shown as follows. �

Algorithm 2 

• Step 1. Take samples of input and output data { x <l> (n ) } N 
n =1 

, { y <l> (n ) } N 
n =1 

, under the input x (n ) = A cos (w l n ) , ( l =
1 , 2 . . . L ). 

• Step 2. Estimate frequency responses with estimator ˜ G (e jw ) = A 

Y (e jw ) 

X(e jw ) 
at the frequency w l , and obtain { (w l , ̃

 G (e jw l )) } . 
• Step 3. Get the approximated poles { a k } by applying BSA with the result in step 2, and. 

• Step 4. Get approximation to cG (z) , say, 

˜ G (z) = 

K ∑ 

k =1 

ϑ k B k (z) , (20) 

in which the generalized rational orthogonal basis functions B k (z) are constructed by using { a k } and the coefficients ϑ k ’s

are estimated by the least squares method. 

Note that the linear subsystem that one approaches is cG (z) but not G (z) . 
5 
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4.3. Estimation of nonlinear part 

When the linear part is fixed, next mission is to estimate the nonlinear part. According to Assumption 2, the unknown

nonlinearity is assumed to be a polynomial. Although this assumption is simple, it is reasonable for smooth and continuous 

nonlinearities. Then precisely, the task is to estimate the coefficients of 

f (x ) = β0 + β1 x + . . . + βp x 
p , (21) 

where p is the order of the polynomial f , we are now to find { β0 , β1 , . . . , βp } such that f (x ) matches the inputs and outputs

of the Hammerstein system the best, on coincidence with the fixed linear part ˜ G (z) . 

Since the obtained linear subsystem 

˜ G (z) is a rational function, without losing generality, it can be set as 

˜ G (z) = 

b K−1 z 
K−1 + b K−2 z 

K−2 + . . . + b 1 z + b 0 
z K + d K−1 z K−1 + . . . + d 1 z + d 0 

(22) 

with order K, b k and d k being real coefficients. 

For the lth input signal at frequency w l , x 
<l> (n ) = A cos (w l n ) , then the middle signal (output of f (x ) ) is 

u 

<l> (n ) = β0 + β1 A cos (w ln ) + . . . + βp [ A cos (w ln )] p , (23) 

and the output y <l> (n ) is given by 

y <l> (n ) = ( ̃  G ∗ u 

<l> )(n ) , (24) 

being the convolution of { u <l> (n ) } and impulse response of ˜ G (z) . Equation (24) also can be rewritten in the form of a

differencial equation, that is 

(z K + d K−1 z 
K−1 + . . . + d 1 z + d 0 ) · y <l> (n ) 

= (b K−1 z 
K−1 + b K−2 z 

K−2 + . . . + b 1 z + b 0 ) · u 

<l> (n ) , 

where z is seen as a backward operator to the sampled series in time domain. The above equations leads to 

y <l> (n − K) . . . + d 1 y 
<l> (n − 1) + d 0 y 

<l> (n ) 

= b K−1 u 

<l> (n − K + 1) . . . + . . . + b 0 u 

<l> (n ) 

= b K−1 

p ∑ 

i =0 

βi { A cos [ w l (n − K + 1)] } i + . . . + 

b 1 

p ∑ 

i =0 

βi { A cos [ w l (n − 1)] } i + b 0 

p ∑ 

i =0 

βi { A cos [ w l (n )] } i 

= β0 

K−1 ∑ 

i =0 

b i + β1 

K−1 ∑ 

i =0 

b i { A cos [ w l (n − i )] } . . . 

+ βp 

K−1 ∑ 

i =0 

b i { A cos [ w l (n − i )] } p . (25) 

Denote a parameter column vector β = [ β0 β1 . . . βp ] ′ , then above equations (25) can be written as a system of equations 

�β = Y , (26) 

where � is a (N − q ) × (p + 1) matrix with the k th column given by 

�(·, k ) = 

⎛ 

⎜ ⎜ ⎝ 

∑ K−1 
i =0 b i A 

k −1 cos k −1 [ w l (K + 1 − i )]) ∑ K−1 
i =0 b i A 

k −1 cos k −1 [ w l (K + 2 − i )]) 
. . . ∑ K−1 

i =0 b i A 

k −1 cos k −1 [ w l (N − i )]) 

⎞ 

⎟ ⎟ ⎠ 

, (27) 

and 

Y = 

⎛ 

⎜ ⎜ ⎝ 

∑ K 
i =0 d i y 

<l> (K + 1 − i ) ∑ K 
i =0 d i y 

<l> (K + 2 − i ) 
. . . ∑ K 

i =0 d i y 
<l> (N − i ) 

⎞ 

⎟ ⎟ ⎠ 

. (28) 

Then the parameters β can be solved in the least-squares sense according to (26) , that is 

β	 = (�′ �) −1 �′ 
Y . (29) 

Remark 4.2. The presented estimation of nonlinear subsystem is natural. Other algorithms can be also applied to estimate 
the nonlinear part, see [40] . 

6 



W. Mi and T. Qian Applied Mathematics and Computation 413 (2022) 126620 

Table 1 

The poles obtained without noise to output y (n ) . 

Poles BSA IBSA Nano ′ s [22] 

a 1 0.50001215 0.50000080 −0 . 8761 + 0 . 1062 j

a 2 0.20240560 0.20233191 0 . 5643 − 0 . 0221 j

Table 2 

The poles obtained with noise SNR = 20 dB to output y (n ) . 

Poles BSA IBSA Nano ′ s [22] 

a 1 0.48261800 0.50001566 0 . 8743 − 0 . 4325 j

a 2 0.18260904 0.20231243 −0 . 6116 + 0 . 6413 j

Fig. 2. Box chart of 100 estimated poles for linear subsystem obtained by backward shift algorithm, noises are given randomly with SNR = 20 dB . 

 

 

 

 

 

 

 

 

 

 

 

5. Example 

In this section, an example is presented to illustrate the proposed algorithm. Consider a Hammerstein system, whose 

linear subsystem is given by 

G (z) = 

9 − 1 . 05 z 

( 1 − 0 . 5 z)(1 − 0 . 2 z) 
(30) 

and nonlinear subsystem is 

f (x ) = x + 0 . 8 x 2 + 0 . 7 x 3 , (31) 

respectively. The linear part is a second order system with two distinguished poles, while its nonlinearity is a polynomial 

with order 3. 

In the simulation, there are L = 16 input signals with frequency w l (l = 1 , 2 , . . . , L ) , where w l are arranged in the open

interval (0 . 1 , π − 0 . 1) and the points 0 and π are avoided. Frequency responses of the linear subsystem in (π, 2 π) are

set to be the conjugated values of estimated frequency responses in (0 , π) . There are 20 0 0 sampled data in each signal.

The noise level is set to be SNR (sigal to noise ratio) = 20 dB . By using BSA, we get the linear part ˜ G (z) . The corresponding

nonlinear part is approximated according to (29) . We repeated the algorithm 100 times with random noises in 20 dB . The

symbols IBSA and BSA are used representing the general spacing and equal spacing algorithm in the results, respectively. 

In the non-noise case, Table 1 shows the estimated results in different algorithms, including: BSA, IBSA and Nara-Ando’s 

algorithm [22] . While the results of noised case are shown in Table 2 . 

Furthermore, we show the box chart of all data in 100 tests in Fig. 2 . ‘ •(IBSA)’ and ‘ •(BSA)’ stand for the estimated results

for pole • by non equally spaced BSA and equally spaced BSA, respectively. In order to combine the results in one figure

for two poles 0.5 and 0.2, the results for 0.2 are all added up with 0.3. The estimated coefficients for e a 1 (z) and e a 2 (z) are

λ1 = 0 . 1153 , λ2 = −0 . 0265 , respectively, associated with estimated nonlinear subsystem 

˜ f (x ) = −0 . 3068 + 101 . 4124 x + 81 . 0854 x 2 + 70 . 8824 x 3 . (32)

In order to compare with other methods and the original system, simulation results are modified. The linear part are set to

be 100 ̃  G (z) and nonlinear part is changed to ˜ f (x ) / 100 . This would not affect the behavior of entire Hammerstein system.
7 
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Table 3 

Simulation results ( λ1 , λ2 ) and modi- 

fied results for BSA and IBSA. 

λ1 λ2 

Original 11.5 −2 . 5 

IBSA 0.1153 −0 . 0265 

Mod. IBSA 11.5261 −2 . 6470 

BSA 0.1134 −0 . 0393 

Mod. BSA 11.3416 −3 . 9312 

Table 4 

Simulation results and modified results for BSA and IBSA. 

β0 β1 β2 β3 

Original 0 1 0 . 8 0 . 7 

IBSA −0 . 3068 101.4124 81 . 0854 70.8824 

Mod. IBSA −0 . 0031 1.0141 0 . 8108 0.7088 

BSA −3 . 9270 121.4482 97 . 2002 85 . 0324 

Mod. BSA −0 . 0393 1.2145 0 . 9720 0.8503 

Fig. 3. The black line, blue dash-dot line, red dash line and green line are original linear subsystem, linear subsystem obtained by IBSA,BSA and ELS, 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

After this modification, the modified results are shown in Table 3 and 4 , where ‘Mod.’ stands for modified results. The

obtained results are more clear. 

In Fig. 5 and 5 , identification results are compared with the extended least squares method (ELS). In both figures, the

black lines, blue dash-dot lines, red dash lines and green lines are original linear (nonlinear) subsystem and results obtained 

by using backward shift algorithms and ELS, respectively. From the tables and figures, it can be seen that the backward shift

algorithm can get effective estimations of poles, thus it can lead to efficient identification of entire Hammerstein systems. 

6. Conclusion 

In this paper, the backward shift algorithm is applied in identification of Hammerstein systems. A modification on spacing 

of frequencies not only generalizes the original algorithm, but also allows users to design their experiments more freely. 

From the tables and figures, it can be seen that the backward shift algorithm is more powerful in estimating poles of linear

subsystems, and hence the entire Hammerstein systems. The backward shift algorithm is a new identification framework, 

then there would be more applications in identification problems. 

Appendix A. Appendix 

Proof of Theorem 4.1.. Without loss of generality, let c = 1 , the frequency estimation for linear subsystem cG (z) at w l 

becomes 

˜ G (e jw l ) = G (e jw l ) + V , (l = 1 , 2 , . . . L ) 
l 

8 
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Fig. 4. Comparison of nonlinear parts. The black line, blue dash-dot line, red dash line and green line are original nonlinear subsystem, nonlinear subsystem 

obtained by IBSA, BSA and ELS, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 
where V l = 

2 V (e jw l ) √ 

N 
are the errors between true values G (e jw l ) and estimated values shown in (15) . Take backward operator

to data set { ̃  G (e jw l ) } , there is 

B ( ̃  G )(e jw l ) 

= 

˜ G (e jw l ) − 1 
2 π

∑ L 
k =1 ̃

 G (e jw l )(w k +1 − w k ) 

e jw l 

= B (G )(e jw l ) + ̃

 B (O )(V l ) , 

where ̃  B (O )(V l ) is 

˜ B (O )(V l ) = 

V l − 1 
2 π

∑ L 
k =1 V k (w k +1 − w k ) + T 0 

e jw l 
, 

and T 0 is the error given by 

T 0 = G (0) − 1 

2 π

L ∑ 

k =1 

G (e jw k )(w k +1 − w k ) . 

Continue to the second step: taking backward shift to B ( ̃  G )(e jw l ) , 

B 

2 ( ̃  G )(e jw l ) = B 

2 (G )(e jw l ) + ̃

 B 

2 (O )(V l ) , 

B 

2 (G )(e jw l ) , ̃  B 

2 (O )(V l ) are given respectively by 

B 

2 (G )(e jw l ) = 

B (G )(e jw l ) − B (G )(0) 

e jw l 
, 

˜ B 

2 (O )(V l ) 

= 

˜ B (O )(V l ) − 1 
2 π

∑ L 
k =1 ̃

 B (O )(V k )(w k +1 − w k ) + T 1 

e jw l 

with 

T 1 = B (G )(0) − 1 

2 π

L ∑ 

k =1 

B (G )(e jw k )(w k +1 − w k ) . 

Repeating to the m -th time, one would obtain data sets { B 

m (G )(e jw l ) } L 
l=1 

(m = 1 , . . . , K) as 

B 

m ( ̃  G )(e jw l ) = B 

m (G )(e jw l ) + ̃

 B 

m (O )(V l ) , 

and B 

m (G )(e jw l ) , ̃  B 

m (O )(V l ) are given respectively by 

B 

m (G )(e jw l ) = 

B 

m −1 (G )(e jw l ) − B 

m −1 (G )(0) 
jw l 

, 

e 

9 
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˜ B 

m (O )(V l ) (A.1) 

= 

˜ B 

m −1 (O )(V l ) − 1 
2 π

∑ L 
k =1 ̃

 B 

m −1 (O )(V k )(w k +1 − w k ) 

e jw l 

+ 

T m −1 

e jw l 
, 

and T m 

are errors given by 

T m 

= B 

m (G )(0) − 1 

2 π

L ∑ 

k =1 

B 

m (G )(e jw l )(w k +1 − w k ) . 

Finally, one gets a system of equations 

�μ = b, (A.2) 

where � is an L × K matrix with elements �LK (l, m ) = B 

m −1 ( ̃  G )(e jw l ) , μ is the column vector of parameters

[ μ1 μ2 . . . μK−1 ] ′ and b is a column whose lth element is B 

M ( ̃  G )(e jw l ) . 

For the new approximation, we can see 

lim 

ε→ 0 , 
L →∞ 

1 

2 π

∫ 2 π

0 

∑ 

G (e jw l ) χ(·) dw = G (0) , (A.3) 

consequently, for all l

lim 

ε→ 0 , 
L →∞ 

B ( ̃  G )(e jw l ) = B (G )(e jw l ) , (A.4) 

and thus 

lim 

ε→ 0 , 
L →∞ 

B 

m ( ̃  G )(e jw l ) = B 

m (G )(e jw l ) . (A.5) 

Then according to equations (A.2) , the left goes similarly with the proof in [20] , we can get 

lim 

ε→ 0 , 
L →∞ 

μL = μ	 , (A.6) 

where μ	 is the true solution of (7) , μL is the obtained solution by using BSA with { E l } L l=1 
. The proof is complete. �
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